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ABSTRACT

Space-Time Layered Block Codes:
Bridging the Gap Between Maximum Rate and Full Diversity

by
Patrick Tooher

Impairments found in the wireless channel, such as destructive multipath fading,
cannot be fully addressed by using coding alone, despite its recent advances. Recent
results show that gains in capacity can be obtained by using multiple antenna elements at
the transmitter and the receiver. Instead of mitigating the effects of the multipath fading,
multiple-input multiple-output (MIMO) systems use the rich scattering channel to
increase the capacity at no bandwidth cost. Methods include BLAST, which maximizes
the rate, and space-time coding, which maximizes the diversity.

In this thesis, the fundamental trade-off between rate and diversity is derived for
binary codes, Simple codes that can perform at any realizable rate/diversity are designed.
These codes are referred to as Space-Time Layered Block Codes (STLBC), since they are
in effect a 1-dimensional code layered into a space-time code. By selecting specific 1-D
codes, the required diversity can be achieved at the maximal allowable rate.

In order to detect the new STLBC codes, an iterative MMSE detector is used
jointly with a soft-input soft-output decoder. This detector/decoder uses a principle
similar to Turbo decoding. STLBC codes introduce the concept of coding between
layers, which requires a detector capable of dealing with possibly dependent layers. The

classical multiuser detector is modified to allow for dependence.
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Lastly, techniques to improve the performance of STLBC are presented. These
are based on a new design criterion that ensures codebooks of high average rank, as well

as making certain the information is spread out over the two available dimensions.
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Chapter 1

Introduction

In order to achieve present and future goals in the development of wireless
communications, wireless networks must be capable of high data rate applications rather
than just current voice-based services. Barriers to the development of wireless
communication services include low bit rates, high power consumption and high cost per
bit. To reduce the error rate, the power requirement and the cost per bit, signal
processing methods are applied. These methods can increase future wireless data rates
without expanding the current bandwidth needs.

The two following categories of signal processing are of interest:

* Temporal processing: includes well-studied channel codes, which have recently
been shown to achieve near capacity results.

e Space-time array processing: employs multiple antennas at the transmitter and

the receiver.

In this chapter, these two methods of processing are explained in-depth. Systems

using space-time processing are also introduced.



1.1 Temporal Processing

At its core, temporal processing is the use of redundancy in the data to ensure that
even with the imperfections of the wireless channel, data can be fully recovered. The
most basic of these methods, also very inefficient, would be to transmit the same
information several times until the receiver can reconstruct the data. In 1948 C.E.
Shannon [1] developed fundamental limits on the efficiency of telecommunications over
noisy channels. This theorem states that there exist achievable codes with code rate close
to that of the capacity of the channel, having a probability of error approaching zero. It
was thought to be a purely theoretical limit, until almost fifty years later when codes were
indeed developed to achieve capacity. Forney’s concatenated codes [2] were the first
step in finding a class of codes whose error probability decreases exponentially while the
decoding complexity increases only algebraically. It was also showed that the optimal
decoding method for cascaded codes is a soft-input operation. More recently Turbo
codes [3], which are the culmination of this effort of constructing powerful codes from

simple codes, have been developed.

1.2 Space-Time Processing

Of much greater interest in this thesis is the combination of temporal and spatial
processing. The wireless channel suffers from attenuation due to the destructive effects
of the addition of multipaths in the propagation media and due to the interference of other

users. Error control coding, essentially temporal processing, does not address these



impairments. Space-time processing, which includes space-time coding as a special case,
flips the fading problem on its head. Instead of trying to mitigate the effects of fading and
multiple access interference, the use of multiple antenna arrays at the transmit and receive
sides of a wireless link in combination with signal processing and coding, optimizes the
spectral efficiency by using the effects of fading to its benefit.

The basic model used to analyze a space-time processing system where multiple
antennas are employed at both the transmitter and the receiver is known as a multiple-
input multiple-output (MIMO) system; where the inputs are the transmitter antennas and
the outputs are the receiver antennas.

A MIMO system can be seen as multiple SISO (single-input single-output)
channels and thus its capacity is the sum of the individual capacities of these SISO sub-
channels. Foschini [4] has shown that the capacity over the MIMO fading channel can
grow linearly with the number of transmit or receive antennas. This increase in
performance is achieved by exploiting both the inherent spatial and temporal diversity
related to specific multipath wireless mobile channels.

Diversity at the receiver (a so-called SIMO channel) is a well-studied subject with
a large body of work associated with it [5, 6, 7]. Adding an antenna array at the
transmitter with sufficiently separated elements creates a system with transmit and
receive diversity, producing a multiplicity of sub-channels.

Even though in this dissertation only a single user is considered, the problem of
interference is still prevalent. Namely one must deal with the potentially detrimental
effects of the unavoidable mutual interference among multiple SISO sub-channels of one

MIMO channel. Originally, two main strategies were developed to deal with this



interference: Bell Laboratories Layered Space Time Wireless Architecture (BLAST) and
Space-Time Codes (STC). These two strategies basically exploit, rather than mitigate,

the multipath channels in order to achieve heretofore unknowably feasible high spectral

efficiencies (b/s/Hz).
1.2.1 BLAST
8
Tx Source Vector Encoder VBL A.ST R
U Rich Processing -
m—— Scattering U
- Channel R B
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Figure 1.1. The Block Diagram of a BLAST system.

BLAST [8, 9, 10] takes advantage of the spatial dimension by transmitting and
detecting independent co-channel data streams using multiple antennas. This results in a
system that is bandwidth efficient. Figure 1.1 shows an example of a BLAST system,
where the data from the transmitter is split into multiple substreams which are transmitted
simultaneously via multiple antennas. Since all the substreams are transmitted in the
same frequency band, there is a very efficient use of the spectrum. At the receiver end,
multiple antennas pick up weighted additions of all of the various transmitted substreams.
The differences in each sub-channel’s characteristic (i.e. fading coefficient) allow for the

data substreams to be separated at the receiver end by use of clever signal processing



algorithms. In this way, BLAST systems act very much like multiple-user spread
spectrum systems, where the transmit antennas are analogous to the users and the receive
antennas are analogous to the spread coding gains. Therefore, much like in multiple-user
detection, non-linear sub-optimal detection is used at the receiver end to separate
incoming signals. As mentioned previously, the unavoidable multipaths in a wireless
channel are accordingly exploited by using the spatial dimension to increase the data

fransmission rates.

1.2.2 Space-Time Codes

In BLAST systems, the advantage over using single antenna transmitter and
receiver is that the data transmission rates can be increased dramatically without a need
for higher bandwidth. At the other end of the MIMO spectrum lays space-time codes
(STC). STCs are obtained when coding redundancy is introduced not only over the time
c@omain, but also over the space domain. Coding thus becomes a two-dimensional
problem. Low-complexity codes, such as the one shown in Figure 1.2, were developed at
AT&T Research Labs by Tarokh et al. [11, 12, 13, 14, 15].

The simplest example available of a STC is a two antenna delay diversity scheme.
This is where the data is first encoded with a channel code, which in this case is a
repetition code of length 2. Then the output of the repetition code is sent to two parallel
data streams which are transmitted with a symbol delay between them. A slightly more
complex example of a space-time coding system is given in Figure 1.2 for a 4-PSK 2

b/s/Hz code. In this two transmit and two receive antenna system, the data is encoded



using the 4 state trellis diagram shown in Figure 1.2 (b). The serial to parallel converter
divides the encoded data into two substreams that are each modulated and transmitted via
their own antenna. The decoder is a conventional Viterbi algorithm that computes the

trellis transition path metrics and then makes a decision on the decoded data based on the

minimum accumulated metric.

Y
Tx Source Sl
Rx

U Multipath 0
Channel Serial to Fading Space-Time Space.Time
% Encoder paraliel Channel Demod. Decoder ’

S,

@

000610203

10111213
2021223 (b)

30313233

Figure 1.2. An example of a space-time coded system. (a) Block diagram, (b) Code
trellis.

At the beginning of this section it was mentioned that space-time codes fall at the
opposite end of the MIMO spectrum from BLAST. While BLAST employs the spatial
dimension to increase the data transmission rates of codes, space-time codes employ the
spatial dimension by using its diversity potential and thus improve the performance of

codes at no bandwidth cost.



1.2.3 Full Spatial Diversity

Full spatial diversity is defined as the maximum achievable diversity advantage of
using a MIMO space-time code over the use of a regular SISO temporal code. If a MISO
system is assumed, the » transmit antennas provide n independent paths for the data to
travel to the receiver. If appropriate signal processing is used, it is obvious that this
MISO channels will have a much better error performance than a regular SISO channel.
A full analysis of spatial diversity will be shown later, however a brief overview is now
given. Each possible transmitted signal difference (or signal codeword if the code is
linear) in a modulation is represented in matrix form, where the vertical axis represents

the space dimension and the horizontal axis represents the time (Figure 1.3).

: e
Time axis

time=1 | time=2 | ... | time=/

Space axis  antennal | S Snl . Sna-1)+1

1 _____ antenna2 | S, Sw2 | oo | Swtpez
antenna n Sy Spin ... Sni

Figure 1.3. Space-time codeword.

The rank of this set of complex-valued matrices determines the spatial diversity.
An increase in this rank, that is to say an increase in diversity, improves the error
performance of this code by an exponential decrease of decoding error rate versus signal-
to-noise ratio (asymptotic slope of the performance curve on a log-log scale). In other
words, as the diversity is increases, the asymptotic slope of the performance curve

becomes steeper. If the codeword length / is greater than the number of transmit antennas



n, the maximum possible rank of that matrix is therefore n. In [11], Tarokh shows that
full spatial diversity is obtained if and only if all of the codeword pair difference matrices

exhibit a rank equal to ».

1.2.4 Full Rate

In basic temporal coding, a full rate code is one with no redundancy. That is to
say, every symbol sent is an information symbol and thus the code achieves maximum
data transfer for the allowed bandwidth. This is obviously not the optimal way of
transferring data, as the lack of redundancy can make the number of errors reach
detrimental levels depending at what signal-to-noise ratio the data is being transmitted.
The concept of full rate in a space-time system is of more value. In a space-time system,
the maximum allowable rate when making use of all the available spatial diversity is
known as the full rate. It is interesting to note that regardless of the number of transmit
antennas, the full rate of a space-time system is in fact the maximum data rate allowable
if only one antenna was being used with no redundancy. For example, if a BPSK
modulation scheme is used, the full rate of a space-time code with any number of
transmit antennas », is 1 b/s/Hz. Increasing the number of transmit aﬂtennas will increase
the diversity of the code and not affect the data transmission rate.

On the other hand, BLAST does not try to maximize the spatial diversity potential
obtained by increasing the number of antennas. Therefore, in the context of comparison,
a system, such as BLAST, that does not achieve full spatial diversity can therefore

achieve rate higher than the so-called full rate, up to maximum rate.



1.2.5 Comparison of BLAST with Space-Time Codes

The difference between BLAST and space-time coding is the correlation of
signals across the spatial dimension (i.e. the transmit antennas). The decoding
complexity and performance of space-time codes is similar to regular trellis codes for
AWGN channels if the fading path gains are assumed known at the receiver. On the
other hand, BLAST decoding, while of a similar complexity, is prone to error
propagation. That is the presence of errors in an early stage of decoding is compounded
as the decoding process carries on. In [16], Bevan setup a simulation experiment to
compare the performance of BLAST and space-time codes. For frame size of 400
information bits and a frame error rate of FER=10", the 32 state 4-PSK space-time code

had an advantage of 2-3dB over the BLAST system.

1.2.6 Space-Time Layered Block Codes

In this thesis, space-time layered block codes (STLBC) are presented. These
codes can operate at either end of the rate/diversity optimization curve and any point in
between. They allow for coding between layers, and therefore maximize the spatial and
temporal redundancy for each information bit. STLBC are in effect a superset of all
available MIMO codes, tweaked differently they can provide BLAST codes or space-

time codes. An example of a codeword in an STLBC is given in Figure 1.4.



z‘1 b i8 i4 b, Information bit

i L\ piDli
s .2 .1 G Parity bit
b b

Figure 1.4. Sample space-time layered block code codeword matrix.

1.3 Overview of Thesis

The first goal of this thesis is to produce a simple space-time code that truly
utilizes all the spatial and temporal diversity available, for different rates and spatial
diversity advantages. Unlike BLAST [8] and threaded space-time codes [17], the coding
is not confined to a layer. The coding also serves two purposes, first to ensure a required
diversity level and second to provide error control coding. Coined space-time layered
block codes (STLBC), since it can be thought of as a 1-dimensional block code layered
into a 2-dimensional codeword, this new design provides the freedom to increase the
probability of error performance of BLAST codes, without greatly affecting their data
rates.

The second goal of this thesis is to develop an iterative minimum mean square
error (MMSE) detector based on that provided for multiuser detection by El Gamal [18].
Since in STLBC the coding can be done over layers, the iterative MMSE detector must
therefore be adapted for dependent information.

The last goal of this thesis is to improve the performance the probability of error
performance of STLBC. By better employing the available spatial and temporal

diversity, the performance can be improved.

10



Outline

This thesis is organized as follows. In Chapter 2, an overview of the theory
behind MIMO systems is given. A simple derivation of the increased capacity is given.
In order to show a method of using this increased capacity, it is followed by a study of
the detection of BLAST codes. Next space-time codes, employing full diversity, are
studied. The pairwise probability of error from Tarokh [11] is given, as are the criteria to
develop good codes. The binary rank criterion [19] is provided to help with the algebraic
construction of space-time codes. Lastly, examples of codes combining the added rate
with the added diversity are offered.

In Chapter 3, the trade-off between the diversity and the rate of binary codes is
derived. Next, simple STLBC codes that combine the diversity and rate advantage are
constructed. The detection and decoding of these codes via an iterative MMSE detector
and Pyndiah decoder, is given. The detector is modified to allow for dependent layers, as
is the case with STLBC:s.

In Chapter 4, tools are provided to increase the performance of STLBCs and
specific codes are generated and their performance is simulated. Finally, in Chapter 5,

the conclusion is given, along with further work on STLBCs.
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Chapter 2

Theory of MIMO Systems

In the introduction, the need for MIMO systems, as well as a brief overview of
them, was presented. Most basic concepts of communications are well-studied for SISO
systems; however some need to be adapted for MIMO. In this chapter several theoretic
concepts about MIMO systems are presented in order to fill the gaps left from knowledge
of SISO systems. The outage capacity for fading channels, as developed by Foschini [4],
is firstly presented. Then more technical descriptions of BLAST and space-time codes
are given. The binary rank criterion, as presented by Hammons [19}, is then offered as a
means of simplifying the task of code construction. Finally codes trying to utilize both
diversity gain and rate improvements available in MIMO, such as the threaded

architecture of El Gamal [17] are presented.

2.1 Signal Model

The MIMO system is viewed as a complex baseband model, using a fixed matrix

channel (i.e. quasistatic) with additive white Gaussian noise (AWGN). The channel is

12



fixed for any discrete time, although it is taken to be random. The following variables

also need to be defined:

L 4

There are » transmit antennas and m receive antennas.

The transmitted signal, s(t), is an #-dimensional signal with fixed total power P
regardless of n.
The noise at the receiver, v(t), is a vector of m independent samples of a zero-

mean complex Gaussian random variable with variance N, /2 per dimension.

The received signal, r(t), is an m-dimensional signal with average power P.

. . . . _— P
The average signal-to-noise ratio at each receive branch is given by p = v
0

The matrix channel input response is given by g(t) and its Fourier transform is

G(f). The normalized matrix channel input response is given by A(t) and H(f),

where PV2.G =PV . H .

The basic vector equation describing the channel operating on the signal is thus

given by

r(t)= g(t)* s(t) +v(F). 2.1)

In normalized form and using the narrowband assumption, whereby the channel Fourier

transform G(f) is treated as a matrix constant; the normalized form of equation (2.1) is

given as

@)= (PIP-n))"* -h-s@)+v(1). (2.2)

13



If antenna elements are placed a distance of half a wavelength apart, the path
losses tend to decorrelate [20]. Therefore when both the transmit and receive antenna
arrays are properly spaced out, the Rayleigh model for the mxn matrix H is
approximated by a matrix having the following independent identically distributed (iid)

complex, zero-mean, unit-variance entries:

H, = N(o,yﬁ) +-1 N(o,/ﬁ) and

1H y 12 is a chi-squared variate with two degrees of freedom denoted by 2.

2.2 Capacity of MIMO Systems

Communication is thought of as being a series of bursts. These bursts are
assumed short enough in duration so that the channel remains unchanged throughout their
lengths. The channel is assumed unknown by the transmitter and tracked by the receiver.
By unknown to the transmitter, it means that the realization of H during a burst is
unidentified. The transmitter assumes that the communication is taking place with a
recetver for which a certain m and p are available. These values ensure the transmitter
that the channel offers a certain achievable capacity. However, due to the volatility of the
channel, not all communication bursts are successful. There are some realizations of H
during which the capacity value is too optimistic, and the required bit error rate cannot be
achieved at the chosen transmission rate. Thus there is a channel outage and the channel

is said to be in the OUT state. This leads one to be interested in the capacity that can be

14



attained in a specific percentage of transmissions (for example, one may want the
capacity to be achievable 99% of the time).

In [4] and again in [8], Foschini derives the outage capacity of a MIMO system in
a fading environment. In order to provide the maximum capacity, it is assumed the
transmitted signal vector s(t) is composed of » statistically independent components each
with a Gaussian distribution. The capacity expression can therefore be derived from the
general formula appearing in [21]

det A, -det A,

¢ = log, det4

(2.3)

where A, = E(ss*)=P/n d,, A =E(r*)=N,-1 +P/n-GG*, and A4, = E(uu*)
where u is the n+m dimensional vector (s,r)*. Therefore 4, has A, in the top left corner,

A, in the bottom right corner, 2/n-G* in the top right corner and its complex conjugate
in the remaining comer. The statistical independence between all the components of the
signal vector s and noise vector v led to the simple computation of 4,, 4 and 4, .

The following identity
A C
det =det A-det(D-CA™B)
B D
leads to the required expression for capacity [4], namely

C =log,det[l, +(p/n)-HH*] b/s/Hz. (2.4)

This equation can be simplified depending on whether only receive diversity,
transmit diversity or a combination of the two is used. For example, in the simple case of
optimum ratio combining (n=1 and m=m), the capacity is given as

C =log, |1+ p- 12, |bis/Hz. (2.5)
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The case that is of interest in this dissertation is the case where there are multiple antenna
arrays at both the transmitter and the receiver, and » >m . In such a combined transmit-

receive diversity scheme, the capacity is lower bounded by

C> Slog,fi+(o/m) 23], 2.6)

k=n—~(m~1)

In [4], Foschini shows that if the number of transmit and receive antennas are the
same, namely m=n, as that number increases, so to does the lower bound given in (2.6)
and it does so in a linear fashion. It can therefore be obviously seen that extra capacity is
much easier to exploit using MIMO systems, than it is in SISO systems.

In Figure 2.1, the capacity is given for varying outage probabilities and at varying
signal-to-noise ratios. It is seen that with high » and m, there is little gain in capacity
using a percentile lower than .98. This means that the capacity can be guaranteed for as

much as 98% of the time, while barely affecting its value.

PROBABILITY OF EXCEEDING ABSCISSA

o 1“}.
& 6

CAPACITY [N BITS PER SECOND PER HERTZ PER DIMENSION

Figure 2.1. Capacity: Complementary Cumulative Distribution Function (in
b/s/Hz/dim.).[4]
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Figure 2.2 shows the improvement in capacity achieved when the number of
antenna elements at both the transmitter and the receiver are increased. As expected from
the capacity equation, there is a linear relationship between the capacity and number of

transmit/recetve antennas.
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Figure 2.2. a) Capacity in b/s/Hz vs. number of antennas. b) Capacity in
b/s/Hz/dimension vs. number of antennas [8].
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2.3 BLAST Revisited

In [8], Foschini demonstrates how the newfound capacity of MIMO systems can
be exploited by using a layered architecture, called BLAST, for Bell Laboratories
Layered Space-Time. This architecture, introduced in the previous chapter, uses the
same number of transmit and receive antennas and it can achieve the lower bound on
capacity values. In BLAST, the transmission is performed by demultiplexing a data
stream into » data streams of equal rate. These data streams are encoded, and the encoder
on each stream does not need to share any information with any encoder on another
stream. At this point there are two ways to proceed: in D-BLAST, the bitstream/antenna
association is periodically cycled, whereas in the simpler V-BLAST, each bit stream is
assigned an antenna for the duration of the transmission. D-BLAST ensures that no
substream is a victim to the worst of the n paths; however it also increases
implementation complexities.

Theoretically, maximum-likelihood detection would be the optimum way of
recovering the transmitted data at the receiver. But the complexity of such a system
increases exponentially with the number of transmit antennas used. Therefore, the
detection of BLAST is very similar to that encountered in the multiple access detection
world. It is first assumed that the receiver knows the H matrix, due to some training
phase that is considered already completed. The main idea behind the detection of
BLAST systems is interference nulling. That is to say the interferers that have not yet

been subtracted out must be nulled out when detecting each layer.
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Figure 2.3. Transmission patterns in layered architecture. a) Diagonal BLAST (D-
BLAST). b) Vertical BLAST (V-BLAST).

Layers previously detected and
canceled

Layer presently being detected

. Layers nulled and to be detected next

Figure 2.4. BLAST detection using nulling approach.

Figure 2.4 helps to understand the idea of the subtracting and nulling of layers

when detecting BLAST. The layers before layer a have been previously detected, then
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reconstructed and subtracted from the received signal, those coming after a are thus
nulled and a can be detected.

Using this detection method, it can now be seen through a simple example, as
given in [8], that these codes achieve the lower bound on capacity given in Eqn. (2.6).

Assuming n=m=4, in decoding the first layer, all three other layers interfere, therefore

C =log,Ji+(p/4)- 22,
The first layer can now be reconstructed and removed, hence stopping it from causing
interference on the other layers. The second layer is therefore interfered by two signals,

thus

C=log,[t+(p/4)- 23],

The next layer has 1 interferer as the other two signals have been subtracted out,
C= Iogzll+ (p/4)-;(62].

For a system that is cycling equally among these four conditions, the capacity would be
< 2
C=/4)Y log,fi+(pr4) 22
k=]

The ability to use all six systems simultaneously, as given by the use of multiple antenna

elements, yields a capacity of

4
C =Y log,[i+(p/4)- 23],

k=1

which is the minimum outage capacity as provided by Eqn. (2.6).
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Nulling and Canceling

Next, the concept of nulling and canceling are explained in-depth as they are of
significant importance to this thesis. In [9, 22], the formal algorithm is given as the

following.
At time k, in the first decoding step (=1), let H \=H and 7 =n;.
In each step i, the nulling matrix G; is calculated as the pseudo-inverse of H -

G =H=HA)'H!, 2.7)
where H” denotes the complex conjugate transpose of 4. Each line of G; can be used
to null all but one transmitted signal. Since any layer can be chosen as the first layer to
detect, the idea arose that there may be a preferred ordering. It was shown in [22] that it
is good to start with the layer showing the biggest post-detection signal-to-noise ratio. In

order to do so, the detector chooses the row of G; with minimum norm and defines the

corresponding row as the nulling vector in this step:

. 2
k, = argmin [(G),[", (2.8)
Jje{l,..n-i+1}
w, =(G,)y, - 2.9)

Multiplying w, with the vector of the received signal 7 suppresses all layers but the one
transmitted from antenna k; and the scalar decision value is thus given by,

5 =wlF (2.10)
Next the k;i-th layer is detected within the constellation C:

5 = argmin[§ - 50| @2.11)

SeC
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Once one layer has been detected, the detection process can be improved for
ensuing layers. By subtracting the part of the detected signal from the vector of received
signals, the number of layers to be nulled out in the next step is decreased. The received

vector becomes,

T =F —§&(H,)" (2.12)

and within the channel, the k-th column (ﬁ,.)"’ is no longer necessary and thus
eliminated,

H,=H" (2.13)

The process is then restarted until all the layers have been detected, namely when

i=n. Theoretically, at each step, the number of effective signals to be detected is reduced,

while the number of receive antennas remains the same. The diversity level of the

resulting system should then increase from layer to layer. However, one of the main

impediments to the overall performance of BLAST is error propagation. As shown in

Figure 2.5, errors that occur in the early stages of detection propagate into the later stages

and negate the effect of the apparent increase in diversity.
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Figure 2.5. BLAST performance with error propagation.

In order to deal with this problem, Baro [23] proposes replacing the zero-forcing
(ZF) nulling criterion by a more powerful minimum mean-square error (MMSE)
algorithm. In MMSE the detector not only nulls out the interferers, it also takes into
account the noise level in the channel. This is a double-edged sword, since the receiver
must therefore estimate the SNR. The algorithm is the same as that explained above,

save for modifying the cancellation matrix to
0,2
G =H"H+—=2)"H", (2.14)
o,
where 62 /o) denotes the signal-to-noise ratio. Figure 2.6 shows the improvement of
BLAST detection when using an MMSE algorithm rather than the ZF algorithm. In the

mid-range SNR it can be seen that the enhancement is at its premium, since there is an 8

dB gain at BER of 10~ when comparing ZF to MMSE with both using signal ordering.
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Figure 2.6. Comparison of ZF and MMSE detection, with and without ordering of the
signals, n=m=4, QPSK modulation, V-BLAST architecture.

2.4 Simple Transmit Diversity Scheme

As previously mentioned, BLAST employs the capability of the MIMO channel
by sending as much information in substreams as possible. This method does not provide
for a proper use of the newly acquired spatial diversity. In [24], Alamouti expands on the
notion of the classical maximal-ratio receive combining (MRRC) scheme. Figure 2.7
shows the baseband representation of a two branch diversity scheme. It has two transmit

and two receive antennas.
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Figure 2.7. Two-branch transmit diversity scheme with two receivers.

The signal transmitted from antenna 0 is denoted by s, and from antenna 1 by s;. During
the following time interval, the signals — s, and s, are transmitted from antennas 0 and 1
respectively. The encoding is thus done in space and time.
The received signals are expressed as

ry = Hyys, + Hys, +v3

’30 = "HooS: + HmS; + Vlo

ry = Hyysy + Hy s, +v,

R =-Hygs; +H,s, +v, (2.15)
where r is the receive symbol at antenna i and time ¢ and Hj is the channel matrix

element for the subchannel from transmit antenna i to receive antenna j. The combiner in
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Figure 2.7 builds the following signals to be used in a maximum likelihood decision rule

[24],

So=Hety +Hyr” +Hyord + H, 1"

S, =Huyty —Hon” +H\ry —H, 1" (2.16)
Assuming PSK signals, the maximum likelihood decision rule for § ; 18 to pick s, if and
only if

d*(5,,s,)<d*3,,s,), Vizk. 2.17)

j

Alamouti [24] shows that using this scheme of two-transmit, two-receive antennas
yields an improvement of about 15 dB at BER of 10” over a system with no spatial
diversity. Also it is shown that with the increase in the number of antennas, comes a
higher potential for spatial diversity and so the asymptotic error performance curve’s

slope becomes steeper.

2.5 Space-Time Code Design Criteria

Space-time codes were developed to take advantage of the diversity provided by
increasing the number of transmit and receive antennas. If information is just separated
into substreams without specific formation, there is no way to ensure that the spatial
diversity will be fully exploited. Just like other forms of diversity, spatial diversity is
where replicas of the transmitted signals are provided to the receiver in the form of
redundancy; in this case, redundancy in the spatial domain.

In [11], Tarokh provides the designer with the goals and the tools to achieve those

goals, in order to take full advantage of the possible spatial diversity offered by MIMO
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schemes. The method used to achieve these design criteria is by analyzing the
probability that codeword e¢=c|c}..clc)cl..cl..clc?..c! was sent and that instead

codeword e=e,e]..ejejel..e]. . elel. e was erroncously detected from the maximum

likelihood detector. The system model is slightly modified from the previous section. In
order to ensure the average energy of the constellation is 1, it is contracted by /E, . The

following equation expresses the signal observed by antenna j at time ¢,

7 = H, s JE, +v) 2.18)

=
where I<t</and 1< j<m.

Assuming that the channel characteristics are known, the probability of
transmitting ¢ and receiving e can be approximated by the standard approximation of the
Gaussian tail function

Ple—>e|H,,i=12,.nj=12.,m)<exp(-d*(c,e)E,/4N,) (2.19)

where N, /2 is the noise variance per dimension and
2

(2.20)

S H,c -e!)

=1

d*(c,e) = iz

J=1 t=1

For the case of Rayleigh fading, the upper bound on the average probability of

error is thus obtained as

1

- E
I;II(1+ A %No)

Plc—>e)<

(221)

where 4,’s are the eigenvalues of
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1 [

t=1
It is interesting to note that a square root of the A(c,e) matrix is the codeword difference

matrix defined as

€ —C €70 € —C
2 2 2 2 2 2
el-ct el-c el -c;
B(c,e)=| " 2
n n n n
€ —C € ~—C - € —(

The average probability of error can be further reduced to [11],

Ple—>e)< (f[ A J—m(E% N )'dm 2.22)
i 0
where d is the rank of the matrix A(c.e), which is also the rank of B(c,e). The diversity
advantage of the system, which is the power of SNR in the denominator of the expression

for pairwise error probability, is dm. While the coding advantage, defined as the measure

of the gain above an uncoded system operating with the same diversity advantage, is
given by (4,4,..4,)"¢.

The above pairwise error performance analysis leads to the two following design

criteria for quasistatic Rayleigh flat fading STCs as stated in [11]:

-The Rank Criterion: In order to achieve the maximum spatial diversity nm, the codeword
difference matrix B(e,e) has to be of full rank for any codewords ¢ and e. If the minimum
rank of all the realizations of the matrix B(c,e) is d, then a diversity of dm is achieved.

-The Determinant Criterion: If a diversity of dm is targeted, the minimum dth roots of the

sum of determinants of all dxd principal cofactors of A(c,e) taken over the set of all
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pairs of dissimilar codewords ¢ and e corresponds to the coding advantage. This quantity
must be monitored for all codewords e and ¢ when designing an STC system, and
maximizing it is the objective. If a diversity of nm is targeted, then the minimum of the
determinant of A(c,e) taken over the set of all pairs of dissimilar codewords e and ¢, must
be maximized.

A designer would choose to first optimize the diversity advantage before tackling
the coding gain, since the diversity advantage determines the asymptotic slope of the
performance curve, while the coding gain merely shifts it left.

The rank criterion remains the same when the fading is possibly dependent.
However there is a penalty in the coding advantage. One other noteworthy case is where
there is rapid fading, namely where the fading does not remain constant during one

transmission block. In this case the system equation is given by

v’ =Y H,Os\E, +v/ (2.23)

i=1
This results in a loosening of the limitations of the design criteria. Namely the rank
criterion, now named the distance criterion, only requires that codewords ¢ and e be
different for at least w values of 1 <7 </ in order to achieve a diversity of wm. While the
determinant criterion, now named the product criterion, requires that the minimum of the

products

[Tk, -ef’ (2.24)

tev(c,e)
where v(c,e) denotes the set of time instances where ¢, e, taken over dissimilar

codewords ¢ and e must be maximized.
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2.6 Binary Rank Criterion

The diversity and coding advantage criteria developed by Tarokh in [11], create a
fundamental difficulty, despite facilitating the task of a designer. As they are offered, the
criteria apply to the complex domain of baseband modulated signals, rather than to the
binary or discrete domain in which codes are traditionally designed. In [19] Hammons
and El Gamal present a binary rank criterion which satisfies the more general rank
criterion given by Tarokh, but also simplifies the task.

In the rank criterion derived by Tarokh, the sign of the differences between
modulated codeword symbols is important. It is difficult to see how that information is
retained in the binary domain. The following definition given in [19] helps to mitigate

the problem.

Definition: In BPSK modulation, two complex matrices r; and r; are said to be (-1)-
equivalent, if r; can be transformed into r, by multiplying any number of entries of r; by
powers of -1.

In BPSK modulation, the discrete alphabet is the field F={0,1} of integers modulo
2. The following theorem, given in [19], is presented without proof and logically leads to

the binary rank criterion.

Theorem: The nx! (I 2 n) binary matrix ¢=[¢, ¢,...c,]" has full rank » over the binary
field F, if and only if every real matrix r =[7 7,...7,]" that is (-1)-equivalent to ¢ has full

rank »n over the field R .
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The binary design criterion for linear space-time codes, as proposed by

Hammons, now follows directly:

Binary Rank Criterion: Let C be a linear nx/ space-time code with />n. If every
nonzero binary codeword ¢ € C is a matrix of full rank over the binary field F, then, for

BPSK transmission, the space-time code C achieves full spatial diversity.

It is necessary to note that codes that satisfy the binary rank criterion are a subset
of codes that satisfy the complex domain baseband rank criterion. This criterion is of
utmost importance to this thesis, as it is with it that all future codes are designed. Using
the binary rank criterion, one can now easily develop algebraic code designs for which
full spatial diversity is effortlessly verified. Linear codes are assumed in the previous
theorems; however, one can easily extend to non-linear codes provided the results are not
applied to the codewords, but to the modulo 2 differences between the codewords.

Hammons proceeds to develop simple code design rules for STCs to achieve full
spatial diversity. The stacking construction is a simple technique that allows for the
analysis of the spatial diversity of rigorously studied classical codes. Letting Ty, T», ...,
T, be linear vector-space transformations from F* into F*, and letting C be the nx/ space-

time code of dimension consisting of codeword matrices

L, (%)
T,(%)

.
.

7, (%)

(%) = (2.25)
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where X denotes a k-tuple of information bits and / >n. Codebook C satisfies the
binary rank criterion, thus achieving full spatial diversity », if and only if T, T5, ..., Ty
have the property that

Va,,a,,...a, €F:
T'=al,®a,1,®---®a,T, isnonsingular, unless

a=a,=-=qa _=0.

r

2.7 Space-Time Codes

With the rank criterion developed, the design of STCs is made much easier.
There have been several types of codes that have been designed to achieve full diversity.
Tarokh [11, 14] developed both trellis and block codes that ensure full diversity. The
trellis codes developed are superior in that they always achieve full diversity at full rate
and they are defines by a set of rules that allow for the design of other codes. On the
other hand, the block codes designed don’t all have full rank at full diversity. For
example, in [11], Tarokh presents STCs with #=2 which achieve diversity advantage by
following two design rules:
Design Rule I: Transitions departing from the same state in the trellis, differ in the
second symbol (namely the symbol transmitted via antenna 2).
Design Rule 2: Transitions arriving at the same state differ in the first symbol (namely the
symbol transmitted via antenna 1).

These simple rules lead to a whole class of trellis STCs that achieve full diversity.

The one thing that links both the trellis codes with the block codes is their decoding
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algorithm. Since these codes achieve full diversity, at best they will attain full rate; a fact
that will be fully explained later. A code with full rate has as an interesting side-effect: it

is simple enough to be decoded using a maxim likelihood decoder.

The trellis codes use the branch metric for transitions labeled g)q”---q" (where

g, represents the symbol sent at time ¢ by transmit antenna /) given by

(2.26)

rtj _iqu:

i=l

>

J=i

The Viterbi algorithm can then be used to calculate the path with the lowest sum of
branch metrics.

On the other hand, the block codes’ receiver computes the decision matrix

l m n 2
Do =D Hye (2.27)
t=1 j=i =1

over all possible codewords c|c}---cl'cicZ---c] -+ c;ct+++c, and decides in favour of

the codeword that minimizes it. Figure 2.8 shows a typical trellis representation for

trellis STCs and a generator matrix for block STCs, as designed by Tarokh.

00010203
10101213
20212223

30313233

(@
» * * *
X, —X, =X, —X, X, —X, —X, —X,
* * * *
Gy=lx, % X -x x x X, —x|(b)
* * * *
Xy =X, X, X, X, —-X, X X

Figure 2.8. (a) Space-time trellis code with n=2 and full rate, (b) Space-time block code
with #»=3 and rate %.
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Other codes have been designed using the binary rank criterion proposed by
Hammons [19], one such code is the space-time turbo code presented by Su [25]. A

simple rate=1/3 turbo code can be written as

X (D)
c=|  X(DGD) | (2.28)
27 (2(X(D))G(D)

where X(D) is some information bit stream, G(D) is some generator polynomial and 7(-)
is a bit permuter. The third row of the codeword ensures that no information bit stream
can create a codeword that does not achieve full rank. The permuter is randomly chosen,
but must also be made to satisfy the binary rank criterion.

Several other schemes combining turbo coding with space-time coding have been

constructed. For a review of such codes, the reader is encouraged to see [26].

2.8 Adding Diversity to Layering

The early promise of MIMO systems showed the dramatic increase in capacity,
and thus potential data rate, afforded in such a system. BLAST was the first method
proposed to take advantage of such capacity. However, some shortcomings were present
with BLAST, namely error propagation and the lack of employing spatial diversity to
improve the error performance. Space-time codes, providing full spatial diversity, were
then introduced. The problem with STCs was that while they improved the error
performance of codes, they did so while not increasing the data rate of regular SISO

codes. Researchers then began trying to combine the two, in order to obtain a code that
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would increas4e the transmission rate, while still using some of the newly available

spatial diversity.

2.8.1 Combined Array Processing and Space-Time Coding

The main drawback in layering of data to be transmitted in MIMO systems is the
diversity of the first layer decoded must be maximized in order to reduce the error
propagation. In [15], Tarokh developed codes that combined the use of the layering
approach with the use of space-time codes. Similar to H-BLAST, layers are not spread

out among different antennas. However, each layer is now associated with one of the g

g
groups of »; antennas, where Zn,. =n. The input bits are divided into ¢ strings. Each of

=1
these strings is encoded using a space-time encoder C;, the output of which goes through
a serial-to-parallel converter providing n; sequences of symbols simultaneously
transferred from the »; antennas in the j-th group (where 1< j < q). The set of g space-
time encoders work in parallel on the same wireless communication channel, and each is

received by the same m receive antennas.

-
Eama STC Decoder
ormati Rich Eman
Ms,,m:m : Scatt:ring T G:_oup STC Decoder Data Sink
Dermux Wireless i Mux e
TC | ¢

Suppressor and
Channel Canceller

Speem STC Decoder

Figure 2.9. Combining layering with space-time codes.
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The decoding in this scheme is similar to that used in BLAST. The receiver
detects C; by using group interference suppression. It is then decoded by its constituent

STC decoder. After decoding, the codeword is then cancelled from the over-all received

signal, thus resulting in a system with » —Zn , transmit antennas, but still m receive
j=l

antennas. Assuming the codes are decoded correctly, the diversity gain afforded to each

j=1
constituent code is n, x(n, + Zn ; +m—n), which increases as the number of layers is
j=1

cancelled out. As with regular BLAST, the problem of error propagation is very present
in this scheme, and the assumption that the diversity increases with each detecting step is

purely theoretical.

2.8.2 Threaded Space-Time Architecture

The problem with the Tarokh scheme is that it does not provide uniform
performance from one space-time code decoder to the next. In [17], E1 Gamal proposes a
system that under ideal interference cancellation assumption, can achieve the maximum
possible spatial and temporal diversity. In this so-called threaded space-time architecture
(TST), the encoding, interleaving and distribution of the symbols for each layer, among
different antennas, are made to maximize the use of temporal and spatial diversity for a
given rate, if it is assumed there is no interference from other layers. Each layer uses
each of the » transmit antennas and each of the / transmission time periods, an equal

amount of time. A simple example of such a system is given in Figure 2.10.
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Figure 2.10. Simple TST architecture.

The construction of TST codes is one which allows several degrees of design
freedom. One can choose to maximize either the diversity of the system or the
throughput, or some combination of the two. In a system with a signaling constellation
of size 2°, L is considered a layer of the code that has a spatial span of n. The binary
matrices M;, M,, ..., M, with dimension k x bl/n. The binary code C of dimension k is

that which contains all the codewords of the form g(¥)=3M, |XM, |---| XM, where
X is any k-tuple of information bits. The spatial modulator f; has the property that XM,

is transmitted in the //n symbol intervals of L that have been assigned to antenna i. This
layer therefore can achieve a spatial diversity of dm, if and only if d is the largest integer

such that My, M, ..., M, have the property that

Va,,a,,-,a,eF,a +a,++a,=n-d+1;

M=[ aiM &M, ... a,M,] is of rank k over the binary field.

The maximum rate of transmission for TST systems with component codes achieving d-

level transmit spatial diversity, is given as b(n-d-1) b/s/Hz.
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The decoding of these codes is done by using an iterative multi-user detection
type of receiver that employs the minimum-mean square error (MMSE) criterion. This

detector will be further explained in the next section.
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Chapter 3

Space-Time Layered Block Codes

In this chapter a new code using the advantage of MIMO channels is presented.
This new form of coding, labeled Space-Time Layered Block Codes (STLBCs) aims to
connect the two extremes that are full diversity space-time codes which maximize the
diversity advantage, and BLAST codes, which maximize the throughput advantage.
Other codes have been designed to employ both the diversity and multiplexing gains
offered by MIMO, namely the so-called threaded space-time architecture presented by El
Gamal [17]. The STLBCs presented in this paper provide more freedom of design and
can thusly be better used to compare the performance of a wide variety of design
objectives. In this chapter the inherent relationship between spatial diversity and rate is
analyzed. Next the space-time layered block code design is presented. The sub-optimal
non-linear iterative detector and decoders are then presented. Finally the performance of

this iterative detector and decoder is analyzed.
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3.1 The Trade-off Between Rate and Diversity

Up to this point the innate relationship between rate and diversity has been
implied but not explicitly defined. The relationship between the rate of a code and its
spatial diversity is inversely proportional. It is because of this that one cannot choose to
optimize both diversity advantage and rate. Some codes have been designed to attempt to
bridge the region where both diversity and rate are increased to a level superior to that
offered by SISO systems. However these codes are either modified versions of pre-
existing space-time codes or they impose design limitations. The combined array
processing with space-time coding presented by Tarokh [15] requires a number of
transmit antennas that is d times the total number of layers, given that each layer is sent
as an independent space-time code. The threaded space-time architecture proposed by
EL Gamal and Hammons [17] offers a better analysis of codes that are designed to
operate between the full diversity and maximum rate. However, the design developed

yield a code that is not very flexible in terms of the code parameters. For example, the

ratio of b% must be a whole number. In other words, in a binary system where b=1, the

length of the codeword must be a multiple of the number of transmit antennas used.

In this thesis, codes that have no parameter restrictions, other than those imposed
by the rate and spatial diversity trade-off, are studied. Before presenting the codes, the
relationship between rate and diversity is analyzed.

In [11], Tarokh a general equation showing the relationship between rate and

diversity, namely
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< log|4,. (n,d)]

l 4.1 (3.1)

where A4,,(n,d) is the maximum size of a code length » and minimum Hamming

distance d defined over an alphabet of size 2. While general and all-encompassing, this
relationship does not provide an explicit relationship between the rate R and diversity d.
In order to provide a linear equation representing their relationship, the simple case of
binary coding, b=1 is used. By making this restriction, the binary rank criterion [19] can
be used.

Firstly, the diversity d of codes that do not achieve full diversity must be defined.

Binary codebooks are defined as a set of linear binary codeword matrices

7(x)

T,
y=f@®)= zfzg)

(3.2)
T,(x)

where T, are linear vector-space transformations from F* to F", and y is an nx!/

codeword matrix from codebook I'.
The binary codebook I' achieves diversity d if and only if d is the largest integer such

that

Va,,a,,..,a,€{0,1};a,+a,+..+a,<d
I'=al,®a,l,®---®a,l,+0 unless g, =a, =--=a, =0. (3.3)
The proof of this assertion is given in two parts. First, it is assumed that the codebook T’
achieves rank d. By the binary rank criterion, it therefore also achieves diversity d. It is

also assumed that 7T =q7 ®a,l,®D---Da,T, =0 for some realization of
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Va,,a,,..,a,€F,a +a,+..+a, <d. In this case there exists a nonzero information

sequence x; such that
I'(x;)=ali(x;)9a,],(x,)®-®a,l,(x,)=0.
In other words, there exists a linear combination of e<d rows of y(x ,) that is

dependent. By hypothesis, codebook I" achieves rank d, therefore @, =a, =---=a, =0.

n

Conversely, if all the realizations of 7 =a,7, ® 4,7, ®---®a,T, # 0, but there is a
codeword y(x;)el which does not achieve a rank of d, then there exists
a,,a,,...,a, € F where a, +a, +...+a, # 0 for which there is a realization of
T(x))=a(x,)®a,T,(x,)®®a,Tl,(x,)=0.

Since 7 is defined as nonsingular, the only possible option is that x ;=0 and y(x,) is

the all zero codeword matrix.

With the explicit definition of the diversity of a codeword given, it is now
possible to derive the relationship between the rate and the diversity. In order to achieve
a diversity advantage of d, the codeword matrix must have d independent rows.
Assuming a direct layering of information bits and parity bits, a system that will be
explored further in the remainder of this thesis, the codeword matrix can be visualized as
in Figure 3.1.

Clearly rows that are filled completely or partially with parity bits can be made to
ensure that no linear combination of other rows produces it. On the other hand, there is
no control over rows filled with information bits. For example, in BLAST, the codeword

matrix is filled with information bits i. It is possible to have codewords where all three
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annon

Figure 3.1. Layered codeword matrix.

rows of a codeword are the same, namely a string of bits that repeat every / bits.
Therefore the diversity of this code is given as d=1. The rows including parity bits are
therefore those that control the rank of the matrix. The rank of the matrix is defined as
rank =n+1-rows,, 3.4
where rows; is the number of rows in the codeword matrix where information bits i are
located. As defined previously, the rank of the matrix is also the diversity d. The rate of a

codeword is defined as being

rate=R = 3.5

k
/
where k is the number of information bits, » is the number of transmit antennas and / is
the length of the codeword. The number of information bits lies within the range

(rows, —1)l <k <rows/] . 3.6)
Substituting for rows; in (3.6) produces

(n-d)l <ks(n-d+1)l. 3.7
The number of information bits is obtained from the rank ask = R/, and substituting it in
(3.7) yields,

n-d<R<n-d+1, 3.8)

the relationship between the diversity and rate of an STLBC.
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The trade-off is plotted for n=3 transmit antennas in Figure 3.2.

35
: i
3 e

25

|

diversity d

08!

Figure 3.2. Diversity versus rate in a binary space-time layered block code with n=3.

3.2 Space-Time Layered Block Codes System Design

In this thesis a code that has no specific design parameter constraints is proposed.
This STLBC also can be used to analyze any possible combination of diversity and rate
that is achievable.

The codes presented herein will all be binary and use BPSK modulation. This
allows for the use of binary rank criterion to be used to develop proper encoders. The
STLBC is defined as a binary encoder, a mapper from the binary field to the {-1,1} field

and a serial-to-parallel spatial modulator. The information bits, x = (x,x,..x,) where
x, € {0,1}, are separated into & bits to be encoded by the STLBC encoder. The design of
these encoders will be presented later. The output of the encoder is a Ixnl vector y
7; €{0,1}, basically a SISO codeword. This codeword is then mapped from the binary

field into the {-1,1} field, creating codeword ¢ a vector of size 1xn/. The final step in
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the generation of STLBCs is to convert the 1-dimensional codeword vector into a 2-

dimensional codeword matrix. The serial-to-parallel spatial modulator thus converts the
Ixnl codeword vector ¢ into an nx/ codeword matrix s, where s; € {-11}. Note that

the subscript j is not used to represent a time index, but rather a codeword index, the
transmitted codeword matrix s uses the time index ¢ as each column of the matrix are
transmitted simultaneously. Figure 3.3 shows the block diagram of the STLBC
transmitter. Figure 3.4 shows the layout of a simple and typical codeword as it is

generated in the transmitter

< L
Information Bits Encoded Bits Serial-to- Transx‘mn(ed sxlg)nal
—————%  STLBC Encoder {0.112{1,1} Parallel s: (nx
x: (xk) 7: Qxnl) Mapping ¢ (Ixnl) Mil;:‘l‘ﬂl f -1}
Y !
x, e{0,1} 7, €401} ¢, e{-L1} ator

Figure 3.3. Space-time layered block code (STLBC) transmitter block diagram.

{0,1}>¢-1,1}

Encoder
CL) G o= 000 O] B — O T
k nl

}, Cnl

Serinl-to-Paralle} Spatial

Modulator i A K -
iy i
e
InBNn
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Figure 3.4. Space-Time Layered Block Code (STLBC) encoder structure.
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3.3 Detection and Decoding of STLBC

Unlike Tarokh’s space-time codes [11], the codes presented in the previous
section can achieve greater rate than full rate. Therefore, much like BLAST (8],
maximum likelihood detection is impossible as its complexity increases exponentially as
the multiplexing advantage is increased. In BLAST, the detection is done using nulling
and canceling. However, a much more powerful detector is one where space-time
processing is formulated as a joint multiuser detection and decoding problem. Unlike
BLAST and TST layering [17], the coding of the previously designed STLBC, is done
both temporally and spatially. Therefore the information in each layer is not
independent, and all layers must be fully detected before decoding can begin. In other
words, it is akin to a multiuser detection problem where the users’ data have some
dependence. The turbo processing principle [27] can be used efficiently to allow trade-
offs between complexity and performance. The block diagram of the iterative receiver is
shown in Figure 3.5. In this block diagram, the SISO multiuser detector module provides
soft-decision estimates of the n streams of data. The detected streams are multiplexed
and decoded in one channel decoder. After each decoding iteration, the soft output from
the channel decoder is used to refine the processing performed by the SISO multiuser

detector. In this section, the multiuser detector and the channel decoder are examined.
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Figure 3.5. Iterative Multiuser detector for layered space-time signals.

3.3.1 The Iterative Minimum Mean Square Error (MMSE) Detector

There have been several SISO multiuser detection algorithms providing a tradeoff
between complexity and performance, presented in literature. Some based on the
maximum a posteriori (MAP) criterion [28, 29], while others on the MMSE criterion [18,
30]. In this paper, the iterative MMSE receiver, as presented for code-division multiple
access (CDMA) systems by El Gamal [18], will be used and modified to take into
account the dependence between the layers. In this scheme, the soft outputs of the
decoder are used after each iteration to update the a priori probabilities of the transmitted
symbols. These probabilities are used to calculate the conditional MMSE filter feed-
forward and feedback weights. This detector is similar to that used in BLAST, in that the
feedback represents the subtractive interference cancellation part of the receiver, while
the feed-forward weights suppress the residual interference.

The received signal can be expressed in vector notation as

r=Hs, +v, 3.9
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where 7, is the mx1 received vector at time ¢, H, is the mxn complex channel matrix,

s, 1s the nx1 transmitted vector of encoded bits at time ¢ and v, is the white Gaussian

noise vector. The estimate of the ith antenna symbol at time ¢, ¥y, is given by (the

subscript ¢ is omitted for convenience)
. T AT ntnis
yO =wl rewl® 50 (3.10)

)

. « . . 1 a(nli
where w’ is the mx1 optimized feed-forward coefficients vector, w)’ and §'”

are the

(n—-1)x1 vectors of optimized soft feedback weights and hard decision on the (n-1) bits
from the other antennas, respectively. The second term of the addition in Eqn. (3.10)
only appears through its sum; therefore it can be replaced without repercussions by a

single coefficient that represents the sum of the coefficients,
w = w30, (3.11)
The values of the feedback and feed-forward coefficients are obtained through
minimizing the mean square error ¢ between the true value of the symbol and its estimate,

e= B[y - )]
=E[(wPr+w) —s®)] , (3.12)

= E[(_“_}g) {_fi(i)s(t) + H(n/i)g(n/i) + z}+ Wg) _ S(i))Z]
where H' is the mx1 complex channel vector of the ith transmit antenna, namely the ith

column of the H matrix, #'” is the mx (n~1) matrix made up of the complex channel

vectors of the other n-1 transmit antennas; and s/

is the (n-1)x1 vector of
transmitted data for the other n-1 transmit antennas. The MMSE solutions for the feed-
forward and feedback have to satisfy the following conditions as obtained from standard

minimization techniques:
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Es"T H(n/i)TE(fi) +w® =0 (3.13)

) T ) . AT T
{ﬂ(l)ﬁ(l) +H(n/z)E[§("/')§("/') ]H(n/r) +E[!XT]}E(;)

(3.14)
+HOPES" ) = H®
where
Epyy'1=0!1,, (3.15)
E[s""]=5"" (3.16)

and o’ is the white noise variance, I is an identity matrix of order m; $' is the

(n-1x1 vector of the expected values of the transmitted symbols from the other (#-1)
antennas.

The a priori probabilities used to evaluate the expectations are obtained from the
previous iteration’s channel decoder soft output

_ ot
P(s; =1)=1-P(s; =-1)=

— (3.17)

where 4, is the extrinsic information corresponding to the symbol transmitted at time ¢

through antenna i. The results of the detector are thus summarized by the following

equations given in [18]

A=HOFO" (3.18)
B=H"DE[s™) "0 T (3.19)
F=H®g00 (3.20)

R =021, =N,

v omxm

(3.21)

mxm

and
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w? =H®"(4+B+R +FFT)" (3.22)
f v

w? =-w'F. (3.23)

The Correlation Matrix of Expected Values

In a system without encoding over the layers, the assumption that the transmitted

bits at time ¢ from different layers are independent holds. In this case,

B[S 5" 1= Ly oy ~Diag@E"F )+ 505 329)
However, in the design presented in this thesis, coding over the layers is possible.
Therefore, the independence assumption does not hold and the expectation of the
multiplication of two transmitted bits does not equal the multiplication of the expectation.
In this case, the E[s""” g‘"“)T] matrix depends on the specific code used to generate the
STLBC. Since coding is done over both space and time, the complexity of calculating
E[s“?s"'""] is of order 2*, where k represents the information size of the codeword.

Using the properties of the expected value, a simple method arises to solve this
complexity issue.

Suppose the following quantity is to be calculated Efc,c,], where ¢, and ¢, are
the {-1,1} mapped version of parity check bits x, and x,, where x, € {0,1}. Assuming
x, and x, are dependent, the expectation can therefore be rewritten as,

Elcic,] = E[(2x, ~1)(2x, -1)] = 4E[x,x,] - 2E[x,]- 2E[x,] +1. (3.25)

The parity check bits can be written from their information bits as
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x=ADB (3.26)
x,=ADC (3.27)
The A part denotes the modulo-2 sum of information bits that are common to both parity

bits, while B and C denotes the modulo-2 sum of information bits uncommon to the

parity bits. Replacing the x’s with their component bits into Eqn. (3.25) yields the

following,
4E[xx,]=4E[(A® B)Y(A® C)] =4E[A'BC + AB'C'] (328)
= 4[P,P,P. + P,P,P.]
= 2E[x,]=-2E[A® Bl =-2E[4AB+A4'B}= -2[P,P, + P, P;] (3.29)
- 2E[x,]=-2E[A® C] = -2E[AC'+A4'C)=-2[P,P.. + P, P.] (3.30)

where 4' is the inverse of 4, P, = P(4=1), P, =P(A=0) and P, + P, =1. The total
sum to solve for the expectation in (3.25) is given by
Elcic,]1=AP;P, - 2P, - 2P +1. 331
It is interesting to note that the common part 4 plays no role in determining the expected
value. The expectation can be further reduced as follows,
Elcic,| = 4P F, = 2P, ~ 2P, +1=(1-2P,)(1-2F.). (3.32)
In order to continue the analysis of the expected value, it is now assumed, without loss of
generality, that C=0. In other words, all of the uncommon terms between the two parity

bits occur in the parity check equation for x,. In this case, 2. =0 and (3.32) becomes

Elcc,]=(1-2P,). (3.33)
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The probability P, is dependent on the terms that make up B.  Letting

B=b®b,®..0©5,, the solution to the expected value can be solved for the two

possible cases, where p is odd and where p is even.

Case 1 (p is even):
In this case, the information bits in B can be separated into two groups, yielding the
following,
B=D®E=DE+DE. (3.34)
The value of the probability P, can be determined from P, and P, as:
Py =P, P+ PPy =P, + P, -2P,P,. (3.35)
Therefore the value of (1-2P;) can be solved as a function of only P, and P,, namely
1-2P, =1-2(P, + P, -2P,P,)=(1-2P,)1-2P,). (3.36)
If p>2, then the values of P, and P, can be decomposed similarly to that of P, until
the probabilities used are those of the information bits themselves. This leads to a final

solution of

1-2P, = (1-2P,)(1-2P,)..(1~ 2P, ). (3.37)

Case 2 (p is odd)
This case is similar to case 1, save for the first step. In this step, the random variable B is
decomposed as follows:

B=D®E®b,=b,DE+b,D'E'+b,'D'E +b,'DE" . (3.38)

Using the same method as in case 1, P, is determined from P,, P, and B, :
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P, =P, +P;+P, =2P,P, ~2P,P, ~2P,P, +4P,P.P, (3.39)

and

1=2P, =1-2(P, + Py + B, =2P,P, 2P, ~2F,F, +4F,P,F, )

(3.40)
=(1-2P,)1-2F)(1-2F,)

As in case 1, the probabilities P, and P, can be further deconstructed, until arriving at

the information bit probabilities, thus again yielding (3.37).

Lastly, the expected value can be reduced further by noting that
E[bj']=—E[bj]=—(2ij -D=(0-2F,). (341)
Therefore the complexity of the calculation for the expected value E[c,c,] is reduced

from exponential to linear and the final solution is given by

Elcc,]= ﬁE[bj'] (3.42)

J=1
where information bits b, are the p bits not common to the parity check equations for x,
and x,, in other words they are not the bits that create the dependence. Knowing the

generator matrix of the space-time code, and the expected values of the information bits,
the correlation matrix of expected values can be easily filled with low complexity

equations,

3.3.2 Decoding of STLBC

As detailed in the previous section, the detection and decoding of the STLBC is

done in a turbo-like iterative manner. Therefore the decoder has to be capable of
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inputting soft-inputs and outputting soft-outputs. The decoder used in this design is
based on the Chase algorithm [31] as modified by Pyndiah [32] to produce soft-outputs.

Using maximum likelihood decoding, the decision codeword ¢ is given by
g=c'iflr-c| <lr-c/|’ ie[2t], i (3.43)
where g, and ¢ are vectors of length 1xnl , ' is the ith codeword of C and
e =30, -1y (3.44)
=1

is the squared Euclidean distance between r and ¢’. Using an exhaustive search for the
optimum codeword g is computationally demanding, so Chase [31] proposed a
suboptimal algorithm of low complexity. The main idea behind this algorithm is that at

high SNR, the optimal solution satisfying the ML criterion lies in a sphere of radius
d i, —1 centered on y=(yy,...,yu), where y=0.5(1+sgn(r;)). Note that the mapping from
{0,1} > {-1,1} is not performed on y. The number of codewords used in (3.43) can be
reduced to only those in the sphere of radius d_;, —1 centered on y. The set of reviewed

codewords can be further reduced by taking only the set of the most probable codewords
within the sphere. There are several ways of constructing this set, however the most

efficient is as follows. First the positions of the p =|d, /2| least reliable bits of y are

determined using . These least reliable bits are obtained using the log-likelihood ratio

LLR=A(y ) =In| o =+Hr)) (2 345
= (yj)-nm —(;‘;)",: (3.45)

namely, those producing the lowest magnitude of the received data, lrj] . Next, a set of

test patterns 7¥ are formed by constructing all the nl-dimensional binary vectors with a

single “1” in the least reliable positions and “0” in all the other positions, two “1”s in the
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least reliable positions and “0” in all the other positions; the set includes all such
codewords up to one having p “1”’s in the least reliable positions. The test sequences z°,

where z7 =y @17, are decoded using an algebraic decoder and the codewords and the

codewords ¢” are added to the subset. The decision codeword ¢ is then obtained by
mapping the set of ¢” to {-1,1} and using the minimum Euclidean distance decoder in
(3.43). The reliability of this decision codeword must be computed in order to generate
the extrinsic value needed to update the a priori probabilities used in the MMSE detector.

The probability of the decision g; is defined using the LLR of the transmitted

symbol s;,

(3.46)

A(qj)zln(w],

Pi(s, = -1} r)

Note that unlike in (3.45), (3.46) takes into account that g can only be one of the 2*

codewords of C. The numerator and denominator can therefore be rewritten as

Pr(s, =+1|r)= D> Pr(s=c"|r) (3.47)
Pr(s, ==1|r)= > Pr(s=c'|r) (3.48)
dery?

where T j“ is the set of codewords {c} such that c,=+1 and TJ.‘l 1s the set of codewords

{c'} such that c; =-1. Using Baye’s Rule and denoting the codewords that achieve

1

minimum Euclidean distance to » with either +1 or -1 atj as ¢"'? and ¢”’?, the following

is obtained,

24
(r=c 2 =|r—c ) 4 In| e (3.49)

S5 |

i

A(g;) = 70
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where

(2 e i (2
A,.=exp(“ c | 2" c| )slwithc’eTj” (3.50)
20
and
A UD 2 i g2 ,
B,.:exp('r c 2’ lr-c| )slwithc’eTj". (3.51)
g

For high SNR, o — 0, therefore ZA, ~ ZB, — 1, hence an approximation for the

1

LLR of decision d; is given by [32]
, 1 s TG
A(qj =——~—2 z(lr—cl‘” P ~|r=c?® *). (3.52)

This equation can be rewritten as

: 2 &g
A(qj)=—;2—(rj+ Zrucul(’)pu}=/\(yj)+ﬂj (3.53)

u=lu#j

where

U

0. if ¢ =i
{ > G T =G (3.54)

L if ¢ 2 7D
The LLR A'(q,) is thus the soft-output of the decoder while A, is the extrinsic value
used to update the a priori probabilities of the MMSE detector.

In order to compute the reliability of the decision d; at the output of the soft-input

decoder, two codewords, ¢*'” and ¢ are needed to be included in Eqn. (3.52). The
decision g obtained from the Chase algorithm is clearly one of the choices, while the
second codeword can be labeled as ¢. The codeword c is basically a competing codeword

to g with ¢, # q,. The soft output can be rewritten from (3.52) as
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v lr=cl—lr-q|
A(qj)—( 202 qu (355)

The competing codeword c is found by increasing the value of the least reliable bits p,
and hence the number of test patterns, used in the Chase algorithm. Since the decoder’s
complexity increases exponentially with an increase in p, a practical limit is placed on p.
This limit creates the possibility that a competing codeword may not be found by the
Chase algorithm. In this situation, Pyndiah proposes that in the case where a competing
codeword could not be found, the following be used,
A'(q,)=pxq, with §20. (3.56)
The values of B are determined to increase as the decoding steps increase; in other
words, the reliability on those bits increases with each iteration.
The block diagram for the combined iterative MMSE detector with Pyndiah
decoder is given in Figure 3.6. A scaling of a(/), where j represents the iteration step,
can be used on the extrinsic information. This is done to limit the effect of the extrinsic

information on the detector, in the early iterations, when the extrinsic information has

high variance.

Channe! State Information
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Soft Decoded Output
. A@): (xnd)
: (nxD) -
y Ag)yem Hard Decoded Output
Received Signal MMSE y,eR - Hard Decision
Multi Multiplexer Pyndish Decoder X (Ixk)
r: (mxl) Detector N
ven x; €{01}
T Extrinsic Information
A (Axk)
AeR

Figure 3.6. The combined iterative MMSE detector and Pyndiah Decoder.
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3.4 Performance of Iterative MMSE Detector and Decoder

The design of the iterative MMSE detector provides a lot of leeway with respect
to its use. Several questions must be answered in order to optimize its performance when
used for STLBCs. For example the expected values used to update the feedback and fee-
forward coefficients can be updated layer by layer, or the whole code can first be
detected, then the expected values updated. In this section a performance analysis of the
iterative MMSE detector coupled with a Pyndiah decoder are analyzed. These results

lead to decoder design criteria used to analyze STLBC codes in the next chapter

A Note on Performance Analysis

As is true for all other performance analysis done within this thesis, the results are
obtained via Monte Carlo simulation. Blocks of bits are detected and the number of
errors tabulated. This mean number of errors is then calculated. In order to ensure that
this statistical mean converges to the actual mean of the underlying probability
distribution function, the following statistical stopping criteria is used.

The sample mean is given by

- 1<
=e=— )¢, 3.57
mean =e P Ze, (3.57)

i=]

where e=1 if there is an error, 0 otherwise and b is the total number of information bits

sent. It is known that the value of e converges to the underlying distribution’s mean
value as b — . The optimal simulation value of b is required, where the statistical

mean achieves a value that is within a certain allowable estimation error, equivalent to
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the true mean. Since the sample mean is the sum of independent random variables, the
central limit theorem is applicable and the sample mean can be treated as a Gaussian
random variable. It is assumed that there are enough sample values, b, so that the sample
variance can be taken to be the true variance. In such a case, the interval within which

the sample mean lies with probability 1- ¢ is given as

P(-2,,<Z<z,,=["e""? | sndz=1-c (3.58)

~Zasa

where Z is a normally distributed random variable with mean 0, variance 1 and defined as

722k (3.59)

o /b

where 4 and o are the mean and variance of the underlying distribution. Therefore the

statistical mean satisfies the following,
Ple~z,,6/Vb<pu<e+z,,c/\b=1-a (3.60)
Hence, with a probability of 1—« the error in the statistical mean with respect to the true

mean is less than z,,,0'/+/b . Some values used for z,,, are given below:

- Z4/a
0.95 1.96
0.99 2.576
0.999 3.291

An allowable tolerance of error on the mean is chosen, and a stopping criterion

can then be found:
tolerance=ce ,where 0 <g<1,

tolerance=z, /zo-/\/g .
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Stop when

-e—ﬁsz—’i. (3.61)
o £

As mentioned previously, enough samples are taken to make the assumption that

the true variance is equivalent to the statistical variance, given by
ol =) (3.62)

The values used in the simulations producing the results shown in this thesis are
1-a =095, hence z,,=1.96 and £=0.1. In other words, the value of probability of

error is correct within + 10% 19 times out of 20.
One problem encountered is that at high SNR, the probability of error becomes
very small; therefore the running statistical variance is very unstable and never truly

approaches the true variance. In this case, the stopping criterion under-estimates the

b
necessary amount of samples and a stopping criterion of Ze,. =150 is used.

i=l

3.4.1 Results

In this section, an analysis of the iterative MMSE detector is used on layered
codes without error control coding. This amounts to studying the iterative MMSE
detector on H-BLAST codes. While the iterative detector is designed to operate with an
error control code decoder and accept its extrinsic values to update the a priori
probabilities, it is useful to study codes without parity in order to analyze its inherent

possibilities. Unless stated otherwise, all the error performance results are obtained on a
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system using #=3 transmit antennas, m=3 receive antennas, with code length /=3. Binary
signaling is used and BPSK modulation is assumed. For this chapter and the remainder

of the thesis, the SNR is given in dB and is the ratio of the energy per information bit to
. E 5
the noise power ( N ).

One of the main features of iterative detecting is the updating of the a priori
probabilities. In this case, there is no error control coding, therefore no extrinsic value
obtained from a decoder. However, the a priori probabilities can still be updated using
the output of the detector, to further refine the results. There are two approaches to
updating the a priori probabilities: 1)detecting the whole block, then updating the a priori
probabilities, and 2)detecting layer by layer and updating the a priori probabilities after

each layer.
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Figure 3.7. Performance updating a priori probabilities at the end of each block vs. at the
end of each layer.
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In Figure 3.7, an improvement is seen when the a priori probabilities are updated as each
layer is detected. This is result stems from the fact that if the detector is to detect the
whole block before an update of its a priori probabilities is obtained, there is error
propagation. Updating layer by layer reduces the error propagation by ensuring that
fewer false assumptions are made by the detector.

One of the main drawbacks of BLAST decoding is the error propagation. In order
to improve the results, signal ordering is used. This ensures that the layer with the
highest post-detection SNR is detected first. In doing so, the amount of errors to
propagate is minimized and the performance of the detector does not degrade with each
successive layer. In the iterative MMSE detector design provided by El Gamal [18],
signal ordering is not taken into account. If the a priori probabilities were to be updated
at the end of each detected block, order of detection would have no effect. However,
from the previous discussion, updating the a priori probabilities after each layer is
detected provides better results. Therefore the order of layers to decode is an important
issue. In BLAST using the zero-forcing algorithm, signal ordering is achieved by
detecting the layer, among the remaining undetected layers, which has associated row in
the nulling matrix G; with minimal norm. In the iterative detector, a nulling matrix is not
employed, so another means of selecting the layer with strongest post-detection SNR
must be developed. Since the nulling matrix G is actually the pseudo-inverse of the
channel matrix H, the operation to solve for the signal ordering can be performed on the
H matrix. The layer with the highest post-detection SNR is given as that associated with

column 7 of A with highest norm

k, = argmax|(#,) |’ (3.63)

ie{l,...,m}
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Unlike BLAST, where the order of detected layers is calculated by selecting the required
row of the updated G matrix, in this case, the order of all the layers is determined before
detection begins on the whole block.

Figure 3.8 shows that error propagation occurs with the iterative MMSE detector
when signal ordering is not used, by providing the performance of each layer. Without
signal ordering, layer 1 is always detected first, since it may actually have the worst

subchannel characteristics, the performance of the entire detector is diminished.
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Figure 3.8. Performance without signal ordering.

On the other hand in Figure 3.9, signal ordering is used, and two conclusions can
be drawn from it. The first is that by using signal ordering, the performance of all the
layers is equalized. This is obvious, since the order of layers is a random variable with
uniform distribution; therefore each layer is decoded first, second or third an equal

average number of times. The increased diversity that is theoretically expected from
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being decoded last is thus averaged to all the antennas. The second conclusion reached
from Figure 3.9 is that the average performance of the system using signal ordering, is

better than the performance of the best layer when no ordering is used.
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Figure 3.9. Performance using signal ordering.

Since the detector used is an iterative detector, it is nmecessary to study the
improvement on the performance as the number of iterations increases. In Figure 3.10,
the performance of the detector using signal ordering and updating the a priori
probabilities as each layer is detected, is given at the end of each iteration. In this system,

no spatial or temporal coding is used.

64



BSPK, Shisiz, 3 Tx, 3 Rx Antennas

1.00E+00 =:
—_Yeration 1
—— Heration 2 ——]
100501 £ —— Heration 3
- —— Heration 4 F=———
S
1.00802
[ 4 \
i)
o
~
100803 %i
‘\
1.00&-04
==
100805

Figure 3.10. Performance after each iteration.

Soft detected data is used in the analysis of the performance for each iteration.
After about three iterations it appears the performance converges to its final value.

The iterative MMSE detector can now be compared to the classical BLAST
detector using the zero-forcing algorithm. The great probability of error performance
advantage of the iterative MMSE detector over the ZF detector is evident from Figure
3.11. The gain is greatest in mid-range SNR, because as the SNR increases, the noise
power decreases and the zero-forcing criterion approaches the minimum mean square

error criterion.
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Figure 3.11. Performance for the iterative MMSE algorithm versus the zero-forcing
algorithm.

In order to study function of the detector in conjunction with the decoder, a
minimal coded scheme is devised. On each layer, a simple Hamming(7,4) code is used.
This code, while providing error control coding, is not optimal as it does not explicitly
address the issue of diversity. However in the next chapter, code construction guidelines

are offered that can provide better results.
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Figure 3.12. Performance of simple coded scheme with non-coded scheme.

By not introducing coding among elements of different layers, the dependence of each
layer is negated; thus, the spatial diversity is not better used. However, despite this
shortcoming, the results still show an improvement on the probability of error
performance. Note that the increase in performance comes at a cost to the data rate. The
code using Hamming (7,4) codes has a rate R=12/7=1.71 b/s, compared to a rate R=3 b/s

for a non-coded system.
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Chapter 4

Improvements on Space-Time Layered Block Codes

The previous chapter dealt with the detecting and decoding of codes that perform
at points other than maximum rate or full diversity. These codebooks can be generated
randomly for specific rates and achieving required diversity. However, two codebooks
operating at the same rate and diversity were not differentiated. In this chapter a criterion
for choosing a specific codebook over another is given. The comparison with codes
designed using the classical criterion versus those designed using the new criterion is
discussed. Next the issue of maximizing the use of spatial diversity on the information
data in order to improve performance is discussed. Lastly, the probability of error

performance of these codebooks is analyzed.

4.1 A New Criterion for Space-Time Codes

In [11] Tarokh derives the pairwise probability of error of space-time codes. The
result from this derivation is a design criterion that states in part that if the minimum rank

of all the possible codeword difference matrices is d, then a diversity of dm is achieved.
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For a linear code, the minimum rank of the codeword matrices can be used. For the
remainder of this thesis, this criterion as given by Tarokh will be termed the minrank
criterion; that is to say, the criterion that ensures the minimum rank of all codewords in a
codebook is a specific value.

The minrank criterion imposes restrictions that do not address the average
performance of a codebook, but rather the worst case performance. A new criterion that
takes into account the average performance of codebooks is obtained. The probability
that a codeword matrix e is decoded when codeword matrix ¢ was sent [11] is rewritten

for clarity,

Plc—>e)< (l’f A ),,, (’% N, )km . (4.1)

i=l
The minrank criterion thus ensures that all pairwise probability of error achieve a certain

require rank. The probability of error of this code can be written as

P =P(e¢c)si ZZ ['ﬁ/z(a,b),. ]—M(E% No)~’kam 4.2)

a=l b=Lbsta \_i=l
where A(a,b), is the ith eigenvalues of the square of the codeword difference matrix

produced from e=a and ¢=b, and a and b are the a-th and b-th codewords of the
codebook, respectively. Assuming a linear codebook, this equation can be further

reduced to

a=l1

where A(a), is the ith eigenvalues of the square of the a-th codeword in the codebook.

The codewords can each only have finite values of rank rank(a) < n, therefore using the
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label rank(a) to denote the rank of the a-th codeword matrix in the codebook, the
probability of error can be rewritten as
n 5 ~jm
P, Sf\;‘A’( %No) (4.4)
where
2 j -
4,= 3 ( )i(a),.] . (4.5)
a=lid(a)=j \_i=l
Note that the value for the probability of error is dominated by the terms for j=1, then by
the terms for /=2, and so on. It is clear from this that ensuring no low rank codewords,
such as is achieved by the minrank criterion, ensures a lower probability of error.
However, selecting codebooks based on their minrank criterion leads to two problems.
The first is that when studying codes with rates greater than that achieving diversity d but
less than those capable of achieving d+1, there is no proper way of selecting a good
codebook. Secondly, forcing the minimum rank to be a certain value may lower the
typical rank levels of the codes in the codebook. This, while excluding the dominant
terms from Eqn. (4.4), puts more weight on the terms with the accepted rank, or “second-
level” dominant terms.

Therefore, a new criterion is proposed: the avgramk criterion. Choices of
codebooks are made on the basis of selecting the codebook with the highest expected
value of codeword rank. Thus ensuring that in a codebook while there may be codewords
contributing to the dominant terms of Eqn. (4.4), the average codeword contributes to less
dominant terms. Using the avgramk criterion, two codebooks achieving the same

minrank criterion can hence be analytically compared.
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4.2 Maximizing the Use of Spatial Diversity on the Information

In the elementary design of STLBCs presented in the previous chapter, simple 1-
dimensional (1-D) systematic block codes are layered to produce codeword matrices of
diversity d. These codes, while achieving the required diversity advantage, do not take
into account the effect of the potential harm of the channel characteristics. An example

codeword matrix generator is given in Figure 4.1, where the i/’s are the information bits.

Time ———P

4 I I3

i LDi, i, ®i,

——— ruusyuy

i, @i, ®i, i Di, i Di, i,

Figure 4.1. Example of a systematic codeword generator matrix.

Since the 1-D systematic codeword is just layered, it is seen that the information
data bits fill spatial layer 1 first, then go on to fill the next layers in order. In the
detecting of layered codes it was seen that each layer has its own post-detection SNR, and
to minimize error propagation, the layer exhibiting the highest such value was detected
first. In 1-D codes using SISO, the effect of the channel can be assumed constant over
one codeword and thus all bits are affected similarly. However, unlike in 1-D
codewords, in 2-D codeword matrices, the channel characteristics affect bits in a manner
dependent on the layer. It is hence possible that in a transmitted codeword matrix, the

layers containing the information data have been distorted much more than other layers.
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In order to ensure the best performance, it is imperative to ensure the information bits are
as spread out onto the most time periods and the most spatial layers. A simple method is
to modify the systematic 1-D codeword into one that will provide maximal use of the
spatial dimension as well as the temporal one. The end result will be a 1-D codeword
that is pseudo-systematic; where the location of the information bits is determined to
maximize the use of the spatial diversity as well as the temporal diversity. Maximizing
the use of both the temporal and spatial diversity implies that each spatial layer and each
time period has close to an equal amount of information bits. Positioning the information
bits in the 1-D codeword in a manner that will ensure their diagonal placement in the
codeword matrix provides the best use of the spatial and temporal diversity. Figure 4.2
compares the basic layering of the systematic 1-D codeword with the codeword that

maximizes the spatial diversity use.
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Figure 4.2. (a) Layering of systematic 1-D codeword into codeword matrix. (b) Layering
of modified 1-D codeword into codeword matrix.

It must be noted that the parity bits in the modified 1-D codeword are not just the

displaced parity bits from the systematic codeword. They satisfy new information bit
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combinations that ensure the required diversity of the code. In Figure 4.2 (a), the
layering of the systematic codeword provides a codeword matrix with information bits
using only two spatial layers unequally. In this case layer 1 has five information bits,
layer 2 has three information bits and layer 3 has zero information bits. Figure 4.2 (b)
shows the adjusted codeword matrix and the information bits now use the three spatial
layers almost equally. Layer 1 has three information bits, layer 2 also has three
information bits and finally layer 3 has two information bits. Notice that this spatial
spreading did not come at the expense of temporal spreading.

The position of the information bits within the codeword matrix is given as

follows,
Pos, (i) ={[j-[5 11, +1+| 5 | [-1] +13 (4.6)
where 0 < j <k and [], is the modulo » function and |-] is the function producing the

integer value of the equation.
The information bits are hence located in the 1-D codeword at positions
Pos,p (i) == 5 11, +[ 52 D+ [/~ 13, +1, @7
where in this case the position function returns a 1-D location.
Looking back at the example codeword matrix given in Figure 4.1, it can be
translated to a codeword satisfying the spreading requirements. If the new information

bits are designated as ', , then the following codeword matrix is obtained:
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i'l f(i'l’i’2 ’i'S ’i'4) f(i'lai'z 9i'3 7i'4)

i'4 1‘12 f(i'l , i’z , i'3 , i'4 )

f("l R ilz ) 1'!3 , l|4 ) f(i'l s iiz , i13 , 1!4 ) il3

Figure 4.3. Pseudo-systematic codeword matrix.

This new codeword matrix can be translated from the one presented in Figure 4.1 by

using the following relations,

=i =i =i

'y=i, =i, =1,

=i, @i, =i, ®F =i, =i",® /',

f=i @i, 05, =/0L,0,®=i,=10,0/,,

From these relationships, new parity bit equations can be calculated, and the translated

codeword matrix is illustrated in Figure 4.4,

t ;Y ;Y : i1 N it
i o', ie i, I'® i,
it H 4] it
iy i, @i,
N ] -t .y . " 1
ARG e i,er, I3

Figure 4.4. Translated codeword matrix.

It is interesting to note that the occurrences of each information bit per time period or per
spatial layer is increased compared to the codeword matrix drawn from the systematic 1-

D codeword. In Figure 4.3, it is seen that layer 1 is lacking i,, layer 2 is lacking i, , while
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time period 3 is lacking i,. On the other hand, in Figure 4.5, it is seen that the only

incomplete dimension is time period 1 lacking /', .

4.3 Performance of Pseudo-Systematic STLBC

In this section an analysis on the probability of error of STLBCs is given. The
codebooks used for analysis are obtained by an exhaustive search on codebooks
achieving the required design characteristics. All schemes analyzed include 3 transmit
antennas and 3 receive antennas with BPSK modulation.. The code length is /=n=3,
which implies the 1-D block code is of length n/=9. This is the minimal code length
required to ensure the possibility of achieving the full diversity potential. Each codebook
is defined by a generator matrix and includes 2* = 2% codeword matrices.

In order to show the relevance of the avgrank criterion, two codebooks of rate
R=1.33 b/s/Hz with different minrank are compared. The codebooks are defined by their
rank spreads, namely the number of codewords achieving each rank, without including
the all-zero codeword. For a rate of 1.33 b/s/Hz, k=4 and there are 15 codewords not
including the all-zero codeword. The codebooks along with their rank spreads are given

below (where dyy, is the minimum Hamming distance of the codebook):

Codebook 1, minrank=2, avgrank=2 4, d,..;=4

Rank: d=1 d=2 =3

Number of codewords 0 9 6
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Codebook 2, minrank=1, avgrank=2.533, d,=4

Rank: d=1 d=2 =3

Number of codewords 2 3 10

Figure 4.5 provides the probability of error performance for these two codes.
Despite the different minrank, thus different diversity level of the total code, their
performance is very similar at low SNR. However, at higher SNR, codebook 2, with
lower minrank, starts outperforming codebook 1. From Eqn. (4.4) it is seen that as the
signal-to-noise ratio increases, so too does the contribution to the probability of error
from low-rank codewords, as compared to the contribution of higher rank codewords. So
while codebook 1 achieves a higher minrank, it has fewer codewords attaining full rank.
The effect of the mid-rank codewords in codebook 1 greatens as the SNR increases, and
eventually overshadows the effect of the low-level rank codewords in codebook 2.

Figure 4.6 compares three codebooks with the same d.,, but with differing
avgrank. Again the same result is obtained; however, in this case, the effect of the lower
rank codewords is better seen. The codebook with the lowest avgrank has several
codewords with the lowest rank, and the degradation of performance is seen at lower
SNR. As the avgrank is increased, the performance degradation at high SNR is reduced.
The total effect at BER 107, is up to 3dB between the worst case and the best case

scenario.
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Figure 4.5. Comparison of error performance between codebooks achieving different
minrank.
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Figure 4.6. Comparison of error performance between codebooks achieving different
avgrank.

The effect of established coding characteristics is examined next. In classical

error control coding theory, one wishes to maximize the minimum Hamming distance
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Amin. As the dui, of a code is increased, its maximum avgrank is decreased. This is
intuitive, since a higher d,;, increases the number of “1”’s in the codewords and thus
constrains the construction of codewords with higher rank. The effect of d,.;, is studied
for two STLBC codebooks with R=1.33 b/s/Hz, similar rank spreads and different d,.;».

The two codebooks are defined as follows:

Codebook 3, avgrank=2.6, d =3

Rank: d=1 =7 =3
Number of codewords 1 4 10
Codebook 4, avgrank=2.533, d,..,=4
Rank: d=1 =2 =3
Number of codewords 2 3 10

Figure 4.7 provides an analysis of the error performance of these codes. It is seen
that despite having a slightly higher avgrank, the code with the lower dy, is greatly

outperformed by the code with higher d;,.
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Figure 4.7. Comparison of error performance between two codes with different d,.,.

This leads to the conclusion that it is imperative that the dj;, be maximized firstly to
ensure better error correcting capabilities. Next the avgrank of a codebook can be
maximized, to ensure good performance at high SNR.

A STLBC achieving a combination of high rate and good probability of error
performance is now given. In a system with n=/=3, having k=7 is the greatest rate
achievable while still providing relevant error control coding capabilities. Any higher
code rate results in a dm=1. The code, thus achieving a rate of R=2.33 b/s/Hz, is

compared to a non-coded BLAST code of full rate.

Codebook 5, avgrank=2 .28, d,,=2

Rank: d=1 =2 =3

Number of codewords 13 66 48
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Figure 4.8. Performance of high rate STLBC compared to non-coded BLAST.

Despite being a simple code and only having two parity bits per codeword, the
performance of the high rate STLBC is a vast improvement over uncoded BLAST, with
low cost of information rate. In Figure 4.8, it is seen that the error control and spatial
diversity coding of the STLBC code provides an improvement of about 4dB at BER of
10°.

Lastly, STLBC employing diversity parity is compared to the simple layered
scheme provided in Figure 3.12. For comparative purposes, a codebook with similar rate
is proposed. By employing k=5, the rate achieved by the n=/=3 STLBC is 1.66 b/s/Hz,
comparable to the 1.71 b/s/Hz offered by using a Hamming (7,4) code on each layer. The

STLBC used is presented below:
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Codebook 6, avgrank=2.42, dpyn=3

Rank; =1 =72 =3

Number of codewords 3 12 16

It is seen in Figure 4.9 that the STLBC outperforms the simple layered scheme at
low SNR and is comparable at high SNR. The reason for this is because the simple
layered scheme uses a larger value of /, namely /=7. The diversity of the code cannot
improve, however, the avgrank can by having more possibilities of producing higher rank
codewords. In fact the avgrank of the simple layered scheme is 2.59, while that of the
STLBC is 2.42. Another difference between the two codes lies in the decoding. The
STLBC code requires the decoding of one (9,5) codeword per iteration, while the layered
scheme requires the decoding of three (7,4) codewords per iteration. The complexity of

the STLBC is thus lower and offers comparable performance.
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Figure 4.9. Comparison of STLBC with simple layered coded scheme.
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Chapter $

Conclusions and Further Work

Since the early 1990’s, wireless telecommunications has advanced by leaps and
bounds. Better channel coding, diversity combining and other techniques have improved
the performance of wireless communications, which typically operates in harsh signal
environment. However, none of these methods make use of the rich scattering channel
provided by the wireless medium. Capacity results [4] show that multiple antennas at
both the transmitter and the receiver can improve performance without the need to
improve costly bandwidth. Recently proposed multiple-input multiple-output (MIMO)
schemes can be separated into two groups: those who wish to maximize the data rate,
such as BLAST [8], and those wishing to maximize the use of the newly available spatial
diversity, such as space-time codes by Tarokh [11].

The first part of this thesis consisted of providing an overview of current results
available in literature. First the capacity results for MIMO schemes were given; next
methods to employ this increased diversity were provided. BLAST codes are a layered
scheme that maximizes the data rate, and require non-linear detection to separate the

layers at the receiver. Next space-time codes achieving full diversity were given. The
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rank criterion as proposed by Tarokh [11] was provided. in order to facilitate the work of
code designers, the binary rank criterion [19] was presented. Using this criterion allows
for typical code design techniques used in 1-D codes, to be used for space-time codes.
lastly, codes that try to combine the increased rate potential with spatial diversity were
detailed.

In the second part of the thesis, the trade-off between rate and diversity was
derived for binary systems. In order to derive this trade-off, the diversity of codes not
achieving full diversity, was defined using the binary rank criterion. At the opposite ends
of the trade-off curve lie BLAST (full rate) and space-time codes (full diversity). The
trade-off curve provides the inherent relationship between rate and diversity. Next, the
design of simple space-time layered block codes (STLBC) was given. These codes are
basically a superset of all available space-time technology. When care is taken to ensure
no coding between layers is done, they can become simple BLAST codes or simple
space-time block codes.

The detection and decoding of these codes using the iterative MMSE detector [18]
and the Pyndiah decoder [32] is provided. Since coding between layers is possible in
STLBC, the MMSE detector had to be modified. The correlation matrix of expected
value was derived for codes which has dependence among layers. Results of the iterative
MMSE detector and decoder were then given, showing the improvement over the
traditional zero-forcing algorithm used in BLAST.

The last part of the thesis deals with improving the design of STLBC codes. The
full probability of error for space-time codes was derived from the pairwise error

probability given by Tarokh [11]. Using the total probability of error, a new criterion to
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ensure proper use of the spatial diversity was obtained. This criterion ensures the
maximization of the average rank of codeword matrices within a codebook. Next the
STLBC codes were further improved by tweaking the design to ensure the information
bits would be spread out over as many spatial and temporal locations as possible. This
ensures that the poor performance of the detector over one layer or for select time periods
does not affect the over-all quality. The final design provides a code that can improve
performance of the system at minimal cost of rate, and is less complex than a similar

performing simple coded layered scheme.

There is some possible future work that involves:

e Studying codes with code length / greater than »n. While the maximum spatial
diversity potential does not change, the actual diversity of each codeword matrix
can be increased, thus increasing the average diversity of the codebook.

e A set of code construction rules that ensure the required code parameters are met,
without resulting in the need to use an exhaustive search on all the possible codes.
This search becomes prohibitively large as the number of transmit antennas » and
the code length / increases.

e A more detailed study of the performance of STLBC from an information
theoretic point of view. While simulations provide good comparative analysis for
codes, theoretical bounds on error performance would ensure optimal schemes are
selected as practical schemes.

o Studying the effect of different channel models, such as the block fading channel,

on STLBC codes.
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