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Abstract

Design and Implementation of Visualization Techniques for Subsumption Hierarchies

Anis Zarrad

Data Visualizing is becoming an important research topic in computer science, and has
received considerable attention in the last two decades. In several instances, visualization
is a crucial step in order to easily access and properly understand the data. With it, the

analysis and the decision making is a relatively easier task.

In this thesis, we will focus on the visualization of the concept hierarchies by producing
several geometric representations. The main tools used are the graphs where the concepts
are represented by vertices and the edges represent the relationships between concepts.
Our specific application is the development of a drawing system that interfaces with the
description logic reasonner RACER.

Unless there is no error in the ontology, the RACER system responds to the taxonomy
queries correctly. The body of the response must contain information about a relational

structure called a concept hierarchy. This information could be saved as a text file.

In the first part of the thesis, we will present our system architecture and discuss its
components then we will show how to collect the information about the concept
hierarchy using the taxonomy query. We also describe methods for parsing hierarchies
and the creation of an appropriate data structure that will be used by the set of algorithms
we developed.

The second part of the thesis contains the algorithms used to retrieve the properties of the
concept hierarchy, as well as to study the specific structure of these hierarchies. It is well
known that graph drawing in general is a very complex issue and, therefore, it is
important that our approach in drawing takes into account the specificity of these graphs.
We consider many aesthetic criteria that fit our specific application: the levels should be
kept together as much as possible, the drawing area should be as small as possible, the
number of crossings should be minimized, etc. Also, we will develop a decomposition

technique that will be very useful in many instances.
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1 Introduction

Interfaces have received considerable attention in the context of computer science
systems. With the applications getting sophisticated and the data becoming larger and
more complex, it is crucial to develop suitable interfaces to allow the users to access and
smoothly use the systems. Of course, the complexity of the interface depends on the

application and the type of users.

In the context of computer science terms, a graphical user interface (or GUI) is a
method of interacting [1] with a computer through direct manipulation of graphical
images and "widgets" such as windows, icons, menus, check boxes, radio buttons, push-
buttons etc. More specifically, a GUI is a specification for the look and feel of a computer

system [4]. The user issues commands via the GUI to computer applications.

We briefly discuss some of the issues and basic concepts in the theory behind user
interface design. The UI design can be organized around some basic criteria such as
eliminating possible distractions in the UI, providing feedback to the user, avoiding errors

or making them easy to handle, or to recover from them, and so on.

User interface design [3] is a complex software component which plays an important role
in the usability of an application. From the developer's perspective, usability is important
because it can mean the difference between the success and failure of a system. From a
management point of view, software with poor usability can reduce the productivity of

the workforce to a level of performance worse than without the system.

The design of the interface system must integrate the principle of the simplification of the

user’s task and only allow minimal interference in order to achieve its goal.

The first graphical user interface was designed by XeroxCoporation’s Palo Alto Research
Center in the 1970s [1]. But the first real graphical user interface was released in 1981

and was a revolutionary commercial computer workstation called Xerox Star using a



graphical user interface (GUI) with the nowadays familiar desktop with icon metaphors

and a mouse.

The major contribution of this thesis is the development of visualization software for the

concepts hiérarchy, called TBoxHDI “TBox Hierarchy Display Interface”.

In our software, we designed a user interface that communicates with the RACER [8]
system through a TCP/IP protocol to respond to a specific query Taxonomy. The

response can be visualized as a concept hierarchy using graph drawing algorithms.

1.1 Description Logic

Description logics [33] (DL), also named as terminological logics, are a family of
knowledge representation languages. They are meant to express knowledge about

concepts, individuals and their relationships (Figure 1).

Human Object Animals

Male Female
Colors

Figure 1: Concept Hierarchy.

The basic building blocks are Concepts (classes), roles, and individuals. Concepts
describe the common properties of a collection of individuals and can be considered as
unary, first-order logic predicates which are interpreted as sets of objects. Roles are
interpreted as binary relations between objects. Description logic also provides a number

of language constructs such as intersection, union, negation, role quantification, etc.



(Figure 2) that can be used to define new concepts and roles. The main reasoning tasks
are classification, satisfiabilty, subsumption, and instance checking. Subsumption
represents the is-a relation. Classification is the computation of a concept hierarchy based

on subsumption.

C' M D (concept conjuntion)

C' LD (concept union)

= (concept negation)

dI.C'  (existential quantification)

Figure 2: Language constructs.

The whole families of knowledge representation systems have been built using these
languages and for most of them complexity results for the main reasoning tasks are
known. Description logic systems have been used for building a variety of applications
including conceptual modeling [38], information integration {39], query mechanisms
[40], robotics [35], view maintenance [36], software management systems [41], planning

systems [34], configuration systems [41], and natural language understanding [37].

1.2 RACER system

The RACER system [8] is a knowledge representation system that implements
description logic reasoning. It offers reasoning and evaluation services for multiple
concepts (TBox) and multiple individuals (ABox) as well. RACER can answer queries
related to description logic. It is implemented in Common Lisp and has been developed at
the University of Hamburg. The last version released until now is RACER 1.7 and it was

developed to support different platforms such as WINDOWS, MAC, and UNIX.

The reasoning services offered by the RACER consist of:
Concept satisfiabilty: checking if a concept has a non-empty interpretation.

Subsumption checking: checking if a concept C2 subsumes C1.



Instance checking: checking if an individual denoted as « belongs to the

interpretation of concept C.

Also, RACER can answer queries regarding a specific ontology [9]. An ontology is a
formal conceptualization of the world. It expresses a way to bring meaning to data for an
area of interest which describes the domain, key concepts, their properties, their
relationships, and their associated rules. Ontology provides a set of well-founded

constructs that can be leveraged to build meaningful higher level knowledge.

Reasoning [7] is important to ensure the quality of an ontology. It can be employed in
different development phases. During ontology design, it can be used to test whether
concepts are non-contradictory and to derive implied relations. In particular, one usually
wants to compute the concept hierarchy. Information on what concept is a specialization
of another one and which concepts are synonyms can be used in the design phase to test
whether the concept definitions in the ontology have the intended consequences or not.
During the Ontology integration, a Reasoner computes the integrated class hierarchy and
checks the consistency. Reasoning may also be used when the ontology is deployed to
determine the consistency of facts stated in the ontology or infer instance relationships.
However, in the deployment phase, the requirements on the efficiency of reasoning are

much more stringent than in the design and integration phases.

The core of a Knowledge Representation System based on Description Logics is its
concept language, which can be viewed as a set of constructs for denoting classes and
relationships among classes. A general characteristic of DL-systems is that the

knowledge base is made up of two components: TBox + ABox.

A TBox is a collection of definitions of the concepts that describe the ontology domain.
Definitions are constructed from a set of axioms (Figure 3).

An ABox describes a set of individuals, their properties, and their relationships.



Axioms (TBox) example:

Woman = Person M Female

Man = Person N -Woman
Mother = Womann JhasChild.Person
Father = Man N JhasChild.Person
Parent = Father U Mother

Figure 3: TBox axioms.

ABox Example:

Anis: Man

(Ali,Anis):HasChild

1.3 Taxonomy File

The main idea of the classification is to compute the ancestor (Parents) and descendant
(Childrens) concepts for each concept name. The taxonomy is defined as a categorization
of concepts based on certain criteria, it lists for each concept it’s most specific sub-

concepts and super-concepts.

In description logic systems it is often necessary to make legible taxonomy information
about the knowledge bases expressing concept and concept hierarchy. There are two
major reasons for this: firstly, retrieve the anomalies in the ontology design, secondly, to

better understand the ontology’s domain.

The user can receive the taxonomy information as a text file. The text file is created when
the user instructs the RACER system to answer the taxonomy query which is a
classification ontology process to compute the subsumption relationship between all
concepts names mentioned in a TBox. The result is referred as the taxonomy of a TBox
and gives for each concept name two sets of concept names listing its “parents” (direct

subsumers) and “children” (direct subsumees).



The result may be given in text format:

Result example

1: (TOP NIL (AGE ANIMAL CAT))

2: (AGE (TOP) (BOTTOM))

3: (ANIMAL (TOP) (BOTTOM))
4:(CAT (TOP) (BOTTOM))

5: (BOTTOM (CAT AGE ANIMAL) NIL)

A quick explication for the output query: starting at line 1, the first token represents a
concept name; the second token (NIL) means that the concept (TOP) does not have a
super concept, in other words, no concept parents. The last tokens (AGE, ANIMAL,
CAT) represent sub concepts for the TOP (Children Concepts).

The file retrieved from RACER is called a taxonomy file and it has a specific structure
that corresponds to a well defined grammar. Our first major task is to use an efficient

algorithm to parse the taxonomy file in order to retrieve all needed information about the

ontology.

Graphs are frequently used in computer applications as a general data structure to
represent objects and the relationships between them. Putting this definition in the
context of the ontology classification, the taxonomy file could be represented as a graph.
The ordering relation between the concepts could be either the relation HasChildrens or
HasParents. The concepts may be a class. The visualization of the taxonomy file is

related then to the graph visualization or graph drawing.

1.4 Visualization of the Taxonomy file

Graph drawing [12] addresses the problem of visualizing structural information by
constructing geometric representations of abstract graphs. Visualization allows one to
better understand the domain ontology. It essentially takes nodes and relations from an

application and creates a picture or layout for them on the screen. Graph theory and order



theory may play a major role in getting a good layout that can help the user to understand

the application.

There are many special kinds of graphs which are used in computing systems for
different purposes: Petri Nets, Entity-Relationship Diagrams, Flowchart Graphs [13],
objected oriented diagrams [14], PERT Diagrams, etc. These graphs are used in many
design systems even without the aid of a computer, and each kind of graph has a special

set of conventions and notations.

The ontology classification fields require a specific kind of drawing to understand the
ontology design (concepts and their relation) which is called the hierarchy graph or

layered graph [31].

A layered graph is an oriented acyclic graph. The vertices of a layered graph can be
partitioned into sets (Lo={s}, L1, Lo, etc.), called levels or layers, such that each edge of
the graph, that is an ordered pair of vertices, has the first component in a level L; and the
second component in a level L; where i<j. Hence, there are no edges between two vertices

in the same layer.

The interpretation process has to first apply rules for layer 0 as long as possible, then

rules for layer 1, etc. Using rule layers makes it possible to specify a hierarchical view of

ontology concepts.

The layer rule is to assign concepts without parents in layer O then place the children of

the concepts in layer O into layer 1, and so on.

It is a fact that there is no generic approach for drawing graphs. The same observation
also applies to the size of the graph. It is essential to study the special properties of the
graph representing the concept hierarchy and to understand to which class of graphs it

belongs to in order to decide which specific drawing algorithms to apply.



Using a hierarchical approach to represent the taxonomy file has a number of advantages.

-When we examine the graphical representation of a model we use our visual
cognitive apparatus which has some millions of years of evolutionary advantage over our
text-reading abilities. The two-dimensional representation of a diagram is a lot more
expressive than text, which is typically scanned from left to right and from top to bottom.
Diagrams can be viewed following different directions to gain distinct insights:

- Keeping in mind the ontology concept design which is related to the
classification process;

- Ergonomically friendly presentation of the ontology;

- Easy browsing and navigation through the ontology;

- Efficient retrieval and searching of a specific concept name,

The layout must satisfy several aesthetics, to create a “good" layout. Aesthetics differ
from one application to another, but typically include items such as the avoidance of
edges and node crossings, reducing the space, favoring short straight edges, and the
preservation of a minimum distance between nodes, etc. To achieve the aesthetic goal we
may adopt three major drawing parameters for the concepts hierarchy display:

Straight line drawing: each connection is drawn as a straight line segment (Figure 4).

Figure 4. Straight line drawing.

Aesthetics: properties applied to the drawing achieve the understandability and readability
of concepts. The major important element in this parameter is to reduce edge crossing.

This problem was first studied by Warfield [43] and similar methods were discovered by



Carpano [44], Sugiya, Tagawa, and Toda [45]. There has not been many results dealing
with this problem, probably due to the difficulty of the problem. In this work we follow

Di Battisa and Tamassia’s approach [12].

Space minimization: the concepts hierarchy display should fit in one screen, if the output
is larger than the screen width, many techniques may be applied to reduce the display

width.

1.5 Hierarchical Drawing Algorithms
In general, a concept hierarchy drawing algorithm (Figure 5) reads as input a concept

hierarchy description and produces a drawing of this hierarchy as output according to a

given graphic standard. The drawing is described in terms of graphic methods such as

AssignLayer, Draw_Line, Draw_Concept, etc.

Figure 5: Hierarchical drawing.
The hierarchical concept drawing algorithm has four major steps or sub-algorithms.
The first step places the nodes in discrete ranks using a layout algorithm. This step will

be applied in both orientations: start assigning layer from Top to bottom or from bottom

to top, and then choose the best orientation using specific criteria to do the next step.



For the second step we will use a decomposition technique. We noticed that most of the
examples we are dealing with, especially large sized ones, have many subsets with the
following characteristic: all elements in the subset have the same nodes neighborhood. In
graph theory literature these are called autonomous sets. An autonomous set is a subset of
concepts S such that all concepts in S have exactly the same relationships with the
concepts outside S. Since all elements in an autonomous set behave the same way, then
we could collapse all elements in the drawing into one object and allow the user to
interactively see the content of the object. This will greatly simplify the drawing without
any loss of information, since all relationships are still represented. Therefore, concepts
having the same set of parents and children will be in one homogenous node. Of course,

the user has the ability to turn this feature on and off.

The crossing between edges is a major readability problem for the human user. However,
there are no efficiency algorithms that minimize the number of crossings in a general
graph. However, we could design heuristics that fit well in specific applications. In our
case, and since we are interested in a layered drawing, the permutation of the elements
used to draw each layer is crucial in order to minimize the crossings. We will present an
algorithm that finds the right permutation to be used for each layer and mainly depends
on the inclusion relations between the sets of children and parents of each element in the
layer. This algorithm will decide the actual layout coordinates of the concepts.

Layer_Bifurcation and Draw_edges algorithms deal with the edges that cross at least one
layer. The drawing of those specific edges needs a special attention which will be
explored in the last chapter. We provide the main procedure that contains the most

important functions that must be considered in this thesis.

Procedure Draw_Graph
Begin
Layout ()
Autonomous_sets()
Cross_Reduction ()

Position ()

10



Layer_Bifurcation
Draw_Edges

End

1.6 System design

The system design is based on a two-tiered system. An applet will be downloaded at the
user terminal and will communicate with the RACER system that resides on the server.
The user may use the layered design because of the following reasons:

- The reusability and maintenance of the system; and

- To simplify and separate the major components in the design system.

1.7 Thesis outline
In chapter 2, we discuss the necessity of a web based system and present a detailed

overview of the system we developed. We go through the constraints, requirements,

input, output, etc. in detail.

In chapter 3, we introduce two existing systems and their functionality. Then, we do a

comparison study with our own system and show its advantages.

In chapter 4, we focus on the high level design of our system and give a detailed view of

the system architecture as well as the interface design.

In chapter 5, first we study the structure of the graph representing the concepts hierarchy
then we describe in detail the approach that will be used to create an understandable and

readable drawing.

In chapter 6, we will be interested in the parsing process. We design a suitable algorithm
that will be used to parse the taxonomy file, and then we create the appropriate data
structure to handle the information about the concepts hierarchy. The complexity of

these algorithms will be presented.

11



In chapter 7, we present what we consider to be a very important part of this thesis. We
will show the design and the implementation of a set of algorithms essential for the
drawing. These include the layout algorithm, autonomous sets, and cross reduction and
position algorithms. The complexity of these algorithms will also be discussed. Finally, a

conclusion and a set of proposals for future work will be presented in Chapter 8.
1.8 Thesis contribution

The main contributions of this thesis are as follows:

-We designed and implemented a system interface that will query RACER for the data
related to a hierarchy of concepts in a TBox, and then use several drawing algorithms in
order to visualize the hierarchy in a desirable view that is easier to understand by the user
and reduces the chance of a confusing and misleading concept hierarchy drawing.

-An efficient way of ranking the nodes; the target of this step is to assign a y-coordinate
to each node;

-An efficient algorithm to find the autonomous sets that consist of merging nodes that
have the same neighbors;

-Because the crossing can reduce the readability and visibility for the user we produce an
improved heuristics to reduce edge crossing;

-A method for computing the coordinates x and y for each node; this can be seen as a rank
assignment problem;

-We must provide an intelligent algorithm to draw the edges that pass through more than

two consecutive layers, in many cases those edges intersect with the node shape and this

could affect the view display.

12



2 Overview of the system

2.1 Introduction

The main task for the TBoxHDI system is to generate a hierarchical graphical view using

the Taxonomy file generated by the RACER system.

The hierarchical graphical display of the TBox structure remains the universal and most

familiar and understandable representation for the user.

The TBoxHDI system is meant to be suitable for visualizing large hierarchical data sets
as well. For a useful display, there is a need for a set of flexibilities and features to be
developed: zoom, rotations, improved animation, etc. This leads to a better interactivity
and an easier browsing of the hierarchy. Using a fixed sized shape for the nodes, the

TBoxHDI display should help the user to better manage and comprehend the ontology.

This could be achieved by focusing on the important characteristics of the concept

hierarchy and by an interface design that simplifies the user’s task as much as possible.

2.2 Requirements

For the TBoxHDI we have chosen to use a direct-manipulation, with an interaction
between the taxonomy file and screen representations.
Using the system interface the user requests a taxonomy file through a specified

communication protocol and then, using the raxonomy command, RACER sends the

requested file back.

In the design of the TBoxHDI system, we took care of several visualization concerns and
issues of the users. As we already mentioned, the system should respond to our most
important concern, which is the readability of the concepts hierarchy described in the
taxonomy file as well as the simplicity to use the different features of the system by the

user.

13



Several goals have to be achieved at the same time.

-Make a decision about the ontology design approach that has been used.

-The ability to evaluate the ontology and to detect the anomalies in the design. For
instance, we should be able to easily check whether the ontology does fulfill the
requirement and specification of the domain. It is also important to be able to locate
duplicate concepts, the meaning of the ontology, and which design methodologies have
been used.

-Eagy search for a specific concept name.

-Easy access to the detailed information about a specific concept.

-The system must be extensible because the number of available display

algorithms and tools is constantly growing.
To achieve these goals we incorporated several ideas and features in our system:

-A web-based system: nowadays it is obvious that our system should be web-
based. The TBoxHDI is accessible over the normal HTTP Web protocol. It should be

modular and flexible for the user.

-The use of mouse clicks is an important feature. It should allow easy interaction
between the different parts of the display. With mouse clicks, it will be possible to have
access to the granular information about a specific or group of concepts. Also, we may be
able to select a specific area of the screen in order to investigate the details of the local

information or to have a better view of a subset of concepts.
-We should be very careful about minimizing the area of the screen used for the
display. The best situation would be to use a single screen. Scrolling has shown to be a

big distraction to the user.

-We do not pretend that there is a single approach that could resolve all drawing

issues. Graph drawing is simply a very difficult task which has been shown in the

14



literature. Therefore, it is very helpful to propose to the users several ways or algorithms
to do the drawing. The choice of the specific way to display the concepts depends on the

specific properties (small, large, dense, etc.) of the concepts hierarchy.

-The use of different colors is also important. Coded colors will greatly simplify
the presentation of the data and minimizes the use of text on the screen. Edges with
different colors will have different meanings; highlighted parts on the screen will help the

user to focus in the desired part of the data, etc.

-The system uses two different shapes for representing the concepts in the
hierarchy: circles and ovals. Their meanings will be specified later. We did avoid the use
of more shapes in order to not confuse the user. Of course, for aesthetics reasons and in
order to control the area used, the size of the different used shapes cannot be arbitrary.

However the user could access all text information related to a specific node by executing

a mouse click.

-The ability to rotate the display could help to better understand the data and is an

important feature implemented in our system.

-In many cases, the concepts hierarchy is very large (the concepts could number
in the thousands) and therefore zooming features are very important. It will allow access

to the structural information of the different parts of the display.

2.3 TBoxHDI Input/Output

The system accepts as input four kinds of files as described below (Figure 6) those files

are transmitted to the racer to be classified:
RDF file : The Resource Description Framework (RDF) is a framework for representing
information on the Web. This document defines an abstract syntax on which RDF is

based, and which serves to link its concrete syntax to its formal semantics. It also

15



includes a discussion of design goals, meaning of RDF documents, key concepts, data

typing, character normalization and handling of URI references.

DAML file: The DARPA Agent Markup Language (DAML) is a language designed to
express information so that it can be easily used by computer programs (analogous to the
way HTML is designed to express information so that it can be easily used by the user).
This is expected to foster the use of intelligent agents and to aid both humans and

rograms in finding and using information.
O

XML file: Extensible Markup Language (XML) provides a portable means of
representing data structure with one type of relation: containment. Containment and
different tag names (e.g. <mother>, <father>, <son>, <daughter>) are used to model
different relationships among otherwise identical objects. XML vocabularies are
generally fixed by a DTD or XML Schema definition. One can copy or include someone

else's definition in your own, but can not add additional information to their definition.

RACER file: defines the vocabulary for discussing and representing information about a
particular domain. A Racer File consists of Classes, Properties, the relationships between

them, and constraints on their use.

The output of the system is a concept hierarchy for a specific file in a layered graph

structure.
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Figure 6: System input/output.

2.4 System Constraints

The term ‘Constraint’ refers to the specification of the graph. The TBox hierarchy may
contain, at many concepts and we would use a predefined shape with a fixed size to draw

those concepts (classes).

When we have a large concepts hierarchy, it is clear that we cannot represent that many
nodes on the same screen. In the best case scenario, the screen resolution could be set at
1024*800 pixels. The TBoxHDI needs a high screen resolution since the presence of a
graph of a size over 1024*800 pixels will almost surely force the user who has a low

resolution display to use horizontal and vertical scrollbars.

It becomes really annoying when the viewer tries to understand the whole graph and has
to scroll every few seconds to look at the next part and hide another one. It then becomes
hard for the user to get a complete idea of the graph information, which means one of the

requirements is discarded.
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By using a high screen resolution we augment the number of nodes that can fit in one

layer. Of course, we assume we use efficient and sophisticated drawing algorithms.

The system can run on the following operating systems: MAC, Windows 98, Windows

2000, Windows NT, and Windows XP.

2.5 TBoxHDI web based system architecture

As internet technology has become essential to software development, the software might
be useful and efficient using a web-based system in order to be accessible over the
internet. The TBoxHDI web system provides a mechanism of communication between
two remote systems that are connected through the Web Service’s network.

Using a web based system for TBoxHDI should give the system more modularity and

flexibility for the user, since it will be accessible over a standard HTTP Web protocol

(Figure 7).

Request sent

_JM\_‘{.‘
%_;:- = TBoxHDI over HTTP
=== Web system Protocol
User

Figure 7: TBoxHDI Web System.

TBoxHDI Web-based System Manager can be configured to run in Client server mode.

The client requests server services from a managed machine through intend port 8080
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(default port). Client-server mode needs to be enabled on the servers destined to be

managed as remote machines

2.6 Interface description
Figures 8 to 14 show a series of screen captures of the main display area with some

principles scenarios. They Show progressive steps to display and interact with the
hierarchy concept. The user can use the mouse and the menu icons to retrieve the

necessary information about the selected concept name.

Several layout displays may be applied to allow adjustments of the spacing between

nodes, alignment, clear vision, and the best display in the available screen space.

&2 TBox Editor
File Help Tools Display Racer

| e | @ & |

3

Figure 8: The bar and the file menu of the system interface.

= | B

Dt Blothom

Virtual Nodes

Figure 9: The Display menu.
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Figure 10: The Racer menu.
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Figure 11: The Tools menu.

20



N
T g / N\ \'-\.,
/ -~ /,./ \ \‘\
s .
,/ e \\ \\.\
- .
T - / \\ T
7 / \ .
T / AN
e s
/"/" /’ \‘x
P Ve N
- 'Oet Node Neighbour
GetParents
Get Childrens
Get Node Informations
C22 Cc21 C23
. Y

\\\sz’//

Figure 12: Right click menu to interact with the hierarchy.
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Figure 13: Selection of the file that could be displayed.
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Figure 14: The default view Top to Bottom display.

2.7 Overview of related systems

There are two well known visualization techniques for the concept hierarchy: classical
representation and exploring tree representation. Many of those visualization techniques
work effectively for hierarchies of 1000 nodes. But as the number of nodes increases
toward 5000, these techniques tend to break down. When the hierarchies contain a large
number of nodes, we usually require an efficient technique to display the concept

hierarchies.

There are at least two systems that offer the display of the concepts hierarchy, namely

RICE and TRIPLE which use a classical visualization technique.

2.7.1 RICE system
The RICE system [46] (RACER Interactive Client Environment) has been developed by

Ronald Cornet at the Department of Medical Informatics-University of Amsterdam. The
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RICE system provides an interface that manipulates the description logic as processed by

the DL reasoner.

It connects with the DL reasoner and displays the classified knowledge in a MS Windows
file manager style. Individuals for each concept are displayed on demand.

The major problem with RICE is: it use a naive drawing technique to display the edges
and the individuals. The notion of ancestor and descendant concept is lost. Moreover, it
does not give a global view of the hierarchy, a crucial aspect, in order to understand and

properly analyze the structure.

2.7.2 TRIPLE system

The TRIPLE system is an RDF query, inference, and transformation language for the
Semantic Web. Instead of having a built-in semantics for RDF Schema (as many other
RDF query languages have), TRIPLE allows the semantics of languages over RDFs (like
RDF Schema, Topic Maps, UML, etc.) to be defined with rules. For languages where this
is not easily possible (e.g., DAML+OIL), access to external programs (like description

logics classifiers) is provided.

As a result, TRIPLE allows RDF reasoning and transformation under several different
semantics; it also offers a web-based system interface to display the class hierarchy in a

layered graph.

TRIPLE is a joint project with Stefan Decker (Stanford University Database Group) and
Michael Sintek (DFKI GmbH Kaiserslautern, Knowledge Management Department and

Stanford University Database Group) as its creators.

Although it displays the hierarchy in a layered fashion and keeps a global view, it lacks
the sophistication in the drawing algorithm so it does not seem to be able to have
acceptable drawings, especially when the hierarchy is large. Also, there is no possibility

for the user to interact with the given drawing in order to adjust it if necessary. It only
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gives a static graph. We find the curve lines used in the drawing confusing, especially

when there are a lot of intersecting edges in the drawing.

2.7.3 Comparison
Many techniques were developed to visualize and explore large hierarchies [1,2,3].

Generally, when the user knows the ontology domain, how it is structured, and what he is
searching for, then the display technique could be easier to implement. Rice uses the
exploring tree (File manager windows) to categorize each concept according to it is
subsumers and subsumees. With this approach a user cannot have a global view if the

graph does not fit into the available screen space.

It seems that a system such as TRIPLE uses a very standard and basic technique for
drawing the hierarchy. This technique has very big limitations. In fact, it is enough to
have a hierarchy where the number of edges is large to see the problem. The drawing
becomes completely unusable. Roughly this algorithm is:

Decompose the graph by layers and then distribute the vertices of every layer

around the center of the screen in a regular way.

We attempt to provide a simple yet powerful method to explore very large hierarchies.
The strategy maintains context within a complex hierarchy while providing easy access to
details without using techniques such as clustering, which could affect the visual stability
of a hierarchy. Several algorithms could be used for drawing and the choice should
depend on the characteristics of the hierarchy. Our system should be able to first check
the properties of the hierarchy and then automatically choose the right drawing
methodology. In this case the visualizations of the TBox relational structures should be
useful and understandable. The properties of the input graph are an essential parameter of

a graph drawing. This approach is discussed more deeply in the following sections.
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3 High level design

3.1 Introduction

We are designing a complex application to display a layered graph view. It is composed
of a large number of components across multiple levels of abstraction between the data,
the user interface, and the interaction between them. The application must support such

operational requirements as maintainability, reusability, and probably security.

Many design patterns were introduced in the domain of computer science to reduce the
complexity of such task. One commonly used implementation to look at complex
software is a high level design pattern called Model-View-Controller (MVC). It splits the

application into less dependent pieces.

The Model-View-Controller pattern is one of the earliest and one of the most successful
design patterns. It was developed by Trygve Reenskaug in 1979. The MVC architecture
was introduced as part of the Smalltalk-80 version [20] of the Smalltalk programming
language invented by Alan Kay. The Model-view-Controller design pattern is one of the
fundamental ways to architect a program that involves both user interfacing, a "view",
and an internal data processing, a "model". The goal of the MVC pattern is to separate
the application object (model) from the way it is represented to the user (view) from the

way in which the user controls it (controller).

The MVC paradigm splits the design of the software into three key areas: View,
Controller and Model.

3.2 Architecture design
3.2.1 Global Architecture

The system architecture is based on two-tiered system architecture (Figure 15). On the

user’s side, an applet will be downloaded and then a network connection using a simple
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TCP/IP protocol could be set up to communicate with the RACER system that resides on

the server side.

The TBoxHDI system is a server-based software that allows users to operate in a
Windows environment and on most workstation platforms. The supported platforms
include Macintosh and UNIX. The server runs the RACER application using an
independent architecture. The RACER System must classify the ontology and then
respond to the taxonomy query of the user, and send the response back to the client
application for viewing and control. The client users see and work only with the user
application's interface. Users are unaware that the RACER application is running on a
server (the provider) and not on their PC. The only two parameters that the users will

need to set up the connection are; the residual RACER IP address and the port number.

Server

TBoxHDI

Racer

TCP/IP

Figure 15: Global Architecture.

3.2.2 TBoxHDI Architecture

The challenge of the system architecture is to manage the software complexity. Layered
solution based on the MVC pattern may be applied (Figure 16) in order to provide
simplicity, flexibility, and adaptability to the system.
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The benefits of the MVC architecture are: set out the strategy for the future developments

and maintenance, code reuse, clear definition of the system, and dependency

management.
TBoxHDI
Controller S erver
Model o=l -
] View Racer
\“

Figure 16: TBoxHDI architecture.

We define the services that can be offered by each layer:

First layer: A View provides graphical user interface (GUI) components for a model.
This class coordinates the appearance of the GUL It decides where all the controls and
allocated displays (labels, text fields, buttons, concepts Box, relation line, etc.) are
positioned. When notified by the model that it has changed its state, the view updates
itself by calling methods in the model that return all the information that the view must
display. The View class contains lots of specifics about how the GUI looks (fonts, sizes,
foreground colors, background colors, as well as several details required for the
placement of its components). When a user manipulates a view of a model, the view
informs a controller of the desired change. In Java the views are built with AWT or
SWING components. In general, all needed graphical components such as buttons, menu
icons, panels, selected menus, étc. are listed in the java library. However, views must

implement the java.util.Observer interface.
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Second layer: The Model is the central class that represents the most important part in
the design because it carries out huge tasks and operations. It has a set of public functions
that can be used to achieve all of its functionality. Some of those functions are query
methods that permit a "user" to get information about the current state of the model.
Others methods permit the state to be modified and the rest deal with the parsing process,

data collection, drawing algorithms, and network connections.

The model layer handles the most important methods for the system and has a complex
structure design. We may use the layered approach [19] in the model class itself (Figure
17) to reduce the complexity. When we apply this approach, there are typically two major

different parts that can be explored, namely modeling the problem and then solving it.

Problem Modeling can be viewed as breaking the problem up into layers and defining the
functionality of each layer. We separate the components system into layers [19]. The
components in each layer should be cohesive roughly and at the same level of
abstraction. Each layer should be loosely coupled to the layers underneath. We define the

set of subclasses in the Model class (Figure 17).

The first subclass represents the network connection. It delivers the connection
between the TBoxHDI and the RACER system to classify the ontology and to respond to
queries. This layer is related to the network service and to devices that require
connectivity. In this layer, we use the TCP/IP protocol as the underlying transfer
protocol. This protocol allows the developers to use existing libraries for implementation.
A richer security protocol may be adopted in future work if we need a secure connection
to exchange important ontology data between the system and RACER application.

However, for the purposes of this work we felt that the standard protocol is sufficient.
The system calls the socket function to create a socket and connect to the racer socket

once the connection is in place. The client sends the ontology file to RACER through this

connection and asks the receive function to get the taxonomy query response from the
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RACER application. When all the data has been received, the system calls the close

function to close the socket.

The default port number for the RACER system is 8088.

The second subclass creates an appropriate data structure that must be used for
the upper layer through a set of procedures such as the data collection process and the
parsing algorithm. The use of appropriate data structures is required in order to have

more efficient algorithms.

The third subclass contains all the drawing algorithms for constructing the
geometric concept hierarchy graph. Several result and graph proprieties must be applied
to implement such an algorithm in a sophisticated and efficient way to reflect the major

thesis contributions.

Finally, the last subclass manages the behavior of the data. It should be able to
register the views, notify all of its registered views when any of its function causes its
state to change. (The view should then call other methods in the model to know what to

display).

In Java, the View Model Class consists of one or more classes that extend the class
java.util.Observable. This super class will provide the register/notify infrastructure
needed to support a set of views. Most code of this class is implemented using methods

and attributes already provided by the java library.

Then we define the Solving problem which can be viewed as showing how the layers
interact with each other in order to achieve the desired outcome. To make the system
code more usable and comprehensible by the developer, each layer must interact with the
other layer specifically through well defined interfaces. We use the down to top approach
(Figure 17) to interact between the Model subclasses. The down most subclass use one

or more services of the upper level layers.
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Figure 17: Model subclasses.

Third layer: this represents the controller class and updates the model as necessary

when a user interacts with an associated view. The controller can call update methods of
the model to get it to update its state, in which case the model will notify all registered
views that a change has been made, so they will update what they display to the user as

appropriate.

In many programming languages such as java, the controller is presented as listener; it

can be used and called directly from the event structure java library.

3.3 User interface design

When we design a user interfaces, we must work hard to ensure the interface is themed

appropriately and integrates seamlessly with the content, as well as being logical and

functional for the user.

Interface graphics design is concerned with how effectively users complete the tasks and

how the interface looks like. It is also related to the aesthetics and the user behavior as
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well. The primary goal of this user interface application is to display a hierarchical view
in the panel drawing area. This can be accomplished by placing concept names in a circle
shape and the subsumption relationships between them using a colored straight line in the

drawing area.

The challenge for the designer is to create an acceptable user interface that incorporates
multiple inputs to produce a layered graph viewed as output. The TBoxHDI interface is a
tool for prototyping the concept hierarchy display in user interfaces. This tool creates a
hierarchical view using a bar menu icon or the file menu depending on the user
ergonomics. The user can interact with the system interface using the mouse to sketch
some query and operations for a specific concept name selected by the user to better

understand the hierarchy.
To facilitate the transition from a global view to a local view, a pop up menu was built

using the right mouse click with an option for accumulating ideas and understanding the

appropriate local view.
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4 Parsing

4.1 Introduction
After sending a taxonomy request to the RACER system, the specified ontology will be

classified. The response is received by the user application through the network

connection and then used as the basis for generating concepts hierarchy display.

The body of the response query is a list of triples and each triple consists of
-A name set of the atomic concept and its synonyms.

-A list of concept-parents name sets where each entry is a list of concept parents

and their synonyms.

-A list of concept-children name sets where each entry is a list of concept children

and their synonyms.

The response to the taxonomy query follows a special grammar described below:

Triple — <Triple> | (<Node> < Parents> {Children})
Node — (<NameList>) | <Name>

Parents — (<NodeList>)

Children — (<NodeList>)

NodeList — (<NameList>) | <Name>

NameList — <NameList> | <Name>

Name — <String>

The goal of the parsing process is to create a data structure that can be used as input for

the drawing process.

There are two primary methods used when building parsers: Top-Down and Bottom-Up.
The Top-Down process attempts to construct the parse tree for some sentence of the
language by starting at the root of the parse tree. In top-down parsing/recognition we start

at the most abstract level (the level of sentences) and work down to the most concrete



level (the level of words) using left-to-right rules. Bottom-Up attempts to build the parse

tree by starting from leafs (the level of words) of the tree until we reach the root.

Top-Down parsers are generally easy to write manually. Bottom-up parsers are usually

created by parser-generators and tend to be faster.

4.2 Recursive descent parsing approach

One of the most straightforward forms of parsing is recursive descent parsing [23]. It is a
Top-Down process in which the parser attempts to verify that the syntax of the input
stream is correct as it is read from left to right. A basic operation necessary for this
involves reading token from the input stream and matching them with terminals from the
grammar that describes the syntax of the taxonomy file. When proper matches occur the

input stream reading pointer will look ahead one token and advance.

What a recursive descent parser actually does is perform a depth-first search of the
derivation tree for the string being parsed. This will allow exploring the possibilities of

rules that could apply.

In general, for each non-terminal we write one procedure, and we call it the non-
terminal's procedure. For each terminal, we compare the current token with the expected
terminal and decide which rule to use. If there is only one production rule then it is
chosen. However, if there are multiple productions for a non-terminal, we use an if-then-
else statement to choose which rule can be applied. The structure of the procedure is
dictated by the production for the corresponding non-terminal. If there was a left
recursion in a production, we would have had an infinite recursion that causes a

recognition problem.

The recursive descent parsing is quite efficient. Each non-terminal in the parse tree
requires a simple table lookup. Each terminal node requires a simple match. The running

time is polynomial to the size of the taxonomy file.
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4.3 Grammar transformation
Unfortunately, there are some problems with this simple scheme. A grammar rule is said

to be directly left recursive if the same non-terminal is both on the left hand side of a rule
and the first element on the right hand side of a rule. Hence, after a directly left recursive
rule has been selected, the first action of the corresponding parsing procedure will be to
call itself immediately without consuming any of the input. It should be clear that such a
recursive call will never terminate and a recursive descent grammar will go into an
infinite loop. Hence, a recursive descent parser cannot be written for a grammar which

contains such directly (or indirectly) left recursive rules.

The problem with the taxonomy grammar is the recursive rules as found in the Triple; the
right hand side calls Triple that causes a self loop. When we start parsing the file, we first
call the Triple rule; we start by trying its first alternatives. Which is Triple , trying Triple
means trying Triple again, etc. This causes an indefinitely loops. The Top-Down
approach cannot work on this grammar because the same problem may happen again
when we call NameList terminal symbol. Fortunately, it is possible to transform the
taxonomy grammar to resolve the infinite loop problem caused by the left recursive rules.
The usual way to eliminate left recursion is to introduce a new non-terminal to handle all

but the first part of the production.

TripleList — Triple| TripleNode
TripleNode — TripleList

TripleNode — €

Triple — (<Node> <Parents> <Child>)
Child — <Children>

Child —» ¢

Parents — (<NodeList>)

Node — (<NameList>) | Name
Children — (<NodeList>)

NameList — <Name> | <NameChain>

NameChain — Namel.ist
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NameChain— €

NodeList— <Node> | <NodeChain >
NodeChain — NodeList
NodeChain— €

Name — <String>

4.4 Parsing algorithm

We treat the grammar as a pattern of tokens. It is practical to tokenize the taxonomy file,
and specify a grammar for the file in term of token terminals. The token terminal are
“(, .7, )7, spaces, and names. The name is a set of characters that does not contain any

token terminal. We create a procedure for each terminal in the transformed grammar

which returns a Boolean variable when the parsing is done.

The Top-Down algorithm is based on the idea of using a generative grammar to produce

all possible sentences in a language until one is found which fits the input sentence.

Construct the root of the parser.

Repeat until the fringe of the parsing tree matches the input string.

1- At a node labeled A, select production that have A on its left hand side and, for each
symbol on its right hand side, construct the appropriate child.

2- When a terminal symbol is added to the fringe and it does not match the fringe,

backtrack.
3- Find the next node to be expanded.

The parse procedure code is shown in the appendix A.

4.5 Concept hierarchy data structure representation

The TBox hierarchy can be seen as a graph G =(V,E) that consists of a finite set V of

vertices and a finite set E of edges, that is a set of ordered pairs (#,v) of vertices in V. In
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the ontology classification, the vertices may be a concept name or class name and the
edges are the ordering relation between the concepts.

As experience shows, and for large data, building the right data structure has a crucial
effect on how easy the implementation could be as well as on the quality of the final
result. An adjacency list data structures is chosen because certain algorithms will be used
that work best with this particular data structures, and provides a compact way to
represent graphs. We create two standard ways to represent the TBox hierarchy as a

collection of parent’s adjacency lists and a children’s adjacency list (Figure 18).

1: (TOP NIL (AGE DOG CAT)) | :nothing
2:(AGE (TOP) (BOTTON)) - . Relations
3:(DOG (TOP) (BOTTOM))
4: (CAT (TOP) (BOTTOM)) Vertex
5: (BOTTOM (CAT AGE DOG) NIL) BOT - BOTTOM
Texonamy file
Parsing

Figure 18: The internal taxonomy files representation.
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The parents adjacency list representation of a TBox hierarchy G = (V, E) consists of an
array ParAdj of |V] lists, one for each vertex in V. For each u € V, the parents adjacency
list ParAdj [u] contains all the vertices v such that there is an edge (1, v) € E where vis a

parent concept of u .

The Children adjacency list representation of a TBox hierarchy G = (V,E) consist of an
array ChlAdj of |V] lists, one for each vertex in V. For each u € V, the children adjacency
list ChlAdj [u] contains all the vertices v such that there is an edge (x,v) € E and v is a

children concept of u.

We introduce two basic methods for the concept hierarchies data structure: the

GetParents and GetChildrens procedure.

GetParents procedure: This procedure provides a list of concept parent names for a
selected concept. The input is the parents’ adjacency list and the concept name. The

output is the list of parents’ concepts (direct subsumers) for the specific concept name.

GetChildrens procedure: This procedure provides a list of concept children names
for a selected concept. The input procedure is the children list and the concept name. The

output is the list of children concepts (direct subsumees) for the specific concept name.

4.6 Complexity

In term of accessing the information the adjacency list structure is more efficient than

other data structure that can be used for both procedures.
The running time for both procedures is linear O(n), where #n is the number of concept

names in the concept hierarchies. This complexity may be reduced when we use a binary

search instead of sequential search.
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5 Drawing

5.1 History

Graphs began to appear around 1770 and became commonly used only around 1820. The
origins of graph drawing are not well known. Although Euler [24] (1707-1783) was
credited with originating graph theory in 1736. He proposed the Konigsberg Bridge, a

planar graph problem.

Graph drawing problems were in limited use centuries before Euler's time. Moreover,
Euler himself does not appear to have made significant use of graph visualizations. The
use of graph drawing did not begin to be useful until decades later. In 1871 E.Steinitz
gave special attention to the hand graph drawing problem. Century’s later (1960)
computer scientists began to use graph drawing as diagrams to assist with the
understanding of software. In 1963 D.E.Knuth [25] introduced the drawing flow chart
which was perhaps the first paper to present an algorithm for drawing a graph for a

visualization purpose.

Today, the research in graph drawing has many applications such as software
engineering, database, biology, semantic web, etc. Although a lot of research has been

done in this area; most of the questions are still unsolved for instance.

-To accomplish a planar drawing the number of crossing edges must be zero, but
not for every graph we can achieve a planar drawing. This problem is NP-complete [30].

-For any practical drawing technique do we have an efficient algorithm?

-Do we have an efficient algorithm to minimize the drawing area for any
drawing?

-Computing the maximum planar subgraph in a general graph is NP-complete

[47}.
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5.2 Concept hierarchy properties

It is important to take into consideration some properties of the concept hierarchies, to

decide the best drawing approach that must be used.

A concept hierarchy is a relational structure, consisting of a set of concepts (classes) and
relationships between those concepts. This structure is modeled as a graph G=(V, E)

already defined.

In the ontology classification we have two kinds of relationships: HasParents and
HasChildrens. The main idea of the classification is to compute the ancestor (HasParents)
and descendant (HasChildrens) concepts for each concept. In the system display those

notion must be clear to the user.

There is a natural decomposition of the hierarchy into levels or layers. A concept C
belongs to the layer i, if the longest path between the top concept and C has i edges. It is

a way to regroup vertices which are at the same distance from the top.

Definition: Let G = (V, E) be an acyclic directed graph. A vertex is called maximal if it
has no parents in G. A vertex is called minimal if it has no children in G. It is obvious

that for acyclic directed graphs there are always minimal and maximal elements.

Definition: Let G = (V, E) be an acyclic directed graph. We define the Top-to-Bottom
decomposition into levels as follows: the level L, consists of all vertices without parents
(or set of maximal elements in G). For every i>0, the level L; consists of all maximal

elements in G-{Lo, L1, ..., Li.1 }.
Note that for every node v in a non-empty layer L;, there exists at least one simple path P,

starting from v and passing through every level Ly for 0<k<i. That is a sequence of

vertices v =V, Vi.1... Vg such that vy € L, for every k<i and (v, vk+1) is an edge in G.

39



A similar decomposition could be done from Bottom-to-Top: The level Lo consists of all

vertices without children (or set of minimal elements in G). For every i>0, the level L;

consists of all minimal elements in G-{Lg, Ly, ..., Li.t }.
Clearly, any vertex in layer (or level) L; should have at least an ancestor in layers Lisi.

In a layered (or leveled) drawing, all vertices of the same layer will be drawn on a
horizontal line and the edges are represented by straight lines between different layers. Of
course, and since a TBox hierarchy is an acyclic digraph because the RACER would
collapse a cycle in the concept hierarchy during the reasoning process, it is impossible to

have edges between vertices in the same layer.

Note that we could have edges connecting vertices from non-consecutive layers. These

edges are called Bypassing edges. Direct Edges are defined as edges that connect two

nodes in a consecutive layer.

We did notice however that in the examples we dealt with, most of the outgoing crossing
edges are from the Top vertex or the Bottom vertex depending on whether we use the

Top-to-Bottom or the Bottom-to-Top layout strategy.

The Bottom node in the hierarchy can be viewed as an imaginary virtual node; it is used
for encapsulating and covering the ontology domain. The deletion of this concept does

not affect any ontology parameters.

5.3 Proposed approach

Our goal is to produce a readable drawing of a given taxonomy file by analyzing its
properties and then making a decision about which drawing algorithm should be applied.
For instance, one major problem is caused by the crossing edges which could seriously
affect the readability of the drawing. Aesthetic criteria should reflect the assumptions

about how people read graphs and how to achieve the best readability. Reduction of
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crossing between edges seems to be the most crucial parameter to minimize. It creates the
biggest problem in readability, especially when the graph is large.
The computation of the number of crossing edges is needed, since it is used as a major

parameter whenever the readability of a drawing algorithm is analyzed.

Horizontal orientation versus Vertical orientation of the drawing.

It is very common not to draw the direction of the edges for an acyclic directed graph.
Instead, the position of the vertices on the plane will indicate the directions. With a
vertical (also called upward drawing) orientation and for an edge (u, v) in the graph, the
vertex y will be drawn higher up than x (the y-coordinate of u is strictly smaller than the
y-coordinate of v). However, for the horizontal drawing the vertex y will appear at the

right of the vertex (the x-coordinate of u is strictly smaller than the x-coordinate of v).

Relationships between concept hierarchies are drawn with a vertical orientation, so the
directions of the edges are omitted but the y-coordinates of the nodes on the screen define
the direction (upward). Vertices are drawn as circles or rectangles (for groups of vertices)

and edges are drawn as straight-line segments.

With a rectangular screen, the horizontal lines could accommodate a larger number of
vertices. In most cases the number of layers of the hierarchy is not so big; however, the

sizes of the layers could be very large. So it is more appropriate to use a horizontal

orientation in our drawings.

The choice of the horizontal layer orientation will not, of course, resolve the main issue

of readability of the drawing.
The number of concepts related only to the top or only to the bottom is usually very large
and these concepts could increase the complexity of the drawing, although there are

simple ways to deal with theses relationships.

The size of the graph could be very large and it becomes difficult if not impossible to fit

the display in a single screen.
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Layer distribution.

The distribution of the vertices on the different layers could be more or less proportional
depending on the drawing algorithm we use. It is another parameter to take into account
in order to have a readable drawing.

Designing an approach that solves all of the above mentioned problems and which could
be used for all taxonomy files is known to be a very hard task. However we believe that

our approach is useful to obtain an acceptable drawing in many cases.

5.4 High Level Description of the Drawing Algorithm

Our proposed drawing approach consists of the following steps:
1. Test the hierarchy by removing the non essential edges (Cycle remove step).

2. Layer decomposition for both strategies orientation Bottom-to-Top and Top-to-

Bottom: this step consists of assigning a layer for each node.

The layout approach consists of computing a layer for each node. The first step of our
layout algorithm is to assign nodes with no parents on the first level and then place the
direct parents of the previous nodes located in the first level on the second level. Third
level nodes are the direct parents of nodes of the second levels and so on. This process

continues until all nodes have been assigned a level.

3. Distribution decision between the two strategies: is defined as choosing the best

strategy which produces a homogenous distribution between layers.

The decision about the strategy is based on two 'drawing parameters: The number of

nodes in each layer and the number of layers.

4. The autonomous set decomposition: Consists of grouping several nodes that have

the same properties into one virtual node.
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This approach computes the set of nodes that have the same relationships with other
nodes in the graph. It is a technique used to reduce the number of nodes in the same layer
by grouping them into one virtual node. The autonomous sets are represented as a

rectangle in the display area.

5. Layer permutation: Deals with the order of nodes that must be chosen for each

layer.

This procedure consists of computing the direct degree for each node in each layer. : Let
us denote the direct degree of a node u as Deg () = n where n is the number of nodes v,
where ueL;, v € Liyi, and (1,v) € E. Once the computing of the children is done for a
specific layer, a sort procedure could be applied to sort them using their direct degree
number in an appropriate data structure. First we place the nodes with the highest degree
in the middle layer as a pivot, then place the rest of the nodes on each pivot side starting

from the left until all nodes are placed.

6. Cross reduction for each two consecutive layers using the layer by layer sweep
algorithm. In this step we discard the crossing edges that pass through more than

one layer.

This procedure is called to place the nodes on the horizontal line with respect to each
other.

We use the layer by layer swap algorithm [28]. It is described as follows. First choose a
concept ordering of a layer L. Then for each layer i= 2, 3, 4....h the concept ordering of

- layer L. is fixed when ordering the layer L;.,

The ordering technique is based on the number of crossings. The number of crossings
between two nodes # and v in the same layer L; is denoted as C,, and defined as: the
number of crossing that edges incident with u make with edges incident with v when
X,<xXy. More formally, for u,ve L, u#v, x, < x,, C,, is the number of pairs (i, w), (v, z) of
edges with x, < x,,, where zand w € L}, and x,, X,, Xz and x,, represent respectively the

coordinate for the nodes u, v, z and w.
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This procedure is done for each two consecutive layer. All nodes in the layer L; are fixed,
then all nodes v in the next layer L;,, must permuted if C,,>C,,, where u,v € L. If any
nodes changed position during this process the whole procedure is repeated. This
continues until either no more nodes move in a pass or until a specified number of

iteration. This continues until we reach the last layer.

7. Layer Bifurcation: Consists of finding the layer number where bypassed edges

need to be bifurcated.

This technique must be used for each crossing edge (x,v) € E where ueL;, v € L; and
j>i+1. We try to find the layer number where we have to bifurcate the crossing edge. The
idea is based on two parameters, x, and x,, that represent respectively the x coordinate for
u and v. This procedure is done for each two consecutive layers starting from the layer L;

until the layer L.

Calculate the crossing number for the edge (x,; and Xy;+1), for a given drawing. x,; and
Xy, i+1 respectively represent the x, coordinate in the layer L; and the x, coordinate in the
layer Li;;. We compute the crossing number for each iteration and then we save the

smallest one with the layer number.

8. Draw the bypassed edges: show the technique used to draw the crossing edge with

respect to the node order already made in step number 5.

Having the layer number where we should draw the bifurcations done, we start drawing a
vertical straight line between two consecutive layers from x,;. until we reach the layer
bifurcation, then we cross the line and keep drawing the vertical straight line between two

consecutive layers until we reach the node x,, ; .
In most cases the drawing of a vertical straight line between two consecutive layers may

pass through a node (circle with a radius of 15 pixels). Three cases must be considered.

1-When the edges pass through the middle node shape, this should be the worst

case scenario.

44



2-When the edge passes on the left side of the node.

3-When the edge passes on the right side of the node.

As a first step we calculate the intersection distance D between the line and the node.
If D<= 15, then diverge the line with D pixels to the right.
If D> 15, then diverge the line with D pixels to the left.

5.5 Details of the global algorithm

Since the size of the TBox Hierarchy could be very large and the system we developed is

web-based it is very crucial to pay close attention to the efficiency of our algorithms. It is
important to have an acceptable response time.

Usually graphs with up to 200 vertices are considered to be small graphs. Graphs ranging
between 200 and 400 vertices are considered medium size graphs. Graphs with size 400
to 700 vertices are considered large size and then anything larger than 700 are considered

to be graphs with a very large size.

5.5.1 Testing the hierarchy for non-essential edges.

An edge (i, v) is called a redundant transitive edge if there exists a directed path of edges

from u to v, that does not contain the edge (u, v).

Although concept hierarchies are not supposed to contain transitive edges, it is important
to check if there are any and delete them. In upward drawings the transitive edges, if they
exist, they could be deleted without losing any data. The existence of such an edge will
create a problem in defining the layers. For instance, if (#, v) is a transitive edge, then the

vertex v will belong to different layers at the same time.

5.5.2 Layout algorithm
5.5.2.1 Introduction

The algorithm consists of assigning a layer to each node. To determine the layer of each

node we may use two different strategies and then decide the orientation (Figures 19, 20).
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The layout procedure first identifies all the roots nodes or the leaf nodes in the graph
depending on the orientation of the drawing.

The first step of our layout algorithm is to assign nodes with no parents on the first level
and then remove those nodes from the adjacency list, next place the children of the
previous nodes on the second level. Third level nodes are the direct parents of nodes of
the second level and so on. This process continues until all nodes have been assigned a

level.

The layout algorithm computes the number of layers in the graph as well as the number
of nodes on each layer. These parameters are useful to decide about the final drawing

strategy to be used.

A

Figure 19: Bottom-to-Top layout drawing approach.
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\

Figure 200: Top-to-Bottom layout drawing approach.

5.5.2.2 Algorithm
The following algorithm traverse the data structure and assign a layer number for each
vertex.

Algorithm Layering (G);

Input: an adjacency list L that represents the graph G= (V,E) and a ParAdj list that
contains the parents node for a given node name.

Output: layering of G as a linked list L), where each element contains a node name and
layer number.

Begin

NumLayer=0;
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Initially all nodes are unlabeled
Repeat
For each node 1 in L
If (ParAdj[u] is empty)
Add the u node and the NumLayer to the list L,
Label the vertex u.
End if
End for
NumlLayer++;
Remove the labeled vertex u from the list L.
Until no vertices are left in the List L
End
Return L,

5.5.2.3 Complexity analyses

The total running time of the layout algorithm is O(n®), where n is the number of nodes in

the graph.

5.5.3 Layout orientation decision

5.5.3.1 Introduction

We call the layout algorithm for both orientation strategies: Top to Bottom and Bottom to
top. The layout orientation decision is based on two drawing parameters: The number of
nodes on each layer and the number of layers. Taking into consideration those parameters
we can conclude the best display orientation. Using a statistical measure of dispersion,
we calculate the distance of a typical score of the number of nodes in the layer denoted as
x it is given by subtracting it from the mean: x —pu. Therefore, the square distance is (x -
u)>. Then we can get the average of these (the population variance) by adding and

dividing by the number of points.

The Layer variance (noted as o%) is the average square distance from the mean node:
o’= ((x - LL)Z + (X3 — u)2 + .+ (- u)z )/ n,where p= (o +x3+....... +x,)/n and
X, is the number of node in the n ™ layer.

The layer standard deviation (noted as 6) o=V o*. This parameter must be close to

the mean layer p to get a proportional layer distribution.
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A simple procedure OrientationGraph has been implemented to calculate the o
parameter for both layout strategies. Then we calculate a new parameter A= | u-6|. The
best approach with the smallest A is chosen. In some case both strategies give the same

number, then the Top Bottom approach is chosen.

We noticed that in most examples we worked with, the Top-Down design approach
seems to be more appropriate to create a drawing for the ontology. The number of
crossing edges in each file has proven very small for the Top Bottom layout with the omit
Bottom concept option. Moreover, with this approach the distribution of the nodes on the

different layers seems to be more proportional than with the Bottom Top layout.

Below (Table 1 and Table 2) we show a sample of examples of ontologies retrieved from
the TBoxHDI output; these examples belong to different size classes (small, medium,

large, and very large).

For every case we computed the number of bypassed edges and the number of nodes in

each layer depending on the type of drawing: Top-to-Bottom or Bottom-to-Top.

Number of Nodes | Number of bypassed Edges Number of Nodes on each Layer

35 15 1-9-24-1

52 20 1-12-38-1

72 25 1-15-55-1

112 66 1-2-4-23-81-1

112 56 1-6-26-78-1

109 55 1-6-25-76-1

124 62 1-2-7-28-85-1

131 104 1-1-1-1-1-2-3-6-11-22-82

17 5 1-1-2-4-8-1

18 8 1-1-2-4-8-1

300 92 1-1-3-7-12-15-22-32-73-128-1

317 147 1-3-15-46-251-1

441 217 1-2-1-2-3-3-5-11-17-25-62-308-1

495 153 1-1-1-3-6-7-14-20-36-99-306- 1

657 217 1-1-1-2-3-7-7-15-24-43-130-422-1
1121 386 1-1-2-3-5-5-11-17-30-51-81-205-708-1
2750 1488 1-1-1-1-1-2-5-10-12-18-33-43-76-170-452-1924-1

Table 1: Bottom-to-Top layout strategy.
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Of course, in a Bottom-to-Top drawing there will be no crossing edges coming from the

Bottom, since all nodes connected to the Bottom will be in the first layer.

Similarly

removing the Top in a Top-to-Bottom drawing will not decrease the number of crossing

edges.

Number of Number of bypassed Edges Number of Nodes on each Layer

Nodes With Bottom/Without Bottom

35 15/0 1-9-24-1

52 20/0 1-18-32-1

72 25/0 1-30-40-1

112 81/2 1-2-18-41-49-1

112 62/0 1-16-46-48-1

109 61/0 1-15-44-48-1

124 84/0 1-2-25-58-37-1

131 53 10-14-7-11-29-29-20-6-3-1-1

17 7/0 1-1-3-8-3-1

18 10/3 1-1-2-9-4-1

300 144/ 17 1-1-2-14-38-45-65-53-32-21-9-18-1

317 234/ 8 1-25-170-93-27-1

441 319/ 16 1-5-7-30-41-29-70-73-88-40-10-46-1

495 311712 1-7-50-113-110-77-61-41-19-8-7-1

657 417173 1-8-38-45-106-82-139-130-69-21-11-6-1
1121 719/ 19 1-8-10-43-70-196-184-284-182-87-27-9-19-1
2750 1887 / 440 1-9-55-252-271-310-319-468-433-373-132-65-26-22-2-12-1

Table 2: Top- to-Bottom layout strategy.

Screen shots of the TBoxHDI output for each kind of file using different options are

shown in the appendix C.

5.5.3.2 Algorithm

The following algorithm decides the best d1splay approach by analyzing the number of

nodes in each layer.

Algorithm OrientationGraph (R1,R2) ;

Input: R1, R2 arrays that contains the number of nodes in each layer for each respective
strategy (Top-to-Bottom and Bottom_to-Top) .

Output: BottomTop or TopBottom
Begin
BT=0; TB=0;
For (all element x in R1)
BT=BT + x
End for
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p= BT/ Rl.size ();

For (all element x in R1)
BT=BT + (;-x)

End for

oy >= BT / Rl.size ();

For (all object x in R2)
TB=TB +x

End for

uo=TB/R2.size ();

For (all element x in R2)
TB=TB + (jtp-x) 2

End for

oy 2= TB/R2.size ();

A=l gy en ?|
Ao=| pay o2 ? |

If (A1<=A2)

Return BottomTop
End if
Else

Return TopBottom

End else
End

5.5.3.3 Complexity analysis

The algorithm uses a simple naive process with a run time O(N+N’) where N and N’ is

the number of layers for each strategy.

5.5.4 Autonomous sets Decomposition algorithm

5.5.4.1 Introduction

The second major technique used to simplify the drawing without losing data is a
decomposition technique. It combines any group R of nodes that have the same

relationships with all nodes outside of R.

Definition: Let G= (V, E) be a directed graph. A non-empty set of nodes A is called

autonomous set and denoted Aut (v,w) if for every node u in A and v in V-A, there exists
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an edge (v, u) and if and only if there is an edge (i, w) where w in V-A forevery u in A.

(Figure 21 and 22)

[
»

Figure 21: The oval marker shows the nodes that must be joined.

8

v

Figure 22: The first gray rectangle represents the autonomous set Aut (T, BOT)

The second gray rectangle represents the autonomous set Aut (TOP, BOT)
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By grouping all nodes of an autonomous set into one virtual node, we greatly simplify the

drawing without losing any data.

The goal of this part is to create a data structure with a reduced number of vertices
without affecting the displayed information. This technique is related to the large graph
aesthetic parameters because many nodes are joined and the size of the graph may be

reduced.

Once the nodes are placed in their layer, the procedure AutonomousNodes is called.

Here is the algorithm which finds all the autonomous sets in the graph G.

CandidateNode: procedure checks if the node may be a candidate to be joined into the
autonomous set. It returns a Boolean. There are two conditions that are checked for a

node: the node must only have one parent and if the node is already in an autonomous set,

then it is discarded.

UpdateAdjacencyList: procedure that updates the adjacency list. If a join decision is
made, we remove all nodes that must be joined and replace them by a new single node.
Input: L a Link List (Adjacency List), N;, N; nodes must be joined

Output: L a new Link List (Adjacency List) with homogenous nodes

The algorithm will use an adjacency list as input. The process is done for all nodes and
starts from the top to bottom or bottom to top depending on the orientation of the graph.

Adj[u] is defined as: the set of children of node u.

5.5.4.2 Algorithm
The following algorithm creates an updated linked list of the graph G that contains the
autonomous sets.

Algorithm: AutonomousNodes (G);

Input: L a Link List (Adjacency List represents the concept hierarchy graph) and Adj[u]
that represent the children set for a given node u.

QOutput: L a new Link List (Adjacency List with autonomous sets)
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Begin
For each node u in the L
For each element x; in Adj[u]
If (CompareLists (Adj [xi], Adj [xi41]) =true)
If (CandidateNode (x;) =true and CandidateNode (x;,|) =true)
1-Create autonomous set with x; and X4
2-UpdateAdjacencylist (L, xi, xi41)

End if
End if
End for
End for
Return L

End

5.5.4.3 Complexity analysis

The maximum number of iteration that must be made is related the number of pairs node.
Suppose the number of nodes is n then, the total number of iteration is n*(n-1) / 2.

The running time of the autonomous sets algorithm is O(n?) where n is the number of

nodes in the graph.

5.5.5 Layer permutation algorithm

5.5.5.1 Introduction

Unfortunately, the algorithm used in the crossing step uses a random order of nodes for
each layer, and especially for the first layer. The challenge of this part is in choosing an
optimal ordering within the layers that could be useful and helpful to draw pretty concept
visualizations. The choice of the order is on the computation of the direct degree. The

layer permutation must be applied to each layer.

5.5.5.2 Algorithm

The following algorithm permutes the nodes order for a selected layer.
Algorithm LayerPermutationNodes();

Input: random node order as a linked list L for a selected layer.
Output: a new permuted node order as a linked list L.

Begin

For each element uin L

54



Compute the direct degree n
Add n to the list Lst

End for
Sort Lst using the descendent order.
Place the first node v in the Lst in the middle of the layer fixed as a pivot P.
Remove v from the list Lst.
For each element u; in the Lst
If (i is even)
Place u; in the left of P

Else
Place u; in the right side of P

End for
End

5.5.5.3 Complexity analysis
This simple procedure runs in linear time O(n) where n is the number of nodes in the
graph.

5.5.6 Crossing edges reduction algorithm

5.5.6.1 Introduction

The minimization of the number of crossing edges is a very difficult problem in general.
In fact, it is a NP-complete problem even if the graphs contain only two layers [30].
However, in the research literature there is a number of heuristics that have been

developed for this problem.

Of course the relative positioning of the nodes within every layer will decide about the

number of crossings in the drawing.

In our case, we will present a heuristic in order to minimize the crossings between edges.
Now we use the definition of the crossing number C,, described in the section 5.4.

The basic idea of this step is using the layer by layer swap algorithm which has received
a great attention [31, 32]. It is described as follows. First we choose a concept ordering
of a layer L;. Then for each layer i= 2, 3, 4....h, the concept ordering of layer L, is held

fixed when we reorder the vertices in layer L; Unfortunately the “two layer crossing

problem” is NP-complete [29].
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This procedure is called to place the nodes in the vertical line with respect to each other.

This procedure is done for all nodes in the top (bottom) layer depending on the
orientation, then for all nodes in the next layer and so on until the bottom (top) layer is
done. If any node changed position in any layer during the process, the whole procedure
is repeated again. This continues until either no node moves in a pass or until a specified

number of iterations is reached.

5.5.6.2 Algorithm

The following algorithm exchanges adjacent pair of vertices.

Algorithm LayerByLayerSwap(G, x;)

Input: two layered graph G = (L,, L, E) and a fixed vertex order x; for L;
QOutput: vertex order x; for L,

Begin

We choose a random order for L,

Repeat
Scan the vertices of L, from left to right, exchanging an adjacent pair «, v of

vertices, whenever C,,>C,,

Until the number of crossings remain unchanged.
End

5.5.6.3 Complexity analysis

The computation of the crossing number C,, depends on the relative position of u and v.
Each scan in the repeat loop can be done in O (|L; |) and there are O (|L; |) scans. The
time complexity of the layer by layer swap algorithm is O (|L; [*). The total running time

is O (n |L2 |2), where n is the number of iterations to get a stable crossing number.

5.5.7 Layer Bifurcation algorithm

5.5.7.1 Introduction

Once we have done all the previous steps we may get an acceptable drawing with an
optimal number of crossings. Unfortunately, in many cases the bypassed edges (i, v) may

reduce the visibility and the readability by causing some node shape intersections. We
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compute the upper layer number that represents the beginning of the bifurcation for each

bypassed edge.

5.5.7.2 Algorithm
The following algorithm returns a layer number that represent the beginning of the
bifurcation. '

Algorithm LayerBiffurcation()
Input: a Bypassed edge (i,v) with u= (x;, y;) and v =(x, y2)
Output: an integer y representing the upper layer number
Begin
n=GetLayer(u) // return the layer number that the vertices u belongs.
m = GetLayer(v)
C=+o0 // initialization for a big number
For (i=n to m)
Create an imaginary node u’ with coordinates (x,,i)
Create an imaginary node u with coordinates (x2,i+1)
Create an imaginary edge (u’, u”)
Compute the crossing number C,» , for each node w in the layer i+1,

If (C>Cyy) Then

C= Cyrw
y=i
End if
End for
Return y.

End

5.5.7.3 Complexity analysis

The running time of this algorithm is dominated by the compute crossing procedure (step
4). The crossing complexity is O (|L|2) where L is the number of edges between two
consecutive layers. The total running time for one bypassed edge is |L|2*(m—n—1). Where

m and n are respectively the upper and lower layer number.

5.5.8 The Bypassed edges draw algorithm

5.5.8.1 Introduction
The basic idea is drawing the bypassed edges as a straight line through all layers, but with

respect to the nodes that intersect with the edges using the layer bifurcation technique
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already described in the previous step (Figure 23 and 24). This algorithm adopts the
polyline drawing edges with a minimum number of bends to provide flexibility instead of

curved edges which may be difficult to track by the users.

h 4

L

Figure 23: The black node shows the intersection between the bypassed edges.
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v

Figure 24: The bypassed edges drawing using the layer bifurcation and “draw bypassed edges “algorithm.

5.5.8.2 Algorithm

Algorithm BypassedEdgeDraw(T)
Input: a drawing T with optimal number of crossings
Output: a new drawing T* with a bypassed edge drawing
Begin
For each bypassed edge e=((x;, y1),(x2, y2))
Integer i = Layer Bifurcation (e)
If a layer number#i
Calculate the intersection distance D between the line and the node.
If D<= 15 then diverge the line with D pixels to the right.
If D> 15 then diverge the line with D pixels to the left.
If D=0 then draw a straight line
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End if

Else
Bifurcate the line from the (x;, y ) coordinate to the (x2,y+1)
Coordinate. //y and y+/ represent respectively the coordinate for the layer L; and Ly,
End else
End for

End

5.5.8.3 Complexity analysis

The time complexity is strongly related to the layer bifurcation procedure already
computed in the previous step. The total running time of this algorithm is O(K*Q)
where K in the number of Bypassed edges in the drawing and Q =|L]2*(m-n-1). Where m
and n are respectively the upper and lower layer number for each bypassed edges and L

are the number of crossing between two consecutive layers.

60



6 Conclusion and Open Problems

In this thesis we presented the techniques of visualizing subsumption hierarchies. We
have presented two main parts: In the first part we presented methods for parsing the
incoming RACER information and store them in data structures. In the second part we

announced an approach for best viewing the data.

The last part was mainly dedicated to the description of the algorithms used to visualize
the taxonomy. Unfortunately, we cannot easily create an efficient drawing algorithm for
all taxonomy file sizes. It is a very labor intensive process in terms of time complexity,
crossing edges and the available display size. A technical description of the system was
also provided in this part by presenting its architecture and discussing its main

components.

While dealing with a very large taxonomy file, we encountered the problem that occurs
when the number of nodes in the same layer is very big. That is why we proposed a new

approach called the virtual node. In order to guarantee the readability of the drawing we

have to respect the following criteria:
1-A layered graph must be used.
2-Compute the autonomous sets.
3-Number of crossing edges must be minimal.

4-A special drawing for the bypassed edges.

Much more work remains to better visualize a large taxonomy file size with a minimum

number of edges crossing. This can be an area for future research.

There are still some issues which have not been addressed yet and that we considered as

an open problem, here we describe three of them:

1-The data structure is very large.
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2-Minimize the crossing number even for the bypassed edges that goes from the top or

the bottom.
3-An efficiency search tool.

4-Visualization in 3-D can be explored.
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Appendix A: Parser algorithm

Parse procedure:
Givens: V vector of tokens
Results: return true if the file follow the grammar other wise false.
Intermediates: none
Header: Boolean <-Parse(V)
Body:
If (TripleList()==true)
return true
Else return false

Grammar terminal procedures

Boolean TripleList()
Token ->Next token
if (Triple()==false)
{ return false;}
else if (TripleNode()==false)
{ return false;}
else { return true; }
End TripleList()

Boolean TripleNode()
if (V.isEmpty()==false)
{ TripleList(); return true;}
else return true;
End TripleNode()

Boolean Triple()
If (Token =="(")
Token ->Next token
Node()
Parents()
Child()
if ((Token==")")&&(V.isEmpty()==false))
{ Token ->Next token;
if(Token=="("){ Triple(); return true;}
else { return false;}
}
else if ((Token==")")&&(V.isEmpty()==true))
{ return true; }
else {return false;}

}

else {return false;}
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End Triple()

Boolean Child ()

if (Children()==false)
{ return false;}

else {return true;}

End Child()

Boolean Parents()
If (Token =="(")
Token ->Next token
NodeList()
if(Token==")"){
Token ->Next token
return true; }
Else {return false;}

}
}

else return false
End Parents()

Boolean Node()
If (Token =="(")
Token ->Next token
NameList()
Return true
Else if( Name ()==true) { return true}
Else return false
End Node()

Boolean Children()
If (Token =="(")
Token ->Next token
NodeList()
if(Token==")"){
Token ->Next token
return true; }
Else {return false;}
}
}

else return false
End Children()

Boolean NamelList()
If (Name()==true)
Return true
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Else {NameChain(); return true ;}
End NamelList()

Boolean NameChain()
if (NameList()==false){
return false;
}
else return true ;
End NameChaine()

Boolean NodeList()
if (Node()==true){
return true;
}
else {NodeChaine();return true;}
End NodeList()

Boolean NodeChain()
if (NodeList()==false){
return false;
}
else return true ;
End NodeChain()

Boolean Name()
If (IsString(Token) == true )
{Token ->Next token
Return true
}
Else return false
End Name()

Boolean IsString(Token)
If (Token dos not contain any token terminal)
return true
Else retun false
End IsString()
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Appendix B: Taxonomy file example

;FaCT version 1.6 13:24:36 GMT 4/1/1999
; Allegro CL 5.0.beta [Linux/X86] (6/11/98 23:02) Linux/X86 Linux

: Loaded TBox files:
H /localhome/ian/FaCT-distribution/FaCT/Thboxes/galen. tbox

; Features and optimisations:

: Transitivity: ON
; Concept Inclusions: ON
: Blocking ON
: Subset S-equivalence: ON
; Encoding & Normalisation: ON
; GCI absorption: ON
; Backjumping: ON
; Obvious Subsumption Detection: ON
; Use caching in subsumption tests: ON
; Use caching in satisfiability tests: ON
; SAT branch to minimise clashes: ON
; Branching heuristic: OLDEST+JW
; Cyclical primitive definitions: ON
; Profiling: ON

(TOP NIL (C1694 C1692 C1690 C1688 C1686 C1684 C1682 C1680 C1l678 C3 C2
c1))

(C1 (TOP) (C4))

{C2 (TOP) (C309))

(C3 (TOP) (BOTTOM))

(C4 (Cl) (C104 C103 C66 C32 €28 C7 C5))
(C5 (C4) (C220 C58 C54 C47 C43 C6))

(C6 (C5) (C273 C223))

(C7 (C4) (C2275 C17 C8))

{(C8 (C7) (Cle C9))

(C9 (C8) (Cl1l5 C14 Cii c10))

(C11 (C9) (C1l3 C12))

(C12 (Cl1ll) (BOTTOM))

(C13 (C1l1l) (BOTTOM))

{Cl4 (C9) (Clié6 C115))

(C15 (C9) (C110 C109 €108 C107 C106 C105))

(C16 (C8) (C130 €129 Cl26 C124 C123 C122 C121 €120 C119 C118 Cll7))
(C17 (C7) (C20 C19 C18))

(Cl8 (C17) {(C134))

(C19 (C17) (C140 C136))

(C20 (C17) (C1728 C1704 €201 C200 C167 C164 C147 C67 C1717 C21))
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Appendix C: TBoxHDI output

System screen shot to show the evolution of the system

Figure 1: Display using only the basic algorithms.
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Figure 2: Display with the hide relation option.



Figure 3: Display using the crossing algorithm. The ellipses show that the bypassed

edges still pass through nodes.
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Figure 4. The previous problem is resolved using the modified bypassed edges Layer

bifurcation algorithm.

73



)

Figure 5: The Bottom to Top display.

Figure 6: The Bottom to Top display with the virtual node option.
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Figure 7: The Bottom to Top display with the virtual node option using the zoom on the

virtual node #1.
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Screen shots for different size files with different options

Small file

Top to Bottom

The best display is given using the Top to Bottom, the virtual node and the

Figure 8

omit Bottom options.

The Top to Bottom display without any options.

.
3

Figure 9
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The Top to Bottom display with virtual node option and zoom.

Figure 10

Bottom to Top.

Figure 11: The Bottom to Top display without any option.
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Figure 13: The Bottom to Top display with virtual node and omit Bottom options.
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Large file

Top to Bottom
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Figure 15: The Top to Bottom display with the virtual node option.
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Figure 16: The Top to Bottom display with the virtual node and the omit Bottom option.
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Figure 17: The Bottom to Top display without any option.
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Figure 19: The Bottom to Top display with the virtual node and the omit Bottom option.
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Very large file

Top to Bottom
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Figure 21: The Top to Bottom display with the virtual node option.
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Figure 22: The Top to Bottom display with the Omit Bottom option.
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Figure 23: The Bottom to Top display without any option.
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Figure 25: The Bottom to Top display with the virtual node option.
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Figure 26: The Bottom to Top display with the virtual node and the omit Bottom option.
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