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Abstract

Reactive Tuple Space for a Mobile Agent Platform
Yu Li

An agent programming model can simply specify agent behaviors as proactive behaviors
and reactive behaviors. Typically a multi-agents system is based on message passing,
which usually is space and time coupled. This thesis aims at developing a multiple
reactive tuple space coordination media that provides space and time decoupling for
agent dynamic interaction. It provides three categories of primitives: (i) synchronous
primitives, (ii) asynchronous primitives, and (iii) reactive primitives. The synchronous
and asynchronous primitives are intended to support agent proactive behaviors. The
reactive primitives are for supporting agent reactive behaviors. The formal specification
of the reactive tuple space is also described based on the state machine model. In order to
enhance system efficiency, a replication protocol is designed to accommodate both
locality and concurrency of tuple accesses. The reactive tuple space has been fully
implemented and integrated with the JADE mobile agent platform. Comparing with ACL
message passing in JADE, experiments are conducted to show that the reactive tuple
space can provide competitive performance in terms of interaction latency and bandwidth

for tuple spaces of reasonable size.
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Chapter 1 Introduction

1.1 Motivation

Software agent has become an interesting model for distributed system design. Agent, as
an autonomous entity, can interact with each other to fulfill global goals [Shoham93,
Woo0d00]. A common approach to build a distributed multi-agent system can be
abstracted using a coordination model [Ciancarini98]. Coordination can be defined as
"the joint efforts of independent communicating actors towards mutually defined
goals"[Arbab98, Ciancarini96, Malone94]. For example, a group of basketball players
~ corporate to win a competition, and a flock of birds coordinate their flight in order to stay
in formation. A coordination model provides a framework in which the interaction of
software agents can be expressed, or in other words, these agents can be glued together.
In general, a coordination model deals with the creation and destruction of agents, their
communication activities, their distribution and mobility in space. More precisely, a
coordination model for multi-agent systems can be refined into three entities: agent
programming model, agent management model, and coordination media.

An agent programming model captures the significant properties of agents and provides
the highest level abstraction to construct agents as the most important component from
the point of view of an application. In order to meet their application requirements,
programmers extend an agent programming model to customize the framework. In
[Kendall98] they define the agent programming model in seven layers: sensory, beliefs,
reasoning, action, collaboration, translation, and mobility. The layered pattern mimics the
layered network model in which higher-level behaviors depend on lower-level
capabilities. However, we picture the fundamental characteristics of an agent in a simple
way as follows: reactivity, and pro-activeness [Zhang04]. Reactivity means that an agent

can sense and react to stimulus coming from its environment or other agents. Pro-
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activeness means that an agent can choose and control its behavior and cooperate with
other agents. Interactions among agents are role-based [Kendall99, Riehle98]. Therefore,
agent functionalities can be modeled by two types of behaviors: reactive behavior for
reactivity and proactive behavior for pro-activeness. For example in e-commerce
application, a seller agent can sell some products through negotiation, and sell other
products through public sales. Thus a seller agent has to respond to asynchronous
requests, and this is best modeled as a reactive behavior. On the other hand, if a buyer
agent wants to purchase a product through negotiation, we can model the negotiation
strategy of the buyer agent by defining a proactive behavior to negotiate with the seller
agent to get a reasonable price.

An agent management model is used to manage the lifecycle of an agent. An agent often
has a real-world counterpart relevant to the application. An agent plays certain roles, has
certain goals to achieve, and goes through a lifecycle. Thus, an agent can be in one of
following states: initiated, active, waiting, and dead. Initiation of an agent effectively
creates and launches it. An agent is active when it is taking actions that are necessary to
fulfill its goals. An agent is waiting when its progress is pending on the progress of its
environment. An agent ceases to exist when it is aborted, for example, when it has
completed its goals. For example in e-commerce application, a buyer agent abstracts a
real customer, who is interested in buying some products. A buyer agent can be
initialized by a customer with an item to be purchased and some constraints such as the
price range. Then the buyer agent can actively search for the item from several markets
and selects the best available. During the search process, the buyer agent may need to
wait for the reply from a market. As the item is bought, its goal is achieved and the buyer
agent can cease to exist. Different agent management model may define different agent
lifecycle. For example in order to support agent mobility, a transit state may be added to

the lifecycle described above to mark that an agent is in the process of migration. By



adopting an agent lifecycle, it provides a convenient way to manage agents. For instance
if an agent is in the transit state, it will not be scheduled to execute. By being mobile,
agents can operate in a host locally instead of remotely through the network. Hence it can
save network bandwidth and processing latency, and massive communication can be
avoided. Agent programming is thus simplified by relying on the services provided by an
agent management model. Agent management model can also define other services
according to system requirements, for example resource service and security service.
Coordination media is used to support agent interactions. Examples of such media
include channels and tuple spaces. A channel supports message passing between two
agents. A tuple space is a shared ‘bag’ that holds data and provides a set of primitives for
agent interactions. Agents use the primitives to store and extract data. We call the set of
primitives and their semantics a coordination language. In the application layer, in order
to interact with each other through a coordination media such as a channel or a tuple
space, agents have a communication language to understand each other. A
communication language defines the syntax and semantics used in agent communication.
For example, ACL (Agent Communication Language) [FIPA] can be used to design high
level application protocols to support different types of agent coordination.

Agent management model and coordination media are basic infrastructures to provide
services for agents. In other words, agent management model and coordination media are
the basis in designing an agent platform.

There are various kinds of multi-agent platforms that support agent coordination via
message passing. These include JADE (Java Agent Development Framework) by
Telecom Italia Lab [JADE], FIPA-OS by Nortel Networks Harlow Laboratories in the
UK [FIPA-OS], Grasshopper by IKV™ Technologies AG in Germany [Grasshopper],
Aglets by IBM Japan Lab [Aglets], and ZEUS by British Telecommunications
Laboratory [ZEUS].



Message passing is space and time coupled. An application designer must decide when an
agent needs to communicate, with whom to communicate, and what data to send or
receive. Usually, message passing is the natural and efficient solution for agent
interactions. However, it is not always the most appropriate to use message passing. For
example, in some dynamic sharing scenarios such as public sales in e-commerce, using
message communication alone would require the incorporation of an agent to serve as a
coordinator among seller agents and buyer agents. Message passing is also weak in its
support of dynamic and asynchronous interaction among application agents.

Linda [Gelernter85, Gelernter92] is a form of distributed shared memory [Carter91,
Kranz94, Li89] that is well recognized in its usefulness for coordination as it provides
space and time decoupling. This means that one agent can access data without knowing
whether it has been produced and who has produced it. However, the dynamic coupling
supported by a tuple space comes with additional costs. The latency of interaction may be
higher than that of a direct message exchange between two agents. It is because that
implementation of Linda in a distributed system is still based on lower level message
passing, and its consistency requires synchronization among different hosts.

A tuple space can be visualized as a shared associative memory that stores a set of tuples.
A tuple is an ordered collection of fields, with each field having a type and a value
associated with it. A template is a special tuple, for that a field of a template may only
have a type without a value. A field without a value is called a formal field. A field with a
value is called an actual field. Linda defines a simple set of primitives as the coordination
language. These primitives are described in Section 1.2.1. An agent can read or retrieve
(destructively read) a tuple by associative pattern matching between a tuple and a
template. A tuple associatively matches a template if the following conditions hold. (i)
The number of fields in the template is equal to the number of fields in the tuple. (ii)

Each template field type is the same as the corresponding tuple field type. (iii) If a



template field has a value, then the value is equal to the value of the corresponding tuple
field. Therefore, Linda allows an agent to access memory by associative matching instead
of by address. For example, a mailbox can be modeled as a tuple space. A mail tuple may
contain fields such as the receiver, the sender, mail-creation-time, mail-receipt-time and
mail-content. Each of these fields has an actual value. One can access a mail tuple by
providing a mail template in which only the receiver field and the mail-received-time
field have actual values.

In our agent programming model, different agents play different roles at different times.
A group of agents collaborates to fulfill some common goal. Hence it is natural to extend
from the original Linda model, which defines a single flat tuple space, to multiple tuple
spaces, so that different tuple spaces can be associated with different groups of agents.
What is more, in order to improve system performance, it is necessary to distribute
different tuple spaces or partition a single tuple space into subsets and store them across
the network in order to take advantage of concurrency and locality. Therefore in order to
design an efficient agent application, the multiple tuple spaces require a programmer to
consider clustering related agents into a group through a tuple space, and scattering
different tuple spaces and agent groups onto different nodes. This logical partitioning into
disjoint tuple spaces provides concurrency while retaining the consistency semantics of a
single tuple space formed by the union of these disjoint parts.

The above distributed multiple tuple spaces model is data-driven, which means that the
involved agents will access a large body of shared data, examine them and act
accordingly. The tuple space establishes how tuples can be stored and extracted from it.
At this point, agents are treated as active entities, while the tuple space is a passive
repository. As described before, data-driven mechanism is more suitable for applications
such as e-commerce systems that have dynamic sharing requirements. On the other hand,

in order to support agent reactive behaviors, we would like the tuple space to have event-



driven mechanism. Event-driven means the involved agents tend to center around
processing or flow of control, and can observe state changes and react to occurrences of
events. The tuple space has to establish how events and state changes can occur and how
they propagate to the agents, and provide a means of registering and deregistering events
for agents. Thus a tuple space is also an active coordinator to schedule and conirol agent
activities by treating agents as passive workers and by treating certain tuples as events.

We would like to explore the features of such distributed multiple reactive tuple spaces to
support our agent programming model. Finally, we want to integrate an efficient
implementation of the multiple reactive tuple space with the JADE platform seamlessly,
and to map our agent programming model to the agent model in JADE. The goal is not
only to show that tuple space can meet both the dynamic sharing and the reactivity
requirements, but also to demonstrate that tuple space can give us reasonable
performance when compared with peer-to-peer message passing counterparts. Therefore,
a multiple agent system can have both tuple space and message passing interactions

support on one platform.

1.2 Related Work
1.2.1 LINDA

Proposed by David Gelemter and co-workers, Linda is the first tuple based
communication and coordination model. Its principal use is to design a coordination
language for parallel programming. Communication among different processes involved
in a concurrent computation can only occur through a tuple space, which can be thought
of as a bag into which tuples are inserted and retrieved by the processes. Linda has been
used in a wide variety of applications, such as parallel string comparison, matrix

multiplication and expert systems. For example in matrix multiplication, the master-slave



paradigm can be used. A master process first puts partitions of two matrices into the tuple
space. The slave processes retrieves parts of the matrices. After computation, they put the
partial results back into the tuple space. The master process is responsible for collecting
all the partial results and combining them to get the final result. A more detailed
description can be found in [Carriero90]. Since then, many extensions to Linda have been
proposed and investigated. As we review these extensions, what we are concerned with
most is the support for agent interactions.

Linda provides a coordination language, so called primitives, as follows. In order to
clearly illustrate these primitives, we will highlight each primitive with figures by
showing the changes to the tuple space caused by each primitive.

The primitive out (tuple) writes the given tuple into the tuple space. Figure 1-1 shows the
state of the tuple space before and after a process has invoked out ((“a”,69)). Atomicity
of the tuple space must be guaranteed. In other words, the results of access operations to
the tuple space must be as if they have been performed in some serial order atomically.
However, in actual implementation, different processes may be allowed to access
different parts of the tuple space concurrently, as long as atomicity is not violated. The
left sub-diagram shows the state before executing out. The right sub-diagram shows the
state after executing out. The difference between the two states is the new tuple (“a”, 69)
that has been inserted. A pointer is used to show the control flow in executing process P.
However, since it is non-blocking operation, the tuple may not appear in tuple space

immediately as the invocation returns.

tuple space p: tuple space
out ((“a”,69));
=

P:

= out ((“a”,69));

> (‘.‘;”.,'6.9)

Figure 1-1 Tuple Space States as the Execution of out

The primitive in (template) attempts to match the tuple template with a tuple in the tuple
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space and retrieve it. If a matching tuple does not exist, the operation blocks until a
suitable tuple becomes available. If successful, the matching‘ tuple is removed from the
tuple space. Figure 1-2a shows the tuple space before and after in((“a”,?int)) is
performed when a matching tuple is present. Figure 1-2b shows the case when a
matching tuple is not found. Then the process has to be blocked until the required tuple
appears in the tuple space. The middle sub-diagram shows the transient states that contain
the matching tuple. During the time when the process is blocked, the tuple space may be

accessed by other processes and change its state.

tuple space P: tuple space

in ((“a”,%int));
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Figure 1-2b Case 2, Tuple Space States as the Execution of in

The primitive inp (template) functions in a similar way as in except that the process will
not be blocked when a matching tuple is not found. Figure 1-3a shows the case when a
matching tuple is in tuple space. Figure 1-3b shows the case when a matching tuple is

absent and the process gets an empty (null value) tuple as response.
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The primitive rd (template) is similar to in except the matching tuple is not removed from
the tuple space. Figure 1-4a shows the case where a matching tuple is found when a

process invokes rd((“a”,?int)). Figure 1-4b shows the case that there is no matching

tuple.
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Figure 1-4a Case 1, Tuple Space States as the Execution of rd
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Figure 1-4b Case 2, Tuple Space States as the Execution of rd

The primitive rdp (template) resembles rd except that the operation does not block if a
matching tuple is not found. Figure 1-5a shows the case when a matching tuple exists as a
process invokes a rdp((“a”,?int)). Figure 1-5b shows the case when a matching tuple

cannot be found.
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Figure 1-5a Case 1, Tuple Space States as the Execution of rdp
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Figure 1-5b Case 2, Tuple Space States as the Execution of rdp

The primitive eval (tuple) creates a so-called active tuple. Each element of the tuple is
evaluated concurrently. When completed, the resulting tuple is placed in the tuple space.

It is a mechanism for spawning new processes. Figure 1-6 shows the tuple space before



and after a process has invoked eval((10,?f(1))). In this example, Linda will create a

process to execute the function f{1). Here it is assumed that f{1) evaluates to become 18.

tuple space P: tuple space
oo eval (106D [ i
—=eval ((10,7f(1))); oer — ~ (10.18)
Figure 1-6 Tuple Space States as the Execution of eval
1.2.2 LIME

A wireless communication network is composed of physical mobile hosts and logical
mobile units. Logical mobile units refer to program fragments such as software agents
that can migrate from one host to another while preserving their codes and states. In
LIME (Linda in a mobile environment) [Fok03, Picc099, Picco03], a logical mobile unit
corresponds to a mobile agent. Physical mobile hosts refer to the portable computing
devices such as laptops or PDAs that can host agents. They may roam across the network
and provide physical connectivity among application agents and other relevant data.
Connectivity is supported by wired and wireless links among hosts and can be altered by
mobility or by explicit connections and disconnections. The characteristic of such
wireless network favors a decoupled and opportunistic style of computation.
Computation is decoupled in that it is expected to proceed even in the presence of
disconnection. Computation is opportunistic in that it exploits connectivity whenever it
becomes available. In order to assist the rapid development of mobile application, LIME
provides a transiently shared tuple space to coordinate both physical and logical mobile
units.

Transiently Shared Tuple Spaces As connections among hosts come and g0 over
wireless network, it is natural to break a global tuple space into many individual tuple
spaces and to introduce transient sharing among them. LIME provides three different

levels of abstractions of tuple spaces. In LIME, each agent is permanently associated with
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at least one interface tuple space (ITS). Each ITS contains information that the mobile
agent is willing to share with others. An ITS actually can be interpreted as the local tuple
space of an agent. Agents co-located on a same physical host creates a host-level tuple
space, which can be regarded as the ITS of a mobile host. Hosts that are connected merge
their host-level tuple spaces into a federated tuple space. The host-level tuple space and
the federated tuple space are transient to application agents. They provide different levels
of sharing among agents. Their contents are configured dynamically based on the
connectivity. Figure 1-7 depicts the LIME model involving two hosts. At any time, an
agent can access the transiently shared tuple space through its local associated ITS.
Agents may have multiple ITS’s, and the sharing rule among ITS’s relies on the name.
Only identically-named tuple spaces are transiently shared among the agents over the
network. Thus there may be more than one host-level tuple space on a host and more than
one federated tuple space over the network. For instance, suppose that there are three
agents in the wireless network. An agent @ owns a single ITS named X on a host named
hostl. An agent b owns two ITSs named X and Y on the same host hostI, and an agent ¢
owns a single ITS named X on another host named host2. The hostl and host2 are
disconnected at the beginning. Since the agent a and the agent b are on the same host, X
becomes shared between the two agents. At this point, the shared X is a host-level tuple
space. As the two hosts kostI and host2 become connected, LIME merges the three ITS’s
X from these three agents into a federated tuple space. At this point, X becomes a
federated tuple space and shared among the three agents over the network. When the
agent a now accesses X, it actually accesses the federated tuple space. However, since the
agent a and the agent ¢ do not have ITS Y, Y remains accessible only to the agent b.

From the point of view of coordination, LIME offers Linda-like blocking primitives (e.g.,
in, rd), and probing primitives (e.g., inp, rdp) that apply to the entire transiently shared

tuple space. In addition, LIME provides out, in, inp, rd, rdp primitives annotated with
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locations. These will be described next. LIME also provides bulk primitives (e.g., ing,
rdg). A bulk primitive is used to access more than one tuple at a time. For example, ing

retrieves all tuples that match with the given template.

Host-Laval Tuple Space £7 Interface Tuple Space
Fadarated Tuple Space

Figure 1-7 LIME Transiently Shared Tuple Space

Location-Aware Computing Transiently shared tuple spaces provide a global
context shared by mobile agents. This could potentially simplify application designs.
However, performance and efficiency considerations may require fine-grained control
over a portion of the transiently shared space. For instance, an agent may be only
interested in the information from a specific host. Thus by restricting its access to the
specified host-level tuple space an agent can avoid the expensive query on the whole
federated tuple space. Therefore, LIME extends Linda operations with tuple location
parameters to allow an agent to confine its accesses to a portion of the transiently shared
tuple space. A location parameter is defined with an agent identity or a host identity. The
agent identity, defined by its IP address, port, and serial number, is used to identify the
agent tuple space. The host identity, defined by IP address and port, is used to identify the
host-level tuple space. Thus both identifiers must be globally unique.

In LIME, the our primitive is extended with a destination location parameter defined by
an agent identity whose ITS is supposed. to store the written tuple. A host identity value
cannot be used as the location parameter in the out primitive. If the destination location is

not specified, the tuple is stored into the writer’s own ITS. For instance suppose that the
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agent a identity is id_a, and the agent b performs out(id_a, ( “lime”,10)). If agenta and b
are co-located, the tuple ("lime”,10) will be written into the ITS of the agent a. If they are
not co-located, the tuple will become a misplaced tuple and will be stored in the ITS of b
temporally. A misplaced tuple is a tuple that is attempted to be in some other agent’s ITS
but can not because of network disconnection. A misplaced tuple will be transferred to
the destination once the needed network connection is properly established. Similarly, the
in, inp, rd, rdp primitives are extended with both current location and destination location
parameters. The current location is used to specify the portion of a transiently shared
tuple space. It restricts the accessing scope from the entire federated tuple space to the
tuple space associated with the current location. The destination location is used to
identify misplaced tuples. In other words, it identifies these tuples that are attempted to be
in the portion specified by the destination location, but currently are in the portion
defined by the current location. The current location must be defined, and the destination
location is optional. Consider rd as an example. If the destination location value is
specified, it means that the agent wants to read a misplaced tuple that matches the
template from the portion specified by the current location. Otherwise if the destination
location is not defined, it means that the agent wants to read any matching tuple.
However, in order to restrict access to a portion of the transiently shared tuple space, an
agent has to define the location parameter. Thus it may lose the significant property of
spatial decoupling. For example if the location parameter is specified by an agent
identity, communication between agents will become point-to-point, or equivalently
message passing. Furthermore, when an agent restricts its access through the location
parameter, it has to maintain connectivity in order to ensure correct communication.
Reacting to Changes In the rapidly changing environment, it is important for an
agent to respond to an event as soon as possible. Events can be, for example, the

availability of data carried by other agents. LIME introduces the notion of reaction R(s, p),
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which means that a code fragment s that implements a reaction will be executed by the
tuple space manager when a tuple matching the pattern p is found in the tuple space.
There are two kinds of reactions: strong reaction and weak reaction. A strong reaction is
used to support reactivity over a host-level tuple space or the ITS of an agent. The
semantics of strong reaction requires that the detection of a matching tuple and the
corresponding execution of the reaction code to take place on the same host atomically.
Thus the strong reaction reflects location-aware computing. This means that an agent is
only interested in the events (tuples) from some location, for instance a host. On the other
hand, in order to support reactivity spanning the federated tuple space efficiently, LIME
provides a notion of weak reaction in which the execution of s does not happen
atomically and immediately with the detection of a tuple matching p. However, it is
guaranteed to take place eventually only if the connectivity among hosts is preserved and
the execution of s takes place on the host on which the agent that registers the weak
reaction resides. This means that even if the host in which an agent resides becomes
disconnected from the network after the agent registered a weak reaction, it is guaranteed
that a reactive event will trigger the weak reaction when a disconnected host re-connects
with the network later. Moreover, there are two execution models to be selected for both
strong reaction and weak reaction when registering them. They can be executed only
once and then deregistered automatically in the same atomic step, or remain registered
after the execution.

LIME demonstrates that it is useful in wireless games. Consider a jigsaw assembly game
as an example. First, a player can still assemble pieces that she has picked up from the
tuple space while disconnected. Second, players who are currently connected should be
able to see the pieces assembled by others as soon as possible. The details of the game are

described below.
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Initially, a federated tuple space is formed using the tuple spaces of all the players in the
same game. Two kinds of tuples, image and assembly, are used in the game. An image
tuple represents a puzzle piece and contains two fields: the identifier and the bitmap of
the piece. An assembly tuple contains a single field representing a list of the identifiers of
the pieces that have already been assembled. As the game starts, an initial agent inserts
one image tuple and one assembly tuple into the tuple space for each puzzle piece.

In order to continue assembling while disconnected, the pieces selected by a player shall
be located in the player’s local interface tuple space. That can be accomplished by the
selection operation. It means that when a player joins a game, the player will first select
the pieces that she wants to assemble. In detail, first both the image and assembly tuples
are retrieved by invoking inp operations. Then it is followed by out operations (without
specifying the location parameters) that reinsert the tuples into the player’s local interface
tuple space.

In order to see subsequent assemblies performed by other players, a player should register
for a weak reaction for updating his screen. When puzzle pieces are assembled, the tuples
representing the assembled pieces are removed from the player's tuple space using the inp
primitive. Then a new assembly tuple is generated and inserted into the player’s tuple
space using the out primitive. The reaction will be triggered when the new assembly tuple
is written into tuple space, and the screen will be updated.

It is easy to imagine that an implementation of such a game using ACL on a conventional
mobile agent platform such as JADE will be rather complicated. First, in order to
maintain the overall states of the game, an organizer agent has to interact with all the
players. In LIME, the tuple spaces play this organizer role implicitly. Second, in order to
update the screen in time, JADE agents will have to sample state to the puzzle assembly

frequently and periodically. This consumes system resources unnecessarily.
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From the above example, we can see that tuple space is an effective medium that allows
mobile agents to couple asynchronously and promptly as permitted by the connectivity
that exists. This effectiveness promotes programmability and resulting performance.
However, a programmer on LIME has to pay attention to the following.

(1) LIME supports two classes of agents: stationary agent and mobile agent. Stationary
agent cannot migrate from one host to another. Strong and weak reactions associated with
stationary agents are easy to use and implement. However, strong reactions associated
with a mobile agent are a source of runtime error. Since the semantics of strong reaction
require that both a triggering tuple and the reaction reside on a same host, this property
may be violated when a mobile agent migrates from a host to another. For instance,
suppose an agent registers a strong reaction at a host. Afterwards, the agent migrates to
another host. The registered strong reaction cannot be triggered even when the needed
tuple appears in the registration host.

(2) Since a federated tuple space spans across the network, the invocation of a primitive
(e.g., rd, in, register a weak reaction) on the federated tuple space may span multiple
hosts. If the number of spanned hosts increases, the system performance will slow down

dramatically.

1.2.3 JavaSpace

JavaSpace is a JINI service [JavaSpaces]. JINI extends the java application environment
from a single virtual machine to a network environment. It provides the infrastructure that
allows clients and services to dynamically interact in a continually changing environment.
One of the important services that JINI provides is the lookup service, which functions as
a name server. Other JINI services require registration before a client can request these
services. For example in order to initialize a JavaSpace service, it requires locating the

lookup service using a discovery protocol first. Then the service is registered at the
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lookup service. Similarly, a client can request this service from the lookup service and get
the service proxy. Afterwards the client will be able to access the service through the
proxy object.

Based on Java RMI and JINI, JavaSpace uses a unified mechanism. It includes five
Linda-like primitives and one notification primitive for dynamic communication,
coordination, and sharing of resources among processes over a wide heterogeneous
network such as the Internet. Processes can be agents or any other components. The five
basic primitives are write, read, take, readlfExists, and takelfExists. Here they correspond
to Linda out, rd, in, rdp and inp primitives respectively.

In addition, JavaSpace defines two additional new futures for transaction and leasing.

(1) Transaction can group multiple primitive invocations that access multiple JavaSpaces
into a bundle that acts as single atomic operation. However, if an agent chooses to use a
primitive with transaction support, its semantics will be different from the one without
such support. For example, write primitive under a transaction means that the tuple that is
written is not visible outside its transaction until the transaction successfully commits. If
the tuple is taken within the transaction, the tuple will never be visible outside the
transaction and will not be added to the space when the transaction commits. As a side-
effect, the tuple will not generate notifications to listeners that are not registered under
the transaction. If a transaction aborts, then the tuples that are written under this
transaction will be discarded.

(2) Leasing means that when a process writes a tuple into the tuple space, it also declares
a lifetime for the tuple. When its lifetime expires, a tuple is removed from the space. For
instance a public sale scenario in e-commerce, a seller agent needs to promote some
products for one week. The seller agent can put these product tuples with one-week
leasing time into the market tuple space. Thus it ensures that when the week is over, these

products in promotion will be removed.
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JavaSpace also introduces event notification feature in the form of the notify primitive.
This registers a remote event listener to be called when a tuple matching the template
becomes available. However, notify does not return a tuple to the agent. Instead, it only
returns a message indicating that a matching tuple has been inserted into the tuple space.
Subsequently, the reaction part of the agent will have to retrieve the matching tuple from
the tuple space. However, this retrieval may fail if the tuple has already been retrieved by
another agent. Hence notification is not atomic, and critical race could result in the
subsequent behavior of the notified agent. In addition, the event notification does not
support agent location transparency. This means that if an agent registers an event listener
and then migrates to another host, the agent will not be notified even if a matching tuple
is inserted into the tuple space.

Many applications that require coordination among distributed components, for example
a workflow application, can be designed using JavaSpace. The first application that
JavaSpace publicly demonstrated is the animation of the movie Toy Story, in which
JavaSpace is used to distribute the processes among an array of hosts running in parallel.
The basic idea involves the cooperation of a farmer process, several worker processes and
a reaper process. A farmer process places distinct units of data to be processed into
JavaSpace. Several worker processes pick up data to be processed from JavaSpace and
then put the results back into JavaSpace. The reaper process collects the processed data
and transforms them into the required output.

It may not be surprising that there are application scenarios that JavaSpace does not
support efficiently. For example in e-commerce application, suppose several customers
want to query about TV’s from a market place implemented by tuples and there are at
least two relevant TV tuples. Such a scenario is described as the multiple read problem in
[Rowstron96]. One way to realize this scenario in JavaSpace is to serialize the query by

using a lock. A customer first acquires the lock, and then retrieves all the matching TV
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tuples one by one by using fake primitive. Afterwards, the customer places all the
matching TV tuples back to the market tuple space, and then releases the lock. However,
this scenario can be easily implemented by using bulk read primitives, such as the rdg
primitive in LIME.

Moreover, JavaSpace is a JINI service whose reference implementation comes with Sun's
JINI Technology Startup Kit. It is a little complicated to deploy JavaSpace because that
the underlying infrastructures have to start first. In order to have a JavaSpace service in a
system, the following services have to be started up in order: HTTP server, RMI
activation service, lookup service, transaction service, and finally JavaSpace service.
Therefore, it incurs relatively expensive overhead for simple agent missions. Further,
since a JavaSpace service is centralized, multiple JavaSpace services have to be

registered in order to have multiple tuple spaces.

1.2.4 MARS

MARS (Mobile Agent Reactive Spaces) [Cabri00] is designed as reactive tuple spaces to
support mobile agents over the Internet. The core idea is to provide programmable tuple
spaces through the notion of reaction. Reaction is defined as a programmable unit
associated with a triggering event. An event is composed of a tuple template, an operation
type and an agent identity. The operation type points out which primitive is invoked and
the agent identity specifies the ID of an agent. A null value in the latter means an
arbitrary agent. The event can be reading or taking a tuple from a tuple space, or writing a
tuple into a tuple spaces by the identified agent. A reaction is a stateful object with a
single interface. The single interface is called reaction(), whose input is the triggering
event and output is a tuple. Examples of how to use the reactions will be shown later. In
MARS, there is a meta-level tuple space that is used to store and manage these

programmed reactions. Every reaction exists as a specific tuple in the metal-level tuple
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space. An agent can manipulate these reactions through the specific primitives such as
deleteReaction.

Based on JavaSpace service, MARS reactive tuple space model adapts JavaSpace
specification, and provides blocking primitives (e.g. read, take) and bulk primitives (e.g.
readAll, takeAll). MARS also provides reaction primitives (e.g. createReaction to register
a reaction, which constructs a reaction tuple in a metal level tuple space. deleteReaction
to deregister a reaction, which removes the corresponding reaction tuple). Usually,
reactions are registered and deregistered through a system tool in MARS.

In MARS runtime, a reaction is triggered by an event, and executed on the tuple space
side by the tuple space manager. The most important feature of a reaction is that it can
access a tuple space, change its content, and influence the semantics of the primitives
invoked by agents. For example when an agent uses read primitive to read a tuple from
tuple space, before returning the matching tuple, if a reaction has been registered with
such event, the reaction will be executed. It may modify the matching tuple and then
return the modified one to the agent. As another example, when an agent uses write
primitive to place a tuple into tuple space, a reaction is triggered. The reaction may
override the write operation and insert another tuple instead of the original one into tuple
space. Thus, reactions can be thought of an adaptation layer over tuple space to react to
agent accesses in a customized way.

MARS can be easily programmed to incorporate security into its tuple space. For
example, we may allow any agent to read but only authorized agents to take tuples from
tuple space. In order to meet this requirement, the administrator can program a reaction to
monitor invocations of the take primitive. If an agent attempts to take a tuple, the reaction
will check whether the agent is authorized. If not, the reaction may take a log and return a
null value to the agent.

However, the reactive behavior of our agent programming model requires that a tuple
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space have the ability to monitor some interested tuples and take actions whenever they
are inserted into the tuple space. According to the definition, MARS reactions are not
capable of providing such support for agent reactivity. In Chapter 2, we will give more
illustration when introducing the reactive primitives. The semantic of MARS reaction is
also different from that of LIME, and JavaSpace.

Presently, MARS only provides mobile agents the reference of local tuple space. Thus
mobile agent cannot access remote tuple spaces, and agents coordinate with each other

only through the tuple space of local host.

1.2.5 WCL

WCL [Rowstron98] is a coordination language designed for distributed agents over the
Internet. WCL has synchronous access primitives (e.g. out_sync, in_sync, rd_sync).
Synchronous means that the operation blocks the agent until the operation is finished.
Emphasizing on efficiency, WCL also proposes asynchronous access (e.g. out_async,
in_async, rd_async), bulk access (e.g. bulk_in_async, bulk_rd_async, move_async) and
event monitor (e.g. monitor) primitives. The detail description of all these primitives can
be found in [Rowstron98]. An asynchronous primitive is handled by a system thread
which does not block the agent from progressing. The agent will get a handle afterwards
and can check the handle later at any time for the result. Asynchronous tuple access
allows an agent to tolerate long access latency for tuples that may or may not have been
created in time to be used.

It has been demonstrated that bulk access primitive bulk_rd_async is helpful in multiple
read scenarios described in Section 1.2.3. In WCL, the unique feature of the bulk
primitives is that WCL runtime system maintains control of the matching tuples and
treats them as a stream. An agent gets the matching tuple from the stream, one at a time,

until the end of the stream. WCL runtime can use a lazy protocol to transfer matching
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tuples to an agent from a remote server in order to save system bandwidth. However, this
may slow down the application as the number of remote transfer increases. Moreover, it
is difficult for an agent to construct a local data structure to hold these matching tuples
for later use, since the agent does not know the number of the matching tuples before
reaching the end of the stream.

The monitor primitive specifies a template. All tuples within the tuple space that match
with the template are streamed back to the agent. Subsequently, any tuples inserted are
also streamed to the agent. With the monitor primitive, WCL has a simple event
mechanism to ensure a condition can be specified once and used forever. For example,
suppose that e-mails are being stored in a tuple space. An e-mail agent can watch for
email arriving simply by using the monitor primitive, and ‘be informed” whenever a piece
of email arrives. However, since WCL does not define a general agent framework, it
lacks the ability to trigger the agent behavior automatically. Instead, an agent is
responsible for checking proactively for the arrival of tuples and act on them accordingly.
Therefore, what the ‘be informed’ means is that the mail agent itself has to check whether
there are emails arriving, and then executes its reaction. Usually, an agent may get
nothing and waste machine cycles.

There are some scenarios that WCL cannot support very well. For example, in an e-
commerce application, a buyer agent wants to check whether there is a specific type of
TV in a market tuple space. It is not suitable to solve the problem using synchronous
primitive rd_sync since it blocks the buyer agent if there is no such specific TV.
Although the asynchronous primitive rd_async does not block the buyer agent, where to
put the code fragment of checking becomes an issue. Moreover, it still cannot be sure that
there is no such specific TV in the market even if the checked result is false, as an agent
has no way to know whether the request has been processed or not by the tuple space

server. The best way to solve such scenario is to use probing primitive rdp. However,
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WCL does not support probing primitives.

Attempting to achieve language transparency, WCL and its runtime system are designed
to be independent of any host language. Currently, WCL has been embedded into C++
and Java. Agents written in C++ can communicate with agents written in Java. However,
in order to support this, there must be some sort of mapping between types in the two
different languages. In the current implementation, WCL supports only simple built-in
type variables. Without user-defined types supporting, it is difficult to place an actual
domain object into a tuple. In order to do so, a programmer has to declare several built-in
type variables instead of one well-defined object, and pack these variables as different
fields into a tuple. Therefore, it is in contradiction to the principle of information

encapsulation and such systems are difficult to maintain.

1.2.6 Logic Operator Linda

In previous multiple tuple space environments such as WCL, the defined primitives only
provide an agent the ability to access one tuple space at a time. This means that an agent
that requires access to several tuple spaces has to do so by serializing the access. In
[Snyder02], they define logical operator primitives to enables an agent to coordinate its
tuple accesses across multiple clusters of collaboration simultaneously. Logical operator
primitives extend traditional Linda primitives. They specify the combination of multiple
tuple spaces with logical operators as the input parameter. These logical operators include
AND, OR, and NOT. For simplicity reason, multiple tuple spaces can only be combined
with just one type of logical operator in current version.

As an example, the rd with the AND operator is performed by searching a specified list
of tuple spaces for the tuple. If none of these tuple spaces contains a matching tuple, the
agent blocks. If the AND operators specifies n tuple spaces, the agent will finally get a

list containing n tuples, one from each tuple space. The semantic of rd with the OR

-23 -



operator is to search for at least one tuple matching the given template from a list of tuple
spaces. At the same time, not more than one tuple from each tuple space will be returned
to the agent.

In e-commerce, suppose, a buyer agent wants to search for a specific type of TV from
two market tuple space. Without logical operator primitives, the agent will probe the two
markets sequentially to search for the TV. Bulk access primitives enable this to be
performed in a single operation. This simplifies programming and enhances performance
through the improved concurrency.

However, current logical operator primitives only apply logical operators to tuple spaces,
but not to templates. Thus in such system, one cannot express the following requirement:
retrieve a tuple which is stored in either tuple space #s] or tuple space #s2, and matches
either template A or template B. Such a feature will be part of the reactive tuple space that

will be implemented in this thesis.

1.3 Contributions and Outline

As we see from the related work, a lot of efforts have been spent on the extensions of
tuple space. JavaSpace is primarily a JINI service. WCL supports agent coordination
efficiently with language transparency. MARS intends to influence the semantics of
primitives through a programmable reactive tuple space. LIME targets a wireless
environment. Logic operator Linda introduces multiple tuple space access as a single
operation. These extensions involve different primitives. For instance, JavaSpace does
not provide bulk primitives and WCL does not have probing primitives. In the previous
section, we have already seen that it may be harder to implement some application
scenarios when certain primitives are absent.

Agents can have both proactive behaviors and reactive behaviors. With proactive
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behaviors, agents can interact with each other synchronously and asynchronously. With
reactive behaviors, agents can quickly react to stimulus from the environments. Thus we
propose a distributed tuple space to support agent interactions.

In order to support synchronous interaction, we provide traditional Linda like blocking
and probing primitives, probing bulk primitives. In order to support agent interaction
asynchronously, we have Linda like primitives in asynchronous form, asynchronous bulk
primitives and asynchronous logical template primitives. The idea of bulk primitives is
from WCL. WCL only have asynchronous bulk primitives. However, WCL treats the
matched tuples as a stream. An agent has no idea of the number of the matched tuples
before reaching the end of stream, while we give bulk primitives with no such limitation.
Logical operator primitives enable an agent to access multiple tuple spaces
simultaneously. We extend the use of logic operators to both tuple spaces and templates
and we call these logical template primitives.

In order to support agent reactive behaviors, we define reactive primitives through which
an agent can register a reaction with location transparency. JavaSpace event notification
does not support location transparency. WCL can only stream back events to agents but
lacks a framework to notify and triggered agent behaviors. Although LIME has the weak
reaction with location transparency, it is for wireless environments and its
implementation is based on the three levels of abstraction. Our multiple tuple spaces do
not have such structural relationship. Furthermore, with reactive primitives, an agent can
possess fine-grain control of an event: a complex condition can be defined and such a
condition is used to check the event first on the server side before triggering a reaction
remotely.

The distributed multiple reactive tuple spaces have been fully implemented and
integrated with the JADE platform. Therefore, the availability of these primitives enables

flexible and efficient agent collaboration.
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In order to have an efficient implementation, we design a replication protocol to facilitate
the transfer of tuples to potential agents in advance. The replication protocol makes
decision based on the application runtime information collected by the kernel. The
correctness of the replication protocol has also been verified.

Finally, we compare the performance of agent coupling realized using tuple spaces and
that realized using ACL message passing on the JADE platform. We conclude that the
performance of single or multiple tuple space is compatible with that using ACL message
passing.

The rest of the thesis is organized as follows. Chapter 2 gives a detailed description of the
access primitives of the reactive tuple space. Chapter 3 presents the replication protocol
and its correctness proof. Chapter 4 presents the tuple space architecture and detail
design. Chapter 5 contains a performance test of agent coupling via tuple spaces and

ACL messaging. Chapter 6 concludes the thesis with some projection of future work.
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Chapter 2 Agent Interaction and Coordination
Primitives

2.1 Agent Interaction Problem

In a multi-agent system, the agent interaction can be synchronous coupling or
asynchronous coupling. Synchronous coupling means that the interaction between two
agents is interleaved, and one agent needs to get necessary information from the other
agent before deciding the next action. For instance in the auction protocol in e-commerce
application, a bidder agent has to wait for the current price announced by the auctioneer
agent in order to propose a price. The auctioneer agent, in turn, receives the proposed
prices and then makes a new announcement. In general, most agent interaction protocols
are synchronous. On the other hand, asynchronous coupling means that an agent does not
block for some information from the other agent. However, when the information shows
up, the agent will proceed to perform the corresponding action/reaction.

Agent interaction is used to describe the communication relationship between two agents.
On the other hand, agent coordination is used to describe that a group of agents needs to
interact with each other in order to achieve a common goal. It includes multiple agent
interaction scenarios from the group of agents. Thus, these agents that involve the
coordination scenario share a consistent view about the application states and form a
dependency relationship. One coordination example is that flying birds try to stay in
formation as described in Chapter 1. In this case, every bird may see the similar route and
speed, and birds that are close to others have to adjust themselves through some
interaction in order to keep a proper distance from each other.

In order to support agent interaction, an agent is abstracted to have proactive behaviors
and reactive behaviors in an agent programming model. A proactive behavior typically

involves synchronous coupling and a reactive behavior involves asynchronous coupling.
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Both proactive behaviors and reactive behaviors can be implemented through either
message passing or tuple space. The advantage of using tuple space is that it not only
supports dynamic sharing efficiently, but also provides a consistent view for the group of
agents. Thus, we like to investigate the use of tupe space as coordination media to
facilitate agent interaction.

Agent proactive behavior can be supported by synchronous primitives and asynchronous
primitives defined by tuple space. From a programmer’s point of view, agent interaction
can be abstracted by high level interaction protocols. Most interaction protocols are
designed to be synchronous. Naturally, it requires the tuple space to provide synchronous
primitives. On the other hand, asynchronous primitives provided by tuple space also
support synchronous coupling. The advantage of asynchronous primitives is that it can
improve agent performance since an agent can continue its computation concurrently
before the result is ready. Especially in case that the agent model is logically multiple
threaded but the agent is physically mapped to a single thread, as in the JADE agent
programming model. When such an agent plays multiple roles, any blocking in a role will
block all roles. Therefore, for such cases the asynchronous primitives seem to become the
first choice. It is not only for performance reason, but also for having correct application
behaviors. For every asynchronous primitive invocation, a thread has to be generated to
perform the task. Overuse of the asynchronous primitives may slow down application
performance, since it takes too much time to schedule threads.

An agent has to get the needed information in order to proactively interact with others.
Some information is from inherent knowledge of the agent, and others may be from its
outside environment such as other agents. For a tuple space, the necessary information is
contained in the tuples. On one hand, an agent may be interested to retrieve any one tuple
that matches the specified requirement defined by a template. On the other hand, an agent

may want to retrieve all the tuples that match the specified template from the single tuple
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space, which is what the bulk primitives do. Further, in some scenarios, giving an agent
the ability to retrieve tuples from multiple tuple spaces jointly and simultaneously is
helpful for agent performance.

The reactive behavior is another important aspect of our agent programming model. The
main logic of an agent is described through its interaction protocol and captured by its
proactive behaviors. However, there are some scenarios that are more suitably supported
with reactive behaviors. For instance, in order to facilitate system administration, some
agents may listen to the instructions from system administrator through reactive
behaviors. Another example has been introduced in Chapter 1. The common
characteristic among these scenarios is that it is impossible to predict when an event that
interests an agent will happen, and actually it may never happen. It is necessary for a
tuple space to provide a sub-framework to help an agent to define and register reactions
for some specific events. When an event happens, the corresponding reaction will be
notified. An event is expressed by a tuple in the tuple space. Therefore, we have a set of

reactive primitives to support the agent reactive behavior.

2.2 Interaction Primitives

As described in previous section, the set of primitives supported through tuple space can
be classified into three categories: synchronous, asynchronous and reactive (notification)
primitives. In addition, in order to facilitate programming as well as to improve the
resulting system performance, we extend each synchronous or asynchronous primitive
into three sub-categories: single access, bulk access and logic template based access. In
designing the primitives, we do not require that it have both the synchronous and
asynchronous primitives. For instance, we do not have a synchronous logic template
based primitive which can be easily simulated with the corresponding asynchronous ones.

Figure 2-1 outlines the set of primitives that we have implemented in Java. In the

-29.



following sections, we will informally describe the various tuple space primitives before
formally specifying them using the state machine model [Weihl93]. The use of these

primitives has been demonstrated through an e-commerce application in [Zhang04].

interface TupleSpaceService

{
public TupleSpaceID TSCreate(String name);

public TupleSpaceID TSFind(String name);

//synchronous single tuple access

public Tuple in(TupleSpaceID tsld, Tuple atemplate);

public Tuple in(TupleSpacelD tsld, Tuple atemplate, long timeout);
public Tuple read(TupleSpaceID tsld, Tuple atemplate);

public Tuple read(TupleSpaceID tsId, Tuple atemplate, long timeout);

/fasynchronous single tuple access

public void  asynOut(TupleSpacelD tsld, Tuple atuple);
public Future asynIn(TupleSpaceID tsld, Tuple atemplate);
public Future asynRead(TupleSpaceID tsld, Tuple atemplate);

// synchronous bulk primitives, which manipulate more than one tuple at a time
public int move(TupleSpacelD ts_source, TupleSpaceID ts_dest, Tuple atemplate );
public int copy(TupleSpacelD ts_source, TupleSpacelD ts_dest, Tuple atemplate );
public TupleSet bulkinWithoutWait(TupleSpaceID tsld, Tuple atemplate);

public TupleSet bulkReadWithoutWait(TupleSpacelD tsld, Tuple atemplate);

Il asynchronous bulk primitives, which manipulate more than one tuple at a time

public Future asynMove(TupleSpacelID ts_source, TupleSpacelD ts_dest, Tuple atemplate );
public Future asynCopy(TupleSpacelD ts_source, TupleSpaceID ts_dest, Tuple atemplate );
public Future bulkAsynIn(TupleSpacelD tsld, Tuple atemplate);

public Future bulkAsynRead(TupleSpacelD tsId, Tuple atemplate);

// logic-template-based asynchronous access
public Future asynIn(LogicTemplate alogic_template);
public Future asynRead(LogicTemplate alogic_template);

// reactive primitives

public AgentRegisterID register(TupleSpacelD tsId, Tuple atemplate, IReactive ref);
public AgentRegisterID register(TupleSpacelD tsId, EventChecker checker, IReactive ref);
public void deregister(AgentRegisterID register_id);

lfor replication purpose
public void subscribeForReplication(TupleSpacelD tsld, Tuple atemplate);
}

Figure 2-1 Interaction Primitives
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2.2.1 Tuple and Template Matching Rules

As introduced in Chapter 1, a tuple and a template are matched only if they have the same
number of fields and every corresponding field is matched. However, the matching rules
of two fields are slightly different from that introduced in Chapter 1. It is because that
these primitives are implemcnted in Java, and we model the tuple and f;eld as containers
that may contain any object that can be serialized. In detail, suppose f1 is a tuple field and
f2isa template field, both are matched by the following rules.

(1) If £2 is a formal field, they are matched only if the types are matched. It means that
both fields have same types or the type that f2 is the subtype of that of f1. For instance,
there are two classes class A and class B. The class B inherits from class A. A field fieldl
contains an instance of class A, and a field field2 is a formal field which only has the type
of class B without instance. Thus fieldl and field2 are matched.

(2) On the other hand, if f2 is an actual field, they are matched only if both fields have the

same types and with the same value.

2.2.2 Tuple Space Creation and Find

(1) TSCreate(String name): It creates a tuple space with the given name. The primitive
returns a TupleSpacelD #sld. The location of tuple space created is transparent to agents.
This primitive enables an agent initially create a tuple space and shares with its group
member. The group member will access the tuple space by name.

(2) TSFind(String name): 1t finds an existing tuple space by the given name. The
primitive returns a TupleSpacelD #sId. This primitive enables an agent to join a group of

agents if it is aware of the name of the tuple space.

2.2.3 Synchronous Single Tuple Access
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(1) in(TupleSpacelD tsld, Tuple atemplate): It has the same semantics as Linda-like in
primitive described in Chapter 1. It retrieves (destructive read-out) a tuple that matches
with the template atemplate from tuple space tsId. Since the primitive is synchronous, the
agent will block until a matching tuple is available.

(2) in(TupleSpacelD tsld, Tuple atemplate, long timeour): It retrieves (destructive read-out)
a tuple that matches with the template atemplate from tuple space tsld. Since the
primitive is synchronous, the agent will block until a matching tuple is available or
timeout is triggered. If timeout is triggered, an empty tuple (null value) is returned. This
primitive can simulate the probing Linda primitive inp. Figure 2-2 shows the tuple space
ts1 before and after states when there is no matching tuple as in(zsl,(“a”, ?int),100) is
invoked. If a matching tuple such as (“a”,69) is inserted into the tuple space before the
timeout is triggered, the process will retrieve the matching tuple. Otherwise the process

gets an empty tuple (null value).

ts1 before state ts1 after state

P:

in (ts1, (“a”,%int),100) P gets (“a”,69) or null
> —-\_M

Figure 2-2 Tuple Space States as the Execution of in

(3) read(TupleSpacelD tsld, Tuple atemplate): Tt has the same semantic as in(tsld,
atemplate) primitive except that the matching tuple is not removed.
(4) read(TupleSpacelD tsld, Tuple atemplate, long timeout): It has the same semantics as

in(tsld, atemplate, timeout) primitive except that the matching tuple is not removed.

2.2.4 Asynchronous Single Tuple Access

(1) asynOut(TupleSpacelD tsld, Tuple atuple): It insert a tuple atuple into tuple space tsld.
When the primitive terminates, the tuple atuple is not guaranteed to be present in the

tuple space tsld. However, it will appear in the tuple space as soon as possible. It has the
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same semantic as Linda-like out primitive. Since an agent does not need to receive a
response when writing a tuple into the tuple space, we do not provide out primitive in
synchronous form.

(2) asynIn(TupleSpacelD tsld, Tuple atemplate): It asynchronously retrieves a tuple that
matches with the template atemplate from tuple space zsld. The primitive is asynchronous
and the agent will not be blocked. It returns a tuple-holder object (called future). The
agent can check the future object to see if the matching tuple has become available, and
fetch it from the future object locally. This enables an agent to asynchronously interact
with another agent without stalling when the latter is not ready. Figure 2-3 shows the
tuple space #s] before and after states as a process invokes a asynln(tsl,(“a”,?int))
primitive. Usually the tuple space state will not be changed immediately as the asynln

invocation terminates. However, it will be changed when the matching tuple is removed.

ts1 before state tsl after state
P: .
asynln (ts1, (“a”,%int) P gets a future object
(“a”,69) kg (“a”.69) W

Figure 2-3 Tuple Space States as the Execution of asynln

(3) asynRead(TupleSpacelD tsld, Tuple atemplate): It has the same semantics as

asynin(tsld, atemplate) primitive except that the matching tuple is not removed.

2.2.5 Synchronous Bulk Access

(1) move(TupleSpacelD ts_source, TupleSpacelD ts_dest, Tuple atemplate): It moves all the
tuples that match template atemplate from tuple space ts_source to tuple space rs_dest. In
fact, it consists of two operations: one is to retrieve tuples from source tuple space, and
the other is to write these tuples into the destination tuple space. It returns an integer as
the number of tuples that have been moved. If there is no matching tuple in the source

tuple space, it returns zero to the caller. This primitive enables an agent to manage the
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shared tuples according to its roles. Sometimes it is beneficial for an agent to move some
chosen tuples from one space to another as part of its responsibility in coupling with
other agents through multiple roles. Figure 2-4 shows that the state change as
move(tsl,ts2, ,(“a”,?int)) is invoked. As the primitive terminates, the matching tuple has

been moved from ts1 to ts2 and corresponding states changed.

ts1 before state ts1 after state

(“a”,68) ,("a”,13) P: P gets an integer 2.
ts2 before state move (ts1,ts2, (“a”,%int)) ts2 after state A

(“a”,68) ’(”au, 1 3)

Figure 2-4 Tuple Space States as the Execution of move

(2) copy(TupleSpacelD ts_source, TupleSpacelD ts_dest, Tuple atemplate): It has the same
semantic as move primitive except that the matching tuples will not be removed from the
source tuple space. It is like duplicating the tuples.

(3) bulkInWithoutWait(TupleSpacelD tsld, Tuple atemplate): It retrieves all the tuples that
match with template atemplate from tuple space tsld. Figure 2-5 shows the state change
as a process invokes bulkinWithoutWait(tsl, (“a”,?int)). The process gets a TupleSet
object that contains all the matching tuples. In this example, there are two matching

tuples. If there is not even a matching tuple, an empty tuple set is returned.

ts1 before state ts1 after state
P: bulkInWithoutWait P gets a tupleset.
(“a,’968) ’(,’a”,13) (tSI, (“a”,?int)ﬁ > e W

Figure 2-5 Tuple Space States as the Execution of bulkInWithoutWait

(4) bulkReadWithoutWait(TupleSpacelD tsld, Tuple template): It has the same semantic as

the bulkInWithoutWait primitive except that the matching tuples will not be removed.
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2.2.6 Asynchronous Bulk Access

(1) bulkAsynRead(TupleSpacelD tsld, Tuple atemplate): It reads all tuples that match the
template atemplate from tuple space #sld. It returns a tuple-holder object (called future).
The agent can check the future object for the matching tuples locally. This primitive
enables an agent to read more than one tuple at a time and overcomes the problem of
multiple read. When a process invokes a bulkAsynRead primitive, the tuple space state
will not be changed because it only read the matching tuples.

(2) bulkAsynIn(TupleSpacelD tsld, Tuple atemplate): Tt has the same semantic as the
bulkAsynRead primitive except the matching tuples will be removed from tuple space tsld.
When a process invokes a bulkAsynIn primitive, the tuple space state will not be changed
immediately as the invocation terminates. However, the state will be changed as soon as
the matching tuples are actually retrieved.

(3) asynMove(TupleSpacelD ts_source, TupleSpacelD ts_dest, Tuple atemplate): It moves
all the tuples that match template atemplate from tuple space ts_source to tuple space
ts_dest. It returns a tuples-holder object (called future). The agent can check the future
object for the number of tuples that have been moved. When a process invokes a
asynMove primitive, both tuple spaces’ states will not be changed immediately as the
invocation terminates. However, the states will be changed as the matching tuples are
actually moved to the destination tuple space from the source tuple space.

(4) asynCopy(TupleSpacelD ts_source, TupleSpacelD ts_dest, Tuple atemplate): It has the
same semantics as the asynMove primitive except that the matching tuples are not
removed from tuple space ts_source. When a process invokes a asynCopy primitive, the
source tuple space state will never be changed because it does not remove the matching
tuples, and the destination tuple space state will not changed immediately as the

invocation terminates. However, its state will be change as the matching tuples are copied

into it.
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2.2.7 Logic Template Based Asynchronous Access

(1) asynRead(LogicTemplate alogic_template): This primitive reads those tuples that
match with the logic template alogic_template asynchronously. It returns a holder of
tuples (called furure). The agent can then fetch the matching tuples from future object
locally when they become available. This primitive enables an agent to read tuples across
multiple clusters of collaboration simultaneously.

To clarify logic-template, its syntax in BNF notation is given below. Suppose that EXP

represents the logic- template:

<EXP> :@= <OP>(<ARGS>)

<ARGS> ::= <ARG> | <ARG>,<ARGS>
<ARG> ::= (tsld, template)| <EXP>
<OP> := and|or

The semantic of and operator is that it supports retrieval of tuples from the tuple spaces
identified by its both left and right statements (similarly as if both statements evaluate to
be true). The semantic of or operator is that it supports retrieval of tuples from the tuple
spaces identified by either left or right statements (similarly as if at least one evaluates to
be true). When a process invokes a logic template asynRead primitive, the states of tuple
spaces will not be changed because it only read the matching tuples from tuple spaces.

(2) asynIn(LogicTemplate alogic_template): 1t has the same semantic as the logic
template asynRead primitive except that the matching tuples are removed from their tuple
spaces. When a process invokes a logic template asynln primitive, usually the states of

tuple spaces will not be changed immediately as the invocation terminates. However, it

will be changed as the matching tuples are removed.

2.2.8 Reactive Support

Reaction is introduced to model agent reactive behaviors and support agent asynchronous

coupling. A reaction is defined through the reactive interface called Ireactive, which has
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only one method reactTo(AgentReactionEvent ev). It is modeled as a serialized local
object and collocated with the agent. The parameter AgentReactionEvent provides the
event and its source agent. An event is a tuple. For a programmer, defining a reaction is
to implement the Ireactive interface, and the slice of code is just the logic of how the
agent reacts to the specified event. At runtime, the kernel keeps track of agent location
and knows where to notify to the agent if it has migrated to another host. What is more,
the execution of reaction happens asynchronously with the detection of an event. In detail,
when an event detector finds a matching event, the detector only sends a notification
message (which is a AgentReactionEvent object) to the reaction executor that resides on
the same host as the targeted agent. Then the reaction executor executes the
corresponding reaction code according to the notification message. A reaction can only
be triggered once by a same event.

The reason that we choose the reaction execution model this way is about the
performance consideration. From the point view of where to execute a reaction, it can be
designed to execute at the tuple space server side or at the client side. For instance MARS,
as we see in Chapter 1, its intention is to influence the semantics of the primitives, and
naturally the reactions are stored and executed at server side. However, MARS is not
suitable to support the reactive behavior in our agent programming model. It is because
that usually the functionality of an agent is realized together by the reactive part and the
proactive part. In MARS, the reactive part is separated from the proactive part on
different nodes. This reduces programmability as these behaviors do not share variables.
In addition, it also will take too much resource (for instance threads and CPU cycles) for
executing the reactions on server side, and slow down the tuple space server. In
JavaSpace, a reaction is executed on the client side through a remote invocation issued
from the server side. However, such a solution does not support location transparency. In

addition, it also may slow down the tuple space server as the number of remote
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invocation increases. Considering our choice, we intend to minimize the workload of
event notifications and improve the capability of supporting agent proactive behaviors on
the server side. It is because that usually most logic of an agent is realized through the
proactive behaviors. Another advantage is that it is also easy to handle the issue of
location transparency.

(1) register(TupleSpacelD tsld, Tuple atemplate, IReactive ref): It registers a reaction to
tuple space tsld. The primitive returns a register identifier register_id. At runtime, if a
tuple that matches the template atemplate becomes available in tuple space #sld, the
reaction that implements IReactive interface is triggered. If more than one agent registers
the same template, all registered reactions will be triggered. This primitive enables the
reactive parts of an agent to sense stimulus from other agents passively. Meanwhile, the
tuple space manager takes over the responsibility of detecting the stimulus.

(2) register(TupleSpacelD tsld, EventChecker checker, IReactive ref). It has the same
semantic as the first register primitive, except that the EventChecker checker is used to
check whether some user-specified event has occurred in the tuple space. The checker
contains a template and a function implemented by the agent programmer. The template
is used to match the event (tuple). The function can be understood as a filter. At runtime,
the kernel uses this function to check the matching tuple (event). If this function returns
true, it indicates that the event is qualified to trigger the reaction. This primitive enables
an agent to program and define a complex trigger condition as a stimulus. The checking
process happens at the server site, thus it is helpful to improve the agent performance.

(3) deregister(AgentRegisterID register_id): It deregisters a reaction specified by
register_id. When an agent deregisters a reaction, the corresponding stimulus will not

notify it any more.
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2.3 Formal Specification

This section presents a specification of the reactive tuple space based on the state
machine model, following the notation used in [Weihl93]. For simplicity we will present
the specification of the tuple space formed of the collection of distributed tuple spaces.
This means that one can interpret the tuple space id as an extension field (for instance an
identity field) of a tuple in the tuple space specified.

The specification involves a set of external actions and a set of internal actions. External
actions correspond to tuple space operators, i.e., interface stimulus. Internal actions
correspond to kernel (tuple space) actions that are triggered because of kernel state alone
without an interface stimulus.

The details of the specification are given in Figure 2.6.

VAR
T: Set[Tuple] ;= & set of current tuple stored inside TS
F: Indexed set [Op] := null indexed set of future operations each initialized null
R: Indexed set [Tuples] := ® indexed set of future responses each initialized to @
E: Set[(Event, Reaction] := ® current set of (event, reaction) in TS
i :integer :=0 indexing distinct members of F and R

External Actions
in(x: Tuple) = Jy: (ye€T A y=x) | response :={y}; T=T-{y}
read(x: Tuple) = Jy: (y €T A y=x) | response :={y};

bulkInWithoutWait(x: Tuple) = response := m(T,x); T :=T — m(T,x)
where m(T,x) = T° € T such that (VyeT’: y=x) A ~ (3 T’ CT*CT Vze T*:z = X)

bulkReadWithoutWait(x: Tuple) = response := m(T,x);
where m(T,x) = T° € T such that (VyeT’: y=x) A ~ (3 T'CT*CT VzeT*:z = X)

asynIn(x: Tuple) = F(i) := (x,’in’); response:=R(i); i =i +1;

asynRead(x: Tuple) = F(i) := (x,’read’); response :=R(i);i:=1i +1;

-39 -



bulkAsynIn(x: Tuple) = F(i) := (x,’bulkin’); response:= R(i); i := i +1;
bulkAsynRead(x: Tuple) = F(i) := (x,’bulkread’); response := R(i); i :=1i +1;
asynIn(lt:LogicTemplate)= F(i) := (It,’logic_in’);response := R(i); i :=1 +1;
asynRead(It:LogicTemplate) = F(i) := (It,’logic_read’); response := R(i); i := i +1;
out(x:Tuple) = T := T U {x}; response:= {r’| (y,r') € EAy =x};
register(x: tuple, r:Reaction) = E:= BU{(x, r)}; /lfor simplicity, assume r is distinct
/land consider case of event = tuple
deregister(x: tuple, r: Reaction) = E:= E-{(x,r)};

Internal Actions

asynln_int = JF({) = (x,)in’) AT yET Ay=x) |2
R@) = {y}; T :=T-{y}; @) :=null ;

asynRead_int = JF(i) = (x,’read’ ) A yET Ay=x) |2
R(@i):={y}; F() =null ;

bulkAsynIn_int = 3F(@) = (x, ‘bulkin’) A Jye T : y=x |
R@) :=m(Tx); T:=T-m(T,x) ; FGQ) := null ;
where m(T,x) =T’ c T such that
(VyeT:y=x) A~ (AT CT*CT Vze T*:z = x)

bulkAsynread_int = 3F(i) = (x, ‘bulkin’) A Jye T : y=x |
R() := m(T,x); F(i) :=null ;
where m(T,x) =T° C T such that
(VyeT:y=x) A~ 3T CT*CT Vze T*:1z = x)

logicIn_int = 3F(i) = (It, ‘logic_in") AIT’C T : I(T’) = true |=>
R(@) =T ;F@{):=null; T:=T-T";

logicRead_int = JF(i) = (It, ‘logic_in") AIT’C T : I(T’) = true [=>
R@) ;=T ; F@{) :=null ;

Figure 2-6 Tuple Space Specification
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Referring to Figure 2-6, we will first explain the variables used in the specification. T is
the set of tuples currently in the tuple space. F is the set of future (asynchronous)
operations yet to be performed. We use an indexed set so that members can be easily
referred to distinctly. Op is a data type corresponding to the various asynchronous tuple
operators. R is the set of future responses to asynchronous operations. A response
consists of a set of tuples. So a tuple operation returns to the accessor a (possibly empty)
set of tuples. E is the current set of reactions maintained by the tuple space. Registering a
reaction means inserting the (event, reaction) tuple into E. Id is the tuple space identity of
a distributed tuple space.

The specification consists of external actions and internal actions. External actions
correspond to invocations of access operators by users of the tuple space. Internal actions
correspond to internal actions triggered asynchronously in the tuple space due to changes
of its state. More details can be explained as follows.

Consider the in(x) operation. The specification says that the response will be some tuple y
that matches with x. Afterwards, y is deleted from T. BulkInWithoutWait(x) returns a
maximal set of tuples (m(T,x)) contained in T each of which matches with x. Afterwards,
m(T,x) is deleted from T. Asynln(x) assigns the asynchronous operator (x,’in’) to the next
unassigned element in F, i.e., F(i), and returns with an empty set that can be updated any
time (immediately or much later) when asynin_int is performed. When the kernel selects
this to be performed successfully then R(i) will be updated with the actual tuple y that
matches with x. AsynRead, bulkAsynin and bulkAsynRead can be understood similarly.
Accesses using logic templates such as asynin(lt) are essentially similar to asynln except
the access condition is specified by a logical template 1t, in which case 1t(T”) is evaluated
to true whenever the logic template It is satisfied by T°. For example, suppose the logic
template is (aanbvc and there exist tuples x and y such thata=x and b = y then t({x,y})
= true. A reaction is registered with register(x, r) that inserts (x,r) into the set E.
Afterwards, whenever out(x) occurs, besides x is inserted in T, it also triggers responses
corresponding to each reaction r’ for which (y,r’) eEand x = y.

The specification given in this section serves to clarify the informal description given in
earlier sections, with an aim that the abstraction is not biased with solution details. Hence

sets and infinite sets have been used in the specifications. It also takes care of the

-4] -



atomicity semantics. No distinct of users (accessors) is made. Furthermore, as stated in
the beginning, the collection of distributed tuple spaces formed by different groups is
treated as a single tuple space to define its consistency semantics represented by the given

specification.
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Chapter 3 Tuple Space Replication Protocol

3.1 Locality Problem

The tuple space model can be used to support multiple tuple spaces. This allows a
programmer to cluster related agents into a group through a tuple space, and scatter
different tuple spaces and agent groups onto different nodes. Following such a strategy,
concurrency and locality of data access may promote the efficiency of distributed multi-
agent systems. However, practically, this may not be easily achieved. For instance agents
among different groups cannot be isolated. There is a need for an agent in a group to act
as a mediator to communicate with other group members. If different agent groups are
located on different nodes, the mediator agent has to talk to other group members through
remote tuple spaces. Consequently, the locality of data access has been lost.

Data replication is a good way to try to keep data local to agents [Shrivastava99],
although replication helps primarily in solving availability problem. Two common data
replication strategies have existed [Gray96, Kemme00], namely, eager and lazy update.
Eager replication is the strategy where an update is propagated (pushed) to all nodes
eagerly and usually synchronously. Synchrony incurs extra delay to the producer, which
will be blocked until all copies are updated. This approach provides coherence trivially.
But it is expensive in both space and time. In contrast, lazy replication only updates the
local data, and avoids the synchronization overhead. Instead, updates are provided only
when required, which is usually accomplished through a pull operation. However, it still
can lead to poor performance as the lazy update slows down the access that triggers the
pull operation. Under the lazy update strategy, copy incoherence is obviously possible.
Hence the correctness of the protocol implemented lazy replication must be carefully

verified before being adopted. When we design a replicated tuple space, it is important to
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verify the correctness of the protocol, and analyze its performance to ensure that the
protocol is indeed correct and may potentially improve system performance rather than
incurring excessive overhead in messaging.

Updates can be performed primary-copy-first or update-everywhere [Wiesmann00]. The
primary copy approach requires that all update requests to be performed first at one copy,
which is called the primary copy, and then at the other copies. Primary-copy-first update
is more likely to cause congestion when the primary copy is the residing at a same server.
In contrast, update everywhere strategy does not force an ordering of update at any node.
This asynchrony is useful when updates can be broadcasted from a node to all nodes
without centralizing it at the home node. It may speed up data access but make
coordination among data servers more complex, as the other servers might have made
conflicting updates at the same time. The copies on the different servers might not only
be stale but inconsistent. Thus a reconciliation protocol has to be designed in order to
ensure correctness. However, the process of reconciliation can potentially incur runtime
cost. Balancing between the simplicity of primary copy and the complexity of update
everywhere, it may be more advantageous to use primary copy strategy for tuple space
replication.

Tuple space is a special form of distributed shared memory. Thus the consistency model
of distributed shared memory is still suitable for tuple space. There are a number of
consistency models for distributed shared memory, for instance release consistency
[Gharachorloo90, Keleher92], and causal consistency [Ahamad95] models. In designing
the tuple space replication protocol, we require that replication protocol guarantee
sequential consistency. Sequential consistency was first formulated by Lamport
[Lamport79], which says that the result of any execution is the séme as if the memory
operations by all processes on the data store were executed in some sequential order and

the operations of each individual process appears in this sequence in the order specified
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by its program. In other words, the memory operations issued by all processes that access
shared memory are interleaved, and the order of the operations is as if the program orders
are not violated. For example, Figure 3-1a shows two processes running in a distributed
shared memory. If the distributed shared memory is sequential consistent, the execution
result (x,y) = (0,1) can never occur. Otherwise such a result violates sequential
consistency, because it cannot be obtained by any interleaved execution that does not
contradict the program order. Indeed, the result requires the read x(0) to happen before
write x(1), and similarly the write y(1) to happen before the read y(1). Thus it leads to a
“cycle” representing the contradiction established among the conflict resolution (between

read and write of a variable) and program order. It is shown in Figure 3-1b.

Initially x=0, y=0 Initially x=0, y=0
write x (1) read y(?7) write x (1) read y(1)
y v
write y (1) read x(?) write y (1) read x(0)
a. two processes on DSM b. execution violation of

sequential consistency

Figure 3-1 An Example on Distributed Shared Memory

3.2 Related Work

This section reviews two tuple space implementations. It shows that a replication
protocol that works well under a particular system structure such as the S/Net or a tree
structure may not be a good solution under a LAN environment. In addition, the process

of invalidation can affect system performance significantly.

3.2.1 The S/Net’s Linda Kernel

The S/Net [Carriero85] is a multi-computer, which is a collection of not more than sixty-

four memory-disjoint computer nodes communicating over a fast, word-parallel
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broadcast bus. Hence broadcasting can be easily and efficiently performed via the bus to
all nodes. The broadcast latency is independent of the number of nodes, except when too
many broadcasts are conflicting on the bus at the same time.

A Linda tuple space was implemented on the S/Net. The tuple space involves replication
of tuples. The coherence protocol aims to improve access latency at the expense of
communication bandwidth and local storage space. In detail, when a process invokes
out(t) to insert a tuple ¢ into tuple space, tuple ¢ will be broadcasted to every node in the
network. So this is an update-everywhere protocol. When a process invokes a in(s) to
retrieve a tuple that matches template s, if there is a matching tuple ¢ on its local node, the
local node attempts to delete ¢ using a deletion protocol. If the attempt succeeds, ¢ is
returned to the process. If the attempt fails, it means that another process on another node
have retrieved ¢ successfully. Hence if there is no matching tuple or a deletion attempt
fails, all arriving tuples will be checked until a match occurs. The read primitive works in
the same way as in primitive, except that no tuple deletion will be done.

The deletion protocol describes that the node which wants to destructively read a tuple ¢
first broadcasts a 'delete a tuple # message to all nodes. Then this node waits for a
message from the special node from which ¢ is generated. The message will inform it
either that “s has been assigned to you: proceed” or ¢ has not been assigned to you: wait”.
In this protocol, the node which generates the tuple is responsible for allowing one
process, and only one, to delete it.

The above solution has expensive storage cost. Another protocol that requires less space
is proposed. This protocol is based on data partition and migration. An our primitive
requires only a local install. An in(s) causes template s to be broadcasted to all nodes if
there is no matching tuple locally. Whenever a node receives a template s, it checks s
against all of its locally stored tuples. If there is a match, it sends the matched tuple to the

template’s node. Otherwise it stores the template for a certain time, and then throws it out.
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If the template’s original node has not received a matching tuple after the special delay, it
rebroadcasts the template. More than one node may respond with a matching tuple to a
template-broadcast. When a template-broadcaster receives more than one tuple, it simply
installs the extras with its locally generated tuples and sends them onward when they are
needed.

The tuple space kernel using the above replication strategy or partition strategy works
well under the architecture of S/Net. However, over a LAN environment, operations such

as broadcasting to all nodes and waiting for an acknowledgement will take longer time.

3.2.2 A scalable Tuple Space for Structured Parallel Programming

This paper [Corradi95] proposes a tree-structured tuple space implementation. Because of
the use of a tree, it is conceivable that the solution is more scaleable. Here the leaf nodes
are execution nodes that host the client application. The non-leaf nodes are memory
nodes that store the tuple space. Each execution node is connected to a memory node at
the next (higher) level. A k-array tree can be used so that each memory node has k other
nodes at the level below it.

When a tuple is generated from a leaf that invokes out(t), the tuple will be replicated
along the path up to the root. In order to maintain consistency, the runtime system defines
an eager up-down protocol to guarantee that any tuple can be retrieved by only one in
primitive invocation. In detail, when an in primitive is invoked at a leaf, it propagates
upward towards the tree to find a matching tuple. If there is a matching tuple is found at a
node, the protocol will re-direct the propagation down the tree towards the leaf from
which the tuple was created. The matching tuple is extracted from every node in this path.
If the tuple extraction process successfully proceeds all the way down to the originating
leaf, the tuple will be returned to caller process. On the other hand, if the extraction fails

in some node, this indicates that it has already been extracted by another process. In that
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case, a NOT-OK message is returned to the node where the first match has occurred, and
the search will continue until it reach the root and block there.

The tree structure reduces synchronization latency and bandwidth requirements. Indeed a
logarithmic complexity can be easily envisaged for the access latency for in(t) operations.
This is better than a linear complexity if a point-to-point message protocol is used. On the
other hand, it avoids using broadcasts. However, the tree-structure may not exactly be
matching a LAN environment.

An improvement of the access time can be obtained by restricting that tuples can only be
replicated in a given sub-tree. In other words, a tuple have a limited visibility scope.
However, it leads to other problems. Under such restriction, a parallel program has to be
structured with a predefined access scope. The components of a parallel program have to
be designed so that their interactions are restricted in the sub-tree that contains them.
Such a restriction makes the program design complex and error-prone. Evidently if the
interactions fail to satisfy the sub-tree scope rule, then some program components located

at some leaf nodes may not see some tuples that they should see.

3.3 Replication Assumptions

An important assumption in protocol design is the system configuration in which the
protocol works. Here we assume a LAN environment. The network environment affects
the protocol in the following ways. It is not desirable to replicate a whole tuple space
from one node to another node in a LAN environment. However, it maybe reasonable for
doing so in a WAN environment since it may take longer time for a remote access.

On the other hand, the software configuration is mainly concerned with the way in which
the tuple space server works. Different design of the server may require different
replication protocol. Currently, we design the tuple space server with the following

assumptions. (i) There is only one tuple space manager on each physical node. (ii) Every
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tuple space manager can manage several (logical) tuple spaces. In other words, there can
be more than one tuple space on a physical node. A tuple space manager can be viewed
as a physical node, and a tuple space can be viewed as a logical node. (iii) A tuple space

is not partitioned, and a physical node is the home of its assigned tuple spaces.

3.4 The Tuple Properties

We classify tuples into three distinct categories. The categorization forms the basis for
our design in deciding whether a tuple should or should not have replicas in the network.
The first category consists of asynchronous tuples which can only be read but not
removed by any agent other than the producer agent that has created it. The second
category consists of synchronous tuples which can be removed but not read by any agent.
The third category consists of hybrid tuples that can be both read or removed by any
agent. Obviously hybrid type is the default type, if agent access restrictions to tuples are

not known at all.

3.5 Replication Protocol

In our design, we choose not to replicate synchronous tuples. The reason is that if the
tuple can only be accessed by a delete (for instance in) primitive, then its replica in the
system requires a reconciliation protocol that is expensive. But at the same time, without
nondestructive read, the justification of replication becomes weaker.

An application designer has more knowledge about the use of tuples in the application.
Hence it is possible to leave the responsibility of declaring if some tuples are
synchronous to the application designer. In other words, which tuples are only accessed
via the in primitives is explicitly declared in the code. Alternately, programmer-inserted

replication control primitive subscribeForReplication(tsld, template) can also be used to
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inform the kernel to replicate tuples from tuple space zsld at a node where the agent is
located. These provide two different mechanisms for programmer-directed tuple
replication support in the implementation.

On the other hand, an application designer may choose not to be responsible for tuple
replication. In such situation, there is no static knowledge about tuple replications. The
replication manager will treat all the tuples as hybrid and use the knowledge about actual
agent couplings collected at runtime to decide whether and where tuples should be
replicated.

There are various patterns in parallel computing that can be used to model agent
coordination. Pipeline pattern means that agents form a pipeline to finish a global task.
The animation of the movie Toy Story described in Chapter 1 is an example. Master-
slaver pattern contains a master agent that produces data to be processed by slave agents.
Each slave processes the data and returns the results to the master. The matrix
multiplication described in Chapter 1 is such an example. Cluster pattern involves a set of
agents that form a group and interact with others to solve a problem together. The
subtasks performed by these agents need coordination. Typically, there is an agent in
each group that acts as the coordinator that will collaborate with coordinators of other
groups. No matter which pattern application takes, there is always a coordination protocol
that governs the progress of these agents. Thus, the coordination protocol becomes the
useful information for the replication manager. In this chapter, the presentation assumes
that the replication manager already has the runtime knowledge about agent couplings.
Chapter 4 will describe how such knowledge can be collected and used.

Usually, a hybrid tuple can be replicated to more than one client site only if agents
located on different sites have subscribed for the tuple statically through the
subscribeForReplication. However, if only based on the runtime knowledge, a hybrid

tuple will be chosen to replicate at only one client site. This is for the consideration of
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invalidation cost. Certainly, an asynchronous tuple can be replicated at any client site if
necessary.

In the following sections, we will describe the client site and server site algorithms. The
main functionality of the client site is to maintain the states of the local cache. The main
functionalities of the server site are to make decision on replication, and to be responsible
for invalidating the replicas. We choose that a replica will be piggybacked with the
response to the client site. Compared with the option of pushing the replica directly to a
client site, it can save system resource since it does not need to build any extra
connection between two sites. In order to make correctness proof clear in next section, we

label some statements in the protocol. State machine is also used to illustrate the protocol.

3.5.1 Client Site Algorithm

From the primitive (operation) point of view, the client site algorithm will mainly focus
on the single read access. The destructively read invocations such as in will be directly
transferred to the corresponding tuple space manager regardless of the local cache state.
The bulk primitives are also not served locally because they refer to the state of the whole
tuple space rather than that of the local cache. On the other hand, a logic template
primitive actually corresponds to several single tuple primitives and can be handled as the
union of the latter.

Notations:

tp . atuple that the agent wants to insert into tuple space.

tplt . atemplate that the agent uses to match a tuple.

tsld : ID of the tuple space that will be operated on.

LocalCrsid : local cache, which is a set to hold replicated tuples from tuple space tsId.

Rt: a reply returned from home tuple space. It contains two elements. repli, which is a set

of tuples that needed to be replicated. o, which is a generic object. It represents the result
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that an agent wants. For instance, if an agent invokes the bulk read primitive, o will be a
set of tuples.

updateCache(Rt.repli): update the states of local cache. It will insert the tuples from
Rt.repli into the local cache. In kernel level, every tuple has a unique key, and it is easy to
distinguish whether one tuple is a duplicate of the other, rather than another tuple with the

same attributes.

(1) An agent invokes out primitive at client site. An out primitive involves sending the
tuple to the home tuple space specified by the tsId. The agent is not blocked.

(2) An agent invokes single in primitive at client site. An in primitive will not access the
local cache. Instead, it will access the home tuple space directly. Directly accessing the
home tuple space can avoid the expensive reconciliation among different cached clients.

The main routine:
send in request to the home tuple space tsld;

receive the matching tuple tp from the home tuple space tsId;
return tp to the agent;

(3) An agent invokes single read primitive at client site. It will first look through the local
cache, and then the home tuple space. In addition, the response from the home tuple
space may contain the piggybacked replicas. If so, it will update the local cache.

The main routine:
llcheck whether there is a copy in local cache

if (3 6eLlCusia: 0=tplt)
read_commit1: return 9 to the agent;

Ielse, send request to the home tuple spaces

send read request to the home tuple space tsld;
read_commit2: receive the response Rt from the home tuple space tsld;

if (tsId is on a remote node)

updateCache (Rt.repli); // update local cache
return (Tuple)Rt.o to the agent;

(4) The invalidation process at client site is simple. As it receives an invalidation request

from the home tuple space, it will invalidate the replica and reply an acknowledgement.
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(5) The local cache can locally decide whether a replica needs to be uncached. In order to
save resource, the maximal size of the local cache has to be set. Therefore, the replicas
that have not been accessed for a certain time can be uncached. The local cache will send

an uncached message to the home site if a replica is hybrid typed.

3.5.2 Server Site Algorithm

Notations:

Twia  : a set to contain tuples referenced by tsId.

N : number of the nodes that the tuple space manager has communicated.

NeedReia[7]: a set to hold the tuples from tsId that need to be replicated to node i.
HasRisid[7]: a set to hold the tuples from tsId that have been replicated onto node i.
needRepli(tsld, tp): a function to determine whether the #p need to be replicated to some
nodes.

(1) A our primitive is invoked at server site. In this case, as a tuple is inserted into the
tuple space, the home will make a decision on whether the tuple needs to be replicated to
some client nodes. If so, the tuple will be recorded, and piggybacked with a response to
that client node later on.

The main routine as receive a out request:
out_commit: Tuia = Tsia U{ tp };
makeDecisionOnReplication(tp);

The makeDecisionOnReplication routine:
// make decision on replication, this can be done by the replication manager asynchronously.
if (tp is asynchronous tuple or hybrid tuple)
{ nodes=needRepli (tsId, tp); // which nodes will accept the replica
for (int i=0, i< nodes.Length; i++)
{
// record the tuple, and it will be piggybacked with a response later on
NeedRsia[nodes[i]] = NeedRssid [[nodes[i]] U { tp };
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(2) A read primitive is invoked from node j at server site. In this case, before a matching
tuple is returned to the agent, if there are some tuples that needed to be replicated to the
client node where the agent is located, these tuples will be piggybacked with the response
to that client node.

The main routine as receive a read request:
[lsearch for a matching tuple from tsId, it may block until the matching tuple is found.
8 = Tisia read(tplt);
/1get the tuples that need to be replicated to node j, and piggyback with the response.
Rt.repli=getPiggybackedReplicas(j);
Rto= 0;
reply Rt to the client;

The getPiggbackedReplicas routine:
IIpiggyback the tuples that need to be replicated to node j
tempt[] = NeedRsid[j];
HasRusid[j] = HasResid[j] U NeedRusid [j];
Neethsid[j] = { }; // set to empty
return tempt;

(3) A in primitive is invoked from node j at server site. In this case, the home site will
first send invalidation requests to cached client sites and wait for the invalidation
acknowledgements if the matching tuple has been replicated.

The main routine as receive a in request:
0 = Tusia in(tplt); //retrieve a matching tuple from tsld. It may block.
/ldo the tuple invalidation synchronously.

in_commit: invalidation( 0 );

reply 9 to the client;

The invalidation routine:
if ( 8 is hybrid tuple)
{ for (int i=0, i< N; i++)
{ /] there is possibility that the tuple has not been actually replicated to some node.
if ( 8 € NeedRsid[i])
NeedRusid[i]= NeedRsia[i] - { 0 };
else
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if (0 € HasRusiali] )A (i'=))
{ / if the tuple has been actually replicated, send a invalidation

//message and wait for acknowledgement.
send a invalidation message to the node i;
wait for acknowledgement;

}

(5) Other primitives such as bulk in or read primitives are invoked at server site. For bulk
in, if a matching tuple has been replicated, it will trigger the invalidation process before

returning the matching tuples to the agent.

3.5.3 Illustrate the Replication Protocol with State Machine

in; send in request to home;

receive tuple from home read; send read miss to home; read
recieve reply fromhome with
caching the copy
uncached receive invalidation from home; cached

reply acknowledgement

\ in; send in request to home;

receive tuple fromhome

read; send tead miss to home;

receive reply fromhome without locally decide to uncache; send uncached
caching the copy; message to home[ if the replics is hybird ]

Figure 3-2 State Transition of a Tuple at the Client Site

Figure 3-2 shows the state of a tuple at client side. There are two states for a tuple:
cached, and uncached. The cached state means that the tuple is replicated at this client
site. The uncached state means that there is no the replica at this site. How to handle read
miss is a little complicated. For a read request, if the state is uncached, a read miss
message will be sent to the home tuple space. As it receives reply (the response Rt as
shown in the protocol) from the home, if the reply indicates the matching tuple can be
replicated, the state will transit from uncached into cached. Otherwise, the state is still

uncached. This is done by the method updateCache in the protocol. The reason that the
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copy can be not automatically cached at client site is for the consideration of invalidation
cost. For a in request, it will be directly sent to the home tuple space no matter the state is
cached or uncached. The transition from cached state to uncached state can be caused by

an invalidation request from the home or a decision to uncache the replica made by the

local cache.

receive in request;receive

receive’out . . .
receive rgad miss;receive

out;send reply with indication
of caching the copy

receivelfin
request;send tuple .
4 P receive in request;send
invalidation t¢ all cached
clients; r¢ceive
acknowledgement; send tuple

out;sendfeply without
indicajion of caching the

receive read miss;send reply with
indication of caching the copy

uncached

cached

\

receive uncacehd fromall cached clients

receive\read fmiss;send reply receive read migs;sepd reply
without méication of caching with or without ndication of
the copy caching the copy

Figure 3-3 State Transition of a Tuple at the Home Site

Figure 3-3 shows the state of a tuple at home site. There are three states: absent, cached,
and uncached. The absent state means that there is no the tuple at the home site. The
cached state means that the tuple has been replicated to some other client sites. The
uncached state means that the tuple has no been replicated. In any one state, the home can
receive a in request or a read miss message. For a in request, especially as the state is

cached, the home tuple space will send invalidation requests to all cached clients and wait
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for the acknowledgements. The state will transit from the cached to the absent. The
number of the cached clients will be only one if the replication decision is based on the
runtime knowledge. For a read miss message, it is a little complicated. At any state, as the
reply is sent back to the client, the reply will contain the tuples that needs to be cached at
the client site (through piggybacking). Therefore, for example, it can transit to uncached
or cached state from the absent state by handing the read miss message. Moreover, as the
state is cached, a copy can still be replicated to some other site if some other agents have

subscribed for the tuple statically.

3.6 Replication Protocol Correctness

In this section, we try to prove that the above replication protocol is correct using the
view model [Girard99, Li03]. The view model describes the execution of a system based
on distributed shared memory originally. First we borrow the idea to illustrate the
execution of a multi-agent system that is based on the reactive tuple space. Then the

correctness of the protocol is shown.

3.6.1 The View Model for Tuple Space

The significant characteristic of a tuple is that it cannot be updated. It can only be read or
retrieved. In this section, we first introduce some tuple space access notations, then the
definition of the global view for tuple space.

An execution of a multi-agent system results in a set of linear traces, one per agent. Each
trace contains the sequence of program-ordered tuple space accesses. outi(x,v) represents
the writing of value v into a tuple x by agent i. readi(x,v) represents the reading of value v
from a tuple x by agent i. ini(x,v) represents the retrieving of value v from a tuple x by
agent i. readi(X,V) represents the bulk read, which reads a set of values V from a set of

tuple X by agent i. For instance, readi({x,y},{a,b}) means that the agent i reads tuples x
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and y with corresponding values a and b. ini(X, V) represents the bulk in, which retrieves a
set of value V from a set of tuple X by agent i. For simplicity, we assume that each (x,v) is
distinct among the multiple tuple spaces, and omit the parameter tuple space ID. We may
also omit the agent label i when the context is clear.

The global view a global view for tuple space is formed of (i) program-ordered tuple
accesses, which represents that tuple accesses are invoked in a sequential process. (ii)
coupling orders required by the semantic of tuple space. It means that for all
read(x,v)/in(x,v), there must have out(x,v) — read(x,v)/in(x,v), which we call the directly
coupling. In addition, for all read(x,v) and in(x,v) that occur, there must have been
read(x,v) —in(x,v), which we call the indirectly coupling. The “—”is the order relation
used in the view model. Figure 3-4a shows an execution example, and Figure 3-4b shows

its global view.

, out(x,v1); in({b,c},{v3,v4}), read(a,v2)
agents operation sequences

Al :out(x,v1); in({b,c},{v3,v4}), read(a,v2)
A2 : out(a,v2) ; read(x,v1)

A3 : out(b,v3) ; read(a,v2) ; read(c,v4) : v2) ; read(c,v4)
A4 : out(c,v4) ; in(a,v2)

yin(av2) e |

a. execution sequence

b. global view
Figure 3-4 The View Model of a Multi-agent Example Based on Tuple Space

Definition of Sequential Consistency An execution is sequential consistent iff its
global view is acycle.

The above definition in our model can be reasoned from the original definition of
Lamport in Section 3.1. Given an acycle global view, we can obtain an interleaved
execution (by iteratively selecting among the subset of operations which are not preceded
by other operations in the remaining global view as the next operation) that does not

contradict the program order. Thus the execution is sequential consistent. On the other
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hand, the reverse is immediate.

Transformation of other Primitives In this section, we will discuss the effects of
asynchronous primitives, reactive primitives and logic template primitives on the view
model. The purpose of doing transformation is to provide a way to construct the view
model of a multi-agent system based on the reactive tuple space simply and easily.

The semantic of an asynchronous primitive is different from that of the synchronous one
for agents. However, from the point of view of accessing the tuple space, the kernel
makes no difference between asynchronous and synchronous essentially. The only
difference is that kernel may assign a system thread to do tuple access for an
asynchronous primitive, and borrow the thread of a caller agent to do tuple access for a
synchronous primitive. Thus, an asynchronous primitive has the same effect on view
model as its corresponding synchronous one. It indicates that when constructing the view
model, we can map an asynchronous primitive to its corresponding synchronous one.
Figure 3-5 shows a transformation example, which maps a single asynchronous read to

the single synchronous read.

A1: out(x,v1): AL out(x,});

A2: out(a,v2) ; asynRead(x,v1) A2: out(a,v2) ; read(x,v1)

Figure 3-5 Transformation of Asynchronous to Synchronous read

As a tuple is written into a tuple space, the kernel will check whether there are some
agent reactive behaviors have registered for the tuple. If so, the kernel will have a
notification event to trigger the reactive behavior. The notification event includes a copy
of the tuple. Thus, in order to model the effect of a reactive behavior in the view, we only
need to insert a read tuple access event before the ordinary program order of the reactive
behavior. For example, suppose agent A2 out(a,v2) triggers a reactive behavior notated

by Ri(Al) of agent Al. Figure 3-6 shows the transformation. Every reactive behavior has
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an individual linear trace, here we just use the notation Ri(Al) to represent the trace.

A1: out(x,vl); AL out(x,vl);
Ri(Al) read(x,vl), RI(AI)
A2: of(a,vz) : A2: olit(a,v2) ;

Figure 3-6 Transformation of Reactive Behavior

The semantic of the logic template primitive shows that it is actually made up of several
single tuple access primitives. A mediator component will be responsible for collecting
the matching tuples before returning the result to the caller agent. Although logic
template primitives are in asynchronous form, we could think of them as the synchronous
ones when modeling the execution. Therefore in the view model, a logic template
primitive can be decomposed into several corresponding single tuple access primitives.
For instance, the logicln({(x,v1),(y,v2)}) notates a logic template primitive invocation. It
means that an agent retrieves a tuple x with value vI and a tuple y with value v2. Figure 3-
7 shows the transform of a logic template in primitive invocation in view model. In other
words, we can interpret a logicln to consist of multiple in that happen to return those
corresponding tuples. In the subsequent proof, for simplicity, we will only refer to events
that correspond to the base types, namely in, out, and read, with the understanding that
the other accesses can be formed from these types. It is also noteworthy that the reactive
parts are factored out from this sequential consistency proof. Interesting enough,
reactivity is associated strictly with triggering the reactions when a matching tuple is
inserted and the correctness of an implementation protocol can be easily separated from

sequential consistency considerations.

A1: out(x,v1); A1: out(x,y1);

A2: out(y,v2); A2: out(y,v2\;

N

A3: out(z,v3); logicIn({(x,v1), (y,v2)}) | |A3: out(z,v3); in((x,v1); in(y,v2)

Figure 3-7 Transformation of Logic Template in
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3.6.2 Correctness Proof

Lemma 1: In the view graph, whenever
(1) out(x,v) — in(x,v)/ read(x,v), then

out(x,v).commit must happen before in(x,v).commit /read(x,v).commit
(ii) read(x,v)— in(x,v), then

read(x,v).commit must happen before in(x,v).commit
out(x,v).commit means the tuple x has been in the home tuple space, and it corresponds
to the label out_commit in the protocol. in(x,v).commit means that invalidation of the
tuple x has been done, and it corresponds to the label in_commit. read(x,v).commit
means that a copy of the tuple x has been read from local cache or from the home tuple

space, and it corresponds to the label read_commitl or read_commit2 in the protocol.

Proof:

(i) First prove that out(x,v).commit happens before read(x,v).commit. If read(x,v) reads a
copy from local cache, as labeled by read_commitl. Since the copy state is cached,
obviously out(x,v) has been done, which means the statement labeled by the out_commit
has been executed. If read(x,v) receives a copy from the home tuple space, as labeled by
read_commite2. It also shows the statement labeled by the out_commit has been done. In
detail, from Figure 3-3 state machine at server site, it shows that when the state is absent,
the read miss message will not be handled until the tuple is written into the tuple space
(receive the out message). If the state is uncached or cached (cached here means the tuple
has been replicated to other client, not the one that sends the read miss message), it means
that the tuple has already been in the tuple space. Hence, out(x,v).commit happens before
read(x,v).commit.

Then prove that out(x,v).commit happens before in(x,v).commit. From Figure 3-3 state

machine at server site, it shows that when the state is absent, the in request will not be
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handled until the tuple is written into the tuple space (receive the out message). If the
state is uncached or cached, it means that the tuple has already been in the tuple space.
Hence, out(x,v).commit happens before in(x,v).commit.

(1) This is directly shown through how to handle the in requests. From the protocol,
when in(x.v).commit has been done (the statement labeled by in_commit has been
executed. Specially, when the state of the tuple is absent or uncached, the execution of
invalidation labeled by in_commit will invalidate nothing.), there will be no such copy in
local cache and home tuple space because of the invalidation. From Figure 3-3 state
machine at server site, it also shows that after a in request has been handled, the state will
transit to absent state no matter which state it was before. Hence, a successful
read(x.v).commit labeled by read_commitl or read_commit2 must be executed before

in(x.v).commit is done. Hence read(x,v).commit must happen before in(x,v).commit.

Theorem 1: The view graph under the replication protocol cannot contain a cycle. Hence

the replication protocol implements the sequential consistency.

Proof:

Suppose a view cycle exists. Without loss of generality, assume the cycle runs through
agent 1, agent 2 ... and agent k. There is a first and last event in each agent, say eil and
ei2 are the first and last event of agent i in the cycle. Possibly eil = €i2. From the
protocol, program-ordered tuple accesses are strictly maintained, i.e., eil.commit happens
before ei2.commit (whenever eil < > ei2). Furthermore, from Lemma 1, ei2.commit
happens before e(i+1)1.commit Hence the view cycle also traces a happens-before cycle.
This contradicts the happen-before relation which must be acyclic (causality cannot be

cyclic). Hence the view cycle cannot exist. Hence the replication protocol implements the

sequential consistency.
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Chapter 4 Reactive Tuple Space Design

4.1 Introduction to JADE

A mobile agent platform usually realizes the features of a coordination model introduced
in Section 1.1. Generally, a mobile agent is not bound to the system on which it begins
execution. In other words, created in one execution environment, it can transport its state
and code with it to another execution environment in the network, where it resumes
execution. The benefits that mobile agents provide for creating distributed systems
include [Lange99] reduction of network load and avoidance of network latency to an
agent’s progress. However, since mobile agents migrate autonomously in the network,
they cannot reliably “know” the locations of their connection peers. Hence, some kind of
tracking mechanism must be built into the platform to keep track of agent locations. This
mechanism allows agents to communicate without knowing other agents’ whereabout.
Hence it is more complicated to manage the lifecycle of a mobile agent than that of a
stationary agent. Therefore, when studying the impact of a mobile agent platform on the
reactive tuple space design, we first need to concentrate on how an agent is modeled and
its management (life cycle). For instance, an agent in the Grasshopper platform can have
a deactivated state, which means this agent can be deactivated and swapped to the
secondary store. The agent state may affect the replication decision. For a deactivated
agent, the replication manager may choose not to replicate a tuple that is needed by that
agent. Second, the design should address agent mobility. In particular, registration of
agent reactive behavior must satisfy location transparency.

In this chapter, we will introduce JADE (Java Agent DEvelopment framework), a FIPA
compliant mobile agent platform, based on version 2.61[Rimassa03, JADE], and the

design of the reactive tuple space and its integration with JADE. Briefly, JADE can be
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described from two different points of view. In the system level, JADE is a platform (also
a middleware) which provides runtime supports for application agents. On the other hand,
in the application level, JADE defines a framework to facilitate the development of multi-
agent systems. It defines an agent model from which an agent developer can extend the

abstract model to domain components by following specific business logic.

4.1.1 JADE Architecture

This section gives the description of JADE in the system level. Figure 4-1 shows the
overall architecture of JADE platform. A JADE platform is composed of several
containers. Every container runs on one Java virtual machine, and can host zero or more
agents. The ‘host’ means that agents, as software components, can only run in the
containers. Although a JADE platform can be actually distributed among several
networks host, an agent will not observe the existence of the underlying network as

JADE provides the high level abstraction called container to hide such complexity.

0.0 . G RCR—

t 1
. Agent Container (—= Main Container !«—! Agent Container '
1 1 I ] ! !
IVM JVM JVM
Network Environment

Figure 4-1 JADE Architecture

Container is a core concept in JADE. In fact, it is the container that provides runtime
supports for agents. A container is actually a virtual host. Figure 4-2 shows the JADE
container internals. In JADE, There are two kinds of interfaces exposed to an agent. The
first one is the internal interfaces, which are defined by the container to provide system
services to assist the agent implementation. For instance, when two agents need to
interact with each other, they only need to call send and receive primitives to exchange

messages, and the container will take care of how to transfer these messages. In brief, the
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system service includes the lifecycle management, message service, mobility support,
and resource allocation. The lifecycle management service controls the creation and
destruction of agents. Mobility service determines how to serialize and de-serialize an
agent during its migration. Resource allocation service maintains system resource such as
thread pool and message buffer. The message transportation service will be described in
detail later on. Considering implementation issues, these services are usually realized by
various managers. For instance, intra-platform message service and inter-platform
message service are implemented by MessageManager and ACC (Agent Communication
Channel) respectively, and the mobility service is done by MobilityManager. An agent
accesses the system services through its container. The container then delegates these

service requests to the corresponding manager.

b

1

1

]

1

h callback
, interfaces
.
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]

Q

internal iflterfaces

Figure 4-2 JADE Container Internals

The second one is the callback interfaces, which are hooks that will be implemented by
an agent developer and called back by the container at run time. The callback interfaces
can be further classified into two subcategories: system oriented vs. application oriented.
The system oriented interfaces are intended to let an agent customize the system service.
For instance, suppose that an agent is required to release all its resource before migrating
to another container. Such a requirement can be done by overriding the beforeMove
method. Then, the container will automatically free the resources allocated for the agent
before it moves from the container. Thus, the default service provided by the container
can be customized by an individual agent. On the other hand, the application oriented

interfaces are intended to help an agent to program its business logic and they are
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captured by the agent behaviors model in JADE, which will be illustrated in next section.
For example, when an agent developer needs to program a buyer agent, what she needs to
do is to analyze the business requirement, refine them into different tasks, and implement
these tasks by extending the behaviors interfaces. Here, tasks can be understood as the
functionalities that need to be done in order to meet its goal. Tasks have the same
meaning as the so-called behaviors in a typical programming model. Thus, the
development of a multi-agent system is simplified as ordinary object oriented design.
However, an agent has no external interfaces exposed to outsides, since agents only know
each other by identifier and the only way to coordination is through message passing.

There are two kinds of containers: main container and agent container. A platform can
have several agent containers but only one main container. From the point of view of an
agent, both containers provide the same services described above. However, in system
level, the main container represents the platform and it has a global view of the system.
For instance, the main container maintains a Global Agent Descriptor Table (GADT),
which maps every agent to the remote reference of the container where the agent lives.
Therefore, the main container knows exactly the location of every individual agent. In
contrast, an agent container has a Local Agent Descriptor Table (LADT), which only
records the information of its local agents and has no idea of location of the other agents.
Therefore, the main container actually acts as a centralized mediator. When an agent
migrates from one container to another container, or when an agent is destroyed in one
agent container, such an event has to be notified to the main container so that it can
refresh the GADT. When an agent sends a message to another agent located in a different
agent container at first time, it has to contact the main container to get the proxy for the
agent container where the receiver agent locates. Then it communicates with that

container directly through the proxy.
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4.1.2 JADE Agent Model

The purpose of introducing the JADE agent model is not to show how they abstract an
agent, but to explain why we do not choose to build our reactive tuple space server in the
agent level but in the system level.

Briefly, an agent is an active object and adopts a thread-per-agent concurrency model in
JADE. This means that there is a single Java thread (the embedded scheduler) for an
agent to execute all its tasks concurrently. An agent usually needs to do several tasks at
the same time in order to fulfill its goal. For instance a seller agent negotiates with
several buyer agents simultaneously. By letting an agent only have a thread, JADE tries
to minimize the consumption of the system resource. This is in contrast to a thread-per-
task model, where each task of an agent will be executed by a separate thread.

In order to realize such concurrency model, JADE provides an agent behaviors model.
Statically, a behavior is an abstract class which exposes an interface called action. The
action is what that is needed to meet the particular requirement as a task. An agent
naturally can have multiple behaviors to model tasks. It can be understood that this
behavior has the same meaning as the proactive behavior in our agent programming
model. At runtime, the embedded scheduler inside the agent will take the various
behaviors objects available and execute them in round-robin. However, the scheduler
cannot save the stack frame for a behavior object. This means that once a behavior object
is executed, it will not yield its control of the scheduler to another behavior object until it
returns from its execution. In other words, if a behavior object is blocked or is in an
endless loop during execution, all the other behaviors of the agent will never be
scheduled. In addition, the behavior model and its round-robin scheduling policy may be
unfair to individual behaviors. For instance, if one behavior is complex for performing

long operations and another one is simple, then the complex one will be given more time.
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The requirement of the reactive tuple space server is complicated. For example, it needs
to synchronize multiple accesses to a single tuple space. If an agent is responsible for
handling all the access requests, then an access process becomes sequential from the
beginning to the end. This will eliminate the opportunity of segmenting the tuple space
and having concurrent accesses to a single tuple space. On the other hand, one may think
that we can have multiple agents take care of the accesses to a tuple space. However, it is
impossible to decide the number of agents statically before knowing the workload. If the
number changes dynamically, the cost of creating and destroying an agent is higher since
an agent is more weight than a Java thread and also the main container must be notified
of the agent creation and destruction events. The other requirements such as supporting
agent reactive behavior and replicating tuples to some potential containers face similar
problems. Therefore, in order to avoid the unfair scheduling and make the system

efficient, we would not consider building the reactive tuple space server in agent level.

4.1.3 JADE Message Passing

Message passing is one of the core services that JADE provides to support agent
interactions. Since the purpose of having reactive tuple space is to provide a dynamic
sharing media for agents, it is necessary to have a good understanding of message passing
internal.

JADE uses FIPA ACL specification to create messages. A FIPA ACL message contains a
set of message elements, which mainly include communicative act, sender, receiver, and
content. The communicative act element denotes the type of a message. FIPA already
have defined some standard acts, for example the query-if act allows an agent to ask the
receiver agent whether a proposition given in the content is true. The sender and receiver
elements denote the identity of the sender and receiver agents. The identity is the agent

name in JADE. The receiver may be a single agent name, or a sequence of agent names
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in case of message multicast. The content element denotes the content of a message,
which may involve specific ontology.

JADE has different message delivery strategies to deal with message passing between
intra-platform and inter-platform. For intra-platform, there are two cases. If the agents
that need to communicate live within the same container, JADE uses Java local call to
exchange a message. On the other hand, if these agents live in different container, JADE
uses Java remote call RMI to deliver a message. Massage encoding and decoding are just
Java remote object serialization and de-serialization. Particularly at the first time that they
communicate, the sender container has to first contact the main container to create a
proxy of the container where the receiver agent lives. Then the sender container will
cache the remote reference for later communication. In contrast to the inter-platform case,
if an agent in a JADE platform wants to interact with another agent on another FIPA
compliant platform, the protocols will be based on IIOP or HTTP. Message encoding and
decoding is different from that of intra-platform. For instance messages can be
transferred between platforms in XML form (for instance, XML encoding over HTTP).
Messages for agents located in different platforms are all through the main container
unless it is configured to let another container be the router.

In JADE, every agent has a message queue, which buffers the messages received from
sender agents. JADE has so-called asynchronous messaging using push-to-receiver
dispatch model. This means that a sender agent can send a message to a receiver agent
any time as long as it knows the name of the receiver. The kefnel will push the message
into the message queue of the receiver agent. A receiver agent can try to receive a
message at any time. The kernel will check the agent’s message queue to see whether
there is an available message. The advantage of providing every agent with its own
message queue is to reduce the synchronization among agents in receiving messages,

although it still includes synchronization between pushing a message into the queue and
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pulling a message from the queue. Although every agent has its own queue to receive
messages, there is only a shared queue in a container among agents for sending messages.

This would potentially slow down message transportation.

4.2 Reactive Tuple Space Design
4.2.1 Design Principle

Efficiency is the primary non-functional requirement (or say quality attribute) when
designing the reactive tuple space server. The ultimate goal is that the performance of the
reactive tuple space would be competitive with that of message passing mechanism in
JADE. However, the natural characteristic of the tuple space determines that it is not easy
to achieve the goal. Since tuple space is time and space uncoupled, the system cannot
predict which agents will consume a tuple dynamically although guessing is allowed.
Hence, a tuple space cannot be partitioned into such granularities that every agent has a
place to hold its own tuples as that of every agent having a message queue in JADE.
Consequently, the synchronization among tuple space accesses would be more expensive
than JADE message passing. For instance, it excludes concurrent executions to some
extent. As one agent accesses the tuple space, some others may have to wait. In addition,
it may take longer for searching a matching tuple as the number of tuples increases.
Therefore, from functional analysis to system design, we shall take into account the
performance requirement at every step. For example, at analysis stage we conclude that
multiple tuple spaces are necessary in order to support agent clustering. In designing a
single tuple space, it is desirable to partition it into small fractions to increase the
concurrency among agents.

Another concern is the maintainability (modifiability). We need to decompose the whole

system into several components (modules) to encapsulate volatile implementation details
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behind stable interfaces. Thus it can localize the impact of design and implementation
changes, and reduce the effort to understand and maintain existing software. It reflects
so-called design for change. For instance, by having a client component (module) to
provide agents stable interfaces in the form of primitives to access tuple space, then the
change of the tuple space structure and its algorithms will not affect application. Design
patterns [Carey00, Gamma94, Hofmeister99, Johnson98, Lavender95, Schmidt02] would
be useful for the system evolution.

However, maintainability and performance requirement may conflict. The tuple space
shell component (module) is an example, and the detail will be illustrated in Section
4.2.3.1. When a conflict occurs, maintainability is preferred because we believe in the
philosophy that a good design should not bring bad performance. In addition, there
usually are just several parts, for instance how to structure the tuple space and access it,
that influence system performance significantly in a system. It is that 20% of the code
that does 80% of the work. We therefore would like to recognize the important parts and
optimize them during design stage without affecting the overall architecture. However,
we may miss something. If we are not satisfied with the performance after testing, we can
try to find what we miss with the help of tools such as Java Profiler and do optimization
again. This strategy indeed helped us to improve system performance. For instance, we
successfully optimized the message structures of transferring requests and responses
among containers. It will be shown in Section 4.2.3.2.2 when we illustrate the design of

the asynchronous tuple space access.

4.2.2 Reactive Tuple Space Architecture

Figure 4-3 is the reactive tuple space architecture in high level abstraction. It shows that
the reactive tuple space is designed to be part of the services (infrastructures) provided by

a container. The concrete modules that realize the abstractions will be illustrated in next
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section. There are two layers in this abstract architecture: the tuple space shell and the
tuple space kernel. Multiple tuple spaces are distributed over the network environment.
The communication between the shell and the kernel is a local method call. The kernels
located in different containers communicate with each other through RMI. The shell is in
the agent level and supplies stable interfaces for agents. These interfaces reflect the
proposed tuple space primitives. The shell actually separates concerns about the
interfaces from their implementations in the kernel level. In addition, there is a connector
in the shell. The connector takes charge of the exchange and transformation of data
between the agent level and the kernel level. For example, it appends the agent name to
the tuple space access request (primitive invocation) so that the server component can
recognize which agent has issued the request. This information is useful when

considering replication.

Agent level @ @ Agent level
i Rl

| __tple space shell layer __| { _ _tuple space shell layer _ |
_____ ¢ ¢
I tuple space kernel layer | < > [ tuple space kernel layer |

H < > R —- | (el L Ll -
i Tuple Space 1 Tuple Space 2 : : Tuple Space 3
1 . .

ioicoc.o.olocal tuplespaces i local tuple space

containerl container2 T T T TITITITITITIT -

Figure 4-3 Reactive Tuple Space Architecture

On the other hand, the kernel is responsible for receiving requests from the shell,
accessing local or remote tuple spaces synchronously or asynchronously, and then
sending the responses back. If the tuple space is located on a remote container, the kernel
will delegate the request to the remote kernel where the tuple space is located. The kernel
also has a tiny framework to support agent reactive behaviors. The framework provides

the reactive programmable interface called IReactive for agents and will trigger (execute)
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these reactive behaviors as the specific events show up. In addition, the kernel also uses

replication to make the system efficient.

4.2.3 Reactive Tuple Space Detail Design

In the following sections, we will explain the reactive tuple space design in detail. Figure
4-4 shows the overall picture of the modules [Booch99]. Modules are defined as
packages in Java. The modules are organized hierarchically and loosely coupled. Objects
insides a module are highly cohesive. However, the reason that there exists bidirectional
coupling between the TupleSpaceShell module and TupleSpaceReaction module is that
the agent reactive behaviors have to be notified. The TupleSpaceShell module servers as

the shell in the architecture diagram, and the other modules belong to the kernel.
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Figure 4-4 Reactive Tuple Space Modules

As we introduce the detail design, we will not describe these modules in an enumerative
style. Instead, we focus on (i) the tuple space shell, (ii) the core components such as the
reaction part defined by the kernel, and (iii) what we did in the kernel to try to make the
system efficient. The runtime description then will be given. Because of the limitation of

space, we may not show all the classes for every module. For a class, we may just list
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part of the operations and attributes to show the design and its rationales. In addition, we
do not show all the dependency relationship among classes. This should not affect our
description. If there is a name cdnﬂict, we will further identify the class name with its

package path.

4.2.3.1 Tuple Space Shell

As we see from Section 4.2.2, the tuple space shell is a lightweight layer that is integrated
with JADE agent framework. It defines the entry for an agent to access tuple spaces. The
tuple space shell is encapsulated in jade.core.ts.adapter package, and its class diagram is

shown in Figure 4-5.

Agent:(from Jade agent framework)

{BTSCreate(String tps) @ TupleSpacelD

IStout(TupleSpacelD tsID, Tuple tuple) : void

[ Rread(TupleSpacelD tsID, Tuple template) : Tuple

%f@asynﬁead(chicTemplate logic_template) : Future

fﬁaﬁbulkAsynRead(LogicTemplate logic. template) : Future

%regis’ter(TupleSpacelD tsID, Tuple template, IReactive rea) : AgentRegisterlD
T

. TupleSpaceCilient
& i<<jade.core.ts. TupleSpaceSenice>> tsSenice

OUL(AID myid, TupleSpacelD tsID, Tuple tuple) : void
asynrRead(AID myid, TupleSpacelD tsID, Tuple template) : Future
li®read(AID myid, TupleSpacelD tsiD, Tuple template, long waittime) : Tuple

e N, D
@ S\ N ~a

IReactive // Future TupleSet TupleSpacelD

reactTo(AgentReaction Elxe{\t ev)

jade.core.ts.essential. Tuple
Tuple (from TupleSpaceEssential)

Bijade.core.ts.essential . Tuple atp

{add(
{@add(Field T) : woid ¥ getAllFields(
etAllFields(). i Iterator match()

e ypeMatch()
Z> T~

I I i Field
SynTuple AsynTuple HybirdTuple $8%jade.core.ts.essential.Field afield

Figure 4-5 TupleSpaceShell Module Class Diagram

When we design the tuple space shell, the top priority is the separation of concerns
between the interfaces and the implementations. In addition, the interfaces shall be clear

and easy for the agent programmers to use.
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From Figure 4-5, it shows that the tuple space primitives are embedded into the Agent
class. The Agent class is the core of JADE agent framework. The details of the primitives
are presented in Chapter 2. These primitives coexist with message passing. An agent can
use both to interact with each other. For an agent programmer, learning how to use these
primitives is as simple as learning how to use message passing.

There are many classes such as Tuple and Future assisting the primitives. This agent
level Tuple class exposes the interfaces to an agent programmer. For instance, he/she can
add fields into a tuple with add(Field f) method, iterate all the fields with getAllFields().
There is another kernel level Tuple defined in the TupleSpaceEssential module. The
reason that we have two different Tuple classes is that it needs more methods to support
system operations in the kernel level than that of the agent level. For example there is a
typeMatch() method in kernel level Tuple class. It is used to decide whether two tuple
templates are matched. This function will be used when building the index for tuples. If
we only have a kernel level Tuple class, an agent programmer will be confused about
how to use it. Therefore, in order to provide clear interfaces, we define the agent level
Tuple class to hide the complexity of the kernel level Tuple class. An agent level Tuple
object holds a reference to a kernel level Tuple object, and the real operations are actually
on the kernel level object. Such design conflicts with the efficiency requirement since
more object creations and destructions are involved. However, it will not lose
performance significantly. Balancing the two considerations, we prefer to have a clear
design. Take the Future class as another example. The agent level Future class has no set
methods, and only the kernel level Future class has. The Future class is a placeholder for
the result of an asynchronous primitive invocation. Such design only allows the kernel to
assign a value to a Future object and prevents an agent programmer from doing such
operations at the agent level. The other classes such as Field, TupleSet, MultipleTupleSet,

AgentRegisterID, AgentReactionEvent, etc in this package are all based on this rationale.

-75 -



In addition, there is an interface [reactive supporting the agent reactive behavior through
the tuple space. It provides only one method reactTo(AgentReactionEvent ev). An agent
programmer can program a reactive behavior by just implementing this method. In fact,
the Ireactive is the hotspot (or say hook, or extension item) of the agent reactive
framework, which will be illustrated in Section 4.2.3.2.3.

The transformations of data between the agent level and the kernel level are taken care by
the TupleSpaceClient object. It works as a connector between the two different levels. In
general, it will delegate the tuple access requests to the kernel TupleSpaceService object.
As the result is returned from the kernel, it will transform the result to the corresponding
agent level data. There is only one TupleSpaceClient instance in one container, and thus

the singleton pattern is used.

4.2.3.2 Tuple Space Kernel

Figure 4-6 shows how the core components of tuple space kernel are statically structured.
It is in the jade.core.ts package. We would like the kernel to have only a single point to
expose its services for the shell. The TupleSpaceService is for this purpose. It is
composed of several managers (usually active objcets) which will take different
responsibilities in serving different requests. The TupleSpaceService actually works as a
mediator. As it receives a request from the shell, it will delegate the request to the
corresponding component after analysis. For instance, a reaction registration or
deregistration will be handled by the ReactionManager. Asynchronous access requests
will be handled by AsynRequestManager and AsynResponseManager. Replication issues

will be handled by the TupleSpaceReplicationManager.
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Figure 4-6 TupleSpaceService Module Class Diagram

In the following sections, we will describe three important design decisions: (i) the data
structure of a tuple space, (ii) the asynchronous tuple space access, and (iii) the reactive

behavior framework.

4.2.3.2.1 Tuple Space Data Structure

Since the tuple space has to be synchronized, we want to reduce the cost of the

synchronizations among accesses with an efficient data structure shown in Figure 4-7. A
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tuple space is organized as clusters of segments. The tuples that have the same number of
fields are clustered together. A segment is then organized with a hash function on the first
field of a tuple. The default hash function is simple. It first serializes the value of the first
field to a string, and then gets the hash code of the string. However, since the hash
function is based on the first field, the efficiency of the data structure depends on how to
define and use a tuple. If most tuples can be distinguished by their first fields, it would be
very efficient. Such data structure not only can reduce the cost of synchronization when
doing an access, but also can promote concurrency among different segments. The
TupleSpaceHandler, TupleSpaceCluster and TupleSpaceStoreHashlmp shown in the

Figure 4-6 together realize this data structure.

Fileds number | TupleSpace segments / segment1 /’i ref_tpl | ref_tp3 | ref_tp5 |
1 sogmentl hvaluel 1| tuple references
5 segment2 hvaluel 2| tuple references \I ref_tp2 I ref_tpd |
N Segmenta segment2 ref_tp6 | ref_tp13
hvalue2_1| tuple references /l I - I

hvalue2_2| tuple references ‘—Lref_tp8 I ref_tp9 Iref_tpl 1|

Figure 4-7 The Date Structure of a Tuple Space

4.2.3.2.2 Asynchronous Tuple Space Access

The asynchronous tuple space access is an important feature to improve the application
performance. As an asynchronous primitive is invoked, the kernel will create a future
object and return it to the agent. As we make design decision, it is preferable that the
future object is returned as earlier as possible. The agent can continue its computation.
Meanwhile, the kernel will have a system thread do the tuple space access. In order to
optimize the system performance, we design that the kernel uses different ways to handle
the asynchronous requests from local agents and remote agents. We distinguish these

requests as the local asynchronous requests and the remote asynchronous requests.
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Before showing the two different ways, we first need to describe how a system thread can
do a tuple space access dynamically. Basically, the thread needs to know the entry of the
method of doing a tuple space access. Section 4.2.3.3.4 will show that the entry actually
is a programmed java Runnable interface. In Figure 4-8, TSAsynRequestExecutor
implements the Runnable interface. It provides an abstract method executionStrategy()
using template method design pattern. The abstract method then is implemented by
various subclasses to define the algorithms (strategies) of doing various asynchronous
tuple space accesses. These algorithms reflect how to handle the local and remote
requests. It also uses strategy design pattern. The TSRequest actually provide the
information that the corresponding algorithm will need. These algorithms server as the

future operations specified in the formal specification in Section 2.3.

TSAsynRequestExecutionGenerator <<Runnable>>
> TSAsynRequestExecutor
8 getExecutor(lRequest p 1) : TSAsynRequestExecutor Ii¥executionStrategy() : void
i T I [ !
TSAsynin: TSAsynRead TSAsynOut TSAsynBulkinE TSAsynBulkRead
Executor Executor Executor xecutor Executor
TSAsynRemote T*SAsyn"Rer'noteln TSAsynRemoteRead| | TSAsynRemoteBulk] |TSAsynRemoteBulk
OutExecutor - ‘Executor Executor ReadExecutor InExecutor
TSRequest
s otW aittime(iong 1) : void » TSAsynRemoteResponse
O\/\'}, _______ . dgetWaittime() : long etReplicatedTuples()
setTupleSpacelD(TupleSpacelD ‘id) : void etResuilt()
jade.core.ts.essenti || 8getTupleSpacelD() : TupleSpacelD etReplicatedTuples()
al.IRequest otAID(String aid) : void etResult()
getAlD() '« String %7
TSLocalRequest : TSRemoteRequest

jade.core.ts.essenti
al.lResponse

f¥setWhere(String wh) : void

. “setSequenceNumber(int i) : wid
etWhere() : String
‘getSequenceNumber() : int

Figure 4-8 AsynchronousRequestExecutionStrategy Module Class Diagram
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It is a little complicated to handle a remote asynchronous request since the future object
and the tuple space accessed are in the different containers. The future object cannot be
assigned a value directly. We design as follows to solve the problem. Two active objects
AsynRequestManager and AsynResponseManager shown in Figure 4-6 will execute a
remote asynchronous request coordinately. Specially, the remote asynchronous request
will be put into a request queue of the container where the targeted tuple space is located.
As shown in Figure 4-8, the remote request contains the information such as where the
request is from, and a sequence number representing the individual request. The
AsynRequestManager is responsible for generating a system thread with a proper
execution algorithm according to the type of the request retrieved from the queue. With
the information provided by the request, the algorithm knows where to return the
response. The response contains the result and the request sequence number. The
AsynResponseManager located in the requester container will be responsible for handling
the response. According to the sequence number that the response provides, it will assign
the result to the corresponding future object. The dynamic behavior of a remote
asynchronous tuple space access will be illustrated in detail later.

In contrast, the characteristic of a local asynchronous request is that the future object and
the tuple space accessed are in the same container (the same virtual machine). Thus, the
value (for instance a matching tuple) can be directly assigned to the future object in the
algorithm. In order to do so, the local request needs to contain the reference of the future
object. Therefore, it does not require the AsynResponseManager to be involved.

In Figure 4-8, it shall be noted that a request contain two fields to show who (which agent)
issues the request and from where (which container). At the beginning, we designed the
‘who’ as the agent identity (AID) and ‘where’ as the container identity (ContainerID).
Both AID and ContainerID are from JADE, and have complex structures. As we trace the

execution with Java Profiler tool during the performance test, it shows that the remote
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calls take too much timc because of object serialization and de-serialization. Therefore,
we optimize these by modifying the type of ‘who’ and the type of ‘where’ to String, the
performance is improved by around 25% since it reduces the cost of object serialization

and de-serialization.

4.2.3.2.3 Reactive Behavior Framework

We have already shown the IReactive programming interface in Section 4.2.3.1. In this
section we will illustrate the design of the reactive framework. First we will describe how
to represent a reactive behavior and a reaction event. Then we will show how to detect an

event and execute a reactive behavior. Figure 4-9 shows the class diagram of the

framework.
<<Thread>>
ReactionManager <<Thread>> AgentReactiveBeh
HostReactionS¢heduler R aviorsList: =N -
PR P B = O
Boeregister) {8reactionTo() WireactionTo() IReactive
£8notifyOutedTuple() O S ~7 (tom TupleSpaceShell)
i - i A s itne o
1 ~N
@ N A4 } @reagﬁo()
; : : ; <<Runnable>>
terlD
RegisteriDList \ ReactionEventList TSReactionE xaoutor
N o
. T~ e - \ R
\ e N u©
RegisteriD = ReactionEvent
E&Lﬁlocated_comainer: String Bevent : lade.core.ts.essential. Tuple
Whiregister_agent : String &lsoure_agent :-String
&iseq:long &itsid - jade.core.ts essential. TupleSpacelD
&itemplate.: jade.carets essential. Tuple ;@?registerfagent : String
RitsId : jade.core.ts essential. TupleSpacelD ¥seq :long

Figure 4-9 TupleSpaceReaction Module Class Diagram

A reactive behavior (registration information) is represented by a RegisterID object. The
RegisterID containg information such as (i) the container name, (ii) the agent name, (iii)
reaction scquence number, (iv) tuple template, and (v) tuple space ID. Such information
can locate the exact reactive behavior. In brief, the container name identifies the

HostReactionScheduler. Then the agent name locates the AgentReactiveBehaviorsList.
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Then the sequence number locates the reactive behavior. In addition, the tuple template
and tuple space ID together define the interested event (tuple).

The ReacionEvent object represents a reaction event. It contains the event (tuple) and the
name of the agent that generates the event. It also has information from the RegisterID
such as the agent name that registers for the event and reaction sequence number. Such
information identifies which reaction needs to be notified.

The detection of an event is done by the active object ReactionManager. There is only
one ReactionManager instance in a container. It keeps records of all the agent reaction
registration information. The information will be stored in a list RegisterIDList that is
indexed by tuple space ID and tuple template. For every newly inserted tuple, it will
check whether some reaction behavior has registered for it. If so, it will create a reaction
event ReactionEvent, and send it to the queue of the HostReactionScheduler identified by
the container name form the RegisterID.

The invocation of a reactive behavior is triggered at the node where the agent is located.
The advantage is to reduce the tuple space server side workload. In detail, the active
object HostReactionScheduler takes the responsibility. When the HostReactionScheduler
receives a ReactionEvent from its queue, it will find the corresponding reactive behavior.
Then it generates a system thread to execute the reactive behavior. At this point, the
kernel level ReactionEvent will be transformed into the shell level AgentReactionEvent
object. Different reactions are executed in different thread contexts.

In addition, the Agent class is modified to have an attribute AgentReactiveBehaviorsList.
It is responsible for managing all the reactive behaviors of an agent. The advantage of
letting every agent have an AgentReactiveBehaviorsList is that it would be easy to handle
agent migration. Before migration, an agent has to send a migration message to the
ReactionManager and HostReactionScheduler, and then wait for the acknowledgements

from the both. Thus, the ReactionManager can update its registration information and
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will notify new events to the new destination container. The HostReactionScheduler will

have an opportunity to finish all the reaction notifications for the agent.

4.2.3.3 Performance Consideration

In the previous section, we considered the performance issues while making design
decisions. In this section, we still show some other efforts to try to make the kernel
efficient. They are (i) tuple space replication, (ii) tuple space cache, (iii) caching the
remote tuple space services, and (iv) the thread pool. The former two together reflect the

design of the replication protocol.

4.2.3.3.1 Tuple Space Replication

In Chapter 3, we have shown the replication protocol. In this section, we will show the
important design features for tuple space replication at the server side. Figure 4-10 shows
the class diagram. First we will introduce the runtime and static knowledge that the
replication manager needs in order to make decision on whether and where to replicate a

tuple. Then describe the replication manager.

<<Thread>> Knowledges

TupleSpaceReplicationManager

F®makeDecisionOnReplication()

{@addRunTimelnteration() < ” %agggz;?gmx?rgﬁggo
| BaddstaticKnowledgs() ©c9

Snotify InedTuple() / \
otify OutedTuple() .

étRepliactedTuples - -
%domwjidaﬁmom 0 RuntimeKnowledges StaticKnowledges

/_/I
SingleRuntimeKnowledge
‘‘‘‘‘‘ g YA

EEproducer_agent ; String

Giproducer_ container: String - 0 . . SinlgeStaticKnowledge
Bconsumer_agent :'String ‘| |B8subscribe_agent : String
Eiconsumer._container : String &5sbuscribe: container : Stirng

Bituple : jade.core.ts.essential. Tuple B template jade:core.ts.essential.Tuple
Gitsid - jade.core.ts ‘essential. TupleSpacelD stsld . jade.core.ts.essential: TupleSpacelD

Figure 4-10 TupleSpaceReplication Module Class Diagram
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The runtime knowledge is to track the interaction protocol between two agents. One step
of the interactions between two agents is defined by a SingleRuntimeKnowledge. It
contains information such as (i) producer name, (ii) producer container name, (iii)
consumer name, (iv) consumer container name, (v) access operator used, (vi) involved
tuple, and (vii) tuple space ID. All instances of the SingleRuntimeKnowledges are
contained in the RuntimeKnowledges. A search of the RuntimeKnowledges is optimized
by maintaining a pointer that identifies the SingleRuntimeKnowledge that contains the
most recent consumer. The static knowledge is constructed with the help of agents
through subscribeForReplication() invocations. It is defined similarly as that of the
runtime knowledge.

The Knowledges provides functionalities to decide whether a tuple needs to be replicated
at other containers. The decision algorithm is simple: the priority is based on the static
knowledge. If it shows that the some containers have subscribed the tuple, then the tuple
will be replicated to these containers without considering runtime knowledge. However,
if the Knowledges cannot decide with its static knowledge, it will check its runtime
knowledge to find a container that has consumed a similar tuple most recently to accept
the replica. We say that a tuple A is similar to a tuple B when every field of the two tuple
matches or has the same type. The reason that we only choose a container to have the
replica is to balance between the cost of invalidation and the return of local access.

The TupleSpaceRepliactionManager is an active object. When a tuple is inserted into a
tuple space, it will decide based on its knowledge (through the Knowledges object)
whether this tuple needs to be replicated to other containers. If so, it will keep a record of
such a replication. These replications will be piggybacked with the responses to the same
potential container.

Consider the invalidation process. Before a HybridTuple tuple is returned to the agent

that issues a destructive read invocation, the TupleSpaceRepliactionManager needs to
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invalidate all the replicas if the tuple has been replicated at other containers through the

method dolnvalidation().

4.2.3.3.2 Tuple Space Cache

In this section, we will show the design of tuple space replication at the client side. Figure
4-11 shows the class diagram. We decide that a container only has a cache to accept
replicas from the other containers. The advantage is that the replicas not only can be
managed easily, but also can be shared among agents. First we will introduce the entry of

cache service. Then give brief description of the data structure of the cache.

- TupleSpaceCacher TupleSpaceCachedData
B TupleSpaceCachedDataCluster
$addlocalCopies( : —2>{ Einvalidate ()
adl.ocalCopy() tPartitioni() , i Sout()
0receiveinvalidationRequest() e ®read()
"
/

TupleWithMetadata
{from . TupleSpaceEssential}

Figure 4-11 TupleSpaceCache Module Class Diagram

The TupleSpaceCacher provides the entry to access the cache. The cache can be queried,
updated (adding replicas) and invalidated. The query and update are straightforward from
the protocol described in the Chapter 3. For instance, when an agent issues an
asynchronous read on a remote tuple space, the kernel will first access TupleSpaceCacher
to check whether there is a matching local copy through the readLocalCopy().

The data structure of cache is organized as follows. The replicas are first classified by

their tuple space ID. Then, the replicas that have the same number of fields are clustered

together in a segment. Based on the assumption that the number of replicas from a tuple
space is of limited size, we do not further partition the segments. The

TupleSpaceCachedDataCluster and TupleSpaceCachedData together realize the structure.
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4.2.3.3.3 Caching Remote Tuple Space Services

We already know from Section 4.2.3.2 that the TupleSpaceService component is the only
entry to access the kernel service. Agents create and access a tuple space by name. The
location of a tuple space is transparent to agents. The distribution of multiple tuple spaces
1s actually managed by the centralized TSNameService located. in the main container.
Without caching, every time when a kernel accesses a remote tuple space, it has to first
get the stub of the corresponding remote TupleSpaceService from the TSNameService.
Therefore the TSNameService would become a bottleneck especially when the system has
massive remote tuple space access requests. In order to avoid such bottleneck, we design
that every kernel has a RemoteTupleSpaceServiceCacher object shown in Figure 4-6,
which will cache the stubs of all the remote TupleSpaceServices over the network. One

stub is actually wrapped in the TupleSapceServiceAdapter.

4.2.3.3.4 Thread Pool

The thread pool provides threads to execute asynchronous tuple space access and agent
reactive behaviors. By pooling threads, a thread usually can be created once and will last
until the system terminates. This can reduce the overhead of thread creation and deletion.

Figure 4-12 shows the class diagram of the ThreadPool module.

ResourceAllocation
O
7 . DefaultThreadPool
IThreadPool
ot \ 5 ’
#%execute(Runnable r) e 5@%@" ow()
' © o |#®shrink()
~ = ?
ExecutableRunnable -
WorkerThread
P
xecute() N )
xecutalbeRunnable(Runnalbe code) f¥execute(final ExecutableRunnable work)
N s
javailang.Runnable java.lang. Thread

Figure 4-12 ThreadPool Module Class Diagram
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In order to make the design clear, we do not program with Java thread directly. Instead,
we define our own thread model to encapsulate the Java thread. It is captured through the
ExecutableRunnable and WorkerThread classes. The ExecutableRunnable provides the
code that will be executed by a WorkerThread. The code entry actually is a programmed
Java Runnable interface. For instance, Figure 4-8 shows that the asynchronous access
strategy TSAsynRequestExecutor implements the Runnable interface. Figure 4-9 shows
that the reaction execution strategy T'SReactionExecutor also implements the Runnable
interface. The TSReactionExecutor encapsulates the agent programmable reactive
behavior Ireactive.

On the other hand, the WorkerThread extends the Java thread. It will accept the
ExecutableRunnable and execute the code. Most importantly, it needs to have the ability
to manage itself. This means that after execution of the code, it can put itself back to the
pool and wait for the next scheduling.

The pool is defined by the ResoureAllocation. It manages all the threads dynamically. It
has a default pool size, which means that a certain number of threads will be created at
system initial stage (startup time). The number of threads can grow or shrink according to
the system workload. Finally, although the design is a little complicated, the thread pool

component exposes only one method execute(Runnable r) to other modules.

4.2.3.4 Dynamic Behaviors

In this section, we will use sequence diagrams to illustrate the dynamic behaviors of the
tuple space access. Here, we only show a remote asynchronous access scenario, and a
reactive behavior detection and execution scenario. Although we cannot see the
concurrency from sequence diagrams, it shows us how the kernel works in general. As

we describe the sequence diagrams, we will point out where the concurrency exists.
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4.2.3.4.1 Remote Asynchronous Access Scenario

We use asynln(tsidl,template) primitive as an example to illustrate the dynamic behavior
of a remote asynchronous tuple space access. It assumes that the tuple space is located in
a remote container. Because of space limitation, we split one diagram into two as shown
in Figure 4-13a and Figure 4-13b. One diagram describes what happens in one container.
Figure 4-13a shows the dynamical behavior in the container that issues the access request.
As an agent issue asynin(tsidl template) primitive, the access request comes to
TupleSpaceClient object. TupleSpaceClient first transforms the request parameters into
kernel level data, and then delegates the access request to the TupleSpaceService object.
TupleSpaceService creates a Future object with a sequence number that represents this
request. Then it asks the AsynResponseManager to remember the sequence number and
the reference to the Future object. Since the tuple space is remote, TupleSpaceService
will ask the RemoteTupleSpaceServiceCacher for the corresponding remote tuple space
service adapter. After TupleSpaceService gets the remote adapter, it constructs a message
called TSAsynRemotelnRequest and sends it to the remote tuple space service via its
adapter. The TSAsynRemotelnRequest contains information such as the container name
and sequence number. Then it returns to the agent with an agent level Future object that
is not available to be used. The agent level Future object actually is a wrapper of the
kernel level Future object.

After the access request has been processed by the remote tuple space service, the
. response will be put into the queue of the AsynResponseManager. Since the response has
the sequence number, AsynResponseManager can assign the tuple retrieved from the
response to the Future object that has the same sequence number. At this time, the Future
object is available to the agent. In Figure 4-13a, there are two active objects: the agent

and the AsynResponseManager. Both run concurrently.
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Figure 4-13b shows the process in the remote container where the targeted tuple space is
located. As the AsynRequestManager takes the request from its own queue, it will get the
corresponding asynchronous execution strategy TSAsynRemotelnExecutor from
TSAsynRequestExectionGenerator. Then AsynRequestManager calls DefaultPool to
execute the strategy. It will not wait for the end of the execution. Instead it will proceed
to the next request. The DefaultPool schedules a worker thread from its pool and assigns
it the strategy. The worker thread does the actual execution. It first accesses
TupleSpaceHandler to retrieve a tuple, and the worker thread may block until there is a
matching tuple. After retrieving the matching tuple, the worker thread will construct a
response object, and send it back to the requester container. Afterwards, the work thread
will put itself back to the pool. In Figure 4-13b, there are also two active objects:

AsynRequestManager and WorkerThread.

4.2.3.4.2 Reactive Scenario

We will illustrate how a reaction event is notified. It assumes that the detection of an
event and execution of the corresponding reactive behavior happen in different containers.
The dash line splits the diagram into two parts as shown in Figure 4-14. The left part
shows the dynamic behaviors of notifying a remote agent the event in one container, and
the right part shows the dynamic behaviors of executing a reactive behavior in another
container.

The left part shows that when an agent writes a tuple, the ReactionManager will check
whether any agent has registered for it. If so, the ReactinoManager will create a
ReactionEvent object and perform a notification. Since the notified event has to be sent to
a remote container, the ReactinoManager first needs to get the corresponding tuple space

adapter. Then it sends the ReactionEvent object via the adapter through the reactionTo()
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method. In fact, the ReactionEvent is put into the queue of the HostReactionScheduler in
the remote container.

The right part shows the HostReactionScheduler retrieving the ReactionEvent from its
queue. It first needs to find the corresponding reactive behavior from the
AgentReactiveBehaviorsList of the registered agent. Then it constructs a
TSReactionExecutor with the reactive behavior and asks the DefaultPool to execute it.
There are three active objects: ReactionManager, HostReactionScheduler, and
WorkerThread. The HostReactionScheduler and WorkerThread are in the same container,

and the ReactionManager is in another container.

4.3 Integration with JADE Platform

Here we do not want to describe how to integrate the reactive tuple space with JADE
platform since it will involve too much detail. Instead, we list what should be done for
proper integration. When considering integration, we follow the principle of minimal
change to the JADE source code. The first change is to extend the interfaces of the JADE
Agent class so that an agent can access tuple spaces. The second is to handle agent
mobility so that when an agent migrates from one container to another container, reactive
behavior registration information can be updated by the reaction manager. Thus it can
keep location transparency for agent reactions. Finally, the initialization and termination

handling of JADE is modified in order that tuple space services can start and stop

properly.
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Chapter 5 Performance Test

5.1 Statement

In order to evaluate the performance of the tuple spaces, we compare it with that of JADE
ACL message passing as both are in the same platform and based on Java RML

Performance evaluation is conducted on information transfer latency, system bandwidth,
and comparison with simulation of dynamic coupling using ACL. As shown in Chapter 1,
the ability of the tuple space in supporting dynamic interaction is a key advantage of
tuple space. In simulating dynamic coupling, ACL is used to simulate a mailbox agent to
hold shared messages to be dynamically picked up by application agents. The objectives
of these tests are to show: (i) the tuple space is almost as good as ACL in message
latency, (ii) interaction bandwidth supported through tuple space(s) is compatible with

that through ACL, and (iii) dynamic coupling is better supported by tuple space.

5.2 Performance Test

ACL and tuple space test cases are tested on the JADE platform that spans four nodes
(computers). One of the nodes holds the main container M1, and each of the others holds
an agent container named CI, C2, and C3 separately. The experiments were conducted

when little other network activities exist.

5.2.1 Latency

5.2.1.1 Test Case

ACL Test Case A sender agent sends a message to a waiting receiver agent, and then
waits for an acknowledgement from the latter. There is only one round of message

exchange between the sender agent and the receiver agent. The reason that we choose

-94.-



only one round will be illustrated in Section 5.2.1.3. Latency is given by the difference
between the time of receipt of the acknowledgement and the time of sending the message.
Tuple Space Test Case A producer agent writes a synchronous tuple into a tuple space
for a waiting consumer agent, and then waits for an acknowledgement tuple from the
latter. Both agents use synchronous primitives. Latency is measured at the producer agent
as the difference between the time of receipt of the acknowledgement and the time of

inserting the synchronous tuple.

5.2.1.2 Test Result

Both cases are tested with different background agents as the test parameter. Since the
deployment of agents (and tuple space) affects the test results, we intend to keep the
deployment fair to both cases. The sender (producer) agent and receiver (consumer) agent
are in C/ and C2 respectively. The deployment of background agents is as follows. For
the case with 10 agents, two pairs are in CI and C2, one pair in CI and C3, one pair in C2
and M1, one pair in C3 and MI. Every pair has a sender (producer) and a receiver
(consumer). As we double the number of background agents, it follows the same
deployment strategy. In addition, for tuple space, the background agents also use
synchronous read (in) to retrieve a tuple, and the tuple space is located in the main

container M1. The test results are shown in Table 5-1 and Figure 5-1.

5.2.1.3 Analysis

In the case of ACL, the sender agent first needs to get the proxy of the container where
the receive agent is located from the main container, and then send the message through
the proxy. The same holds for the receiver agent in order to send back an
acknowledgement. Message latency goes up as the number of background agents

increases because messages are sent from one container to another container sequentially
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(since all the agents in a container share a same sending buffer). The buffer needs to be

synchronized.
Background | O agent | 10agents | 20agents | 40agents | 80agents
ACL (ms) 15.3 22.7 37.8 88.9 249.8
TS (ms) 15.5 24.3 41.2 96.1 232.1
Table 5-1 Latency
Latency
300
@ 250
8 20
g 150
£ 100
= 50
0
0 10 20 40 80
Background Agents

Figure 5-1 Latency

For the case of tuple space, agents from different containers can access a tuple space
concurrently. The stage of the sender agent getting the acknowledgement is partially
overlapped with the stage of the receiver agent writing the acknowledgement into the
tuple space. The tuple space also needs to be synchronized. However, when tuple space is
of small size, such synchronization does not take much time as the number of the
background agent goes up. In fact, the size never exceeds half the number of agents
because of the synchronous read in this test.

The test results involve a single round of message exchange. If message exchange runs
multiple rounds, it can be predicted that ACL will perform better than tuple space. It is
because that for ACL, after the fist time of message exchange, the rest will only needs
one remote call. For tuple space, it always needs two remote calls even if the two become
partially overlapped. However, if we change the location of the tuple space from the main
container M1 to an agent container such as CI, this will ensure a message will involve a

single remote call. In such a case, the performance of tuple space may become
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compatible with ACL again.

5.2.2 Bandwidth
5.2.2.1 Test Case

ACL Test Case In order to test bandwidth, every pair of sender and receiver agents use
distinguished messages, and perform 1000 transactions between themselves. During each
transaction, a sender agent sends a message to the corresponding receiver agent and waits
for an acknowledgement from the latter.

Tuple Space Test Case The test cases in tuple space are the same as the ACL

counterpart, especially the message size. Synchronous read (in) primitives are used.

Bandwidth is measured as follows. Total transaction time Ta measures the total elapsed
time of all 1000 transactions in every pair of agents. Average time of single transaction t
is equal to Ta divided by the total number of transaction. As there are many transactions
from different pairs going on concurrently, the measurement of time t cannot reflect this.
In fact, the value of t is smaller than the real one. Even though, it does not affect the

description of the problem significantly. The bandwidth B is equal to 1 second divides t.

5.2.2.2 Test Result

For ACL, a scenario of 10 agents involves the following distribution. Two pairs are in CI
and C2, one pair in CI and C3, one pair in C2 and M1 and one pair in C3 and M1. As we
double the number of agents, it follows the same deployment strategy.

The tests in tuple space involve two groups, (i) single tuple space, and (ii) dual tuple
space. The deployment of agents follows the same strategy as ACL. In the single tuple
space scenario, the tuple space is located in the main container MI. In the dual tuple
space scenario, tuple space A is located in M1 and tuple space B is located in C1. Agents

in container CI and C2 interact through tuple space B, and agents in CI and C3 also
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interact through tuple space B. Agents in container C2 and C3 interact through tuple
space A. It is to maintain a fair distribution of remote calls during message exchange.

Table 5-2 contains the collected data. Table 5-3 and Figure 5-2 show the bandwidth.

10agents | 20agents | 40agents | 80agents
ACL (ms) 13705 25469 53186 163209
Single-TS (ms) 16547 32187 68469 154094
2-TS (ms) 12203 24397 55796 125341
Table 5-2 Total Transaction Time
Calculate the bandwidth (number of transactions per second):
10agents | 20agents | 40agents | 80agents
ACL 365 392 376 245
Single-TS 302 311 292 260
2-TS 410 410 358 319

Table 5-3 Bandwidth

Bandwidth
w 07
= 400
g 300
=
200
2 100
s 0
10 20 40 80
Agent Number
Figure 5-2 Bandwidth
5.2.2.3 Analysis

For ACL, we already know that messages are sent from one container to another
container sequentially, and all the agents in a container share one sending buffer that
needs to be synchronized. Figure 5-2 shows that as the number of agent increases, the
number of messages in the sending buffer will also increase. This will lead to congestion
and reduce the bandwidth.

For single-TS, the tuple space is centralized. This reduces concurrency among accesses

from agents. Although the tuple space is segmented as we see from the design in order to
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reduce the granularity of synchronization, ACL still has better performance in general.

To compare the performance of ACL and dual tuple space, consider the case with 10
agents. The same deployment of agents is used in both cases. In ACL, when an agent
sends a message, the kernel needs to synchronize the sending buffer for putting or getting
a message, to switch the thread context from the agent to the message manager, and then
to send the message to the destination container through a remote call. The receiver agent
will receive the message from its own private queue. On the other hand, in the dual tuple
space case, there is no thread context switching since agents use synchronous primitives.
In addition, the agents in different container can access a tuple space concurrently. The
stage of writing a tuple and the stage of retrieving the tuple become partially overlapped.
There are three pairs of agents that communicate through tuple space B. Thus tuple space
B affects the test result significantly. The tuple spaces need synchronization as well.
Besides this, the size of the tuple space is a very important factor. If it is very big, the
process of searching for a tuple may take a long time. Fortunately, the size in this test
case is small. Therefore, we could see that the dual tuple space performs as well as ACL,
and even better in bandwidth. However, it can be expected that if we increase the number
of nodes (computers) and agents in the dual tuple space case, its performance will slow
down no matter how we deploy the two tuple spaces since there are only two points over

the network to assist the message exchanges.

5.2.3 Dynamic Coupling

5.2.3.1 Test Case

ACL Test Case In order to simulate dynamic coupling, we design an agent that acts as
a mailbox. A sender agent sends a shared message to the mailbox. A receiver agent sends

a request message to the mailbox asking for a suitable message. Afterwards, it will send

an acknowledgement to the sender agent. The latency is measured as in the earlier cases.
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We only collected the data based on one round of message exchange for the same reason
as that of Section 5.2.1.

Tuple Space Test Case  The producer agent writes an asynchronous tuple in a tuple
space for dynamic sharing. The consumer agent reads the asynchronous tuple from the

tuple space, and then sends an acknowledgement through the tuple space. Latency is

measured as in the earlier cases.

5.2.3.2 Test Result

Both cases are tested with different background agents as the test parameters. The sender
(producer) agent and receiver (consumer) agent are in container CI and C2. The
background agents and their deployments are the same as those in Section 5.2.1. In order
to measure the cost, the sender (producer) agent, receiver (consumer) agent, and mailbox
agent are controlled to start up simultaneously. The tuple space and the mailbox agent are

in the main container M1. Test results are shown in Table 5-4 and Figure 5-3.

Background | Oagent | 10agents | 20agnets | 40agents | 80agents
ACL (ms) 354 54.7 88.7 243.3 685.2
TS (ms) 16.0 45.6 76.5 164.7 341.9
Table 5-4 Dynamic Coupling Latency
Dynamical Coupling
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Figure 5-3 Dynamic Coupling Latency
5.2.3.3 Analysis

The runtime process of the ACL test case is as follows. The sender agent sends a message
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to the mailbox agent for sharing, and the receiver agent sends a request to the mailbox.
The mailbox then checks for the message and sends it to the receiver agent. Then the
receiver agent sends an acknowledgement to the sender agent. However, the stage of the
sender agent sending a message to the mailbox agent is overlapped with the stage of the
receiver agent sending a request to the mailbox agent. Therefore, it can be understood
that the process has three stages. In addition, we already know the exchange of message
from one container to another container is sequential, and the sending buffer needs to be
synchronized.

For tuple space, the process is as follows. A producer agent writes a tuple into tuple space
and the consumer agent retrieves the tuple. Then the consumer agent writes an
acknowledgement tuple which will be eventually picked up by the corresponding
producer agent. Concurrency among these accesses exists. Therefore the whole process
actually involves only two stages. As long as the tuple space size is small, dynamic

couplings among multiple pairs of agents do not incur significant influence on each other.
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Chapter 6 Conclusion

6.1 Conclusion

Software agent is an interesting paradigm in building distributed system. This thesis
focuses on building an efficient reactive tuple space coordination media, which is
integrated with the JADE platform. Thus an agent can choose to have an interaction
through either message passing or tuple space. The existence of the reactive tuple space is
not intended to replace the message passing. However, it means to provide another choice
to facilitate the development of the multi-agent software systems.

During the requirement analysis phase, we have reviewed other related tuple spaces and
propose the reactive tuple space model. To an agent programmer, the reactive tuple space
provides synchronous and asynchronous primitives to implement proactive behaviors,
and reactive primitives to implement reactive behaviors. A formal description of the
reactive tuple space is presented using the state machine model.

In order to make the reactive tuple space efficient, a replication protocol is also provided
to maintain copies of selected tuples at some nodes. In this protocol, it hides the access
latency by making the process of invalidation work at background. Using the view model,
the correctness of the protocol is also proved.

Efficiency is a top priority as we design and implement the reactive tuple space. For
instance, the distribution of multiple tuple spaces over the network enables different
agent groups to execute concurrently. A tuple space is segmented in order to reduce the
granularity of synchronization. The invocation of a reactive behavior is triggered at the
node where the agent is located. A tuple space server is only responsible for reactive
event detection so as to reduce the server side workload. Compared with message passing

in JADE, the experiments conducted show that tuple space can provide competitive
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performance in terms of interaction latency and bandwidth when tuple space is of

reasonable size. This is especially true in dynamic coupling.

6.2 Lessons Learned and Future Work

However, additional efforts can be made to improve the system efficiency. The property
of a tuple space requires that the multiple accesses have to be synchronized. It means that
multiple accesses have to be serialized. Although we have segmented a tuple space, this
seems to be inadequate. In fact, a tuple space can be partitioned into several nodes over
the network to promote concurrency. In addition, a proper partition policy can also help
to achieve the access locality.

In the current implementation, an asynchronous tuple access will consume a system
thread. So does the execution of a reactive behavior (a remote synchronous tuple access
will also consume a thread, but it is done in the Java RMI layer). The advantage of such a
solution is that it promotes concurrency. However, if a multi-agent system involves a lot
of asynchronous tuple accesses and reactive behaviors invocations, it can reach the thread
saturation point of a Java virtual machine. We recognize that the system resource is an
important factor that affects application performance. If kernel can monitor the
consumption of system resources, a system thread then can be assigned several tasks
dynamically before the system reaches saturation. A task here represents an asynchronous
access or the execution of a reactive behavior. This will help to avoid system
performance from dropping precipitously.

Especially in case of the single processor system, we may have another choice to handle
the tuple accesses at the server site. For one tuple space, we only have one thread be
responsible for scheduling and executing all its access requests (no matter synchronous or
asynchronous) at server site. The thread functions similarly as the AsynRequestManager,

but it does not generate any other thread. The execution of a request can never be blocked.
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A request will be rescheduled if it cannot find the matching tuple. Therefore, it eliminates
the overheads of context switching and thread synchronization since only one thread
accesses a tuple space. On the contrary, the multi-thread strategy (one thread per request)
in current implementation requires the Java virtual machine to schedule different threads
and synchronize these concurrent accesses. In addition, the single thread strategy also
reduces the resource consumption significantly and avoids much competition with the
agents.

Another effort is to find an efficient way to tune the performance [Ji98]. For instance, the
current performance test analysis is by way of reasoning through the source code.
Although java Profiler tool is used, it cannot measure system internal states. However,
we may want to measure the runtime internal states so as to give a more accurate
explanation and thus easier to improve the performance. These states may include, for
example, the number of threads in the ‘ready’ queue, and how long a thread has been

waiting for a condition. It also reflects design for testability.
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