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Abstract

Smooth Estimation of Survival and MRL Function

under Mean Residual Life Order
Haipeng Xu

Let X and Y be two random variables denoting life times having finite means. Let,
S1, So and M;, M, denote their survival and MRL functious, respectively . X is said
to be smaller than Y in mean residual life order, if and only if
1. Mi(z) < My(z) in all z; or equivalently,
f * Sl (.’L‘) dx *°
. St~ 2 — does not increase intover{t : / So(z) dx > 0}.
[ Sy(z) dax { ’ 2(o) J

In this thesis smooth estimators for the survival and MRL functions under the above

2

ordering are studied. Nonparametric method given by Hu et al. (2002) has shown
good properties, but it is not smooth enough, when the true function is continuous.

Chaubey and Sen(1996) have proposed a new approach to smooth survival and
density function in stead of the popular kernel method. Following their approach,
we introduce two methods for smooth estimation of a survival function based on the
two criteria of mean residual life ordering . The strong uniform consistency of the
estimators has also been shown here. Numerical studies based on simulation indicate
both smooth estimators to be superior to the estimator due to Hu et al. (2002) in

terms of bias and MSE in majority of cases.
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Chapter 1

Introduction

In the last two decades, there has been an intensified interest in mean residual life
(MRL). This concept relates to the aging property of an individual or a component,
whose survival time X is a random variable. Given survival up to the time z, the
average remaining life among the population members who have survived until time
z is called the Mean Residual Life at time z. Denoting this function as M(z), we

therefore have,

M(z) = EX|X > z| —=z.

For life tables, it is called the life expectancy at age x, or more generally the biometric
function [ see Chiang (1986) Chap 10]. The MRL function gives a different picture
of survival of aging than that seen through the more commonly studied survival
function S(z) or hazard function A(z) = g—g’%, where f(z) is the density function
corresponding to S(z). Here, note that for a non-negative random variable X having

the probability density function f(z), the survival function is defined as

0 for z <0,

S(z) = P[X > 1] =
[ f(t)dt for x> 0.



Many times, we may have a situation in which, logically, MRL functions of two
populations must be ordered. For example, MRL function should often be ordered
after the patients have been treated with different kinds of therapies. Also, if a
mechanical device is improved, the MRL function for the improved device should not
be less than that for the original one. Therefore, the consequent problem of interest is
that of estimating the MRL function or survival function under this order restriction.

In 1978, Yang studied the properties of the empirical version of MRL function
on a fixed interval [0,T], T < oo. In spite of its good properties, it may not preserve
the ordering condition. Nonparametric maximum likelihood estimators (NPMLE) on
two distribution have been derived and studied under stochastic ordering (Brunk et
al., 1966; Huang and Praestgaard, 1996), and uniformly stochastic ordering (Dykstra
et al., 1991; Rojo and Samaniego, 1991). Also, there is a lot of literature on the pro-
jection type estimators for stochastic ordering (Rojo and Ma, 1996; Rojo, 1995) and
uniformly stochastic ordering (Rojo and Samaniego, 1993; Mukerjee, 1996; Arcones
and Samaniego, 2000), the latter often proving to be superior to the NPMLEs.

Ebrahimi (1993) considered estimators for MRL functions subject to the con-
straint M;(z) < My(z), for known as well as unknown AM,, on an interval [t;,%,).
He provided an excellent life example in his paper. Hu et al. (2002) improved on
these estimators providing a rigorous proof of asymptotic unbiasedness. This paper
also established the weak convergence of their estimators which allows computation
of asymptotic confidence interval. Beiger et al. (1998) have considered the problem
of testing the hypothesis M;(z) < Ma(z), but they did not consider the estimation
problem.

When the distributions are assumed to be continuous, many applied practition-
ers would prefer to have smooth estimators and as such there is a lot of interest in

smooth estimations of the MRL and Survival functions. Chaubey and Sen (1996)



formulated a new technique based on the classical Hille theorem (1948) in real analy-
sis and obtained smooth estimators for survival function and density function, which
may have some advantage over their counterparts based on the usual kernel method
of smoothing. Their further research work includes the use of resulting estimators
in smooth estimation of the hazard, cumulative hazard functions (Chaubey and Sen,
1997) and MRL function (Chaubey and Sen, 1999). Chaubey and Kochar (2000) also
considered modified estimators of survival functions that are stochastically ordered.

In this thesis, we propose smooth estimators of MRL and survival functions
under MRL ordering, using the ideas developed in Chaubey and Kochar (2000) by
considering the two equivalent conditions of MRL order and the smoothing method
of Chaubey and Sen (1996).

We will review some properties of MRL and survival functions, especially un-
der MRL order in Chapter 2. Chapter 3 presents the modification of Chaubey and
Sen (1996) given in Chaubey and Kochar (2000) and Chaubey and Kochar (2001)
for estimation of survival functions under stochastic order, and uniform stochastic
order, respectively. These papers have been useful in proposing two estimators of the
survival function under the mean residual life ordering which are given in Chapter
4. The first is based on the estimators of Hu et al. (2002), and the other one is
based on an equivalent definition of MRL order. In Chapter 5, we will provide the
proof for strong consistency of both the estimation methods and a discussion of the
asymptotic properties. In Chapter 6, we conduct a simulation study for a variety of
MRL functions to compare the MSE of these two estimators along with that of Hu

et. al. (2002). The last chapter, Chapter 7 provides some conclusions and further

remarks.



Chapter 2

Preliminaries

2.1 Mean Residual Life

In this section we formally define the mean residual life and catalogue some of its

basic properties.

Definition 2.1. Let X be a non-negative random variable with survival function S(z)
and finite mean p, then mean residual life of X is defined as
L5@dt gy 5
M(z)=E[X —z|X > 2] = S5(x) (2.1)
0 S(z)=0
Note that M (0) = p, and since we assume that p = [ f(z)dz is finite, M(z) < oo,
for x < co. However, it is possible that M(oc0) = zlggo M (xz) = oco. Guess and
Proschan (1998) provide a nice summary of the theory of MRL and an extensive
bibliography.
Clearly, M(z) is a non-negative function but not every nonnegative function

corresponds to a mean residual life function of some random variable. In fact, the



following properties characterize a function M(z) to be a MRL function given by

Shaked and Shanthikumar (1991):
1. 0 < M(z) < oo for all z > 0,
2. M(0) > 0,
3. M is continuous,
4. M(z) + z is nondecreasing on [0, c0), and

5. When there exits a z¢ such that M(zg) = 0, then M(z) = 0 for all z > x.

/000 Mtx)dm = 00

Furthermore, like the probability density function or the characteristic function,

Otherwise,

for a distribution with finite mean, the MRL function completely determines the dis-
tribution. The survival function can be determined from the MRL function according

to the following formula,

S(z) = A—]\/_{—% emp{—/ox Mi(t) dt}I(M(z)>0),

where I4 denotes the indicator function of A.

2.2 The Mean Residual Life (MRL) Order

Here we provide the definition of mean residual life (MRL) order and its relation with

some other stochastic orderings.

Definition 2.2. Let X and Y be two nonnegative random variables with finite means

whose corresponding survival functions and MRL functions are Sy and Ss, My and



M,, respectively. The random variable X is said to be smaller than Y in the mean

residual life order (denoted as X <, V), if

M (z) < My(z), for allz > 0. (2.2)

We note that

Mi(z) < My(z) & % (%g;) <0,

where W;(z) = [° S;(u)du ,i = 1,2. This is easy to see, since

st () - -

This provides an alternative equivalent definition of MRL order, similar to the

characterization of uniform stochastic order as given by Lehmann (1955):

Definition 2.3. Under the conditions of Def. 2.2, X < Y if, and only if,

m does not increase in t over {t : /00 Sa(z) dz > 0} . (2.3)
ftoo Sy(z) dax t
This alternative definition gives us a new idea to estimate the survival functions
under the mean residual life order.

Instead of comparing the two MRL functions in order to define a partial or-
dering between two random variables, we may compare the distribution or hazard
rate functions, which gives give two different partial orderings known as, stochastic

ordering and hazard rate ordering (or uniform stochastic ordering)respectively. The

definitions are given below:
Definition 2.4. Let X and Y be two random variables such that

P{X >z} < P{Y >z} for all z € (—00,0), (2.4)

then X is said to be stochastically smaller than'Y in the (denoted by X <, Y ).



Definition 2.5. Let X and Y be two nonnegative random variables with absolutely
continuous survival functions Si(x) , Sa(x), and with hazard rate function hi(z) and

ha(x), respectively, such that,

hi(z) > he(z), >0 (2.5)

Then X is said to be smaller than Y in the hazard rate order (denoted by X <u, Y).
Similar to the definition of the mean residual life order given in Def (2.3),

Lehmann (1955) observed that since h(z) = — & log S(z),

therefore, X <, Y holds, if and only if,

Sl (ZL‘)
SQ(QS')

does not increase in z. (2.6)

Hazard rate ordering is stronger than stochastic ordering, hence it is also called uni-

form stochastic ordering [see Lehmann (1955)].

Since, the MRL function M for a random variable X can be written in terms

of its hazard rate function h as

M(z) = / " exp{— / “h() dtydu, (2.7)

under the condition of Eq. (2.5), we have M;(z) < Ms(z) Yz > 0. Thus, we can easily
obtain the following theorem giving relation between the uniform stochastic ordering

and MRL ordering.

Theorem 2.1. If X and Y are two random wvariables such that X <, Y, then
X<mn Y.

There is no direct relation between mean residual life order and stochastic order,
however, under some particular conditions, MRL ordering implies stochastic ordering

as given in the following theorem.



Theorem 2.2. Let X and Y be two random variables with mri functions M,(z) and

M1(:1:)
Mo(z)

X <pr Y which subsequently implies that, X <, Y.

My (x) respectively. Suppose that 1s increasing in . Then, X <,n Y —

Proof. [Shaked and Shanthkumar (1994)] Since M;(z) is differentiable on {z : P{X >

x} > 0}, it is easy to see that

_ Mij(z)+1

hi(z) M, (z) (2.8)
where Mj(z) denotes the derivative of M;(z). Similarly, we have
_ My(z)+1
ha(z) = —]2\—/];(}7_ (2.9)
Hence, we have,
. Mi(z)+1 M(z)+1
hl (III) — hg(.’l)) = Ml (:E) — MQ({E) (210)
_ Mi@Mh(e) + Mofe) - Mi@M(@) - Mi(z)
My (z) My(z) '
_ (M) Mo(a) ~ M) M) + (Ma(e) — Mr(x)
M (z) Ms(z) '

Since M;(z) < Ms(z) and %(ﬁ_g is increasing in x, we have h;(z) — ho(z) > 0,

that is X <p, Y, furthermore, X <, Y.



Chapter 3

Estimation of a Survival Function
under Stochastic Order and

Hazard Rate Order

In this chapter, we will outline the smooth estimators for survival function preserving
the stochastic order and Hazard Rate order, developed in Chaubey and Kochar (2000)
and Chaubey and Kochar (2001), respectively. These papers provide the motivation
for developing the estimators under the mean residual life ordering. Here we consider
only one sample case, i.e. the estimation of a survival function S; of a random
variable X given that X < Y, or X <, Y, where we know the survival function S,

corresponding to the random variable Y.



3.1 Estimation under Stochastic Order

Let S; and S, be absolutely continuous survival function such that Si(z) > Ss(z) Vz
and S, is known. That means X is stochastically larger than Y. Ma (1991) and Puri
and Singh (1992) considered the following estimator of S; by modifying the empirical

distribution function of random variable X :
Sy = max(Ss, Sin) (3.1)

where Si,, denotes the empirical survival function based on a random sample (X, X5,

ey Xp), t.€.
1
Sin(z) = p” ZI(XPQU)‘ (3.2)
i=1

Strong uniform consistency of the above estimator is established by Rojo (1995)
and Rojo and Ma (1996). Rojo and Ma (1996) also showed thai the above estimator
has uniformly smaller bias than the corresponding NPMLE and simulation indicates
that it has smaller MSE (mean squared error) for a variety of distributions. Lo (1987)
considered the problem for two sample case, deriving similar results, and Rojo and
Samaniego (1993) considered the alternative case that S; < .Ss.

Chaubey and Kochar (2000) adapt the method of smoothing of a empirical
survival function given in Chaubey and Sen (1996) which preserves the stochastic

ordering. Their estimator is described in through the following steps:

1. Smooth the Uy (z) = Sin(z) — S2(x) by technique in Chaubey and Sen (1996);
. N

Un(@) = Y Un(5-1Ps(Mn) (33)
k=0 n

where {)\,}22, is a sequence of constants such that A\, — oo as n — oo, but

22— 0 and here,
k
u
pk(u) =e_”7€T,k:0,1,2, (34)

10



2. A smooth estimator for S)(x) is proposed as

$1(z) = Un(z) + Sa(2) (3.5)

Chaubey and Kochar (2000) establish the strong consistency of the smooth

estimator as given in the following theorem:

Theorem 3.1. : Let )\, — oo almost surely as n — oco. Then

sup |S1(z) — Sl(x)] — 0 almost surely as n — oo. (3.6)

z€R+

They further use the celebrated Bahadur (1996) representation of quantiles as in
Chaubey and Sen (1996), and provide the weak convergence of the smooth estimator

S, similar to that obtained in Rojo (1995).
Theorem 3.2. If A, = co and 2= — 0, then for Si(z) > Sp(x) Va,

v (81— S1) = W° (3.7)

where W° donotes a Brownian bridge. However, if S1(x) = Sa(z) for some o with

Sy # Sy, then, S; does not converge weakly.

3.2 Estimation under Hazard Rate Order

Consider X to be smaller than Y in uniform stochastic ordering then we know that

=5

Rojo and Samaniego (1993) used this characterization of hazard ordering and

is nonincreasing with respect to x. (3.8)

proposed the following estimators 8 and S, for 8 and Sy respectively, if S, is known:

0(z) = infogygz%:(—%), (3.9)
S(z) = 0(z)S,(z.) (3.10)

11



This estimator is shown to be strongly consistent with an optimal rate of conver-
gence. Mukerjee (1996) extended this estimator to the case with S, is unknown by
introducing a convex class of estimators, linearly ordered by uniformly stochastic
order.

Also, since S, is not smooth, Chaubey and Kochar (2001) in an unpublished
manuscript, have proposed to modify it by a smooth version which maintains the
property of uniform stochastic ordering. Their proposal is outlined below.

First smooth the § by the following method.

ia)=3 0 (Xk‘) Pe(Mn) (3.11)
k=0 n
with pi(u) as before denoting the weights given by Poisson probabilities. Then the

smooth version of S;(x) here is given by

Si(z) = 0(2)Sy(x) (3.12)

They also claim the strong convergence and other asymptotic properties for this

estimator which are inherent in Sy (z).

Theorem 3.3. Let S; and S, be continuous survival functions with support [0, co)
such that 6(z) = —%—% is bounded, non-increasing function and A, be a sequence of

constants tending to co, then

sup |S1(z) — Si(z)| = 0 almost surely as n — oo. (3.13)
>0

12



Chapter 4

Estimation of Survival Function

under Mean Residual Life Order

Assume we have X, X, - -+, X,, random samples of size n from a survival distribution

S1, then the empirical survival function corresponding to S; is defined by
1 n
Sln(x) = ;7: Z I(X,'>w)a
i=1

hence,
oo 1 n
S1n(t)dt = — Ix. ) (X; —
LSt = 13 s -
Thus, plugging in S}, in place of S; for defining the mean residual life, following Yang

(1978) we get the following estimator of the mean residual life M, (z) :

W) = (1)
_ i I (X — 7) 19
Z?:l I(Xi—i'?) ( . )

13



where
I 1 n
Tin(z) = n/x Sin(t)dt = n ;:1: I(x,—a)(Xi — 7).

Now, suppose that X and Y are two nonnegative random variables with survival
functions S1, S, , and MRL functions M; , Ms, both having finite means and supports
[0,51), [0, b2).

Given M; < M, for all z, where M, is known, Hu et al.(2002) gave the following

estimator:

. M, (z) A My(z) for all x in [0, B),
M;(z) = (4.3)
0 otherwise,

where, B = min(by, bp). It is a right continuous function, with only some up jump

points.

For the reverse order restriction, we can change minimum by maximum in (4.3)

, such that,

W (z) = { Mi(z) V My(z) for all x in [0, B), (4.4

0 otherwise.

We use the above estimator as the building block for obtaining the smooth

estimator of S;(z) under the MRL order.

4.1 Estimation Method One

Using the smoothing method given in Chaubey and Sen(1996) for estimating survival

function under stochastic ordering M; < Ms, we >btain the following smooth version

of M} (z),

14



n

ABES AL (46)

k=0 "
where V,,(z) = Ma(z) — My(z) A My(z), { A}, is a sequence of constants such
that A, — 0o as. as n — oo, but 22 — 0 and pi(u) as in Eq. (3.4).
For the reverse order restriction M; > M,, we could just easily change V,(z) =

A

My (z) V My(z) — My(z), and then,

My, (z) = My(z) + Va(z) (4.7)

)
n

AEED P ACIE “9)

n

Note that, M;,(z) is nonnegative and infinitely differentiable by definition,
hence it is quite smooth. Therefore we could use it to derive a smooth estimator for

the survival function, as given by

~ M, 1(0) /x 1
S11(z) = == exp { — ————dt o Iiip (s 4.9
1.1 ) o A .r171(t) (M1 (x)>0) ( )

M ()

The choice of ), is very important in the study of the asymptotic properties of
the estimators. If we only consider these estimators for a compact interval [0, b], then
i\# — 0and A, — oo asn — oo suffice. Chaubey :ind Sen (1996) considered a stochas-
tic choice A\, = X—:;, where X,,., is the largest ordered statistic of Xy, Xy, -, X,
so that Sin(3-) = 51(Xpnn) = 0. Since our estimator is derived from the empirical

distribution, we use the same )\, as theirs.

4.2 Estimation Method Two

Based on the alternative definition, Definition 2.3 for mean residual life order, we will

consider the method similar to Chaubey and Kochar (2001) to estimate the survival

15



function under mean residual life order. In this case, we consider smooth estimation

of
z) = fwooSl(u)du
olx) = [ Sa(u)du

First, we propose to estimate it as in Rojo and Samniego (1993) by

A _ ftoo Sln
en(ib) o Ogtlix f ,5'2 du
W)
0<t<a n [ 5’2 (u)du

— 1
= Z' =1 i t)( ) for all 0 < z < by (4.10)

0<t<x n ft So(u

and

,(x) = 0 forall x> b, (4.11)

/:o;(\u) du = 6,(z) /:O So(u)du (4.12)

as an estimator of [° S (u) du.

Then, we have

Thus, similar to the Theorem 1 of Rojo and Samaniego (1993) we can establish:

Theorem 4.1. For V survival functions Sy(x), S2(z), let

ft Sl ’LL

0 otherwise

/ So(u)du if0 <z <by
(4.13)

Then

S1(u)du

Jy Si(u)du
f (u)d

1S NoON-INCreasing.

16



o [o¢]
/ Sy (w)du = / Si(u)du < My(z) < Ma(z) 1e. X <un Y
x T

By construction of én and the Theorem above, for the the estimator proposed
/\
here, the estimated mean residual life f;o S1(u) du satisfies the required property of

mean residual life ordering.

We can also obtain comparable results in the case X >, Y, when S, is known

by defining 8, (z) as
X sup E?ﬂf[gg_t)(?_t), forall 0 < z < by
Oy(z) = { osise T BO®
0, T > by

/z  Su(a) du = 0.(@) / " () du (4.15)

is what we need and we obtain the following theorem similar to Theorem 4.1.

(4.14)

Then

Theorem 4.2. ForV survival functions S1(z), Sa(z), let

ft S1 u
oo sup
/ S (u)du = { 0a<t [ Sa(u)du

0 otherwise

/ Se(u)du  1f 0 <z < by
(4.16)

Then
s non-decreasing.

f gudu
7 o (u)du

17



/:o Si(u)du > /:o Sy (u)du > 0.

/ Sy (u)du =/ Si(u)du & My(z) > My(z) 1e. X > Y

But f 5’1 )du may not be smooth enough for taking derivatives, since inherits

the nature of §,,(z) containing flat pieces. Hence we would replace 6, by a smooth
version so that the property of the MRL order is not lost.

We first replace the estimator 6,(z) by the following smooth version

= bn( Aﬁ (4.17)

0
k=0 n

where pg(u) is defined as before.

Then smooth estimator of [ S (u) du is given by

/;O/SR;) du = 6,(z) /:o Sa(u)du (4.18)

Note fx°° S1(u)du is continuous, bounded and continuously differentiable, so the smooth

estimator of S;(z) is given by

5’1,2(11}) - '—”—/ 51 dS
- —~[e“<>/ S (s) ds]

= d ), :L‘)/ Sa(s) ds + Sz(z)6n () (4.19)

18



Here,

d d -~y k
—On(z) = — 0n(A—n)pk(An:c)
k=0
ok k
k=0 n "
_ n—1 R k
(@) A, Hn(k_H) gz (M)
N, Kl
k=0
n—1
sk s k41, (M)
_ _ [ EAYE An&
k=0
n —AnZ /\nx "

Hence we can derive a smooth estimator of MRL function as

. °°TS’_1VS ds
) = S
On(2) [ Sa(s) ds
52(2)0n(2) — [0 (2)] [ Sa(s) ds
Ms(z)
1— L[ O, ()] My(z)

These two estimators will be further studied in the next chapters.

19
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Chapter 5

Consistency of the Estimators

5.1 Consistency for ]\2/1,1 and 5“1,1

The property of consistency of M; 1(x) may be derived from the results of Yang (1978)
and Hu et al. (2002). Yang (1978) showed that, when X has finite mean,

P[sup |Mi(z) — Mi(z)] = 0, as n — o] =1 (5.1)

0<z<b
where b € RT and b < by, by is support of Si(z). Hu et al. (2002) demonstrated such
a property for their estimator of mean residual life under the MRL order condition,

namely,

sup |M#(z) — My(z)| = 0 a.s. uniformly as n — oo (5.2)
0<a<b

where b € R* and b < B = min(by, by), b; is the support of S;..

Now let us consider (4.7) M ;(x). We have a similar result established in the

following theorem.
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Theorem 5.1. If Si(z) is continuous a.e ,\, — 0o and An’l — 0, then

sup |My1(z) — My(z)] = 0 a.s. as n — oo. (5.3)

0<z<b

here, b in Rt and b < B = min(by, by), b; is the support of S;.
Proof. In this case, to derive the results in Theorem 3.1, we make use of the following
lemma, known as Hille Theorem.

Lemma 5.1. (Hille Theorem) Let U(t) be bounded continuous function on R*, then

—Atjz:l]

k>0

(t) as A > o0 (5.4)

uniformly in any finite interval J contained in RY.
Since, V(z) = My(z) — M;(z) is bounded and continuous on {0, b], by Lemma

5.1 we can claim that

7() = AnZvAﬁ kl | (5.5)

n

— V(z) as Ay — 0
uniformly on [0, b]. Then we will have

sup |V(z) =V (2)|

= s [Va(z) = Va(e) +Va(e) ~ V(a)]

< sup |Va(z) = V(o) + Sup, |V( ) — V()|
0<a<b

< mgflv( )—V(-—)|+ sup V(z) - V(z)|

< sup |Vp(z) — V(z)| + sup |V(a;) - V()]
0<z<b 0<z<b

— 0 almost surely as n — oo.
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whenever A, — oo but 22 — 0. This follows from Eq. (5.5) and the fact that
Vi(z) = My(z) — M} (z) = V(2) = My(x) — My(z) uniformly as n — oo , since
M;(x) — My(z) uniformly as n — oo as established in Hu et al. (2000).

Therefore, we have

uniformly as n — oo, that finish the proof. O

Remark 5.1.1. We can also derive the consistency of S11(x) under the same condi-

tions.

Proof. Since M 1(z) and M;(z) are bounded on [0,b] and nonzero , so

1 1 _ Ml(.’I?) - Ml’l(.'lf)
sup {— — = sup = = =0
o<a<t |My1(z) Mi(2)|  o<e<s| My1(2)Mi(z)
a.s. as n — 0, then
S | /m 1 “’ 1 1
—dt — <  su = — dz
0<z<h /0 M1,1 (t) 0 Ml(t)dt - Ogmgb{ 0 Ml,l (.73) Ml (-’13) }

— 0 almost surely as n — oo.

Then we have

sup ‘51,1(31:) - Sl(x)’

0<z<d
M1(0) ) exp {— /
M11 M11

— 0 almost surely as n — oo.

= sup
0<z<b

{/M dt}

Hence we have proved the consistency of S ;(z) and My, (z) over [0, b].
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5.2 Consistency for ]\211,2 and 5’1,2

Now we will show the consistency for 5‘1,2(33) and Ml,g(.'ﬁ) under the condition that

X .<_mrl Y.

We will need the following lemma, introduced in Rojo and Samaniego (1993)

as Lemma 1.

Lemma 5.2. let h and g be bounded functions on interval [0, z], then

| inf h(y) — inf g(y)| < sup |h(y) — g(v)] (5.7)

0<y<z 0<y<z 0<y<z

Now, for any = € [0,b], b< B = min(b,by),

sup 9n(m)/ So(u) du—@(x)/ Sy(u) du
0<z<h z
B [ 81 (w) du [ Si(w) oo
2 ozlimmm—/ 0 sz%xrﬁ*—/w ) dv
< S du — t—————— / Sa(u) d
- osglalcgbosglgz j; Q(U) (u) du ft Sa(u 2(v) du
> Sa(u) du /
= u) du — Sy (u) du
osglalsgbosglzgx ft 5'2(U) v 8 U h
< sup / S (u) du—/ Si(u) du
0<t<z |J¢ t
— 0 as n — oco.
Since [ Sy(u) du is bounded and positive, we have
sup |0n(z) — 9(33)‘ — 0 as n — oo. (5.8)
0<a<h

By the definition (4.10), ,(z) is bounded by £2, hence by using the Lemma

5.1(Hille Lemma), for 8,,(z), defined as (4.17), we can establish the following theorem

by following a parallel proof to that of Thoeorem 5.1.
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Theorem 5.2. If Si(x) and Sz(x) are continuous and have finite mean and support

b1, by, A, = 00 and 3‘# — 0, then

sup |0, (z) — 0(1:)‘ —0 a.s. as n =0, forailx (5.9)

0<z<h

where, b < B = min(by, bs).
For the estimator under the reverse ordering we can establish the similar result
as above by the Lemma 5.1 and Lemma 2 in Rojo and Samaniego (1993). A minor

difference is that, under this restriction, the 6, (z) is bounded at b.

Lemma 5.3. let h and g be bounded functions on interval [0, z], then

| sup h(y) — sup g(y)| < sup |h(y) — g(y)| (5.10)

0<y<z 0<y<z 0<y<z

Now considering Ed—jén (z), defined by (4.20), first, we show the following theo-

rem.

Theorem 5.3. Under the hypothesis of theorem 5.2, if A, = o(n®) for some o < 3/4,

O, (z) — O(x)‘ = 0(5;-) and a’% 0(x) is bounded almost everywhere on [0,b], we

sup

0<z<b

will have
su —d—é(x)—ie(m‘)—)0 a.s. as n — 0o (5.11)
ogxgb 70 = 5. . .
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Proof. From (4.23) we could write Ed;én(x) as

94 = — j ie—knx(/\nw)n

@Hn(fv) = An{en(An) y
30005 - oS e Coi) 65.12)
20065 - 850 - o) - a5y

We prove the above theorem step by step as follows.

. For the first part T,,;(z), Chaubey and Sen (1996) has shown that

1

—AnT ()\nx)n _ —%)\nm n _n n"‘%ﬁ‘*‘"'
et = (e An) orridid (5.13)
1 € 1 1
= ——{-Aze 2™} 1+ O(= 5.14
veiC OO} 69

When Anﬂ — 0 a.s. as n — 0o, by the stirling approximation. For Vz € [0, b], we
could find a adequtely large N, whenever n > N | %)\nme"’}?)‘"m can be smaller

than 1. Thus, we could write

(Anz)® 1 {
n! V2 Pn

e—Anm

@){1+0()} (5.15)

where pn(z) = 0 as 7 — 0o. So, e~ 22" can be made o(n~2) as n — oco.

Hence,

T (o) (: —)\nén(%)e—*nm(_)‘:l_?)ﬁ> N

sup
0<z<b

a.s. as n — oo, while by the assumption % — 0 a.s. as n — oo.
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2. Second, for Tpa(x), we expand 6(z) as a Taylor Series at

0(z) = 8(12) + 28N — 1)+ a0 — 1 +00?) (310)
If we replce z by EEL, we could write
2
Mo~ 05D = 060 + 3t + o) 67

so that under the assumed boundedness of %0(33), T, %0(%)] —0asn—

oo, we may virtually repeat the proof of theorem 3.1 and conclude that

sup — 0, almost surely as n — oo, (5.18)

0<z<b

Too(z) - %H(x)

smce/\ — 0 asn — oo.

. Finally , we will show sup |T,3(z)| = 0 as n — .

0<e<h
x k
Since ) & =
k=0
<k k+1 k k+1.. 5,
sup [To(@)] = sup |~Ml(Ba() — ba("50) = (0() — O™
0<z<b 0<z<b n n n n
<k ~ k41 k kE+1
< o e [0 - D - D) - o)
~ k k s k+1 k+1
< An(max 0n()\—n)—0(;\;) + max, On( ™ ) —60( " )]‘)
< 2M\, sup Hn(ac)——ﬁ(x)’
0<z<b
— 0
asn — 0.
This completes the proof of Theorem 5.3. J
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Since we have Sy, defined as (4.19), writing S;(z) as
Si(z) = 0(x)Sz(x) — d—(fc—H(:r)/ Sa(u) (5.19)

we can show that

sup 512(13) - Sl(x)l
0<z<b
d -
= sup —[E—Bn( )———0 ]/ Sa(u) du + Sa(z )[0 (z) — 6(x)]
0<z<b X
< sup -Ei-—Bn - —0 w) du+ sup |B,(z) — 0(1:)’ So(x)
0<a<b | AT 0<a<b

— 0 a.s. as n — o0,

since Sa(x) and po are finite.

Furthermore, we see that

sup |M,o(z) — Ml(x)l — 0 almost surely as n—0 (5.20)
0<z<b

for every b less than the support of gl,g(x), where ]\;[1,2 (z) is defined as (4.24).
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Chapter 6

Simulation

In this chapter, we present some simulation results comparing the estimator of Hu
et al. (2002) and the estimators proposed here for various quantiles. Since, Hu et
al. (2002) do not present any results for estimating the survival function we compare
the two estimators of survival functions. The following decreasing, constant and

increasing MRL functions are used to carry out the simulation:

T . T by
M;(z) = a;(1 - b—)I[:v <bl], b >a; with Si(z) = (11— —)%

which corresponds to the U(0,1) distribution when a; = 0.5,; = 1,

M;(z) = 6; corresponding to the exp(6;) distribution ; and

. a;x+b, (141
M;(z) = a;x + b;, axz+b; >0, b >0 with S;(z) = (—1—b—) (+3),
i
Our interest interest is in contrasting the simula‘ed bias and MSE. Each model has

been treated based on 100 iterations for sample of size 10 and 20.

In Tables 6.1 and 6.2, we compare the bias and MSE for the decreasing MRL
functions, where we consider M;(z) = 1(1—z), Ma(z) = 3(1—=z), with corresponding

survival functions S;(z) = (1 — z)? and Sa(z) = (1 — z) respectively.
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In Tables 6.3 and 6.4 we compare the bias and MSE for the exponential distri-
bution, take M, (z) = 1,M(z) = 1.1, with responding survival functions S;(z) = e™*
and Sy(x) = e~ 11 respectively.

Finally, Tables 6.5 and 6.6, we compare the bias and MSE for the decreasing
MRL functions, take M;(z) = iz + 1, My(z) = z + 1, with responding survival
functions Sy(z) = (35)% and Sy(z) = (z +1)7%

From these tables, it may be seen that , generally, our two estimators have
a little bit more bias than the unsmooth estimator of Hu et al. (2002), but they
have smaller MSE almost always, particularly st the tail of the distribution. We
must note from the Table 6.1, for the decreasing MRL function model, M ;(z) and
M 5(z) even has the smaller estimated bias than Mj(z) with the perfect smaller
MSE; and for the increasing one, our estimators do not seem to work as well as under
the decreasing model, their MSE increases as g increases from 0 to the 0.5, but after
that, it decreases. At the tails our estimators do perform better.

We would also like to be able to differentiate between ]\7[1,1, 5’1,1(33) and M 1,2(2),
5’1,2(3:). Unfortunately, we can not find any general rules for comparing the two
estimators prposed here. It seems though, that the first method generally gives much
more bias, especially in the last tow models. However , the difference is very every
small. And in general, the ]\7[1,2 produces much smaller MSE at the tail of the survival
function. But the 5”1,2 is not always equal to 1 at 0; it approaches 1 as n becomes

large. We also see the pattern that estimated bias decreases with the increase in

sample size, which is expected due to strong consistency result.
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Table 6.1: Comparison of bias(B) and MSE of M;(z), My () and M 5(x) at various

g-quantiles for M;(z) = a;(1 — )1z < b], b > a;

MSE(M}(z))  MSE(M;(z))
MSE(M 1(z)) MSE(M, 2(z))

¢ B(Mi(z)) B(Mii(z)) B(Mip(c))

M (z) = (1 — ), My(z) = $(1 — z), n = 10, #iterations = 100

0.1  -0.0395 -0.0368 -0.03980 1.2178 1.0787
0.2 -0.0367 -0.0340 -0.0355 1.3019 1.1395
0.5 -0.0266 -0.0272 -0.0477 1.2578 0.7249
0.8 -0.0311 -0.0025 -0.0211 4.0131 4.8582
0.9 -0.0268 -0.0181 -0.0070 1.7160 23.3061

* "~ " MSE(M{ MSE(M{
¢ B(Mi(@)) B(Mia(e)) B(Mia2(2) sssmcs st

M (z) = (1 — z), My(z) = 3(1 — ), n = 20, #iterations = 100

0.1 -0.0271 -0.0260 -0.0260 1.0997 1.0053
0.2 -0.0279 -0.0261 -0.0252 1.1845 0.9160
0.5 -0.0206 -0.0209 -0.0258 1.2919 1.0157
0.8 -0.0112 -0.0036 -0.0032 2.8544 1.0551
09 -0.0137 0.0122 -0.0077 2.1733 8.1841
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Table 6.2: Comparison of bias(B) and MSE of S;,(z) and S;,(x) at various g¢-

quantiles for M;(z) = a;(1 — £)I[z < b], b > a;

g B(S11(z)) B(Si2(z)) MSE(S)1(z)) MSE(S)2(z))

Mi(z) = 1(1 — z), My(z) =1 — z, n = 10, #iterations = 100

0.1 -0.0126 -0.0091 0.0026 0.0037
0.2  -0.0264 -0.0235 0.0658 0.0062
0.5 -0.0507 -0.0285 0.0096 0.0093
0.8  -0.0652 -0.0820 0.0067 0.0085
0.9 -0.0403 -0.0582 0.0025 0.0037

q B(Sl,l(x)) B(S’l’z(iﬂ)) MSE(gl,l(.’B)) MSE(gl,Q(l'))

Mi(z) = 3(1 — z), My(z) =1 — z, n = 20, #iterations = 100

0.1 0.0003 0.0008 0.0008 0.0011
0.2  -0.0068 -0.0078 0.0017 0.0019
0.5 -0.0336 -0.0235 0.0044 0.0044
0.8 -0.0474 -0.0519 0.0036 0.0042
0.9 -0.0345 -0.0477 0.0017 0.0026
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Table 6.3: Comparison of bias(B) and MSE of M#(x), My () and M, »(z) at various

g-quantiles for M;(z) = 6;

MSEMf(z))  MSE(Mj(z))
MSE(My1(z)) MSE(M;a(z))

¢ B(Mi(z)) B(My(z)) B(M(z))

Mi(z) =1, My(z) = 1.1, n = 10, #iterations = 100

0.1  -0.0958 -0.1142 -0.1005 0.9265 0.9779
0.2 -0.1028 -0.1253 -0.1117 1.0145 1.0556
0.5 -0.1440 -0.1686 -0.1601 1.1112 1.1107
0.8 -0.3076 -0.3095 -0.2805 1.5642 1.9126
0.9 -0.5337 -0.4811 -0.3905 1.5824 2.4140
MSE(M{(z))  MSE(M{(x))

q B(M{("L‘)) B(Ml,l (.’L‘)) B(M]-,?(x)) MSE(M 1 (z)) MSE(M 2(z))

Mi(z) =1, My(z) = 1.1, n = 20, #iterations = 100

0.1  -0.0637 -0.0718 -0.0680 0.9552 0.9476
0.2 -0.0703 -0.0806 -0.0761 1.0120 0.9930
0.5 -0.1211 -0.1303 -0.1254 1.0824 1.0635
0.8 -0.1917 -0.2207 -0.2101 1.1993 1.2830
09 -0.3738 -0.3414 -0.3031 1.6022 2.0353
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Table 6.4: Comparison of bias(B) and MSE of S;;(z) and Sy,(x) at various g-

quantiles for M;(z) = 6;

q B(Sl,l(flf)) B(gl’g(ﬁ)) MSE(SL]_(IE)) MSE(gl’g(.’L'))

Mi(z) =1, Ms(z) = 1.1, n = 10, #iterations = 100

0.1 0.0114 -0.0040 0.0047 0.0057
0.2 0.0234 0.0090 0.0081 0.0068
0.5 0.0347 0.0296 0.0102 0.0097
0.8 0.0481 0.0414 0.0069 0.0067
0.9 0.0383 0.0310 0.0050 0.0045

q B(Sl,l(x)) B(Sl’z(x)) MSE(Sl,l(LL')) MSE(SLQ(:E))

Mi(z) =1, My(z) = 1.1, n = 10, #iterations = 100

0.1 0.0103 0.0063 0.0019 0.0019
0.2 0.0231 0.0192 0.0038 0.0038
0.5 0.0043 0.0029 0.0042 0.0043
0.8 0.0193 0.0182 0.0029 0.0030
0.9 0.0202 0.0183 0.0018 0.0018
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Table 6.5: Comparision of bias(B) and MSE of M} (z), M, 1(z) and M, 5(z) at various

g-quantiles for M;(z) = a;z + b;

"~ "~ MSE(M}(z MSE(M¥(z
¢ B(M{(2)) B(Ma()) B(Ma(®) grssomers e

M (z) = 3z + 1, My(z) = z + 1, n = 10, #iterations = 100

0.1 -0.2131 -0.2278 -0.2262 0.9743 0.9959
0.2  -0.2097 -0.2423 -0.2308 0.9167 0.9506
0.5  -0.2602 -0.2949 -0.2493 0.9238 0.8701
0.8 -0.5984 -0.6266 -0.4877 1.1967 1.1432
0.9 -1.1794 -1.1569 -0.9377 1.2524 1.4528

MSEMj(z))  MSE(M(z))
MSE(Mi1(z)) MSE(M; ()

¢ B(Mi(z)) B(Mi(z)) B(Mip(a))

Mi(z) = Lz 4+ 1, My(z) = z + 1, n = 10, #iterations = 100

0.1 -0.1265 -0.1377 -0.1390 0.9482 0.9004
0.2  -0.1427 -0.1456 -0.1340 0.9882 0.9338
0.5 -0.1701 -0.1912 -0.1530 0.9197 0.8342
0.8 -0.3333 -0.4471 -0.3727 1.0685 1.0292
0.9 -0.7107 -0.7718 -0.6625 1.2238 1.2153
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Table 6.6: Comparison of bias(B) and MSE of S;1(z) and S)2(x) at various g¢-

quantiles for M;(z) = a;xz + b;, a;,b; > 0

q B(Sl’l(l‘)) B(S’l,z(.’ﬁ)) MSE(§1,1($)) MSE(SLQ(x))

Mi(z) = 32+ 1, My(z) = z + 1, n = 10, #iterations = 100

0.1 0.0094 0.0052 0.0043 0.0075
0.2 0.0094 -0.0043 0.0075 0.0081
0.5 0.0074 -0.0081 0.0106 0.0101
0.8 0.0383 0.0314 0.0064 0.0058
0.9 0.0377 0.0341 0.0039 0.0035

q B(Su(x)) B(SLQ(ZI))) MSE(S'l,l(x)) MSE(S&Q(CL‘))

Mi(z) = 3z + 1, My(z) = z + 1, n = 10, #terations = 100

0.1  -0.0003 0.0009 0.0038 0.0050
0.2 -0.0111 -0.0187 0.0060 0.0074
0.5 -0.0059 -0.0153 0.0063 0.0073
0.8 0.0117 0.0100 0.0022 0.0022
0.9 0.0180 0.0184 0.0012 0.0012
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Chapter 7

Future Directions and Remarks

7.1 Asymptotic Properties

In this section, we will discuss about the asymptotic properties of the new estimators.
While the proof is not complete, we just give some idea and direction that is worth

further studies.

Hu et al. (2002) gave some assumptions to ensure that the continuous mapping

theorem can be applied in their paper:
1. X; and X, have finite variances;
2. 51 and S; have common discontinuous on the intersection of their supports.

Since we assume continuous survival functions, the second condition is satisfied au-

tomatically.
Yang (1978) showed that over the interval z € [0,d], for d : F(d) < 1, nz(M; —
M) converges in distribution to a zero mean Gaussian process if S; has a density.

Hall and Wellner (1979) improved the above result that if the convergence is on
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the domain of Sy, the density assumption is not essential; and n? (J\;Il — M) weakly
converges to U(z) on all compound intervals [0,b], b < b; as before. Based on this
result, X. Hu et al. (2002) prove the following theorem for their estimator under MRL

ordering, as their Theorem 5.1 .

Theorem 7.1. Let b < by be fized, Consider the estimator Ml* as 4.3 when My s

knouwn.
1. If M, < M5 on [0, b], then

ni (M} — My) = U on [0,b]. (7.1)

2. If My(zo) = My(zo) for some xo € (0,b) and My < My on (zo, So], So < b, or

on [sg,g), sSo > 0, then n%(l\sz — M) does not converge weakly.

3. If My = M, on [0,b], then

~

nz(Mf — M) > UAO on [0,8]. (7.2)

Since we have shown the strong consistency of ]\711,1, if we could show that
|| My, — M}|| = ||V, — V.|| converge to some O(n~!), then we could claim asymptotic
Gaussian law for the smooth estimator.

Chaubey and Kochar (2000) has given a similar proof for the asymptotic prop-
erties to their estimator S (z) as Thoerem 3.2. The only difference is their proof is for
the step function, and our Vn(x) is not exactly a step function but with some linear
curves for interval [X;, X; 1], we could not apply the theorem of Bahadur [1996]. This
could probably modified to prove the required Gaussian limit law, however, we leave

it for future research.
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For S’l,z(:v), the situation seems more complicated, since we can not establish
some relationship between our estimator and some known asymptotic theory, and the

computation of the variance of the resulting estimator seems quite also difficult.

7.2 Estimation for Two-Sample Case

We can easily extend the problems we studied here to the two-sample case, i.e. where
S is also unknown but estimated from an independent sample. HU et al. (2002) used
the same technique which was shown by Mukerjee (1996) to be preferred to the two-
sample estimator discussed by Rojo and Samaniego (1993) for the uniform stochastic
order case. Define S = ”ﬁg—’n’;sz to be an empirical estimator for the survival function
S = nfitmSz  Then MRL function of S is given by

n+m
M(z) E;;((xu_))dﬁ T < by)
_ LIS (u) + mSy(w)] dqu <b)
nS (z) + mSy(z)
nS: (z) Mi(z) + mSs(z) Ma(z)
S @) s mSaa) @ <b)

Then, the corresponding nonparametric estimators are given by

M;(z) = My(z) A M(z) (7.3)
Mj(z) = My(z) v M(z) (7.4)

We could apply Chaubey and Sen (1996) approach to these to get the smooth
estimators, but we can not guarantee the MRL order in the smooth estimators. Hence
the technique similar to the one used by Chaubey and Kochar (2000) could be used
resulting in estimators similar properties as in one-sample case.

For the second method, we may define S(z) as a smooth version of S(z) by
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Chaubey and Sen (1996) technique, and then define

0<t<z n‘[‘t S(S)ds

) " Ty (Y —t
Oa(x) = sup Liz T ) forall0 <z <b (7.6)

o<t<y  n f;7S(s)ds

forall0 <z <b (7.5)

Now based on these estimators we could derive new smooth version of 8; and 6,,
and then get the smooth estimator of S; and S;. However, the MRL order property
of these estimators need to be established.

These estimators are also expected to have similar properties as in one-sample

case.

7.3 Concluding Remarks

This thesis has focused on the problem of estimating the Survival and MRL functions
for a life time variable X, under the assumption that it is smaller than another known
life variable Y in mean residual life order, which is very common in reliability and
survival analysis problems. We have considered two smooth versions of the estimator
given by Hu et al. (2002) under the MRL order. This estimator has good asymptotic
properties, however, its discrete nature makes it unattractive to practitioners. The
smooth estimators proposed here show good bias and MSE properties as compared to
the non-smooth estimators as demonstrated through some simulation studies. Some
asymptotic results are established, however, much remains to be done with respect
to smooth estimators. A possible direction for estimation in the case of two samples

is also outlined.
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