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Abstract

Computation and Visualization of Periodic Orbits in the Circular
Restricted Three-Body Problem

Chenghai Zhang

In this thesis, the continuation and bifurcation software AUTO is used to compute
periodic solutions of the circular restricted Three-Body problem (CR3BP). Periodic
solution families for the Sun-Earth, the Earth-Moon, and the Sun-Jupiter system are
studied in detail. Bifurcation diagrams for these systems are presented. Correspond-
ing periodic orbits are also shown.

To understand the solution structure better, a new data visualization package,
PLAUTO04, has been developed for AUTO. It reads AUTO data files and creates
solution diagrams and bifurcation diagrams. This new package can also be used to
animate solutions. A special version of PLAUT04, called PLAUT04/r3b, has been
developed for the CR3BP. Using PLAUT04/r3b, we can animate solutions both in a
rotating frame and in an inertial frame. These new graphics packages for AUTO have
good rendering speed, flexibility, and display quality. A user-friendly interface makes

both easy to learn and use.

iii



Acknowledgments

I would like to express my sincerest appreciation to my supervisor professor Eusebius
J. Doedel for his support, guidance, patience, and valuable insight, which have made

the completion of my thesis possible.

Thanks to Alexei Aganin of Florida State University for his Open Inventor demo.

Thanks to D. J. Dichmann for his email on converting CR3BP data from the
rotating frame to the inertial frame.

Thanks to Volodymyr Romanov for providing the code for the calculation of the
libration points in the CR3BP.

A special thanks to my wife, Xiaoying Jiang. Her encouragement and love sustains

me.

v



Contents

List of Figures X
List of Tables xiv
1 Introduction 1
1.1 The N-Body problem . . . . ... ... ... .. .. .. .. ...... 1
1.2 The One-Body and the Two-Body problems . . . ... ... ... .. 2
1.3 The Three-Body problem . . . . . .. ... ... .. ... ....... 2
14 Abriefhistory . . . . . . . ... 3

1.5 Organization of the thesis . . . . . . ... ... ... ... ...... 4

2 The Mathematical Description of the CR3BP 5
2.1 The Two-Body problem . . . . ... ... ... ... ......... 5
2.2 The Three-Body problem . . . . . . ... ... ... ... ....... 6
2.2.1 The general Three-Body problem . . ... .. ... ...... 6

222 TheCR3BP . ... ... ... . .. . . ... .. .. ..., 7

2.2.3 Some characteristics of the CR3BP . . . . . ... ... .. .. 11

2.3 The general N-Body problem . . . ... ... ... ... ....... 12
2.4 'The surfaces of zero relative velocity of the CR3BP . . . ... .. .. 12
2.5 The libration points of the CR3BP . . . . . ... ... ... .. ... 15
2.6 Periodic orbit families near the libration points . . . . . .. ... .. 19

3 Numerical Methods 21
3.1 Continuation . . . . . . . . ... 21
3.1.1 The Implicit Function Theorem . . ... ... ... ... ... 21

3.1.2 Numerical continuation . . . . ... ... ... ... ...... 22



3.1.3 Periodic solutions . . . . . . . .. . ... .. 23

3.1.4 Periodic solutions of the CR3BP . . ... ... ... ..... 25
3.1.5 Locating the libration points . . . . . . ... .. ... ..... 25
3.2 Converting data from the rotating frame to the inertial frame . ... 26
3.21 Timeconversion. . . . .. . ... ... ... ... 26
3.2.2 Position conversion . . . . . ... ... L. 27
3.2.3 Velocity conversion . . . .. ... ... .. ... 28
3.2.4 'Transforming from the rotating frame to the inertial frame . . 29
3.2.5 Examples of orbits in the inertial frame . . . . . . .. . .. .. 30
Application of AUTO to the CR3BP 34
4.1 Introduction . . . . . . .. .. ... ... ... 34
4.2 Objects and annotations . . . . . .. .. .. ... .. ... ...... 35
4.2.1 Object representation . . . . . . ... ... ... ... ..... 35
4.2.2 Annotation . .. ... ... ... .. ... ... 36
4.3 The libration points of the Sun-Jupiter, the Earth-Moon, and the Sun-
Earthsystem . . . ... ... ... ... .. ... . ... . ... ... 38
4.4 Computation of the bifurcation diagram for periodic solutions . . .. 39
4.5 Stability of periodic solutions . . . . .. .. ... ... L. 41
451 S4/S5 . . 43
45.2 V4/V5. . . e 45
453 L4JL5 . . . .. 45
454 V3 . e e e 45
455 B2 .. e 45
4.6 The Lyapunov families . . . . . . ... ... ... ... ........ 48
4.7 'The Vertical families . . . . . . ... ... ... ... ... ...... 51
4.8 The Circular families . . . . . . . ... ... ... ... ... ..... 51
49 The Halo families . . . . . ... ... .. ... .. .. ......... 54
410 The Axial families . . . . .. .. .. .. .. ... ... ... ..... 56
411 The Back-flip families. . . . . . . .. ... ... ... .. ....... 58
412 The W, Land Sfamilies. . . . . . ... .. ... ... .. ...... 60
413 SUMMATY . . . . vt e e e e e e e e e e e e e 61

vi



5 Development of Data Visualization and Animation Software 62

51 Introduction . . . . . ... ... L 62
5.2 Objectives . . . . . . . . e e e 62
5.3 Development environment and architecture . . . . . .. ... .. ... 63
54 Overview of Open Inventor . . . . . . ... ... ... . ........ 64
5.5 User requirement specification . . . . . . .. .. .. ... ... .... 65
5.5.1 Userrequirements. . . . .. ... .. .. ... ......... 65
5.5.2 Non-functional requirements . . . . . ... ... ... ..... 67

5.6 System design and implementation . . . .. .. ... ... ... ... 67
5.6.1 The system architecture . . . . .. ... ... ... ... ... 67
5.6.2 Graphic user interface design and implementation . . . . . . . 71
5.6.3 Data manipulation component design and implementation . . 76
5.6.4 Graphic object design and implementation . . . . ... .. .. 78
5.6.5 Integrating Open Inventor and Motif . . . ... .. ... ... 84

5.7 Running and testing . . . ... .. .. ... ... ... ... ... . 87
5.7.1 Starting the program . . . . . ... ... .. ... .. ..... 87
5.7.2 Test case specifications . . . . . . ... ... ... ... . ... 89

58 Results. . . . . . . . .. e 94
5.8.1 Creating solution diagrams . . . . . . . ... ... ....... 94
5.8.2 Creating bifurcation diagrams . . . . . ... ... ... ..., 96
5.8.3 Animation of the motion of a satellite . . . . . ... ... ... 96
5.8.4 Animation of a solution family . . . . . . .. ... ... .... 96
58.5 Coloring solutions . . . . . ... ... ... ... ... ... .. 99
5.8.6 Picking a point in the diagram . . . . . ... ... .. .. ... 99
587 Examples . .. ... ... 99

6 Conclusions and Discussion 107
6.1 Conclusions . . . .. ... . ... e 107
6.2 Future development . . . . . . . . ... L 108
References 109
A How to Use AUTO for the CR3BP 117
Al The CR3BP equations . . . . . ... ... ... .. .. ........ 117
A2 The CR3BP AUTO demofiles . . . . .. ... ... .......... 118

vii



A.3 Listing of CR3BP demofiles . . . . . .. .. .. ... ......... 119

A.4 Calculating the Lyapunov family L1 . . . ... .. ... ... .... 123
A.5 Calculating the Halo family from L1 . . . ... ... .. ... .. .. 124
A6 Practicalmotes . . . .. .. .. ... ... 125
User’s Guide for Plaut04 126
B.1 Productname . . .. .. ... ... ... ... . 126
B.2 Document overview . . . . . . . . .. ... 126
B.3 Requirements . . .. ... ... ... ... . 127
B.4 Installation and configuration . . . ... .. ... ... ... .... 127
B.4.1 Directory tree structure . . . .. . ... ... ... 127
B.4.2 Dependencies . . . ... .. .. ... ..o oL 128
B.4.3 Building thetree . . . . ... ... ... L. 128
B.5 Setting up theresource file . . . . . . .. ... ... ... .. 129
B.6 Quickstart . .. .. ... .. .. .. 133
B.6.1 Starting and stopping PLauT04 . . . . . ... ... ... ... 133
B.6.2 Changing the “Type” . . . . . .. .. .. .. ... ... ... 134
B.6.3 Changing the “Style” . . . . . ... ... .. ... ... ... 134
B.6.4 Coordinateaxes . . . . . . . . .. . .. .. ... ... ... .. 135
B.6.5 Options . . ... . . .. . e 135
B.6.6 CR3BP animation . .. .. ... ................ 135
B6.7 Help . .. ... . . . . e 135
B.6.8 Picking a point in the diagram . . . . .. ... ... ... ... 136
B.6.9 Choosing the variables . . . . . ... ... ... ... .... 136
B.6.10 Choosing labels . . . . . . ... ... ... ... ... .. 138
B.6.11 Coloring . . . . . . . . . . .. e 138
B.6.12 Number of periods to be animated . .. ... ... ... ... 139
B.6.13 Changing the line/tube thickness . . .. ... ... ... ... 140
B.6.14 Changing the animationspeed . . . . . . . . .. ... ... .. 140
B.6.15 Changing the background picture . . . .. .. ... ... ... 140
B.77 Example . . . . . . . .. e 140
B.8 Miscellaneous . . . . . . . . .. ... 142

viii



C AUTO Utilities 144

C.1 New AUTO97 commands. . . . . . . . ... ... ... ........ 144
C11l Q@utcommand . . ... .. .. .. ... 144
Cl2 @rdccommand . ... .. .. ... ............... 145
C13 G@rlbcommand . . . . ... .. ... .. .. ... ... ... 146
Cl1l4 Q@lbcommand . . . ... ... ... .. ... ... ... ..., 148
Clb @klbcommand . .............. ... ... . ..., 149
C16 @dlbcommand ... .. .. ... ... ... ... ... ..., 150

C.2 New AUTO2000 commands . . . . . .. .. ... ..., 151
C21 wt(Jcommand . . . . ... .. ... 151
C.22 rdc() command . . ... ... ... 153
C.23 lib()command . . . . . ... ... 154
C.2.4 kib() command . ... ... ... ... L 155
C.25 rlb() command . .. ... ... .. ... . 156
C.2.6 dib() command . ... ... .. .. .. ... .. . 158

ix



List of Figures

© 00 N O Ut B W N

[ e S e S S G T = T s T s ST S Gy SO GV
W 00 N O O Ol b o WwWwwNn = O

19
20
21

The Three-Body problem . . . . . . ... .. ... ... ........ 6
The Three-Body problem in a rotating frame . . . . . . . .. ... ..

The N-Body problem . . . . . .. . ... ... ... .......... 12
The zero velocity surface . . . . . . .. ... ... ... .. ... ... 13
The dependence of critical Cson . . . . . ... ... ... ..... 16
The libration points of the CR3BP . . . . ... ... ... ... ... 17
The dependence of the libration pointson gz . . . . . . ... .. ... 17
The WIND petalorbit . . . . ... ... ... ... ... ....... 18
The Genesis Mission . . . . . . . . ... ... ... ... ....... 18
A bifurcation diagram . . . . .. ... 20
Graphical interpretation of the pseudo-arclength method . . . . . . . 23
An Earth-Moon V4 orbit. . . . . . ... .. ... ... ........ 30
An Earth-Moon V2 orbit. . . . . . ... ... ... ... . ...... 31
An Earth-Moon V2 orbit (cont’d) . . . . . ... ... .. ... .... 31
An Earth-Moon C2 orbit . . . .. ... ... ... ......... 31
An Earth-Moon C2 orbit (cont’d) . . . . . ... ... ... ... ... 32
An A1l orbit for the Earth-Moon system (Earth-centered) . . . . . . . 32
Another C2 orbit for the Earth-Moon system . . .. ... ... ... 33
Another C2 orbit for the Earth-Moon system (cont’d) . . . . ... .. 33
A bifurcation diagram for the Earth-Moon system . . . . . . ... .. 36

Bifurcation diagrams near the libration points for the Earth-Moon system 39

Bifurcation diagrams near the libration points for the Earth-Moon sys-

tem (cont’d) . . . . ... 40
A bifurcation diagram with stability for the Earth-Moon system . . . 42
A bifurcation diagram with stability for the Sun-Jupiter system . .. 42
A bifurcation diagram with stability for the Sun-Earth system . . .. 43



22
23
24
25
26
27
28
29
30
31
32
33
33
34
34
35
35
36
36
37
38
38
39
39
40
40
41
41
42
43
44
45
46

The family S4/S5 of the Sun-Jupiter system . . . . .. ... .. ... 44

Floquet Multipliers along S4/S5 for the Sun-Jupiter system . . . . . 44
The family V4/V5 of the Earth-Moon system . . . . .. .. .. ... 46
Floquet Multipliers along V4/V5 for the Earth-Moon system . . . . . 46
The family V4/V5 of the Sun-Earth system . . ... ... ... ... 47
Floquet Multipliers along V4/V5 for the Sun-Earth system . . . . . . 47
The V3 family of the Earth-Moon system . . . .. ... ... .... 48
Solutions along Li for the Earth-Moon system, i =1,2,3 . . . . . .. 49
Solutions along V1 and V2 for the Earth-Moon system . . . . . . .. 50
Solutions along V3 and V4 for the Earth-Moon system . . . . . . . . 50
Inertial frame view of a Sun-Earth V1orbit . . ... ... ... ... 52
Solutions along Ci for the Earth-Moon system, i =1,2,3 . . . . . .. 52
Solutions along Ci for the Earth-Moon system, i =1,2,3 (cont’d) . . 53
Different views of an Earth-Moon Clorbit (I) . . . . .. .. ... .. 53
Different views of an Earth-Moon C1 orbit (I) (cont’d) . ... .. .. 53
Different views of an Earth-Moon C1 orbit (IT) . . .. ... ... .. 54
Different views of an Earth-Moon C1 orbit (II) (cont’d) . . . . . . . . 55
Different views of a C2 orbit of the Earth-Moon system . . . . . . . . 55
Different views of a C2 orbit of the Earth-Moon system (cont’d) . . . 55
Solutions for Hi of the Earth-Moon system . . . . . . . ... ..... 56
Solutions for A of the Earth-Moon system . . . . . . ... .. .... a7
Solutions for Ai of the Earth-Moon system (cont'd) . . . ... .. .. 57
Different views of an A3 orbit of the Earth-Moon system . . . . . . . 57
Different views of an A3 orbit of the Earth-Moon system (cont’d) . . 58
Solutions for B¢ of the Earth-Moon system . . . . .. . ... ... .. 59
Solutions for Bi of the Earth-Moon system (cont’d) . . . .. ... .. 59
Solutions for W4, S4/S5, and L4/L5 of the Sun-Jupiter system . . 59
Solutions for W4, S4/S5, and L4/L5 of the Sun-Jupiter system (cont’d) 60
Architecture of PLAUTO4 . . . . . . ... ... 64
System component diagram . . . . .. ... ... L. 68
System class diagram . . . . . . . .. ... 000 68
System state diagram . . . . . .. .. ... 69
GUI component design . . . . . ... ... ... ... ... ...... 72

Xi



47
48
49
50
51
52
53
54
55
56
o7
58
39
60
61
62
63
64
65
65
66
66
67
68
69
70
71
72
73
74
75
76
77

GUIflow chart . . . . . . . . . . . . 74

GUI parent-child relationship between widgets . . . . . . .. ... .. 75
Scene graph symbols . . . . ... L oL L L 78
Reference planenode . . . . . . .. ... ... ... ... 79
Primarynode . . . . . . . . . . .. ... .. 79
Libration point node . . . . . . ... ... ... ... ......... 79
Coordinate systemnode . . . . . .. . ... ... ... ... 80
Solutionnode . . . . . . . .. ... 80
The full scene graph architecture . . . . .. .. ... ... ... ... 81
A snapshot of the GUI . . . . . . .. ... ... ... ......... 88
Drawing solutions using curves. . . . . . . . ... . ... ... .... 95
Drawing solutions using tubes . . . . . .. ... ... ... ... 95
Drawing solutions asasurface . . . . . . .. ... ... ... ..... 95
Drawing using Nurbscurves . . . . . .. . . ... . ... ....... 95
Drawing a bifurcation diagram using curves . . . . .. .. ... ... 96
Drawing a bifurcation diagram using tubes . . . . . . . ... ... .. 96
Animation of the motion of a satellite in the rotating frame . . . . . . 97
Animation of the motion of a satellite in the inertial frame . . . . . . 97
Solution animation . . ... ... ... ... ... ... ... . ... 97
Solution animation (cont’d) . . ... ... .. ... ... ... .... 98
Coloring the diagram . . . . . . . . . ... ... .. ... ....... 98
Coloring the diagram (cont’d) . . . . ... ... ... .. ... .... 98
Picking apoint . . . . . . . . .. ... o 100
The solution diagram of the Lorenz problem . . . . ... ... . ... 101
The solution diagram of the Earth-Moon system . . . . . .. ... .. 102
The solution diagram of AUTO demo abec . . ... .......... 103
The bifurcation diagram of AUTO demoabc . . . . . . ... ... .. 103
The solution diagram of AUTO demopp2 . .. .. ... ... .... 104
The bifurcation diagram of AUTO demopp2 . . . . . . ... .. ... 104
The solution diagram of AUTO demoexp . .. .. ... ... . ... 105
The bifurcation diagram of AUTO demoexp . . . . . . ... .. ... 105
The solution diagram of AUTO demobvp . .. ... ... ...... 105
The bifurcation diagram of AUTO demobvp . . . ... ... .. .. 105

xii



78
79
80
81
82
33
84
85
86
87
88
89
90
91
92

The bifurcation diagram of AUTO demobrf . . . . . ... ... ... 106

The bifurcation diagram of AUTO demobru . . ... .. ... ... 106
The solution diagram of AUTO demokpr . ... ... ... ..... 106
The solution diagram of AUTO demo cir . . ... ... .. .. ... 106
The Type Menu . . . . . . . .. ... o 134
The Style Menu . . . . . .. .. ... ... ... ... .. 134
The Draw-Coordinate-Axes Menu . . . . . . ... ... ... ..... 135
The Options Menu . . . . . .. ... ... .. .. .. ......... 135
The Center Menu . . . . . . . . ... .. .. ... ... ........ 136
The Help Menu . . . . . . . . ... . . . .. . . .. . . . .... 136
Pickingapoint . ... ... .. .. ... .. 137
Menu-bar layout . . . . . . . ... L 138
Displaying multiple components . . . . . . ... ... ... ...... 139
Coloring . . . . . . . . e 140
Example . . . . . . . .. 142

xiil



List of Tables

O 00 N O Ut s W N

—
<

Abbreviations. . . . . . .. ... L 37
Positions of the libration points for the Sun-Jupiter system . . . . . . 38
Positions of the libration points for the Earth-Moon system . . . . . . 38
Positions of the libration points for the Sun-Earth system . . . . . . . 39
Copying the demo files for the Earth-Moon system . . ... ... .. 119
The CR3BP demo files and their purpose . . . . . .. ... ... ... 119
AUTO parameters for the CR3BP . . . . . . ... ... ........ 122
Labels in the start file and their corresponding periodic families . . . 123
Calculating the Lyapunov L1 . . . . ... ... ... ... ...... 123
Calculating the Halo family H1 from L1 . . . . . . ... ... .. .. 124

Xiv



Chapter 1
Introduction

In this chapter, a brief introduction to the circular restricted Three-Body problem
(CR3BP) is given. The history and the current status of CR3BP research, and the

objectives of this thesis are also discussed.

1.1 The N-Body problem

The CR3BP is a special case of the famous N-Body problem, one of the oldest and
most challenging problems in the history of mathematics. Its study requires knowl-
edge of dynamical systems, geometry, physics and analysis. The classical N-Body
problem states that given the initial positions and velocities of n objects that attract
one another by their mutual gravitational forces only, one has to determine their po-
sitions and velocities at any time in the future. Thus, if we can solve the N-Body
problem, then we can calculate the positions of the objects at a later time. This is
useful in Celestial Mechanics, and has applications to space exploration.

The N-Body problem has been actively studied for centuries. Whenever there are
several bodies, e.g., planets, stars, or electrons, that move under the force of physical
laws, then we have an example of the N-Body problem. When the ancient Greeks
studied the movement of the planets, or how gravity works here on the Earth, they
were actually trying to understand the N-Body problem.

Newton was the first person to formulate the N-Body problem precisely. Although
many famous scientists, such as Newton, Copernicus, Kepler, Lagrange, Poincaré,

contributed to the N-Body problem, there remain many unresolved issues.



1.2 The One-Body and the Two-Body problems

The simplest case of the N-Body problem is the One-Body problem, i.e., there is only
one body which has an initial position and an initial velocity. If an external force is
applied to it, the motion of the body changes. The solution of the One-Body problem
is easy to obtain from basic physics. Newton’s first law of motion tells us that an
object at rest remains at rest, and an object in motion remains in motion, unless
acted upon by an outside force. Newton’s great discovery has been of fundamental
importance in Science and Engineering.

Next, consider the gravitational interaction between two isolated objects, which
do not interact with anything else. For example, let the two bodies be the Earth
and the Sun. We know that the Earth orbits around the Sun in an elliptical orbit,
while the Sun remains almost idle at the focus of the orbit. This is an example of the
Two-Body problem. The Two-Body problem is also simple enough to be solved, but
it requires more knowledge of calculus and analytic geometry. Newton also solved the
Two-Body problem in the form of Newton’s law of gravitation. People have applied

Newton’s laws to planets, comets, asteroids, etc.

1.3 The Three-Body problem

Based on the previous Earth-Sun example, if we add the Moon to our system as the
third body to build a Three-Body system, how do they affect each other? Because
each body in this Three-Body system is attracted by the two other bodies, the motion
of the bodies becomes much more complicated, and it is much more difficult to predict
the positions of the bodies at a later time. Many questions remain unanswered for
the Three-Body problem.

To make the problem easier, scientists have made simplifying assumptions. These
lead to many subproblems of the Three-Body problem. One of these is the CR3BP,
which we focus on in this thesis. A detailed discussion of the CR3BP is given in
Chapter 2.



1.4 A brief history

Because of the complexity of the Three-Body problem, mathematicians realized that
they had to simplify the problem by looking at special cases, for example, the case
where one particle is much less massive than the other two, or the case where two
particles are much less massive than the third.

Pierre-Simon de Laplace solved a special case, but failed at the general one. Henri
Poincaré tried his hands at the problem, but failed in his attempt too.

Weierstrass posed the problem differently, because he believed that there is no
closed-form solution to the problem. He proposed to find a convergent series as the
solution. Weierstrass’ idea led to many breakthroughs in the Three-Body problem.
In 1892, Heinrich Bruns confirmed Weierstrass’ idea. Karl Sundham of Finland ob-
tained the first convergent series for the Three-Body problem in 1913, although the
convergence is so slow that it is useless for practical purposes. In 1941, Siegel intro-
duced the so-called Siegel series for solutions to a triple collision. In 1991, Qiu Dong
Wang also obtained a convergent series for the Three-Body problem. In his solution,
he resolved the problem of collisions. When the bodies collide, their trajectories are
affected, and this prevents the series from converging. Wang introduced a measure of
time that runs faster as two or more bodies approach each other, so that the collision
occurs only at infinite time. However, the convergence is again too slow to be useful.

In the 1960s, Stephen Smale of the University of California, Berkeley, proposed a
new way to think about the Three-Body problem. He suggested that the dynamical
system can be understood in terms of topological transformations.

Chenciner and Montgomery [15] discovered a strange new periodic solution of the
Three-Body problem. In their new solution, the three bodies have equal masses and
they move along a planar figure-8 curve, which is the same for all three bodies. The
three bodies have the same period, but with phase delays of one-third period. The
total angular momentum of the system is zero. Except for the well-known case of
the triangular circular orbits, the figure-8 orbit is the first periodic solution with this
remarkable triple overlap property.

The above is a very brief introduction to the history of the N-Body problem. For
further details, we refer to [14] and [55].



1.5 Organization of the thesis

In this thesis, we focus on the CR3BP. AUTO is used to compute periodic solutions
of the CR3BP for the cases of the Sun-Earth, the Sun-Jupiter, and the Earth-Moon
system. Bifurcation diagrams are constructed from these solutions. To better un-
derstand the solutions, PLAUTO04 is developed, with which we can view changes in
solutions as well as the actual motion of the three bodies in a 3D graphics environ-
ment. We hope that this tool will be useful to researchers in Celestial Mechanical
and in other fields.

This thesis is organized as follows. The modeling of the Three-Body problem is
discussed in Chapter 2. Chapter 3 explains the continuation method used in solving
the CR3BP with AUTO, while Chapter 4 presents the results of our computations.
A detailed discussion of solution families and bifurcation diagrams of the systems
is provided in Chapter 4. The design and development of the new AUTO data
visualization package, PLAUTO04, is explained in Chapter 5. Appendix A explains how
to use AUTO to compute periodic solutions of the CR3BP. Appendix B documents
the use of PLAUT04. Appendix C describes some new AUTO commands.



Chapter 2

The Mathematical Description of
the CR3BP

2.1 The Two-Body problem

As the legend goes, when the apple dropped on Newton’s head, it led to the follow-
ing insight: any two objects in the universe attract each other with a force that is
proportional to the products of their masses and inversely proportional to the square
of the distance between the two objects. If we write this expression in mathematical
notation, we have

my - Mo

F, = G J (1)

r2
where,
F, is the gravitational force, IV,
G is the universal gravitational constant, G = 6.672 x 107! N - m2/kg? ,
mq, My are the masses of the two bodies, kg,
r is the distance between the two bodies, m.

If the direction of the force is taken into account, then the above equation becomes

- my - My
R )

where r is the vector from m; to my. So ||r|| represents the distance between the two
bodies. This is Newton’s universal force law or Newton’s gravitational law. In part due

to Newton’s great discovery, spacecraft can now travel in space, land on the Moon,



and explore Mars. Neil Armstrong’s walking on the Moon, the Spirit’s successful
landing on Mars, and the Cassini-Huygens spacecraft arrival at Saturn on June 30,
etc., can be viewed as consequences of Newton’s contribution. Newton’s universal
force law is the mathematical description of the classical Two-Body problem. The
Two-Body problem is an elementary one in orbital mechanics, and it is perhaps the
first to be described mathematically. It is also the one of the few that can be solved
analytically. A detailed description of the solution of the Two-Body problem can be
found in [8].

2.2 The Three-Body problem

The Three-Body problem also results from Newton’s laws. The equations of the

Three-Body problem have many forms. Below we give the most general one.

2.2.1 The general Three-Body problem

In the general Three-Body problem, each of the three bodies has mass m;, and its

position in space is denoted by r;,i = 1,2, 3.

Y A

. .
F32
m3 F23 o m2
EEE—
—
72 F21
—_
r3 F31
X
—_—
O Fi3
—
— F12

ml

Figure 1: The Three-Body problem

Figure 1 represents the coordinate system of the Three-Body problem. The mo-

tion of a body in this system obeys the classical Newtonian law of inertia, namely,

6



acceleration = force/mass. Using this law, we obtain,

dri/dt? = (Fip+Fi3)/mi
d2r2/dt2 = (Fz,l + F2,3)/m2 5 (3)
d’r3/dt?* = (Fsz1+Fsq)/ms

Here,
m; is the mass of the object 4,
r; is the position vector of the object m; in space,
F;; is the gravitational force of attraction of object m, toward object m;,
t is the time.
From geometry, we know that, r;; = (r; — r;). According to Newton’s universal

force law, if we don’t consider the direction of the forces, we have,

m; - m;

[|ri; |12

We know that F;; is in the direction of the unit vector r;;/||r;;||. Hence, the vector

IFill = G (4)

form of Equation (4) is
myg - My - Ty

5 12

Substituting Equation (5) into Equation (3), we get the classical form of motion

F;, = G (5)

of the Three-Body problem, namely,

2
d r; _ (mj . I‘,;j myg * Cig

@ ) baE=123s i ik AR ©
17 2

There are also other methods to formulate the Three-Body problem. The most
familiar ones are Lagrangian Formulation, the Jacobi Formulation, and the Hamilton

and Delaunay Formulation. Detailes of these can be found in [10, 14].

2.2.2 The CR3BP

Although the equations of the general Three-Body problem are simple enough in
form, they are difficult to solve. In Celestial Mechanics, the equations have been
simplified further. For example, suppose we want to study the motion of a satellite
around the Earth and the Moon. The Earth and the Moon have their own motions,



which affect each other. Compared to the Earth and the Moon, the mass of the
satellite is so small that its attraction to the Moon and the Earth can be ignored.
This assumption is reasonable, given that the mass of the Earth is 5.9742 x 10%kg,
the mass of the Moon is 7.35 X 10?2kg, whereas a satellite weighs at most several tons.
More precisely, in the restricted Three-Body problem, the mass of the third body is
taken to be small enough so that it does not influence the motion of the other two
bodies. The two big bodies, called primaries, move under their mutual attraction and
have an ordinary Two-Body motion. We want to determine the movement of the third
body for given initial conditions, and given the motions of the primaries. The orbits
of the two primaries can be circular, elliptic, parabolic, hyperbolic. The movement of
the third body can be linear, planar or in three-dimensional space. Based on different
assumptions on the orbits of the two primaries and the type of motion of the third
body, many possible forms of the restricted Three-Body problems arise [82]. The
most commonly considered is the circular restricted Three-Body problem (CR3BP),
where one of the two primaries moves in a planar circular orbits around the other.
This thesis focuses on this special case only.

Based on the above assumptions, and using Equations (6), the movement of the
third body in the CR3BP is determined by the equation

d’r; _ ( my I3y My - I'yy )
de? llese(f® [[e32

(7)

In the CR3BP, the two primaries move in circular planar orbits. Thus it is natural
to consider the system in a rotating coordinate frame. In a rotating frame, the
two primaries are considered as fixed. The origin of the frame is selected at the
barycenter of the two primaries, and the z-axis points from the large primary to the
small primary. The z-axis is orthogonal to the orbital plane, and the y-axis completes
the right-handed orthogonal coordinate system, as shown in Figure 2. The z,y axes
rotate with constant angular velocity, w. The two primaries are fixed at (z,,0,0) and
(z2,0,0), where z; is negative, and the third body, called the infinitesimal, is located
at (z,y, 2).

If we use 2’ to represent the first order derivative of z, and use z” to represent the
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Figure 2: The Three-Body problem in a rotating frame

second order derivative of z, from Equation (7), we get

2 = G (m2($1—$) + m1($2—$)> + 2wy + W

[|r31|f? [|r32(®
"= QG ( ™, T ) + 2w’ + Wy 8
v Y\ TealF * TemlP v ®)
2= —Gz( ™ + ma )

[raafl® (el

Here, w is the rotation speed of the frame, determined by

Pl = G (my+mg) (9)
and
||I'12H = Tg — &1 ,
my - |12l
= - 10
7 ma + Mo ’ ( )
mg - ||riz]]
9 = _—
my + My

To simplify the system further, a parameter p is introduced, which represents the

ratio of the mass of the small primary to the total mass of the system. For example,



for the Earth-Moon system, p = 0.01215; for the Sun-Jupiter system, p = 9.53 x 10™4;
for the Sun-Earth system, 1 = 3.0 x 1076, The units are chosen so that the distance
between the primaries, the sum of the masses of the primaries, and the angular
velocity w of the primaries are all equal to one. The axes rotate with constant angular
velocity, w, and the small primary is located at (p,0,0) and the large primary at
(1 —u,0,0). We can choose dimensions so that the gravitational constant G is equal

to one. Then the orbital period is
T = 2n. (11)

Equation (8) can then be rewritten [19, 74] in the following form

A=-pz+p) wz—1+p)

" — 2 / . _
x Y+ ri‘ rg’ )
1 —
1 Ty
A ey L
r3 rs
where
rio= sl = V{E+p)?+yi+2 (13)
rg = llrs2|| = \/(x—1+u)2+y2+22 .

The above equations have an integral of motion, which is a function of the coor-
dinates and the velocities, and which is constant along a trajectory in phase space,

namely, the energy (or Jacobi constant) [19, 74],

xl2 +y/2 + z/2

p(l - p)
2 e

E
2 >

—U(z,y, 2 (14)

where

1 l—p  p
U = - . 15
2(22 + y?) * 81 +7“2 (15)

The Jacobi’s integral is the only integral of the restricted circular Three-Body
problem [19].
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2.2.3 Some characteristics of the CR3BP

Equation (12) has several characteristics. This section gives a summary [14, 19, 30].

e There are five equilibrium points, also called the libration points or Lagrange
points, L1, L2, L3, L4, and L5. All five lie in the same plane as the primaries.
L1, L2, and L3 are on the same line as the two primaries, and L4 and L5, each

form an equilateral triangle with the primaries.

e When p = 0, the small primary does not influence the large primary. If u = 0.5,
the two primaries have the same mass. The case u = 0, is called the Kepler
limit. The case p — 0 is called the Hill limit. The case g = 0.5 is called the
Copenhagen problem.

e The phase space has an invariant subspace of planar orbits, for which z = 2’ = 0.
There are also symmetries: first, if (z,y, z) is a solution, then so is (z,y, —2).
Second, if (z,y, z) is a solution then so is (z, —y, z), provided time is reversed

also.

e When p = 0, there is an infinite number of libration points. These are located
on a unit circle. In this special situation, the small primary which has zero

mass, is also located on the circle.

Many of the great mathematicians, such as Euler, Lagrange, Jacobi, Hill, Poincaré,
Levi-Civita, and Birkhoff, have studied the CR3BP. The method of simplifying the
equations by introducing a rotating coordinate system, as done above, was first used
by Euler. Jacobi discovered the integral of motion, now called the Jacobi integral, in
this coordinate system. Poincaré made great contributions to the qualitative theory
of Celestial Mechanics. Birkhoff further developed the qualitative methods. Sundman
proved the existence of an infinite series solution in the whole plane to the Three-
Body problem, using analytical methods of Tullio Levi-Civita and Paul Painlevé.
Since such global solutions are available for this problem, the restricted problem of
three bodies can be considered to be completely “solved”. However, this “solution”
does not address issues of stability and allowed regions of motion. Furthermore, to
get even a moderately accurate result, a large number of terms is needed, and so this

“solution” does not have much practical use [82].
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2.3 The general N-Body problem

Figure 3 depicts an N-Body system.

Figure 3: The N-Body problem

The equation of motion for n particles of mass m;,7 = 1,2, ...,n can be written as
follows [65],

Foo= G Yy =i =1 (16)

This is the mathematical equation for the so-called N-Body problem.

This thesis is focused on the CR3BP, so no further discussion of the general N-
Body problem will be given. To learn more about the general N-Body problem, see,
for example, [65, 78, 79).

2.4 The surfaces of zero relative velocity of the
CR3BP

The velocity, v, of the infinitesimal satisfies v? = 22 + 2 + 2”2. By substituting the

velocity into Equation (14), we obtain

2(1 — 2
20-p 28

v = 4y 4+
™ T2

c, (17)
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where C' is a constant.
Now let v = 0. Then Equation (17) becomes
(1—=p) 24

0 = 22 +y*+2—L 4+
™ T2

—-C . (18)

This defines Hill’s limiting surface, which represents the surface of zero relative ve-

locity for the CR3BP. It is named after George William Hill, who used these surfaces

to prove that the Earth-Moon distance has an upper bound for all time. Although

no information about the orbits of the infinitesimal within space can be drawn from

it, the equation is useful to discuss general properties of the CR3BP.

@) ®

(d) ©

Figure 4: The zero velocity surface

Figure 4 [64] shows diagrams depicting Hill’s llimiting surface. Hill’s limiting

surface [63] has the following properties,

1. If both C and (z? + y?) are large, then the equation becomes z? + y? ~ C. It

represents a circle in the x-y plane. In the three dimensional x-y-z space, it is a

cylinder which is perpendicular to the x-y plane. This cylinder shrinks to form

a waist, when 2z approaches zero. If C' is large enough and either 1, or 75 is very

small, the equation describes two separate ovals. The big oval encloses the large

primary and the small oval encloses the small primary (see Figure 4(c)). The
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area between the cylinder and ovals has imaginary velocity, and is inaccessible
to the infinitesimal. It is called the forbidden zone. In the cases of Figure 4(e),
because the forbidden zone separates the three regions, if an infinitesimal starts
off from somewhere except the forbidden zone, it then remains in that region.
Thus the motion of an infinitesimal can only take place in the two ovals or

outside the cylinder.

. When C decreases, the size of the inner ovals increases, while the outer cylinder
shrinks. As a result, at some value C1, the inner two ovals meet at some
critical point, L1, the first libration point (See Figure 4(d)). At this point an
infinitesimal still can not reach the other inner oval, when it starts off within
one of them. Since the infinitesimal has zero velocity at L1, it cannot pass the
critical point into the other oval. However, with further decrease of C, the two
inner ovals merge into one surface. In this case, an infinitesimal can pass from

one oval into the other.

. With further decrease of C' to a certain value C2, the wall of the outer cylinder
meets the surface of the inner smaller oval. This is another critical point, beyond
which all three regions are finally connected. We know this point as L2, the
second libration point in space (See Figure 4(c)). An infinitesimal can reach any

place except the forbidden region, when it starts outside the forbidden region.

. When the value of C decreases further to C3, the cylinder wall meets the larger
oval’s surface at L3, the third libration point (See Figure 4(b)).

. With further decrease of C, the projection of the forbidden zone shrinks to a
tadpole-like shape, and finally to the two libration points L4/L5 (See Figure
4(a)). After this point, the forbidden region is no longer connected. It consists

of two parts, an upper half and a lower half.

The surface of zero velocity gives a classification of where an infinitesimal can go

and where it cannot go. This is important in spacecraft design and in the exploration

of space.

In the above discussion, we referred to critical C-values. By solving Equation (18),

we can obtain these values of C' exactly. For example, for the Earth-Moon system
the C' values of the critical points are 13.8191,13.1284, and 2.0254. Figure 5 shows

14



the dependence of C' on u. From the diagram we can see that with increase of u,
the values of C'1 and C2 decrease sharply when p is small. As for C3, it increases

monotonically as u increases.

2.5 The libration points of the CR3BP

The libration points were discovered by French mathematician Louis Lagrange in
1772, in his gravitational studies of the Three-Body problem: “how a third, small
body would orbit around two orbiting large ones”. Libration points are locations in
space where the gravitational forces and the orbital motion of a body balance each
other. These points represent points in space where a particle will remain for all time.

L1, L2, L3, L4, and L5 are used to denote the individual libration points. At the
libration points, the gravitational forces which the object feels equal the centripetal
force needed to rotate with the other two bodies. An object at one of these points
will not move in the plane of rotation. The object will share the same orbital period
as the other two bodies around the system’s center of mass.

Lagrange found that L.1,1.2 and L3 are collinear with the axis connecting the two
massive bodies, with L1 between them and the other two on the outside. We can get
their positions from the following equation, obtained by substituting z =0 and y =0
into Equation (18).

(1-m@=2) plo =)

0 = z—
v |z — 1|3 |z — 253

(19)

For the libration points, L4, L5, the y-coordinate is non-zero. Each of 1.4 and L5

forms an equilateral triangle with the two primaries. Their positions are

(1—2p) V3

4+ Ve
2.0

Rl 0) . (20)

(@ ¥, 2) = (

Figure 6 [66] shows the position of the libration points for the Sun-Earth system and
Figure 7 shows the x and y coordinates of the libration points as a function of u.

Analytical and computational studies have shown that L1, L2, and L3 are not

stable, however L4, and L5 are stable under certain conditions. This result is also

observed by scientists. The special properties of the libration points have been used
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Figure 6: The libration points of the Figure 7: The dependence of the libration
CR3BP points on p

by some man-made spacecraft. Although Lagrange probably never dreamed of man-
made spacecraft being “parked” at the points that bear his name, this is how they
are used today. Because of the instability of L1, L2, and L3, a spacecraft at one of
these points has to use small rocket firings or other means to stay in the area. An
important family of orbits around this area is the “Halo orbits”, mentioned in the
next paragraphs. We will discuss the Halo orbit families in detail in Chapter 4.

In 1978, the NASA International Sun-Earth Explorer 3 (ISEE-3) became the first
spacecraft to orbit the Sun-Earth L1 point, where it traced a Halo orbit [33].

In November 1994, a spacecraft, WIND, was launched toward that position too.
It was originally scheduled to be stationed in an orbit about the L1 point by 1996, but
later it was sent on an extended mission in a “flower petal” orbit around Earth [70].
Figure 8 [68] shows the WIND petal orbit.

The Solar and Heliospheric Observatory (SOHO), which was launched on Decem-
ber 2, 1995, was also in a Halo orbit around the Sun-Earth L1 position, about a
million miles Sun-ward from the Earth [77].

NASA’s Genesis Mission, launched on August 8, 2001, was also located at the
Sun-Earth system’s L1, and it will return to the Earth on September 8 2004 (see
Figure 9 [69)]).
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In 2001, the Microwave Anisotropy Probe (MAP), was in a quasi-periodic Lis-
sajous orbit around the Sun-Earth L2 position, about a million miles in the opposite

direction [67]. Lissajous orbits are the natural motion of a satellite around a collinear

libration point in a Two-Body system and require less momentum change to be ex-
pended for station keeping than Halo orbits, where the satellite follows a simple

circular or elliptical path about the libration point [58].

-—

WIND Petal Orbit
November 1998 - April 1999

NS Gaomagnetic

$19 : Taif
11117/98 /"}
Enter petal orbit [ /

\: e

W NAVAYd $20

4/??]99 N ; )‘/ : 44199

o - Enter

End backfiip : .

LT backflip

Sun

Ecliptic inctination = 45 degrees
Period = approximately 17.5 days

Perigee radii= 58 fo 70.5Re
Apogee radii = approximately 80 Re \

Lunar Orbit

Tick marks occur at 1-day infervats whitle WIND
is in the geomagnetic tail (approximately 2 weeks)

XY Projeclion in Geocentric Sefar Ecliplic (GSE) Coordinales

Figure 8: The WIND petal orbit

1
Soler ‘Wind Lallestisn
B i Halo Crbit About L1
’ 119.3 mas,
¥ s c Returr arud f
g R“VMW . — o bunar Qrbit
-
<] Fositlening for
i Baytight Besntry
- HSun
[+]
£
2
£ 05
Tatal Flight Time
[17.3 mas.}
-" i " - " i L i i s
b 1.4 -1 0.5 -} %) 1 1.5

Millions of Kilometers

Figure 9: The Genesis Mission

Some other scientific missions that are planned to orbit the Sun-Earth L2 point

are NASA’s Next Generation Space Telescope (NGST) [36] and ESA’s FIRST and
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Planck missions [35]. In a more elaborate design, the Terrestrial Planet Finder (TPF)
mission will exploit the center manifold of a Halo orbit to fly two spacecrafts to gather
information- along Lissajous orbits about the Sun-Earth L2 point [6, 37].

The 1.4 and L5 points are home to stable orbits as long as the mass ratio between
the two large masses exceeds 24.96, or equivalently, u < 0.03852 [17]. The Earth-Sun
and the Earth-Moon systems, and many other pairs of bodies in the solar system,
satisfy this condition. In the Sun-Earth-Moon system, any object in the Earth-
Moon L4 and L5 locations “orbit” the libration point in an 89-day cycle. Objects
found orbiting the L4 and L5 points are often called Trojans. There are hundreds of
Trojan asteroids in the solar system. Most orbit with Jupiter, but others orbit with
Mars. The three large ones that orbit in the L4 and L5 points of the Jupiter-Sun
system are called Agamemnon, Achilles and Hector. In 1956 the Polish astronomer
Kordylewski discovered large concentrations of dust at the Trojan points of the Earth-
Moon system. Recently, the COBE satellite also confirmed the existence of a dust
ring following the Earth’s orbit around the Sun [18]. One can find a more detailed

discussion of the libration points in [19, 74].

2.6 Periodic orbit families near the libration points

The CR3BP has been studied extensively by many scientists for various values of
. Many details of the solution structure of CR3BP have been computed before.
An extensive, yet incomplete list of references appears in [29], where the citations
range from Poincaré’s Les Méthodes Nouvelles de la Mécanique Céleste [72], through
the work of Arthur Clarke [16], Farquhar [32], Deprit and Henrard [21], Howell [47],
Gémez et al. [38, 39, 40], and many others, to the recent work of Martin Lo et al.
on the Genesis mission [59].

Figure 10 shows a bifurcation diagram, which represents schematically various
families of periodic orbits for the Earth-Moon system, for which p = 0.01215.

The Jacobian of Equation (12), evaluated at the libration points L1, L2, and L3,
has two pairs of purely imaginary eigenvalues, which give rise to two well-known
families of periodic orbits, namely, the planar Lyapunov orbits, L1, L2, and L3,
and the Vertical orbits, V1, V2, and V3, respectively. The Jacobian at the libration

points L4 and L5 has at least one pair of purely imaginary eigenvalues, for all 1, which
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Figure 10: A bifurcation diagram

gives rise to the families V4 and V5 of Vertical orbits from 1.4 and L5, respectively.
For p less than the critical value py; = 1/2 — \/m ~ 0.03852, the Jacobian
at the libration point L4 (and L5) has an additional two pairs of purely imaginary
eigenvalues, that give rise to two families of planar orbits, that emanate from 1.4 (and
L5) [49].

The bifurcation diagram and its solution families, will be discussed in detail in
Chapter 4. In next chapter, we discuss the computation of periodic solutions of the
CR3BP using AUTO.
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Chapter 3

Numerical Methods

3.1 Continuation

Analytical methods based on perturbation theory, and numerical methods are the two
main tools for quantitative analysis. In this thesis, we focus on numerical methods.
More information on analytical methods can be found in many books, especially those
of Hagihara [43], V. Szebehely [82], and F. Tisserand [84].

Numerical continuation enables the computation of solution manifolds (solution
families). There are several software packages for the numerical analysis of bifurca-
tions in dynamical systems. Most are for the computation of one-dimensional solution
manifolds. AUTO is one of the earliest packages and perhaps the most widely used.
Other software is described in [1, 7, 26, 27, 75, 80], and [56]. Henderson has developed
numerical continuation algorithms for higher-dimensional manifold [44]. One can also
find more information in [9].

AUTO is used for all calculations in this thesis. In this chapter, we show how
AUTO is used to compute periodic solutions of the CR3BP.

3.1.1 The Implicit Function Theorem

The Implicit Function Theorem (“IFT”) is an indispensable tool in bifurcation anal-
ysis. It is also the foundation of numerical continuation [42, 61].

Let F: R"*! — R™ be a smooth function. Let Fx(X,) denote the Jacobian matrix
of F(X) evaluated at Xp. Recall that the elements of Fx(X,) are the derivatives of
the n component functions of F' with respect to the n + 1 variables X. Note that the
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matrix Fx(Xp) has n rows and n + 1 columns.
The IFT states that if
Rank(Fx(Xp)) = n, (21)

then there exists a unique family X(s), and § > 0, such that

= X,
X(0) 05 (22)
F(X(s)) = 0 for |s|<§.
3.1.2 Numerical continuation
Given the finite-dimensional equation
F(X) = 0, F: R — R, (23)

where F is assumed to be sufficiently smooth. This equation has one more variable
than it has equations. Given a solution Xj, if the assumptions of the IF'T are satisfied
then there is a locally unique branch of solutions that passes through X, for this
system. To compute a next point, say, X;, on this branch, Newton’s method can be

used to solve the extended system

a) F(Xy) = 0,

. (24)
b) (Xl — XO)* Xo As .

Il

Here X is the unit tangent to the path of solutions at Xj, the superscript * denotes
transpose, and As is a scalar, which is the step size in the continuation procedure.
The vector X, is also a null vector of the Jacobian matrix Fx(X;), and can be
computed at little cost [27]. Figure 11 shows a geometrical interpretation of this
well-known method, known as Keller’s pseudo-arclength method [53]. The size of the
pseudo-arclength step size As is normally adapted along the branch depending on
the convergence history of Newton’s method.

It can be shown that Keller’s method works near a regular solution X, i.e., if

the null space of Fix(Xj) is one-dimensional, as in the IFT. In fact, in this case the
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Figure 11: Graphical interpretation of the pseudo-arclength method

Jacobian of Equation (24) evaluated at X, i.e., the n+1 by n+1 matrix

Fx (Xo)
(79). -

is easily seen to be nonsingular. By the Implicit Function Theorem, this guarantees
the existence of a locally unique solution branch through X,. This branch can be
parametrized locally by As. Moreover, for As sufficiently small, and for sufficiently
accurate initial approximation (e.g., X fO) = XO-I—ASXO), Newton’s method for solving
Equation (24) can be shown to converge. Bifurcation points along the solution branch
correspond to singularities of the Jacobian matrix of Equation (25); such points can
be located accurately, and there are standard algorithms for switching branches there.
These algorithms are implemented in AUTO [26].

3.1.3 Periodic solutions

Pseudo-arclength continuation can also be used to compute a family of periodic so-

lutions of a dynamical system. Given the system
x'(t) = f(x(t), \) , f: R*"xR — R", (26)

where the nonlinear function f consists of n components functions, fi(x,\), ..., fo(x, \)

x € R" is a vector with n components, z,...,x,; A € R is a physical parameter.
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In this case the continuation step corresponding to Equation (24) takes the form

of the following constrained periodic boundary value problem [29]:

al) Xll(t) = Tlf(Xl(t), )\1),

az) x1(0) =x1(1),
(27)

az) fol x1(7)* x,4(7) d7 =0,

b) fol(xl(T) —xo(7)) " )o(7) d7 + (T} — To)To + (M = Ao))'\o = As.

This equation must be solved for X; = (x1(+), T1, A1), given a solution Xy = (xo(+), To, Ao)
and the path tangent Xy = (%o(-),Tp, \o). Here Ty € R is the unknown period.
Equation (27a5) imposes unit periodicity, after rescaling of the independent variable
t. Equation (27a3) is a phase condition, which fixes the phase of the new orbit x;(-)
relative to the given orbit x¢(+). It may be replaced by the classical Poincaré phase

condition
ag)  (x1(0) — %(0))" x¢(0) = 0.

However, the integral phase condition (27a3) has the desirable property of minimizing
phase drift relative to xo(+), which often allows much bigger continuation steps to be
taken [27]. Equation (27b) is the functional form of the pseudo-arclength constraint
Equation (24). More details on this boundary value approach for computing periodic
solutions can be found in [27]; further references include [25, 52].

In each continuation step, Equation (27) is solved by numerical boundary value
algorithms. In particular, AUTO uses piecewise polynomial collocation with Gauss-
Legendre collocation points ( “orthogonal collocation”) [5, 20], similar to COLSYS [3],
and COLDAE [4], with adaptive mesh selection [76]. Combined with continuation,
this allows the numerical solution of “difficult” problems. AUTO determines the
characteristic multipliers (or Floquet Multipliers), that determine asymptotic stability
and bifurcation properties, as a by-product of the decomposition of the Jacobian of

the boundary value collocation system [27, 34, 57].
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3.1.4 Periodic solutions of the CR3BP

In the CR3BP system, there is one conserved quantity, namely, the Jacobi constant
E, which is defined in Equation (14).

In order to use AUTO to continue periodic solutions of the CR3BP, we need to
modify the original form of the equations. We first rewrite the three-dimensional
second-order equations to a standard six-dimensional first-order system, and scale
time, so that the period T appears explicitly in the equations. To decrease the order
of the system, the velocities v,, vy, v, in directions x, vy, z are the appropriate choice
to use. We also add periodic boundary conditions and the integral phase constraint,
as in Equation (27).

The second change we made is that, in order to use boundary value algorithms,
we introduce an unfolding term with corresponding unfolding parameter, as discussed
in detail in [60] and [29]. A suitable choice for the unfolding term is AVE, where X is
the unfolding parameter. However, this choice is not unique, and for the CR3BP it is
more convenient to introduce a simpler unfolding term, namely, one that corresponds
to “damping”.

After we introduce the unfolding parameter, the first order system then becomes:

o =Tv, ,
r_

y =Ty, ,
Z=Tv, ,

v, =T2v, +z — (1_“3%””) — Mw;;’”] + A,
y =1 [—2v, +y — u;—f”’—’%]—&-)\vy ,
1 2
1
It is important to stress that, while A is a scalar unknown that is solved for at each

continuation step, its value will be zero (up to numerical precision) upon convergence

of Newton’s method. This simple, yet crucial observation is discussed in detail in
[29], and theoretically justified in [60].

3.1.5 Locating the libration points

The CR3BP has five libration points, for each specific value of u with 0 < u < 1.0.

In Chapter 2, an analytical solution of the libration points has been given for L4 and
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L5, while for L1, L2, and L3, a simplified equation is given, which can be solved easily
using root finders. However, AUTO can use continuation to solve the entire curve of

the libration points as a function of u, as shown in Figure 7.

3.2 Converting data from the rotating frame to

the inertial frame

In Chapter 2, we used a rotating coordinate system to simplify the equations of
the CR3BP. This formulation decreases the computational complexity. It is a good
formulation for quantitative analysis. Nevertheless, to gain an intuitive understanding
of the motions, it is helpful to represent the motion of the system also in the inertial
frame. In this section, we will discuss how to transform from a rotating frame to an
inertial frame [23].

The Sun-Earth system is taken as an example for the discussion. For other sys-
tems, the same method can be used.

In Chapter 2, the primary bodies (the Sun and the Earth) are assumed moving
in circular orbits around the system’s barycenter (center of mass). A rotating frame,
centered at the barycenter, is used. The x-axis lies along the line from the large
primary (the Sun) to the small primary (the Earth). The z-axis points along the
direction normal to the orbital plane. The y-axis completes the coordinate system.
The position of a particle in the system, relative to the above coordinate system, is
given by (z,y,2) . The velocity is given by (z’,9/,2') , where the prime denotes a
derivative with respect to t, the dimensionless time in the CR3BP coordinates.

The data conversion is for animation purpose only, therefore, some conversions,

such as the conversion of mass, etc., are not considered.

3.2.1 Time conversion

The following equation is used to convert the dimensionless time ¢ in Equation (12)
to time 7 in physical units.
27
t = — T. 29
a (29)

However, for CR3BP computations using AUTO, we scale the period to the closed
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interval [0, 1], so, as in AUTO data, we use
t = =171, (30)

where T is the orbit period of the Earth in the physical system. In the general case
T represents the period of the small primary rotating around the large primary.

It follows that

dx/dr dt/dr - dz/dt ) x
dy/dr = dt/dr - dy/dt =7 v |- (31)
dz/dr dt/dr - dz/dt Z

3.2.2 Position conversion

Let rgg be the position vector of the Earth with respect to the Sun in the inertial frame
at a given time. The distance between the primaries is Rgg = ||rsg||. Furthermore,
the velocity vector of the Earth with respect to the Sun in the inertial frame can be
written as vgg = drsg/d7 . Thus the orbital angular velocity vector ish = rgg X vsg.
We also define H = ||h||.

If e;,e,, e, are the unit vectors along the z, y and z axes, respectively, in the

rotating frame, then we have

e, = rsg/Rsg ,
e, = h/H, (32)
e, = e,xe, .

A particle’s position in the inertial frame, with coordinates (z, y, z) in the rotating

frame, is then determined by

r = rggX P, (33)
P = (z—c)e; +yey +ze,,

where the offset ¢ is used as a parameter for controlling where the coordinate origin
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is put, and

1 — pu, if the center of the inertial system is the Earth ;
c=1 —u, if the center is the Sun ;

0, if the center is the barycenter.

3.2.3 Velocity conversion

To transform the velocity from the rotating frame to the inertial frame, we must

consider not only the change of the coordinates (z,y, z), but also the motion of the

axes (e;, €,,€,), and the change of the distance Rgg between the primaries.
Because the coordinate axes are orthonormal, if we define the angular velocity

vector w in the rotating frame as

W o= Wyrepgtwy ey tw, e, (34)
then we have
de,/dT = w X e,
dey/dr = wxe,, (35)

de,/dT = wXxe,.

From Equations (29), - -, (35), we can show that in general

wy = Rggr(a, e,)/H,
Wy = 0, (36)
wz - H/R?S'E'

Here, a, represents the perturbing acceleration experienced by the Earth, apart from
the gravitational acceleration of the Sun. If the orbits of the primaries always remain
in a fixed plane, as in the Two-Body problem, then the orbital angular velocity and
frame angular velocity are parallel, w = h/R%; = w, X e,, where w, = H/R%,. The
average value of w, is 2w /T, where T is again the orbital period of the Earth. In fact,
in the CR3BP, the Earth’s orbit is assumed to be circular, so w, = 27 /T. The term

w, can be neglected.
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Now the inertial velocity of the infinitesimal can be computed by

v = RSE{%ez—i-g—;ey-{-%ez}+wxr+d?’fEP , (37)
where
wxr = w,{-ye,+ (z—cle,} +w,(—ze, +ye,), (38)
and iR
de — rSI;’% S:SE . (39)

3.2.4 Transforming from the rotating frame to the inertial

frame
The algorithm based on the above discussion is as follows.
1. Compute the position and velocity of the Earth with respect to the Sun.

2. Compute the angular velocity vector h = rgg X vgg and its magnitude H = |h|.

If we use the analytical approximation above, then

h = w,R%;(0, 0, 1),

40
3. Compute the unit vectors (e,, ey, e,). In the analytical approximation
e, = (cos(w,t), sin(w,t), 0) ,
e, = (—sin(w,t), cos(w,t), 0) , (41)

e, = (0,0, 1) .

4. Compute the position vector r using Equation (33).

5. Convert the velocities (z,y,2) to derivatives with respect to t using Equa-
tion (31).

6. Compute the velocity vector using Equations (37), (38), and (39).

In analytical approximation, we assume Rgp is constant, so dRgg/dT = 0. The

perturbing effects of other bodies is also ignored, so w, = 0 in Equation (38).
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3.2.5 Examples of orbits in the inertial frame

This section gives some examples to show what solutions look like in an inertial frame
and in a rotating frame. A more detailed description of solutions will be given in the
next chapter.

Figure 12 shows a V4 orbit of the Earth-Moon system. Figure 12(a) is the orbit
in the rotating frame, and Figure 12(b) shows the orbit in the inertial frame centered
at the Moon.

Figure 13 is a V2 orbit. Figure 13(a) shows the orbit in the rotating frame. Both
the primaries and the libration points are shown in this diagram. Figure 13(b) depicts
its projection onto the x-y plane in the inertial frame, and a three dimensional picture
is shown in Figure 13(c).

Figure 14 and Figure 16 show two orbits from the C2 family of the Earth-Moon
system. Note that this is a planar orbit. Figure 15 shows an A1l orbit of the Earth-
Moon system.

In this chapter, continuation and algorithm for converting data from a rotating
frame to an inertial frame were discussed. Their applications to the CR3BP will be

discussed in the next chapter.

(a) Rotating frame (b) Inertial frame

Figure 12: An Earth-Moon V4 orbit
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(a) Rotating frame (b) Inertial frame - 2D view

Figure 13: An Earth-Moon V2 orbit

(c) Inertial frame - 3D view (a) Rotating frame

Figure 13: An Earth-Moon V2 orbit (cont’d) Figure 14: An Earth-Moon C2 orbit



(b) Inertial frame (Earth-centered) (¢) Inertial frame (Sun-centered)

Figure 14: An Earth-Moon C2 orbit (cont’d)

(a) Rotating frame (b) Inertial frame

Figure 15: An A1l orbit for the Earth-Moon system (Earth-centered)
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(a) Rotating frame (b) Inertial frame (Earth-centered)

Figure 16: Another C2 orbit for the Earth-Moon system

(c) Incrtial frame (Sun-centered)

Figure 16: Another C2 orbit for the Earth-
Moon system (cont’d)
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Chapter 4

Application of AUTO to the
CR3BP

4.1 Introduction

In this chapter, AUTO is used to compute families of periodic solutions for the Earth-
Moon, the Sun-Earth, and the Sun-Jupiter system. Bifurcation diagrams for each
system are constructed from the results.

In the computation, the mass ratio of 0.01215 is used for the Earth-Moon system,
3.0x 1078 is used for the Sun-Earth system, and 9.53 x 10~ is used for the Sun-Jupiter
system.

G6mez and Mondelo [38] computed families of orbits arising from L1, L2, and L3,
as well as their bifurcating branches. Ichtiaroglou and Michalodimitrakis [50], Hénon
[46], Howell and Campbell [48] also provided useful information on bifurcations of
these systems.

Because of the similarity of the three systems, we focus on the Sun-Earth system
in our discussion. Differences among the Earth-Moon, the Sun-Earth, and the Sun-

Jupiter systems are indicated as needed.
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4.2 Objects and annotations

4.2.1 Object representation

The diagrams include several geometric objects, namely, primaries, libration points,
branch points of different types, orbits, and a reference plane, which are represented

in different ways.

Primaries

Textured spheres are used to represent the primaries. Their sizes are approximately
proportional to their “weights”, though they are not proportional to the distance
between the primaries. In the Earth-Moon system, the large primary is the Earth
and the small primary is the Moon. In the other two systems, the large primary is

the Sun and the small primary is the Earth, or Jupiter, respectively.

Libration points

White cubes are used to represent the libration points. From the diagram, we can see
that three of them, namely, L1, L2, and L3, are collinear with the two primaries. The
other two, namely, L4 and L5, form two equilateral triangles with the two primaries,

as discussed in previous chapters.

Solutions/orbits

Tubes or curves are used to represent the periodic solutions. Each curve represents a
family of periodic solutions in the bifurcation diagram. Surfaces can also be used
to represent the manifolds formed by the orbits. Different coloring schemes can
be applied to solutions, according to their family, type, speed, energy, time, point
number, etc. We can also animate solutions, and the motion of the infinitesimal, with
PrLAuT04.

Bifurcation Points

Bifurcation points are represented as spheres in the bifurcation diagram. In the solu-
tion diagram, the corresponding orbits are represented in a distinct color to distinguish

them from the other orbits.
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Reference Plane

A planar circular disk is used to represent the orbit of the smaller primary around
the large primary in the rotating frame. This disk lies in the x-y plane. Any solution
family in the bifurcation diagram touching this plane has a planar solution at that
point. For example, the curve that represents L1 lies entirely on the disk, which

means that all L1 orbits are planar.

Figure 17: A bifurcation diagram for the Earth-Moon system

4.2.2 Annotation

Figure 17 shows a bifurcation diagram for the Earth-Moon System. All objects dis-
cussed in the above section are displayed. In this diagram, the following annotations

are used.

36



Libration points

The Roman font is used to represent the libration points, both in the diagrams and

in the text. For example, L1 represents the first libration point, etc.

Solution families and bifurcations

Each solution family is represented by a character followed by an integer. The char-
acter is a capital letter representing the family type, and the integer represents the
libration point from which this family emanates, or to which this family is indirectly
related.

The branch points along each family are represented by a character followed by
two integers. The character, a capital letter, and the first integer, together represent
the family to which the branch point belongs. The second integer represents the serial
number of the branch point along from the family.

For example, the Lyapunov families are represented by the curves L1, L2, and
L3 in Figure 17, where Li emanates from Li, respectively, (¢ = 1,2,3). The Vertical
families are represented by Vi, where Vi emanates from Li, respectively, with i =
1,--+,5. The first libration point along V1, is represented by V11.

Table 1 gives a summary of the annotations.

Symbol Definition
Li Libration Point 1, (1 =1,---,5)
L: The planar Lyapunov family from Li, (i = 1,2, 3)
Vi The Vertical family from Li, (i =1,---,5)
Si The Short-Period planar Lyapunov family from Li (
Li The Long-Period planar Lyapunov family from Li, (:
Ai The Axial family from Li2
B1 The Back-flip family from Vi2
C1 The circular, planar family containing V13
C2 The circular, planar family containing V23, V33
Hq The Halo family from Lil
Wi | The family from Vi at Vil, (i = 4,5)
Lij Bifurcation point j on Li
Vij Bifurcation point 7 on Vi
Hij | Bifurcation point j on Hi, (j = 1,2)

= 4,5)
=4,5)

Table 1: Abbreviations.
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4.3 The libration points of the Sun-Jupiter, the
Earth-Moon, and the Sun-Earth system

In Chapter 2, an analytical method to compute the five libration points of the Earth-
Moon system is discussed. In Chapter 3, we mentioned continuation to determine the
dependence of the libration points on p. The first method is used in PLAUT04 and
the second method is used in the analysis of the dependence of the libration points
on .

Table 2, 3, and 4 show the positions of the libration points in the rotating frame

for the Sun-Jupiter, the Earth-Moon, and the Sun-Earth systems.

Libration Point X y Z
L1 0.93238638 0 0
L2 1.06880958 0 0
L3 -1.00039708 0 0
L4 0.49904700 | 0.866025404 0
L5 0.49904700 | -0.866025404 | O

Table 2: Positions of the libration points for the Sun-Jupiter system

Libration Point X y z
L1 0.83691801 0 0
L2 1.15567991 0 0
L3 -1.00506240 0 0
L4 0.48785000 | 0.86602540 0
L5 0.48785000 | -0.86602540 0

Table 3: Positions of the libration points for the Earth-Moon system

The dependence of the libration points on y is shown in Figure 7. The diagram
shows the libration points in the rotating coordinate system. Each of the libration
points in the rotating coordinate system corresponds to a circle in the inertial system.

Given the libration points, we can set up the initial values for AUTO to compute

the periodic families arising from them.
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Libration Point X

y z
L1 0.99003044 0 0
L2 1.01003023 0 0
L3 -1.00000125 0 0
L4 0.49999700 | 0.866025404 0
L5 0.49999700 | -0.866025404 0

Table 4: Positions of the libration points for the Sun-Earth system

b Harth

(a) Bifurcation diagram around L1 (b) Bifurcation diagram around L2

Figure 18: Bifurcation diagrams near the libration points for the Earth-Moon system

4.4 Computation of the bifurcation diagram for

periodic solutions

Given the solutions for the libration points, starting from the libration points, and
using AUTO, it is easy to compute the emanating families of periodic solutions. By
following families that emanate from branch points along each periodic family (more
accurately family of periodic solutions), a bifurcation diagram can be generated.

Figure 17 shows a bifurcation diagram for the Earth-Moon system. For the Sun-
Earth, and the Sun-Jupiter system, similar bifurcation diagrams will be presented.
Figure 18 gives closeup views of the bifurcation diagrams near the libration points of
the Earth-Moon system.

Various families of periodic solutions are represented as curves in the bifurcation
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(a) Bifurcation diagram around L3 (b) Bifurcation diagram around L4

Figure 18: Bifurcation diagrams near the libration points for the Earth-Moon
system (cont’d)

diagram. Each point on a curve in the diagram represents a periodic solution.

Along families of periodic solutions, there are various branch points. It is im-
portant to note that in this thesis we reserve the term branch point (or branch-
ing orbit), for trans-critical and pitch-fork bifurcations, thereby excluding period-
doubling, torus, and subharmonic bifurcations. However, the solution structure that
we present can be viewed as a “skeleton”, from which many other solutions may be
reached [21, 30].

As we see, L1, L2, L3 lead to five solution families, Li, Vi, Ai, Bi, and Hi,
with ¢ = 1,2,3. Because of the symmetry properties of the equations, L4 and L5
are symmetrical. For these two libration points, each leads to four solution families,
which are named Li, Si, Vi, and Wi, respectively, with ¢ = 4,5. Although the branch
points for L4 and L5 are symmetrical, we show both in the bifurcation diagram.

We also find that the Lyapunov family Li, and the Vertical family Vi emanate
directly from Li, for ¢ = 1,---,5. The Short-period planar Lyapunov family S4 and
S5 also emanate directly from L4 and L5.

In Figure 17, the Lyapunov families are represented by the curves L1, L2, and L3,
where Lé cmanates from the libration point Li (3 = 1,2,3). There arc two branch
points along L1, called L11 and L12 for all three systems. There are three branch
points, L21, L22, and L23, along L2 for the Earth-Moon and the Sun-Jupiter system,

while we can only locate two, L21 and L22, for the Sun-Earth system. There are
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three along L3, which are named L31, L32, and L33, for all the three systems.

Families bifurcating from Lé (¢ = 1,2, 3) at Li1 are called Hi (the Halo families).
Families bifurcating from Li (¢ = 1,2,3) at Li2 are called Ai (the Azial families).
Families bifurcating from L3 at L33 are S4/S5, which connect to L4/L5 at the other
end. L1, L2, L3 themselves end in orbits that collide with the primaries.

Similarly, there are branch points along the Vertical families. Along V1, there are
three such points, which are denoted as V11, V12, and V13. Along V2, there are also
three branch points, namely, V21, V22, and V23.

Note, however, that there are four branch points along V3, namely, V31, V32,
V33, and the branch point denoted by V43, where the V3 family connects to the
family V4/V5. Along V4 and V5, there are V41 and V51, and the already mentioned
branch point V43, which is located at the mid-point of V4/V5.

The Vertical families that emanate from L4 and L5 are smoothly connected. They
can be considered as a single family, which we generally refer to as V4/V5.

In the bifurcation diagram, L33, H11, and V43 need more attention. Each of
them connects to three different families. L33 connects L3 to S4/S5, which in turn
connects L4 and L5. H1l connects W4/W5, and H1. V43 connects V4/V5, and
V3. C2, a Circular family, is also a special family. From it, we can reach H1, V3,
and V2.

In our AUTO computations, we found that the smaller u, the more difficult it is
to locate the bifurcation point H11l on H1. It is also difficult to reach C2 and Bs
(i = 1,2, 3) for the Sun-Earth system. We have to increase the number of mesh points
used, decrease the convergence requirements, and use very small step size (These can
be controlled by the AUTO-constants NTST, EPSL, EPSU, DS, DSMAX, DSMIN;
see [24]).

4.5 Stability of periodic solutions

For the systems we considered, most of the periodic orbits are unstable. Figure 19,
20, 21 show the stability of each family for the Earth-Moon, the Sun-Jupiter, and the
Sun-Earth systems. From the diagrams we see that stable orbits appear along S4/S5,
V4/V5, W4/W5, L4/L5, and V3. For both the Earth-Moon and the Sun-Jupiter

systems, there always exist stable orbits along B2. For the Sun-Earth system, part
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Figure 19: A bifurcation diagram with stability for the Earth-Moon system

| STABLE
| UNSTABLE

Figure 20: A bifurcation diagram with stability for the Sun-Jupiter system
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Figure 21: A bifurcation diagram with stability for the Sun-Earth system

of W4/W5 is also stable. Almost all orbits of the other families are unstable.

4.5.1 S4/S5

Figure 23 presents the change of the Floquet Multipliers for S4/S5 of the Sun-Jupiter
system. Each subgraph of the Floquet Multipliers corresponds to a point in Figure
22. We take eight points from L4 to L5 along S4/85, so we have eight pictures of their
Floquet Multipliers. Figure 23(a) is related to point (1) in Figure 22. Figure 23(b)
is related to point (2) in Figure 22, etc. Elsewhere in this chapter, the same method
is used to show the Floquet Multipliers. From the diagram, we see that most S4/S5
orbits are stable. When we start from L4 , the orbits are stable until we reach point
(2) on S4. All six Floquet Multipliers related to (1) lie on the unit circle, as shown in
Figure 23(a). When we reach (2), the system changes from stable to unstable. The
six Floquet Multipliers are very close to (1,0) (see Figure 23(b)). Beyond point (3),
some of the six Floquet Multipliers are no longer on the unit circle. They split into

three groups, where each group includes two points, The two points of the first group
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Figure 23: Floquet Multipliers along S4/S5 for the Sun-Jupiter system
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are always at (1,0). The other two groups first move away from (1,0), then move
back to (1,0), along the x-axis but in the opposite direction as shown in Figure 23(c),
23(d). As we reach L33, the six Floquet Multipliers are very close to (1,0) again.
The change from point (8) to (4) is similar to that from point (1) to (4) (see Figure
23 (b), (g), (£), (e))-

The Earth-Moon and the Sun-Earth system have similar stability changes along
their S4/S5 families.

4.5.2 V4/V5

There are also stable orbits along V4/V5. For the Sun-Earth system, the entire
family V4/V5 is stable, and the stability extends to W4/W5. For the Earth-Moon
system and the Sun-Jupiter system, only the parts from L4/L5 to its corresponding
first branch point, namely, V41/V51, are stable. The remaining parts are unstable.
Figure 24 shows the family V4/V5 for the Earth-Moon system. The changes of
the Floquet Multipliers are shown in Figure 25. The changes for the Sun-Jupiter
system are similar to that of the Earth-Moon system. Figure 26 and 27 show the
changes of the Floquet Multipliers for the family V4/V5 for the Sun-Earth system.

4.5.3 L4/L5

Stable orbits also occur along L4/L5. We have not found any regularity in the

stability of these families.

4.54 V3

Stable orbits also occur along V3 for all three systems. The orbits between V32
and V33 are always stable. Figure 28 shows the stability of the V3 family of the
Earth-Moon system.

4.5.5 B2

Along these families, the orbits are unstable when they bifurcate from V2. However,

at some point they become stable, and later they change back to unstable again.
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Figure 24: The family V4/V5 of the Earth-Moon system
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Figure 25: Floquet Multipliers along V4/V5 for the Earth-Moon system
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Figure 27: Floquet Multipliers along V4/V5 for the Sun-Earth system
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Figure 28: The V3 family of the Earth-Moon system

Both the B2 families of the Sun-Jupiter system and the Earth-Moon system have

these characteristics.

4.6 The Lyapunov families

Figure 29 gives solution diagrams of Lyapunov families. In these diagrams, the branch
point orbits are shown in a different color. The orbits of L1 are always located between
the two primaries. With the increase of period, the orbit collides with the primaries.
The L1 orbits approach both of the primaries as their period increases, and they
finally collide with them. Orbits along L2 and L3 have different behavior from L1.
The L2 orbits lie beyond the small primary, while the the L3 orbits lie beyond the
large primary. With the increase of period, the orbits approach the primary. Finally
the L2 orbits collide with the small primary, and the L3 orbits collide with the large

primary.
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(a) The L1 family (b) The L2 family

(¢) The L3 family

Figure 29: Solutions along Li for the Earth-Moon system, i = 1,2,3
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(a) The Vertical family V1 {(b) The Vertical family V2

Figure 30: Solutions along V1 and V2 for the Earth-Moon system

{(a) The Vertical family V3 (b) The Vertical family V4

Figure 31: Solutions along V3 and V4 for the Earth-Moon system
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4.7 'The Vertical families

Solution diagrams for the Vertical families V1 - V4 are shown in Figures 30, 31.

There are three branch points, V11, V12, and V13, along V1. There also exist
three branch points, namely, V21, V22, and V23, along V2. However, there are four
branch points, V31, V32, V33, and V43, along V3. These branch points are shown
in Figure 17, and Figure 18. From Vil, the Axial family Ai bifurcates, for i =1, 2, 3.
The Back-flip family B4 connects to the second branch point Vi2 (i = 1,2,3). The
Circular planar family Ci bifurcates from Vi3 (i = 1,2, 3). V43 is the connection for
the family V4/V5 and V3. Note that both V23 and V33 connect to the Circular
planar family C2, which is also connected to H1 through H12. These branch points
correspond to “reverse period-doubling bifurcations”. For V1 and V2, the reverse
period-doubling bifurcation corresponds to the third branch point along the family
away from the libration point, whereas for V3, it corresponds to the fourth branch
point. Nevertheless, the latter bifurcation will be referred to as V33.

The bifurcation orbits V23 and V33 encompass both primaries, whereas the bi-
furcation orbit V13 encompasses the large primary only. Furthermore, the orbits V23
and V33 belong to the same family of circular planar orbits, designated C2, whereas
the planar orbit V13 belongs to another family of circular planar orbits, C1.

Figure 32(a) displays a vertical orbit of the Sun-Earth system, in the inertial frame
centered at the small primary, in this case, the Earth. The orbit includes two parts.
Half of it is above the x-y plane. The other half is below the x-y plane. The orbit
generates two cone-like surfaces with the cone tops meeting near the small primary.
Figure 32(b) displays the corresponding picture of this orbit in the inertial frame

centered at the large primary, namely, the Sun.

4.8 The Circular families

For the Earth-Moon system, the orbits along C1 encompass the Earth only. For
decreasing period, they shrink toward the Earth. C2 encompasses both the Earth
and the Moon. When the period of the C2 family decreases, orbits change from
circles to ellipses, and finally collide with the primaries. C3 is different from C1 and
C2. It includes two parts; the inner part only encompasses the Earth while the outer

part encompasses both the Earth and the Moon. For increasing period, the diameter
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(b) Inertial frame (Sun-centered)

(a) Inertial frame (Earth-centered)

Figure 32: Inertial frame view of a Sun-Earth V1 orbit

The Circular family C2

)

b

(

(a) The Circular family C1

1,2,3

Moon system, i

Figure 33: Solutions along Ci for the Earth
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(¢) The Circular family C3 (a) Rotating frame

Figure 33: Solutions along Ci for the Earth- Figure 34: Different views of an
Moon system, ¢ = 1,2,3 (cont’d) Earth-Moon C1 orbit (I)

(b) Inertial frame (Earth-centered) (e) Inertial frame (Moon-centered)

Figure 34: Different views of an Earth-Moon C1 orbit (I) (cont’d)
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(a) Rotating frame (b) Inertial frame (Earth-centered)

Figure 35: Different views of an Earth-Moon C1 orbit (1I)

of both parts increases, and finally the inner part approaches the Moon (see Figure
33).
Some orbits of the family Ci are shown in Figure 34, 35, 36.

4.9 The Halo families

Figure 17 shows three Halo families, namely, H1, H2, and H3. H1 starts from
the second branch point along L1 and ends at C2. Along H1, there is one branch
point, H11, which connects H1, W4, and W5. H2, and H3 also bifurcate from the
corresponding Lyapunov families. The H2 orbits end in a collision with the small
primary and the H3 orbits end in a collision with the large primary. At the collision,
the orbits of H2 and H3 appear to become vertical to the x-y plane. The Halo
families come in pairs, namely, the northern Halo families and the southern Halo
families. The two halves are symmetrical according to the symmetry transformation
(z,9,2) = (,y, —2).

Solution diagrams of the northern Halo families are shown in Figure 37.

The first Halo orbit mission is the ISEE-3 (International Sun Earth Explorer 3)
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(c) Inertial frame (Moon-centered) (a) Rotating frame

Figure 35: Different views of an Earth- Figure 36: Different views of a C2 orbit of
Moon C1 orbit (II) (cont’d) the Earth-Moon system

(b) Inertial frame (Earth-centered) (e) Inertial frame (Moon-centered)

Figure 36: Different views of a C2 orbit of the Earth-Moon system (cont’d)
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(a) The Halo family H1 (b) The Halo family H3

Figure 37: Solutions for H¢ of the Earth-Moon system

which was launched in 1978. The Solar Heliospheric Observatory (SOHO) was also in
the Halo orbit. It was launched on December 2, 1995, and reached its final destination,
the Sun-Earth L1 point, two months later, where it was injected into a Halo orbit,
on February 14, 1996. The Genesis mission also followed a Halo orbit around the L1
libration point in the Sun-Earth system.

The term Halo derives from the appearance of the orbit that a spacecraft would
seem to follow if it were viewed along the Earth-Sun line. Breakwell [12], Far-
quhar [31], and Howell [47] have studied the Halo orbits in detail.

4.10 The Axial families

The three Axial families are A1, A2, and A3. The name for these families come from
the fact that each orbit is axially symmetric about the x-axis under the transformation
y — -y, Z — -7, t — -t. The entire family of orbits forms a loop. The Axial family A
connects to the corresponding Vertical family Vi at one end, and to the Lyapunov
family Ls at the other end, respectively, with ¢ = 1,2,3. Except for these two branch

points, there are no further branch points along the Axial families. Figure 38 shows
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(a) The Axial family Al {(b) The Axial family A2

Figure 38: Solutions for A7 of the Earth-Moon system

(¢) The Axial family A3 (a) Rotating frame

Figure 38: Solutions for Ai of the Earth- Figure 39: Different views of an A3 orbit
Moon system (cont’d) of the Earth-Moon system
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(b) Inertial frame (Earth-centered) (c) Inertial frame (Moon-centered)

Figure 39: Different views of an A3 orbit of the Earth-Moon system (cont’d)

the solution diagrams for the Axial families of the Earth-Moon system.

Some of the orbits of the Axial family were plotted by Zagouras and Kazantzis for
= 0.00095 [88]. These orbits were also computed by Gémez and Mondelo [41] for
the Earth-Moon system. An Axial orbit in the inertial system consists of two parts,
the inner part (the blue part) and the outer part (the red part). In the Moon-centered
picture (Figure 39(c)), the Moon is located at the geometric center of the picture,
while the Earth is rotating around the Moon and its position is between of the inner

and the outer parts of the infinitesimal.

4.11 The Back-flip families

As mentioned above, the branch points Vi2 along the Vertical families Vi lead to the
Back-flip families. These families are named after the Back-flip maneuvers described
in [85]. Each orbit of these families consists of two parts. Half of each orbit is above
the x-y plane and half of each is below the x-y plane (see Figure 40). B1 ends at a
collision with the small primary. B2 ends at a collision with the large primary. B3

does not end with a collision. It connects to another Circular planar family, namely,
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) The Back-flip family B1 ) The Back-flip farnily B2

Figure 40: Solutions for Bi of the Earth-Moon system

(¢) The Back-flip family B3 ) The W family W4/W5

Figure 40: Solutions for Bi of the Earth- Figure 41: Solutions for W4, S4/S5, and
Moon system (cont’d) L4/L5 of the Sun-Jupiter system
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(b) The Short-period family 84/855 (¢) The Long-period family L4/L5

Figure 41: Solutions for W4, S4/S5, and L4 /L5 of the Sun-Jupiter system (cont’d)

C3. Gémez and Mondelo [41] also computed a family of Back-flip orbits for the
Earth-Moon system following a period-doubling bifurcation.

For decreasing mass ratio, the branch points V12, V22, approach C1, C2, along
V1, V2, respectively. For very small mass ratios, the branch points V12 and V22 are
very close. As a result it is difficult to switch branches at these points, in the case of
the Sun-Earth system.

The Back-flip family B1 is very interesting and complicated. The orbits of this
family can be divided into three groups based on their shape. D. J. Dichmann et al.

[22] give a detailed description of these orbits.

4.12 The W, L and S families

W4 bifurcates from V4’s first branch point, namely V41, and it connects to W5 and
H1 at H11.

The families S4, S5, are planar families that bifurcate from L4, L5, respectively.
Both S4/85 connect to L3 at L33.

Another planar family bifurcates from L4, namely, the “Long-period” family L4,
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while its symmetry partner L5 bifurcates from L5. The Long-period families reconnect
to the Short-period families at the branch points S41 and S51. The nature of this
reconnection depends on y. For the Earth-Moon system, S41 and S51 correspond to
period-quadrupling bifurcations along S4 and S5, respectively.

Figure 41 depicts solutions for W4, L4, and L5. The Long-period orbits have
indeed “long periods”. If the period of Jupiter rotating around the Sun is taken as
one, even the shortest orbit in the diagram has a period over 78. The comutations
also show that if the distance of an orbit from the libration point changes a little,
its period increases greatly. In Figure 4.41(c), only four orbits are shown, the blue,
green, yellow, and the red one. The blue one has the shortest period. The orbit
becomes much more complicated when the period increases.

For decades most of the known periodic orbits were symmetrical. However, more
and more asymmetrical periodic orbits are known today [14]. The Short-period and
the Long-period families were the first known families of asymmetrical orbits These
two families exist when the equilibrium point L4 is linearly stable, i.e., when the mass
ratio 4 of the smallest primary to the total mass is smaller than 0.03852 [14].

In 1911, Brown [13] conjectured that the Long-period family has a final orbit
doubly asymptotic to the unstable point L3; such a doubly asymptotic orbit is called
a “homoclinic orbit”. The numerical computation of J. Henrard [11] have shown that

in the Sun-Jupiter case (1 = 0.000953875), the Brown conjecture is not true.

4.13 Summary

In this chapter, AUTO was used to compute periodic solutions of the CR3BP. Results
for the Earth-Moon, the Sun-Jupiter, and the Sun-Earth systems were given. Bifur-
cation diagrams of these systems were also constructed from these solutions. The

stability of these solutions along some families was also discussed.
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Chapter 5

Development of Data Visualization

and Animation Software

5.1 Introduction

Graphical viewing of scientific data helps to understand them. Data visualization
for scientific calculations has been an important area in Computer Science, and it
is foreseeable that this trend will continue in the future. The CR3BP is a very
complicated problem. The datasets that contain its solutions can be large. For
example, for one orbit family, we may have several Megabytes of data. It is almost
impossible to read these data. A good graphics tool is necessary in this research. As
one of the best tools for ODE bifurcation analysis, AUTO has an old graphics tool,

which was developed in the time of black-and-white graphics. Its drawbacks include:

e it does not have good 3D graphics capability;
e it cannot animate solutions;

e the command line interface is an obstacle for new users.

These factors motivated us to develop a new tool. In this chapter, the development

of the new graphics and animation tool for visualization of AUTO data is discussed.

5.2 Objectives

The new tool, called PLAUT04, focuses on the following objectives:
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1. Usability. A disadvantage of the old AUTO graphics tool is that it is hard to
learn and hard to use. The old graphics tool uses command-driven techniques.
This results in a steep learning curve for new users. Users have to memorize
the commands and know how to use them. The more powerful computers and
user-friendly graphical OS are used, the less command line interfaces are used.
The graphical interface and event-driven techniques in PLAUT04 provide an

easy-to-learn, easy-to-use, user-friendly environment.

2. Generality. PLAUT04 can be used for general AUTO data. An extended
version of PLAUT04, called PLAUT04/r3b, is developed especially for data
visualization of the CR3BP.

3. Flexibility. The old graphical tool has limited 3D capabilities. This requires
a user to have a powerful imagination to reconstruct 3D pictures of a system
mentally. Although, this is not a problem for some users, it is difficult for most

people. Allowing users to view data in a 3D environment is helpful.

4. Animation. The capability of animation of solutions is very useful for under-
standing them. PLAUT04 provides not only general purpose animation, but
also extended functions for the CR3BP. These extended functions include, (i)
showing the data in both the rotating and the inertial frames. (ii) selecting the

origin of the inertial frame.

In the implementation, aspects of human-computer interface and software engi-

neering are also considered.

5.3 Development environment and architecture

AUTO was originally written in FORTRAN. However, AUT02000 has provided a
command line interface based on Python, and the source codes have been rewritten
in C. AUTO is mainly used under Linux, so we choose Linux as our development
platform.

For better portability to different Unix or Unix-like platforms, Motif is selected
as our GUI programming library. Open Inventor is chosen to create the 3D inter-
active graphics, and C/C++ is chosen as the programming language for PLAUT04.
Figure 42 shows the architecture of PLAUT04.
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Figure 42: Architecture of PLAUT04

5.4 Overview of Open Inventor

According to SGI, Open Inventor is “an object-oriented 3D toolkit offering a com-
prehensive solution to interactive graphics programming problems. It presents a pro-
gramming model based on a 3D scene database that dramatically simplifies graphics
programming. It includes a rich set of objects such as cubes, polygons, text, materi-
als, cameras, lights, trackballs, handle boxes, 3D viewers, and editors that speed up
your programming time and extend your 3D programming capabilities” [81].

Open Inventor has been widely used in 3D graphical visualization, and has become
the de facto standard 3D graphical API for complex scientific and engineering 3D
visualization, and visual simulation applications.

Based on OpenGL, Open Inventor objects include database primitives, such as
shape, property, group, and engine objects; interactive manipulators, such as the
handle box and trackball; and components, such as the material editor, directional
light editor, and examiner viewer.

There are three different implementations of the Open Inventor APL

1. The first and the most popular implementation is developed by SGI. Initially,
the use of this implementation was based on a SGI license. On August 15, 2000,
SGI released the source codes to the open source community. The latest version

of this implementation is 2.1.5.10 as of August, 2004.

2. The second widely used open source implementation of the Open Inventor API
is called Coin. The Coin Application Programmer’s Interface (API) is fully
compatible with SGI’s Open Inventor v2.1, and it also incorporates many new

features.
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Coin is sponsored by Systems In Motion. Coin 2.2 was released on January 15,
2004.

3. The third implementation is from TGS. This implementation is a commercial

package.

These three implementations are source code compatible. Coin is used for the

development of PLAUT04,

5.5 User requirement specification

5.5.1 User requirements

e Starting the program.
A user starts the program from the command line.

A user should be able to read both datasets in the current directory and datasets

in other directories.

A resource file is needed for a user to set up predefined parameters.

e Selecting datasets to be drawn (solution/bifurcation).

After the program is started, a user should be able to select any combination of
the columns in AUTO data files to be shown. A user should be able to select the
type of diagram to be drawn — either the solution diagram or the bifurcation

diagram.

e Selecting graphics type (curve, tube, surface).
The GUI should also provide different styles, such as curves, tubes, or surface(s),
for the graphics.

e Adding/ removing graph widgets (coordinate axes, primaries, reference plane,
libration points).

The widgets, such as the coordinate axes, primaries, reference plane, and libra-
tion points, may be useful. The capability of adding widgets to/removing them

from the scene graph is also important.
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e Solution and orbit animation.
Solution and orbit animation help to understand the orbit changes, and help to
predict the tendencies of these changes.

e Changing frames of the system (inertial frame, rotating frame).
For the CR3BP, the model is built in a rotating frame. However, graphics in an
inertial frame is more intuitive. The capability of converting the graphics from
the rotating frame to the inertial frame, or reversely, is useful for the CR3BP.

e Picking data.
A way of showing the data corresponding to an interesting point in the graphics
is also required.

e Setting default values.
A user’s current settings should be saved in a default resource file, so that the
same settings can be used in the future.

e Manipulating the graphics (zoom in/zoom out/rotate).
A user should be able to zoom in and zoom out, in order to see the details
of an interesting part. A user should be able to view the graph from different
directions.

e Exporting the graphics to an Open Inventor text file.

Saving the graphics in an Open Inventor text file is useful. This allows users,
who do not have PLAUTO4 installed on their system, to view the graphics
generated from PLAUTO4 , when they have Open Inventor installed.

e Stopping the program

A user must be able to stop the program at any time.
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5.5.2 Non-functional requirements

Hardware

CPU: Pentium III 800 or higher.
Memory: 128 Megabytes or higher.
Other:

At least 1 Megabyte hard drive space available for the software installation.

Software

Operating System: Red Hat Linux 7.3 or higher.

Applications:
OpenGL or Mesa is essential;
SGI Open Inventor 2.1.5.10, or Coin3D 2.2 with SoXt 1.1.0
and simage 1.6 must be included in the system:;

Motif 2.0 or later is required.
5.6 System design and implementation

5.6.1 The system architecture
System components

Figure 43 depicts the system components. It contains four components: GUI, data
parser, data model (or data object), and graphical object.

The GUI component is responsible for querying the data object component, where
all the persistent data is stored using a linked list. All the data in the data object
is parsed from the AUTO data files, “s.zzz”, “b.zzz”, and “d.zzz”, by the data
parser component. The AUTO “s.xxx” file stores information about solutions; the
“b.xxx” file stores information about the bifurcation diagram; and the “d.xxx” file
stores Floquet Multipliers and other diagnostic information. The graphical object
component gets data from the data object and generates the diagram.

The GUI component allows users to achieve the complete functionality, and is
implemented using widgets provided by Motif. The GUI component constructs the
entire user interface.

Since the other components are independent of each other, the GUI component
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Figure 43: System component diagram

has to bridge the gaps between other components. It is the actual “control center”
of PLAUTO4. It is responsible for manipulating the scene and controlling the sys-
tem. From the GUI, a user can give commands to change graphics type and style,
add/remove widgets, and animate solutions, etc.

The graphical component maps the data from the dataset to the screen in colored

graphics based on user’s choice.

SolutionFamily BifurcationFamily DiagnosticFamily

0.1 0.1 0.1

used by

1

invoke
1 1

DataConvertor

SceneGraph

1 1
drawn in control

1 1

GUI

Figure 44: System class diagram

Figure 44 shows the classes that comprise the package. Based on their function-
ality, the classes can be divided into three main groups: classes related to the GUI,
classes related to the AUTO data parsing and manipulation, and classes related to

the scene graph generation.
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The GUI class is comprised of various Motif Widgets, such as XmButton, XmFrame,
XmPanel, XmLabel, XmDialog, XmCombobox, XmList, etc. Due to their detailed
nature, they are not modeled in the diagram.

The SolutionFamily class, the BifurcationFamily class, and the DiagnosticFamily
class focus on AUTO data parsing and AUTO data manipulation. The database for
the system is also created and maintained with these classes.

The DataConvertor class is a utility class which converts the AUTO data from a
rotating system to an inertial system.

The SceneGraph class creates the scene graph. It reads AUTO solution and bifur-
cation data from the database created by the AUTO data manipulation classes, and

it also uses the system environment variables which are set by the GUI component.

System state diagram

Parsing data
Initialization
Populate database

4 )
Change Animate
Add/Remove pist Component Add/Remove ~ Change Component
Widgets Change Style Widgets Color Animation
l I I I l I Change Style
Show Bifurcation Diagram Stor
Solution Diagram Bifurcation Diagram P
< Show Solution Diagram - C
Start Stop
Animation IAnimation
Animation
In Inertial Frame Scene
Rendering and Manipulation
(. >
Export Change . Print
Complete Finish Complete
a scene Prefererjces a scenge

I Export An OI File i ‘ Set Preferences l | Print A Scene ’

Figure 45: System state diagram
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Figure 45 shows the various states which the system can progress through, on an
abstract level. There are six states for the system, if we don’t count the start and
stop states.

When the program starts to run, after the system initialization, it parses the data
from the AUTO data files and populates the database for the system. Then it enters
the “Scene Rendering and Manipulation” state to present and manipulate the scene.
The “Scene Rendering and Manipulation” state is the most important state of the
system. It includes three sub-states, “Solution Diagram”, “Bifurcation Diagram”,
and “Animation Inertial Frame”. The system can stop running from this state.

The “Solution Diagram” sub-state is chosen as an example to give a detailed
description of the “Scene Rendering and Manipulation” state.

In the “Solution Diagram” sub-state, the solution diagram is shown in the graphics

render area. Any of the following events may trigger the state change:

e Add widgets to/remove widgets from the scene (reference plane, primaries, co-

ordinate, background, legend);
e Change the style of the diagram;
e Change the coloring method;
e Animate a component;

e Show the bifurcation diagram;

Start the animation in an inertial frame;

Export a scene to a standard Open Inventor file;

Print a scene;
e Change preferences.

The “Solution Diagram” has many sub-states. The first four groups of events lead it
to one of its sub-states.

The “Show bifurcation diagram” event leads the system to the “Bifurcation Dia-
gram” sub-state. In this sub-state, the bifurcation diagram is displayed. Similar to
the “Solution Diagram” state, there are also many events which can lead to its state

change.
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When the “Start animation” event happens, the system is led to a new state,
“Animation in an inertial frame”. In this new state, the system animates the solutions
or orbits in the inertial frame for the CR3BP. When this event is triggered, the system
calls the data converter object to convert the data from the rotating frame to the
inertial frame. Then it creates the scene and coordinates the motion of the three
bodies.

When the “Export a scene ” event happens, the system exports the current scene
to an Open Inventor text format file, which can be viewed with Open Inventor
SceneViewer. This function is useful for sharing the scene graph with those users
who do not have PLAUT04 on their system.

When the “Change preferences” event happens, it allows a user to change the

default settings for the system.

5.6.2 Graphic user interface design and implementation
Graphic user interface design

In order to satisfy the user requirements, the main GUI window is divided into two
areas, the “command” area and the scene render area. The so-called “command”
area is not a command line input zone, but a comprehensive name for the menu bar,
dropdown list bar, the thumb wheels, and the pushbuttons, etc. In this graphical
user interface, all commands are iconized so that a user can use the mouse to do the
operations.

Figure 46 shows the layout of the GUI design. The center area is the render area
for the scene graph. The areas around it are the “command” area, which is used to
manipulate the scene graph and complete GUI operations.

The “command” area is composed of three subareas, the menu bar, the drop-down
list bar, and the Pushbutton and Thumb Wheel Form.

The menu bar is composed of seven menus. Each of them represents a group of
functions of the system. They control the states change of the scene graph. Switching
between menu items can be done at any time as long as no other event sequence is

running. The functions of each menu are described as follows,

e The “Style” menu allows a user to select the graphics style. The most favorite

style is tubes. Other choices are curves, and surface.
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Figure 46: GUI component design

e The “Type” menu allows a user to choose between the solution diagram and
the bifurcation diagram. In some cases, a user may choose the solution diagram
as the default diagram, while in other cases, a bifurcation diagram tells more
information. From this list, a user can switch between the solution diagram and

the bifurcation diagram and extract more information from their comparison.

e The “Coord” menu provides functions for adding coordinate system axes and

scales to the scene graph, or removing them from it.

e The “Center” menu is especially designed for the CR3BP. In this list, a user can
animate the diagram in the inertial coordinate system. A useful feature is that
a user can change the coordinate center of the system. Therc are three choices,
“bary-centered”, “large-primary-centered”, and “small-primary-centered”. In

the general purpose version, this list is not shown.

e The “Options” menu focuses on adding widgets to the diagram as well as setting
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preference variables. Optional widgets for a typical CR3BP solution diagram
are “primaries”, “reference plane”, “orbit animation”, “solution animation”,
etc. The default values of these choices can be set by choosing “preference” in
this list.

e The last list is the “Help” menu. It provides detailed information about how to

use PLauT04.

The drop-down list bar is composed of six drop-down lists, one spin-box, and two
scales. Each of them changes the scene graph’s sub-state, namely, it can only change
graphics’ property, but does not make great changes to the structure of the graphics.

The functions of each menu are as follows,

e The X,Y,Z lists constitute the three axes for the 3-dimensional coordinate sys-

tem. If a user wants to view a 2-dimensional graph, the 7 list is disabled.

The items for these three lists are the same. They are composed of the variables
of a problem plus time for the solution diagram, and they are composed of
the parameters of a problem for the bifurcation diagram. For example, in the
CR3BP, the items for a solution diagram are time, z,y, 2, z’,y’, and 2’. However,
the items for a bifurcation diagram may be par(1], par[2], par[3], par[10], par[15],

etc., based on the user’s problem specification.

The Label list lets a user select the label to be drawn or animated.

The Color list provides many different coloring methods for the scene graph.

The Period Spinboz is used when a user animates an orbit in the inertial frame.
In this case, a user can set the number of periods that needs to be animated

before the system redraws the diagram on the screen.

The SatSpeed Scaler and OrbitSpeed Scaler are used to adjust animation speed.

The Pushbutton and Thumb Wheel Form contains several pushbuttons and three

thumb wheels for the zooming in/out and the rotating of the scene graph.

e The 2D/3D pushbutton controls the switching of the graphics between 2D and
3D.
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e The Picking button is used to pick a point in the diagram. This will lead to
a pop-up window, where the raw data and related Floquet Multipliers of the

point will be shown.

o The three Thumb Wheels are used for the zooming in/out and rotating of a

scene graph.

Create Topform

Create Menu

Create Dropdown
Lists Bar

Create RenderArea

Layout the Widgets

Manage the Widgets

Figure 47: GUI flow chart

Graphic user interface implementation

As mentioned before, in the implementation of the GUI, many Motif Widgets are
used. The main window of the design is implemented using a Motif Form class. The
Form widget provides many controls over the placement and sizing of the widgets it
manages. A Form can lay out its children in a grid-like manner or it can allow its
children to link themselves to one another in a chain-like fashion. It is one of the

most important Motif manager widgets.
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Figure 48: GUI parent-child relationship between widgets

The menu bar is implemented using a Motif RowColumn widget. This RowCol-
umn widget has a convenient creation function, XmCreateMenuBar(), for users to
create a menu bar easily. The menu bar is created and placed along the top of the
application window, and seven CascadeButtons (file, type, style, coord, option, cen-
ter, and help) are inserted as its children. Each of the CascadeButtons has a Pulldown
menu panel associated with it. The menu bar, the seven CasecadeButtons and the
associated Pulldown menus constitute the GUI menu system.

Another Form widget is used as the parent widget to lay out the drop-down lists,
the SpinBox, and the Scales. The Motif ComboBox widget is an ideal selection
to implement the drop-down list. The SpinBox widget is used to create the Period
SpinBox. The Motif Scale widget is used as the Sat Speed and Orbit Speed adjustment
scalers.

Open Inventor provides an Xt widget, SoXtRenderArea, which provides an easy
way to integrate the Motif GUI and Open Inventor rendering area. The integration
of Motif and Open Inventor is discussed further in Section 5.5.5.

Figure 47 shows the flow chart of the GUI implementation. The parent-child

relationship between widgets is depicted in Figure 48.
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5.6.3 Data manipulation component design and implemen-

tation

The data parser is concerned with the data parsing. The AUTO dataset is stored
in its specific format. It includes great amount of information. However, not all of
it is useful in the visualization. Before the graphical object can use it, the parser is
used to parse useful information from AUTO datasets and the results are sent to the
dataset object.

The dataset object stores and manages the data in a linked-list. The dataset
object is also in charge of the converting of the data from the rotating system to the
inertial system.

The basic unit for the solution file is a solution. The following C/C++ struct is

used to represent it.

struct solution{
long position;
int nrowpr;
int branch;
int point;
int type;
int label;
int new_label;

struct solution *next;

};

The struct saves some basic information of the solution file. It does not really
read the raw data into the memory. When necessary, PLAUT04 uses the position
information to look for the data in the data file. This design avoids storing a lot of
useless data in memory. In addition, it uses a random search method to read the file,
which also increases the file reading speed.

Key data related to the graphical rendering, such as the number of points in the
dataset, in a solution family, and in a particular solution, etc., are saved in struct
SolNode and BifNode, which are utility structures for the graphical object. The
graphical object uses them to decide where and how to obtain the data. This design

further increases the rendering efficiency of the graphics.
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The data parser extracts the solution information and saves it in the solution

struct. The pseudocodes for parsing the solution file are as follows.

Set head = new solutionNode
Read head->component

Set currentPtr = head

Read inputValue
WHILE NOT EOF{
Set newNodePtr = new solutionNode
Set newNodePtr->component = inputValue
Set currentPtr->next = newNodePtr
Set currentPtr = newNodePtr
Read another inputValue
}

Set current->next = NULL

The codes of the data parser for the solution are almost the same as that used in
creating a linked list.

The pseudocodes for parsing the bifurcation file are listed as follows.

set numBranches 0;
0;

set totalPoints
set numPtInBranch = 0;
set last = 0;

Read inputLine;
WHILE NOT EOF {
if (branch != 0){
if(last == 0){
numBranches++
numPtInBranch++
}else if (last == branch){
numPtInBranch++
}else{
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set the number of points of the current branch to numPtInBranch
numBranches ++
numPtInBranch = 0

}
}else if(last 1=0){

set the number of points of the current branch to numPtInBranch

numPtInBranch = 0O
}elseq

- A comment line, skip it.

}
last = branch

Read inputLine

¥

set myBifNode component value

Another important part of the data manipulation object is the data converter

method. We have discussed the algorithm in Chapter 3.

5.6.4 Graphic object design and implementation

o @

Engine Shape Group Transform
s \HH
S\ R
RealTime Appearance Subgraph Metric/Toplogy

Figure 49: Scene graph symbols

The graphical object generates the graphics and maps it to the screen. Open
Inventor toolkits are used in the graphical rendering. In this section, the Open In-
ventor scene graph node diagrams are used to describe our design. Figure 49 shows

the symbols used in the scene graphs.
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Figure 52: Libration point node

In the graphical objects, the widgets designed to satisfy the user’s requirements
are: solution/bifurcation scene widget, reference plane widget, coordinate system
widget, libration points widget, and legend widget. Each of these widgets is composed
of many Open Inventor nodes. For example, the reference plane widget is the simplest
widget in our design, which has the structure shown in Figure 50. It includes an
Open Inventor SoSeparator node, a SoTranform node, a SoMaterial node, and a
SoShape node. The SoSeparator node is the root for the reference plane widget.
It separates this node from the others, so that the properties defined by others do

not have influence on the reference plane. The SoShape node defines the shape of
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the reference plane and the way to draw it. The SoMaterial node sets the material
properties such as texture, color, etc., for the reference plane. The SoTransform node
defines where the reference plane should be put and how to put it there.

Figures 51, 53, and 54 give the Open Inventor database structure for the other
widgets. These widgets are much more complex than the reference plane widget.
The solution and bifurcation scene widgets use other widgets and some advanced

techniques (for example, engines, blinkers, sensors, etc.,) to animate solutions.
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Figure 53: Coordinate system node
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Figure 54: Solution node

In Figure 52, the five libration points have the same shape, color, and texture,
and the only difference between them is that they are put in different locations. So

the shape node and the material node are shared by the five libration points. In this
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Figure 55: The full scene graph architecture

case, the shape node has five parents. Shared instancing offers database and program
economy since objects can be reused without duplicating them.

Figure 53 shows the scene graph node for the coordinate system. It is created
in three steps. In the first step, we create the three unit length axes, x-axis, y-axis,
and z-axis, and different colors and textures are assigned to each axis. Then they are
integrated into one unit coordinate system. In the last step, the unit coordinate is
scaled and transformed so that it can fit the size of the scene graph and is put in the
right position.

The most complicated and important scene graph is the solution scene. Figure
54 is a simplified version of what we used in PLAUT04. Nodes related to coloring
scheme change, component animation, solution style change, efc., are omitted. In this
scene graph, two engines are used so that we can animate solutions in the inertial
system. The first engine, “myCounter”, receives input from the global timer, and
starts counting from a minimum number to a maximum number. The step value
indicates how the timer counts. The frequency input specifies the number of min-to-
max cycles. The output is taken as the input of the selection engine, which controls
the data to be drawn in the scene. This engine structure is the base of the animation.
In the real code, we have to synchronize the motion of the primaries, the infinitesimal,
the coordinate, and the reference plane, so the codes are more complicated than this
design.

Having the sub-graphs prepared, it is easy to obtain the entire scene graph (see
Figure 55).

The following presents the pseudocodes for creating the solution scene graph.

Many details are omitted so that we can see the architecture more clearly.

Initialize scene root

81



If Opt_Normalize Data is TRUE
- Normalize Data
If animateInInertialFrame is TRUE
- Converter Data To Inertial Frame
- animate the solution scene in inertial Frame
If Opt_DrawSolution is TRUE
If Opt_DrawLibPoints is TRUE
- create the libration point scene
- add it to the root.
If Opt_DrawCoordinates is TRUE
- create the coordinates
- add the coordinates to the root.
If Opt_DrawReferPlane is TRUE
- create reference plane
- add the reference plane to the root
If Opt_DrawPrimaries is TRUE
- create primaries
- add the primaries to the root
If Opt_DrawBackgroud is TRUE
- create background

- add background to the root

- create solution scene graph
- add the solution scene to the root
else
- create widgets for the bifurcation scene
- add the widgets to the root
- create the bifurcation scene graph

- add the bifurcation scene graph to the root.

The pseudocodes show us the structure of the solution scene graph. The function
prototypes for creating those widgets are listed below.
void normalizeSolData();

This function is used to normalize the solution data. Sometimes, a user may want
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to rescale the original data to [0, 1]). It is exactly what this function does.

SoSeparator * createDisk(float where|], float scaler);

This function is used to create a reference plane widget. The position and the
size of the disk should be decided in advance, and then a reference plane widget is
returned.

SoSeparator * createLibrationPoint(float mu, float dis, float size, char *texture-
FileName);

This is a function for creating the libration points. When this function is called,
the first three arguments must be initialized, and the last one tells the procedure
where to look for the texture for the libration points. “mu” is the mass ratio, “dis”
is the distance between the two farthest points in the scene, and “size” is the size of
the libration points. This function returns a libration point widget object.

SoSeparator * createPrimary(double mass, double pos, float size, char *texture-
FileName);

This is a function for creating the primaries. It has four arguments. The “mass”
is the mass of the primary. The “pos” tells the system where the primary should
be drawn. The “size” decides how big the primary should be. The last argument is
the file name for the texture used for this primary. This function returns a primary
widget.

SoSeparator * createStarryBackground(char * bgFileName);

This is a function for drawing a starry background. This function takes a picture
as a background for the scene graph. It reads a picture from a file, then converts it
to an Open Inventor object and returns the object.

SoSeparator * renderSolution( );

This function creates the solution scene.

SoSeparator * createSolutionInertial FrameScene(float dis);

This is a function for creating a solution scene in the inertial frame. It calls the
“convertDataTolnertialSystem()” first and then uses the converted data to animate
the motion of the three bodies in space.

SoSeparator * createBifurcationScene();

This function is used for creating a bifurcation scene.
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5.6.5 Integrating Open Inventor and Motif

In most cases, a user wants to see the graphics and manipulate it. This requires
that an application not only draws lively graphics, but also provides an easy-to-use
method to manipulate the graphics and change variables related to the graphics. In
other words, a useful graphic application needs not only a perfect way to view the
graphics, but also has a user friendly interface to allow a user to change it.

As mentioned before, Open Inventor is used to create the 3D graphics and do the
animation in our software. However, like most 3D applications, Open Inventor ends
up using 3D graphics primarily in one or more “viewing” windows. In most cases, the
graphical user interface aspects of an application use standard 2D interface objects
such as pulldown menus, dropdown lists, slider bars, pushbuttons, and dialog boxes.
Creating and managing these common user interface objects is where Motif, Tcl/ Tk,
and Qt perform well. Many reasons push us to take Motif as our choice in the GUI
building. First of all, Motif is the X Window System’s industry-standard interface
for user interface construction. It is the most popular toolkits for building GUI for
Unix and Unix like systems. Second, it is well supported by all desktop environments,
such as KDE, Gnome, etc. Furthermore, the nice look-and-feel, well-documented,
standard widget sets, make it easy to learn and convenient to use. Although Open
Inventor provides simple mechanisms for handling events, such as key press or mouse
movement, it would still be very complicated and time consuming to use them to build
a powerful GUIL No one really uses them to program the GUI in real application.

The Open Inventor SoXtRenderArea Component provides us an Xt render area
for displaying a scene graph. This library is an Inventor C/C++ wrapper around
a Motif-compliant widget. We can layer components in a window with other Motif
widgets using standard layout schemes, such as bulletin boards, and form widgets.
This Inventor Xt Component provides an easy way to integrate Open Inventor and
Motif.

In the render Area, the SoXtRenderArea is an Xt widget that performs OpenGL
rendering. When it receives X events, it translates them into SoEvents, which are
then passed to the scene manager for handling.

We have shown the key manager and primitive widgets that make up the GUI of
our application in Figure 46. The following are the source codes for integrating the

GUI and the Open Inventor render area.
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// build the toplevel widget
topform = XtCreateWidget("topform", xmFormWidgetClass, parent,NULL,

// build menubar
Widget menubar = buildPulldownMenu(topform);

// build list carrier for the x, y, z, and label lists.
Widget listCarrier= XtCreateWidget("ListCarrier",
xmFormWidgetClass, topform, NULL, 0);

// create RENDER AREA FOR THE graphics.

renderArea = new SoXtExaminerViewer (topform) ;

renderArea->setSceneGraph(sceneGraph) ;

------

// LAYOUT THE FORM. LAYOUT ALL THE WIDGETS.

// Positioning the menu bar.

n=0;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM) ; n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM) ; n++;

XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM) ; n++;
XtSetArg(args[n], XmNbottomAttachment, XmATTACH_NONE); n++;

XtSetValues (menubar, args, n);

// Positioning the listCarrier.

n=0;

#ifdef LIST_UNDER_MENUBAR
XtSetArg(args[n], XmNtopAttachment, XmATTACH_WIDGET) ; n++;
XtSetArg(args[n], XmNtopWidget, menubar ); n++;

XtSetArg(args[n], XmNbottomAttachment, XmATTACH_NONE); n++;
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#else
XtSetArg(args[n], XmNtopAttachment, XmATTACH_NONE) ; n++;
XtSetArg(args[n]l, XmNbottomAttachment, XmATTACH_FORM); nt++;
#endif
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM) ; n++;
XtSetArg(args[n], XmNrightAttachment,  XmATTACH_FORM); n++;

XtSetValues(listCarrier, args, n);

// Positioning the Render Area

n=20;

#ifdef LIST_UNDER_MENUBAR
XtSetArg(args[n], XmNtopAttachment, XmATTACH_WIDGET) ; n++;
XtSetArg(args[n], XmNtopWidget, xAxisList ); n++;

XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM ); nt++;

#else

XtSetArg(args[n], XmNtopAttachment, XmATTACH_WIDGET) ; n++;

XtSetArg(args[n], XmNtopWidget, menubar ); nt+;

XtSetArg(args[n], XmNbottomAttachment, XmATTACH_WIDGET); n++;

XtSetArg(args[n], XmNbottomWidget, xAxisList ); n++;
#endif

XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM ); n++;

XtSetArg(args[n], XmNrightAttachment,  XmATTACH_FORM ); nt++;
XtSetValues(renderArea->getWidget (), args, n);

// manage the children
XtManageChild (menubar) ;
XtManageChild(listCarrier);
XtManageChild (topform) ;

The topform, the Motif FORM widget above the SHELL, is the main widget
that contains the interface layout. The menuBar, listCarrier, and the renderArea are
positioned above the topform, and all the other widgets are rooted at them. This

organization makes the GUI clean and well-organized.
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5.7 Running and testing

A high quality, stable package is always based on a thorough test scheme and extensive
testing. In this part, a variety of test cases are outlined for PLAUT04. These test cases
are geared to examine the functionality of our software components as extensively as
possible, yet within a reasonable amount of time. In order to maximize the stability
of our software, we have provided test cases which follow the normal operation of our

program, along with some to handle exceptions.

5.7.1 Starting the program

Before we talk about the test cases, we’d rather discuss how to start the program. We
suppose that both the hardware and software environments are satisfied, PLAUT04 has
been installed in the system, and the environment variables have been set. More
detailed description about the installation is described in Appendix B. The related
software and hardware environments for running PLAUT04 are described in Appendix
B too.

There are three methods to start the program. The simplest method is by typing

“plaut04” in the command line of a Linux console window as follows,
$ plaut04

After keying in this command, the program will start to run. It will first look for the
resource file in the current directory to get the specified resource settings. If there is
no resource file in the current directory, the program will access the default directory
and use the default resource file. If both are not found, it will use the internal settings.
After that the system will look for the default AUTO data files, namely, fort.7, fort.8,
and fort.9, in the current directory. If none of them exists, an error message will be
given. If the above two steps execute successfully, we should see the GUI and the
scene graph. Figure 56 is a snapshot of the screen. From the above discussion, we
can see that this first method to run PLAUTO04 is used to show the default AUTO
data files under the default settings.

The second method to start PLAUTO4 is used when we want to view a specific
AUTO data file in the current directory. In this case, we need to type the command

with an argument, the data file name. For example, if we want to see AUTO data
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Figure 56: A snapshot of the GUI

files “s.H1”, “b.H1”, and “d.H1” which are stored in the current directory, we need

type the command as follows.
$ plaut04 H1

We can also run PLAUTO04 to view a specific AUTO data file in other directories.
In this case, both the path to the directory and the file name are required. For
example, if we have “s.P1”, “b.P1” in the directory “/home/he/myR3B/me”, the

following command should be used to view it.
$ plaut04 /home/he/myR3B/me P1

Note that the two arguments are separated by space.
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For more detailed operation about the GUI, please refer to Appendix B. Actually,
almost all the operations can be found in the GUI menu bar by name. An on-line help
also provides guidance for using the functions of the menu bar and the drop-down

lists.

5.7.2 Test case specifications

The test cases are grouped into two parts. In the first part, the testing for the
starting, shut-down, and initialization of the system is discussed. In the second part,
the testing for the major functions of the system is discussed. We group the test cases
based on the functionality of the system. There are so many different combinations
that we could not enumerate all of them, so only some of the most important ones

are listed here.

Starting and initialization test cases

This section deals with testing the starting of PLAUTO04. It helps to make sure that
the program can be started properly when the arguments are provided correctly. If
the arguments are not provided in the right way, an error message should be printed.

This section also deals with the system initialization. It is focused on the resource
file testing. The purpose of this test case is to ensure that the resource file can be
correctly read. In the case that the resource file is not well written, the system should
still work and the error values should be automatically discarded.

Test description

Starting of the program

Initial system state

No state (Nothing has been created, used or started).

Input values '

In this test, there are three types of input. In the first case, there is no input
argument. In the second case, one argument is provided. In the third case, two
arguments , namely, the path and the filename, are provided.

Execution sequence
1. Resource file is created.
2. AUTO data file is created.
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3. Starting command is issued.

Expected results

1. The package should be able to read the resource file and AUTO data files

correctly.
Exceptions

1. If more than four arguments are typed, an error message should be issued and

the system should not start.

2. If no objects is found, error message should be printed out.

GUI functionality test cases

The test cases in this section concern with functionalities that can be performed from
the menu bar of the GUIL

I. “Type” Menu test case

Test description

Check to see if the available selections in the list work well. There are two choices
in this list. One is “solution”, the other is “bifurcation”. Based on the default value,
the system will choose which one to be shown.

Initial system state

The system is started normally and both “s.xxx” and “b.xxx” are read correctly.

Input values

1. type = SOLUTION, i.e., the solution file is selected to be drawn.

2. type = BIFURCATION, i.e., the bifurcation file is selected to be drawn.
Execution sequence

1. The global variable “graphTypeWidget” is set to “SOLUTION".

2. The method updateScene() is called to reload the data and update the graph.
3. The global variable “graphTypeWidget” is set to “BIFURCATION”.

4. The method updateScene() is called to reload the data and update the graph.
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Expected results

1. The old value of the global variable “graphTypeWidget” is substituted correctly

2. The scene graph is updated correctly, i.e., when SOLUTION is selected, the
correspondent solution diagram should be drawn in the graph area, otherwise,

the bifurcation diagram should be drawn in the graph area.

3. All fields contain what they are supposed to have.

II. “Style” Menu test case

Test description

This test focuses on the “Style” list of the menu bar. It verifies the correctness
of the available selected items in the list. There are three choices in this list, i.e.,
“line”, “tube”, and “surface”. By default, “line” is selected. A user can set up his
own default value in the resource file. v

Initial System State

The system is started normally and both “s.xxx” and “b.xxx” are read correctly.

Input values

In this test case, the input value is the variable “graphStyleWidget”. It can be
set to “LINE”, “TUBE”, and “SUFRACE”. We can start from any one of the three
values.

Execution sequence

We just give one sequence as an example for our testing. The other sequences are

similar to this.
1. The global variable “graphStyleWidget” is set to “LINE”.
2. The method updateScene() is called to reload the data and update the graph.
3. The global variable “graphTypeWidget” is set to “TUBE”.
4. The method updateScene() is called to reload the data and update the graph.
5. The global variable “graphTypeWidget” is set to “SURFACE”.
6. The method updateScene() is called to reload the data and update the graph.
Expected results
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1. The old value of the global variable “graphStyleWidget” is substituted correctly

2. The scene graph is updated correctly.

The Execute sequence should be arbitrarily changed so that each branch is tested
and to make sure the result is not sequence dependent.

ITI. “Options” Menu test case

Test description

In this test case, the “Options” list is tested. There are seven choices in this list,
“solution change animation”, “orbit change animation”, “draw legend”, “draw back-
ground”, “draw reference plane”, “draw primaries”, and “draw libration point”. The
first two options control the animation of the solution diagram. So in the Bifurcation
diagram, they should be disabled. Each of the last five options adds certain widget
to or removes it from the diagram.

Initial system state

The system is started up normally and both “s.xxx” and “b.xxx” are read cor-
rectly.

Execution sequence

The following steps must be tested randomly. The result must not be influenced

by the specific sequence which a user takes.

1. The global variable “graphWidget” is set to “draw reference plane”.
The method updateScene() is called to reload the data and update the graph.

2. The global variable “graphWidget” is set to “draw primaries”.
The method updateScene() is called to reload the data and update the graph.

3. The global variable “graphWidget” is set to “draw libration point”.
The method updateScene() is called to reload the data and update the graph.

4. The global variable “graphWidget” is set to “draw legend”.
The method updateScene() is called to reload the data and update the graph.

5. The global variable “graphWidget” is set to “draw background”.
The method updateScene() is called to reload the data and update the graph.

6. The global variable “graphWidget” is set to “Solution change animation”.
The method updateScene() is called to reload the data and update the graph.
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7. The global variable “graphWidget” is set to “orbit change animation”.
The method updateScene() is called to reload the data and update the graph.

Expected results

The scene graph is updated correctly. In the above first 5 steps, after each step
the correspond widget should be correctly added to or removed from the scene graph
no matter what sequence is executed.

When each of the last two steps is chosen, the system should either start or stop
the solution animation or the orbit animation.

IV. “Center” Menu test case

Test description

Check to see if the available selection items in the list work correctly. There
are four choices in this list, i.e., “rotating system”, “bari-centered system”, “large-
primary-centered”; and “small-primary-centered”.

Initial system state

The system is started normally and both “s.xxx” and “b.xxx” are read correctly.
In system default, the graph is shown in the rotating system.

Execution sequence

1. The global variable “graphCoordinateSystem” is set to “bari-centered”.

The method updateScene() is called to convert the data and redraw the graph.

2. The global variable “graphCoordinateSystem” is set to “large-primary-centered”.

The method updateScene() is called to convert the data and redraw the graph.

3. The global variable “graphCoordinateSystem” is set to “small-primary-centered”.

The method updateScene() is called to convert the data and redraw the graph.

4. The global variable “graphCoordinateSystem” is set to “rotating system”.
The method updateScene() is called to convert the data and redraw the graph.

Expected results

The scene graph is updated correctly, The data is automatically converted between
the rotating system and the inertial coordinate system.

V. “File” Menu test case

Test description
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Check to see if the available selection items in the list work correctly. The system
should be able to export a graph into an Open Inventor text file. This text file can
be read with Open Inventor SceneViewer.

Initial system state

The system is started normally and both “s.xxx” and “b.xxx” are read correctly.
The data is drawn correctly.

Execution sequence

1. export20I() is called.

2. write20I() is executed and an Open Inventor text file is generated.

Expected results
In the current directory, a new Open Inventor text file is generated and the same

graph should be drawn when it is opened with Open inventor SceneViewer.

5.8 Results

5.8.1 Creating solution diagrams

A solution diagram can be drawn using curves, tubes, or as a surface. Generally we
suggest a user use curves to show a diagram. Use of curves is the simplest and the
fastest way to show the solutions. Drawing the diagram by using curves takes less
system memory and the graphics updating is so fast that the time can be ignored.
This is especially the case for large datasets and complicated graphics. Figure 57 is
an example of the solution diagram using curves. Figure 58 gives the corresponding
tubes version. In general, it is much nicer to use tubes to show the diagram. However,
it takes more time and system memory. Although creating a graph using tubes is not
as fast as using curves, in most cases a user may not notice the difference between
them. In some special situation, such as a graph that has many solutions and the
dataset is huge, it will take some time for the system to deal with data parsing and

calculation. A surface diagram is displayed for the dataset in Figure 59.
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Figure 57: Drawing solutions using curves Figure 58: Drawing solutions using tubes

Figure 59: Drawing solutions as a surface = Figure 60: Drawing using Nurbs curves
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Figure 61: Drawing a bifurcation diagram Figure 62: Drawing a bifurcation diagram
using curves using tubes

5.8.2 Creating bifurcation diagrams

AUTO bifurcation diagrams are rarely in the form of surface. So we don’t implement
a method to show a bifurcation diagram as a surface. Figure 61 and Figure 62 give

bifurcation diagrams for the L3 family of the Earth-Moon system.

5.8.3 Animation of the motion of a satellite

Figure 63 and Figure 64 show the animation of the motion of a satellite in the rotating
frame and in the inertial frame. The red points in the diagrams are satellites and the

curves following them are their orbits.

5.8.4 Animation of a solution family

It is hard to draw an animation on paper. We only grab some of the interim screen
shot to show the concepts. They are three approaches to animate solutions. The first
approach is showing all orbits and animating the change of the orbits as depicted in
Figure 65(a). The second is showing an interested orbit and animating the change of
the others as shown in Figure 65(b). The third approach is showing the animation

with no orbit specified as displayed in Figure 65(c).
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Figure 63: Animation of the motion of &  Figure 64: Animation of the motion of a
satellite in the rotating frame satellite in the inertial frame

{(a) Show all orbits (b) Show a specified orbit

Figure 65: Solution animation

97



(¢) No orbit specified (a) Coloring by type

Figure 65: Solution animation (cont’d) Figure 66: Coloring the diagram

(b) Coloring by family (c) Coloring by label

Figure 66: Coloring the diagram (cont’d)
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5.8.5 Coloring solutions

There are many ways to color a solution or bifurcation diagram. The basic ones are
coloring by the type of the points, by the family of the solution/bifurcation, by point
number, or by label. One can also color the solution/bifurcation diagram based on
any column of the AUTO solution/bifurcation data. Furthermore, PLAUT04 allows
a user to color the solution by using any problem-related parameters.

Figures 66(a), 66(b), 66(c), show the results of different coloring methods.

5.8.6 Picking a point in the diagram

The picking function allows a user to pick any point on the diagram. When a point is
picked, a new window pops up. In this new window, the related data and the Floquet
Multipliers of that point are shown. Figure 67 is an example of the picking function.

The above testing results show some typical functions of PLAUT04. For more

examples, one can refer to the user manual.

5.8.7 Examples

PLAUTO4 can be used to view any AUTO datasets. We give some examples of
available datasets in this section. In these examples, the datasets are tested on a PC

with the following specifications:

1. Hardware
Processor: Intel Pentium 4
CPU Speed: 1.6 GHz
RAM: 384 Megabytes

2. Software
Platform: Redhat Linux 9.0
Examples of large dataset

Example 1 and Example 2 show the capability of showing a large dataset using
PrLauT04.
Example 1
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Figure 67: Picking a point
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Figure 68: The solution diagram of the Lorenz problem

The data for this example is from the Lorenz problem. The size of the solution
file is 27.83 Megabytes, the bifurcation file is 3.03 Megabytes, and the diagnostic file
is 0.12 Megabytes. The total size of the dataset is 30.96 Megabytes.

From the time when the command is issued to the time when the picture appears
on the screen, it takes approximately 12 seconds. Figure 68 shows the solution picture
of this demo.

Example 2

The data of this example is from the CR3BP. It includes all periodic families em-
anating from the libration points of the Earth-Moon system. There are 18 branches,
and 1437 solution orbits in the dataset. The size of the solution file is 137.41
Megabytes, the bifurcation file is 11.26 Megabytes, and the diagnostic file is 1.31
Megabytes. The total size of the dataset is 150 Megabytes.

From the time when the command is issued to the time when the picture appears
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Figure 69: The solution diagram of the Earth-Moon system

on the screen, it can take up to two and half minutes. However, in most cases, it
takes less than one minute. It depends on how many system resources are available.
Most of the time is spent on parsing and loading data. This example is for testing
purpose only. Because there are too many orbits, which overlap heavily, we cannot
really get much useful information from the diagram. Figure 69 shows the result.
From these two examples, we can see that the performance of PLAUTO04 is quite
acceptable. It also shows that PLAUTO4 is a robust tool. Example 2 includes 18
branches and 1437 orbits. This is much larger than that in most AUTO datasets.

Examples for problems with periodic solutions

In this section, some examples of periodic solution problems are given. All the data
are from AUTO demo files.
Example 3
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Figure 70: The solution diagram of Figure 71: The bifurcation diagram of
AUTO demo abc AUTO demo abc

Figure 70 and Figure 71 show the solution and bifurcation of AUTO demo abc
(see AUTO Manual [24]).

Example 4

Figure 72 and Figure 73 show the solution and bifurcation of AUTO demo pp2.

Examples of BVP

Example 5 and Example 6 represent AUTO BVP demos.
Example 5
Figure 74 and Figure 75 show the solution and bifurcation AUTO demo exp.
Example 6
Figure 76 and Figure 77 show the solution and bifurcation of AUTO demo bvp.

Examples of parabolic PDEs

Example 7
Figure 78 and Figure 79 show the bifurcation diagrams of AUTO demo brf and

bru.
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Figure 72: The solution diagram of Figure 73: The bifurcation diagram of
AUTO demo pp2 AUTO demo pp2

Examples of HomCont

Example 8
Figure 80 and Figure 81 show the solution diagrams of AUTO demo kpr and cir.
PLAUTO4 can be used to view the solutions and bifurcation diagrams of virtually
all AUTO applications.
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Figure 74: The solution diagram of Figure 75: The bifurcation diagram of
AUTO demo exp AUTO demo exp

Figure 76: The solution diagram of Figure 77: The bifurcation diagram of
AUTO demo bvp AUTO demo bvp
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Figure 78: The bifurcation diagram of Figure 79: The bifurcation diagram of

AUTO demo brf AUTO demo bru
Figure 80: The solution diagram of Figure 81: The solution diagram of
AUTO demo kpr AUTO demo cir
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Chapter 6

Conclusions and Discussion

6.1 Conclusions

By introducing an unfolding parameter, AUTO has been successfully used for the
computation of periodic solutions of the CR3BP, a conservative system.

Periodic solutions that emanate from the five libration points for the Sun-Earth,
the Sun-Jupiter, and the Earth-Moon systems were computed using AUTO, and
their bifurcation diagrams were depicted. The bifurcation diagrams give us a better
understanding of how the periodic solutions are connected. This is of importance in
the “interplanetary superhighway” research.

A new graphic data visualization package, PLAUT04, was developed for visual-
izing and analysing AUTO datasets. Features, such as an easy-to-use and easy-to-
learn GUI, data animation, and flexible data rendering and coloring methods, make
PLAUTO04 a necessary tool for AUTO users. The specially designed animation feature
for the CR3BP gives users an intuitive understanding of the motion of the three bod-
ies in three dimensional space and in the inertial frame. We hope it will help users
to have a better understanding of the CR3BP.

Data picking gives users a way to see the distribution of the Floquet multipliers.
Zooming in/out gives users a way to view the details of the diagrams. 3D viewing
allows users to observe the graphics from different directions.

The capability of rendering large datasets shows the robust design of PLAUTO04.
The speed of generating graphics from large datasets is reasonable.

Not only can PLAUT04 be used to create graphics from AUTO datasets for
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CR3BP, but also it is a general purpose package for all applications of AUTO. Our

examples have demontrated this.

6.2 Future development

PrauT04 is based on Motif and Open Inventor. This makes it possible to run
PLAUT04 on most Unix or Unix-like systems, without many changes. The cur-
rent development was done under Linux. In the future, we will test the package
under other Unix-like systems.

Some other development needs to be explored in the future. For example, the
surface rendering in the current version is reasonably fast and in most cases the
results are correct. However, it cannot generate a surface diagram from the data in
some cases. In the future, the surface rendering method needs to be further optimized.
In addition, more robust and efficient algorithms can be developed.

In the current version, there is little interoperation between the bifurcation dia-
gram and the solution diagram. Because the bifurcation diagram and the solution
diagram are closely related to each other, a future version of PLAUT04 should focus
on the interoperability between them. This would make the data visualization even

more intuitive for the users.
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Appendix A

How to Use AUTO for the CR3BP

AUTO is widely used for numerical bifurcation analysis. To learn more about using
AUTO, see the AUTO reference manual [24]. Here we explain how to use AUTO to
compute periodic solutions of the CR3BP.

A.1 The CR3BP equations

The equations, which model the CR3BP, are

P = % tz— (- p) e+ p)/rd - ple—1+p)/r3,
y' = =2 +y—(1-py/ri—py/r3, “2)

"

Z = —(1=p)z/r}—pz/r3,

where

o= Vit P+,

43
e = (@ —1+p)?2+y2+22 43)

In order to use AUTO to continue periodic solutions of the CR3BP, we modify

the original form of the equations as follows:
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7 =Tv, ,
!/
y =Tvy ,

Z=Tv, ,

v, =T[2v, +z — (1_“3,%‘””) - “(’”_T;r“)] + v,

v;=T[—2Uw+y—(l—;§%—%]+/\vy ,

o, = Tz B+ v,

Here A is a scalar unknown that is solved for at each continuation step, its value will
be zero (up to numerical precision) upon convergence of Newton’s method. The peri-
odicity boundary conditions, the integral phase condition, and the pseudo-arclength
equation, as in Equation (27), are automatically added by AUTO, when computing

periodic solutions. More details can be found in Chapter 2 of the thesis.

A.2 The CR3BP AUTO demo files

The CR3BP AUTO demo files can be found in the directory auto/2000/demos/xr3b/.
There are three sub-directories under it. The demo files for the Earth-Moon system
are in the sub-directory em. The demo files for the Sun-Earth system are in the sub-
directory se. The demo files for the Sun-Jupiter system are in the sub-directory sj.
Each directory contains similar files. We take the Earth-Moon system as an example
in this description.

The commands listed in Table 5 will copy the demo files to your work directory.

Table 6 lists all the files copied and their purpose.
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Command Action

mkdir cr3bp make a directory for the CR3BP.

cd cr3bp change the current directory to cr3bp.

@dm r3b/em copy CR3BP demo files for the Earth-Moon system to the cur-
rent directory. For the demo files of the Sun-Earth and Sun-
Jupiter systems, you can use @dm r3b/se, and @dm r3b/sj,
respectively.

Table 5: Copying the demo files for the Earth-Moon system

File Purpose

r3b.c the equations file for the CR3BP

c.r3b the constants file

s.start the start file for calculation for the Earth-Moon system
c.r3b.L1 the constants file for computing the L1 family

c.r3b.H1 the constants file for computing the H1 family

Table 6: The CR3BP demo files and their purpose

A.3 Listing of CR3BP demo files

Below is a listing of the equations file r3b. c. Function func() is defines the equations,
and function pvls() is for user-defined parameters. Other functions are not used in

our calculations.

/* */
/% 74
/*===== The restricted 3-body problem: periodic solutions =======x/
/* */
/% */
#include "auto_f2c.h"

/* */

int func (integer ndim, const double *u, const integer *icp,
const double *par, integer ijac, double *f, double *dfdu,
double *dfdp)
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double x, y, z, xXp, yp, zp, dE, dM, dE3, dM3, p, mu,

int i;

ulil; z
ul4l; Zp

ul2];
ul5];

x = ul0]; y

xp = ul3]; yp

mu = par[1];

p = par[2];

= sqrt ((x+mu) * (x+mu) + y*y + z*z);

& R

= gqrt( (x-1+mu)*(x-1+mu) + y*y + z*z );
mc =1 - mu;

dE3 1/ (dEx*dE*dE) ;

dM3 = 1/(dM*dM*dM) ;

f[0] = xp;

f[1] = yp;

f[2] = zp;

f[3] = 2*yp + x - mcxdE3*(x+mu) - mu*dM3*(x-1+mu);
f[4] = -2*xp + y - mc*dE3xy - mu*dM3*y;

f[5] = - mc*dE3*z - mu*dM3*z;

f[3] += p*xp;
£[4] += p*yp;

f[5] += p*zp;

return O;

}

/*

nc;

e e

int pvls (integer ndim, const double #*u, double *par)
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extern double getp();
double x, y, z, Xp, yp, zp, di, d2, mu, U, E;

mu = par[1];

x = getp("BVO",
= getp("BVO",

z = getp("BVO", w;

1, w;

2

3
xp = getp("BVO", 4, u);

5

6

-

, u);

w

yp = getp("BVO", 5, u);

zp = getp("BVO", 6, u);
dl = sqrt((x+mu)*(x+mu) + y*y + z*z);

d2 = sqrt( (x-1+mu)*(x-1+mu) + y*y + z*z );

U= (x%x + y*y)/2 + (1-mw)/dl + mu/d2;

E = (xp*xp + yp*yp + zp*zp)/2 - U - mu*x(1-mu)/2;

par[3] = E;

par[21] = getp("INT", 1, u);

par[22] = getp("INT", 2, u);

par[23] = getp("NRM", 3, w);

return O;
}
/* =%/
/#=============sss==ssssssssss=ssss==sssmssssss=sss=== */

int stpnt() {}
int bend O {}
int icnd O {2}
int fopt (O {}
/* */
[ ¥===mm==ss====——=——cscss—ocssssssossssssossssosssssssssssssosssss */
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Table 7 shows the parameters defined in the CR3BP and their purpose.

Parameter Purpose
1 the mass ratio p
2 the unfolding parameter A
3 the energy (Jacobi constant) F
10 the period T
21 [ x(t) dt
22 I3 (t) dt
23 \ o 2()? dt

Table 7: AUTO parameters for the CR3BP

An AUTO constants file, named c.r3b, for the CR3BP is also provided. All
constants used to control the calculations are set in this file. The best way to write a
constants file is to use an old one as a template. An constants file for calculation of

the L1 family is as follows:

62110 NDIM,IPS,IRS, ILP
6 2 10 21 22 23 3 NICP, (ICP(I),I=1,NICP)
50433-11500 NTST,NCOL, IAD,ISP,ISW,IPLT,NBC,NINT
100 -1e9 1e9 -3 3 NMX,RLO,RL1,A0,AL
5-56215530 NPR,MXBF,IID,ITMX,ITNW,NWIN, JAC
1le-9 1le-9 1le-4 EPSL,EPSU,EPSS
le-2 1e-5 1le-1 1 DS,DSMIN,DSMAX, TADS
1 NTHL, ((I,THL(I)),I=1,NTHL)
10 0
0 NTHU, ((I,THU(I)),I=1,NTHU)
3 NUZR, ((I,UZR(I)),I=1,NUZR)
10 1e2
10 1e3
-10 le4d

The start point for our calculations is the solution with label 11 in the start file,

s.start. In the start file, the label for each start point is comprised of a two-digit
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number 4j. The first digit ¢ corresponds to the libration point Li, 4 = 1,--.,5. The

second digit j means that this is the jth family that emanates from Li. In our

example, 11 corresponds to the “first” family that emanates from L1, namely, the

family L1. If you want to compute the other families, you can select the label of the

start point from Table 8.

Label

Libration Point

Family Reached

11
12
21
22
31
32
41
42
43

L1
L1
L2
L2
L3
L3
L4
L4
L4

L1
V1
L2
V2
L3
V3
L4
V4
S4

Table 8: Labels in the start file and their corresponding periodic families

A.4 Calculating the Lyapunov family L1

At this point, you can start the computations. Table 9 lists the commands for calcu-

lating the Lyapunov family L1.

Command

Action

cp c¢.r3b.1 c.r3b
@r r3b start
@sv L1

| get the first constants-file

compute the Lyapunov family L1
save the output files as b.L1, s.L1, d.L1

Table 9: Calculating the Lyapunov L1

Execution of the commands will result in the following output to be printed on

the screen.
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$ Qdm r3b/em

Copying demo r3b/em ... done

$ Or r3b start

gce -0 -DPTHREADS -0 -I/usr/local/auto/2000/include -c r3b.c

gcc -0 r3b.o ~o r3b.exe /usr/local/auto/2000/lib/*.0 -lpthread -lpthread -L/usr/local/auto/2000/1ib -lauto_f2c¢ -1m
Starting r3b ...

BR PT TY LAB PAR(2) L2-NORM U(3) MAX(1) PERIOD PAR(21) PAR(22) PAR(23) PAR(3)

11 5 654 2.351461E~14 0.000000E+00 8.432422F-01 2.699025E+0C 8.374743E-01 -1.402096E-15 0.000000E+00 -1.599117E+00
11 10 65 6.283557E-15 0.000000E+00 8.521878E-01 2.730155E+00 8.397523E-01 -1.566030E-15 0.000000E+00 -1.594864E+00
11 12 BP 56 2.385601E-15 0.000000F+00 8.548028E-01 2.743006E+00 8.406699E-01 -1.679280E-15 0.0000COE+00 -1.593174E+00
11 15 57 2.859613E-14 0.000000E+00 8.642796E-01 2.802097E+00 8.447246E-01 -1.903166E-15 0.000000E+00 -1.585860E+00
11 20 58 1.186205E-13 0.000000E+00 8.847038E-01 2.970880E+00 8.549615E-01 8.947336E-16 0.000000E+00 -1.568430E+00
11 25 59 1.607717E-12 O0.000000E+00 9.153939E-01 3.273906E+00 8.693172E-01 1.8465679E-13 0.000000E+00 -1.546023E+00
11 30 60 1.500458E-11 ©.000000E+00 9.549888E-01 3.774221E+00 8.851470E-01 5.313683E-12 0.000000E+00 -1.522652E+00
11 32 BP 61 5.269546E-12 0.000000E+00 9.666750E-01 3.950048E+00 8.890273E-01 1.808889E-12 0.000000E+00 -1.516696E+00
11 35 62 -1.941701E-11 0.000000E+00 1.002303E+00 4.573289E+00 8.975964E-01 -4.590192E-11 0.000000E+00 -1.500488E+00
11 95 74 -1.711399E-07 0.000000E+00 1.196342E+00 7.184007E+00 4.719162E-01 -2.933416E-06 0.000000E+00 -1.194227E+00
11 100 EP 75 -3.679044E-07 0.000000E+00 1.194461E+00 7.093447E+00 4.257231E-01 -5.556747E-06 0.000000E+00 -1.150220E+00

Total Time 5.935E+00

r3b ... done

$ Osv L1

Saving fort.7 as b.L1 ... done
Saving fort.8 as s.L1 ... dome
Saving fort.9 as d.L1 ... done
$

In this first run, we compute the Lyapunov family L1. Two branch points are
located along L1. The first has label 56, and the second has label 61, as seen in the
about output. The resulting data files are saved as “b.L1”, “s.LL1”, and “d.L1"”.

Command Action

cp c¢.r3b.H1 c.r3b using the H1 constant file to follow the first branch
point found in L1

@r r3b L1 compute H1

@sv H1 save the output files as b.H1, s.H1, and d.H1

Table 10: Calculating the Halo family H1 from L1

A.5 Calculating the Halo family from L1

We take the newly generated results s.L1, and b.L1 as our start file, and we take
the first branch point along it, namely label 56, as our restart point. To do this,
we change IRS to 56 in the constant file ¢.r3b. Then we start the second run by

following the commands in Table 10. Note that this time we use @ r3b L1 to run
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the computation, because now the start file is not s.start, but s.L1. The results
are saved in “b.H1”, “s.H1”, and “d.H1”.

Now you can use PLAUT04/r3b to view results of the above calculation. As to

the use of PLAUT04, please refer to the PLAUT04 User’s Guide.

A.6 Practical notes

In general, we set NTST to 50-100, EPSL, EPSU to 1.0e-9 or 1.0e-8, and DS, DSMIN,
DSMAX, to -le-2, le-6, le-1 respectively. However, some branches are difficult to
compute, and we may have to use larger NTST, and smaller EPSL and EPSU, and
adjust DS, DSMIN, and DSMAX.
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Appendix B

User’s Guide for Plaut04

Version 1.0

June, 2004

B.1 Product name

The name of this program is “PLAUT04”, a graphic tool for AUTO data visualization.
It includes utility tools, such as @rlb, @dlb, @Qklb, @Qut etc., described in Appendix
C.

B.2 Document overview

This document covers the installation and use of PLAUT04. It also provides infor-
mation for troubleshooting.

This user’s guide contains all information an AUTO user needs, in order to view
AUTO data sets with PLAUT04. An AUTO data set contains a solution file, “s.foo”,
a bifurcation file, “b.foo”, and a diagnostic file, “d.foo”. Here “foo” denotes a user-

chosen data set name. This user’s guide includes the following information:
1. The hardware and software requirements for running PLAUTO04.

2. A description of how to install PLAUT04, and the configuration of the package.
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3. A description of the PLAUT04 window system.

4. A list of PLAUT04 configuration options.

5. An example of using PLAUTO04.

We assume that the reader has a basic knowledge of the AUTO package and of

the Linux OS.

B.3 Requirements

Hardware

CPU: Pentium III 800 or higher.
Memory: 128 Megabytes or more.

Others :

- A graphics card is essential.

- At least 1 Megabyte hard disk space available for software installation.

Software

Operating System: - Red Hat Linux 7.3 or higher.

Applications:

- OpenGL or Mesa is essential,
- SGI Open Inventor 2.1.5.10, or Coin3D 2.2 with SoXt 1.1.0 and
simage 1.6, must be present on the system.

- Motif 2.0 or higher is required.

B.4 Installation and configuration

B.4.1 Directory tree structure

The source tree containing the PLAUT04 source is structured as follows:

data
doc

sTC
include

widgets

sample data

reference manual pages
source files

headers

widgets used in the graphics
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B.4.2 Dependencies

The source in its current form should compile on Red Hat Linux 7.3 or higher. Other
dependencies include Open Inventor, X11R6, and Motif 2.0.

B.4.3 Building the tree
1. Make sure that the Open Inventor libraries are in the searching path.
2. The source code is compiled with optimization enabled by default.
3. Copy the source code tar ball, plaut04.tar.z, to $AUTO_DIR.
4. Change the current directory to $AUTO_DIR by typing:
$ cd $AUTO_DIR

5. Extract the source code. The source code is packed using the Unix tar package.

It can be extracted by issuing:
$ tar xvfz plautO4.tar.z

After this command has been executed, the source code will be in a newly
created directory $AUTO_DIR/plaut04/.

6. Change the current directory to plaut04 by typing:
$ cd plaut04
Now the working directory is $AUT0_DIR/plaut04/.

7. Configure the environment variables for compiling the source code. Before com-
piling the source code, the dependencies should be checked, and some environ-
ment variables need to be set. This can be done automatically by the configu-

ration script:
$ ./configure

8. Compile and install the source code. If the dependency check is passed, we can

issue the following command to compile and install the package on the system.

$ make
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B.5 Setting up the resource file

The PLAUTO04 resource file sets default values for almost all controls of PLAUTOA4.

PLAUTO04 allows us to write our own resources files and put them in the same directory
as the AUTO data files. PrLAuTO04 first looks for the resource file in the current

directory. If it cannot find a resource file there, then it will try to use the one
installed in the AUTO root directory. If both these searches fail, then the internal

default values will be used.

In order to write a usable resource file, one should follow the following rules:

1.

Comment lines start with “#”. Comments may take as many lines as desired.

. Between the “variable name” and the default value, we must use “=" to tell

the system that the left side is the “variable name”, and the right side is its

corresponding default value.

. If a “variable” has aggregate values, a comma “,” must be used between two
values.
The line type is set using 4-digit hexadecimals, starting with “0x”. Its values

can range from 0 (invisible) to “Oxffft” (solid). The system default is “OxfH}” for
stable solutions, and “0x3333” for unstable ones. The line pattern is determined
by the number of 1s and 0s when the hexadecimal is converted to a 16-bit
binary. A “1” indicates that the drawing occurs, and “0” that it does not,
on a pixel by pixel basis. For example, the pattern “OxAAAA”, in binary is
0000100010001000, and PLAUTO4 interprets this as drawing 3 bits off, 1 bit on,
3 bits off, 1 bit on, 3 bits off, 1 bit on and finally 4 bits off. The pattern is read

backward because the low order bits are used first.

Some variables can only be set to “Yes” or “No”. They cannot be assigned

other values.

6. No “variable name” should be modified.

It is strongly recommended that the default resource file is used as a template

when writing a custom resource file.
Below is a copy of the default resource file.
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#version 0.0

# Line colors are represented by RGB values from 0 to 1.0.

# DEFAULT color is also used when animationLabel == 0, i.e.,

# when showing all solutions and animating the solution change.
# Point Type RED GREEN BLUE PATTERN

DEFAULT =1.0, 1.0, 1.0, Oxffff
BP =1.0, 0.0, 0.0, Oxffff
LP ALG = 0.0, 1.0, 0.0, Oxffff
HB = 0.0, 0.0, 1.0, Oxffff
UzZ4 =1.0, 1.0, 0.0, Oxffff
UzZ-4 = 0.5, 0.5, 0.0, Oxffff
LP DIF = 0.0, 0.0, 0.5, Oxffff
BP DIF = 0.0, 0.5, 0.5, Oxffff
PD =1.0, 0.0, 1.0, Oxffff
TR =0.0, 1.0, 1.0, Oxffff
EP = 0.3, 0.0, 0.3, Oxffff
MX = 0.6, 0.0, 0.6, Oxffff
OTHERS =1.0, 1.0, 1.0, Oxffff

-
-
-

# Initialize the line pattern for showing stability
UNSTABLE LINE PATTERN = Oxffff
STABLE LINE PATTERN Oxffff

# Initialize the default options:

Draw Reference Plane = No
Orbit Animation = No
Satellite Animation = No
Draw Primaries = No

Draw Libration Points = No
Normalize Data = Yes

Draw Background = No

# Initialize the default coordinate axes:

# O --- None,

# 1 -—— at origin

# 2 -—— at left and behind
# 3 --- at left and ahead

Coordinate Type = 3
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# Draw Scale on the Aexs

Draw Scale = Yes

# Initialize the default graph type:

# 0 --- Solution (fort.8)

# 1 --- Bifurcation (fort.7)

Graph Type =0

# Initialize the default graph style:
# 0 --- LINES,

# 1 -—- TUBES,

# 2 —--- SURFACE

Graph Style = 0

# Set the window width and height:

Window Width = 1000

Window Height = 1000

# Set X, Y, Z axes for the solution diagram:
# 0 is Time for X,Y,Z.

X Axis Solution =1

Y Axis Solution =2

Z Axis Solution =3

# Set X, Y, Z axes for the bifurcation diagram:
X Axis Bifurcation =4

Y Axis Bifurcation =5

Z Axis Bifurcation =6

#Labeled solutions:

Labels =0

# Set coloring method:

# -5 --- STABILITY

# -4 ——— POINT

# -3 —--- BRANCH

# -2 --- TYPE

# -1 --- LABEL

# Otherwise, according to the data in the ith column of the solution file.
# It can only be set to an integer value.
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Coloring Method = -2

I
-

Number of Period Animated

# Line Width Scaler adjusts the thickness of curves:
Line Width Scaler = 1.0

# The AniLine Thickness Scaler sets the thickness of animated solution curves:

Aniline Thickness Scaler = 3.0

# Background color:
Background Color = 0.0, 0.0, 0.0

# Background transparency:

Background Transparency = 0.0
# Disk transparency
# IF you turn Disk From File to "Yes", you should change the transparency there.

Disk Tramsparency = 0.7

# Read Disk From File
Disk From File = No

# Axes color:

1

X Axis Color
Y Axis Color

Z Axis Color

1.0, 0.0, 0.0
0.0, 1.0, 0.0
0.0, 0.0, 1.0

# Color of the satellite, large primary, and small primary in animationm:
satellite Color 1.0, 0.0, 0.0

large primary Color =0.0, 1.0, 0.0
large primary tail Color = 0.0, 1.0, 1.0
small primary Color = 0.0, 0.0, 1.0
small primary tail Color = 0.5, 0.5, 0.0

# Stable solution color:
Stable Solution Color = 0.0, 0.0, 1.0

# Stable solution color:

Unstable Solution Color = 1.0, 0.0, 0.0

132



# Set the radius of the satellite, large primary, and small primary:

# The normal size is 1.0.

# For smaller radius, use 0.xxx
# For bigger radius, use X.XXX
Satellite Radius = 1.0
Large Primary Radius =1.0
Small Primary Radius =1.0
Libration Point Size =1.0

# Set the maximum and minimum satellite animation speed:
100
0

Sat Max Animation Speed

[t}

Sat Min Animation Speed

# Set the maximum and minimum orbit-change animation speed:
Orbit Max Animation Speed = 100
Orbit Min Animation Speed = 0

# Set the active AUTO parameter indices:

parameter ID = 10

# Choose 3D or 2D graph:
3D = Yes

B.6 Quick start

B.6.1 Starting and stopping Plaut04
Starting

The starting command for PLAUT04 is: “plaut04”. A short AUTO97 command is
also provided as “@pl”. In the AUTO2000 Python CLUI, one can start PLAUT04 by
typing “plaut04()” or “pl()”.

This command can have no argument, one argument, or two arguments.

If no argument is provided, then the system uses the AUTO default data files,
fort.7, fort.8, and fort.9, as inputs.

If one argument is given, it must be the name of the data set which we want to

view. This data set should be in the current directory.
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When two arguments are given, the first is always the path to the data set, and
the second is the data set name.

Note that the AUTO data set name does not mean the full name of an AUTO
file. It refers to the postfix of AUTO data files. For example, if we have the AUTO
data files: “s.H1”, “b.H1”, and “d.H1”, the AUTO data file name is “H1”.

Stopping

One can exit the system by clicking the cross at the top-right corner of the window

or from the “File” menu of the system.

B.6.2 Changing the “Type”

Often one will frequently change between the solution diagram and the bifurcation
diagram. The “Type” menu helps to complete this change. This menu includes two
items, “Solution”, and “Bifurcation”. There is a marker beside the current diagram.
For example, if the current diagram is the solution diagram, but we want to change
to the bifurcation diagram, we can do so by clicking “Type — Bifurcation” to switch

to the bifurcation diagram.

Figure 82: The Type Menu Figure 83: The Style Menu

B.6.3 Changing the “Style”

PLAuT04 provides four ways to draw the graphics, i.e., using curves, tubes, points,

or as a surface. One can select the style from the “Style” menu. The “Style” menu

is shown in Figure 83.
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B.6.4 Coordinate axes

Figure 84 shows the selections of the “Coord” menu. One may use this menu to
select to show or not to show coordinate axes, and the type of coordinate axes, in the

graphics.

B.6.5 Options

The “Options” Menu provides functions to add or remove widgets from the graphics.
It also allows to start/stop solution or orbit animation. The “normalize data” nor-
malizes the raw data to [0,1]. “Preference” lets us set preferences for the GUI (see
Figure 85).

Figure 84: The Draw-Coordinate-Axes
Menu Figure 85: The Options Menu

B.6.6 CR3BP animation

The “Center” Menu allows to animate the motion of the three bodies in different
coordinate systems. We can animate the motion in a large-primary-centered inertial
coordinate system, or in a small-primary-centered inertial system, or in the bary-

centered inertial system. Figure 86 displays the layout of the “Center” menu.

B.6.7 Help

The “Help” menu provides an on-line help on how to use PLAUT04.
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Figure 86: The Center Menu Figure 87: The Help Menu

B.6.8 Picking a point in the diagram

The picking operation is useful when we want to know data corresponding to a certain
point in the diagram. In order to execute a picking operation, we should follow these

steps.
e Click the arrow icon to change the mouse to picking state.
e Move the mouse to the point of interest.
e Click the left button of the mouse to pick the point.

Once a point has been picked, a new window is popped up. In this new window,
the Floquet multipliers of the point are shown in an x-y plane. Black crosses in
the diagram indicate the Floquet Multipliers. The solution, and the values of the
corresponding Floquet Multipliers, are given in the lower part of the window. A unit
circle is drawn in the diagram. Figure 88 is an example of the picking operation. From
this diagram, we can see that two Floquet Multipliers are outside the unit circle, two

are on the unit circle, and the other two are inside the unit circle.

B.6.9 Choosing the variables

AUTO can generate large amounts of data. The CR3BP, for example, has 6 variables,
te, T,y,2,7,y,7, and time. One can choose to draw any combination of these
variables in 2 or 3 dimensions using PLAUT04. On the list bar, we can see three
dropdown lists with label “X”, “Y” and “Z” (See Figure 89). Each of these three
lists has the exact number of choices, namely, the number of variables of the system
plus one. In our case, these lists have 7 choices, which are represented by the integers
0 to 6. O represents time. 1 to 6 stand for z,y, 2z, 2,9, and 2/, respectively. “1” is

selected for “X”, which indicates that = is drawn on the X-axis. “2” is selected for
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Figure 88: Picking a point

“Y”  which indicates that y is represented on the Y-axis. “3” is selected for “Z”,

which indicates that z is represented on the Z-axis.

We can also show multiple combinations at the same time. For example, if we

want, to show x-y-z and x’-y’-z’ in the same diagram, we can input 1,4 in the “X”

dropdown list to select x and x’ being drawn on the X-axis, input 2,5 in the “Y” list

to show y and 3’ on the Y-axis, and input 3,6 in the “Z” dropdown list to draw z

and 2z’ on the Z-Axis. Note that after finishing the input in the dropdown list box,

we must type “ENTER” for the input to be accepted by the system. Figure 90 shows

the results of the above choices. The combination is flexible. For example, if X is 1,

Y is 3,5, and Z is 4, 5, 6, the system will automatically reorganize them to 1 — 3 — 4,
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Figure 89: Menu-bar layout

1-5-5,1—3—6 and show the results. If X is 1,5, Y is 2, and Z is 3, 4, the system
reorganizes them to 1 —2 -3, 5 -2 - 4.

Different components are drawn with different colors from blue to red.

The default values can be set in the resource file. If no resource file exists, then
the system will use “1” for X-axis, “2” for Y-axis, and “3”for Z-axis for both the

solution and the bifurcation diagrams.

B.6.10 Choosing labels

From the Label list, we can choose the label of the solution to be drawn. If “ALL”
is chosen, all solutions are shown in the diagram. If “NONE” is chosen, none of
the solutions is shown. “HALF” shows the solutions with odd labels and special
solutions only. “SPEC” lets the system show the special solutions only. We can also
show selected solutions by inputting their labels in the list box separated by commas.
For example, typing 1, 10, 15, 20 will lead the system to show only the solutions with
label 1, 10, 15 and 20.

We can sct the default value for this list in the PLAUTO04 rcsource file.

B.6.11 Coloring

Many coloring methods are provided. They can be classified into three groups. The
first group is coloring by variables. This group provides as many choices as the
number of variables of a problem plus 1 for the time. The second group is coloring
by parameters. These parameters are defined by the AUTO user. in the AUTO

constants file. There are as many choices as the number of parameters defined in the
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Figure 90: Displaying multiple components

AUTO constants file. The third group includes “TYPE”, type of solution, “PONT”,
point number, “BRAN”, the branch to which the solution belongs, and “LABL”,
label of the solution. Different coloring methods cannot be used at the same time.
Figure 91 shows the difference between coloring by type and coloring by label. From
Figure 91(a), we can see that there is only one branching orbit in this family, which
is shown in cyan. In Figure 91(b), the start solution is colored in blue, and the last
solution is colored in red. When using time to color the diagram, 0 is set to blue,
while 1 is set to red.

We can set the default value in the PLAUTO04 resource file.

B.6.12 Number of periods to be animated

Generally only one period is animated when we animate the solution in the inertial

frame. However, the SpinBox allows us to change the default value. This is a specially
designed function for the CR3BD. It is useful when we animate the motion in the three

bodies in the inertial frame.
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(a) Coloring by “Type” (b) Coloring by “Label” {c) Coloring by “Time”
Figure 91: Coloring

B.6.13 Changing the line/tube thickness

The “Line Thickness” spinbox allows us to increase or decrease the line/tube thickness
in the diagram. The PLAUTO4 resource file also provides a way to change the default

values of the line/tube thickness.

B.6.14 Changing the animation speed

The “Sat” and “Orbit” scale bar allow us to change the animation speed. Their

Maximum and Minimum value can be set in the resource file.

B.6.15 Changing the background picture

A user can set the backgroud with his favorite picture. To do this, a user should copy
the picture to the directory “SAUTO_DIR/plaut04/widgets”’, and then change the
name of the file to “background.rgb”.

B.7 Example

In this cxample, we want to view a CR3BP data set. We want the diagram to show
“,,n [19%]

the “2” component on the X-axis, “y” component on the Y-axis, and “2” component

on the Z-axis for the solution diagram. In the CR3BP, we use the parameters “1 2 3
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10 21 22 23” in the AUTO calculations, and we also want to be able to use these to

color the diagram, so we set the “parameter indices”.

Other preferences include

The diagram is drawn using Tubes.

Coordinate axes are not drawn.

No animation.

[

Reference plane, libration points, and primaries are drawn.

All labels are shown.

e Data is not normalized.

The settings are the settings in the resource file are then as follows:

# Initialize the default optioms

Draw Reference Plane = Yes
Orbit Animation = No
Satellite Animation = No
Draw Primaries = Yes

Draw Libration Points = Yes
Normalize Data = No

Draw Background = No

# 1Initialize the default graph type
# 0 -——- Solution(fort.8) 1 --- Bifurcation(fort.7)
Graph Type =0

# initialize the default graph style
# 0 --—- LINES, 1 --- TUBES, 2 —--- SURFACE 3--- nurbs curve
graph Style = 1

# set X, Y, Z, and Label
# 0 is Time for X,Y,Z. 0 is "All" for Label

Solution X Axis =1
Solution Y Axis =2
Solution Z Axis =3
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Labels =0

#set the parameter indices

parameter ID = 1, 2, 3, 10, 15, 21, 22, 23

Based on the above settings, the solution diagram for the CR3BP family L1 for
i = 0.01215 appears in Figure 92.

Figure 92: Example

B.8 Miscellaneous

1. Where can I download the Open Inventor libraries?

One can download SGI’s implementation from:

ftp://oss.sgi.com/projects/inventor/download/

Because SGI’s implementation for Linux cannot show text correctly, we recom-
mend that Coin be used instead of SGI’s implementation. Coin3D can be downloaded
from:

http://www.coin3d.org/download/
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2. Why does the system tell me: “ plaut04: error while loading shared libraries:
1ibCoin.s0.40: cannot open shared object file: No such file or directory”?

This message means that the system cannot find the Coin libraries. To solve this
problem, make sure that the Coin libraries are reachable, namely, that the environ-
ment variable LD_LLIBRARY PATH is set to the directory where the Coin libraries
are installed.

For example, if Coin3D is installed in ‘‘/usr/local/lib’’, in order to make

PLAuT04 work properly, the following code should be added in the .bash_profile:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib:/usr/local/lib
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Appendix C

AUTO Utilities

Some additional AUTO utilities were written during the development of PLAUTO4.
In this appendix, we give a brief introduction to their function and we demonstrate

their use. We use the abbreviation “label” to denote “labeled solution”.

C.1 New AUTO97 commands

C.1.1 ©@ut command
Purpose

Does maintenance operations on the AUTO data files “s.foo” and “b.foo”. One can

use this command to display labels, delete labels, relabel, etc.

Format

@ut [source_filename [back_filename]]

Description

Type @ut to maintain “fort.7” and “fort.8”. The original files are backed up as
“fort.7”” and “fort.87".

Type @ut foo to maintain “s.foo” and “b.foo”. The original files are backed up
as “s.foo™ and “b.foo™”.

Type @ut foo bar to maintain “s.foo” and “b.foo”. The original files are backed

up as “s.bar”™” and “b.bar™”.
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This tool has an interactive command interface. The available commands are:

h print system help information.

1 list the labels in the solution files.

d delete labels in the solution files.

u recover the deleted labels in the solutions before saving them. If

the changes have been written to the disk, this command does not

work.
r relabel solutions.
k keep certain solutions.

The above commands can have arguments with it. We can provide the arguments

in the following ways:

Command format Example Description

command [labels] 112 list label 12
12-5 1012 | list labels from 2 to 5, 10, and 12.
command [ty (type of the labels)] 1ty bp ep | list all labels of type “bp”, and “ep

”

”

command [ty= (type of the labels)] | 1 ty= bp ep | list all labels of type “bp”, and “ep

If no argument is provided, the objects are all labels in the file.

Note that there always must be a space after “ty=" or “ty”.

See also

@rdc, @Qllb, @Qklb, @dlb, @rlb.

C.1.2 ©Ordc command

Purpose

Reduce the size of “s.foo” or “fort.8” by removing every other user defined points

from the solution files. However, if a label is a special point, it is kept.

Format

@rdc [filename [back_filename]]

145



Description

If the “filename” is given, the operation objects are “s.filename” and “b.filename”.

» ”

The original files are backed up as “s.filename™ and “b.filename™. Otherwise,
“fort.7” and “fort.8” are used, the original files are backed up as “fort.7”” and
“fort.87”. If we want to back up a file using a different name, it can be done by

the command @rdc source backfile.

Examples
@rdc reduce “fort.8”. The original files are backed up as “fort.87”
and “fort.77”.
@rdc foo reduce “s.foo”. The original files are backed up as “s.foo™
and “b.foo™”.
@rdc foo bar reduce “s.foo”, the original files are backed up as “s.bar™ and
“b.bar™”.
See also
@ut.

C.1.3 ©rlb command

Purpose

Relabels the solutions in the solution files.

Format

@rlb [[s=|solution=] filename] [labels] |
[ty=1tp=Itype=|tyltpltype (type of labels)]

Description

If the “filename” is given, the operation objects are “s.filename” and “b.filename”,

2 »

and the original files are backed up as “s.filename™ and “b.filename™. Otherwise,
“fort.7” and “fort.8” are used, and the original files are backed up as “fort.7”” and

“fort.87”.
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The options “labels” and the “types of the labels” should not be provided at the
same time. If we want to use the “type of labels” option, the keywords “ty” or “ty="

must be used before choosing the types.

Examples

@rlb relabel all solutions in “fort.7” and “fort.8”. The new labels
are generated automatically from 1 to m. The original files
are backed up as “fort.7”” and “fort.87”.

@rlb 2, 5-10 15 give new labels to label 2, labels from 5 to 10, 15, 17, and

17 20-23 labels from 20 to 23, in “fort.7” and “fort.8”. The original
files are backed up as “fort.7”” and “fort.87”.

@rlb ty= bp give new labels to the labels of type “bp” in “fort.7” and
“fort.8”. The original files are backed up as “fort.7”” and
“fort.87".

@rlb foo give new labels to all labels in “s.foo” and “b.foo”. The new

labels are generated automatically from 1 to m. The original
files are backed up as “s.foo™ and “b.foo™.
Q@rlb foo 1 5 give new labels to the current label 1 and 5 in “s.foo” and

”

“b.foo”. The original files are backed up as “s.foo™ and
“b.foo™.

@rlb foo ty= lp  give new labels to the labels with type “Ip”, “hb”, and “tr” in

hb tr “s.foo” and “b.foo”. The system asks for new labels for each
of the points, after we type the “ENTER” key. The original
files are backed up as “s.foo”™ and “b.foo™.

@rlb s= foo ty= the same as @rlb foo ty= 1lp hb tr.

1p hb tr

See also

@llb, @klb, @dlb, @ut.
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C.1.4 G©llb command

Purpose

List solution labels.

Format

©@11b [[s=|solution=] filename] [labels] |
[ty=Itp=Itype=Ityltpltype (type of labels)]

Description

If the “filename” is given, the operation objects are “s.filename” and “b.filename”,

7. Otherwise,

and the original files are backed up as “s.filename” and “b.filename”
“fort.7” and “fort.8” are used, and the original files are backed up as “fort.7”” and
“fort.87”.

The options “labels” and “types of the labels” should not be used at the same

time.

Examples

@11b list all labels in “fort.7” and “fort.8”.
@11lb 2, 5-10 15  list label 2, labels 5 to 10, 15, 17, and labels 20 to 23, in
17 20-23 “fort.7” and “fort.8”.

@11lb ty= bp list labels of type “bp” in “fort.7” and “fort.8”.
@11b foo list all labels in “s.foo” and “b.foo”.
©@11b foo 1 6 list label 1 and 5 in “s.foo” and “b.foo”.

@l1lb foo ty= 1p list labels with type “lIp”, “hb”, and “tr” in “s.foo” and
hb tr “b.foo”.

@11lb s= foo ty the same as @11b foo ty= lp hb tr.

1p hb tr

See also

@klb, @rlb, @dlb, Qut.
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C.1.5 @klb command

Purpose

Keep selected labels, or labels of designated type in the solution files, while deleting
all other labels.

Format

@klb [[s=|solution=] filename] [labels] |
[ty=Itp=Itype=Ityltpltype (type of labels)]

Description

If the “filename” is given, the operation objects are “s.filename” and “b.filename”,

”

and the original files are backed up as “s.filename” and “b.filename™. Otherwise,
“fort.7” and “fort.8” are used, and the original files are backed up as “fort.7”” and
“fort.877.

The options “labels” and “types of the labels” should not be used at the same

time.

Examples

@k1lb keep all labels in “fort.7” and “fort.8”. The original files are
backed up as “fort.7”” and “fort.87”.
@klb 2, 5-10 15  keep the given labels, i.e., label 2, labels 5 to 10, 15, 17, and

17 20-23 labels 20 to 23, in “fort.7” and “fort.8”. All other labels are
deleted. The original files are backed up as “fort.7"” and
“fort.87”.

@k1lb ty= bp keep labels of type “bp” in “fort.7” and “fort.8”. All labels

with other types are deleted. The original files are backed up
as “fort.7"” and “fort.87”.

@k1b foo keep all labels in “s.foo” and “b.foo”. The original files are
backed up as “s.foo™ and “b.foo™”.

@klb foo 1 5 keep the solutions with label 1 and 5 in “s.foo” and “b.foo”.
Other solutions are deleted. The original files are backed up

as “s.foo™” and “b.foo™”.
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@k1lb foo ty= lp keep labels with type “Ip”, “hb”, and “tr” in “s.foo” and

hb tr “b.foo”. Labels with other types are deleted. The original
files are backed up as “s.foo™ and “b.foo™.

@k1lb s= foo ty= the same as @klb foo ty= 1lp hb tr.

lp hb tr

See also

@llb, @dlb, @rlb, Qut.

C.1.6 @©dlb command

Purpose

Delete the selected labels or labels with the designated type in the solutions.

Format

@dlb [[s=|solution=] filename] [labels] |
[ty=Itp=Itype=|tyltpltype (type of labels)]

Description

If the “filename” is given, the operation objects are “s.filename” and “b.filename”,

” ”

and the original files are backed up as “s.filename™ and “b.filename™. Otherwise,

“fort.7” and “fort.8” are used, and the original files are backed up as “fort.7”” and
“fort.877.
The options “labels” and “types of the labels” should not be used at the same

time.

Examples

@dlb delete all labels in “fort.7” and “fort.8”. In order to prevent
a user from deleting everything in the files in case of care-
lessness, the system asks the user to confirm each deletion
one by one. The original files are backed up as “fort.7”” and
“fort.87”.
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@dlb 2, 5-10 15
17 20-23

@dlb ty= bp

@dlb foo

@dlb foo 1 5

@dlb foo ty= 1lp
hb tr

@dlb s= foo ty=
lp hb tr

See also

@llb, @klb, @rlb, Qut.

delete the given labels, i.e., label 2/ labels 5 to 10, label 15,
17, and labels 20 to 23, in “fort.7” and “fort.8”. Other labels
are kept. The original files are backed up as “fort.7”” and
“fort.87”.

delete labels of type “bp” in “fort.7” and “fort.8”. All other
types are kept. The original files are backed up as “fort.7™”
and “fort.87”.

delete all labels in “s.foo” and “b.foo”. The original files are
backed up as “s.foo™ and “b.foo™.

delete label 1 and 5 in the files “s.foo” and “b.foo”.
original files are backed up as “s.foo™ and “b.foo™.
delete labels with type “lp”, “hb”, and “tr” in “s.foo” and
“b.foo”. 7
“b.foo 7.

the same as @dlb foo ty= 1lp hb tr.

The

The original files are backed up as “s.foo™ and

C.2 New AUTO2000 commands

C.2.1

Purpose

ut() command

Does maintenance operations on the AUTO data files “s.foo” and “b.foo”. One can

use this command to display labels, delete labels, relabel, etc.

Format

ut([solution_file_name, [backup_file_name]l])
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Description

Type ut() to maintain “fort.7” and “fort.8”. The original files are backed up as
“fort.7"” and “fort.877.

Type ut(‘foo’) to maintain “s.foo” and “b.foo”. The original files are backed
up as “s.foo”™ and “b.foo™”.

Type ut(‘foo’, ‘bar’) to maintain “s.foo” and “b.foo”. The original files are

backed up as “s.bar™” and “b.bar™”.

This tool has an interactive command interface. The available commands for it

o h print system help information.

1 list the labels in the solution file.

d delete labels in the solution file.

u recover the deleted labels in the solutions before saving them.
If the changes have been written to the disk, this command
does not work.

r relabel solutions.

k keep certain solutions.

The above commands can have arguments with it. We can provide the arguments

in the following approaches:

Command format Example Description

command [labels] 112 list label 12
12-51012 list labels from 2 to 5, 10, and 12.
command [ty (type of the labels)] 1ty bp ep | list all labels of type “bp”, and “ep”

command [ty= (type of the labels)] | 1 ty= bp ep | list all labels of type “bp”, and “ep”

If no argument is provided, the objects are all labels in the files.

Note that there must always be a space after “ty=" or “ty”.

Aliases

ut utility.

See also

rde, 1Ib, klb, dlb, rib.
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C.2.2 rdc() command
Purpose

Reduce the size of “s.foo” or “fort.8” by removing every other user defined points

from the solution file. However, if a label is a special point, it is kept.

Format

rdc([solution_file_name, [backup_file_name]])

Description

If the ‘s.source_filename’ is given, the operation objects are “s.filename” and “b.filename”.

” 2

The original files are backed up as “s.filename™ and “b.filename™. Otherwise,
“fort.7” and “fort.8” are used, and the original files are backed up as “fort.7”” and
“fort.87”. If we want to back up a file using a different name, it can be done by the

command rdc(source, backfile).

Examples
rdc(Q) reduce “fort.8”. The original files are backed up as “fort.8™”
and “fort.77”.
rdc(‘foo’) reduce “s.foo”. The original files are backed up as “s.foo™
and “b.foo™”.
rdc(‘foo’, ‘bar’) reduce “s.foo”, the original files are backed up as “s.bar™ and
“b.bar™”.
Aliases

reducelabel reduce rdc.

See also

ut.
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C.2.3 lib() command

Purpose

List labels in the solution/bifurcation files.

Format

11b([[s=|solution=]solution_file_name] ,

[[t=lty=|type=]type_of_labels] |
[[1=]1b=|1label=]labels])

Description

If the “filename” is given, the operation objects are “s.filename” and “b.filename”,

and the original files are backed up as “s.filename” and “b.filename™.

kY

Otherwise,

“fort.7” and “fort.8” are used, and the original files are backed up as “fort.7”” and

“fort.877.

The options “labels” and “types of the labels” should not be used at the same

time.

Examples

11b()

11b(1b=2, 5-10 15
17 20-23?)

11b(ty= ‘bp’)
11b(‘foo’)
11b(‘foo’, 1=‘1 5?)
11b(‘foo’, ty=’1p
hb tr’)

11b(s= ‘foo’,
ty="1p hb tr’)

Aliases

1Ib listlabel.

list all labels in “fort.7” and “fort.8”.

list label 2, labels from 5 to 10, 15, 17,and labels from
20 to 23, in “fort.7” and “fort.8”.

list labels of type “bp” in “fort.7” and “fort.8”.

list all labels in “s.foo” and “b.foo”.

list label 1 and 5 in “s.foo” and “b.foo”.

list labels with type “Ip”, “hb”, and “tr” in “s.foo” and
“b.foo”.

the same as 11b(‘foo’, ty=‘lp hb tr’).
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See also

kib, dlb, 1lb, ut.

C.2.4 kib() command

Purpose

Keep selected labels, or labels of designated type, in the solution files, while deleting
all other labels.

Format

k1b([[s=|solution=]solution_file_name] ,
[[t=Ity=|type=]type_of_labels] |
[[1=]1b={1label=]labels])

Description

If the “filename” is given, the operation objects are “s.filename” and “b.filename”,

”

and the original files are backed up as “s.filename” and “b.filename™. Otherwise,
“fort.7” and “fort.8” are used, and the original files are backed up as “fort.7”” and
“fort.87”.

The options “labels” and “types of the labels” should not be used at the same

time.
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Examples

k1b()

k1b(1b=‘2, 5-10
15 17 20-23’)

klb(ty= ‘bp’)

k1b(‘foo?)

klb(‘foo’, 1=‘1
5%)

klb(‘foo’, ty=
‘lp hb tr’)

klb(s= ‘foo’,
ty= ‘lp hb tr’)

Aliases

klb keeplabel.

See also

1Ib, dlb, 1lb, ut.

C.2.5

Purpose

keep all labels in “fort.7” and “fort.8”. The original files are
backed up as “fort.7”” and “fort.87”.

keep the given labels, i.e., label 2, labels 5 to 10, 15, 17, and
labels 20 to 23, in “fort.7” and “fort.8”. All other labels are
deleted. The original files are backed up as “fort.7”” and
“fort.87”.

keep labels of type “bp” in “fort.7” and “fort.8”. All labels
with other types are deleted. The original files are backed up
as “fort.77” and “fort.87”.

keep all labels in “s.foo” and “b.foo”. The original files are
backed up as “s.foo”™” and “b.foo™”.

keep the solutions with label 1 and 5 in “s.foo” and “b.foo”.
All other solutions are deleted. The original files are backed
up as “s.foo”™” and “b.foo™”.

keep labels with type “Ip”, “hb”, and “tr” in “s.foo” and
“b.foo”. Labels with other types are deleted. The original
files are backed up as “s.foo™” and “b.foo™”.

the same as k1b(‘foo’, ty=‘lp hb tr’).

rlb() command

Relabel the solution/bifurcation files.

156



Format

rlb([[s=|solution=]solution_file_name] ,
[[t=1ty=|type=]type_of_labels] I
[[1=]1b=|1label=]1labels])

Description

If the “filename” is given, the operation objects are “s.filename” and “b.filename”,
and the original files are backed up as “s.filename™ and “b.filename™. Otherwise,
“fort.7” and “fort.8” are used, and the original files are backed up as “fort.7”” and
“fort.87".

The options “labels” and the “types of the labels” should not be provided at the
same time. If we want to use the “type of the labels” option, the keywords “ty” or

7

“ty=" must be used before choosing the types.

Examples

rlbQ relabel all solutions in “fort.7” and “fort.8”. The new labels
are generated automatically from 1 to m. The original files
are backed up as “fort.7”” and “fort.87”.

rlb(1b=‘2, 5-10 give new labels to label 2, labels from 5 to 10, 15, 17, and

15 17 20-237) labels from 20 to 23, in “fort.7” and “fort.8”. The original
files are backed up as “fort.7”” and “fort.87”.

rlb(ty= ‘bp’) give new labels to the solutions of type “bp” in “fort.7” and
“fort.8”. The original files are backed up as “fort.7”” and
“fort.87".
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rlb(‘foo’) give new labels to all solutions in “s.foo” and “b.foo”. The
new labels are generated automatically from 1 to m. The

original files are backed up as “s.foo”™” and “b.foo™.

rlb(‘foo’,1=‘1 give new labels to the current label 1 and 5 in “s.foo” and

5) “b.foo”. The original files are backed up as “s.foo™ and
“b.foo™”.

r1b(‘foo’, give new labels to solutions with type “Ip”, “hb”, and “tr” in

ty=‘lp hb tr’) “s.foo” and “b.foo”. The system asks for new labels for each

of the points, after we type the “ENTER” key. The original
files are backed up as “s.foo”™ and “b.foo™.

rlb(s= ‘foo’, the same as @rlb foo ty= 1p hb tr.

ty= ‘lp hb tr’)

Aliases

relabel rlb.

See also

1Ib, klb, dlb, ut.

C.2.6 dlIb() command

Purpose

delete labels in the solution/bifurcation files.

Format

dlb([[s=|solution=] solution_file_name] |,
[[t=]ty=|type=]type_of_labels] |
[[1=]1b=|1label=]1labels])

Description

If the “filename” is given, the operation objects are “s.filename” and “b.filename”,

» »

and the original files are backed up as “s.filename™ and “b.filename”

. Otherwise,
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“fort.7” and “fort.8” are used, and the original files are backed up as “fort.7”” and

“fort.87”.

The options “labels” and “types of the labels” should not be used at the same

time.

Examples

dib()

dlb(1b=‘2, 5-10
15 17 20-23°)

dlb(ty= ‘bp’)

dlb(‘foo’)

dlb(‘foo’,1=1
57)

dlb(‘foo’, ty=
‘lp hb tr’)

dlb(s= ‘foo’,
ty= ‘lp hb tr’)

Aliases

dlb deletelabel.

See also

llb, rlb, klb, ut.

delete all labels in “fort.7” and “fort.8”. In order to prevent
a user from deleting everything in the files in case of care-
lessness, the system asks the user to confirm each deletion
one by one. The original files are backed up as “fort.7”” and
“fort.87”.

delete the given labels, i.e., label 2, labels 5 to 10, label 15,
17, and labels 20 to 23, in “fort.7” and “fort.8”. All the other
labels are kept. The original files are backed up as “fort.7™”
and “fort.87”.

delete labels of type “bp” in “fort.7” and “fort.8”. All other
types are kept. The original files are backed up as “fort.7™”
and “fort.87”.

delete all labels in “s.foo” and “b.foo”. The original files are
backed up as “s.foo™ and “b.foo™.

delete label 1 and 5 in the files “s.foo” and “b.foo”.

”

original files are backed up as “s.foo™ and “b.foo™”.

The

delete labels with type “Ip”, “hb”, and “tr” in “s.foo” and
“b.foo”.
“b.foo ”

the same as d1b(‘foo’, ty=‘lp hb tr’).

”

The original files are backed up as “s.foo™ and
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