Formal Analysis of Fault Tolerant Real Time
Multiprocessor Allocation and Scheduling
Protocols

Nikhil Kumar Varma

A Thesis
in
The Department
of
Electrical and Computer Engineering
Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at

Concordia University,
Montreal, Quebec, Canada

July 2004

(©Nikhil Kumar Varma, 2004

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94714-9
Our file Notre référence
ISBN: 0-612-94714-9

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

[b |

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Formal Analysis of Fault Tolerant Real Time Multiprocessor
Allocation and Scheduling Protocols

Nikhil Kumar Varma

Dependable real-time distributed systems rely on allocation and scheduling protocols
to satisfy stringent resource and timing constraints. As these protocols have both depend-
ability and real-time attributes, verification of such composite services warrants a rigorous
and formal levels of assurance for their correctness.

The wide acceptance of formal techniques in the design and development of dependable
real-time systems is limited because, most of these formal theories for real-time scheduling
have been developed without much regard for their further reuse. This makes the formal
specifications and their proof constructs in general difficult to reuse, and to verify or analyze
similar or related protocols.

To expand the utility of formal techniques, this thesis explores the possibility of ef-
fectively defining and then reusing formal theories in order to simplify verification and
analysis for a wide spectrum of dependable real-time protocols.

We present a modular formal analysis of a fault-tolerant version of a real-time task al-
location and scheduling policies. The main aim is to develop a library of formal theories
for the identified modules for real-time and dependable services which could be systemat-
ically, and if required, repeatedly used to develop different and new composite dependable
multiprocessor real-time allocation and scheduling protocols.

We demonstrate a rigorous and tool-assisted formal analysis of three multiprocessor

real time fault tolerant allocation and scheduling protocols for both periodic and aperiodic

task models using the concept of reuasability of previously defined theories. We show the
reduced effort in the analysis and verification process by reusing the previously formalized
theories. Formal analyses of these protocols have been performed using a mechanized

theorem proving environment, called PVS from SRI labs.

i1

Acknowledgements

I would like to thank my advisor Dr. Purnendu Sinha for giving me the oppurtunity to work
under his supervision and for every single moment he spent with me.

This thesis takes the present shape because of his guidance at every step. He introduced
me to the basics of fault tolerant real time computing and real time scheduling. He has
spent a great deal of effort and time to get me introduced to the art of research. I have been
supported by him as a friend, philosopher and guide during the course of this research. He
has been my idol and I would like to follow his vision and thoughts throughout my life.

I would also like to extend my sincere gratitude to the members from Stanford Research
Institute(SRI) labs. They have helped me with technical details in working with the PVS

tool.

Nikhil Kumar Varma, July 2004

iii

I dedicate this work to my dear Ma,Papa, my loving Phua, and someone who has recently

made inroads to my life and heart.

v

Contents

1 Introduction 1
1.1 AnOverview of Real Time Systems 2

1.2 Multiprocessor Systems in Real Time Environment 4
1.2.1 Scheduling in Multiprocessor Systems 5

1.2.1.1 Allocation and Scheduling Polictes 5

1.3 Need for providing Fault Tolerance in Real Time
Systems e e e e e e 6

1.3.1 Dependability in Multiprocessor Systems from Real Time

Perspectiveso e e e e e e e 9

1.4 An Overview of Uniprocessor Scheduling 10
1.4.1 Rate Monotonic Scheduling 10
1.4.1.1 Assumptions of Rate Monotonic Analysis 11

1.5 An Overview of Multiprocessor Scheduling And
Allocation e 12
1.5.1 Extensions to Uniprocessor Scheduling Algorithms for
Mﬁltiprocessor Environment 12

1.5.2 Real Time Task Allocation Strategies 14

1.6 Formal Approaches for Specification and Verification

of Scheduling Protocols 16
1.7 RelatedWork L 17
1.7.1 Formal Techniques in Analysis of Real Time Protocols 17

1.7.1.1 Formal Analysis of Fixed Priority Real Time Systems . . 17
1.7.1.2 Formal Analysis of Dynamic Priority Real Time System 19
1.8 Observations and Contributions 19

1.9 OutlineoftheThesis i e e i s 22

Proposed Modular Approach for Analyzing Fault Tolerant Real Time Proto-
cols 23
2.1 Components of Dependable Real Time Protocols 24
2.1.1 Basic Building Blocks of Dependable Real Time Scheduling
Protocols 25

2.2 Steps for Verification and Analysis of Dependable Real Time Scheduling

Protocols 28

2.2.1 Formal Specification of the Building Blocks 28

2.2.2 Protocol Verification and Analysis 28

2.3 Dependable Real Time Scheduling Protocols 29
2.3.1 Dependable Periodic Task Allocation and Scheduling 29
2.3.1.1 FTRMFF Protocol 29

23.12 FTRMNFProtocol 30

2.3.2 Dependable Aperiodic Task Scheduling protocol 30

2.4 Building Blocks of FTRMFF Protocol 31
2.4.1 Rate Monotonic Component 31

vi

2.4.2 Rate Monotonic First Fit Component 33
243 Primary Backup Component 34
2.5 Building Blocks of FTRMNF and Real Time

Aperiodic Task Scheduling and Allocation Protocol 35
2.6 Prototype Verification System : An Introduction 36
2.6.1 Specification and Verification in PVS : AnExample. 37

Formal Analysis of Dependable Periodic Task Scheduling and Allocation Pro-
tocol 38

3.1 Formalization of the Components of FTRMFF

Protocol e 39

3.1.1 Formalizationof TaskModel 39
3.1.1.1 CompletionTime Test 42

3.1.2 Formalization of Rate Monotonic Component 43

3.1.3 Formalization of Rate Monotonic First Fit Component 45

3.1.4 Formalization of Primary Backup component 46

3.2 Putting Components Together to Formalize FTRMFF 49
3.2.1 Verification and Analysis of FTRMFF Protocol 49
3.2.1.1 Formalization of Schedulability Criteria 50

3.2.1.2 Verification of the FTRMFF specification. 55

3.2.1.3 Verification of FTRMFF: Results 57

3.3 Specification and Verification of FTRMNF protocol 58
3.3.1 Formalization of the components of FTRMNF 58
3.3.1.1 Rate Monotonic Next Fit Component 59

3.4 Putting Components Together to Formalize FTRMNF 60

vii

3.4.1 Verification and Analysis of FTRMNF protocol 61

34.1.1 Formalization of Schedulability Criteria 61
3.4.1.2 Verification of the FTRMNF specification 66
3.4.1.3 Verification of FTRMNF: Results 68

4 Formal Analysis of Dependable Aperiodic Task Scheduling and Allocation
Protocol 70
4.1 Dependable Aperiodic Task Scheduling and
Allocation Protocol L 71
4.1.1 Building Blocks of the Aperiodic Task Scheduling and
Allocation Protocol L. 71

4.2 Formalization of the Components of the Dependable

Aperiodic Task Scheduling and Allocation Protocol 73
4.2.1 Formalizationof TaskModel 73
4.2.2 Formalization of PrimaryBackup 76

4.3 Putting Components Together to Formalize the
Dependable Aperiodic Task Scheduling and
Allocation Protocol L 78
43.1 TaskAllocation 78
4.3.2 Verification of the Dependable Aperiodic Task Scheduling and Al-
location Protocol, 83
4.3.2.1 Verification of Dependable Aperiodic Task Allocation
and Scheduling Protocol: Results 83

5 Discussions and Conclusions 85

viii

5.1 ProposedMethodology 86

52 Benefitsand Applications L. 87

5.3 Limitations and Improvements 87

54 Future Research Directions 88

A Appendix I 89
A.l1 ProofStepsof FTRMFF 89
A1l TheoremTestDbl 89

ix

List of Figures

Chapter 1

Introduction

In this chapter, we begin with defining real time systems, their characteristics and role in
safety/time critical systems. Nowadays, there is a growing trend of use of multiprocess-
ing computing platform for real time applications. In this context, the chapter highlights
multiprocessor systems in real time environment. It is evident that real time should adhere
to fault tolerant criteria as well. The discussion moves by highlighting dependability in
multiprocessor systems from real time perspective. Analyzing these dependable real time
protocols is quite challenging, and formal methods in recent years have played a pivotal role
in such analysis. We briefly discuss an application of formal techniques for such system
analysis and describe related work in that context. The chapter concludes with highlighting

observations and contributions made in this thesis.

1.1 An Overview of Real Time Systems

Real time systems are those systems in which correctness of the system depends not only
on the logical results of computation but also on the time at which the results are pro-
duced [Stan1988].

Real time is a level of computer responsiveness that a user senses as sufficiently im-
mediate or that enables the computer to keep up with some external process. A real-time
system consists of a controlling system and a controlled system or plant. The plant is
the external environment with which the computer interacts. The controlling system or
the computer interacts with the plant using information provided by various sensors. It is
important that the information provided by the sensors reflects the actual state of the en-
vironment. Hence periodic monitoring of the environment and timely processing of the
inputs from the sensors is critical.

A job is defined as a unit of work. Examples of job include control-law computation
and fast fourier transform. A fask is defined as a set of related jobs that provide some
system function. Examples of a task include data access and data writing in a floppy disk.
However, both these definitions are used interchangeably in this thesis.

Every input from the sensors are translated into jobs to be processed by the control-
ling systems. These jobs or tasks can be periodic, aperiodic or sporadic in nature. A
periodic task is one that is activated every T time units. An aperiodic task is activated at
unpredictable times. A sporadic task is an aperiodic task with an additional constraint that
there is a minimum interarrival time between task activations and it typically carries a hard
deadline.

Depending on the severity of the consequences that may occur if an imposed timing

constraint is not met, real-time applications can be classified as being hard or soft. In a

hard real-time system, a task’s failure to meet an imposed timing constraint is considered
to be a fatal fault. A hard deadline is imposed on a job because the result produced by the
job after the deadline can have disastrous consequences. An example of hard real-time is
an air Supplemental Restraint System (SRS) for a car. However, late completion of a job
in a soft real-time system is not desirable, but a few misses does not cause serious harm.
The deadline misses in a soft real-time system would however degrade the performance of
the system. An example of soft real-time is ATM machine. Slow processing of a request is
annoying, but the result is still correct.

Depending on the consequences of a task failing to meet its timing constraints it can be
classified as being either critical or noncritical. Critical tasks should have timely executions
and most of them have hard real-time transactions. Example of critical task can be the
interrupt handler, in a real time operating system. Non-critical tasks are usually soft real-
time tasks. However to increase system performance these tasks should minimize miss
ratio and minimize response time. A task that runs a virus scan in the background can be a
noncritical task.

If a work overload occurs such that not all tasks can meet their deadlines, the system
scheduler shall shed workload by not executing non-critical tasks so as to minimize the
average tardiness of critical tasks. One of the approaches to handle such a situation, where
critical tasks can also be guaranteed would be to introduce a multiprocessor computing

platform so that such work overload can easily be accomodated.

1.2 Multiprocessor Systems in Real Time Environment

An old saying, "Many hands make the work light ", describes the motivation that leads to
the development of multiple-processor systems. At any given time, there is a limitation
on the computational capacity with which a single processor can handle a particular task
request. That means, a system’s workload cannot be handled satisfactorily by a single
processot, one solution is to apply multiple processors to the problem.

Multiprocessing Systems is a collection of autonomous computing units interconnected
through a communication network or shared memory. The information processing is done
through this network or the shared memory.

Today’s mission-critical systems make extensive use of multiprocessor computing to
share information over large, heterogeneous networks. These mission-critical multipro-
cessor systems have a real-time infrastructure software systems and high performance net-
works, which pass information reliably in real-time between many information sources and
applications running on different computers.

The present day automobiles use multiprocessor systems to achieve a greater degree of
performance and reliability. The latest PAM-CRASH distributed memory version is now
extensively being used by BMW and its suppliers, and has reached production level for
crash and safety models. PAM-CRASH reduces elapsed time by a factor of 8 for these
models, and provides excellent speed-up for baseline models. As a BMW?’s requisite,
PAM-CRASH distributed memory version offers all PAM-CRASH and PAM-SAFE solution
features with additional flexibility by allocating job in a customized manner in various
combinations for 16 processors: for example 1 task runs on 16 processors or 4 tasks run on

4 processors.

1.2.1 Scheduling in Multiprocessor Systems

The standard approach to guarantee a correct runtime behavior for a real-time computing
system is to generate a task schedule which maps the application domain to the hardware
resource and time domain. The major problem in multiprocessor scheduling is to schedule
sufficient amounts of hardware resources, such as processors memory and communication

links, to each task in such a manner that the constraints imposed on the system will be

fulfilled.

1.2.1.1 Allocation and Scheduling Policies

The process of finding hardware resources for the application tasks is referred to as rask
assignment. Task allocation provides suitable resources for the task using strategies based
on requirements on load balancing or utilization. The process of finding time resources for
the tasks given a set of hardware resources is called task scheduling. The combined process
of task assignment and scheduling is referred to as task allocation.

Given a scheduling problem, the scheduling algorithm performs a schedulability analy-
sis phase and a runtime configuration phase. For some scheduling techniques, these phases
are completely independent while in other cases they are inter-twined and thus function as
one single phase. In the schedulability analysis phase, the temporal correctness of the ap-
plication is verified using abstract models of the architecture and the runtime dispatcher. If
the outcome of the analysis shows that the application workload cannot be scheduled under
the given conditions, then changes must be made in the chosen application, architecture,
runtime dispatcher, and/or real-time scheduler.

In the runtime configuration phase, static information is generated for each task in the

system for later use by the runtime dispatcher. The information is derived using abstract

models of the architecture and the runtime dispatcher. The amount of information generated
in the runtime configuration phase depends on the dispatcher strategy being used. For a
time-driven dispatcher, the configuration phase generates a table with explicit start and
stop times for a certain number of invocations of each task. For fixed priority dispatching,
the configuration phase generates a static priority for each task. In a dynamic priority
dispatcher, generation of extra information is not required, since priorities are calculated at
runtime.

The present day safety/critical systems are mostly real time systems. The operational
behavior of such tasks in the presence of failure are very much warranted. We next discuss

fault tolerance issues in real time environment.

1.3 Need for providing Fault Tolerance in Real Time
Systems

These days more and more people depend daily on services provided by computer systems.
These computers control the commonly used or pervasive systems such as automobiles,
elevators, aircraft, banking systems, power plants, and so on. Should these computers fail,
the consequences could be disastrous, such as severe economic losses or even the loss of
human lives. Since design faults cannot be totally eradicated from such control systems,
they will have to be tolerated during operation without a compromise to a great extent on
the service.

Fault tolerance is the ability of a system to tolerate faults and continue to execute within
the required specifications of times and function. A fault tolerant system is one which con-

tinues to perform correctly in the presence of hardware or software faults. Fault tolerance

is carried out mainly by error processing and by fault treatment [Ande1982].

Reliability is a measure of the success with which the system conforms to some author-
itative specification of its behavior [Aviz2000]. When the behavior of a system deviates
from that which is specifed for it, this is called a failure [Aviz2000]. In general, less fre-
quent the failures, more reliable is the system. An unexpected internal problem which
eventually manifests itself in external behavior as a failure is called an error [Aviz2000].
Fault is defined as the mechanical or algorithmic cause of an error. A faulty component
may result in error under certain circumstances during the lifetime of the system. Thus, in
a system a fault causes an error, which in turn may lead to a failure. Since external behavior
of a component is the internal behavior of the system, a fault at the system-level is caused
by a failure at the component-level.

Error processing aims at removing errors from the state of the system, and fault treat-
ment aims at preventing faults from being activated again. In order to be able to undertake
error processing, the system must have detected the error and assessed the damage done by

it. Error processing can be done in the following phases [Ande1982, Lee1990, Rand1978]:

1. Error detection : In order to tolerate a fault, the primary objective is to detect that an
error has occured. In this phase, by means of certain consistency checks it is inferrred

whether a fault has occured or not.

2. Damage assessment : This phase is cruicial because it would ascertain the extent of

the fault that has occured and would also provide pointers to the next phase.

3. State Restoration : In this phase the system is recovered to consistent state so that

it can continue executing.

4. Fault treatment (diagnosis and passivation) : This phase would infer the cause of

the fault and isolate the faulty components from future execution.

It follows from the very nature of most real-time applications that there is a stringent
requirement for high reliability. The combination of temporal requirements, limited re-
sources, concurrent environmental entities and high reliability requirements, presents the
real time system engineer with unique problems. To give high levels of reliability, fault-

tolerance is required. Some of the common fault tolerance techniques are:

1. N-version Software : In an N-version software system, each module is made with
up to N different implementations. Each variant accomplishes the same task, but
in a different way. Each version then submits its answer to voter or decider which
determines the correct answer, and returns that as the result of the module. This
system can overcome the design faults present in most software by relying upon the

design diversity concept.

2. Task Rollback by Checkpointing: A software bug in one task leading to processor
reboot may not be acceptable. A better option in such cases is to isolate the erroneous
task and handle the failure at the task level. The task in turn may decide to rollback

i.e. start operation from a known or previously saved state.

3. Slack and Re-execution: The scheme is based on reserving sufficient slack in a
schedule such that a task can be re-executed before its deadline without compromis-
ing guarantees given to other tasks. Only enough slack is reserved in the schedule to

guarantee fault tolerance if at most one fault occurs within a time interval.

4. Primary Backup: In this model one server acts as the primary with replicas acting as
backups. The clients send requests only to the primary server. Whenever the primary

server fails, one of the backups becomes primary to provide the fault tolerance.

1.3.1 Dependability in Multiprocessor Systems from Real Time

Perspectives

Multiprocessor systems provides an improved reliability and availability. The replication
of data provides a higher availability. If a site or a communication link fails so that one or
more sites are inaccessible, it may still possible to access data through replication. More-
over higher reliability is reached because the system is still operable inspite of system
crashes or link failures.

In multiprocessor systems, each dependable service which is critical from the real time
perspective, is decentralized and performed by different nodes. The results of the different
nodes is then directed to a voter which ensures that a minority of faulty nodes is not able
to affect the dependability properties of the service. Faulty nodes are expelled from the
service and replaced by correctly behaving nodes.

Scheduling comprises of generating a sequence of tasks so as to provide them adequete
hardware resource to complete within the allowable time or deadline. We next discuss the

scheduling policies in uniprocessor systems.

1.4 An Overview of Uniprocessor Scheduling

In this section, we will discuss the Rate Monotonic Algorithm (RMA), used for scheduling
independent periodic tasks on a single processor. A computerized real-time system is re-
quired to complete its work on a timely basis. The aim of real-time scheduling is to build-up
a sequence of jobs that meets hard timing constraints at run-time. The main characteristic

of real-time systems is the behavioral predictability.

1.4.1 Rate Monotonic Scheduling

Rate monotonic analysis was developed for scheduling periodic tasks alone [Liul973]. A
periodic task is defined as a task with a periodic arrival time and a hard relative deadline
being immediately preceding the next periodic request of the task.

The fundamental percept of rate monotonic analysis is the assignment of priorities to
tasks according to the period with which they occur. The priorities assigned are inversely
proportional to the period. Liu and Layland have shown that this scheduling protocol is
optimal in the sense that if a task set is schedulable (that is, it is possible to schedule the
task set in such a way that all deadlines will be met), then it is also schedulable by the rate
monotonic protocol . |

Liu and Layland provided the following theorem to test whether or not a task set is
schedulable. It should be noted that the bound provided by this theorem is a sufficient

condition, hence a task set that fails to meet is bound may still be schedulable.

10

Theorem 1: [Liul973] A set of n independent, preemptable periodic tasks, with relative

deadlines equal to their respective periods, can be feasibly scheduled if

io,;/Ti <n(2/»-1)

=1

where C; is the execution time required for task i and 7; is the period of task i.

14.1.1 Assumptions of Rate Monotonic Analysis

In order to make the schedulability analysis possible, the following assumptions have been

made concerning the task set [Liu1973]:

1. The requests for all tasks for which hard deadlines exist are periodic, with constant

interval between requests.

2. Deadlines consist of run-ability constraints only — i.e., each task must be completed

before the next request for it occurs.

3. The tasks are independent in that requests for a certain task do not depend on the

initiation or the completion of requests for other tasks.

4. Run-time for each task is a constant for that task and does not vary with time. Run-
time here refers to the time which is taken by a processor to execute the task without

interruption.

As we mentioned that our interest in this thesis is in multiprocessor environment, we next

present the scheduling in multiprocessor environment.

11

1.5 An Overview of Multiprocessor Scheduling And
Allocation

In multiprocessor environment there are several processors available upon which jobs may
execute. In such systems, CPU scheduling is part of a broader class of resource allocation
problems. The scheduling problem for multiprocessor systems is generally directed to re-
source allocation for the task to achieve optimality. The most common goal of scheduling
is to minimize the expected run time of a task set. Examples of other scheduling criteria
include minimizing the cost, minimizing communication delay, and giving priority to cer-
tain users processes or needs for specialized hardware devices. The scheduling policy for
a multiprocessor system usually involves several of these criteria.

Task assignment is a crucial aspect in multiprocessor scheduling. There are various
techniques based on execution time requirements and communication cost requirements.
The most common formulations are bin-packing mechanism. The simplest bin packing
formulation of task assignment policies assigns tasks to processors according to a unipro-
cessor scheduling algorithm. There are many other heuristics developed to optimise such

allocations.

1.5.1 Extensions to Uniprocessor Scheduling Algorithms for

Multiprocessor Environment

The scheduling techniques for uniprocessor systems have to be extended in the multiproces-
sor environment. This extensions are required because the uniprocessor scheduling tech-
niques do not address issues like task allocations.

An optimal scheduling algorithm on a uniprocessor often is not an optimal algorithm

12

on a multiprocessor. For example, EDF has been shown to be an optimal algorithm, under
certain conditions in [Dert1974] for a uniprocessor system. However, in multiprocessor
environment, EDF is not the optimal. [Mok1983, Dert1989] have shown that no online
scheduling algorithm is optimal on multiprocessor environment, regardless of precedence
and mutual exclusion constraints.

The work presented by Funk and Goossens in [Funk2002] discusses the changes that
are required in the existing EDF algorithm. They propose a scheduling mechanism based
on the notion of processor speed, because in multiprocessing environment the processors
may have varying speeds. The notion of processor speed is introducted and new schedules
are generated based on that. The work aims search for optimal methods to resolve deadline
ties using EDF, i.e., to define EDF tiebreakers. The work concludes with the assertion that
no optimal on-line and job-level fixed-priority tiebreaker exists for EDF.

The work presented in [Baru2003] presents a mechanism of using the rate mono-
tonic algorithm for multiprocessing systems. The paper generalizes the model proposed
in [Ande2001], in which a utilization bound was derived for successfully scheduling tasks
using the Rate Monotonic Algorithm on identical multiprocessing platform. The work
however does not modify the traditional Rate Monotonic algorithm, but proposes a bound
value calculation by which it can be determined whether a task set can be scheduled rate
monotonically in the multiprocessor architecture.

These scheduling models involve more complexity, when sporadic tasks are to be sched-
uled. This is because sporadic tasks are invoked at random order with a minimum inter
arrival time making the problem far more complex. The work presented in [Ghos1997b]
discusses the scheduling of sporadic tasks by utilizing the concept of overloading.

Analyzing and establishing the correctness of composite dependable and real-time pro-

13

tocols 1s a problem of growing complexity, and their verification for safety concerns war-
rants rigorous and strong guarantees of correctness. Formal methods have been used exten-
sively for this purpose. We next present the role of formal approaches in the specification

and verfication of scheduling protocols.

1.5.2 Real Time Task Allocation Strategies

In every static multiprocessor system, the tasks are assigned and bound to a single pro-
cessor. This process is called Task Allocation. Generally the task allocation process is
done prior to the task execution. Task allocation process takes into consideration various
constraints like processing time requirements of the task and communication costs. In this
thesis we take into consideration only the processing time requirements of the task since,
we have tasks communicating only via shared memory where the communication overhead
is minimal.

The most common task allocation problem is to assign tasks to the available processors
such that they are schedulable using a uniprocessor scheduling algorithm. This problem
requires simple and good heuristic algorithms to be solved. The most common heuristic al-
gorithm is the First Fit (FF) Algorithm. Considering a task set of T4, T5...T,,, and processor

set as Py, P,...P,, the task allocation is done as follows:
o Tasks are assigned on in turn in an arbitrary manner. The first task is assigned to P;.

e After i-1 tasks have been allocated processors P, P...P;_1, the task T; is allocated

processor Py, only if the task 7; cannot be allocated in processors P;, Ps...Py;_1.

The First Fit Decreasing algorithm works on the same principle as FF with the tasks

arranged in decreasing order of their respective processor utilizations. All these allocation

14

schemas consider the value [n2 as the schedulability criterion or the maximum utilization
on each processor. However the scheduling criterion value can be raised by using the rate
monotonic utilization (Ugas(n) = n(2'/ — 1)). This enables more tasks to be allocated on
each processor.

The Rate Monotonic First Fit (RMFF) works on this principle where the tasks are ar-
ranged rate monotonically and then allocated to processors. The allocation schema works
in the similar manner as the FF scheduling algorithm with the only difference being in
utilizing the value of Ugys to determine the task schedulability on a processor rather than
In2.

The Rate Monotonic Next Fit (RMNF) is another heuristic algorithm to allocate tasks
in a multiprocessor environment. Considering a task set of T3, 75...T,, and processor set as

Py, P,...P,, the task allocation is done as follows:
o The tasks are arranged rate monotonically, that is in increasing order of their periods.

e Tasks are assigned in turn the order of their arrangement. The first task is assigned

to Pl.

o After i-1 tasks have been allocated processors Py, Py... P4, the task T; is allocated

processor Py only if the task T; cannot be allocated in processor Py_;.

The RMFF and RMNF allocation algorithms have been used in the protocols discussed

as case studies in this thesis.

15

1.6 Formal Approaches for Specification and Verification
of Scheduling Protocols

The correctness of real time scheduling mechanism can be demonstrated using rigorous
mathematics. However, the proofs of scheduling algorithms developed are generally more
intuitive, than having rigorous arguments resulting in incomplete or flawed proofs for the
scheduling mechanisms. Formal methods provide extensive support for establishing the
correctness of protocol operation by exploring system states over the formal verification
process.

The scheduling model proposed in [Liu1973] are more intuitive than being reasonably
proven. The risk of incompleteness and flawed proofs is further aggravated on moving to
complex models. Real time systems are generally complex and critical in nature, and not
following rigorous methods in verifying them would lead to catastrophic consequences.

A method of demonstrating fault tolerance by a scheduling mechanism is presented
in [Ghos1997a). A mechanism is proposed to tolerate faults by re-execution of the faulty
tasks. However not proving the scheduling mechanism rigorously resulted in having a flaw
in the scheme, resulting in a new scheduling scheme in [Ghos1998].

The need for formal methods has been advocated in [Sinh1999]. This work highlights
the risks invovled in hand analysis and demonstrates the use of traceable formulations
which help in identifying specification level inconsistencies and design level errors. The
design level errors in [Ghos1997a], serves as motivation for the use of such formulations
as emphasized in this paper.

There has been a limited use of formal techniques in verification of dependable real-

time systems, because of the rigourness involved in using them and there is no regard to

16

reusability of the previously defined theories. We propose to reuse the predefined formal

contructs using a modular approach. In this regard, we follow the modular approach.

1.7 Related Work

There has been a considerable effort in the development of modularization in the verifica-
tion and validation of real time and fault tolerant scheduling protocols. The modularization
basically aims at combining components to build up the protocol.

We list the related work in the formal analysis of Real Time and Fault tolerant protocols

in the following section.

1.7.1 Formal Techniques in Analysis of Real Time Protocols
1.7.1.1 Formal Analysis of Fixed Priority Real Time Systems

Scheduling theories for fixed priority scheduling have sufficiently matured to enable con-
struction of hard real time systems. Preemptive priority based scheduling prescribes a
run-time environment in which tasks are allocated a priority and are dispatched using this
attribute. Processes are either in runnable state, in which case they are held in the run
queue; delayed, in which case they are placed in the delay queue; or suspended, in which
case they are awaiting for an event which may be triggered externally or internally to be
executed again.

The work presented in [Kett11995] develops a formal scheduling model for different
PC and workstation architecture using a fixed priority model. The methodology proposes
a library of scheduling model templates of unique bus structures. This enables designers to

select the model template by identifying the structural properties, whenever a new bus is

17

identified.

In [Yama2003], real-time software is formally specified using a hybrid automata, and
then a verification methodology is proposed, for its schedulability using both deductive
refinement theory and scheduling theory. Using the proposed methods, real-time software
is uniformally and easily specified. The schedulability can be verified at its design stage.

The periodic tasks are modeled by a hybrid automata. A periodic task can be specified
if the period, execution time and deadline is determined. The next step is modeling of the
preemptive scheduler which allocates resource to the periodic tasks. These specifications
of the real time system as a hybrid automaton are transformed into phase transition system,
and the refinement is verified over phase transition systems [Yama2002].

The other existing formalizations of fixed priority real time systems are in [Alur1996,
Vest2000, Brab1999, Alti2002, Liu1999]. In [Alur1996] the preemptive scheduler is spec-
ified as a hybrid automata and the safety and liveness property is verified using model
checking. The work presented in [Vest2000] proposes a framework using a restricted hy-
brid automata. This schedulability verification is demonstrated by verifying the reachability
problem of a preemptively scheduled task. In [Brab1999] schedulability of a preemptive
scheduler is verified by the means of a timed automata. The time is modeled as the maxi-
mum and minimum distance between two events in this model. In [Alti2002] a timed au-
tomata with priorities based model is proposed. The scheduling policies are also specified
according to the priority policies in the work. The work presented in [Liul999] proposes
to specify and verify real-time software and schedulers by deductive verification based on
Temporal Logic Analyser (TLA).

In [Dute2000] a complete specification and analysis of the priority ceiling protocol is

presented. The formalization demonstrates that a detailed specification enables a thorough

18

verification of all scheduling mechanisms in the priority ceiling protocol. All the speci-
fications and proofs are done using the PVS specification and verification system. This

provides high assurance of correctness and ensures a complete and rigorous analysis.

1.7.1.2 Formal Analysis of Dynamic Priority Real Time System

The work in [Yuhu1994] presents an approach for formalizing and proving real time prop-
erties of dynamic schedulers. The formal logic used in this work is Duration Calculus.
The scheduler works on the Deadline Driven Scheduling Algorithm. The specification and
proof of the algorithm are formulated using the Duration Calculus.

The work presented in [Zhan2001] is another formal proof for the Deadline Driven
Scheduling Algorithm. The proof follows the same formal analysis method as in [Yuhu1994].
Duration Calculus which provides abstraction for random preemption of the processor is

used.

1.8 Observations and Contributions

In our viewpoint, the wide acceptance of formal techniques in the design and development
of dependable real-time systems is limited because, most of these formal theories for real-
time scheduling have been developed without much regard for their further reuse. This
makes the formal specifications and their proof constructs in general difficult to reuse, and
to verify or analyze similar or related protocols.

Reusability of previously verified theories to prove the correctness of the new proto-
cols developed has been demonstrated in the works presented in [Dhall1978, Kleil993,
Leho1989]. The real time protocols presented in these papers are extensions to the work

presented in [Liul973]. The authors in these extended algorithms extend the previously

19

defined proofs for the scheduling tasks on a hard real time environment to propose feasible
scheduling mechanisms on complex scenarios with different task sets.

To expand the utility of formal techniques, this thesis explores the possibility of effec-
tively defining and then reusing formal theories in order to simplify verification and anal-
ysis for a wide spectrum of dependable real-time protocols. Specifically, we develop the
constructs of Rate Monotonic scheduling technique with other supporting modules involv-
ing allocation techniques and fault tolerance techniques to develop an extended algorithm
which is fault tolerant in nature and utilizes the rate monotonic technique to schedule the
tasks which are allocated by any greedy allocation (first fit or next fit).

Our perspective is to exploit the property of modularity in the fault tolerant protocols
and to develop a tool verified library of components which can be reused to develop a new
protocol. For example, we identify the components that constitute the Fault Tolerant Rate
Monotonic First Fit (FTRMFF) protocol described in [Bert1999]. We then specify and
verify these components. We emphasize that this process would then shorten the time to
develop a new protocol, say Fault Tolerant Rate Monotonic Next Fit (FTRMNF) by using
any allocation technique (such as Next fit in our case).

We also demonstrate the formalization of aperiodic tasks based on a scheduling tech-
nique described in [Ghos1997b]. We develop a library of components which build up the
scheduling technique for aperiodic tasks.

To support our approach, we use the PVS theorem proving environment [Owrel1995].
The PVS tool is used extensively to verify and validate the library components that are
used to build up the protocol. As mentioned earlier, the objectives are to develop a library
of components that could be combined to form a family of scheduling protocols. The devel-

oped PVS library also introduces the basic concepts that are central to real-time scheduling

20

analysis and also increases the confidence level on the correctness of the model by adding
a great deal of rigorousness in the verification process.

Our intent is not to demonstrate the working of the protocols described in [Ghos1997b,
Bert1999] but to develop a reusable library of verified components which can be utilized to
build these and other related protocols. The components are independent in nature and can
be used easily in constructing other related protocols. The primary objective hence is to
have a extensive suite of formal theories to cover a wider spectrum of scheduling policies
in literature.

Our specific contributions in this thesis are:

1. Development of a library of components that can be repeatedly used to build up
formal specifications of different type of fault tolerant real time periodic scheduling

and allocation protocols for periodic and aperiodic tasks.

2. Demonstrate that the effort involved in analyzing a new protocol belonging to the

same class 1s minimised.

21

1.9 Outline of the Thesis

The thesis is organized as follows: In Chapter 2 we give a description of the component
identification and specification technique. Also, a tutorial on the PVS tool that has been
used for the purpose of specification and verification of the components and the protocols is
presented. In Chapter 3 we describe the library components for periodic scheduling along
with the specification and mechanized verification of the protocol. Chapter 4 discusses
and formally describes the building blocks for aperiodic scheduling protocol. Finally we

conclude in Chapter 5.

22

Chapter 2

Proposed Modular Approach for
Analyzing Fault Tolerant Real Time

Protocols

We have emphasized on the need to develop a library of formally verified components in
the previous chapter. In this chapter, we identify components that can be formalized and
developed as a library of general theories to support reuse of the specifications and the
proof-constructs for fault-tolerant real time resource allocation and scheduling protocols.
We then introduce the FTRMFF and an aperiodic fault tolerant scheduling protocol. We
also give a brief introduction to the PV tool which will be used for mechanized verification

and validation of the formal constructs and the composed protocol.

23

2.1 Components of Dependable Real Time Protocols

This thesis emphasizes on building up a reusable library of components for fault tolerant
real time scheduling protocols by identifying the primary buiding blocks of such class
of protocols. In this section, we introduce and discuss the primary building blocks of
dependable real time scheduling protocols.

Protocols which provide distributed and dependable scheduling services can often be
formulated using their functional primitives. Any resource allocation and scheduling pro-
tocol is developed using a computation model. To provide dependability a fault tolerant
model should also exist in the functional primitives. Ideally, a library suite should include

theories for the following :

1. System and failure model
2. Scheduling
3. Resource allocation

4. Fault tolerence and recovery

Figure 2.1 describes the general framework for verification and analysis of a fault tolerant

real time scheduling protocol.

24

System and

Failure Model Scheduling Resource Allocation Fault Tolerance
[Building Blocks Specification and Verification
[Consistency of Specification Across Building Blocks J
[Synergistic Formulation of Allocation/Scheduling Operations j
[Protocol Verification and Analysis J

Figure 2.1: General Framework

2.1.1 Basic Building Blocks of Dependable Real Time Scheduling

Protocols

In this section we describe the different building blocks for dependable real time scheduling

protocols.

1. a. System model: We consider a multiprocessor network of processors connected
via a shared memory. The system model influences the degree of synchrony to be
maintained, i.e synchronous or asynchronous. The degree of synchrony relates to
the asumptions made in the time bounds and performance of the system. We illus-
trate the different synchrony mechanisms by characterizing the functions as mod-

ules, [Sinh2001] which is followed throughout this thesis.

e Synchronous sytems : The attributes for such systems are as follows:

(a) Every chosen message type is bounded by a delay d, which is basically the

transmission and processing delay.

25

(b) Every correct processor have clocks which are monotonically increasing

functions of real time.

(c) Every step to be executed by the processor is bounded by an upper time

e Asynchronous systems : The characterization of such systems is done as fol-

lows:

(a) There are no bounds on the message delays of such systems.

In the FTRMFF protocol we model the system as a network of multiprocessor systems
which communicate using a shared memory. This model ascertains that there are no com-
munication delays. The task running on each processor are independent from each other

and thus there is very minimal communication involved in the system model.

1. b. Failure model: A specification of a component or system, baselines the behavior
of the component. The specification defines the system responses or transitions on
different input sets. The correctness of the system is the consistency of its behavior

with the specification.

A failure model defines the component behavior in the presence of failures. There
are various failure models proposed in literature, but we will limit our discussion
to fail-stop failure model. In a fail-stop condition it is assumed that the component
fails by ceasing execution. We have modeled the fail stop condition in case study
of the FTRMFF and the aperiodic scheduling protocols, where the primary backup

approach is used to counter such scenarios.

2. Scheduling — This component outlines the different scheduling strategies [Liu2000]

being employed in the protocol. Scheduling strategy is used to guarantee a cor-

26

rect runtime behavior for a real-time computing system by generating a task sched-
ule which maps the application domain to the hardware resource and time domain.
The strategies can be static table-driven scheduling, static priority-driven preemptive

scheduling, dynamic planning-based scheduling and dynamic best effort scheduling.

The static priority driven preemptive scheduling schema is utilized in the implemen-

tation done by us in this thesis.

3. Resource Allocation — Resource allocation to a task is an important aspect of all mul-
tiprocessor scheduling. This component describes the heuristic algorithms [Liu2000,
Krish1997] dealing with task assignments to the processors of a multiprocessor sys-
tem. These include utilization balancing algorithm, first/next-fit algorithm, bin-
packing algorithm, myopic off-line scheduling algorithm, focussed addressing and

bidding algorithm, and buddy strategy.

The implementation of the FTRMFF protocol components involves the first fit allo-

cation schema and the FTRMNF involves the next fit allocation.

4. Fault-tolerance and recovery — The primary function of all dependable protocols 1s
to provide fault tolerance. This module outlines the approaches employed to pro-
vide fault-tolerance. The common approaches fault tolerance and recovery include
N-modular redundancy, primary-backup approach, (m.k)-firm guarantees, and im-

precise computation.

The fault tolerance in all the scheduling and allocation protocols chosen by us in-

volves the primary backup approach.

After describing the various building blocks for dependable real time scheduling protocols

we discuss the various steps to verify and analyze such protocols in the next section.

27

2.2 Steps for Verification and Analysis of Dependable Real
Time Scheduling Protocols

In this section we explain the various steps as shown in fig 2.1 towards verification and

analysis of dependable real time scheduling protocols.

2.2.1 Formal Specifi cation of the Building Blocks

So far we have identified the basic building blocks of fault tolerant real time scheduling pro-
tocols. The next step is to formally specify each of the components. We use the Prototype
Verification System (PVS) tool for this purpose. The component is specified in a higher
order logic supported by the PVS tool. Every component has to satisfy a basic property.
This property is formulated as a theorem and based on the implementation, a mechanised
proof is done by means of theorem proving, to check for the compliance of the component
implementation with the specification.

The next step is to compose the components to build up the protocol, and then verify

and analyze it, based on the theories which are specified in the components.

2.2.2 Protocol Verifi cation and Analysis

The theories of the basic building blocks can be used to specify the protocol in PVS. The
different theories are imported in the final protocol specification and utilized to build up the
scheduling protocol. The final protocol has a set of specifications which it has to comply.
These specifications are mapped into theorems in PVS and a mechanized proving tech-
nique is followed. The PVS theorem prover utilizes the theories and axioms in the various

building blocks to prove the theorems of the final protocol. The theorem proving ascertains

28

that the protocol is compliant to the specifications, and would ensure dependable and real
time behavior of the implemented protocol.

So far, we have discussed the basic methodology followed by us for protocol verifica-
tion and analysis. The next section introduces the two protocols which have been used to

demonstrate the reuse of component specification in verification and analysis methodology.

2.3 Dependable Real Time Scheduling Protocols

In order to present our methodology of component reuse for verification and analysis of
scheduling protocols we have used two different types of scheduling protocols, viz. peri-

odic and aperiodic task scheduling protocols. We present the two protocols in this section.

2.3.1 Dependable Periodic Task Allocation and Scheduling
2.3.1.1 FTRMEFF Protocol

The Fault Tolerant Rate Monotonic First Fit (FTRMFF) protocol as described in [Bert1999]
has been used to demonstrate the verification and analysis mechanism in this thesis.

The FTRMFF protocol uses a duplication technique in the task schedule. Every task has
an active and a passive backup copy assigned to different processors. The active copy of
the task is always executed first and whenever a failure occurs the passive copy of the task
is executed. This protocol extends the Completion Time Test(CTT) for Rate Monotonic
protocol, so as to check the schedulability on a single processor of a task set including
backup copies (discussed in chapter 3). It also extends Rate-Monotonic First-Fit assign-
ment algorithm, where all the task copies, including the backup copies, are considered by

Rate-Monotonic priority order and assigned to the first processor in which they fit.

29

2.3.1.2 FTRMNF Protocol

The Fault Tolerant Rate Monotonic Next Fit (FTRMNF) has been conceptualized by us to
demonstrate the concept of formalized component reuse, proposed in this thesis. FTRMNF
is a dependable scheduling and allocation protocol which uses the rate monotic scheduling
princple to schedule tasks based on their periods. This protocol also utilizes the dupli-
cation technique as done by the FTRMFF protocols. The primary and backup tasks are
scheduled in different processors. The next fit allocation policy is utilized to assign the
rate monotonically arranged tasks to available processors. This protocol also utilizes the
extended Completion Time Test (CTT) to ascertain the schedulability of a task set on a
single processor.

The basic working of the FTRMFF and FTRMNF protocols have been discussed in
this section. However the underlying principles and their descriptions will be covered in

Chapter 3. We next present a brief introduction to the aperiodic task scheduling protocol.

2.3.2 Dependable Aperiodic Task Scheduling protocol

The scheduling protocol presented in [Ghos1997b] is used to demonstrate the reuse of the
building blocks to analyse and verify fault tolerant real time scheduling protocols.

The aperiodic scheduling utilizes a simple slack based dynamic scheduling algorithm as
an heuristic to schedule aperiodic tasks. Tﬁe fault tolerance is provided using the primary
backup approach. The primary objective of all aperiodic scheduling protocols is to provide
a high aceptance ratio, that is to seek to process most aperiodic tasks. This protocols
seeks to achieve it by introducing two techniques, viz. backup overloading and backup
deallocation.

These techniques are introduced so as to reutilize the resources which have been re-

30

served for backup tasks. Backup overloading involves scheduling of more than one backup
in the same time slot on a processor. Backup deallocation on the other hand, reclaims
the resource which was reserved by the backup task once the corresponding primary task
completes it execution.

It has been demonstrated using various task models that this scheduling schema has a
high acceptance ratio of the aperiodic requests and is also dependable in nature.

In the next section, we describe the basic building blocks of the FTRMFF protocol and
define their functionality/specification from which their implementation would follow in

chapter 3.

2.4 Building Blocks of FTRMFF Protocol

As our focus has been on FTRMFF protocol and Rate Monotonic protocol is the underlying
working principle of the protocol, we start by formally characterizing the Rate Monotonic

Protocol . We subsequently outline the RMFF and primary-backup routines as components.

2.4.1 Rate Monotonic Component
The underlying principle in the Rate Monotonic scheduling algorithm is defined as follows:

e A set of n independent, periodic and preemptible tasks 71, 7o, - - -, T, With periods
Ty <Ty < --- <T, and execution times Cy, Cs, - - -, Cy repectively, being executed
on a uniprocessor system where each task must be completed before the next request

for the task occurs.

The scheduling policy is based on assigning a priority to tasks where the priority is inversely

proportional to the period of the task. A task with shorter period will have a higher priority

31

as compared to a task with a longer period.

The scheduling is based on the following criterion:

e Suffi cient Condition [Liul973]: Any set of » periodic tasks that fully utilizes the
processor under RM must have a processor utilization of at least (n(2'/® — 1)). The

processor utilization of n tasks is given by U = Y1 ;.

e Necessary and Suffi cient Condition [Leho1989]: Given a set of n periodic tasks

(with T} < Ty < ---<T,). Task 7; can be feasibly scheduled by RM if and only if

(Ogi&, {,;1 C; [t/T5] /t} < 1)

e The entire task set is RM schedulable if and only if

(max 25, {Z C; /Ty /t} < 1)

The formulation of the RM algorithm is based on the following task model:
1. The request of each task is periodic.

2. All tasks are independent.

3. All tasks are preemptible, and preemption overhead is assumed to be negligible.
4. The deadline of a task is equal to its period.

5. Run-time for the requests of a task is constant for the task.

32

2.4.2 Rate Monotonic First Fit Component

The Rate Monotonic First-Fit (RMFF) [Dhall1978] algorithm is a partitioning algorithm
which allocates tasks to processors following the RM priority order. The tasks assigned to
the same processor are then scheduled using RMA.

The scheduling policy in RMFF is based on the RM strategy which can be mathemati-

cally described as follows:

o Let 71,7, -, 7o beasetof ntasks with T} < Ty < --- < T,. If C,/T,, <
2(1+u/(n—1))""Y ~1, whereu = Y7 C;/T; < (n—1) (21/(""1) - 1) .then
the set can be feasibly scheduled by the RMA.

The allocation policy of this protocol is based on the following formulation:

e WithT; < 7T, < ... <T,, the generic task 7; is assigned to the first processor
P; such that 7; and the other tasks already assigned to P; can be scheduled on P;

according to RM. If no such processor exists, the task is assigned to a new processor.
The RMFF algorithm has the following attributes:

1. The task set has the properties of the task model assumed for the rate monotonic

approach (building block 1).

2. The multiprocessor is assumed to consist of identical processors, and tasks are as-

sumed to require no resources other than processor cycles for execution.

33

2.4.3 Primary Backup Component

Temporal and spatial redundancies are well established approaches for providing depend-
able services. Conceptually, a chosen task/computation is checked for sanity of results,
logical correctness, range checks etc. In case a discrepancy is detected, a backup copy of
the task assigned on a different processor gets executed to meet the original task deadline.

The primary-backup component follows the following scheduling policy:

o The primary copy of a task is always executed, while its backup copy 5; is executed

according to 53;’s status, which can be active or passive.

o If the status is active, then [3; is always executed, while if it is passive, then §; is

executed only when the primary fails.

The assumption followed in the primary backup component is :

The primary copy 7; has its request period equal to 7; and its execution time equal to
C;, while the backup copy 3; has the same request period T; but execution time C} # C;.

The building blocks which are characterized constructively build up the FTRMFF pro-
tocol. The following Figure 2.2 demonstrates the FTRMFF protocol realization from these
components.

So far we have characterized the building blocks of the FTRMFF protocol.We next

present a discussion on the other two protocols used in this thesis.

34

Figure 2.2: Interaction of different modules

2.5 Building Blocks of FTRMNF and Real Time
Aperiodic Task Scheduling and Allocation Protocol

The FTRMNF protocol utilizes all the components as the FTRMFF protocol except for
the allocation component. The FTRMNF protocol utilizes the Rate Monotonic Next Fit
(RMNF) allocation algorithm to allocate the tasks to processors. This component will be
discussed in Chapter 3.

The aperiodic scheduling and allocation protocol demonstrated in Chapter 4 also utlizes
the components specified for the FTRMFF protocol. We however would like to emphasize
that the basic task parameters of periodic and aperiodic tasks are different so a slight modi-
fication has been done in the task model to suit the aperiodic task model chosen by us. This
will be further discussed in Chapter 4.

We next introduce the PVS tool which has been used for mechanized verification of the

dependable real time scheduling protocols.

35

2.6 Prototype Verification System : An Introduction

PVS is a rigorous formal tool for writing specifications and performing theorem proving
activities. There are two classes of automated reasoning systems: one that provides expres-
sive logics, but only limited automation and other with provide extensive automation but a
very limited expressive logic. PVS provides automation for a mid-order logic by providing
assistance to support clear and abstract specifications sound proofs for difficult theorems.
PVS is a research prototype which captures the state-of-the-art in mechanized formal

methods. The PVS system contains:

1. A parser : The parser creates the internal abstract representation for the theory de-

scribed by specification and pops out a message on encountering an error.

2. A type-checker : The type-checker checks for semantic errors, such as undeclared

names and ambiguous types.

3. A specification language : The PVS system follows a high level specification lan-

guage in which the system is specified.

4. A theorem prover : The basic objective of the PVS theorem prover is to generate a
proof tree in which all of the leaves are trivially true. The proof tree is generated

based on theories that are defined for the system.

The PVS system has many other features. However, a tutorial on PVS is outside the scope
of this thesis. We will explain PVS theories in Chapters 3 and 4 with respect to dependable

scheduling protocols. We next present a problem specified in PVS.

36

2.6.1 Specifi cation and Verifi cation in PVS : An Example

This following demonstrates a specification in PVS of the recursive method to find the sum
of the squares of the first n natural numbers.
squaresum:

squaresum: THEORY
BEGIN
number: VAR nat

squaresump (number) : RECURSIVE nat =

IF (number = 0) THEN 1

ELSE number “a 2+ squaresump(number — 1)
ENDIF

MEASURE (A number: number)

producttheorem: THEOREM
squaresump (number) =
(number x (number + 1) x (2 X number + 1))/6

END squaresum

In this implementation a recursive definition of the squaresum is done. The theorem is
specified to verify the correctness of the implementation of the sum of sqares of the first n
natural numbers.

So far, we have illustrated the basics of verification and analysis for dependable schedul-
ing protocols. We have introduced the basic building blocks which will be composed to
specify these protocols. Our objective is build a library of building blocks for depend-
able scheduling protocols to reduce the effort in their verification and analysis. We also
discussed the building blocks of the FTRMFF protocol in this chapter. In the next chap-
ter we explain the PVS implementation of the building blocks of the FTRMFF protocol
and demonstrate that the components can be reused to verify and analyze another periodic

scheduling protocols.

37

Chapter 3

Formal Analysis of Dependable Periodic

Task Scheduling and Allocation Protocol

In this chapter, we first present formalization of basic modules identified in Chapter 2. The
implemented modules have to comply to certain specification. The specified modules are
then utilized to specify the FTRMFF protocol. This protocol is mechanically verified and
analyzed by means of proving theorems, which are specified according to the specification
requirements of the FTRMFF protocol. Finally, we will illustrate the reuse of the formal
specifications to readily facilitate verification and analysis of Fault tolerant Rate Monotonic

Next Fit (FTRMNF) protocol.

38

3.1 Formalization of the Components of FTRMFF
Protocol

We formally specify the components of the FTRMFF protocol in PVS. The specification
of the components characterizes the working of the components in an abstract manner. We

use theorem proving to ascertain the correctness of theories in each of the components.

3.1.1 Formalization of Task Model

We begin with formally specifying the task model that has been used throughout the de-
velopment of formal specification. At first we define types that are going to be used in
formally specifying the attributes of a task set. We define task property as a record type
containing task’s period, execution time and the phase. This record is assigned to a task ID
resulting in a task vector type. We then declare a type to tag a task either as a primary or
a backup as well as characterize a backup task as passive or active. Based on these prim-
itives, we define a record type task assignment which for each task ID associates its type

(primary or backup) and status as active or passive.

task model: THEORY
BEGIN
NatNum: posnat

task id: TYPE+ = posnat

TMin, TMax: posreal

TPeriod: TYPE+ = posreal

TExecution: TYPE+ = posreal

task type: TYPE+ = {primary, backup}
backup task status: TYPE = {active, passive, notbackup}
TRealTime: TYPE+ = posreal

39

PRealTime: TYPE+ = nonneg real
TaskInstance: TYPE+ = posnat

task_property: TYPE+ =
[# Period: TPeriod, Execution: TExecution, Phase: PRealTime #]

task vector: TYPE+ = [task id — task property]

task assignment: TYPE+ =
[# Taskld: task id,
TaskType: task type,
TaskStatus: backup task status #]

Next, we declare a Processor type. AllocateProcessor defines a task assignment on a
processor. Another key type definition is that of Processor database which provides a set

of tasks assigned on a processor. We also initialize the processor database.

Processor: TYPE+ = posnat

AllocateProcessor: TYPE = [task assignment — Processor]
processor_assignment: TYPE = [set[task assignment]]
Processor_database: TYPE = [Processor — processor assignment]

Initialise database: processor assignment = emptyset [task assignment]

After having defined these basic types, we next formalize various constraints on task
characteristics. As FTRMFF has rate-monotonic underpinnings, we have to impose restric-
tions on the task to comply with RM task model. These restrictions are imposed by using

axioms. The implementation imposes the following restrictions:
o The tasks should have a non negative value (BasicPhase_AX).
¢ Period of every task should be positive (BasicPeriod AX).

e The execution time of a task should be less than the period of that task (ExePe-
riod AX).

40

¢ The release time of tasks should be monotonic in nature (Release AX).

o The deadline of an instance of a task to be equal to the release time of its next occur-

rence (Deadline).

o The tasks are arranged in a rate monotonic order.

AnyTask: task vector

Taskldl, TaskId2: VAR task id

Instancel, Instance2: VAR TaskInstance

RTimel, RTime2: VAR TRealTime

BasicPhase AX: AXIOM V (Taskldl) : Phase (AnyTask (Taskldl)) > 0
BasicPeriod AX: AXIOM V (Taskldl) : Period (AnyTask (Taskldl)) > 0
Mult AX: AXIOM V (¢: posnat, j, k: PRealTime): ixXj = k

ExePeriod AX: AXIOM
V (Taskidl) : Execution (AnyTask (TaskIdl)) < Period (AnyTask {Taskidl))

Tphasing: [task id — PRealTime] = A (Taskldl): Phase (AnyTask (TaskIdl))

Tperiod: [TaskInstance, task id — TRealTime] =
A (TaskIdl, Instancel) : Period (AnyTask (TasklIdl))

TOccurence: [task id, TaskInstance — PRealTime] =
A (TaskIdl, Instancel) :
Tphasing(TasklId1) + (Instancel x Tperiod(TaskIdl, Instancel))

Release: [task id, TaskInstance — PRealTime] =
A (TaskIdl, Instancel) : TOccurence (Taskldl, Instancel)

Release AX: AXIOM
(V (Taskldl, Instancel, Instance2, RTimel, RTime2) :
(Release (Taskldl, Instancel) = RTimel) A
(Release (TaskIdl, Instance2) = RTime2) A (RTimel < RTime2)
D Instancel < Instance2)

Deadline: [task id, TaskInstance — TRealTime] =
A (Taskldl, Instancel) :
(Release(Taskldl, Instancel) + Period(AnyTask(TasklId1)))

Deadline AX: AXIOM

41

(V (Taskldl, Instancel) :
Deadline (Taskldl, Instancel) =
TOccurence (TaskIdl, Instancel +1))

Period AX: AXIOM
YV (Taskldl, TaskId2) :
Taskldl < Taskld2 D
(Period (AnyTask (Taskld1)) > Period (AnyTask (TaskId2)))

In formally specifying fault-tolerant real-time allocation and scheduling protocols, we uti-
lize some of the basic mathematical functions to carry out the analysis. One such function
is the summation of a sequence of natural numbers. These are formalized below:

Low, High, Natno: VAR nat

Rnol, Rno2: VAR real

F: VAR [nat — real]

Number: VAR posnat

n: VAR task id

summation (Low, High, F'): RECURSIVE real =
IF (Low > High)
THEN 0
ELSE IF (High = Low)

THEN F(Low) ELSE (F(High)+ summation(Low, High—1, F)) ENDIF
ENDIF
MEASURE (A Low, High, F': High)

3.1.1.1 Completion Time Test

We next formalize the schedulability test called Completion Time Test (CTT). With T} <
... < T, forasetof i tasks (T = {71, ...7;}) which are in phase at time zero, the cumulative
work on a processor required by tasks in 7 during [0, ¢] is W (t,7) = £, Cr[t/Ti]. We

create a sequence of time Sy, S1, . .. with Sy = ¥, ¢, Cy, and with S;1y = W(S;, 7). If for

42

some [, S; = Sy < T;, then 7; is schedulable.
CTT utilizes function called CWork to determine the cumulative work on a processor.

These notions are formalized below:
BEGIN

CWork (taskid) : RECURSIVE real =
IF (1 > taskid)
THEN 0
ELSE IF (taskid = 1)
THEN Execution(AnyTask(taskid)) x ceiling(¢/Period(AnyTask(taskid)))
ELSE

(Execution(AnyTask(taskid)) x ceiling(¢/Period(AnyTask(taskid))) + CWork(taskid — 1))
ENDIF
ENDIF
MEASURE (A taskid: taskid)

CTTest? (tid: task id) : bool =
(CWork (tid) = CWork (tid+1)) A
(CWork (tid) < Period (AnyTask (tid)))

END

3.1.2 Formalization of Rate Monotonic Component

With constraints imposed on task attributes, we now formalize the priority assignment sug-
gested by the rate monotonic algorithm. Essentially, a task with a lower period gets a higher
priority (RMA_priority). The complaince of this formalization to the rate monotonic algo-

rithm is verified using the RMA_OrderingTH theorem, which has been proved trivially.

rate_monotonic: THEORY
BEGIN
IMPORTING task model
AnyTask: task vector

43

Taskldl, TaskId2, TaskId3: VAR task id
Number: posnat

task priority: [task id — real]l =
A (Taskldl) : Number/Period(AnyTask(TaskId1))
RMA priority: AXIOM
(V Taskldl:
V TaskId2:
Period (AnyTask (TaskId1)) > Period (AnyTask (Taskld2)) D
task priority (Taskldl) < task priority (TaskId2))

RMA Ordering: AXIOM
(V (TaskIdl) :
Period (AnyTask (Taskldl)) < Period (AnyTask (Taskldl +1)))

RMA Orderingrev: AXIOM
(V (Taskldl) :
Number/Period(AnyTask(TaskId1)) >
Number/Period(AnyTask(TaskIdl + 1)))

Processorload: [task id — real] =
A (Taskldl) :
(Execution(AnyTask(TaskId1))/Period(AnyTask(TaskId1)))

FeasilbilityCond: AXIOM
(V (TaskIdl) :
2 > expt((1 + Processorload(TaskId1l)/Number), Number))

RMA OrderingTH: THEOREM
(V (TasklIdl) :
task priority (TaskIdl) > task priority (TaskIdl + 1))

X, Y: nonneg real

totalpriorityevents: [task id — real] =
A (Taskld3) :
ceiling ((Y/Period(AnyTask(TaskId3))) — (X /Period(AnyTask(TaskId3))))

totalcomputedtime : [task id — real] =
A (TasklId3) :
totalpriorityevents(Taskld3) x Execution(AnyTask(TaskId3))

END rate_monotonic

44

3.1.3 Formalization of Rate Monotonic First Fit Component

This modules utilizes the task set generated by the rate monotonic component and using
the CTT formulation from the task module defines a AddTask function. This function takes
a task and assigns it on the first available processor on which it can be feasibly sched-
uled along with all other tasks that have already been assigned on that processor (First
Fit rule). The function TaskonProcessor is formalized to infer whether a task exists on a
processor or not. The function Returnvalue returns the total execution time of all the task
instances. NoPr and MinNoPr denote the maximum and minimum number of processors,

respectively. This notion is formalized below:

firstfit: THEORY

BEGIN
IMPORTING task model
TaskID: VAR task id

p: Processor

AnyTask: task vector

{: posnat

db: Processor_database

FirstTask? (tid: task id) : bool = (tid = 0)

TaskonProcessor? (tid: task id, m: task assignment, j: Processor) : bool

I

Taskld (n) = tid A (n € db(j))

Returnvalue (TaskID : task id, m,: task assignment, j;: Processor) : real
IF (TaskonProcessor? (TaskID, nq, ji))
THEN (Execution(AnyTask(TaskID)) x ceiling(t/Period(AnyTask(TaskID))))
ELSE 0
ENDIF

j, k: VAR Processor
NoPr: posnat = 10
MinNoPr: posnat = 1

45

AddTask (n: task assignment, ((k: posnat |
k > MinNoPr A k£ < NoPr)),

db: Processor database) :
RECURSIVE Processor database =
IF FirstTask? (Taskld (n))
THEN db WITH [(k) := (db(k)U {n})]
ELSE IF CTTest? (Taskld (n))
THEN db WITH [(k) = (db(k)U{n})]
ELSE IF (NoPr— %k = 0) THEN db
ELSE AddTask(n, k+1, db) ENDIF
ENDIF
ENDIF
MEASURE NoPr — k

END firstfit

3.1.4 Formalization of Primary Backup component

We formalize various requirements of primary backup approach in this component. We
identify and specify various constraints imposed on the backup copies of a task. It is as-
sumed that the execution time of backup task is less than or equal to that of primary task.
Furthermore, primary and backup tasks are not assigned on the same processor. These are
fomalized as PBAX1 and PBAX2 below.

Cumulative work done construct can be used to decide whether a backup copy should
be active or passive. If the schedulability test for 7; succeeds, then the worst-case execution
time, 1; is less than 7;. If within each task’s request period, the recovery time, B; = T; —1;,
is greater than its backup task’s (5) execution time, i.e., B; > Cj then §; is scheduled as a
passive copy; otherwise it is scheduled as an active copy.

We define functions Pri, Act and Pas that return a set of tasks that are of type primary,

active and passive, respectively on a processor. We formalize these notions below.

46

PrimaryBackup: THEORY
BEGIN

IMPORTING rate_monotonic

primary task: TYPE = {n: task assignment | TaskType(n) = primary}
backup task: TYPE = {n: task assignment | TaskType(n) = backup}
T: task vector

m: Tasklnstance

num: VAR task assignment

PR: VAR primary task

BK: VAR backup task

pro: AllocateProcessor

db: Processor database

PBAX1: AXIOM
V (BK, (PR: primary task | Taskld(PR) = Taskld(BK))):
Execution (T (TaskId (BK))) < Execution (T (TaskId (PR)))

PBAX2: AXIOM
V (BK, (PR: primary task | Taskld(PR) = Taskld(BK))):
Period (T (Taskld (PR))) = Period (T (Taskld (BK)))

PBAX3: AXIOM
V (BK, (PR: primary task | Taskld (PR) = Taskld (BK))) :
pro (PR) # pro(BK)

get status (n: task assignment) : backup task status =
(IF TaskType (n) = backup A
(Period(T (Taskld(n))) — CWork(TaskId(n))) > Period (T (Taskld ()))
THEN passive
ELSE active
ENDIF)

Pri(j: Processor) : set[task assignment] =
{n: task assignment | (n € db(j)) A TaskType(n) = primary}

Act(j: Processor) : set[task assignment] =
{n: task assignment | (n € db(j)) A TaskStatus(n) = active}

pas(j: Processor) : set[task assignment] =
{n: task assignment | (n € db(j)) A TaskStatus(n) = passive}

47

Active Recover(j, f: Processor) : set[task assignment] =
{n: task assignment | (n € Act(j)) A (n € Pri(f))}

Passive Recover (j, f: Processor) : set[task assignment] =
{n: task assignment | (n € pas(j)) A (n € Pri(f))}

Rec(j, f: Processor) : set[task assignment] =
(Active_Recover(j, f)U Passive Recover(j, f))

NonFaultyGrp (7 : Processor) : set [task assignment] =
{assign: task_assignment | (assign € (Pri(5) UAct(5)))}

OneFaultyGrp (j, f: Processor) : set[task assignment] =
{assignl : task assignment | (assignl € (Pri(j) URec(j, f))}

PBTH: THEOREM
V ((num: task assignment | TaskType (num) = primary)) :
TaskType (num) # backup

END PrimaryBackup

This formalization is verified using the PBTH theorem, which verifies that the primary
and backup copies of a task are not assigned to the same processor.

So far, we have discussed our formal framework, and have presented formal theories of
basic components. These formal constructs are extensively used in assigning primary and
backup tasks on different processors using FTRMFF protocol. The next section discusses

utilization of these formal theories to specify the FTRMFF protocol.

48

3.2 Putting Components Together to Formalize FTRMFF

The building blocks specified earlier can be used to specify the FTRMFF protocol. This
process is done by importing the formal theories in the FTRMFF protocol specification in

PVS. In this section we explain the FTRMFF protocol specification.

3.2.1 Verifi cation and Analysis of FTRMFF Protocol

The task, rate montonic, RMFF and primary backup theories are imported and utilized in
the FTRMFF specification. The fault-tolerant version of CTT which was specified in the
task model, requires two sets of tasks to evaluate schedulability criteria under no-fault and
one-fault conditions. We characterize the C77T under two two task failure scenarios. In
order to achieve this, we need to define two group of tasks, namely NonFaultyGrp and
OneFaultyGrp. NonfaultyGrp denotes a union of a task to be assigned on a processor, and
primary and active backup tasks on that processor.

Similarly, OneFaultyGrp denotes a union of a task to be assigned on a processor and
primary task on that processor and a union of passive and active recovery tasks (Rec) de-

fined earlier. They are formally specified in the Primary Backup Module as follows:

Pri(j: Processor) : set[task assignment] =
{n: task assignment | (n € db(j)) A TaskType(n) = primary}

Act(j: Processor) : set[task assignment] =
{n: task assignment | (n € db(j)) A TaskStatus (n) = active}

pas (j: Processor) : set[task assignment] =
{n: task_assignment | (n € db(j)) A TaskStatus(n) = passive}

Active Recover (j, f: Processor) : set[task assignment] =
{n: task assignment | (n € Act(j)) A (n € Pri(f))}

Passive Recover(j, f: Processor) : set[task assignment] =
{n: task assignment | (n € pas(j)) A (n € Pri(f))}

49

Rec(j, f: Processor): set[task assignment] =
(Active Recover(j, f)U Passive Recover(j, f))

NonFaultyGrp (5 : Processor) : set[task assignment] =
{assign: task assignment | (assign € (Pri(j) U Act(5)))}

OneFaultyGrp (j, f: Processor) : set[task assignment] =
{assignl: task assignment | (assignl € (Pri(j) URec(4, f)))}

3.2.1.1 Formalization of Schedulability Criteria

The primary and backup tasks should satisfy a certain criteria in order to be scheduled. The
following denotes the schedulability criteria of the task set: [Bert1999]

Let the sets primary(P;) and backup(P;) represent the primary and backup copies as-
signed to processor P;. Let recover(P;, Py) represents the union of two sets, namely
activeRecover(P;, Ps) and passiveRecover(P;, P;), where these sets consist of the active
and passive copies, respectively, assigned to P; such that their primary copies are assigned
to Py. The function ¢(k, t) gives the overall number of requests of a backup copy Sy during
[0, 1].

o Let ¢ = primary(P;) U active(P;) be the set of periodic tasks given in priority order
which are assigned to processor P;. All the periodic requests of tasks in o will meet the

deadlines iff

TREOC Bp€o

; Ch [t/Te1 /1 9 (ks <
Ve o:;“n{Z HIUTAE D ol tw}—l

o Consider any processor P;, and let at time § a failure be detected in processor P;.
Let o = primary(P;) U recover(P;, Py) be the set of periodic tasks given in priority order

which are assigned to processor P;. All the periodic requests of tasks in o will meet the

50

deadlines for any @ iff

i [e] T Cj #(k, <1
x| min { Do antuma e+ Y chac t)/t} <

TREC Bp€e

where V;, is equal to 7}, for a primary copy or an active backup copy and to By, (recovery
time for the backup copy B) for a passive backup copy.

In order to extend the completion time test for fault-tolerant version, we consider a task
set which gontains both primary and backup tasks which must be scheduled all together
on a single processor. To formalize schedulability guarantees for both primary and backup
tasks, we first specify the notion of the overall number of requests of a backup copy during

[0,t], #(k,): [Bert1999]

{t/T%] if By is active
ok,t) = 1 if By is passive and t < By

14 [(¢— Bg)/Tk] if Bxispassive andt > By

Here, By, is the recovery time of a task. We formally represent ¢(k, t) as follows.

Time to_recover (taskid: task id) : real =
Period(AnyTask(taskid)) — CWork (taskid)

No_Of backup requests (taskid: task id,

((num: task assignment | Taskld (num) = taskid)) ,time: posreal) posnat
IF TaskStatus (num) = active
THEN ceiling (time/Period(AnyTask(TaskId(num))))
ELSE IF TaskStatus (num) = passive

51

THEN (IF time > Time to recover (Taskld (num))
THEN
1 + abs(ceiling((time — Time to recover(Taskld(num)))/
Period (AnyTask (TaskId (num)))))
ELSE 1
ENDIF)
ELSE 1
ENDIF
ENDIF

Essentially, based on the insights gained in first fit theory to calculate cumulative work
done, we calculate the work done by both primary and backup copies scheduled on a pro-

cessor over a time interval [0, t]. Below, W1 is the work done by a primary and W2 is that

by backup copies.

TaskiD: task id

1, t2: VAR nat
ta, tb: VAR nat
n: task assignment

Wi (ty, t3) : RECURSIVE real =
IF (t; > t3)
THEN 0
ELSE IF (i3 = t1)
THEN Execution (AnyTask (TaskiD))
ELSE

(Execution(AnyTask(TaskiD)) x ceiling(¢2/Period(AnyTask(TaskiD))) +
Wl(tl, 1o — 1))
ENDIF
ENDIF
MEASURE (i3)

W5 (ta, tb) : RECURSIVE real =
IF (ta > tb)
THEN 0
ELSE IF (tb = ta)

52

THEN Execution (AnyTask (TaskiD))
ELSE

(Execution(AnyTask(TaskiD)) x No_Of backup_requests(Taskld(n), n, tb)+
Wa(ta, th—1))
ENDIF
ENDIF
MEASURE (tb)

TotalWork Pri_bac (t1, t2): real = Wi(t1, t2)+ Wal(t, t2)

Now, we formalize CTTs for no-fault and one-fault cases. For these CTTs, we utilize
Boolean expressions FTRMFF non_faulty? and FTRMFF one_fault? that basically check
for schedulability of tasks on a processor belonging to non-faulty group and one-faulty
group, respectively. The NoFaultCTT? and OneFaultCTT? boolean expressions determine

the CTT for non faulty group and one faulty group processors respectively.

time0, timel: nat
ins: TaskInstance

FTRMFF non_faulty? (j: Processor) : bool =
(V ((number: task assignment | (number € NonFaultyGrp(j)))) :
TotalWork Pri bac (timeQ, timel) < 1)
NoFaultCTT? (n: task assignment, j: Processor) : bool =
NonFaultyGrp (j) = (singleton(n) U NonFaultyGrp(5)) D
FTRMFF non faulty? (j)
FTRMFF one fault? (j, f: Processor) : bool =
(V ((n: task assignment | (n € OneFaultyGrp(j, f)))):
TotalWork Pri_bac (time0, timel) < 1)
OneFaultCTT? (n: task assignment, j, f: Processor): bool =

OneFaultyGrp (j, f) = (singleton(n)U OneFaultyGrp(j, f)) D
FTRMFF one fault? (j, f)

In order to assign a particular task under FTRMFF policy, we have divided the assign-

ment process into three functions that for each primary, active and passive backup. We

53

make our decision on an assignment based on three boolean functions, namely Prima-
ryADD, ActiveBacAdd, and PassiveBacAdd that in turn utilize NoFaultCTT and OneFault-
CTT.

f: Processor

NoPr: TYPE+ = posnat

MinNoPr: TYPE+ = posnat

Pr AX: AXiOM NoPr > MinNoPr

PrimaryADD? (n: task assignment, k: Processor) : bool =
NoFaultCTT? (n, k) A OneFaultCTT?(n, k, f)

add_pri(n: task assignment, ((k: posnat | k& > MinNoPr A k£ < NoPr)),
db: Processor_database) :
RECURSIVE Processor database =

IF PrimaryADD?(n, k)

THEN db WITH [(k) := (db(k)U {n})]

ELSE IF (NoPr—k = 0) THEN db ELSE add pri(n, k+1, db) ENDIF

ENDIF

MEASURE NoPr —k

ActiveBacAdd? (bk: backup task, k: Processor) : bool =
NoFaultCTT? (bk, k) A OneFaultCTT?(bk, %k, pro(bk))

add_act(((n: task assignment | TaskType (n)

= backup)), ((k: posnat | k& > MinNoPr A £ < NoPr)),
db: Processor database) :
RECURSIVE Processor database =
IF ActiveBacAdd? (n, k)
THEN db WITH [(k) := (db(k)U {n})]
ELSE IF (NoPr—k = 0) THEN db ELSE add act(n, k+1, db) ENDIF
ENDIF
MEASURE NoPr — &

PassiveBacAdd? (n: task assignment, k: Processor): bool =
OneFaultCTT? (n, k, pro(n))

54

add_pas (n: task assignment, ((k: posnat | k& > MinNoPr A k < NoPr)),
db: Processor database) :
RECURSIVE Processor database =

IF PassiveBacAdd? (n, k)

THEN db WITH [(k) := (db(k)U {n})]

ELSE IF (NoPr—k = 0) THEN db ELSE add pas(n, k£+1, db) ENDIF

ENDIF

MEASURE NoPr — &

db: Processor_database

j, k: VAR Processor

To add a set of tasks including both primary and backup, we utilize the function Ad-
dTaskN which adds these tasks to the processor database. This function in turn calls

add_pri, add_act and add_pas for each task type as discussed earlier.

AddTaskN (n: task assignment, ((k: posnat | £ > MinNoPr A k£ < NoPr)),
db: Processor_database) :
Processor_database =IF TaskType(n) = primary
THEN add pri(n, k, db)
ELSE IF TaskStatus(n) = active
THEN add act(n, k, db) ELSE
add pas(n, k, db)

ENDIF
ENDIF

Anytask: task vector

3.2.1.2 Verifi cation of the FTRMFF specifi cation

The different theories of allocation and scheduling to build up FTRMFF allocation and
scheduling policies are verified by theorems formulated in the FTRMFF module. The

following properties are verified:

55

1) The basic functionality which the tasks should exhibit is to be arranged rate monoton-
ically in each of the processor. The following theorem verifies this property by allocating

tasks to processors.

TestDbl : THEOREM
V (n: task assignment, ((k: Processor | k > MinNoPr
ANk < NoPr—1)),
(db: Processor_database | db = AddTaskN(n, k, db)), Taskld: task id) :
(Taskld (n) = b2n((n € db(k)))) D
(task_priority (Taskld) > task priority (Taskld+ 1))

2) Fault tolerance is an important property of the FTRMFF protocol. This is modeled
by ensuring that the backup task is active when the primary task has failed. The following

theorem verifies this property.

TestDb2: THEOREM
V (n: task assignment, ((k: Processor | k& > MinNoPr
ANk < NoPr—1)),
(db: Processor_database | db = AddTaskN(n, k, db)), Taskld: task id) :
(Taskld (n) = b2n((n € db(k))) A
(TaskType (n) # primary) D
(TaskType (n) = backupA TaskStatus (n) = active)
3) A Backup task can exist in either passive or active state. Whenever a fault occurs
the backup changes its state from passive to active and then starts running. The follow-
ing theorem verifies that the FTRMFF specification does not allow any passive backup to

execute.

56

TestDb3: THEOREM
V (n: task assignment, ((k: Processor | k >
MinNoPr A k£ < NoPr—1)),
(db: Processor database | db = AddTaskN(n, k, db)), Taskld: task id) :
(Taskld (n) = b2n((n € db(k))) A
(TaskStatus (n) # active) D

(TaskType (n) = backup A TaskStatus (n) = passive)

3.2.1.3 Verifi cation of FTRMFF: Results

The three theorems discussed earlier utilize the previously defined theories inorder to be
proven. The three theorems were proven successfully and the proof summary of the mech-

anized proving is as follows:

Proof summary for theory FTRMFF

No Of backup requests TCCl....proved - complete [shostak] (0.49 s)

WL TCCL. ittt ieeneeennnn. proved - complete [shostak] (0.19 s)
WL TCC2. ..t ittt i iiiiieees proved - complete [shostak] (0.03 s)
W2 TCCL.....iiiiiiiiii i, proved - complete [shostak] (0.12 g)
add pri TCCl.................. proved - complete [shostak] (0.28 s)
add_pri_ TCC2............... ... proved - complete [shostak] (0.73 s)
add pri TCC3.............cu.n. proved - complete [shostak] (0.22 s)
add_ act TCCl.................. proved - complete [shostak] (0.75 s)
add act TCC2..........ovnnnn proved - complete [shostak] (0.23 s)
add pas TCCl..........covuun.. proved - complete [shostak] (0.87 s)
add pas TCC2..........covvunnnn proved - complete [shostak] (0.20 s)
AddTaskN_TCCl................. proved - complete [shostak] (0.16 s)
TestDbl TCCL.......civvvuvnnen.. proved - complete [shostak] (0.20 s)

TestDbl. .. vvviiiininiineennn proved - complete [shostak] (3.01 s)
TestDb2. .. .vviiiiiin i nnn proved - complete [shostak] (0.93 s)
TestDb3. ..., proved - complete [shostak] (0.88 s)
Theory totals: 16 formulas, 16 attempted, 16 succeeded (9.29 s)

Grand Totals: 33 proofs, 33 attempted, 33 succeeded (16.80 s)

The mechanized proof of TestDb1 in the PVS tool is illustrated in Section A.1.

So far, we have demonstrated the specification of the building blocks of the FTRMFF
protocol as well as the analysis and verification of the composed theory from these building
blocks. We however would like to re-emphasize that the primary objective of this thesis is to
demonstrate the reusability of the formal constructs to specify related protocols. Therefore,
we utilize the components to specify and verify a new protocol , namely the Fault Tolerant

Rate Monotonic Next Fit Protocol{ FTRMNF).

3.3 Specification and Verification of FTRMNF protocol

FTRMNF protocol essentially works on the similar lines as FTRMFF protocol, with the
difference lying only in the allocation schema. FTRMFF utilizes the Rate Monotonic First
Fit (RMFF) algorithm to allocate the tasks to processors, while FTRMNF utilizes the Rate

Monotonic Next Fit (RMNF) algorithm to allocate the tasks to processors.

3.3.1 Formalization of the components of FTRMNF

The components for the FTRMNF protocol are the task model , rate monotonic , rate mono-
tonic next fit and primary backup. All of these components(except for rate monotonic next

fit) are essentially the same components which form the FTRMFF protocol specification.

58

The previously defined specifications can be reused and composed together to form the
FTRMNF protocol.
We discuss the new theory that has been developed in regard to the FTRMNF compo-

nent formalization.

3.3.1.1 Rate Monotonic Next Fit Component

This modules utilizes the task set generated by the rate monotonic component and using
the CTT formulation from the task module defines a AddTask function. This function
takes a task and assigns it on the next available free processor on which it can be feasibly
scheduled along with all other tasks that have already been assigned on that processor (Next
Fit rule). NoPr and MinNoPr denote the maximum and minimum number of processors,

respectively. This notion is formalized below:

nextfit: THEORY
BEGIN

IMPORTING task model

TaskID: VAR task id

p: Processor

AnyTask: task vector

t: posnat

db: Processor database

FirstTask? (tid: task id) : bool = (tid = 0)

TaskonProcessor? (tid: task id, m: task assignment, j7: Processor) : bool
Taskld(n) = tid A (n € db(y))

Returnvalue (TaskID : task id, m,: task assignment, 7;: Processor) : real
IF (TaskonProcessor? (TaskID, ni, 1))
THEN (Execution(AnyTask(TaskID)) x ceiling(¢/Period(AnyTask(TaskID))))
ELSE 0
ENDIF

59

j. k: VAR Processor
NoPr: posnat = 10

MinNoPr: posnat = 1
PresentK : VAR posnat

AddTask (n:
((k: posnat |

RECURSIVE Processor database =
IF FirstTask? (Taskld (n))
THEN db WIiTH [(k)
ELSE IF CTTest? (Taskld (n))
THEN db WITH [(k)
ELSE IF (NoPr—k
= 0) THEN db ELSE

AddTask(n, k+1, k+1,
db)
ENDIF
ENDIF
ENDIF

MEASURE NoPr — k&
END nextfit

task assignment, PresentK,
(k > MinNoPr A k& < NoPr A k = PresentK))),
db: Processor database) :

:= (db(k) U {n})]

= (db(k) U {n})]

3.4 Putting Components Together to Formalize FTRMNF

The building blocks specified earlier can be used to specify the FTRMNF protocol. This

process is done by importing the formal theories in the FTRMNF protocol specification in

PVS. In this section we explain the FTRMNF protocol specification.

60

3.4.1 Verifi cation and Analysis of FTRMNF protocol

The task , rate montonic, RMNF and primary backup theories are imported and utilized
in the FTRMNF specification. We emphasize that the FTRMFF and FTRMNF protocols

differ only in the allocation methods, the other strategies are essentially the same.

3.4.1.1 Formalization of Schedulability Criteria

The primary and backup tasks should satisfy a certain criteria in order to be scheduled. The
following denotes the schedulability criteria of the task set:

Let the sets primary(P;) and backup(P;) represent the primary and backup copies as-
signed to processor P;. Let recover(P;, P;) represents the union of two sets, namely
activeRecover(P;, Py) and passiveRecover(P;, Py), where these sets consist of the active
and passive copies, respectively, assigned to P; such that their primary copies are assigned
to Py. The function ¢(k, t) gives the overall number of requests of a backup copy S during
[0,].

o Let o = primary(P;) U active(P;) be the set of periodic tasks given in priority order
which are assigned to processor P;. All the periodic requests of tasks in o will meet the

deadlines iff

x| min { PICATZAVED czos(k,t)/c} <1
TRED By€o
o Consider any processor P;, and let at time 6 a failure be detected in processor Py.
Let 0 = primary(P;) U recover(P;, Py) be the set of periodic tasks given in priority order
which are assigned to processor P;. All the periodic requests of tasks in o will meet the

deadlines for any 6 iff

61

i Cr [4/Th1 /1 Cro(k,t)/t 3 <1
rktr;ixec 0<T]SHV)¢{Z w [8/T1/ +Z g)/}_

L €q By €0

where V}, is equal to T} for a primary copy or an active backup copy and to By, (recovery
time for the backup copy B;) for a passive backup copy.

In order to extend the completion time test for fault-tolerant version, we consider a task
set which contains both primary and backup tasks which must be scheduled all together
on a single processor. To formalize schedulability guarantees for both primary and backup

tasks, we first specify the notion of the overall number of requests of a backup copy during

[Oat]a ¢(k: t):

[t/Tx] if By is active
olk,t) = 1 if By is passive and t < By

14+ [(¢— By)/Tx] if By ispassive and t > By

Here, By, is the recovery time of a task. We formally represent ¢(k, t) as follows.

Time_to_recover (taskid: task id) : real =
Period(AnyTask(taskid)) — CWork (taskid)

No_Of backup_requests (taskid: task id,

((num: task assignment | Taskld (num) = taskid)) ,time: posreal) : posnat =
IF TaskStatus (num) = active
THEN ceiling (time/Period(AnyTask(TaskId(num))))
ELSE IF TaskStatus (num) = passive
THEN

62

(IF time > Time to recover (Taskld (num))
THEN

1 + abs(ceiling((time — Time_to_recover(TaskId(num)))/
Period (AnyTask (Taskld (num)))))
ELSE 1
ENDIF)
ELSE 1
ENDIF
ENDIF

Essentially, based on the insights gained in next fit theory to calculate cumulative work
done, we calculate the work done by both primary and backup copies scheduled on a pro-

cessor over a time interval [0, ¢]. Below, W1 is the work done by a primary and W2 is that

of by backup copies.

TaskiD: task id

t1, ta: VAR nat
ta, tb: VAR nat
n: task assignment

Wi (t1, t3) : RECURSIVE real =
IF (t; > t)
THEN 0
ELSE IF (o = %)
THEN Execution { AnyTask (TaskiD))
ELSE

(Execution(AnyTask(TaskiD)) x ceiling(t2/Period(AnyTask(TaskiD))) + W (¢1, t2 — 1))
ENDIF
ENDIF
MEASURE (i)

Wo (ta, tb) : RECURSIVE real =
IF (ta > tb)

63

THEN 0
ELSE IF (tb = ta)
THEN
Execution (AnyTask (TaskiD))
ELSE

(Execution(AnyTask(TaskiD)) x No_Of backup_requests(Taskld(n), n, tb)+
Wo(ta, tb—1))
ENDIF
ENDIF
MEASURE (tb)

TotalWork Pri_bac (¢, o) : real = Wi(ty, to)+ Wal(t:, t2)

Now, we formalize CTTs for no-fault and one-fault cases. For these CTTs, we utilize
Boolean expressions FTRMNF non_faulty? and FTRMNF one_fault? that basically check
for schedulability of tasks on a processor belonging to non-faulty group and one-faulty

group, respectively.

time0, timel: nat
ins: TaskInstance

FTRMNF non faulty? (j: Processor) : bool =
(V ((number: task assignment | (number € NonFaultyGrp(j)))) :
TotalWork Pri_bac (timeQ, timel) < 1)

NoFaultCTT? (n: task assignment, j: Processor) : bool =
NonFaultyGrp (j) = (singleton(n) U NonFaultyGrp(j)) D
FTRMNF non_faulty? (5)

FTRMNF one fault? (j, f: Processor) : bool =
(V ((n: task assignment | (n € OneFaultyGrp(j, f)))):
TotalWork Pri_bac (time0, timel) < 1)

OneFaultCTT? (n: task assignment, j, f: Processor): bool =
OneFaultyGrp (j, f) = (singleton(n) U OneFaultyGrp(j, f)) D
FTRMNF one_fault? (j, f)

In order to assign a particular task under FTRMNF policy, we have divided the as-

64

signment process into three functions that for each primary, active and passive backup.
We make our decision on an assignment based on three boolean functions, namely Prima-
rvADD, ActiveBacAdd, and PassiveBacAdd that inturn utilize NoFaultCTT and OneFault-
CTT.

f: Processor

NoPr: TYPE+ = posnat
MinNoPr: TYPE+ = posnat

Pr AX: AXiOM NoPr > MinNoPr

PrimaryADD? (n: task assignment, k: Processor) : bool =
NoFaultCTT?(n, k) A OneFaultCTT?(n, k, f)

add pri (n:task _assignment, ((k: posnat|k > MinNoPr A k& < NoPr)), db:
Processor database) :
RECURSIVE Processor database =

IF PrimaryADD? (n, k)

THEN db wiTH [(k) := (db(k)U {n})]

ELSE IF (NoPr—% = 0) THEN db ELSE add pri(n, k41, db) ENDIF

ENDIF

MEASURE NoPr — k

ActiveBacAdd? (bk: backup task, k: Processor) : bool =
NoFaultCTT? (bk, k) A OneFaultCTT? (bk, k, pro(bk))

add_act (((n: task assignment | TaskType (n)
= backup)),

((k: posnat | k£ > MinNoPr A k < NoPr)),
db: Processor database) :
RECURSIVE Processor_database =
IF ActiveBacAdd?(n, k)
THEN db wITH [(k) := (db(k)U {n})]

ELSE IF (NoPr—% = 0) THEN db ELSE add act(n, k+1, db) ENDIF
ENDIF
MEASURE NoPr — k

PassiveBacAdd? (n: task assignment, k: Processor) : bool =
OneFaultCTT? (n, k, pro(n))

65

add_pas (n:task assignment, ((k: posnat|k > MinNoPr A k& < NoPr)),db:
Processor_database) :
RECURSIVE Processor database =

IF PassiveBacAdd? (n, k)

THEN db WITH [(k) := (db(k)U {n})]

ELSE IF (NoPr—k = 0) THEN db ELSE add pas(n, k+1, db) ENDIF

ENDIF

MEASURE NoPr — k

db: Processor_database

j, k: VAR Processor

To add a set of tasks including both primary and backup, we utilize the function Ad-
dTaskN which adds these tasks to the processor database. This function inturn calls add _pri,

add_act and add_pas for each task type as discussed earlier.

AddTaskN (n: task assignment, ((k: posnat | k£ > MinNoPr A k£ < NoPr)),
db: Processor_database) :
Processor_database =
IF TaskType(n) = primary
THEN add pri(n, k, db)
ELSE IF TaskStatus (n) = active

THEN add act(n, kK, db) ELSE add pas(n, k, db) ENDIF
ENDIF

Anytask: task vector

3.4.1.2 Verifi cation of the FTRMNF specifi cation

The using of the different theories of allocation and scheduling to build up FTRMNF alloca-
tion and scheduling policies are verified by theorems formulated in the FTRMNF module.
The following properties are verified:

1) The tasks added to the processors in the database should follow the rate monotonic

66

principle. The following theorem verifies this property.

TestDbl : THEOREM
V (n:task assignment, ((k:Processor | k>MinNoPrA k& < NoPr—1)),
(db: Processor_database | db = AddTaskN(n, k, db)), Taskld: task id) :
(Taskld (n) = b2n((n € db(k)))) D
(task_priority (Taskld) > task priority (TaskId+ 1))

2) To provide fault tolerance a faulty processor running the primary task should result in

the backup task getting active. The following theorem verifies this property in the FTRMNF

specification.

TestDb2: THEOREM
V (n: task assignment, ((k: Processor | k£ > MinNoPr
Ak < NoPr—1)),
(db: Processor_database | db = AddTaskN(n, k, db)), Taskld: task id) :
(Taskld (n) = b2n((n € db(k))) A
(TaskType (n) # primary) D
(TaskType (n) = backupA TaskStatus (n) = active)

3) The backup should be in a running state only when it is active. Passive backup cannot

execute. This theorem verifies this property.

TestDb3: THEOREM
V (n: task assignment, ((k: Processor | k >

MinNoPr A k < NoPr—1)),

(db: Processor database | db = AddTaskN(n, k, db)), Taskld: task id) :
(Taskld (n) = b2n((n € db(k))) A

67

(TaskStatus (n) # active) D

(TaskType (n) = backup A TaskStatus (n) = passive)

3.4.1.3 Verification of FTRMNF: Results

The three theorems discussed earlier utilize the previously defined theories in order to be
proven. The three theorems were proven successfully and the proof summary in the mech-

anized proving using PVS is illustrated below:

Proof summary for theory FTRMNF

No Of backup requests TCCl....proved - complete(0.49s)
L G proved - complete(0.19s)
WL TCC2. . ittt i iiieieeeanenn proved - complete(0.03s)
W2 TCCL.......oviiiiinn... proved - complete(0.12s)
add pri TCCl.................. proved - complete(0.28s)
add pri TCC2.................. proved - complete(0.73s)
add pri TCC3.................. proved - complete(0.22s)
add act_TCCL.................. proved - complete(0.75s)
add act_TCC2................. proved - éomplete(O.ZBs)
add pas TCCL..........c.uun..n proved - complete(0.87s)
add pas_TCC2.................. proved - complete(0.20s)
AddTaskN TCCl................. proved - complete(0.16s)
TestDbl TCCL......coviiviennn. proved - complete(0.20s)
TestDbl. ... ieennnennan proved - complete(3.01s)
TestDb2. proved - complete(0.93s)
TestDb3....... ... proved - complete(0.88s)

Theory totals: 16 formulas, 16 attempted, 16 succeeded (9.29 s)

Grand Totals: 33 proofs, 33 attempted, 33 succeeded (16.80 g)

68

We have demonstrated that the reusing of the previously specified building blocks for
FTRMFF can be reused to specify a related protocol FTRMNF. The main objective was
to show the reduced effort in formalization process. The FTRMNF protocol belongs to
the same category (dependable periodic task scheduling and allocation) as the FTRMFF.
We next demonstrate that a development of a library can minimise the effort in analyzing
other scheduling protocols too. In the next chapter, we discuss a dependable aperiodic
task scheduling and allocation protocol, and demonstate how the theories that have been

developed so far can be reused to reduce the effort in the analysis and verification.

69

Chapter 4

Formal Analysis of Dependable
Aperiodic Task Scheduling and

Allocation Protocol

We emphasize on the concept of reuse to reduce the effort in protocol analysis and verifica-
tion. The earlier chapter demonstrated the concept of reuse by utilizing the building blocks
of the FTRMFF protocol to specify and verify the FTRMNF protocol. In this chapter we
first introduce the dependable aperiodic scheduling and allocation protocol as described in
[Ghos1997b]. We then identify the building blocks of the protocol and finally reuse the

previously defined components to specify and verify the protocol.

70

4.1 Dependable Aperiodic Task Scheduling and
Allocation Protocol

Due to the critical nature of tasks in a hard real-time system, it is essential that every
task admitted in the system completes its execution even in the presence of faults. The
scheduling protocol presented in [Ghos1997b] aims to achieve that. The protocol uses the
primary backup approach where the backup task activates whenever the primary task fails.

The protocol proposes to schedule multiple copies of dynamic, aperiodic, nonpreemp-
tive tasks in the system, and uses two techniques called deallocation and overloading to
achieve high acceptance ratio which is the percentage of arriving tasks scheduled by the

system.

4.1.1 Building Blocks of the Aperiodic Task Scheduling and

Allocation Protocol

In Chapter 2 we had discussed the various building blocks present in all dependable schedul-
ing protocols for multiprocessor systems. We describe the different building blocks with

respect to the aperiodic task scheduling algorithm.

1. System model: We consider a multiprocessor network of processors connected via a
shared memory. The tasks are independent in nature so there are no dependency and

precedence rules considered.

2. Failure model: We limit our present failure modeling of the scheduling protocol to

fail stop condition only.

71

3. Scheduling : We use a simple slack based dynamic scheduling algorithm in the im-
plementation for aperiodic tasks done by us in this thesis. The slack is present to

tolerate faults as well as ensure a high acceptance ratio.

4. Resource Allocation: Resource allocation to a task is the most critical task in any ape-
riodic task model. To ensure that the resource is allocated to the maximum number

of tasks that arrive two methods have been proposed:

(a) Backup overloading which involves scheduling of more than one backup in the

same time slot on a processor.

(b) Backup deallocation which reclaims the resource which was reserved by the

backup task once the corresponding primary task completes it execution.

5. Fault tolerance: The fault tolerance in the scheduling and allocation protocol in-

volves the primary backup approach.

After describing the various building blocks for the fault tolerant real time scheduling pro-

tocols we discuss the specification of these components and verification of the protocol in

PVS.

72

4.2 Formalization of the Components of the Dependable
Aperiodic Task Scheduling and Allocation Protocol

We formally specify the components of the aperiodic task protocol in PVS. The specifica-
tion of the components characterizes the working of the components in an abstract manner.
We use theorem proving to ascertain the correctness of theories in each of the components.
It should however be noted that our emphasis lies on reuse of the previously developed
theories in the specification of this protocol.

We identify two components which require to be modeled

4.2.1 Formalization of Task Model

We begin with formally specifying the task model that has been used in the development
of formal specification. At first we define types that are going to be used in formally spec-
ifying the attributes of a task set. We define fask_property as a record type containing task
arrival time, task ready time, task start time, Task end time, deadline, maximum compu-
tation time, task window, execution time and phase. This record is assigned to a task ID
resulting in a task_vector type. We then declare a type to tag a task either as a primary or
a backup as well as characterize a backup task as passive or active. Based on these prim-
itives, we define a record type task_assignment which for each task ID associates its type

(primary or backup) and status as active or passive.

task_model: THEORY
BEGIN

task id: TYPE+ = posnat

73

TBegin: TYPE+ = posreal

TEnd: TYPE+ = posreal

TWindow: TYPE+ = posreal

TArrival: TYPE+ = posreal

TReady: TYPE+ = posreal

TDeadline: TYPE+ = posreal
TMaxComp: TYPE+ = posreal

task type: TYPE+ = {primary, backup}
backup task status: TYPE = f{active, passive, notbackup}
Processor_id: TYPE+ = posnat
Tfreetime: TYPE+ = posreal

task_property: TYPE+ = [# ArrTime:TArrival,
ReadyTime : TReady, BeginTime : TBegin, EndTime : TEnd,
Deadline: TDeadlineMaxCompTime : TMaxComp, TaskWindow : TWindow#]

task vector: TYPE+ = [task id — task property]

task assignment: TYPE+ = [#Taskld: task id,
TaskType: task type,

TaskStatus: backup task status #]

Next, we declare a Processor type. Every processor has an account of the free time avail-

able in it. AllocateProcessor defines a task assignment on a processor. Another key type

definition is that of Processor_database which provides a set of tasks assigned on a pro-

cessor. We also initialize the processor database.

ProcessorProperty: TYPE+ = [# freetime: Tfreetime #]

Processor Vector: TYPE+ = [Processor id — ProcessorProperty]

74

AllocateProcessor: TYPE = [task assignment — Processor id]
processor_assignment: TYPE = [set([task assignment]]
Processor _database: TYPE = [Processor id — processor assignment]

Initialise database: processor assignment = emptyset [task assignment]

After having defined these basic types, we next formalize various constraints on task
characteristics. The constraints are implemented by using axioms. The different axioms

are:
o The begin time should always be less than or equal to the end time of the taskssin_Max_4x)
e The deadline of the task should always be less than the ready time of the task(Deadline_ready)

e The task window is defined as the time between the ready time of the task and the
deadline of the task(win)

AnyTask: task vector
Taskldl: VAR task id
TMin_Max_AX: AXIOM

V (Taskldl) : BeginTime (AnyTask (TaskIdl)) < EndTime (AnyTask (TaskIdl))
TDeadline ready: AXIOM

V (Taskldl) : Deadline (AnyTask (TaskIdl)) > ReadyTime (AnyTask (TaskIdl))

Twin: AXIOM
V (Taskldl) :

TaskWindow (AnyTask (Taskldl)) =

75

Deadline(AnyTask(TaskId1)) — Ready Time(AnyTask(TaskId1))

It should be noted that the task model formalization cannot be reused because the basic
task set changes from periodic to aperiodic, however the new formalization contains only
the new parameters and constraints for aperiodic tasks added in the exisiting task model

specification.

4.2.2 Formalization of Primary Backup

The primary backup model followed by the dependable aperiodic task scheduling protocol
is same as the model utilized by the dependable periodic tak scheduling protocols. We
reuse the primary backup component which has already been specified earlier.

The primary backup component which was specified earlier is as follows:

PrimaryBackup: THEORY
BEGIN

IMPORTING rate_monotonic
primary_task: TYPE = {n: task assignment | TaskType(n) = primary}

backup task: TYPE = {n: task assignment | TaskType(n) = backup}
T: task vector

m: Tasklnstance

num: VAR task assignment

PR: VAR primary task

BK: VAR backup task

pro: AllocateProcessor

db: Processor database

PBAX1: AXIOM
V (BK, (PR: primary task | Taskld(PR) = Taskld(BK))) :

76

Execution (7 (Taskld (BK))) < Execution (7 (Taskld (PR)))
PBAX2: AXIOM
V (BK, (PR: primary task | TaskId(PR) = Taskld(BK))):
Period (T (Taskld (PR))) = Period (7 (Taskld (BK)))
PBAX3: AXIOM
V (BK, (PR: primary task | Taskld(PR) = Taskld(BK))) :
pro (PR) # pro (BK)
get_status (n: task assignment) : backup task status =
(IF TaskType (n) = backup A
(Period(T (TaskId(n))) — CWork(Taskld(n))) > Period (T (Taskld (n)))
THEN Dpassive
ELSE active
ENDIF)

Pri(j: Processor) : set[task assignment] =

{n: task assignment | (n € db(j)) A TaskType(n) = primary}
Act(j: Processor) : set[task assignment] =

{n: task assignment | (n € db(j)) A TaskStatus(n)
pas(j: Processor) : set[task assignment] =

{n: task assignment | (n € db(j)) A TaskStatus(n) = passive}
Active Recover(j, f: Processor) : set[task assignment] =

{n: task assignment | (n € Act(j)) A (n € Pri(f))}
Passive Recover(j, f: Processor) : set[task assignment] =

{n: task assignment | (n € pas(j)) A (n € Pri(f))}
Rec(j, f: Processor) : set[task assignment] =

(Active_Recover(j, f)U Passive Recover(j, f))
NonFaultyGrp (j: Processor) : set[task assignment] =

{assign: task assignment | (assign € (Pri(j) U Act(5)))}
OneFaultyGrp (5, f: Processor) : set[task assignment] =

{assignl: task assignment | (assignl € (Pri(j) URec(j, f)))}
PBTH: THEOREM

V ((num: task assignment | TaskType(num) = primary)) :
TaskType (num) # backup

END PrimaryBackup

active }

77

Aperiodic tasks are scheduled based on the arrival and deadlines of the task. The tasks
arrive dynamically so schemes like rate monotonic cannot be utilized. This eliminates the
need of a scheduling component in the specification. Besides this, the allocation is also not
formalized separately because the dependable aperiodic task scheduling protocol chosen by
us in the case study has a specific allocation schema for itself. However, as future research

direction we seek to evolve a generic model of the allocation schema for this protocol.

4.3 Putting Components Together to Formalize the
Dependable Aperiodic Task Scheduling and
Allocation Protocol

We utilize the task model component and the primary backup component to formalize the
allocation and scheduling schema of the protocol. The present specification demonstrates

the basic allocation functionality of the protocol.

4.3.1 Task Allocation

The protocol assumes thats the tasks arrive dynamically in the system and are scheduled
non-preemtively as they arrive. The tasks are independent and have no precedence con-
straints. The protocol ascertains that the tasks which can be scheduled in a fault tolerant
manner are only accepted to be scheduled. This is done by formalizing the notion of the
boolean function SparecompTime and PrimaryAdd. These functions values are used to

determine the feasibility of scheduling the task in a processor.

78

FTApSch: THEORY
BEGIN
IMPORTING PrimaryBackup

f: Processor_id

NoPr: posnat

MinNoPr: posnat

Pr AX: AXIOM NoPr > MinNoPr

SparecompTime? (AnyTask: task vector, TaskIdl: task id, AnyProcessor: Pro-
cessor_Vector,

Processidl : Processor id) :
bool =(2 x freetime(AnyProcessor(Processidl)) >

MaxCompTime (AnyTask (TaskIdl)))

PrimaryADD? (AnyTask: task vector, Taskldl: task id, AnyProcessor: Proces-
sor_Vector,

Processidl : Processor id) :

bool = SparecompTime? (AnyTask, Taskldl, AnyProcessor, Processidl)

The next step in the allocation is to assign a processor to the primary task. The primary

task is allocated a processor based on the following constraints:

1. The task is guaranteed to complete if the processor fails at any instant of time.

2. The task is guaranteed to complete even if the backup task’s processor fails , provided

that the primary task’s processor recovers before the failure.

The previously defined boolean functions are utilized to formalize the primary task addition

procedure(add_pri).

79

add pri (AnyTask: task vector, Taskldl: task id, AnyProcessor: Processor Vector,

Processidl : Processor id, n: task assignment,
((k: posnat | £ > MinNoPr A k < NoPr)),

db: Processor database) :
RECURSIVE Processor database =
IF PrimaryADD? (AnyTask, Taskldl, AnyProcessor, Processidl)
THEN db WITH [(k) := (db(k)U{n})]
ELSE IF (NoPr—k = 0)
THEN db

ELSE add pri (AnyTask, Taskldl, AnyProcessor, Processidl,
n, k+1, db)

ENDIF
ENDIF

MEASURE NoPr — k&

The backup task addition is influenced by the following constraints:
1. The primary and backup of a single task cannot reside in the same processor (C4check?)

2. The backup task should also be scheduled based on the SparecompTime and Prima-
ryAdd boolean function

3. If the primary task of two different tasks are scheduled in the same processor their

backups should not be scheduled in a single processor.

The first constraint is satisfied by the primary backup component. The other two con-

traints are formalized below. It should be noted that the active backup scheduling assigns

80

(add_act) two tasks to a processor. This is done to ascertain that the third constraint is

satisfied.

C4check? (AnyTask: task vector, my, mng: task assignment, j: Processor id) :

bool =
(((nq € db(j))) A TaskType(ni) = primary) A

(((n2 € db(j))) A TaskType (np) = primary)

ActiveBacAdd? (Taskldl, k: Processor id, AnyProcessor: Processor Vector) :
bool =

SparecompTime? (AnyTask, Taskldl, AnyProcessor, k)

add act(((ny)), ((ng: task assignment | TaskStatus(ny) = active)),

((k:posnat | k>MinNoPrAk < NoPr)), db: Processor_database,
AnyTask: task vector,j, Taskldl: task id,
AnyProcessor: Processor Vector) :

RECURSIVE Processor database =

IF SparecompTime? (AnyTask,
TaskId1, AnyProcessor, j)

A Cd4check? (AnyTask, ni, ns, 7)
THEN db WITH [(k) := (db(k)U{ni})]
ELSE IF C4check? (AnyTask, ni, na, j)

THEN db WITH [(k) := (db(k)U {n2})]

ELSE IF (NoPr—%k = 0)
THEN db
ELSE add act(n;, ng, k+1, db, AnyTask, j,

TaskIdl, AnyProcessor)

ENDIF

ENDIF

ENDIF

81

MEASURE NoPr — &

Finally, we specify the passive backup addition process (add_pas) which is done simi-

larly as the active backup addition process.

PassiveBacAdd? (Taskldl, k: Processor id, AnyProcessor: Processor_Vector) : bool=
SparecompTime? (AnyTask, Taskldl, AnyProcessor, k)

add pas(((n1)), ((ny: task assignment | TaskStatus(ns) = passive)),
((k: posnat | £ > MinNoPr A k < NoPr)), db: Processor database, Any-
Task: task vector,
j, Taskidl: task id, AnyProcessor: Processor Vector) :
RECURSIVE Processor database =
IF
SparecompTime? (AnyTask, Taskld1l, AnyProcessor, j) A
C4check? (AnyTask, ni, ns, 7)
THEN db WITH [(k) := (db(k)U {n1})]
ELSE IF C4check? (AnyTask, ni, na, j)
THEN db wITH [(k) := (db(k)U {ns2})]
ELSE IF (NoPr—k = 0)
THEN db
ELSE
add pas(ni;, ne, k+1, db, AnyTask, j,
TaskIdl, AnyProcessor)
ENDIF
ENDIF
ENDIF
MEASURE NoPr— k&

We next specify a task addition function AddTaskN which adds the primary tasks to the
task database.

AddTaskN (AnyTask: task vector, Taskld, TaskIdl: task id,
AnyProcessor: Processor Vector,
p: Processor_id, ((n: task assignment | TaskType(n) = primary)),
((k: posnat | k£ > MinNoPr A k < NoPr)),
db: Processor_database) :
Processor_database = add pri (AnyTask, Taskld, AnyProcessor, p, n, k,db)

82

4.3.2 Verifi cation of the Dependable Aperiodic Task Scheduling and

Alocation Protocol

Using of the different theories to specify the dependable aperiodic task allocation and
scheduling policies are verified by a theorem formulated in the FTApSch module. The
following property is verified:

1) The backup task becomes active only when the primary task fails. The following
theorem verifies that whenever a primary task is executing the backup does not start run-

ning.

CheckBack: THEOREM
V (AnyTask: task vector, TaskId: task id, Taskldl: task id,
AnyProcessor: Processor Vector,
n: task assignment, mng: task assignment, k: Processor id,
({(p: posnat | £ > MinNoPr A k < NoPr—1)),
((db: Processor database
|db = AddTaskN (AnyTask, TaskId, TaskId1l, AnyProcessor, k, n,
p, db))),
TaskId: task id, AnyProcessor: Processor Vector) :

(Taskld (n) = b2n((n € db(k))) A TaskType(n) # primary) D
(TaskStatus (n) # passive)
4.3.2.1 Verifi cation of Dependable Aperiodic Task Allocation and Scheduling Proto-

col: Results

The two theorems discussed earlier utilize the previously defined theories inorder to be
proven. The detailed proving is shown in A The theorems were proven successfully and

the proof summary in the mechanized proving using PVS is illustrated below:

Proof summary for theory FTApSch

add pri TCCl.................. proved - complete (0.33s)
add pri_ TCC2.................. proved - complete (1.14s)
add pri TCC3.........cvvun.nn proved - complete (0.24s)
add_act TCCl.................. proved - complete (0.96s)

add act TCC2............00.... proved - complete (0.29s)

add pas TCCl......cvvvivennennn proved - complete (0.91s)
add pas TCC2.........ivvnnnn proved - complete (0.26s)
CheckBacCK.....oooiiininenennn. proved - complete (0.40s)

Theory totals: 8 formulas, 8 attempted, 8 succeeded (4.53 s)
Grand Totals: 9 proofs, 9 attempted, 9 succeeded (4.54 s)

We have demonstrated that the previously specified building blocks for FTRMFF pro-
tocol which is used to allocate and schedule periodic tasks, can be reused to specify another
scheduling protocol for aperiodic tasks. The main objective was to show the reduced effort
in formalization process and in turn propose a library of components that form the basic
building blocks of scheduling protocols which can be reused to verify and specify all fault
tolerant real time allocation and scheduling protocols. In in the next chapter we present the

discussion that follow from this thesis.

84

Chapter 5

Discussions and Conclusions

Present day embedded systems are becoming increasingly dependent on large and complex
real time scheduling protocols whose malfunctioning could have serious consequences.
However, the size and complexity of modern day software systems make it almost im-
possible to avoid errors in the specification and implementation of dependable real time
scheduling protocols. Consequently, tools and methods that can improve the specification
and verification process are crucial in the protocol development. Traditional techniques and
tools are not really able to cope with very complex multiprocessor system protocols. This
is even more so the case for real-time systems, where timing aspects add further complex-
ity to the system. Formal techniques which provide a rigorous and traceable framework,
have been used to specify and verify such protocols. However, formal analysis typically
requires intensive effort for both specifying and verifying each specific protocol. Most of
these formal theories for real-time scheduling have been developed without much regard
for their further reuse, and hence, much of formal specifications and their proof constructs
in general are difficult to reuse to verify or analyze similar or related protocols. This, in our

viewpoint, limits the wide acceptance of formal techniques in the design and development

35

of dependable real-time systems.

5.1 Proposed Methodology

We have illustrated how various attributes and associated formal theories of different build-
ing blocks can be utilized in formulating a new protocol. We emphasize that the intent of
our modular approach is to provide for reusability of fundamental building blocks across
protocols. The key idea is that if a library of system/task/fault model and supporting build-
ing blocks can be formulated, then the overall formal models of fault tolerant real time
protocols can get built with an easier and systematic reuse of functions.

We have formalized the FTRMFF protocol and show the viability to perform a rigorous
verification of a moderately complex allocation and scheduling mechanism. Reusing the
building blocks of the FTRMFF protocol, we specify and verify the FTRMNF protocol and
also a dependable aperiodic task scheduling and allocation protocol. We show the rigour-
ness involved in the verfication process by using a mechanized theorem proving mechanism
provided by PVS. We also demonstrate the reduction in effort in the specification and veri-
fication process by reusing the building blocks.

Specifically, we introduce the notion of making a library of building blocks for all fault
tolerant real time scheduling protocols. We also demonstrate the method of deriving the
protocol specification from the building blocks and verifying the protocol in a mechanized
manner using the PVS tool. This would imbibe a great deal of rigorness in the protocol

verification with reduced effort and efficient delivery of the protocol services.

86

5.2 Benefits and Applications

The modular approach for formalization of real time fault tolerant scheduling protocols
proposed in this thesis can be used in various areas involving protocol design and validation.

We next highlight some key applications where this methodology could be used:

1. The set of library components can be used to specify a protocol as demonstrated by
us. A rigorous development of the specifications for the library components would
result in a descriptive specification of the resulting composite protocol. The actual
implementation of the protocol can be obtained by using a tool which can generate

code from the specification.

2. Any protocol resulting from the library complies to the specification prescribed for
it. This protocol can be used as a standard to compare other implementations of the

same protocol and a standard set of test cases can also be generated from it.

3. The other important benefit that has been emphasized throughout the thesis is reusabil-
ity. Any effort done to formally specify and verify a protocol would reduce the effort
to formally verify and specify any other related protocol subsequently designed and

developed.

5.3 Limitations and Improvements

The present implementation serves as a demonstration of the theory proposed by us in
this thesis. We have modeled the protocols in a very abstract manner so as to show the
basic functionalities only. The present implementation does not address many operational

and run time issues present in the actual protocol specification. We have specified only

87

the basic working features to demonstrate our theory. This limits our study to only a few
conformance tests to support the theory proposed by us. The theorems which are used to
do mechanized verification of the specification presently verify the basic conditions only.
However, the same results would follow for a detailed implementation of the protocols.
The present specification can be made more robust by descriptively specifying the com-
ponent features and run time details. We also acknowledge that the effectiveness or generic
applicability of the approach depends on an extensive suite of formal theories covering a

wide spectrum of scheduling and heuristic allocation policies appearing in the literature.

5.4 Future Research Directions

The future research direction would focus into detailed component specification as well as
introducing run time operational features in the specification. We also intend to propose
a methodology for mapping the requirements to a set of rules which could be translated
further into theorems in PVS. We also plan to use this model for diagnosis process, where
the theorem prover could provide inputs to the diagnostic tool to trace out an error.
Specifically, our outlook is to develop a general theoretical framework where one can
potentially plug-in formal theories of a specific scheduling policy, and subsequently per-
form analysis of algorithms which are based on it. We are also looking into parameterizing
these formal theories so that the priority assignment policy, quality-of-service attributes, or
the status (active/passive) of a subset of backup tasks can be passed as a parameter to the

formal theory.

88

Appendix A

Appendix 1

We present the mechanized proof steps for the TestDb1 theorem formalized in the thesis.
For the purpose of brevity in the thesis we limit the detailed mechanized proving description

for only this theorem.

A.1 Proof Steps of FTRMFF

A.1.1 Theorem TestDb1

pvs(9):
TestDb1 :
|__.~.
{1} FORALL (n: task_assignment,
(k: Processor | k >= MinNoPr AND k < NoPr - 1),
db: Processor_database | db = AddTaskN(n, k, db),
Taskld: task_id):
(TasklId(n) = b2n(member(n, db(k)))) IMPLIES
(task_priority(TaskId) < task priority(TaskId + 1))

89

Rerunning step: (lemma "RMA_Orderingrev")
Applying RMA_Orderingrev

this simplifi es to:

TestDb1 :

{-1} FORALL (TaskId1):

Number / Period(AnyTask(TaskId1)) <

Number / Period(AnyTask(TasklId1 + 1))

—

[1] FORALL (n: task assignment,

(k: Processor | k >= MinNoPr AND k < NoPr - 1),
db: Processor_database | db = AddTaskN(n, k, db),
Taskld: task id):

(TasklId(n) = b2n(member(n, db(k)))) IMPLIES
(task_priority(Taskld) < task_priority(TaskId + 1))
Rerunning step: (assert)

Simplifying, rewriting, and recording with decision procedures,
this simplifi es to:

TestDb1 :

{-1} FORALL (Taskidl):

Number / Period(AnyTask(TaskId1)) <

Number / Period(AnyTask(1 + TaskId1))

f——

{1} FORALL (n: task assignment,

(k: Processor | k >= MinNoPr AND k < NoPr - 1),
db: Processor_database | db = AddTaskN(n, k, db),
Taskld: task_id):

(TasklId(n) = b2n(member(n, db(k)))) IMPLIES
(task_priority(Taskld) < task priority(1 + Taskld))
Rerunning step: (grind)

90

member rewrites member(n, db(k))

to db(k)(n)

b2n rewrites b2n(db(k)(n))

to IF db(k)(n) THEN 1 ELSE 0 ENDIF

task_priority rewrites task_priority(TaskId)

to Number / Period(AnyTask(TaskId))

task_priority rewrites task_priority(1 + TaskId)

to Number / Period(AnyTask(1 + TaskId))

MinNoPr rewrites MinNoPr

tol

NoPr rewrites NoPr

to 10

TotalWork Pri_bac rewrites TotalWork_Pri_bac(time0, time1)

to W1(time0, time1) + W2(time0, time1)

FTRMFF non_faulty? rewrites FTRMFF non_faulty?(k!1)

to FORALL (number: task_assignment | member(number, NonFaultyGrp(k!1))):
Wl(time0, timel) + W2(time0, timel) <=1

NoFaultCTT? rewrites NoFaultCTT?(n!1, k!1)

to NonFaultyGrp(k!1) = union(singleton(n!1), NonFaultyGrp(k!1)) IMPLIES
(FORALL (number: task assignment

| member(number, NonFaultyGrp(k!1))):

W1(time0, timel) + W2(time0, timel) <= 1)

FTRMFF one fault? rewrites FTRMFF one fault?(k!1, f)

to FORALL (n: task_assignment | member(n, OneFaultyGrp(k!1, f))):
Wl(time0, timel) + W2(time0, timel) <= 1

OneFaultCTT? rewrites OneFaultCTT?(n!1, k!1, f)

to OneFaultyGrp(k!1, f) = union(singleton(n!1), OneFaultyGrp(k!1, f))
IMPLIES

(FORALL (n: task_assignment | member(n, OneFaultyGrp(k'1,))):

91

W1(time0, timel) + W2(time0, timel) <= 1)

PrimaryADD? rewrites PrimaryADD?(n!1, k!1)

to (NonFaultyGrp(k!1) = union(singleton(n! 1), NonFaultyGrp(k!1)) IMPLIES
(FORALL (number: task_assignment

| member(number, NonFaultyGrp(k!1))):

W1(time0, time1) + W2(time0, timel) <= 1))

AND

(OneFaultyGrp(k!1, f) = union(singleton(n! 1), OneFaultyGrp(k!1, f))
IMPLIES

(FORALL (n: task _assignment | member(n, OneFaultyGrp(k'1, f))):
W1(time0, timel) + W2(time0, timel) <= 1))

FTRMFF_one_fault? rewrites FTRMFF one_fault?(k!1, pro(n!1))

to FORALL (n: task assignment | member(n, OneFaultyGrp(k!l, pro(n!1)))):
W1(time0, timel) + W2(time0, timel) <=1

OneFaultCTT? rewrites OneFaultCTT?(n!1, k!1, pro(n!1))

to OneFaultyGrp(k!1, pro(n!1)) =

vnion(singleton(n!1), OneFaultyGrp(k!1, pro(n!1)))

IMPLIES

(FORALL (n: task_assignment

| member(n, OneFaultyGrp(k!1, pro(n!1)))):

W1(time0, timel) + W2(time0, timel) <= 1)

ActiveBacAdd? rewrites ActiveBacAdd?(n!1, k!1)

to (NonFaultyGrp(k!1) = union(singleton(n!1), NonFaultyGrp(k!1)) IMPLIES
(FORALL (number: task assignment

| member(number, NonFaultyGrp(k!1))):

W1(time0, timel) + W2(time0, timel) <= 1))

AND

(OneFaultyGrp(k!l, pro(n!1))=

union(singleton(n!1), OneFaultyGrp(k! 1, pro(n!1)))

92

IMPLIES

(FORALL (n: task assignment

| member(n, OneFaultyGrp(k!l, pro(n!1)))):

Wl(time0, time1) + W2(time0, timel) <= 1))
PassiveBacAdd? rewrites PassiveBacAdd?(n!1, k!1)

to OneFaultyGrp(k!1, pro(n!1)) =

union(singleton(n!1), OneFaultyGrp(k!1, pro(n!1)))
IMPLIES

(FORALL (n: task_assignment

| member(n, OneFaultyGrp(k!1, pro(n!1)))):

W1(time0, timel) + W2(time0, timel) <= 1)

AddTaskN rewrites AddTaskN(n!1, k!1, db!1)

to IF TaskType(n!1) = primary THEN add _pri(n!1,k!l, db!1)
ELSE IF TaskStatus(n!1l) = active THEN add_act(n!l, k!1, db!1)
ELSE add pas(n!1,k!1, db!1)

ENDIF

ENDIF

Trying repeated skolemization, instantiation, and if-lifting,
Q.ED.

Run time = 2.04 secs.

Real time = 3.44 secs.

93

Bibliography

[A1ti2002]

[Alur1996]

[Ande1982]

[Ande2001]

[Aviz2000]

Altisen K., Goessler G., Sifakis J., Scheduler modeling based on the con-

troller synthesis paradigm, Journal of RTS, No.23, pp.55-84, 2002.

Alur R., Henzinger T.A., Ho P.H., Automatic symbolic verification of em-

bedded systems, IEEE Trans. on SE, 22(3), pp.181-201, 1996.

Anderson T., Lee P.A., Fault Tolerance Terminology Proposals, Proceedings
of the 12th International Symposium on Fault-Tolerant Computing, pp. 29-
33,1982

Andersson B., Baruah S., Jansson J.,Static-priority scheduling on multipro-
cessors, In Proceedings of the IEEE Real-Time Systems Symposium , De-
cember 2001.

Avizienis A., Laprie J, Randell B., Fundamental Concepts of Dependabil-
ity, 3rd Information Survivability Workshop, (ISW-2000) , Boston, Mas-
sachusetts, October 24-26, 2000.

94

[Baru2003]

[Bert1999]

[Brab1999]

[Dert1974]

[Dert1989]

[Dhall1978]

[Dute2000]

[Funk2002]

Baruah S., Goossens J., Rate-monotonic scheduling on uniform multipro-
cessors, Proceedings of the Twenty-Third International Conference on Dis-
tributed Computing Systems, pp. 360-366 (ICDCSO03), Providence, Rhode
Island. May 2003.

Bertossi A.A., Mancini L.V., Rossini F., Fault-tolerant rate-monotonic first-
fit scheduling in hard-real-time systems, IEEE Transactions on Parallel and

Distributed Systems, vol. 10, n. 9, pp. 934-945,1999.

V. Braberman V., Felder M., Verification of real-time designs, LNCS 1687,
pp-494-510, 1999.

Dertouzos M., Control robotics: The procedural control of physical process,

in proceedings of IFIP congress, 1974.

Dertouzos M.L., Mok A., Multiprocessor Online Scheduling of Hard-Real-
Time Tasks, IEEE Transactions on Software Engineering, v.15 n.12, p.1497-
1506, December 1989

Dhall S.K., Liu C.L., On a Real-Time Scheduling Problem, Operations Re-
search, vol. 26, no. 1, pp. 127-140, Jan.1978.

Dutertre B., Formal Analysis of the Priority Ceiling Protocol, Proc. Of

RTSS-21, 2000.

Funk S., Goossens J., Modifying EDF Uniform Multiprocessors, Proceed-

ings of the 14th Euromicro Conference on Real- Time Systems, 2002.

95

[Ghos1997a]

[Ghos1997b]

[Ghos1998]

[Kettl1995]

[Klei1993]

[Krish1997]

[Lee1990]

[Leho1989]

Ghosh S., Melhem R., Mossé D., Fault-Tolerant Rate-Monotonic Schedul-
ing, In Dependable Computing for Critical Applications (DCCA-6), IEEE
Computer Society, 1997.

Ghosh S., Melhem R., Mosse D., Fault-Tolerance through Scheduling of
Aperiodic Tasks in Hard Real-Time Multiprocessor Systems, IEEE Trans.
on Parallel and Distributed Systems, vol 8, no 3, pp. 272-284, 1997.

Ghosh, S., R. Melhem, D. Mossé, J. Sarma, Fault-Tolerant Rate-Monotonic
Scheduling, Real-Time Systems, Vol. 15, Kluwer Academic Publisher, pp.
149-181, 1998.

Kettler K. A., Lehoczky J. P., Strosnider J. K., Modeling bus scheduling
policies for real-time systems, Real-Time Systems Symposium, p 242-253 ,

1995.

Klein M.H., et al. A Practitioners’ Handbook for Real-Time Analysis: Guide
to Rate Monotonic Analysis for Real-Time Systems, Kluwer Academic Pub-

lishers, Boston, 1993.
Krishna C.M., Shin K.G., Real-Time Systems, McGraw Hill, 1997.

Lee P.A., Andersson T. (ed.), Fault Tolerance - Principles and Practice, De-
pendable Computing and Fault-Tolerant Systems Series, Vol. 3, Second edi-

tion, Springer Verlag, 1990

Lehoczky J.,Sha L., Ding Y., The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior. Proc. of RTSS, pp. 166—
171, 1989.

96

[Liul973]

[Liu1999]

[Liu2000]

[Mok1983]

[Owre1995]

[Rand1978]

[Stan1988]

[Sinh1999]

[Sinh2001]

Liu C.L., Layland J.W., Scheduling Algorithms for Multiprogramming in
a Hard-Real-Time, Environment Journal of the Association for Computing

Machinery, Vol. 20, No. 1, January 1973

Liu Z.,Joseph M., Specification and Verification of Fault-Tolerance, Timing

and Scheduling, TOPLAS, 21(1), pp. 46-89, 1999.
Liu J.W.S, Real-Time Systems, Prentice Hall, 2000.

MOK A., Fundamental design problem of distributed systems for the hard

real-time environment, Dissertation M.I.T,Cambridge, May 1983.

Owre S., Rushby J., Shankar N., F. von Henke, Formal Verification for Fault-
Tolerant Architectures: Prolegomena to the Design of PVS, IEEE Transac-

tions on Software Engineering, Vol. 21, No 2, pp. 107-125, 1995.

Randell B., Lee P.A., Treleaven P.C., Reliability Issues in Computing System
Design, Computing Surveys, Vol. 10, pp. 123-165, 1978.

Stankovic J., Misconceptions about real-time computing: A serious problem

for next generation systems. IEEE Computer 21, 10, pp. 10-19, 1988.

Sinha P., Suri N., On the Use of Formal Techniques for Analyzing Depend-
able Real-Time Protocols, In Proceedings of the 20 th IEEE Real-Time Sys-
tems Symposium (RTSS-99), Phoenix, AZ,1999.

Sinha P.,Suri N., Modular Composition of Redundancy Management Pro-
tocols in Distributed Systems: An Outlook on Simplifying Protocol Level
Formal Specification & Verification, Proceedings of ICDCS-21, pp 255-263,
2001.

97

[Vest2000]

[Yama2002]

[Yama2003]

[Yuhul994]

[Zhan2001]

Vestal S., Modeling and verification of real-time software using extended

linear hybrid automata, 5th NASA Workshop, pp.95-106, 2000.

Yamane S., Refinement Theory of Embedded systems based on Hybrid mod-
els. The 2002 IKE, pp.455-461, CSREA Press, 2002.

Yamane, S., Deductive schedulability verification methodology of real-time
software using both refinement verification and hybrid automata, Computer
Software and Applications Conference, COMPSAC 2003. Pages:527 - 533,
2003.

Yuhua Z., Chaochen Z.A, Formal Proof of the Deadline Driven Scheduler,
Proc. of FTRTFT, LNCS-863, pp. 756775, 1994.

Zhan, N., An intuitive formal proof for deadline driven scheduler, Journal of

Computer Science and Technology, v 16, n 2, March 2001.

98

