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Abstract

Intensional Value Warehouse and Garbage Collection

in the GIPSY

Lei Tao

Intensional Programming involves the programming of expressions placed in an
inherently multidimensional context space. It is an emerging and evolving domain of
very general application. The General Intensional Programming System (GIPSY)
aims at the implementation of a programming system that would allow very dynamic
investigations on the possibilities of Intensional Programming. Intensional Value
Warehouse (IVW), a part of General Eduction Engine (GEE) that is the back end of
GIPSY, is built as storage of values that have already been computed. First of all,
this thesis briefly introduces the GIPSY and its features and goals. Then, we describe
the design methodology and principle. Afterwards, we give the detail of
implementation of the IVW. In the IVW, we build a garbage collector that promotes
the deleted data or writes them to file, which is different from the typical garbage
collector. The use of garbage collector configured to it is of prime importance to
obtain high performance. Further, we discuss the result of the IVW, which
approaches the main goals of generality, adaptability and efficiency. Finally, we

successfully integrate IVW to GEE in overall GIPSY system.
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Chapter 1: Introduction

This chapter introduces the aim of the runtime intelligent memory value cache that
we developed in this research work as part of the GIPSY project, and highlights the

contribution of the thesis and describes its structure.

1.1 Context

This thesis mainly describes the development of a runtime intelligent memory
value cache called IVW (Intensional Value Warehouse), which is a part of GEE
(General Eduction Engine) in the GIPSY (General Intensional Programming
SYstem). The GIPSY is an implementation of Intensional Programming, which
involves the programming of expressions placed in an inherent multidimensional
context space [1]. The GIPSY is also a very ambitious project and is directed by
Dr. Joey Paquet and Dr. Peter Grogono in the Computer Science Department at
Concordia University, Montreal, Canada. Several other graduate students, ant the

PhD and Master level are also involved in the various parts of the project.

1.2 Thesis Statement

The GIPSY handles an intensional programming language called Lucid that is a
functional language in which expressions and their valuations are allowed to vary
in an arbitrary number of dimensions. To process Lucid source code, we divided
the workflow into two major steps: the front-end and the backend. The front-end

includes syntax checking and semantic checking, and the backend operates on the
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abstract syntax tree generated by the front-end and computes the desired values.
The GEE is the back-end of the GIPSY system, which operates according to a
demand-driven computation model in conjunction with an intelligent value cache
called an IVW. Every computed value is placed in the warehouse, and every
demand for an already computed value is extracted from the warehouse rather than
computed anew. This model of computation has been named “eduction” by Wadge
and Ashcroft, the original developers of the Lucid language. Eduction reduces the
overhead induced by the procedure calls needed for the computation of demands,
i.e. demand propagation does not have to be computed more than one time.

A highly modular design and complete specification of generic software
interfaces enables the GEE to accept other garbage collecting algorithms with
minimal programming cost and replacement overhead. A thorough analysis of the
different requirements of each intended application of intensional programming
enables us to identify a minimal set of garbage colleting techniques to be
implemented and tested. We also investigate the possibility of using multi-level
warchouses enabling faster access to values accessed regularly and allowing out-of-
date computed results to be stored on the file system [3]. This thesis work focuses
on building the IVW of GEE in GIPSY. One of our main goals is to design and
complete a warchouse as an effective and flexible solution to approach GIPSY

features: generality, adaptability and efficiency.

1.3 Contributions

This thesis work performs experience on the application of intelligent memory
value cache with garbage collection technique, designs and implements the
Intensional Value Warehouse (IVW), which is a part of development of GEE of the

2



GIPSY. It investigates the essence of building value warehouse in memory by
applying Java implementation technologies. In addition, it explores the advantages
of garbage collection algorithms and NetCDF dataset on IVW.

First, the thesis uses the Network Common Data Form (NetCDF) to construct
IVW. The purpose of the NetCDF interface is to allow user to create, access, and
share array-oriented data in a form that is self-describing and portable. Through the
library provided by NetCDF, we can store and retrieve data in self-describing
machine-independent datasets. Each NetCDF dataset can contain multidimensional,
named variables, and each variable may be accompanied by ancillary data, such as
units of measure or descriptive text. NetCDF allows direct-access storage and
retrieval of data by variable name and index and thus is useful for disk-resident or
memory-resident datasets, Using NetCDF interface in [IVW can make GIPSY meet
the requirement of generality and adaptability.

Secondly, the thesis explores three different designs of IVW module and
variant garbage collecting techniques in IVW. One solution is to maintain the
NetCDF memory dataset as value warehouse without a cache component. Others
are to build a NetCDF memory dataset with a cache dataset, which enables faster
access to values. Also, as an intelligent memory value cache, the IVW provides the
independence of the garbage collection algorithm. Then, the out-of-date computed
value will be swept or stored on the file system, which helps to increase the
performance of the IVW. In this way, the IVW achieves the desired efficiency.

Thirdly, the thesis implements an extensible architecture that is completely
object-oriented, easily manageable, and adaptable to future changes. Then, the
thesis explains the integration and relationship of the generated components in the

whole system. Moreover, it includes estimates of the impact of access to IVW



under various garbage collection architectures and algorithms.

1.4 Structure of the Dissertation

Chapter 2 introduces the structure of the GIPSY system, and then describes its
design goals, also presents the major tasks performed by the front-end components
of the system. Chapter 3 analyses the methodology used to implement the IVW and
gives the explanations of the advantages of method used. Chapter 4 describes the
design principles, gives the details of implementation of the IVW components,
moreover, it presents how to integrate [IVW with GEE and RIPE. Chapter 5 shows
the result of evaluation from each aspect introduced above. Chapter 6 concludes the

thesis with an outline of its contributions. Chapter 7 presents the future work.



Chapter 2 : Background

This chapter presents the background of the component IVW in GIPSY. It gives an
introduction of the GIPSY system, and then explains the basics of Unidata’s
NetCDF software package, and current techniques of garbage collection in memory

data management.

2.1 Introduction to the GIPSY System

2.1.1 Intensional Programming and Lucid Language

Intensional programming is a generalization of unidimensional contextual (a.k.a.
modal logic) programming such as temporal programming, but where the context is
multidimensional and implicit rather than unidimensional and explicit. Intensional
programming is also called multidimensional programming because the expressions
involved are allowed to vary in an arbitrary number of dimensions; the context of
evaluation is thus a multidimensional context. For example, in intensional
programming, one can very naturally represent complex physical phenomena such
as plasma physics, which are in fact a set of charged particles placed in a space-
time continuum that behaves according to a limited set of laws of intensional
nature. This space-time continuum becomes the different dimensions of the context
of evaluation, and the laws are expressed naturally using intensional definitions [1].

Lucid is a multidimensional intensional programming language whose

semantics is based on the possible world semantics of intensional logic. It is a
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functional language in which expressions and their valuations are allowed to vary
in an arbitrary number of dimensions. Intensional programming (in the sense of
Lucid) has been successfully applied to resolve problems with a new perspective
that enables a more natural understanding of problems of intensional nature. Such
problems include topics as diverse as reactive programming, software
configuration, tensor programming, and distributed operating systems. However,
these projects have all been developed in isolation. GLU is the only intensional
programming tool presently available. However, experience has shown that, while
being very efficient, the GLU system suffers from a lack of flexibility and
adaptability. Given that Lucid is evolving continually, there is an important need for
the successor to GLU to be able to stand the heat of evolution [2].

We implement a general intensional programming system (GIPSY). To cope
with the fast evolution and generality of the intensional programming field, the
design and implementation of all its subsystems is done towards generality,

Slexibility and efficiency.

2.1.2 Architecture of the GIPSY System

A clear and adaptive architecture is defined to reach the flexibility and adaptability
goals of the system. The GIPSY is composed of three main modular subsystems:
The General Intensional Programming Language Compiler (GIPC); the General
Eduction Engine (GEE), and the Intensional Run-time Programming Environment
(RIPE). The following sections outline the theoretical basis and architecture of the
different components of the system. All these components are designed in a
modular manner to permit the eventual replacement of each of its components, at

compile-time or even at run-time, to improve the overall efficiency of the system



[2]. The structure of the GIPSY system is depicted in Figure 2-1.

GIPSY

Figure 2-1: Architecture of GIPSY

RIPE: Run-time interactive programming environment
GIPC: General intensional programming language compiler
GEE: General eduction engine

AST: Abstract syntax tree

IDP: Intensional demand propagator

IVW: Intensional value warehouse

ST: Sequential thread

CP: Communication procedure

DPR: Demand propagation resources

2.1.3 General Intensional Programming Compiler (GIPC)

GIPSY programs are compiled in a two-stage process. First, the intensional (Lucid)
part of the GIPSY program is translated into Java, then, the resulting Java program

is compiled in the standard way.



The source code consists of two parts: the Lucid part that defines the
intensional data dependencies between variables and the sequential part that defines
the granular sequential computation units (usually written in Java). The Lucid part
is compiled into an intensional data dependency structure (IDS) describing the
dependencies between each variable involved in the Lucid part. This structure is
interpreted at run-time by the GEE following the demand propagation mechanism.
Data communication procedures used in a distributed evaluation of the program are
also generated by the GIPC according to the data structures definitions written in
the Lucid part, yielding a set of intensional communication procedures (ICP).
These are generated following a given communication layer definition such as
provided by IPC, CORBA or the WOS.

The sequential functions defined in the right part of the GIPSY program are
translated into sequential code using the second stage (Java) compiler syntax,
yielding sequential threads (ST). Intensional function definitions, including higher

order functions, are flattened using a well-know efficient technique. [1]

2.1.4 Run-time Interactive Programming Environment (RIPE)

The RIPE is a visual run-time programming environment enabling the visualization
of a dataflow diagram corresponding to the Lucid part of GIPSY programs. The
user can interact with the RIPE at run-time in the following ways. [2]

. Dynamically inspect the IVW;

. Change the input/output channels of the program;
. Recompile sequential threads;
] Change the communication protocol;

. Change parts of GIPSY itself (e.g. garbage collector).



Because of the interactive nature of the RIPE, the GIPC is modularly designed to
allow the individual on-the-fly compilation of either the DPR (by changing the
Lucid code) ICP (by changing the communication protocol) or ST (by changing the
sequential code). Such a modular design even allows sequential threads to be
programs written in different languages (for now, we are concentrating on Java
sequential threads).

A graphical formalism to visually represent Lucid programs as
multidimensional dataflow graphs had been devised in [1]. For example, consider
the Hamming problem that consists of generating the stream of all numbers of the
form 2'¥5* in increasing order and without repetition. The following Lucid program

solving this problem can be translated into a datatlow diagram.

H«

where«
H =1 foy merge(merge(2°H,3"H),5°H); «
merge(x.y)= if (xx<=yy) then xx else yy+
where«

XX =X upon (xx<=yy};~

YY =Y upon (yy<=xx}
end;«

Pkt tet )

end:+

ot el

Figure 2-2: Indexical Lucid program for the Hamming problem

Figure 2-3 represents the dataflow diagram corresponding to this program.
Such nested definitions will be implemented in the RIPE by allowing the user to
expand or reduce sub-graphs, thus allowing the visualization of large-scale Lucid

definitions.



L]
e

L]

]I *2 ||

D ] B

Figure 2-3: Dataflow graph for the Hamming problem

Using this visual technique, the RIPE enables the graphic development of
Lucid programs, translating the graphic version of the program into a textual
version that can then be compiled into an operational version. There is also the
possibility to have a kernel run-time interface on top of which we can plug-in

different types of interfaces adapted to different applications. [2]

2.1.5 General Eduction Engine (GEE)

GIPSY uses a demand-driven model of computation, whose principle is that a
computation takes effect only if there is an explicit demand for it. GIPSY uses
eduction, which is demand-driven computation in conjunction with a value cache
called a warchouse. Every demand can potentially generate a procedure call, which
is either computed locally or remotely, thus eventually in parallel with other
procedure calls. A value should be warehoused if it is cheaper to extract it from the
warehouse than to recompute it. Every demand for an already-computed value is
extracted from the warehouse rather than computed anew. Eduction thus reduces
the overhead induced by the procedure calls needed for the computation of

demands. [1]
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Figure 2-4: Internal Structure of the General Eduction Engine (GEE)

In Figure 2-4, we can see that the GEE is composed of two main modules: the
intensional demand propagator (IDP) and the intensional value warechouse (IVW).
First, the demand propagation resources (DPR) are fed to the demand generator
(IDG) by the compiler (GIPC). This data structure represents the data dependencies
between all the variables in the Lucid part of the GIPSY program in input. This
directs in what order all demands must be generated to compute values from this
program. The demand generator receives an initial demand, which in turn raises the
need for other demands to be generated and computed. For all non-functional
demands (i.e. demands not associated with the execution of a sequential thread
(ST)), the IDG makes a request to the warchouse to see if this demand has already
been computed. If so, the previously computed value is extracted from the
warehouse. If not, the demand is propagated further, until the original demand is
resolved and is put in the warehouse for further use.

Functional demands, (i.e. demands associated with the execution of a
sequential thread), are sent to the demand dispatcher (IDD). The IDD takes care of

sending the demand to one of the workers or resolves it locally (which normally
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means that a worker instance is running on the processor running the generator
process). If the demands are sent to a remote worker, the communication
procedures (ICP) generated by the compiler are used to communicate the demand
to the worker. The IDD receives some information about the lifecycle and
efficiency of all workers from the demand monitor (IDM), to help it make better
decisions in dispatching functional demands.

The demand monitor, after some functional demands are sent to workers,
gathers various information of each worker:

* Its status (is it still alive, not responding, or dead)

Its network link performance
¢ Tts response time statistics for all demands sent to it
* etc.
This information is accessed by the IDD to make better decisions about the
load balancing of the workers, and thus achieving better overall run-time

efficiency.

2.2 State of the Art of Value Warehouse

2.2.1 General introduction

The following sections present the Unidata technique and NetCDF interface, which
are used to build our IVW. Also, we provide a brief overview of current garbage

collection techniques in memory data management.

2.2.2 Unidata and NetCDF

Unidata is a National Science Foundation-sponsored program empowering U.S.
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universities, through innovative applications of computers and networks, to make
the best use of atmospheric and related data for enhancing education and research.
For analyzing and displaying such data, the Unidata Program Center offers
universities several supported software packages developed by other organizations,
including the University of Wisconsin, Purdue University, NASA, and the US
National Weather Service. Underlying these is a Unidata-developed system for
acquiring and managing data in real time, making practical the Unidata principle
that each university should acquire and manage its own data holdings as local
requirements dictate. It is significant that the Unidata program has no data
center—the management of data is a “distributed” function.

The Network Common Data Form (NetCDF) software was originally intended
to provide a common data access method for the various Unidata applications.
These deal with a variety of data types that encompass single-point observations,
time series, regularly-spaced grids, and satellite or radar images.

NetCDF is an interface for array-oriented data access and a library that
provides an implementation of the interface. The NetCDF library also defines a
machine-independent format for representing scientific data. Together, the
interface, library, and format support the creation, access, and sharing of scientific
data. The NetCDF software was developed at the Unidata Program Center in
Boulder, Colorado.

The NetCDF is widely used nowadays. Its mailing list has over 500 addresses
(some of which are aliases to more addresses) in thirty countries. Several groups
have adopted NetCDF as a standard way to represent some forms of scientific data,

varying from weather maps to brain imaging.
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2.2.3 NetCDF Interface

The Network Common Data Form, or NetCDF, is an interface to a library of data
access functions for storing and retrieving data in the form of arrays. An array is an
n-dimensional (where n is 0, 1, 2 ...) rectangular structure containing items which
all have the same data type (e.g., 8-bit character, 32-bit integer). A scalar (simple
single value) is a 0-dimensional array.

NetCDF is an abstraction that supports a view of data as a collection of self-
describing, portable objects that can be accessed through a simple interface. Array
values may be accessed directly, without knowing details of how the data are
stored. Auxiliary information about the data, such as what units are used, may be
stored with the data. Generic utilities and application programs can access NetCDF
datasets and transform, combine, analyze, or display specified fields of the data.
The development of such applications may lead to improved accessibility of data
and improved reusability of software for array-oriented data management, analysis,
and display.

The NetCDF software implements an abstract data type, which means that all
operations to access and manipulate data in a NetCDF dataset must use only the set
of functions provided by the interface. The representation of the data is hidden from
applications that use the interface, so that how the data are stored could be changed
without affecting existing programs. The physical representation of NetCDF data is
designed to be independent of the computer on which the data were written.
Unidata supports the NetCDF interfaces for C, FORTRAN, Java, C++, and Perl and
for various UNIX operating systems.

One of the goals of NetCDF is to support efficient access to small subsets of

large datasets. To support this goal, NetCDF uses direct access rather than
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sequential access. This can be much more efficient when the order in which data is
read is different from the order in which it was written, or when it must be read in
different orders for different applications.

The amount of overhead for a portable external representation depends on
many factors, including the data type, the type of computer, the granularity of data
access, and how well the implementation has been tuned to the computer on which
it is run. This overhead is typically small in comparison to the overall resources

used by an application.

2.2.4 NetCDF Dataset

NetCDF Data Model

A NetCDF dataset contains dimensions, variables, and attributes, which all have
both a name and an ID number by which they are identified. These components can
be used together to capture the meaning of data and relations among data fields in
an array-oriented dataset. The NetCDF library allows simultaneous access to
multiple NetCDF datasets which are identified by dataset ID numbers, in addition
to ordinary file names.

A NetCDF dataset contains a symbol table for variables containing their name,
data type, rank (number of dimensions), dimensions, and starting disk address.
Each element is stored at a disk address which is a linear function of the array
indices (subscripts) by which it is identified. Hence, these indices need not be
stored separately (as in a relational database). This provides a fast and compact

storage method.
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The Network Common Data Form Language (CDL)

We use a small NetCDF example to illustrate the concepts of the NetCDF data
model. This includes dimensions, variables, and attributes. The notation used to
describe this simple NetCDF object is called CDL (network Common Data form
Language), which provides a convenient way of describing NetCDF datasets. The
NetCDF system includes utilities for producing human-oriented CDL text files
from binary NetCDF datasets and vice versa. The example can be found in
Appendix A. The CDL notation for a NetCDF dataset can be generated

automatically by using ncdump.

The NetCDF Markup Language (NcML)

NcML is an XML representation of NetCDF metadata, (roughly) the header
information one gets from a NetCDF file with the "ncdump -h" command. NcML is
similar to the NetCDF CDL, except, of course, it uses XML syntax. An example
can be found in Appendix A.

The purpose of the Network Common Data Form (NetCDF) interface is to
allow you to create, access, and share array-oriented data in a form that is self-
describing and portable. "Self-describing"” means that a dataset includes
information defining the data it contains. "Portable” means that the data in a dataset
is represented in a form that can be accessed by computers with different ways of
storing integers, characters, and floating-point numbers. Using the NetCDF
interface for creating new datasets makes the data portable. Using the NetCDF
interface in software for data access, management, analysis, and display can make

the software more generally useful.
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2.2.5 Garbage Collection

In computing, garbage collection is a system of automatic memory management
which seeks to reclaim memory used by objects which will never be referenced in
the future. The part of a system which performs garbage collection is called a
garbage collector.

When a system has a garbage collector it is usually part of the language run-
time system and integrated into the language. The language is said to be garbage
collected. Garbage collection was invented by John McCarthy as part of the first
Lisp system. It is a bit sloppy to talk of a garbage collected language, however;
being garbage collected is a property of an implementation of a language.

The basic principle of how a garbage collector works is:

* Determine what data in a program cannot be referenced in the future

* Reclaim the storage used by this data

Each data element (or “object”) consumes some memory, of which there is a
limited amount. When the objects are not used anymore, the memory allocated to
these objects must be reclaimed. Programmers using languages such as C or C++
have to take care of reclaiming the memory themselves, but in Java the JVM
reclaims the unused objects automatically through garbage collection.

An object is ready to be garbage collected when it is no longer “alive”. The
rules for determining if an object is alive are as follows:

¢ Ifthere is a reference to the object on the stack, then it is alive.

* If there is a reference to the object in a local variable, on the stack, or in a

static field, then it is alive.

* Ifa field of a live object contains a reference to some object, this object is

also alive.
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* The JVM may internally keep references to a certain objects, for example,

to support native methods. These objects are alive.

e If object is not alive, it is dead and can be garbage collected.

One big difference in performance between JVM implementations depends on
the garbage collector. The simplest garbage-collecting systems require all the
threads in the system to wait while all the dead objects to be reclaimed. The smarter
the garbage collector is, the better the performance is. There are three classes of
garbage collection techniques: basic techniques, incremental tracing techniques and

generational techniques.

2.2.6 Basic garbage collection algorithms

There are four main techniques for basic garbage collection: reference counting,
mark-and-sweep, mark-and-compact and copying garbage collector.

In reference counting every object has a header field, where the counter for
references to the object is stored. Each time a reference to the object is created, for
instance when creating the object, the reference counter is incremented by one.
Conversely, when a reference to the object is eliminated, the reference counter is
decremented by one. When the reference counter drops to zero, the object is
considered garbage and can be reclaimed. The benefit of this approach is that it can
be casily made real-time, because the updates for the reference counters can be
interleaved with the execution of the program. However, there is one minor and two
major problems with reference counting. Firstly, the counters themselves need
memory, as they have to be present in every object. Secondly, reference counting
cannot handle circular references, i.e. the situation, where two objects reference

each other and no other object reference to neither of the objects. Thirdly, reference
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counting reduces cfficiency, because the amount of the work done in updating the
reference counters is proportional to the amount of work done in the program.

Mark-and-sweep collection divides into two phases: distinguish the live objects
from the garbage and reclaim the garbage. In the first phase the garbage collector
starts with each reference in the local variable array an operand stack. It marks all
these objects as alive. This applies to all the stack frames in the Java stack, not only
the currently active one. Then the garbage collector checks all the fields in these
objects. If the field points to an object, this object is also marked as alive. This
process is recursively repeated until there are no more fields to check. Any object
that was not marked as alive during the process is garbage. If the threads in the
program were allowed to run during the garbage collection, a thread might move
the last reference to a still-reachable object from storage location that has not been
checked yet thus making a still reachable object appear unreachable and therefore
garbage. That object would be reclaimed, since the garbage collector never saw a
reference to it, making further references to the object return incorrect results or
even crashing the system.

Mark-and-compact adds the de-fragmentation functionality to the mark-and-
sweep collector. After the mark-and-sweep collection the memory can be
fragmented as the garbage objects can are reclaimed anywhere from the heap.
Mark-and-compact collection de-fragments the heap so that all the live objects are
in continuous memory space.

Copying collection has a number of immediate attractions compared with other
forms of automatic memory management. Like any non-incremental tracing
collector, it places no overhead on user program writes. The cost of copying is

proportional to the volume of live data rather than to the entire heap. This makes
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copying particularly attractive if the surviving data is a small proportion of the total
heap. Copying garbage collection compacts active data structures into the bottom of
the semi-space. This has three potential advantages. First, the heap is now a ‘push-
only’ stack. Memory can be allocated linearly simply by incrementing a free space
pointer by the size of the object to be allocated. Consequently space of variable-
sized objects can be allocated for the same cost as other objects; complications of
separate free-lists, or other fit-finding tactics, are unnecessary. Thirdly, compacting
the active part of the heap onto fewer pages should reduce the size of the program’s

working set [7].

2.2.7 Incremental tracing collectors

For truly real-time algorithms, fine-grained incremental garbage collection appears
to be necessary, because the garbage collection cannot be carried out as one atomic
action while the program is halted. Instead, small units of garbage collection must
be interleaved with small units of program execution. Although the reference
counting seems to follow this paradigm well, its inefficiency and ineffectiveness
discourages its use.

In incremental collectors the objects are traversed through as a graph. The
difficulty is that because of the dynamic nature of the graph, it may change while
the collector is traversing through it. Tricolor marking is one solution for this
problem. Unlike in mark-and-sweep collector, where an object is either alive or
garbage, in tricolor marking the object is "painted" white, grey or black. All the
objects subject to garbage collection are initially painted white. As the marking
process goes on, the objects are painted gray, if they have been traversed through,

but their descendants have not.
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Therefore, as the traversal proceeds outwards from the root, the objects are
initially painted in gray. When they are scanned and the references to their

descendants are traversed, they are blackened and the descendants are painted gray.
2.2.8 Generational garbage collectors

The disruptive stop-and-collect schemes are so disruptive because they have so
much work to do--they must deal with the entire heap. If your heap is 600MB, then
it has lots to do.

Observation: most objects live only a short time while some tend to live a
long time.

The generational collector takes advantage of this observation by having a
"younger" and an "older" generation. Recently allocated objects are most probably
temporal, which means that they can be reclaimed soon. Therefore, objects are
grouped as generations based on when they were created. The newer generations
are checked more often, since they are more probably garbage. The older
generations are checked less often. Objects that live a few "generations" (i.e.,
collection runs), are moved to the "older" generation, which reduces the amount of
live objects the collector must traverse in the younger generation.

Note the similarity to the mark and copy algorithm; here, though, the "when to
copy" algorithm is very different. A generational copying collector moves objects
to another generation when it has survived a few generations. Mark and copy
copies all live objects upon each activation, thus, not significantly reducing its
workload for future generations. Also, there may be many generations, not just two
spaces as in a mark and copy scheme.

In the end, even generational schemes must stop-and-collect the older
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generations. Hopefully this can be hidden from the user such as when the system is
waiting for user input. Java does this by making the collector the lowest priority
thread. When nothing else is running, the collector starts up (and hopefully
finishes).

Garbage collection has come a long way in the last several years. Modern
JVMs offer fast allocation and do their job fairly well on their own, with shorter
garbage collection pauses than in previous JVMs. Tricks such as object pooling or
explicit nulling, which were once considered sensible techniques for improving
performance, are no longer necessary or helpful (and may even be harmful) as the

cost of allocation and garbage collection has been reduced considerably [7].

2.3 Summary

In this chapter, we presented the background and the previous work done on the
GIPSY. Then we take a research about the Unidata and NetCDF techniques, which
are a popular data format in scientific computation. Finally, we briefly introduced
the Garbage Collection Algorithms used in some languages. In the next chapter, we
will explain the methods used to solve our particular problem and their theories,
which is, as we will see, somewhat different from mainstream garbage collection as

described in this chapter.
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Chapter 3: Methodology

The General Eduction Engine (GEE) is the backend in the GIPSY system and is in
charge of executing Lucid programs upon the abstract syntax tree and data
dictionary generated by the front-end of the system in an efficient way. The
Intensional Value Warehouse (IVW), adopted in GEE, purposes to improve the
system performance.

GEE is a component of the run-time system that takes charge of generating
tasks and executing them. It consists of three sub-components: an executor, a value
warehouse and a monitor. When a user demands a computation, GEE propagates
demands that are necessary for computing the result progressively until it finds all
the computation units needed to obtain the value. The executor performs generation
and computation of the demands. The IVW is employed by GEE to place computed
values in order to improve performance. In addition, in an advanced architecture,
GEE monitors the execution of the program, adjusting it to ensure efficient and
reliable throughput. The IVW, as an integrated component of the GEE in the
GIPSY system, also interacts with the other component: RIPE.

The difficulty of implementing IVW is to approach the best efficiency to
satisfy the performance of the whole system. This chapter will explain the

techniques and tools used to construct IVW and their principles.
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3.1 Motivation of Value Warehouse

One of the main goals of the GIPSY is the efficiency, then the GEE employing a
warehouse is of prime importance to obtain high performance. There are two major
factors affect the performance of executing Lucid program in distributed way, and
also they are the reason why we need a value warehouse. First, the “weight” of
each computation unit has critical influence on the communication overhead.
Secondly, the recomputation of some reused interim values increases the undesired

workload.

Granularity

In distributed system, the communication overhead is an obstacle for improving
performance. Then, the granularity of each computation unit has apparent influence
on the communication overhead.

Computation units could be very tiny pieces of work that can be done
concurrently. Other computations are such that the results of step one are necessary
input to start step two and the results of step two are for carrying on step three and
so on. These computations can not be broken down into as small of work units.
Those things that can be broken down into very small chunks of work are called
fine-grained and those that require larger chunks are called coarse-grain.

If the chunk of work to be done is so small that it takes comparatively too long
to send the work and receive results to another CPU then it is quicker to have a
single CPU doing the work. Also, if the chunk of work to be done is too big then it
is better to be spread out over machines in order to get the result more quickly.

A computer system with multiple processors in a single machine can handle

very fine-grained problems well because communications are performed internally
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by shared-variables, while a system built from computers distributed over the
Internet can handle only coarse-grained problems. Computer systems centered
around a small high-speed local network can handle problems somewhere in the
middle.

The data parallelism described in Lucid is fine-grained in that the parallelism is
achieved at a low-level, such as the comparison of two elements. One way is that
we can reduce the communication overhead by decreasing the transmission. Then
the value warehouse is necessary. The efficiency of that the machine retrieves the
value locally from the warchouse is better than spreads demands out to the worker
in the network.

However, Lucid allows a programmer to define functions, consequently, grains
becomes coarser. Another way to increase the granularity is achieved with
including calculation functions as illustrated in GLU. In GLU, calculation functions
were written in C considering two factors: Lucid was regarded as being more
suitable for declaring the relationship between the funcitons and there was a large
amount of legacy C programs that had been implemented for the purpose of
computing. A programmer can assign the workload of individual functions.
Therefore, the granularity is manageable.

GIPSY can use a strategy similar to that of GLU with processing a mixture of
Lucid and some other imperative language (e.g., Java) to fulfill the calculation to
granulate parallelism expressed by Lucid. While the calculation functions, as the
coarse-grain, may need much time to be worked out, then if we store the result into
the warehouse, which will reduce the recomputation overhead for other
computation. In sum, the GEE employing a value cache can reduce the demand for

transmitting and help the system achieve the high performance.
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3.2 Limitation of Previous Work

The value warehouse keeps track of the computed values along with their
associated identifiers and contexts. The first draft of GEE did not include a value
warehouse, and it was soon proved to be intolerably slow. Therefore, the GEE
arranges the warehouse as a hashtable, which maps IC string (key) to values
(value), to achieve efficiency.

The previous implementation of value warehouse was performed by declaring
a variable of the java class hashtable. The class hashtable has two parameters that
affect its performance: initial capacity and load factor. The initial capacity is the
number of buckets in the hash table is created. In the case of a collision, a single
bucket stores multiple entries, which must be searched sequentially. The load factor
is a measure of how full the hash table is allowed to get before its capacity is
automatically increased. When the number of entries in the hash table exceeds the
product of the load factor and the current capacity, its capacity is increased by
calling the rehash method. However, it could not cope with the various Lucid
program by tuning the performance. Also, since Lucid is intended for large-scale
scientific computation, it is likely that massive calculations are needed that will
probably cause the value warehouse to grow fast. Therefore, the rehash method
would be called frequently, which will obviously lower the performance. Moreover,
it does not support remote access to values in the warchouse.

Consequently, new tools for IVW are required. The design and implementation

of IVW is done towards efficiency and adaptability.
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3.3 Solution Analysis

To build the IVW, we may have different choices. In this section, we discuss three

possible solutions.

Solution I - a

Concretely, the warchouse should be developed at the beginning to meet the basic
requirement of the GEE. According to the discussion of the NetCDF technique
above, we construct the value warchouse by the data structure of NetCDF dataset,
which provides direct access. The dataset stores the computed values so the IDP
can extract them rather than compute anew. Since the amount of the values in the
dataset may grow fast in some scientific computation program, we consider using
garbage collection technique adapted to current situation. Therefore, in solution I -
a, there are two main modules: NerCDF Dataset and Garbage Collector, which is

shown in Figure 3-1. The solution is to reach the goal: efficiency.

RIPE

GEE

IDP L

Figure 3-1: Solution I — a of the IVW
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Solution I - b

The GIPSY may run on heterogeneous systems and the execution should be done in
a real distributed environment for understanding parallelism in Lucid. Then, the
values in the warehouse will be accessed by remote machines. Also, a program may
be interrupted for some reason, and the interim values are useful to continue the
computation. Thus, we need to store the values somewhere that can be accessed
remotely and loaded to reuse. Since the NetCDF file works on different platform
and can be accessed remotely using a suitable network file system, we build a file
translator to manage those data between the file and memory and write values in
the NetCDF dataset to the NetCDF file. So we get the solution I - b, shown in

Figure 3-2, which improve the adaptability of the IVW.

RIPE

GEE

IDP L

Figure 3-2: Solution I - b of the IVW

Solution II
In the evaluation process performed by the GEE, the IC string (described later) is
adopted to express a demand for the value of an identifier in a context. Then, the

suited data structure in the IVW will be helpful to efficiency. But the fixed data
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structure of NetCDF dataset brings the overhead of data conversion each time when
the IDP sets or gets values from warehouse. To solve this problem and obtain high
performance, we add a cache dataset module to the IVW. The result of solution II is

that there are two level storages in the memory, which is shown in Figure 4-3.

RIPE

GEE

IDP

F Y

Figure 3-3: Solution II of the IVW

Solution III

Sometimes, there may be limited memory or in the GEE structure (Figure 2-4),
each worker employs its own warehouse. To allow the IVW adapt different
condition, we revise the Solution II. That is, the IVW is constructed by the cache
dataset and there is also a file translator, which is responsible to translate the values
removed from the cache dataset and write them to the netCDF file. Also, when not
finding the IDP wanted value in the cache dataset, we will check the netCDF file

and get the value from it. The solution III is shown in Figure 3-4.
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RIPE

GEE

IDP

Figure 3-4: Solution III of the IVW

3.4 Multi-level Value Warehouse

In this thesis, we implement a multi-level value warehouse, which includes two
level in memory: Cache dataset and NetCDF dataset. The IVW enables faster
access to values accessed regularly. The Values that least accessed can be promoted
to high level dataset and out-of-date computed results may be stored on the file
system. Also, the cache dataset uses a fixed size that is selectable at startup, which
avoids the cost of resizing the warehouse. When any level dataset is full, some
garbage collector will be triggered to sweep the dataset and promote or erase

values.

3.4.1 Cache Dataset

We adopt java class hashmap as the main data structure to build cache dataset.
Comparing with hashtable, the hashmap, which implements map interface, has the
following advantages:

* Map provides Collection-views in lieu of direct support for iteration via
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Enumeration objects. Collection-views greatly enhance the expressiveness
of the interface.
* Map allows you to iterate over keys, values, or key-value pairs; Hashtable
did not provide the third option.
* Map provides a safe way to remove entries in the midst of iteration;
Hashtable did not.
Further, Map fixes a minor deficiency in the Hashtable interface. Hashtable has
a method called contains, which returns true if the Hashtable contains a given
value. Given its name, you'd expect this method to return true if the Hashtable
contained a given key, as the key is the primary access mechanism for a Hashtable.
The Map interface eliminates this source of confusion by renaming the method
contains Value. Also, this improves the consistency of the interface: contains Value
parallels contains Key nicely.
The cache dataset here is responsible to enable us to cache in memory data that
we can more slowly retrieve from an external source, such as a file, database, or

network. Therefore, the IVW will approach the goal: efficiency.

3.4.2 NetCDF Dataset

NetCDF has experimental high performance for data access to its dataset. NetCDF
uses direct access rather than sequential access to approach the goal that is to
support efficient access. Normally, we can store and retrieve data directly by
variable name and index; hence, it is valuable for the use of memory datasets or file
datasets on disk. NetCDF data has following features:

* Self-Describing. A NetCDF file includes information about the data it

contains.
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* Architecture-independent. A NetCDF file is represented in a form that can
be accessed by computers with different ways of storing integers,
characters, and floating-point numbers.

* Direct-access. A small subset of a large dataset may be accessed efficiently,
without first reading through all the preceding data.

* Appendable. Data can be appended to a NetCDF dataset along one
dimension without copying the dataset or redefining its structure. The
structure of a NetCDF dataset can be changed, though this sometimes
causes the dataset to be copied.

* Sharable. One writer and multiple readers may simultaneously access the
same NetCDF file.

Also, a measure of success has been achieved. NetCDF is now in use on
computing platforms that range from CRAYS to personal computers and include
most UNIX-based workstations. It can be used to create a complex dataset on one
computer (say in FORTRAN) and retrieve that same self-describing dataset on
another computer (say in C) without intermediate translations—NetCDF datasets
can be transferred across a network, or they can be accessed remotely using a

suitable network file system.

3.5 Garbage Collection

The garbage collection technique adopted in the IVW is one of the important

characteristics.

Why Garbage Collector
One of the major goals of the design of the GIPSY is towards efficiency. To reach
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this goal, an important strategy adopted in GIPSY is “lazy evaluation”, which is the
eduction computation model. That is, value of variables is only computed when
needed in order to avoid superfluous computations. Eduction is also called “call-by-
need”, or “demand-driven”, and it differs from “call-by-value” in which arguments
are evaluated before they are passed to a function even though the function may not
need them. Conceptually, variables in Lucid, such as streams or dimensions, are
infinite so programmers can request as many values as they need. Therefore, Lucid
must use eduction to avoid useless and even infinite computations.

However, the overhead of eduction is paid for in the form of propagation of
demands and storage of the traces leading to the fundamental computations. Stacks
of values are used to store the interim values in the model of call-by-value, but call-
by-need requires to store the expressions themselves or to use a mechanism that
provides the same effect, which may be more complex and time-consuming.

The GEE uses the data flow’s context tags to build a store of values that
already have been computed (the IVW). Since the IDP enquires the value
warchouse cach time before it does calculation, there would be intensive enquires
demanded on the warehouse. Therefore, those stored values should be carefully
arranged for being quickly retrieved.

Also, since Lucid tends to be used in large scientific computation, the number
of computed values may increase dramatically, the IVW contains a Garbage
Collector to discard the less “valuable” data and keep the warehouse at a reasonable
size, which will definitely be good for speedy inquiries. Thus, one of the key
concerns when using caches is the use of a garbage collecting algorithm adapted to
the current situation. The use of a garbage collector configured or adapted to the

current situation is of prime importance to obtain high performance.
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How Garbage Collector works

Since we use java language to develop the IVW and the whole GIPSY system, the
IVW will apply memory form virtual machine. So as the virtual machine has
enough memory to fit all the interim values in the IVW, the cache dataset and the
NetCDF dataset will keep them in memory. If memory becomes scarce, however,
the garbage collector may be triggered and decide to clear the values in cache
dataset and promote them to NetCDF dataset, furthermore, store them to file. Then
the space in memory occupied by some useless data will be reclaimed. The next
time the program needs to use that data, it will have to be reloaded from the

external source or recomputed.

Algorithms

Normally, the Garbage Collection is a system of automatic memory management
which seeks to reclaim memory used by objects that will never be referenced in the
future. In the GIPSY system, it is also to manage memory automatically, but its
main task is to seek the comparative useless values in the warehouse. To keep the
warchouse in a reasonable size, we can define an appropriate size in the
initialization of the system and do the garbage collection when the values make the
warchouse full. Then the following strategies of garbage collection are taken into
account:

First, those values that are least accessed could be swept or promoted to high
storage level. The least accessed values mean that they might not be needed for
future computation or they would be required in a long period. Thus, we remove
them to reclaim the spaces for the values accessed at prime tense.

Secondly, we may consider purging the values in the warehouse that are out of
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date. That is, we can define an expire time for the values and let the garbage
collector check the warehouse periodically to seek and sweep those values whose
existing time bigger than the expire time. Consequently, this algorithm focuses on
removing the earliest generated values.

At last, there is another very important fact that should be considered, which
the time for a value to be work out. Those values that take the shortest time to be
produced would be discarded first; on the contrary, the values that needs a awfully
long calculation time should be kept in the warehouse even they are not accessed
for a long time. These additional information, such as computation time of a value,
can be supplied by the GEE or the IVW makes decision through the time that such
value is enquired and set.

In the implementation, these strategies could also be combined, which is called
hybrid algorithm. Also, the design of the IVW should be easy to add more
algorithms in the future or accept external garbage collection algorithm. We may
provide the function to the users that they can choose one of the algorithms at the
beginning of the computation or in the runtime. All of them above will help the

warehouse achieve the design of the goal: adaptability.

3.6 Summary

In conclusion, we implement the components in multi-level warchouse with
garbage collection technique. The design and the implementation of the IVW
reflect the goals: efficiency and adaptability. In the next chapter, we will discuss

the concrete implementation.
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Chapter 4: Implementation

In this chapter, we describe different implementations of the IVW, starting with a
design rationale, to the implementation of various architectures and algorithms for

caching and garbage collection.

4.1 Design Rationale

Design for change is the most important principle concerned in the architecture
design. A successful software system has to be maintainable to survive the
evolution of its changing requirements and environment specifications. Thus, a
successful design must be easy to change. Here, we will introduce the nature of
change and how to fulfill the goal of design for change.

When building software, one has to make the rightful assumption that
everything can be required to change over time. It can be change of algorithm,
change of data representation, change of underlying abstract machine, change of
peripheral devices, change of social environment, and so on. Any change may lead
software updating, from component to detailed algorithm.

The main strategies to solve the problem of design for change are information
hiding and modularization. Modularization requires building a loosely coupled
system of cohesive modules. A cohesive module provides a small number of
closely related services. A loosely coupled system ensures that a change to a

module will not impact other modules at all, or minimal-impact changes.
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Information hiding encapsulates a module by only allowing access to module

services via a minimal yet complete interface. The implementation details are

hidden, therefore limiting the propagation of changes when a change is required.
Finally, design should keep things as simple as possible so that a design can be

understood with minimal overhead before it can be changed.

4.1.1 Design Patterns

Software architects generally think in terms of high-level abstractions rather than
low-level programming details. Representing a system in terms of high-level
abstractions promotes understanding of the system and reduces its perceived
complexity. One such abstractions mechanism is software design patterns. Design
patterns are successfully applied in almost all software to simplify and solve

recurring problems in software design.

Facade pattern

The IVW model is a subsystem in the GEE of the GIPSY with many classes. Each
class has its own interface, which provides services to other classes in the whole
system and hides the implementation details from others. While a class wants to use
the services provided by another subsystem, it does not care in which classes of this

subsystem the service is implemented, or how it is implemented.
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Figure 4-1: Facade design pattern

In order to make the subsystem easy to use, a high level interface for the IVW
model subsystem is created. Here, we use fagade pattern (represented in Figure 4-1)
to decouple the IVW subsystem from the other subsystems in the GEE. We create
an interface and facade class for the IVW subsystem. The public IVW interface as
well as its implementation subclass constructs the fagade of value warehouse. They
are declared as public and exposed to the outside of the IVW subsystem. If the
other subsystems depend on the IVW subsystem, the dependency is simplified by

making communication between those and the IVW fagade.

Factory pattern

The factory design pattern (represented in Figure 4-2) is used to create objects as a
Template Method to implement different service “instances” that have different
implementations. A superclass specifies all standard and generic behavior, and then

delegates the creation details to subclasses that are supplied by the client.
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Figure 4-2: Factory design pattern

The Factory pattern makes a design more customizable. We call this a Factory
pattern since it is responsible for "Manufacturing” an object. It helps instantiate the
appropriate subclass by creating the right object from a group of related classes.
The Factory pattern promotes loose coupling by eliminating the need to bind
application-specific classes into the code.

Factory methods are sometimes a more flexible way to instantiate a class than
directly calling the constructor of the class, for the following reasons:

* Unlike constructors, factory methods are not required to create a new object
each time they are invoked. Factory methods can encapsulate the logic
required to return a singleton instance of the class requested, or they can
return an instance of the requested class from a pool of instances.

* Factory methods can return any subtype of the type requested, and can
require that clients refer to the returned object by its interface, rather than
the implementation class. This enables an API to return objects without
making their classes public.

* The class for the object returned by a factory method need not even exist at
the time the factory method is written. This is one of the classic benefits of

polymorphism: "old code uses new code,” which means that new classes
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can be added, and their instances returned by the factory method, without
changing any of the existing code.

In our design of the garbage collector, we implement it using Factory methods
design pattern because the IVW provides several garbage collection algorithms to
users. Through Factory method pattern, users can select one of the algorithms they
prefer at the beginning of the system or even at the run time. Also, some new
algorithm can be added easily without changing the existing code, which makes the

IVW more adaptable.

4.1.2 Implementation Language

As with all the other parts of the GIPSY, the Java programming language is
adopted as the implementation language. Although implementing the project with
C++ can probably guarantee more efficient execution, we adopted Java
programming language in GIPSY considering the generic advantages of Java, its
products of parser generator and networking technologies. Generally speaking, Java
shows the following characteristics:

* Pure object-oriented;

* Safe, flexible and reusable;

e Portable;

* Easier to develop and debug than C++.

Java is portable because its code is translated into “bytecode” that can be
interpreted using a Java Virtual machine (JVM) that has been compiled in the
operating system version in which we want to run the program. Consequently, the
Java bytecode can be understood by a computer installed with any architecture or

operating system so long as it supports JVM natively, or a JVM can be compiled in
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it. Java is safe and flexible in that it has exception checks, dynamic code loading
and dynamic method invocations. At the same time, its runtime performance is
decreased because of the interpreted mode of execution, which is the basis for most

of the criticism against Java.

4.2 External Design

This section presents the design of the IVW from an external point of view, i.e. the
fagade interface that is provided by the IVW implementation to the other

components of the GIPSY.
4.2.1 External Software Interfaces

Since we use fagade pattern to design the IVW, which hides the implementation
details from other components in the GIPSY system, then other parts can only
interact with the IVW by the interface provided by the IVW. Figure 4-3 shows this

interface.

«=interface>=
Wwinterface

@iniﬂ’uW(dictSemantic - Wector, filename : String} © woid
SsetuplVWifilename - String) : void

QstoplVW( : void

Qgetvaluelkey : String) : Objed

%eﬂia!ue{key - String, value : Chject)int
*getﬂataﬁle{mename : String} - String
YsetGCalgorithm{geSiring : Sting) : void

Qviewsel() : void

oadFite() : woid

Figure 4-3: External interface of the IVW

void initlVW(Vector dictSemantic, String filename),

Initializes the Value Warchouse NetCDF file, Gets the name of lucid program and reads the data
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from data dictionary.
param dictSemantic Vector - which contain the dimensions and variables

param filename String - the name of the lucid program file

void setupIVW(String filename);
Sets up the Value Warehouse. Loads the NetCDF file to memory, then initialize cache and
NetCDF data set.
param filename String - NetCDF file that contain the definition

void stopIVW();
Stop the Value Warehouse. Write the data in cache to NetCDF dataset, then write whole NetCDF
data set to NetCDF file.

Object getValue(String key);
Get the value from Warehouse associated the given IC String.
param key String - the key whose associated value is to be returned.

return Object - return the value for the IC String, or null if Warehouse does not contain this key.

int setValue(String key, Object value);
Put the value with the specified key in Warehouse, If Warehouse previously contained a value for
this key, the old value is replaced. If the rate of cache is more than the limit, the Garbage
Collector will be triggered.
param key String - the key whose associated value is to be set.

param value Object - the value for the key

String getDataFile(String filename);
Get the NetCDF Data File.

param filename String — name of a NetCDF fil

return String

void setGCAlgorithm(String gcString);
Set the garbage collection algorithm to decide which algorithm will be used on next garbage
collecting. Default is "MarkSweep".
param geString String - description of GC algorithm

void viewset();

View data in the cache.
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4.3 Internal Design

As the most critical part in developing an object-oriented system, the architectural
design determines the top-level system structure of the IVW. A good system
architecture will let us keep an easy way to design a system.

Structuring a system into subsystems helps to reduce complexity. Our design
model divides the IVW system based on the function module. Therefore, there are
four main components in the IVW (as depicted in Figure 4-4):

1. cache dataset manager

2. NetCDF dataset manager

3. NetCDF file manager

4. garbage collector

l
MW
|
Warehouse
] Cache ﬁgtr%ggr[)ata
GarbageCollector
-

NetCDFFile
Manager

Figure 4-4: Components of the IVW

4.3.1 Overview of the Components

The Warehouse subsystem is the controller whose role is to control the execution

flow of the whole IVW system. It also takes a role of the fagade of the system. It is
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visible to the other subsystems of the GEE. It takes the responsibility to response
the GEE’s requests for values of its generated demands and to offer the storage and
retrieve services.

The task of the Cache component is to act as a cache of the warehouse. It
provides fast access for the values in the warehouse upon request.

The NetCDF Data Manager component is a higher-level layer of storage of the
values in the warehouse. It stores and manages the values less accessed (i.e. those
that have already been garbage-collected), as well as exchanges some values with
the cache dataset and the NetCDF file manager.

The NetCDF File Manager component is to initialize, write, and load files
stored on the file system in the NetCDF file format. Also, it provides the data file to
the clients if needed.

We will further discuss each component in the following sections.

4.3.2 Dependency Relationships among Components

In the architectural design, the idea of building the design model for the potential
solution is to capture the relationships between the components and define the top-
level classes for each component. The relationships between the components reflect
the flexibility and extensibility features of the warehouse. We aim for reducing the
coupling among the components.

To reduce the coupling, the major components of the IVW do not have mutual
knowledge of each other. The class IVWControl coordinates the execution of the
system and the message passing between these components. It also plays a role of
the creator and the owner of the instances of the top-level classes in these

components. Thus, the relationships among the cache, NetCDF Data Manager and
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NetCDF File Manager component can be designed as the association relationships

between each of the system and the controller via the callback implementations (see

Figure 4-5).
VW Control
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Figure 4-5: Dependency relationships between the IVW components

4.4 Detailed Design

The GEE employs the eduction (i.e. demand-driven) computation model and uses a
value cache to avoid redundant computations. It takes the abstract syntax tree and
dictionary produced by the GIPC (see Chapter 2), and propagates demands required
for working out the desired value. The computed values are placed in the value
warchouse, and the GEE looks up values in the warchouse each time before it
propagates demands or calls a computation method to avoid redundant

computations.
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The value warehouse keeps track of the computed values along with their
associated identifiers and contexts. Adopting the value warchouse is likely to
improve the system performance in many cases (see Chapter 5 : for results using

various cases).

4.4.1 Cache

Our first draft of the IVW just included one dataset layer, the NetCDF dataset. To
improve the efficiency of access to the IVW, we implement two dataset layers. The
cache dataset and the NetCDF dataset adopt different data structures to store values
for variables in a specified context, which is more appropriate to cooperate with

other components in the GEE.

IC String
As designed an implemented by Bo Lu in her PhD thesis [4], the GEE represent a
demand for a program identifier in a context as an instance of the associated class
possessing a specified context, which is called an IC object (I stands for “identifier”
and C for “context”). It can be cited as: (1) exchanged information between a client
and server, (2) a demand, and (3) a key of value warehouse. It is demanded to
design a suitable data structure, preferably consisting of a primitive data type, to
replace the object. Thus, a String (IC string) is employed in the GEE, which can be
speedily transmitted over the network, quickly generated, easily stored, and rapidly
matched to an IC instance and for inquiries performed in the value warehouse.

An IC string can be designed as “id: valy: val;: val,...val,”, which starts from
an identifier number, followed by a sequence of values of each dimension, which

are separated by “:”. As an example, the IC string for A@[x:2, y:1]is “2:2:1”. In
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this example, the program has only two dimensions. The /C string as the key and
together with the value constructs a pair to be stored in the value warchouse.
Similarly, the demand propagator retrieve the value from the warehouse associated
the key (IC string).

Since warchouse inquiries are very frequent, the warchouse must be very
efficient so that the performance of the whole system is satisfactory. One way of
achieving efficiency is to arrange the cache dataset of the warehouse as a hashmap,
which maps IC strings (key) to values (value). Large numbers of elements may be

stored and retrieved efficiently. The cache class diagram is shown in Figure 4-6.

Cache
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Figure 4-6: Cache class diagram

The cache dataset stores values associated with unique keys in memory for fast

access. We provide a class cachesizes to calculate the size of the values in the
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cache, which allows the cache to determine object size much more quickly. This

allows a cache to never grow larger than a specified number of bytes.

4.4.2 NetCDF Data Manager

The NetCDF dataset is the main storage that is used to store and manage values as
the second level in memory. We implement it using the Java package of NetCDF
interface: ucar.ma2, known as "MultiArray version 2" package. The ucar.ma2
package is independent of the ucar.nc2 package, and is intended for general
multidimensional array use. Its design is motivated by the needs for NetCDF data
to be handled in a general, arbitrary rank, type independent way.

It is often critically important for performance that the movement of data
between memory and disk is carefully managed. The data in a NetCDF file, for
example, is stored out of memory on a local or network file, and the NetCDF
library allows efficient extraction of data subsets. At the same time, it is sometimes
a useful abstraction to handle data in a general way independent of storage location.
A ucar.ma2.Array object has its data in the computer’s main memory, and so is said

to be memory-resident.

4.4.3 NetCDF File Manager

The NetCDF File Manager is responsible of dealing with the NetCDF files. It
creates a NetCDF file when the IVW is initialized. To fulfill the initialization, it
adds dimensions, variables and attributes to the NetCDF file. Thus, when a file is
first opened, it is in "define mode" where these may be added. During execution, all
of them will be loaded to the memory set when the IVW is set up. Once the create()

function is called, the dataset structure is immutable. After create() has been called
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we can then write the data values. After executing the whole program, it will write

all the data values in memory set to the NetCDF file.

4.4.4 Garbage Collector

The IVW consists of two components: Warehouse and Garbage Collector. The
Garbage Collector is independent of the warehouse in order to reduce the coupling.
Note that it is possible to have an IVW that does not have any garbage collecting
feature. We implement the garbage collector using the Factory design pattern,
which helps to meet the requirement of adaptability and extensibility. Figure 4-7

shows the relationships among the classes of the Garbage Collector component.

GarbageCollector
*GarbageCollectorn)
“doGarbageCollect) GCFactory
ZF SGCFactory(y
Screator)
CopyingGC Mark SweepGC
SCopyingGC() SlarkSweepGCy)
SdoGarbageCollect) *doGarbageCollect)

Figure 4-7: Garbage Collector classes

4.5 Use of the IVW

4.5.1 Initialization of IVW

In the front-end of the GIPSY, the GIPC generates an Abstract Syntactic Tree

(AST) and a dictionary. We use this dictionary to initialize the value warehouse that
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includes dimensions and variables with their attributes, which will be used at run
time. Since we implement the IVW using NetCDF dataset, here we initialize the
components of the NetCDF dataset.

A NetCDF dataset contains dimensions, variables, and attributes, which all
have both a name and an ID number by which they are identified. These
components can be used together to capture the meaning of data and relations
among data fields in an array-oriented dataset.

We use an example of Lucid program (Figure 4-1) to illustrate the initialization
process.

A where
dimension d;
A=jf#hd == 0then 1 else (if (x <= y) then x else y ) @.d (#.d-1),
where
x=2A@.dw
where ;
w = if#.d == O then 0 else
( if (x <=y} then w+1 else w) @.d (#.d-1);
y=3*A@dv
where
v = if #.d == 0 then 0 else
‘ { if {y <= x) then v+1 else v) @.d (#.d-1};
end;

Figure 4-8: A Lucid program

The GIPC generates an Abstract Syntax Tree (AST) (Figure 4.2) and a Dictionary
(Table 4-1) for the program. We just present part of the attributes of the dictionary
in terms of the definition of the class Dictionaryitem(), which are necessary to the

value warehouse.
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Figure 4-9: Abstract Syntax Tree of the program in Figure 4-8

ID Name Kind type rank
0 Start 2

1 d dimension 2

2 A identifier 0 1,

3 X identifier 0 1,

4 w identifier 0 1,

5 y identifier 0 i,

6 v identifier 0 1,

Table 4-1: Example of data dictionary

ID: the unique code of each identifier
Name: the name of each identifier
Kind: dimension or identifier

Type: 0-int, 1-float, 2-string, 3-boolean
Rank: the rank of the identifier
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We can make a few observations about this dictionary:
* There is only one dimension: d, which type is string.
* It defines 5 other identifiers: A, x, w,y, v.
* The type of all the identifiers is integer.

¢ The rank of all the identifiers is dimension d.

Network Common Data form Language (CDL)

According to the concepts of the NetCDF data model, it includes dimensions,
variables, and attributes. The notation used to describe this simple NetCDF object
is called CDL (network Common Data form Language), which provides a
convenient way of describing NetCDF datasets. The NetCDF system includes
utilities for producing human-oriented CDL text files from binary NetCDF datasets
and vice versa. The CDL notation for a NetCDF dataset can be generated
automatically by using ncdump, a utility program described later. Another NetCDF
utility, ncgen, generates a NetCDF dataset from CDL input.

The CDL notation is simple and largely self-explanatory. It will be explained
more fully as we describe the components of a NetCDF dataset. CDL statements
are terminated by a semicolon. Spaces, tabs, and new lines can be used freely for
readability. Comments in CDL follow the characters ‘//’ on any line. A CDL

description of a NetCDF dataset takes the form
NetCDF name {
dimensions: ..

variables:
data:

}

where the name is used only as a default in constructing file names by the

ncgen utility. The CDL description consists of three optional parts, introduced by
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the keywords dimensions, variables, and data. NetCDF dimension declarations
appear after the dimensions keyword, NetCDF variables and attributes are defined
after the variables keyword, and variable data assignments appear after the data

keyword. Also see example in Appendix A.

Algorithm

One local call is needed to create a NetCDF dataset, at which point we will be in
the first of two NetCDF modes. When accessing an open NetCDF dataset, it is
either in define mode or data mode. In define mode, we can create dimensions,
variables, and new attributes, but we cannot read or write variable data. In data
mode, we can access data and change existing attributes, but we are not permitted
to create new dimensions, variables, or attributes.

The main algorithm of this part is to traverse the dictionary, which adopts
vector to store the dimensions and identifiers. We can distinguish the dimension or
identifier by checking the type of each item in the dictionary. We still use the
dictionary mentioned above (Table 4-1) to describe creating NetCDF Dataset.

Begin from the “start” item in the vector of dictionary and ignore it because its
kind is neither “dimension” nor “identifier”. Then get to the second item “d”, and
we create a dimension named “d” in the NetCDF dataset cause its kind is
“dimension”. After that, read the next item “A”. Since its kind is “identifier” and
type is “0”, we create a variable with type integer and make it an attribute “id” and
assigned a value “2”. We record the “id” because the numbering is done by GIPC
and code generator serves as a layer separating GEE from GIPC; therefore, names
are never referred after code generation. Here all the identifiers in the dictionary

will be “variable” in the NetCDF dataset. In the same way, we can create other four
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variables “x, w, y, v”. Thus, we initialize the NetCDF dataset when we invoke
function create(), which will be used in execution process. For the example

dictionary we can initialize the following NetCDF dataset:

ncfile = NetCDF
G:\GIPSY\gipsy\src\gipsy\tests\lucid\t2.ipl.nc {

dimensions:
d = 8;
variables:
int A(d);
:id = "2v;
int x(d);
+id = "3";
int W(d);
:id = "4";
int y(d);
:id = "5";
int v(d):;
:id = "6";

}
4.5.2 Setup of the IVW

In the GEE multithreading and distributed implementation, they convert each
identifier in a Lucid program to Java class, /C Class, rather than operating on the
abstract syntax tree directly. The conversion is done by a component called code
generator. After that, the GEE will perform the whole execution for the program by
code executor. That is the reason why we separate the initialization and setup of the
IVW.

Together with the code generation, we fulfill the initialization of the IVW,
known as a NetCDF file without data. Then, the GEE will go to evaluation process
that is started by a demand for the value of an identifier in a context until the
desired result has been found. It can be observed that, in a complex computation,

some values may be needed more than once. To avoid redundant calculation, the
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computed values are stored in value warchouse. Therefore, we set up the value
warehouse to store data values when the evaluation process starts. Setting up the
IVW includes setup of cache dataset and NetCDF dataset.

The main data structure of the cache dataset is hashmap. Also, we construct
linked list to record the access sequence of the values and the time to work them

out.

Cache size

It is known that increasing cache size reduces miss rates of instruction caches, data

caches and unified caches for conventional programs [Hennessy and Patterson,

1996]. For example, Table 4-2 shows the miss rates for a direct-mapped data cache

on DECStation 5000 for an average of SPEC92 benchmarks [Gee et al., 1993].
Zorn confirms these findings for a range of Lisp programs supported by

generational mark-sweep garbage collection: caches larger than 512 kilobytes

performed substantially better than smaller ones [Zorn, 1991].

Cache size Miss rate
(kilobytes) (percent)

1 24.61

2 20.57

4 15.94

8 10.19

16 6.47

32 4.82

64 3.77

128 2.88

Table 4-2: Data cache miss rates for the SPEC92 benchmark suite on a

DECStation 5000 [Gee et al., 1993]

Consequently, we define a default size of the cache, which are 512K bytes.

Also, we provide other two choices to users, small size and customer size. The
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small size is for the program that requires a small quantity of values. While by
defining customer size, users can have arbitrary size that they want under the
condition of physical memory.

After that, to set up the NetCDF dataset, we will load data from the NetCDF
file that was created on initialization. NetCDF dataset Is implemented by the
package “ucar.ma2.Array”. Array is the abstraction for multidimensional arrays of
primitives with data stored in memory. Arrays can have arbitrary rank, and there
are concrete implementations for arrays of rank 0-7 for efficiency. The underlying
storage can use any of the Java primitive types (double, float, long, int, short, byte,
char, boolean). The data can be accessed in a type independent way, for example
getDouble() can be called on an Array of any numeric type. The implementing
class casts the data to the requested type (and throws a runtime
ForbiddenConversionException if the cast is illegal), or uses a direct assign when
the requested type is the same as the data type.

All of the complicated manipulation of data happens on the memory-resident
Array object obtained from the read(). The data type, rank, and shape of an array
are immutable, while the data values themselves are mutable. Generally this makes
Arrays thread-safe, and no synchronization is done in the Array package.

ArrayAbstract is the superclass for the implementations of Array, which use
Java 1-D arrays for the data storage. There is a concrete class that extends
ArrayAbstract for each data type, e.g., ArrayDouble. For each data type, there is a
concrete subclass for each rank 0-7, for example ArrayDouble.D3 is a concrete
class specialized for double arrays of rank 3. These rank-specific classes are static
mner classes of their superclass. This design allows handling arrays completely

generally (through the Array interface), in a rank-independent way (though the
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Array<Type> classes), or in a rank and type specific way for ranks 0-7 (through the
Array<Type>.D<rank> classes).

In our case, we retrieve the variables from the NetCDF file and their rank
(number of the dimensions) and shape (size in each dimension), then, build an
Array for each variable.

For example: we can directly instantiate the type-specific subclasses with an

arbitrary rank. These also add type-specific get/set accessors.

public class ArrayDouble extends ArrayAbstract {
// constructor
public ArrayDouble (int [] dimensions);
// type-specific accessors
public double get (Index 1);
public void set(Index i, double value);

}
4.5.3 Data Access

In the process of execution, the IVW works as a data cache of the GEE and the IDP
will access value warchouse frequently. Each time, when a new demand is
generated, the IDP will check value warehouse first to see if there is the value that
it wants in the warehouse. If the warehouse returns no value of the requirement, the
demand will be dispatched to workers to work it out.

The GEE implementation presents a demand for an identifier in a context as IC
string, such as “2:2:1”, which describes the demand A @ (x: 2, y: 1). If the IC
string as the input inquiry matches the key exactly, the warchouse return the
matched value. Otherwise, the warehouse will return null if the requested value is
not found. The cache dataset of the IVW is optimized for fast access. The algorithm
for cache dataset is as following: a Hashmap is maintained for fast value lookup.

Besides the Hashmap, we maintain three linked lists in the cache dataset: access
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list, empty list and age list. The access list keeps objects in the order they are
accessed from warehouse; the empty list contains the accessed objects without
values; and the age list keeps objects in the order they were originally added to
warehouse.

Here to implement the linked lists, the LinkedList in Java Collections package
is not adopted, while we implement one own LinkedList, which is a double linked
list. The main feature of this LinkedList is that list nodes are public, which allows
very fast delete operations when one has a reference to the node that is to be
deleted. This feature will reduce the waste of the garbage collection, which is
described later.

When an inquiry is coming, the IVW will check if there is the value matching
the given IC string. If not, we create an element with empty value of the hashmap
in the cache dataset, then make a node for it and add the node to the first of empty
list. Thus, the nodes in the empty list are all associated with the elements that have
empty values. Each node maintains an attribute: timestamp, which records the
calculation time of a demand. To get the time, we write the current time to
timestamp here named creation time. It is stored as long value and represents the
number of milliseconds passed since January 1, 1970 00:00:00.000 GMT.

After a demand is worked out by some worker, the IDP will store the value
into the warehouse, which may be reused for other computations. At this time, the
pair of the IC string and the value is given to the warchouse. The cache dataset
accepts them and replace the value of the matched element that has empty value,
and then removes the node associated with this element from empty list, add it to
the first of the access list, as well as put its age node to the first of the age list,

which is shown in Figure 4-10. Also, we use current time minus the creation time
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and get the calculation time. The value with a big calculation time will be reserved

in warehouse for a long time to reduce the calculation overhead.

Empty list
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Figure 4-10: Node from Empty list to Access list

Add a node to the first of Age list
Each time, when some value is accessed by the IDP, it will be moved from its
position to the first of the Access list. As a result, in the Access list, those values
that are accessed recently will be always in the front, which is shown in Figure 4-

11.
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Figure 4-11: Node is moved to the head of Access list

4.5.4 Garbage Collecting

We use hashmap as the main data structure in the cache dataset, which maps /C
string (key) to values (value). When each value is added to cache dataset, it is first
wrapped by a CacheElement, which maintains the size of the value (in bytes) and
the reference to the listNode in some linked list in the cache dataset. Then, we store
the pair (IC string, CacheElement) in the hashmap. The relationships of them are
shown in Figure 4-12. To get a value from the cache dataset, a hash lookup is
performed to get a reference to the CacheElement that wraps the real value we are
looking for. The element is subsequently moved to the front of the accessed linked

list.
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Figure 4-12: Relationships of LinkedList, LinkedListNode and CacheElement

The LinkedList used in the IVW is a double linked list that has a head node. It
only provides functions to add a node to the first or to the end. Therefore, we will
never insert a node to the middle of the linked list for our use. In addition, the
LinkedListNode has references of previous node and next node, as well as, a
remove method, which allows user easily remove the node from the linked list that
it is located in. That is, having the reference of the node, we can remove the node
from some linked list quickly and avoid linear scans of the linked list. In a word,
the implementation of the LinkedList and LinkedListNode gives us fast delete
operations and special insert operations.

Comparing with the LinkedList in java package, the feature of fast delete
operation of our implemented LinkedList is helpful for speedy garbage collecting.
The class LinkedList in java package provides two remove() functions: remove(int
index) and remove(object o) [9]. For the first one, users must know the position of

the object in the list, which will make the code more complicated, and searching the
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index also needs time. The second one removes the first occurrence of the specified
element in the list, which definitely needs more time than our implementation.
From the above‘reasons, we use our own LinkedList rather than the one in java
package.

According to the above feature of the linked list, we can quickly perform the
garbage collecting when necessary. We configure a maximum size for the cache
dataset when the warehouse is started up. Also, there is a current size that equals to
the sum of the objects in the cache dataset. Each time, when some value is put in
the cache dataset, the current size will be added by the value size. Normally, the
garbage collector will be triggered when the cache dataset is too full, for example,
we may define “too full” as within 5% of the maximum cache size and define a
desired rate of the cache dataset, such as 20%, which indicates the cache dataset is
at least 20% empty.

We use an example to illustrate a garbage collecting process. In this example,
the least frequently accessed values will be promoted from the cache dataset to the
NetCDF dataset. When the current size is more than the 95% of the maximum size,
the doGarbageCollect() method will be invoked. Then, the last node in the access
list will be chosen for removing first. The first step is to delete that element from
the hashmap and at the same time subtract the value size from the current size.
Next, remove the node from the access list. At last, make the reference to the node
in the element point to null. Thus, one value is completely removed from the cache
dataset. Then we may sequentially delete the current last node from the access list
until the current size if lower than the desired size. All of the deleted values will be

stored in a temporary hashmap and then be promoted to the NetCDF dataset.
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4.6 Integration with other Components of the GIPSY

GIPSY is a large system, which consists of several subsystems. Each part is
responsible for a different task. So, it is also very important to integrate the
different parts developed by different people. The IVW is a part of the GEE in the
GIPSY. We can see the architecture of the whole GIPSY system in Figure 2-1
(page 7). In this section, we illustrate the specific relationship among the other parts

of the GEE and with the RIPE.

4.6.1 Integration within the GEE

The IVW is employed by the GEE. The GEE accepts its computing resources, i.€.
AST, data dictionary, sequential threads and communication procedures from the
GIPC. To integrate the IVW with the GEE is just to instantiate the fagade class
IVWControl in the main() method of the GEE class. Also, it initializes a warehouse
for a specific Lucid program, then sets up the warehouse before execution process

and stop the warehouse at the end. We present a segment of code as the example:

public static void main(String argv[])

// Interpretation Stage and Warehousing
Vector
dictSemantic=oSemanticAnalyzer.getDictionary();

IVWInterface vh = new IVWControl ();
XLucidInterpreter xi = new XLucidInterpreter (vh);

vh.initIVW(dictSemantic, strFilename);
vh.setupIVW(strFilename);

......
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4.6.2 Integration with the RIPE

The RIPE is a graphical run-time programming environment. It is an integrated
development environment (IDE) for writing and debugging programs written in
Lucid. In addition, the user can interact with the RIPE at the runtime. The IVW
provides the interface to the RIPE, which includes some methods. The RIPE can
invoke these methods to operate the IVW at the runtime. Those include the
following functions:

* setCacheSize() can configure the size of the cache dataset, which let user
define or change the size of cache dataset as needed.

* setGCAlgorithm() can set the garbage collection algorithm, which let user
select GC algorithm even at runtime. When this method is invoked, the
given algorithm will be adopted in the next garbage collecting.

* viewCacheSet() can return all the entries in the cache dataset, which let user
dynamically view the data at the runtime.

* writeToFile() can write all the values in the warehouse to NetCDF file,
which give the user choice to store data to NetCDF file when the IVW is
stopped.

e getNetCDFFile() can view the items and data in the NetCDF file, which let
user inspect what data are stored in the NetCDF file. Now we use ncdump
to output the data in the NetCDF file as two style: CDL and NcML.

There are many tools that can be used for manipulating or displaying NetCDF
data. Here, we presents available utilities in the current NetCDF distribution from
Unidata, nedump, for converting NetCDF files to an ASCII human-readable form,
and negen for converting from the ASCII human-readable form back to a binary

NetCDF file.
64



The nedump tool generates the CDL text representation of a NetCDF dataset
on standard output, optionally excluding some or all of the variable data in the
output. See the CDL example in Appendix A. The output from nedump is intended
to be acceptable as input to ncgen. Thus ncdump and negen can be used as
inverses to transform data representation between binary and text representations.
ncdump may also be used as a simple browser for NetCDF datasets, to display the
dimension names and lengths; variable names, types, and shapes; attribute names
and values; and optionally, the values of data for all variables or selected variables

in a NetCDF dataset.

4.7 Summary

We develop a value warehouse to store the values computed by the GEE. It has
multi-level architecture and employs the garbage collector. The warchouse works
as a data cache of the GEE. Consequently, the GEE reduces the overhead of
recomputing values. In the next chapter, we demonstrate testing to make sure the

design and implementation.
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Chapter 5: Experimental Results

This chapter reports the testing results. It reviews the two approaches adopted in
GEE implementation, analyze their results and addresses two important issues:

performance and adaptability.

5.1 Testing Approaches and Results

We used a bar temperature application written in Lucid (see [4]) to test the
implemented prototype on a single machine. At first, we tested this program to
compare the performance between with warehouse and no warehouse in GEE
interpreter solution, which will prove the importance of the warehouse. Then, we
tested different implementations of the warehouse in GEE distributed solution.

Testing results are reported in this section.
5.1.1 Tested Application

The experimented program finds an approximate temperature distribution for a bar
that is heated at one end using relaxation. Its two-dimensional version is shown in

Figure 5-1.
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Figure 5-1: Temperature distribution for a bar (two dimensions)

The application can also be easily made bigger to a square of three dimensions,
shown in Figure 5-2.

temp @.T Tmax @.X Xmax @.Y Ymax
where
dimension T
dimension X
dimension Y
femp = if#.T =
then
f#HX==08&&HY ==
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Figure 5-2 : Temperature Distribution for a Bar (three dimensions)
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5.1.2 Testing Configurations

To run the application, we used one PC that has the following configuration:

* A single processor: AMD Athlon XP 2600+

* Memory: 512 MB RAM

* Operation System: Microsoft Windows XP Professional

We have respectively tested the program in different architectures mentioned in
chapter 3.3 to reach various experimental results. In addition, we tested different
cases in particular parameters of unlike cache size and garbage collection
algorithms. In each case, we try to compute the temps in various contexts, for

example, temp@ (T=1, X=1), temp@ (T=3, X=3), etc.

Test A:
We test two cases: the first is that our system executes the tested program without

warehouse, and the second one is that GEE employs our warehouse.

Test B:

In the following test cases, we will approach various experimental results in
different value warchouse implementations.

Case 1:

We use the NetCDF file as the warehouse and access NetCDF file directly
when the values are put into the warechouse or get from the warchouse. This test
case is to simulate the values located in the file or network.

Case 2:
The warehouse is only constructed by NetCDF dataset. There is no cache

dataset. Other components of the system will access the values in the NetCDF
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dataset directly, which is our solution I - b (chapter 3.3).
Case 3:

The warehouse is built in two levels: cache dataset and NetCDF dataset. The
values input by other components of the system will be stored in the cache dataset
first, and we will promote some of them into the NetCDF dataset when the cache
dataset is full. Here we initialize the cache size as default size: 512K Bytes and
default GC algorithm: Remove Least Access Values (RLA). It is the solution II
(chapter 3.3)

Case 4:

The warehouse has the same architecture as the case 3. We initialize the cache
size as small size: 8k Bytes and set the garbage collection algorithm by Remove
Least Access Values (RLA).

Case 5:

The warehouse has the same architecture as the case 3. We initialize the cache
size as small size: 8k Bytes and set the garbage collection algorithm by Remove
Oldest Age Values (ROA).

Case 6:

The warehouse has the same condition as the case 4. The cache size is
initialized as 8k Bytes and the garbage collection algorithm is RLA. But this time,
the values removed from the cache dataset will be written to the NetCDF file,
which is solution III (chapter 3.3).

Case 7:

The warehouse has the same condition as the case 5. The cache size is

initialized as 8k Bytes and the garbage collection algorithm is ROA. But this time,

the values removed from the cache dataset will be written to the NetCDF file,
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which is also solution III (chapter 3.3).

5.1.3 Results

In this section, we present the testing results of all the cases.

First, we got the results of the Test A.

Comparing with warehouse and no warehouse
Figure 5-3 shows the testing results of with warehouse and no warehouse in the test
A. The numbers on X-axis represent the integer values of T, X in the program; and
the Y axis represents the time spent on computing the value under the
corresponding context, which is with a unit of millisecond.

From the results, we can definitely get the fact that the performance is
obviously higher with warchouse than no warehouse, which indicates the

importance of the warehouse in our system.

After that, we will show the results of all the cases in the Test B.

o0
qoa b —+—no warehouse .

ao0 | & with warehouse /

00
600
500
400
300 |
200 |
100 r

Millisecond

Figure 5-3: Testing results with warehouse and no warehouse

Table 5-1 shows the testing results of case 1, 2 and case 3. In the table, the first
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column gives the values of T, X in every test. The second and the third column

show the values of access hits and misses to the warehouse.

Casel,2and 3 Case 1 Case 2 Case 3
T, X Hits Misses Timing Timing Timing
(millisecond) | (millisecond) | (millisecond)
1 7 6 204 63 55
2 60 93 724 344 328
3 205 384 2046 1125 1093
4 382 1021 3516 1812 1750
5 613 2405 6016 2922 2828
6 1277 5144 11141 5047 4922
7 1261 6649 13281 5938 5766
8 2032 12523 22609 9719 9375
9 2239 15222 26875 11515 11125
10 3757 31824 51000 20750 20531
11 5989 49331 77625 31109 30921
12 7818 77661 118375 47172 46609
13 7679 98600 147125 57797 57593
14 8882 114388 170906 65937 67578
15 10074 130611 195375 74578 78234
16 8945 124922 187875 73000 74188
17 12049 184065 271969 105625 107344
18 18825 283982 420843 161360 169593
19 21083 372074 547797 212500 216078

Table 5-1: Results of casel, 2 and 3

Comparing different IVW architectures

Figure 5-4 shows the testing results of different architectures, case 1, 2 and 3. The

numbers on X-axis represent the integer values of T, X in the program; and the Y

axis represents the time spent on computing the value under the corresponding

context, which is with a unit of millisecond.
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Figure 5-4: Testing results with different architectures

The “no cache” curve presents the testing result with only NetCDF dataset
without cache dataset, case 1, and the “with cache” curve shows the result in case 2,
which has a default maximum size cache (512 Kbytes). In our testing cases, the

cache has enough size to contain the values from other components so that there is

no garbage collecting being triggered.
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Figure 5-5: Relative performance with different architectures

The same results used in Figure 5-4 are expressed in Figure 5-5 but in a
different way. From this figure we may inspect the comparison more clearly. The
integer numbers on X-axis are the T, X ranges and the Y-axis represents the
“relative performance”, measured as (77-72)/T1/100, where T2 is the time taken by
with a cache dataset and 7/ is the time taken by NetCDF dataset without cache
dataset. The curve is tagged with T2 at the beginning place of a curve, which shows

the degree of the difference between case 3 and case 2.

Comparing different garbage collection algorithms

Then we test the same application of case 4 and case 5 with small maximum size
cache (8 Kbytes). Also, we implement two garbage collection algorithms. One is
Removing Least Access values (RLA), and another one is Removing Oldest Age
values (ROA). We define the condition to trigger the garbage collection that current
size is more than 95 per cent of the maximum cache size, and then clean out the

cache until it has 20 per cent free. Here, we have tested the program with T, X
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value at 1 to 12. Since the results of all cases are same when T, X value at 1 to 7,

we did not add them to the Figure 5-6.
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Figure 5-6: Testing results with different garbage collection algorithms

Comparing promotion and storing in file on RLA

Now we test the same application of case 6 with small maximum size cache (8
Kbytes) same as case 4. But this time, we write the values that are removed from
cache dataset to the netCDF file and read them from the netCDF file when they are
needed. Also, we use the RLA garbage collection algorithm. Since the results of
two cases are same when T, X value at 1 to 7, we just compare the results between

case 4 and case 6 when T, X at 8 to 12, which is shown in the Figure 5-7.
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Figure 5-7: Testing results RLA between promotion and file

Comparing promotion and storing in file on ROA

At last we test the same application of case 7 with small maximum size cache (8
Kbytes) same as case 5. But this time, we write the values that are removed from
cache dataset to the netCDF file and read them from the netCDF file when they are
needed. Also, we use the ROA garbage collection algorithm. Since the results of
two cases are same when T, X value at 1 to 7, we just compare the results between

case 4 and case 6 when T, X at 8 to 12, which is shown in the Figure 5-8.
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Figure 5-8: Testing results ROA between promotion and file
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Comparing each list varies in cache dataset
The testing results are separately shown when the value of T, X is 10 in the
following figures (Figure 5-9, and 5-10) because their element number varies
seriously under different garbage collection algorithms. The numbers on X-axis
represent the running time with a unit of second, and Y-axis represents the element
number of the list in cache dataset.
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Figure 5-9: AccessList and AgeList variance

From above figure, we found that the element number of AccessList and
AgeList grows up in the runtime when there is no garbage collecting happening.
While other two lines have some curves turning down, which means that a garbage

collecting occurs at those points.
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Figure 5-10; EmptyList variance

In Figure 5-10, we got the information of Emptylist at the runtime. It shows
that the element number of the Empitylist grows up fast at the beginning of the

execution, then decreases gradually.

Comparing hits of the cache in different garbage collection algorithms

The following two tables show the hits probability of the cache under different
garbage collection algorithms. They show that the hits probability is same at the
value of T, X from 1 to 8. Actually, there are 3, 6, 58 and 163 times garbage
collectings happen at T, X value of 9, 10, 11 and 12 when we initialize cache as
small maximum size. The result is that when some garbage collecting happen, the

hits probability of the cache decreases in this case.

Default max Small max cache size
cache size

T, X No GC RLA ROA

1 7 7 7

2 60 60 60
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3 205 205 205

4 382 382 382

5 613 613 613

6 1277 1277 1277

7 1261 1261 1261

8 2032 2032 2032

9 2239 2220 2191

10 3757 3302 3182

11 5989 3284 2945

12 7818 2737 2575
Table 5-2: Cache hits in different GC algorithms

Default max Small max cache size
cache size

T, X No GC RLA ROA

1 6 6 6

2 93 93 93

3 384 384 384

4 1021 1021 1021

5 2405 2405 2405

6 5144 5144 5144

7 6649 6649 6649

8 12523 12523 12523

9 15222 15241 15270

10 31824 32279 32399

11 49331 52036 52375

12 77661 82742 82904

Table 5-3: Cache misses in different GC algorithms

5.2 Interpretation of Results

The Value Warehouse has been implemented with two different approaches:
warehouse constructed by NetCDF data structure with cache dataset or without
cache dataset. Also, different garbage collection algorithms are adopted on the
dataset. In this section, we will give the interpretation of the above results.

With a closer look to the two approaches in Figure 5-4, we found that those

two curves show the similar values in each test of computing the program. It seems
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that the performance was not obviously optimized when we implement the
warehouse with a cache dataset. We analyze the reason that both the cache dataset
and the NetCDF dataset are located in the memory at the runtime. While the speed
of access to memory decides they have no big diversity though they store data as
different format. Since the GEE describes a variable in a context as IC string, then
we can easily construct the pair data with the IC string and its value to store in the
cache dataset. While for NetCDF dataset, we have to interpret the IC string and
translate it into an acceptable format to NetCDF dataset. Moreover, the values in
the warchouse will be written to NetCDF file on the disk or even network if the
user needs. Another condition is that we have to write the values to the file or
network when there is limited memory. Then we can slowly retrieve values from
these sources. In that case, the cache dataset will present better performance.

Also, in Figure 5-5, we got that with cache solution has better performance
than without solution when T,X values are less than 15, while it has inverse results
going with T,X values rising. We distinguish this result from the hashmap
performance. A hashmap stores data in an array. The index into the array for a
given element is calculated by applying a hash function to a key that is all or part of
the inserted elements. A collision occurs if two keys hash to the same index. In this
case additional elements with the same hash value are chained off in a linked list
from the initial element, which is one of several ways of handling collisions. In this
chained-off way, if a large number of collisions occur, a hash table degenerates into
what is essentially a linked list. A well-chosen hash function results in a low
incidence of collision; consequently, results in a high performance. Increasing the
size of a hashmap also results in a low incidence of collision. Under light to

medium load the hash table performs very well.
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In our case, we define a fixed size of cache, which means it has a fixed size
hashmap, then, the more elements it has, the more probability collision occurs.
While the NetCDF dataset stores data in a kind of multidimensional arrays, then it
has no collision problem. Hence, the performance of the solution with cache is
lower than the one without cache when the values of T, X grow up in the Figure 5-
S.

In the Figure 5-6, without garbage collection performs better than other two
cases. That means when the garbage collecting happens, the computed time is
longer than the case no garbage collecting happening. This outcome seems in
conflict with the design of warehouse with garbage collector we did before, which
indicates the garbage collector will enhance the performance of the system. We
analyze that the reason is as the following. The lucid program used in testing has
the nature of fine granularity and high data-dependency. Fine granularity means
that each demand needs a little computed time. Moreover, the values are rarely
accessed after being stored in the warehouse. So the garbage collector does not
operate well. From the hits and misses tables, we found that the times of the missed
access are further larger than those of the access hits. It results in high data-
dependency of the tested application, in which values of variables px, x and nx all
depend on the values of the variable temp. Thus, before a demand being computed,
the IDP will ask warehouse many times for the values it depends till reaching the
initialized value. Therefore, for this application and with the current
implementation, we received the above results.

Through the Figure 5-7 and 5-8, we can obviously found that when the values
are promoted to the high level from the cache dataset, it performs better than they

are written to the netCDF file because the latter there is some overhead of access to
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the netCDF file on the disk. But they will adapt different conditions, for example,
the netCDF file is located at remote side, then we can make cache dataset local
side.

Also, we may explain the Figure 5-9 and 5-10 as the nature of the Lucid
program for testing. Because of the “followed by” operator, an initial demand for a
big value of T and X (e.g. 19) will generate demands for 18,17,16...3,2,1,0, and up
to then, all demands are empty, and they start to have their values computed one
after the other in reverse order. This will happen in any program largely defined by
using the “followed by” operator, which creates such a “linear chain of

dependences” because of its inherent recursion.

5.3 Limitations

We did not test various lucid programs on our system. In this case, some results are
encountered for the limitation of the nature of the testing application. For example,
the external functions are accepted by GIPSY, which may have high “weight” of
computation and frequent access. Also, some applications will have low-

dependency among variables. In these cases, we may approach other results.

5.4 Summary

In this chapter, we have provided some test cases, which can ensure the quality of
our project. Also, we explained the experimental results and presented the

limitations of our implementations.
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Chapter 6 : Conclusion

In this chapter, we will review the thesis and draw conclusions. At first, we
introduced the Intensional language and the GIPSY system, which consists of three
subsystems: GIPC, RIPE and GEE. The IVW is employed by the GEE, and it
works as a data cache to store the interim values generated by the GEE. Then we
explored the NetCDF of Unidata and general garbage collection technique and
designed the IVW applying those techniques. Next, we presented the design and
implementation of the IVW according to some reasonable rational. Moreover, we
did various test on different Lucid programs to prove that our implementation is
effective. Also, we discussed the experimental results to interpret the feature and
limitation of our implementation.

Through the IVW, we demonstrate how to build a value warchouse for GIPSY.
The IVW provides portable data storage and efficient data access and supports
various data type of the values. Furthermore, the IVW adopts garbage collection
technique of various algorithms and has arbitrary given size of cache dataset so that
it serves as a flexible tool with convenient performance tuning. Consequently, the

IVW plays an important role in the GIPSY system.

82



Chapter 7: Future Work

Up to now, we have built the IVW for the GEE in the GIPSY. However, in a
complex system, this is only a part of achievement. There is still some further work
to be done. This section describes future work that can be performed.

First, more efficient garbage collecting algorithms will be added to the system
to deal with various programs. The next version of GIPSY will include calculation
function, which would be more useful for a large real scientific computation.
Because of the inherent concise nature, it may be difficult to extract computation
units and decide the granularity of units. So a practical approach might be to state
the computation units explicitly in source code, then the warehouse would have
more information to cull the useless values. That will make the system more
efficient to perform well on different intensional languages.

Secondly, in current version, there is only one central warehouse that contains
all the calculated values. It is relatively easy to manage, but likely to become a
performance bottleneck in a distributed system because the warchouse will be
accessed by other nodes in the system before a demand is computed. That will
bring much communication overhead. Then a possible solution is considered that
cach node in the distributed system has a warchouse or a cache, which contains part
of content of the central warehouse.

Finally, a warehouse monitor will be added to the graphic interface of GIPSY.
When the system is performing, the user might care the real-time values in the

warehouse and even modify its configuration. Also, after the computation, the user
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may review the values in the file system we dumped from the warehouse. Then,

another tool like monitor is needed.
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Appendix A: [NetCDF example]

A.1 [example of CDL notation for a NetCDF dataset]

NetCDF example { // example of CDL notation for a NetCDF dataset

dimensions: // dimension names and lengths are declared first
lat = 3, lon = 4, time = unlimited;

variables: // variable types, names, shapes, attributes
float T(time,lat,lon);
:long_name = "surface temperature";
‘units ="degC";
float rh(time,lat,lon);
:long_ name = "relative humidity";
:units = "percent";
int lat(lat);
units = "degrees_north";
Int lon(lon);
wunits = "degrees_east”;
short time(time),
units = "hours";
// global attributes
:source = "Fictional Model Output";

data: // optional data assignments
lat =410, 40.0,39.0;
lon =-109.0,-107.0,-105.0, -103.0;
time =6,18;
th =5,2,4,2,3,2,4,5,6,7,
1,.3,.1,.1,.1,.1,.5,.7,.8,.8,
1,.2,.2,.2,2,.5,.7,8,.9,.9,
.1,.2,.3,.3,.3,.3,.7,.8,.9,.9,
0,1,2,4,4,4,4,7,9,9;
}

A.2 [example of NcML notation for a NetCDF dataset]

<?xml version="1.0" encoding="UTF-8"?>
<nc:NetCDF xmlns:nc="http://www.ucar.edu/schemas/NetCDF"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
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xsi:schemaL ocation="http://www.ucar.edu/schemas/NetCDF
http://www.unidata.ucar.edu/schemas/NetCDFDataset2.xsd"
uri="file:///E:/dev/NCdataset/example.nc">

<nc:dimension name="time" length="2" isUnlimited="true"/>
<nc:dimension name="lat" length="3"/>
<nc:dimension name="lon" length="4"/>

<nc:variable name="rh" type="int" shape="time lat lon">

| }

<nc:attribute name="long name" type="string" value="relative humidity"/>

<nc:attribute name="units" type="string" value="percent"/>
</nc:variable>

<nc:variable name="T" type="double" shape="time lat lon">
<nc:attribute name="long_name" type="string" value="surface temperature"/>
<nc:attribute name="units" type="string" value="degC"/>

</nc:variable>

<nc:variable name="lat" type="float" shape="lat">
<nc:values separator="">41.0 40.0 39.0</nc:values>

<nc:attribute name="units" type="string" value="degrees north"/>
</nc:variable>

<nc:variable name="lon" type="float" shape="lon">
<nc:values separator="">-109.0 -107.0 -105.0 -103.0</nc:values>
<nc:attribute name="units" type="string" value="degrees_east"/>
</nc:variable>

<nc:variable name="time" type="int" shape="time">
<nc:values separator="">6 18</nc:values>
<nc:attribute name="units" type="string" value="hours"/>
</nc:variable>
—" —

<nc:attribute name="source" type="string" value="Fictional Model Output"/>
</nc:NetCDF>
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