ONTOXPL - EXPLORATION OF OWL ONTOLOGIES

YING Lu

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 2004
© YinG Lu, 2004

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94748-3
Our file Notre référence
ISBN: 0-612-94748-3

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

OntoXpl - Exploration of OWL Ontologies

Ying Lu

To complement existing ontology editors, OntoXpl has been designed and im-
plemented for searching and browsing knowledge bases in ontology files. The main
motivation for OntoXpl is to provide a user-friendly, robust, and scalable ontology
visualization and exploration tool for different users. The idea is to help users nar-
row down the knowledge base, for a given query, retrieve the relevant information,
organize, and display the result in a manner convenient to users. The system relies
on Racer’s inference capabilities for offering users a better exploration mechanism.

OntoXpl is based on the tomcat architecture and is available on the web, through
standard HTML browsers. OntoXpl is one of the few ontology exploration tools
developed so far that is fully targeted to OWL.

At least three potential user groups are targeted by OntoXpl’s design: (i) users
with a limited background of ontologies and OWT; (ii) ontology developers who are

OWL experts; (iii) users interested in understanding and reusing existing ontologies.

iii

Acknowledgments

Great thanks must go to my supervisors, Dr. Haarslev and Dr. Shiri, for their
knowledgeable input, guidance and encouragement throughout the duration of this
research. It is they who had patiently lead me into this area. I really appreciate their

sincere help.

Two years ago, I knew nothing about my research. It is really a challenge and hard
work for me to model and implement the OntoXpl system. However, when I review
what T have done, I found the whole procedure that I have experienced becomes an

unforgettable treasure of my life.

I would also like to thank my parents, who have always encouraged me, believed in
me, and supported me to overcome difficulties. Besides, I thank all my friends at

Concordia University.

iv

Table of Contents

List of Figures
List of Tables

1. Introduction

1.1. Web Ontology Language (OWL)
1.2. Concept Definitions in OWL
1.3. Role Definition in OWL

1.4. Individual Definitions in OWL

2. Problems

2.1. Ontology: An Introduction

2.2. Ontology design, revision, and understanding
3. Ontology exploration system — OntoXpl Tool

3.1. Main menu functions

3.2. Natural language explanation
3.3. Inferred information

3.4. Axiom browsing

3.5. Abox queries

3.6. Taxonomy

3.7. New Racer Query Language nRQL query interface
4. Related work

4.1. Protégé and OntoXpl

4.2. OntoEdit

4.3. KAON

4.4. Apollo

4.5. Summary

4.6. Interface for Knowledge Retrieval

vii

o b W~

10

12
13

14

16
21
29
37
43
53
57

61

62
70
72
73
75
79

5. Design and implementation

5.1. OntoXpl Architecture
5.2. Modules and relationship

6. Evaluation

7. Conclusions and Future work

7.1. Conclusions

7.2. Future work

8. References

Appendix

A.1 Example about loading OWL ontology into OntoXpl
A.2 Appendix 2 OntoXpl API and package information

—vi-

81

81
93

104

105

105
106

108

111

111
112

List of Figures

FIGURE 1.1: OWL DEFINITION FOR “DISNEY_CAT”

FIGURE 1.2: DL SYNTAX FOR “DISNEY_CAT”’

FIGURE 1.3: OWL:EQUIVALENTCLASS EXAMPLE

FIGURE 1.4: A TRANSITIVE ROLE DEFINITION

FIGURE 1.5: INDIVIDUALS USING TRANSITIVE ROLE

FIGURE 1.6: THE INFERRED RESULT OF TRANSITIVE ROLE

FIGURE 1.7: A SYMMETRIC ROLE DEFINITION

FIGURE 1.8: INDIVIDUALS USING SYMMETRIC ROLE

FIGURE 1.9: THE INFERRED RESULT OF SYMMETRIC ROLE

FIGURE 1.10: INVERSE ROLE DEFINITION

FIGURE 1.11: INDIVIDUALS USING INVERSE ROLE

FIGURE 1.12: THE INFERRED RESULT OF INVERSE ROLE

FIGURE 1.13: INDIVIDUAL DEFINITION

FIGURE 3.1: ONTOXPL’S MAIN PAGE 17

FIGURE 3.2: ONTOLOGY LOADING PAGE 18

FIGURE 3.3: ONTOXPL’S MAIN PAGE WITH THE DISPLAYED ONTOLOGY INFORMATION 19

FIGURE 3.4: ZOOM OF THE UPPER THREE COMMAND MENUS (FROM LEFT TO RIGHT): FILE
SELECTION, OWL / NATURAL LANGUAGE VIEWS, INFORMATION PAGE VIEWS 20

FIGURE 3.5: ZOOM OF THE MIDDLE TWO COMMAND MENUS (FROM LEFT TO RIGHT):
EXPLORE CONCEPT/PROPERTY CHARACTERISTICS, SHOW CONCEPT/ROLE HIERARCHIES

O 00000011 ~JOAONWUN W

20

FIGURE 3.6: ZOOM OF THE BOTTOM TWO COMMAND MENUS (FROM LEFT TO RIGHT): A-BOX
COMMAND MENU, NRQL RACER QUERY LANGUAGE 21
FIGURE 3.7: VIEW FUNCTION: CONCEPTS, ROLES AND INDIVIDUALS 22
FIGURE 3.8: LLIST CONCEPTS IN THE DOMAIN 23
FIGURE 3.9: OWL SPECIFICATION OF CLASS “CARTOON_CAT” 24
FIGURE 3.10: “NATURAL LANGUAGE” DESCRIPTION OF CLASS "CARTOON_CAT" 24
FIGURE 3.11: “CARTOON_CAT’ OWL DEFINITION AND NL EXPLANATION MAIN PAGE 25
FIGURE 3.12: “CARTOON_MOUSE” OWL DEFINITION AND NL EXPLANATION 26
FIGURE 3.13: “CARTOON_MOUSE” NL-EXPLANATION 26
FIGURE 3.14: “CARTOON_MOUSE” DL-DEFINITION 26
FIGURE 3.15: EMPIRICAL FACT EXAMPLE “FEATURE” 27
FIGURE 3.16: “IN_SAME_CARTOON_SERIES” ROLE NL-EXPLANATION MAIN PAGE 27
FIGURE 3.17 NL-EXPLANATION FOR ROLE “IN_SAME_CARTOON_SERIES” 28
FIGURE 3.18: “MICKEY” INDIVIDUAL NL-EXPLANATION MAIN PAGE 28
FIGURE 3.19: NL-EXPLANATION FOR INSTANCE “MICKEY” 28
FIGURE 3.20: “CARTOON_MOUSE”’ CONCEPT INFORMATION PAGE 30
FIGURE 3.21: “VOICED_BY” ROLE INFORMATION PAGE 32
FIGURE 3.22: “IN_SAME_SERIES” INDIVIDUAL INFORMATION PAGE 32
FIGURE 3.23: INDIVIDUAL INFORMATION MAIN PAGE 33
FIGURE 3.24: “MINNIE” INDIVIDUAL INFORMATION PAGE 34
FIGURE 3.25: CASE STUDY EXAMPLE FOR “INDIVIDUAL INFERENCE” 36
FIGURE 3.26: CASE STUDY RESULT ABOUT INDIVIDUAL INFERENCE 36

FIGURE 3.27: ONTOXPL INSTANCE-INFO RESULT FOR “INDI21” 36

—vii —

FIGURE 3.28:
FIGURE 3.29:
FIGURE 3.30:
FIGURE 3.31:
FIGURE 3.32:
FIGURE 3.33:
FIGURE 3.34:
FIGURE 3.35:
FIGURE 3.36:

EQUIVALENT-CONCEPT MAIN PAGE

DISJOINT CONCEPT BY PAIR

DISJOINT CONCEPT NAME INPUT

SEARCH CONCEPT WITH ONE WORD “CARTOON”
DISJOINT RESULTS -“CARTOON_CAT”

DISJOINT RESULT FOR “MICKEY_MOUSE”
SYMMETRIC ROLES IN A SUMMARY REPORT
INVERSE ROLES IN A SUMMARY REPORT
TRANSITIVE ROLE IN A SUMMARY REPORT

37
39
39
40
40
41
42
42
43

FIGURE 3.37: “INDIVIDUALS->ROLES->INDIVIDUALS”’: ALL INSTANCES RELATED TO OTHER
INSTANCES
FIGURE 3.38: IN_SAME_CARTOON_SERIES: (GOOFY, MICKEY)(MICKEY, MINNIE)(MINNIE,
MILLICENT)(MINNIE, MELODY)(PLUTO,GOOFY)

FIGURE 3.39:
FIGURE 3.40: “ROLES -> RELATED INDIVIDUAL PAIRS”": ALL ROLES USED BY INSTANCES
FIGURE 3.41:
FIGURE 3.42:
FIGURE 3.43:
FIGURE 3.44:
FIGURE 3.45:
FIGURE 3.46:
FIGURE 3.47:
FIGURE 3.48:
FIGURE 3.49:
FIGURE 3.50:
FIGURE 3.51:
FIGURE 3.52:
FIGURE 3.53:
FIGURE 3.54:
FIGURE 3.55:
FIGURE 3.56:
FIGURE 3.57:
FIGURE 3.58:
FIGURE 3.59:
FIGURE 3.60:

ROLES USED BY AND INSTANCES RELATED TO “GOOFY”

“FIRST_APPEARANCE” TEMPLATE II RESULTS

ROLE(INDIX, INDIY) IS USED ONLY ONCE

ROLES USED ONLY ONCE BY INSTANCES IN THE DOMAIN

INPUT INDIVIDUAL NAME

INDIVIDUAL NAME SEARCH RESULTS

SEARCH BY INDIVIDUAL NAME RESULT

INDIVIDUAL USING DATATYPE ROLE SEARCH RESULT

BROWSING ALL INSTANCES

SPACE TREE FORMAT OUTPUT FOR INSTANCE “MICKEY”

USER’S CONCEPT DEFINITION

CONCEPT HIERARCHY INFERENCE RESULTS

SPACETREE CONCEPT HIERARCHY RESULTS

SPACETREE ROLE HIERARCHY RESULTS

HTML/SCRIPT CONCEPT AND ROLE HIERARCHY

HTML/SCRIPT CONCEPT AND ROLE HIERARCHY

SIMPLE ABOX QUERY THROUGH NRQL INTERFACE

QUERY “DISNEY MOUSE”, WHO HAS NIECES, AND IS A FRIEND OF MICKEY
EXAMPLE NRQL QUERY AND ITS RESULT

QUERY RESULTS FOR SCENARIO TWO

ONTOXPL ABOX COMPLEX QUERY RESULTS IN A LISP-LIKE NOTATION

FIGURE 4.1: CONCEPT NAME BEGINS WITH A NUMBER

FIGURE 4.2: “TEST.OWL” DESIGNED BY PROTEGE AND GUI RESULTS
FIGURE 4.3: MOST SPECIFIC TYPES FOR “INDII” AND “INDI2”
FIGURE 4.4: REFERRED RESULTS BY ONTOXPL

FIGURE 4.5: ABOX SPACE-TREE GENERATION RESULT

FIGURE 4.6: ONTOEDIT KNOWLEDGE BASE VISUALIZATION

FIGURE 4.7: ONTOEDIT GUI

FIGURE 4.8: KAON MAIN PAGE

FIGURE 4.9: APOLLO HIERARCHY INFORMATION

FIGURE 6.1: THE ONTOXPL SYSTEM STRUCTURE

— viii —

44

45
45
46
47
48
48
49
49
50
51
52
53
54
54
55
55
56
57
58
59
59
60
60
63
64
64
65
68
71
72
73
74
82

FIGURE 6.2: JENA PARSING GRAPH RESULT — FROM

HTTP://JENA.SOURCEFORGE.NET/TUTORIAL/RDF _API/FIGURES/FIG2.PNG 86
FIGURE 6.3: JENA N3 RDF TRIPLE TRANSLATION RESULTS 86
FIGURE 6.4: OWL EXAMPLE FOR JENA PARSER 87
FIGURE 6.5: JENA RDF RESULT 87
FIGURE 6.6: JENA N3 RESULT 88
FIGURE 6.7: SAX APIs 90
FIGURE 6.8: NL PACKAGE API INFO 91
FIGURE 6.9: NL. PARSING ALGORITHM 91
FIGURE 6.10: DATABASE OPERATION ARCHITECTURE 92
FIGURE 6.11: SERVLET AND REASONING API MODULES 94
FIGURE 6.12: NATURAL LANGUAGE DESCRIPTION FUNCTION SCHEMA OVERVIEW 95
FIGURE 6.13: OWL SOURCE DEFINITION GENERATION ALGORITHM 96
FIGURE 6.14: NATURAL LANGUAGE TRANSLATION FLOWCHART 97
FIGURE 6.15: OWL DEFINITION FOR EXAMPLE CONCEPT “X1” 97
FIGURE 6.16: ALGORITHM FOR REASONING RESULTS BASED ON RACER 98
FIGURE 6.17: UML PACKAGE INFORMATION FOR “INFORMATION.SERVLET” PACKAGE 99
FIGURE 6.18: UML PACKAGE INFORMATION FOR REASONING.JAVA CLASS 100
FIGURE 6.19: SPACETREE OUTPUT GENERATION 101
FIGURE 6.20: EXAMPLE ONTOLOGY SOURCE FILE 102
FIGURE 6.21: SPACETREE SYNTAX OUTPUT FILE 102
FIGURE 6.22: SPACETREE CONCEPT HIERARCHY OUTPUT GENERATION ALGORITHM 103
FIGURE 6.23: SPACETREE INDIVIDUAL RELATIONSHIP OUTPUT GENERATION ALGORITHM 103
FIGURE A2.1: RACERPART PACKAGE INFO 112
FIGURE A2.2: REASONING RACERPART 113
FIGURE A2.3: NATURAL LANGUAGE FUNCTIONS 113
FIGURE A2.4: NL CONCEPT PARSING CLASS 114
FIGURE A2.5: NL ROLE PARSING CLASS 115
FIGURE A2.6: NL INSTANCE PARSING CLASS 116
FIGURE A2.7: DIG TRANSLATION FUNCTION 117
FIGURE A2.8: SERVLET PACKAGE INFORMATION 118

FIGURE A2.9: SERVLET STRUCTURE 119

— 11X —

List of Tables

TABLE 4.1: COMPARISON CRITERIA 76
TABLE 4.2: MAIN FEATURES COMPARISON OF APOLLO, OILED, ONTOEDIT, PROTEGE,
KOAN, AND ONTOXPL 78

1. Introduction

“The Web Ontology Language OWL is a semantic markup language for publishing and
sharing ontologies on the World Wide Web. OWL is developed as a vocabulary extension

of RDF (Resource Description Framework) and is derived from the DAML+OIL Web

Ontology Language...” [8].

1.1. Web Ontology Language (OWL)

Description logic systems play an ever-growing role in knowledge representation and
reasoning. In particular, the semantic web initiative is based on description logics (DLs)
and poses important challenges for development of systems. Recently, Web Ontology
Language (OWL) has been proposed as a standard for the semantic web. OWL is based
on two other standards: Resource Description Format (RDF) [16] and its corresponding
“vocabulary language”, RDF Schema (RDFS) [4]. In recent research efforts, these
languages are mainly considered as ontology representation languages, used for defining
classes of so-called abstract objects. Nowadays, many applications would start using the
RDF part of OWL for representing information about specific abstract objects in a certain
domain. Graphical editors such as OilEd [18] or Protégé [15] support this way of using
OWL quite well [27]. As a language for defining web ontology and their associated
knowledge bases, OWL is a revision of DAML+OIL [19] ontology language, which

satisfies all requirements of ontology language by providing both syntactic and semantic

1=

interoperability. Compared with RDF and RDFS, OWL provides constructors that are
more expressive such as equivalence, disjoint, necessary and sufficient conditions and

instance definition.

In order to help readers better understand the remaining chapters, we provide an OWL
overview in this section. As a mesh of information linked together to help machines read
and analyze source knowledge, the Semantic Web [21] envisions that machines, instead
of human beings, could do more of the hard work. Ontology, constituted by a specific
vocabulary in a certain domain, provides this semantic interoperability by defining data
models in terms of concepts, roles, and instances. In order to add a machine-tractable
logic layer to the “natural language” web of HTML, we need a well-understood and
formally specified language, which should also be relatively easy to use and amenable to
machine processing. At present, OWL Web Ontology Language is the best choice, which
facilitates, by and large, greater machine interpretability of web content than that
supported by XML, RDF, and RDF Schema (RDF-S) due to the additional vocabulary
along with a formal semantics. OWL has three sublanguages: OWL Lite, OWL DL, and
OWL Full [5]. In the following sections, we are going to use a vivid ontology example of
cartoon stars to show how OWL corresponds to description logics, and how one can

define classes, relationships, and individuals in order to capture the semantics of data.

1.2. Concept Definitions in OWL

We assume “Disney_cat”, which is a subclass of the concept “Disney_cartoon_star’, is
defined as “a subclass of Cartoon_cat and is produced only by Disney”. Figurel.l
illustrates the OWL presentation for the definition of “Disney_cat.”

<ow] :Class rdf:I1D="Disney_cat'>
<owl:equivalentClass>
<OWT:CTasss>
<owl :intersectionof rdf:parseType="collection'>
<ow]:CTass rdf:about="#cCartoon_cat"/>
<owl :Restriction>
<ow]:allvaluesFrom>
<owl.Class>
<ow]:oneof rdf:parseType="Collection">
<Producer rdf:ID="Disney'/>
</owl :oneof>
</owl:Class>
</owl ;:allvaluesFrom>
<ow]:onProperty>
<ow]:0bjectProperty rdf:about="#pProduced_by"/>
</ow1 :onProperty>
</owl :Restriction>
<ow]:Restriction>
<owl :onProperty>
<ow1:0bjectProperty rdf:about="#pProduced_by"/>
</owl :onProperty>
<owl:cardinality rdf:datatype="http://www.w3.0org/2001/XMLSchema#int"
>1</owl:cardinality>
</ow] :Restriction>
</owl :intersectionof>
</owl:Class>
</owl :equivalentclass>
<rdfs:subClassof>
<owl:Class rdf:about="#Disney_cartoon_star"/>
</rdfs:subclassof>
</owl:Class>

Figure 1.1: OWL definition for “Disney_cat”

Note that one may use <owl:Class rdf:ID="ConceptName”> to define a named class. In
the example, “Disney_car” is defined as <owl:Class rdf:ID="Disney_car’>. OWL also
supports the basic set operations, namely union, intersection, and complement, which are
named owl:unionOf, owl:intersectionOf, and owl:complementOf, respectively. Besides,
owl:minCardinality and owl:maxCardinality are used to specify the lower and upper

bounds. In the example, Disney_cat is defined as the intersection of class Cartoon_cat

—-3_

and two anonymous classes. Comparing with named classes, anonymous classes are the
classes defined without names such as <owl:Class> as shown in Figure 1.1. With
allValuesFrom and minCardinality restrictions on the produced_by property, two
anonymous classes have been generated: one is defined as a concept whose value for
produced_by property must be Disney; the other is defined as a concept, which has at
least one value for produced_by property. Now with the intersection of these two
anonymous classes and the previously defined Cartoon_cat class, we can express exactly

“produced by Disney”. Figure 1.2 displays the DL syntax of this example.

DL syntax

Disney_cat = Cartoon_cat nvProduced_by.{Disney} N 1 Produced_by

Disney_cat — Disney_cartoon_star

Figure 1.2: DL Syntax for “Disney_cat”

owl:equivalentClass provides a way to define a necessary and sufficient condition. The
meaning of such a class axiom is that the two class descriptions involved have the same
class extension (i.e., both class extensions contain exactly the same set of individuals). In
its simplest form, an equivalent Class axiom states the equivalence (in terms of their class
extension) of two named classes. An example about the “Cartoon_star” definition is

shown in Figure 1.3.

<owl:Class rdf:ID="Cartoon_star's>
<ow] :equivalentClass>
<owl:Class rdf:about="#Animation_star"/>
</owl:equivalentClass>
<fowl:Class>

<owl:Class rdf:ID="Animation_star">
<owl :equivalentClass rdf:resource="#Cartoon_star"/>
</owl :Class>

Figure 1.3: owl:equivalentClass example

1.3. Role Definition in OWL

OWL also provides property characteristics such as transitive, symmetric, inverseOf,
functional, and inverse functional expressions. Now we will give three examples to
explain owl:TransitiveProperty, owl:SymmetricProperty, and owl:inverseOf. When one
defines a property P to be a transitive property, this means that if a pair (x, y) is an
instance of P, and the pair (y, z) is instance of P, then we can infer that the pair (x, z) is
also an instance of P. For instance, we define a transitive role “In_same_cartoon_series”

in Figure 1.4.

<owl:TransitiveProperty rdf:ID="In_same_cartoon_series">
<rdfs:domains
<owT:Class>
<ow1 :unionof rdf:parseType="collection">
<ow]:Class rdf:about="#cartoon_star"/>
</owl :unionof>
</owl:Class>
</rdfs:domain>
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#objectProperty" />
<fdfsirange rdf:resource="#cartoon_star"/>
<rdf type rdf:resource="http://www.w3.0rg/2002/07/owl#SymmetricProperty”/>
<rdfs:subPropertyof>
<ow] :symmetricProperty rdf:about="#In_same_series'/>
</rdfs:subPropertyof>
</owl:TransitiveProperty>

Figure 1.4: A transitive role definition

<Disney_dog rdf:ID="Goofy">
. <In_same_cartoon_series rdf:resource="Donald_Duck"/>
</Disney_dog>

<Disney_duck rdf:ID="Donald_buck'>
<In_same_cartoon_series>
<Disney_micky_mouse rdf:ID="Mickey"/>
</In_same_cartoon_series>
</Disney_duck>

Figure 1.5: individuals using transitive role

In Figure 1.5, two individuals “Goofy” and “Donald_Duck” are defined by a transitive
role “In_same_cartoon_series”. The “Cartoon_star” ontology also defines that “Goofy
and Donald_Duck are in the same cartoon series”, “Donald_Duck and Mickey are in the
same cartoon series”, that is, we have “In_same_cartoon_series(Goofy, Donald_Duck)”,
and “In_same_cartoon_series(Donald_Duck, Mickey).” After connecting with the OWL
reasoner Racer [24], we can get In_same_cartoon_series(Goofy, Mickey), shown in

Figure 1.6.

Conal v:i_DuI{

AI n_same_carto on_se:'ies}‘fj—*{GucrfyI
¢ %,

/

]

In_same_seriesfes—

Figure 1.6: The inferred result of transitive role

A symmetric property is a property for which it holds that if the pair (x, y) is an instance
of P, then the pair (y, x) is also an instance of P. Syntactically, a property is defined as

symmetric by making it an instance of the built-in OWL class owl:SymmetricProperty, a

subclass of owl:ObjectProperty. In the cartoon star example, we define “Is_friend_of” as

a symmetric role in Figure 1.7.

<ow]1 :symmetricProperty rdf:1D="Is_friend_o
<rdf:type rdf:resource="http://www.w3. or‘g/2002/07/ow1#obJectPr-operty"/>
</owl:SymmetricProperty>

Figure 1.7: A symmetric role definition

In Figure 1.8, we have defined Is_friend_of(Odie, Garfield), which means

Is_friend_of(Garfield, Odie) as shown in Figure 1.9.

<Dishey_dog rdf:ID="odie">
<Is_friend of rdf:resource= #Garf1e1d"/>
<In_same_cartoon_series rdf:resource="#Garfield"/>
</Disney_dog>

Figure 1.8: Individuals using symmetric role

f{ln_same_t atoon_series

|0disf—{In_same_series

_ o mei{Flendish

] Opportunist

:2 ‘.“ =
Y in_same_series
%

k?
s friend_of

Figure 1.9: The inferred result of symmetric role

One property can be stated to be the inverse of another property. If property P1 is stated
to be the inverse of property P2, then if X is related to Y by P2, then Y is related to X by
P1. For example, if “Eat” is the inverse property of “Eaten_by” (in Figure 1.10) and “tom
Eat jerry” (in Figure 1.11), then an OWL reasoner can deduce that “jerry Eaten_by tom”

(in Figure 1.12).

<owl:ObjectProperty rdf:ID="Eaten_by">
<owl:inverseof rdf:resource="#Eat"/>
</owT:0bjectProperty>

Figure 1.10: Inverse role definition

<Disney_cat rdf:ID="Tom">
<Eat rdf:resource="#Jerry_Mouse"/>
</Disney_cat>

Figure 1.11: individuals using inverse role

Figure 1.12: The inferred result of inverse role

1.4. Individual Definitions in OWL

In addition to property and concept constructors, individuals also play an important role
in OWL. Normally defined with individual axioms (called “facts” as well), an individual
is minimally introduced by declaring it to be a member of a class. There are two types of

facts:

1. Facts about class membership and property values of individuals

2. Facts about individual identity

Many facts typically are statements indicating class membership of individuals and
property values of individuals. As an example, consider the set of statements in Figure

1.13 about an instance of the class “Cartoon_cat’:

<Disney_cat rdf:ID="Tom' >
<In_film rdf:resource="#Tom_and_Jerry"/>
<tat rdf:resource="#lerry_Mouse"/>
</Dishey_cat>

Figure 1.13: Individual definition

2. Problems

According to Merriam-Webster dictionary, Ontology is “a branch of metaphysics
concerned with the nature and relations of being; a particular theory about the nature of

being or the kinds of existents”, [http://www.m-w.com/].

Ontologies play a key role in knowledge discovery and knowledge sharing because of
their logically syntactic structure and inference functions. Thus, designing a good
ontology that represents the domain knowledge correctly and accurately becomes an
important task. Currently, OWL is the most expressive and popular ontology language
used by ontology and ontology services design. To facilitate ontology design, there are a
number of ontology editors such as Protégé, OilEd, OntoEdit [28] and so on.
Unfortunately, only a limited number of them support OWL well. For example, an
ontology designed by one tool might not be opened or loaded successfully by other tools.

Details about these tools and their comparison are provided in Chapter 4.

In this research, ontology design is not the main topic. Our approach is to develop a tool
to explore an ontology, provide effectively organized information, and illustrate the
knowledge base of the domain. The information includes not only the explicitly defined
objects, but also the implicit information retrieved by communicating with an OWL
reasoner such as Racer. As a result, this tool is able to ease users’ understanding an
ontology by quickly providing them with a global picture of the ontology in a user-

friendly way. Users might be divided into three main groups: (1) people who have a

~-10 -

limited or little background of ontologies, (2) ontology experts or ontology developers,
and (3) people who want to reuse ontologies designed by others. Ontology design is a
time-consuming task; ontology developers can add more and more information and
change their design periodically. As a result, an ontology file can grow into a very large
and complex knowledge base to a point when it is even hard for the designers themselves
to remember all the concepts, roles, instances, axioms, and the intrinsic relationship
among those objects in their domain. A tool, which can help users explore an ontology,
provides a fast overview of the design, and eases user acquisition of information
according to complex query requirements, is demanded by both ontology developers and
ontology users. Besides, newbies of ontology design have to learn how to organize
metadata in an ontological way, emphasizing on concepts, roles, and instances. For
ontology users, they are interested in whether the ontologies at hand are useful for them
and for decisions on whether they can use them fully, partly, or not use it at all. Under
this situation, they need a tool to help them catch the primary or highlighted information
fast. In addition, when users are interested about a specific question or problem, only the
related information should be displayed to them. To answer the questions mentioned
above, we developed the “Ontology Exploration tool — OntoXpl”, which supports the
ontology language OWL. OntoXpl can help ontology developers, ontology newbies,
ontology reusers, and interested people to understand an ontology quickly and explore the
ontology conveniently, by providing efficiently and effectively organized information
with an intuitive and user-friendly interface. We will elaborate more on these features in

Chapter 3.

—11-

2.1. Ontology: An Introduction

In order to support information search, we need information to be self-describing.
Metadata provides a way to make data understandable and shareable for users over time
[11]. Metadata such as the Dublin Core [7] attempts to define data by agreeing on the
meaning of a set of annotation tags, but it might not be flexible enough and might limit
the number of items that can be expressed. In addition, due to different understanding
based on different cultural, social backgrounds, and knowledge, it is hard to set up a
commonly understandable terminology or vocabulary. “Ontologies seek to provide a
definitive and exhaustive classification of entities in all spheres of existence.” [3].
Derived from philosophy, in computer science “An ontology is an explicit specification
of an abstract, simplified view of a world we desire to represent.” [9]. An ontology uses a
vocabulary of formally specified terms to describe the world — providing a shared
understanding of a domain of interest or knowledge. An ontology becomes the basic level
of a knowledge representation scheme, which standardizes terminologies in form of
taxonomies: classes, relations, and axioms. In addition, ontologies help make the implicit
assumptions explicit, specify the unambiguous definition of terms, add semantic meaning
of information, and support automatic reasoning based on defined rules. In order to
realize these functions, various ontology languages have been developed: XML based
SHOE [12], RDF, RDF Schema, DAML+OIL to the most popular used OWL. Adding a
semantic layer — the machine-readable metadata, to the current web, ontologies work as a

media helping “Agents” to communicate among each other to derive information.

~12-

2.2. Ontology design, revision, and understanding

As mentioned in section 2.1, ontology languages provide a way to share and reuse
knowledge about phenomena in the world of interest. Designing a substantial ontology is
not trivial, and designing ontologies in a way that provides relevance and value to a broad
audience is even more challenging. In order to design and maintain high quality
ontologies, there are four rules of thumb. First, give all named classes, roles, and
instances a meaningful name. Second, talk or consult with people having substantial
domain knowledge, the domain experts if possible, about what are to be designed by
users, and try to specify correct and as clear as possible definitions. Third, avoid
unnecessary synonyms and reduce redundancy. Last but not least, provide detailed
descriptions for axioms. In building and applying an ontology, it is required to clarify two
more important things: one is an ontology itself, which specifies concepts used in a
domain of endeavor, concepts whose existence and relationships are true by definition or
convention; another are empirical facts about these concepts and relationships, which are
not part of the ontology, although they are structured by it. These empirical facts are
subject to context, observation, testing, evaluation, or modification [2]. We will talk

about empirical facts and give examples for them in section 3.2.

- 13-

3. Ontology exploration system — OntoXpl Tool

State-of-the-art description logic (DL) inference systems such as Racer allow for
interpreting OWL ontology documents as T-boxes and A-boxes [25]. Racer accepts the
OWL DL subset (with the additional restriction of approximated reasoning for so-called
nominals and no full number restrictions for datatype properties). Descriptions of
individuals are represented as A-boxes by the Racer System. Viewing the RDF part of
OWL DL documents as A-boxes provides for query languages supported by DL systems.
Furthermore, graphical interfaces for description logic inference systems can be used to

inspect OWL ontologies.

It is important to provide user interfaces for practical work with description logic
inference systems. An increasing number of graphical interfaces are available for existing
DL systems. One class of interfaces consists of ontology editors such as OilEd and
Protégé. With these editors, ontologies can be interactively built and stored, for example,
as OWL documents. In addition, the editors can be used to develop RDF documents for
describing information about individuals with respect to OWL ontologies. Applications
using these OWL documents require an inference engine that supports reasoning about
individuals. Indeed, OilEd and Protégé can be configured to use Racer as an inference

engine for classifying ontologies and for answering queries about individuals.

The second class of interfaces offers browsing and visualization capabilities. Rice [17]

supports the input of textual queries and displays the concept/class hierarchy of Tboxes

—14 -

as outline views as well as the relational structure of A-boxes as directed graphs. The
outline view of classes is usually also supported by ontology editors but Rice additionally
supports the visualization of A-boxes. Other OWL/RDF visualization tools or editors

with visualization capabilities are, e.g., KAON [6], OntoEdit [28], and OntoTrack [22].

The design of OntoXpl is influenced by OWL (and its foundation on DLs). Therefore, it
focuses on the three main language elements of OWL: classes/concepts, roles/properties,
and nominals/individuals. In order to understand OWL ontologies quickly, we provide
three primary kinds of information: concepts, roles, and instances, and organize them in a

closely packed way.

The OWL ontology explorer OntoXpl which we have developed is intended to
complement existing ontology editors and visualization tools. Now we will begin to
introduce the main functions of the system and illustrate how functions presented by
OntoXpl help users achieve their goals. The capabilities of OntoXpl are best explored
interactively. However, in this chapter we try to illustrate some of its main features. Let
us assume that OntoXpl is used to explore an ontology file called “Cartoon_star.owl”
describing knowledge about famous cartoon characters (e.g., Tom, Jerry) and their
relationships (e.g., First_Appearance_in, Has_desire). In the following sections, in order
to help users easily understand how OntoXpl works, we are going to illustrate the
application in six steps: main menu functions, natural language explanation for concepts,
roles and instances, inference information, general axiom browsing, Abox querying, and

taxonomy of classes and roles.

—15-

3.1. Main menu functions

The OntoXpl system is built by referencing implementation-compliant web tier
components from Java Server Pages (JSP) and Java Servlet extensions based on the
tomcat server environment. At server sides, users should install Tomcat 4.0 (or higher
version) and JDK1.4 (or higher version) and setup all the necessary environmental
parameters such as “JAVA_HOME?” in their operating systems in order to run OntoXpl
successfully (details about system architecture are provided in Chapter 5). The web-based
client-server architecture provides a convenient way for users to browse information with
standard HTML browsers installed on computers. In a way, it is not required for users to
have java environment installed at client sides. In addition, users need to connect to the
OWL reasoner — Racer [24] before starting OntoXpl since it needs to connect and
communicate with Racer, compute on the fly by generating and sending a serious of
reasoning commands to Racer and analyzing reasoning results from the reasoner as users
interact with the system, and display results to users through web interfaces. Details
about how to setup the environment and examples about loading ontologies into the
OntoXpl system is given in Appendix A.1. Figure 3.1 displays the beginning welcome

page of OntoXpl.

—16-

« Individual

Figure 3.1: OntoXpl’s main page

In order to let OntoXpl analyze and understand an ontology file, it is required that users
load the ontology file to OntoXpl system first. Figure 3.2 shows the interface using which

users can load ontologies.

—17-

Figure 3.2: Ontology loading page

After an ontology has been loaded into the OntoXpl system successfully, the main
command pane is shown in Figure 3.3. The filename of the OWL ontology currently
loaded into OntoXpl and Racer is shown with a summary of the number of contained
concept and role names (see also the following sections for an explanation of the example
knowledge base). In our example ontology, the Tbox name is “cartoon_star.owl”, and
there exist twenty-two named-concepts, sixteen object properties, and one datatype

property as shown in Figure 3.3.

— 18-

Chniology Explore Tool {OuteNph

Figure 3.3: OntoXpl’s main page with the displayed ontology information

OntoXpl’s interface offers eight principal browsing categories (from left to right and top
to bottom): file selector, “natural language” description, structural information,
exploration of concept/property axioms, inspection of concept and role hierarchies, view
of statistical information (not yet implemented), inspection of A-box graph structures,
and the interactive use of Racer’s query language nRQL. In the following, the seven
implemented categories are described. Figure 3.4 shows a zoom of the first (horizontal)
command pane. The left group of commands is used to load an OWL file and generate a
DIG representation of the loaded OWL file. The middle group of commands applies to
concepts, roles, and individuals. Details and examples are displayed in the following

chapters.

~19—

Figure 3.4: Zoom of the upper three command menus (from left to right): file selection,
OWL / natural language views, information page views

Figure 3.5: Zoom of the middle two command menus (from left to right): explore
concept/property characteristics, show concept/role hierarchies

The two implemented command groups from the middle pane are shown in Figure 3.5.
The command group displayed on the left allows one to query about equivalent or
disjoint concept names and symmetric, inverse, and transitive roles. The other group is
concerned with concept and role hierarchies. There exist two principal services: (i) one
can browse the concept or roles hierarchies in an outline view; (ii) a data file for the
Spacetree tool [13] is generated such that the taxonomies can be graphically inspected.
The last two command groups from the bottom pane are shown in Figure 3.6. They are
dedicated to explore A-boxes. The first command group has several search forms to
retrieve individuals and their known relationships with other individuals, to browse
relationships in an outline view or inspect the A-box structure with Spacetree. The second

command group allows users to query A-boxes with Racer’s query language nRQL [26].

—20-

Figure 3.6: Zoom of the bottom two command menus (from left to right): A-box
command menu, nRQL Racer Query Language

3.2. Natural language explanation

As the basic knowledge representation service, natural language explanation with less
technical things provides a good way for more users, who do not have strong OWL

background, to understand the object definition.

The OntoXpl system provides a user-friendly GUI. For example, when the mouse is over
the menu item functional link, a dynamically generated layer containing explanation that
is more informative will be shown to users. When the mouse moves away, the dynamic-
generated layer will disappear. For example, when the mouse comes across the
“Concept” hyperlink, the floating layer “Select one’s interest concept - with NL

explanation” will be shown.

The view menu item shown in Figure 3.7 includes three parts: concept, role, and
individual. We are going to explain them one by one. Under each function, we provide

both the OWL definition and Natural Language (NL) information. In order to generate

21~

the NL explanation, we parse and analyze the OWL syntax, format and display the desire
information in a manner convenient to users so that users can easily understand how the

selected concept, role and individual is defined.

plore Teel {OntoXpl)

Departmen
nodificd

Figure 3.7: View function: Concepts, Roles and Individuals

Below the Concept-NL part, we list all concepts defined or used by the loaded ontology
file. We alphabetically order the concept names so that it is easier for users to search for a
given name. In the left frame (Since the OntoXpl system is developed based on the web,
in this example, we separate the screen into two frames. Details are in Chapter 5 in the
system architecture part), the top level locates the total number of concepts in the domain
such as “Total concept number: 16” shown in Figure 3.8. Besides, in order to ease users’
reading and searching for the concepts, we divide the concepts into a small ten-record

size concept groups with a boundary line separating them.

20

Figure 3.8: List Concepts in the domain

Because of the hyperlink support, web application has become very popular. As a result,
it is easy to link objects together. Each concept name in Figure 3.8 is represented as a
functional hyperlink, which means, whenever users click the link, the OWL source code
(e.g., see Figure 3.9) together with a “natural language” description (e.g., see Figure 3.10)

for the selected concept are shown on the right hand frame.

23

(owl:disjointWith rdf:resource="#Cartoon_mouse")
(fowl:disjointWich)

(owl:disjointWith rdf:resource="#Cartoon_dog™)
{/fowl:disjointWith)

{rdfs:subClass0f rdf:resource="#Cartoon_star™)
{/rdfs:subClass0f)

Figure 3.9: OWL specification of class “Cartoon_cat”

this class has no individuals in common with Cartoorn mouse
this class has no individuals in common with Cartoon dog
It is the subclass of Cartoon star

Figure 3.10: “Natural Language” description of class "Cartoon_cat"

The “natural language” (NL) description is based on the DL notation and tries to describe
the selected item w.r.t. this notation. These NL descriptions are intended for users with a

limited background on DL and OWL.

Figure 3.11 shows the whole interface of the OWL source and natural language
descriptions for class “Cartoon_cat”. Within the page, the default namespace is
displayed. Also, there is an “Info Page” link, which will show how the other concepts,
roles, and instances are related to the current concept (“Concept Info” examples will be
shown in Chapter 3.3). Below the NL part, every meaningful item defined in the domain
such as concept, role and individual names are shown as functional hyperlinks through

which users can navigate through the pages that are related to the selected item.

24

.

owl deﬁm’ﬁon

L Explanabior
(owls;disjointWith rdf:resource="#Cartoon mouse™)
(/owl:disjointWich) . . this class has no individuals in common with Cartog)
(oul:disjointiith rdf:resource="#Cartoon_dog") this class has no individuaels in common with Cartoon_dowg
(foul:disjointllith) It is the subclass of Certoon star

(rdfs:subClass0f rdf:resource="#Cartoon_star”)
(/rdfs:subClass(f}

Figure 3.11: “Cartoon_cat” OWL definition and NL explanation main page

After clicking

“Cartoon_mouse”, we will go to the concept “Cartoon_mouse” NL

description page shown in Figure 3.12. Actually, there is not much difference from

Figure 3.11 in that they use the same functions and interface provided by OntoXpl, and

only the displayed results are generated and computed on the fly. Within the NL

descriptions, whenever concepts, roles, or instances are mentioned, we will provide a

clickable link for them. For instance, the NL exploration for “Cartoon_mouse” shown in

Figure 3.13 includes a named class “Cartoon_dog”, and the concept “Cartoon_dog” is a

clickable link. After users click this link, the current selected concept will change to

“Cartoon_dog”.

—25_

fanation

{rdfs:subClassOf}

(owl:Class rdf:about="#Cartoon star”)
(/owliClass)

(/rdfs: subClassOf)
{owl:disjointilith)

(owl:Class rdf:about="¢Cartoon_cat")
(/owl:Class)

(/owl:disjointWith)
{owl:disjointWith)

{owl:Class rdf:about="#Cartoon_dog")
{/owl:Class}

{/owl:disjointWith)
(rdfs:subClass0f}

(owl:Restriction)
(owl:allValuesFrom)
(owl:Class rdf:sabout="4#Disney_mouse™)
(/owl:Class)
{/owitallValuesFrom)
{owl:onProperty)
{owl:SymmetricProperty rdf:about="#Is_cousin_of")
{/owl:SyumetricProperty)
(/owl:onProperty)
(/owl:Restriction)

(/rdfs:subClass0f)

It is the anonymous subclass of
A concept (artopon star
this class has no individuals in common with
A concept (artogn cat
this class has no individuals in common with :
A concept Cartoon dog
It is the anonymous subclass of
all of its instances have to be:
for Symmetric propercty Is cougin of

Figure 3.12: “Cartoon_mouse” OWL definition and NL explanation

It is the anonymous subclass of
A concept Cartoon star
this class has ho individuals in
A& concept Cartoon cat
this class has no individuals in

A4 concept Cartoon dog
It is the anonymous subclass of

Common with

common with

all of its instances hawve to be:

& concept Disnev mouse

for Symmetric property I2 cousgin of

Figure 3.13: “Cartoon_mouse” NL

Cartoon_mouse C Cartoon_star

-Explanation

Cartoon_mouse C VIs_cousin_of.Disney_mouse
Cartoon_mouse i Cartoon_cat C Bottom
Cartoon_mouse rn Cartoon_dogC Bottom

Figure 3.14: “Cartoon_mouse” DL-Definition

—26—

About the Empirical facts that we mentioned in section 2.2, here we give an example,

showing how it works in the system as shown in Figure 3.15.

L Ezplanatior

Tlus concept might he the Empirical Fact within the domain

Figure 3.15: Empirical fact example “Feature”

Similarly to the concept-NL function, in Figures 3.16 and 3.18, we give two examples
about how role-NL and individual-NL work. We select “In_same_cartoon_series” as a
role example whose namespace is “http://a.com/ontology”. The NL definition is shown in
Figure 3.17. Comparing with the OWL syntax, the Natural language is much easier to

understand for people with restricted or no background of OWL and logic symbols.

o definition NI Explanation
(xdfs:domain rdf:resource="#Cartoon_star") Donain of this Role is: L
{/rdEs: donain) Type of this Role is: hittp://www.wi.crg/2002/0%/cul Traneisivelyopery
(rdf:type rdf:resource="http://www.w3.org/2002/07/oul#TransitiveProperty”) Parent Property is:
(/rat:cype) It sime gerleg
(rdfs:subProperty0f) Range of this Role is: 4

(owl:ObjectProperty rdf:ahout="#In_seme_series”} Type of this Role is: J.0Ly /200207 /0%), SymketricPropruty
(/owl:0bjectPropercy)

(/rdfs: subPropertyCt)

(xdfs:range rdf:resources"#Cartoon_star")

{/rdfs: xange)

(xdf:type rdf:resources"http://wuw.wd.org/2002/07/owl#SyunetricProperty”)

{/xdf:type)

Figure 3.16: “In_same_cartoon_series” Role NL-explanation main page

-27-

Domain of this Role is: Cartoon star

Type of this Role is: http://lwmmw.wid. org /200207 /0wl TransiviveProoperoy
Parent Property is:

In sawme serjes

Range of this Role is: Cartoon atar

Type of this Role is: http: Afvww. w3 org/2002/07 /0wl SymmetricoProperty

Figure 3.17 NL-explanation for Role “In_same_cartoon_series”

Figure 3.18 shows the Individual NL-explanation main page. We select “Mickey” the
famous Disney mouse as the example. Enlarged picture for the NL part is shown in
Figure 3.19. Details about the OWL language parser, natural language translation rules,

and the algorithms can be found in Chapter 5.

W1 Faplavation

Tt ; - \ has relationship Enrn plsce
(] With individual G s train ride from NY no lozbngelss (Type is: Placs)
[e e] Pirst_fppear dabe 1528_Nov_18

[Pmaaarm <Py 18- Tl e | has relationship Fipst hppesrance
et . ;
. v eesen has relationship HasFesturs

e WUith individual Th:
rimt pomereey | With individual g
l9z8

Figure 3.18: “Mickey” Individual NL-explanation main page

has relationship Born p
With individual On_a_ftrain ride from NY to losAngeles (Type is: Place)
First Appear date 1528 Nov 18

has relationship First Appearance
has relationship HasFeature
With individual The first sound cartoon (Type is: Feature)
With individual Steamboat Willie (Type is: Animated cartoon)
In Year 1928 -

Figure 3.19: NL-explanation for Instance “Mickey”

28-

3.3. Inferred information

The information views of concepts, roles, and individuals use Racer’s query interface to
display their (inferred) characteristics. Concepts are described by (i) their relative
position in the classification hierarchy (e.g., parent, children), (ii) the roles occurring in
the concept declarations, and (iii) the individuals that are instances of this concept. By
analogy, a role is similarly described but in addition to its position in the role hierarchy,
the concepts that use this role are listed. An individual is described by (i) its most specific
concept names (so-called types) of which it is an instance, (ii) other individuals that are

instances of concepts (parents, children, etc) related to its types.

3.3.1. Concepts level

Figure 3.19. displays the current concept name “Cartoon_mouse”, its namespace
“hitp.//a.com/ontology”, and the “NL Expl Page” link with contrast to the “Info page”
under Concept-NL main page. Below that, inference results for the current selected

concept are displayed.

~20 _

+ Anitnation star

o Cartoo
mal

IMickey_mouse]
i

Figure 3.20: “Cartoon_mouse ” Concept Information Page

As shown in Figure 3.20, we provide the names of ancestors, parents, children,
descendants, roles, and individuals information about the current selected concept with
staggered color background between them. In this example, we can see that
“Cartoon_mouse” has two parents “Animation_star” and “Cartoon_star”, three ancestor
concepts, one direct child, and three descendants. Each of them is displayed as a
hyperlink. One can click the link and change the current selected concept. In addition,
“Cartoon_mouse” uses one role: “Is_cousin_of’ which is shown as a hyperlink as well. In
contrast with a concept link, after we click a role link, it will go to the role inference
information page with the clicked role as the current selected role. The final part lists all
instances related to the selected concept. In the domain, we have a total of six individuals
that are instances of “Cartoon_mouse”: individuals are “Jerry”, “Melody”, “Mickey”,

“Millicent”, “Minnie”, and “Muscles”.

~130 -

The “NL Expl page” link in the top of the right frame can take users back to the concept-
NL main page. For example, after clicking "NL Expl Page" as shown in Figure 3.20,

users will go back to the “Cartoon_mouse” Concept-NL page displayed in Figure 3.12.

3.3.2. Role level

In the role information inference part, users will see ancestors, parents, children and
descendant roles for the current selected role. In addition, we provide a summary list of
concepts that use the current selected role. In Figure 3.21, we can see that both the
children level and the parent level roles’ results are NIL. However, NIL does not mean “it
does not exist”, but “cannot be proven w.r.t. the information given to Racer”. Therefore,
the ancestor level and the descendant level roles for “Voiced_by” are empty. In addition,

there is only one concept “Cartoon_animal” which uses role “Voiced_by”.

—31-

Figure 3.21: “Voiced_by” role information page

Another example about the role information page is “In_same_series”. After clicking the
“In_same_series” link in Figure 3.21, the current selected role will be changed to
“In_same_series”, and the contents will be recomputed and generated on the fly. As
shown in Figure 3.22, we can see “In_same_series” has one children level role

“In_same_cartoon_series”, which is the only descendant role as well.

§ role is: hitp,

Ancestor (Oj : |

p—

Ctﬁldren (1) \
‘ toon_series

o In_same cartoon_series

Figure 3.22: “In_same_series” Individual Information Page

—32_

3.3.3. Instance level

As a summary, we have selected a flexible way to develop our GUI according to our
situation. Web links help to link objects together in a convenient way to ease users’
browsing the information and benefit the contents’ arrangements and displays within

limited space.

The main individual information page is shown in Figure 3.23. Functions provided by
this page are: types of the current selected individual, sibling level instances, ancestor
level instances, parents level instances, children level instances and descendant level
instances. In the following examples, we are going to show how each of these functions

works.

No mbling level msioneed)||
TOP(no instance)

Figure 3.23: Individual Information main Page

-33-

In Figure 3.24, we select the individual “Minnie” as the first example. The type for
instance “Minnie” is concept “Mickey_mouse”. The sibling level instances are “Melody”,
“Mickey”, and “Millicent”. Since *“Disney_mouse” 1is the parent concept for
“Mickey_mouse”, and “Disney_mouse” has two instances “Jerry” and “Muscles”, the

parent and ancestor level instances for “Minnie” are “Jerry” and “Muscles”.

. y . type: [Disney mouse
Ancestor level instances (2) : e e | . :
] ype: [Disney mouse]

NsrIRE —_

e Muscles jsney
hildren level instances (0) : « BOTT Oﬁif(o instance)
: : QIO e

Figure 3.24: “Minnie” Individual Information page

Now we will use the following seven concepts: C1, C11, C12, C121, C13, C131, C1311,
and their related instances to illustrate how we define type, sibling level instance,

Ancestor level instance, Parent level instance, Children level instance, and Descendant

level instances.

—34 -

The concept hierarchy and instances information is shown in Figure 3.25: C11cCl,
C121cCl12cCl, C1211cCl121, C12121cC1212cC121. C1 has instance “Indil”,
C11 has instance “Indil1”, C12 has “Indil2, Indil13”, C121 has “Indi21, Indi22, Indi23”,
C1211 has “Indi3l, Indi32”, C1212 has “Indi33”, and C12121 has instance “Indi41”.
Here, we select “Indi21” as the example, whose most specific type is C121. According to
the concept classification, we know the parent concept for C121 is C12, whose instances
are “Indil2” and “Indil3”. Therefore, the parent level individuals are “Indil2” and
“Indil3”. Similarly, we know the ancestor concepts for C121 are Cl1 and Cl12. As a
result, individuals “Indil”, “Indil2”, and “Indil3” are the ancestor level instances of
“Indi21”. For the children level instances, we can see C1211 and C1212 are direct
children concepts for C121. Therefore, we know that “Indi31”, “Indi32”, and “Indi33”
are the results. In addition, when we migrate to the descendant part, we need to include
the concept C12121 plus the children concepts mentioned above, and then we have
“Indi31”, “Indi32”, “Indi33” and “Indi41” as the descendant level instances of “Indi21”.
Figure 3.27 illustrates the OntoXpl instance information result for instance “Indi21”. This
figure displayed here is not generated by OntoXpl, and we use it in order to illustrate

what instance levels mean and how we present results for different level instances.

—35-

Indil, Indil2,
Indil3

Indi31, Indi32, @ Indi31, Indi32,

Indi12, Indi13 Indi33 Indi33, Indidl

ijgng\ij[?;l -

e ca
wpe [CL)

Figure 3.27: OntoXpl instance-info result for “Indi21”

—36 —

3.4. Axiom browsing

In this section, we provide the “Equivalent-concept”, “Disjoint-concept”, “Symmetric-
role”, “Inverse-role” and ‘“Transitive-role” functions. Each of these functions pre-
calculates the related concepts or roles and then gives a summary report to users. For
example, the “Equivalent-concept” function analyzes all concepts in the domain and
gives back the equivalent classes result to users. If there are no equivalent concepts in the
domain, an empty page will be seen. Now, we will explain these five functions one by

one.

3.4.1. Equivalent concepts

In the Cartoon_star domain, there are two concepts: “Animation_star” and

“Cartoon_star”, which are equivalent as shown in Figure 3.28.

Figure 3.28: Equivalent-concept main page

37—

3.4.2. Disjoint concepts

The concept disjoint function has been separated into two cases: “By conceptName” and
“By pairs”. The first case is normally faster to compute. To be more precise, the
complexity of this computation would be O(n), where » is the number of concept names
in the input ontology file. This complexity, however, is O(n®) for the second case, which
we call “By pairs”. Figure 3.29 shows a part of the disjoint concept pairs, presented in
ascending order based on the concept names. The second part gives feedback results
according to users’ input. For example, in Figure 3.30, with keyword input “Cartoon”, all
concepts whose name contains “Cartoon” will be listed as shown in Figure 3.31. Let us
assume the concept of interest is “Cartoon_cat’. Disjoint information is that
“Cartoon_cat is disjoint with Cartoon_dog, Cartoon_mouse, Disney_dog, Disney_mouse,
Human, and Mickey_mouse” as shown in Figure 3.32. Every concept disjoint with
“Cartoon_cat” is displayed as a link to help change the current selected disjoint concept.

For instance, clicking “Mickey_mouse” in Figure 3.32, a new result screen is shown in

Figure 3.33.

—38~

Cartoon cat

=Cartoon_dog

-=Disney_cat

Figure 3.30: Disjoint concept name input

-39 _

5
&

Aartoon

s

bel

“Cartoon

ith one word

Search Concept w

31

3

Figure

_cat”’

t results -“Cartoon

in

.32: Disjo

3

Figure

—40 ~

Figure 3.33: Disjoint result for “Mickey_mouse”

3.4.3. Symmetric roles

All symmetric roles defined in the domain will be listed in a summary report to users as
shown in Figure 3.34. Beside the role name, there are two links. After clicking the first
one, a new window about the role natural language page will be opened with the current

role as the selected role. The other one opens the role information page in a new window.

41—

Figure 3.34: Symmetric roles in a summary report

3.4.4. Inverse roles

OntoXpl provides functions to get all the inverse roles pair by pair as shown in Figure
3.35. Similar to the symmetric roles function, there are two clickable links as well.
Function “open NL page” will open the pages “Role Natural Language” and “Role

Information”,

Figure 3.35: Inverse roles in a summary report

—42

3.4.5. Transitive roles

All transitive roles defined in the domain will be shown in this part. For instance,
Cartoon_animal ontology has three transitive roles: “In_same_cartoon_series”,

“In_same_series”, and “Is_cousin_of’ as shown in Figure 3.36.

Figure 3.36: Transitive role in a summary report

3.5. Abox queries

The Abox query has been separated into three parts. Firstly, three kinds of templates will
be introduced about query individuals in the domain. The next is about how to query
instances based on the instance name given by users. Finally, all instances and their
relationships will be calculated and shown to users. Now these three functions will be

introduced one by one.

—43 -

3.5.1. Abox template I - “Individuals -> roles -> individuals”

The first template begins from all instances that have relationship with others. The goal is
to help users catch relationships between instances. In a way, instances that are not linked
or used by other instances have been excluded, and they are not displayed to users.
Clicking an instance name, the system will calculate and generate roles used by the
selected instance and display results in a list menu. In our example, as shown in Figure
3.37, there are thirteen instances that are related to other instances. After selecting

“Goofy”, roles used by “Goofy” will be generated in a list menu.

Figure 3.37: “Individuals->roles->individuals”: all instances related to other instances

After selecting “In_same_cartoon_series” role in the second list box, all the instances
that are “In_same_cartoon_series” with “Goofy” are shown in Figure 3.38.
“Cartoon_star” ontology defines “In_same_cartoon_series(Goofy, Mickey),
In_same_cartoon_series(Mickey,Minnie), In_same_cartoon_series(Minnie, Millicent),
In_same_cartoon_series(Minnie,Melody), and In_same_cartoon_series(Pluto,Goofy)” in

Figure 3.38. Besides, “In_same_cartoon_series” is defined as not only a symmetric but a

—44 —

transitive role. Therefore, the results for “Goofy” are "Melody", "Mickey", "Millicent",

"Minnie" and "Pluto" shown in Figure 3.39.

@’ Mickey
ﬁﬂhﬂillicgnt

Figure 3.38: In_same_cartoon_series: (Goofy, Mickey)(Mickey, Minnie)(Minnie,
Millicent)(Minnie, Melody)(Pluto,Goofy)

ole

Figure 3.39: Roles used by and instances related to “Goofy”

— 45—

3.5.2. Abox template II - “Roles -> related individual pairs”

In template2, all the roles that are used by at least one instance will be shown in a list box

first shown in Figure 3.40.

al

Figure 3.40: “Roles -> related individual pairs”: all roles used by instances

One of the interesting features that OntoXpl provides is to generate values based on a
particular property. For example, suppose the user is interested about the property
“First_Appearance”. After a series of parsing and computing tasks, the system generates

the results and provides a summary report, as shown in Figure 3.41.

— 46 —

Figure 3.41: “First_Appearance” Template II results

3.5.3. Abox template III - “Role(indiX, indiY) queries”

Template IIT helps answering “which roles have been used by instances at least N times
and at most M times”. For instance, for roles used only once by instances, users can input
at least 1, and at most 1 in the text field in Figure 4.32. The search results are

“Not_fond_of’, “HasFeature”, and “Born_place”, as shown in Figure 3.43.

—47

Figure 3.43: Roles used only once by instances in the domain

—48 —

3.5.4. Search by individuals

As in Figure 3.44, the individual name is the input in the text field. After clicking the

submit button, individuals whose names contain users’ input keywords will be listed.

Figure 3.44: Input Individual Name

The input value is G, which means the result values should return all instances whose
name includes keyword ‘G’. In the example, there are four instances, which satisfy the
requirement. They are “Goofy”, “Marcellite_Garner”, “Puss_Gets_the_Boot” and

“Puss_Gets_the_Boot_as_Jasper” as shown in Figure 3.45.

Figure 3.45: Individual name search results

- 49 —

After clicking “Goofy”, all information related to “Goofy” will be listed in two parts. One
is ordered by the individual name; the other is ordered by role name. In the example, the

result ordered by individual name is shown in Figure 3.46.

Figure 3.46: Search by Individual Name Result

When instances use datatype properties, the datatype information will be shown below
the object property part. For instance, the individual “The_ duckling” first appears in year

1950 - First_Appear_date(The_duckling, #String(“1950”)) as shown in Figure 3.47.

—50—

Figure 3.47: Individual using datatype role search result

3.5.5. Browse all instances

OntoXpl lists all instances that are related to others in red color, while the instances
having no relationship with others are displayed in black. As shown in Figure 3.48,
“Melody”, “Mickey”, “Millicent”, “Minnie”, and “Muscles” are individuals having
relationship with others, so they are interesting instances for users. On the other hand,
instances “Jerry-s_Cousin”, “Little_Quacker”, “Look_out_for_other_little_guy”,
“Marcellite_Garner”, “Mickey_Revue” and “Oh_Mickey...” are possibly not interesting
for users. Users can explicitly select the instance, OntoXpl will communicate with Racer

and get back the roles, and instances used by the selected instance. In order to allow

~51-=

users the management of the information efficiently, OntoXpl transforms the result into
the space tree format (details about OntoXpl’s outputs are presented in Chapter 4.4).
Figure 3.49 shows the complete unfolded hierarchy for the individual example “Mickey”

in an outline view.

Figure 3.48: Browsing all instances

The disadvantage of this type of view is the repeated occurrence of classes (or subtrees)
that have more than one parent (e.g., Goofy, Minnie). The current version of the
Spacetree tool is version 1.6. Because of the limitation of this version, it does not support
graph outputs. For example, there exists In_same_cartoon_series(Mickey, Goofy) and
In_same_series(Mickey, Goofy). Instead of putting and displaying them in a graph, the

version 1.6 Spacetree’s schema only supports displaying the results in a tree structure.

—-52-

The improved algorithm is developing under the department of artificial intelligence at

University of Ulm.

/,I Born_placel—On_a_train_ride_from_NY_to_losAngeles|

:

IFirst_Appearance{ {Steamboat_WiIIie]

i 3’;
,; / / o G oofy
// P

o

s "
i

. o

S, G oofy
s ——
\\' \.\"\ .__»“«"'—-‘-““,’ﬁ::,,_ e Melo d'}l'
| ,,_»,::%ﬁ'__ —— Mickey
‘|, in _Same_seriesmees T

Y e - e ilillicent

Y “""“‘-w._w %"'“\-_.M_ | .
\ e Minnie

\ T IPluto
'\i Is_frien d_of Y innie]

Figure 3.49: Space tree format output for instance “Mickey”

3.6. Taxonomy

Based on the concept’ definitions in the domain, the concept hierarchy result will be
calculated and regenerated by OntoXpl system. Therefore, the final inference results can
be different from users’ original design. Let us look at an example. C1, C2, C3, C31, and
OR1 are defined as shown in Figure 3.50. The necessary and sufficient condition for C1

is “it has a filler in the role ORI, all of its instances have to be C3”, and the definition for

~53—

C2 is “for role ORI, all of its instances have to be A concept C31”. Thus, concept C2

should be the subclass of concept C1. The OntoXpl results are shown in Figure 3.51.

*C1C TOP
+C2C TOP
+C1=VOR1 C3

+C31CC3

+C2=VOR1 C31

(C) owl:Thing
© 1
e ez
@ 10 C3
(Cica

Figure 3.50: User’s concept definition

Figure 3.51: Concept hierarchy inference results

In contrast to the hierarchical views displayed by using the Spacetree tool shown in

Figures 3.52 and 3.53, we provide another navigation mechanism for users browse

concepts and roles’ hierarchy information based on JTree structure. Figures 3.54 and 3.55

show the complete unfolded hierarchy for concepts and roles in the Cartoon_star

ontology using an outline view provided by the OntoXpl system. In case users need the

NL description or more related information about the concept, we provide ways for users

to go through those functions. In a way, our system develops an integrated display

mechanism by providing and linking functions closely to help users achieve their goals.

—54—

[Animated_cartoon}”

jlAnimation_starlé:

\‘iCanoon_mo use|~—~[Disn ey_mnuseHM ickey_mouse
{Cartoon_cat
" tGantoon_dog

. T{Cartoon_duck

o,

o

s

o
o
Ve

2

o,

“{Cartoon_mouse|

Figure 3.52: Spacetree concept hierarchy results

In_same_series
Born_place
|F avorite_sayings

iF irst_Appear_date)|
First_Appearance|

In_same_cartann_series

iy

o

iy

§

8. Has_nieces

In_Year

il
|

3% —
;j\l _cousin_ol
i -
5",‘ Is_friend_o

i

1

ills_niece_of

Figure 3.53: Spacetree role hierarchy results

—55-

Figure 3.54: HTML/script Concept and role hierarchy

— 56—

cei

-
.

Figure 3.55: HTML/script Concept and role hierarchy

3.7. New Racer Query Language nRQL query interface

As an extended query language for Racer, nRQL [26] can be seen as a straightforward
extension and combination of the Abox querying mechanisms to run the basic Abox
retrieval function and allow the use of variables within queries, as well as much more
complex queries formatted in a lisp-like notation. The variables in the queries are to be

bound against those Abox individuals that satisfy the specified query. For expert users,

~57-

the OntoXpl system supports formulating queries in a formal language supported by
Racer. We will guide users through the following two example scenarios in order to go

through the nRQL part under OntoXpl.

The first scenario shown in Figure 3.56 describes the simple Abox query. In this
example, users look for all instances that have been defined in the domain. The returned
results are reorganized by hiding the namespace from the interface, and adding a

functional link to help users retrieve more information related to instance names.

i = - - s -
il Thompson Yoo-hoo | e Goofy Millicent Spike |
out .f v small Jerry Mi Revue The first s cartoon
Happy minding own_business until cornered pigued or provoked Melody Brown Dawes Butler i
I ky Puss_Gets the as_Jasper Dog Trouble |,

Pure inocence Toothy Puss Gets the Boot Opportunist
Ob__M_igke‘.. Muscles Friendish Childlike Always _willing to help friends Sensitive Impish
Why__hello Jerry -s_Cousin Always a s to ingratiate with the powers Little Quacke
[Marcellite Garner Awkward Eternally loyal Toodles Very Strong mouse The duckling Mickey

Figure 3.56: simple Abox query through nRQL interface

The second scenario shows a complex nRQL [26] query which searches for a “Disney
mouse”, who has nieces, and is a friend of Disney mouse “Mickey”. The dialog box
shown in Figure 3.58 displays the input query and its returned result in a Lisp-like
notation. Figure 3.57 shows the DL definition of the query. There are two variables X and

Y, whose types are “Mickey_mouse”. X is a niece of Y, and X is a friend of “Mickey”.

58

™ : Mickey_mouse
7Y : Mickey_mouse
{?X, Mickey} : Is_friend_of
{?Y, X} :Is_niece_of

Figure 3.57: Query “Disney mouse”, who has nieces, and is a friend of Mickey

Figure 3.58: Example nRQL query and its result

After connecting and sending this requirement through Java API to Racer, the result is:
“Minnie” , who is a friend of “Mickey”, has two nieces “Millicent” & “Melody” shown in
Figure 3.59. In this example, the value for variable X is “Minnie”, and Y has a result set,

whose values are {Melody, Millicent}.

—59—

Minnie : Mickey_mouse
Millicent : Mickey_mouse
Melody : Mickey_mouse
{Minnie, Mickey) : Is_friend_of
{ Millicent, Minnie} :Is_niece_of
{ Melody, Minnie) : Is_niece_of

Figure 3.59: Query results for scenario two

Figure 3.60 shows the results in a lisp-like notation through the OntoXpl interface. The
variable “disneyMouse” equals “Minnie”, and variable ‘“niece” holds two values

“Millicent” and “Melody”. In addition, the namespaces have been hidden by OntoXpl but

have been added to links, which will help users to get more detailed information.

({ZDISNEYMOUSE tinie) (IEC) ((7DISNE

\[ECE Melody)))

Figure 3.60: OntoXpl Abox complex query results in a lisp-like notation

- 60—

4. Related work

Currently there are not many stable and usable ontology visualization or exploration tools
(and even editors). The lack of suitable tools and their shortcomings were one of the
major motivations for the design and implement OntoXpl. The motivation for OntoXpl’s
web server based architecture was ease of use with standard HTML browsers and simple
adaptation to multi-user environments. To the best of our knowledge, OntoXpl is
currently the only ontology exploration tool that is fully targeted to OWL and relies on
Racer’s deductive capabilities for offering users better exploration capabilities. OntoXpl
system helps users to narrow down and retrieve the relevant information; we organize
and display the desired information in a manner that is convenient to users. We retrieve

and compute this information on the fly as the user interacts with the system.

As we have mentioned in Chapter 2, OntoXpl is designed as an ontology information-
browsing tool instead of an ontology editor. OntoXpl is an interactive tool for organizing
and browsing the knowledge in the domain. It helps users to browse and search the
knowledge base. It also provides extensive inference functions to ensure the maximum
exploration of the facts. OntoXpl can work well with OWL ontology editors such as
Protégé and OilEd throughout the ontology development process. During the ontology
development, ontology developers can quickly obtain a global view of the ontology file
that they have implemented by loading the ontology file into OntoXpl and retrieving the

information in the domain. This loading is done by typing the location of the ontology

—61 -

file in the url field in the OntoXpl browser. In the following sections, the capabilities of

Protégé, OntoEdit, and KAON and comparison with OntoXpl [27] will be discussed.

4.1. Protégé and OntoXpl

As one of the most popular ontology and knowledge-base editors, Protégé (version 2.1)
provides powerful functions to design and implement ontologies. Protégé lets authors
create and import contents. It also allows authors to edit both the original and imported
contents [15]. As an ontology information exploration tool, OntoXpl provides enhanced
browsing, searching and linking of relevant contents and inferred information in the
domain. In order to get all implicit inferences based on the explicit knowledge base,
OntoXpl connects and communicates with the OWL reasoner Racer, reorganizes the

result information, and provides results to ease authors’ understanding of the knowledge.

4.1.1. Loading OWL file

Currently most ontology editors such as Protégé and OilEd can support the Web
Ontology Language (OWL). They may have different rules when designing ontology
objects. Some may allow naming a concept, role and instance beginning with a number
such as “3.5_inches” shown in Figure 4.1, while others may throw an exception when
loading the ontology files with different naming convention. OntoXpl is designed to

support the OWL naming policy.

—62 -

<?xml version="1.0" encoding="IS0-8855-1"7>

<rdf:RDF
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xmlns: rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schena#"
¥xmlns:xsd="http://www.w3.0rg/2001/XMLSchemnaf#">
<owl:Ontology rdf:about=""/>
<owl:Class rdf:about="3.5 inch">
</owl:Class>

</rdf:RDF>

Figure 4.1: Concept name begins with a number

4.1.2. Implicit axioms

In order to help users understand the ontology file, it would be better that users can see
both the explicit defined objects in the domain and the inferred results directly thought

the GUL

Let us have a look at an example, in the “fest.owl” ontology file, users defined concepts
Cl, C2, C3, a symmetric role ORI, a transitive role OR2, and five instances indill,
indil2, indi31, indi32, and indi33 as shown in Figure 4.2. Since “OR1” is a symmetric
property, users may want to know whether there exists ORI(indil2, indill) or not. The

inferred results, however, cannot be displayed correctly through Protégé’s GUL

In contrast, OntoXpl tells users that the most specific types for “indil1” and “indil12” are
“CI” and “C2”, as shown in Figure 4.3. By using the Abox queries/browsing functions
provided by OntoXpl, users can easily get the inferred results such as “ORI(indil2,

indill)”, “OR2(indi31, indi33)”, as shown in Figure 4.4.

—63-

C1 =VOR1 C2
C2=VOR1 C2
Indill: C1
indi12: C2

indi31, indi32: C3
Symmetric Role OR1
Transitive Role OR2
{indi11, indi12): OR1
{ indi31, Indi32) : OR2
{indi32, indi33) : OR2

Figure 4.3: Most specific types for “indil” and “indi2”

—64 —

SlugieoRy we

S e

Eomyontology rURD ik

Figure 4.4: Referred results by OntoXpl

In addition, OntoXpl provides summary reports for versatile kinds of properties and
concepts such as equivalent concept, inverse functional roles, transitive roles, symmetric

roles. Details about Axiom browsing have already been presented in Chapter 3.

4.1.3. Natural language explanation

In Protégé, when the mouse pointer moves over a concept name, a floating layer will be
generated with the natural language illustration for the specific concept. However, when
the concept is defined with complex asserted conditions, the natural language explanation

might become difficult to read.

OntoXpl separates the natural language explanation section into three parts: concepts,
roles, and instances. For every named object defined in the domain, its OWL source
definition along with its natural language explanation will be illustrated. In contrast to the
NL part in Protégé, OntoXpl’s NL function is more inclined to illustrate the related
information based on the specific objects. Moreover, within the OntoXpl natural
language part, all roles, instances, classes defined in the domain will be shown up as

functional hyperlinks; detailed information have been presented in section 3.2.

— 65—

4.1.4. Output results

We separate Protégé’s output files into two large groups: the ontology file and the HTML
outputs for concepts defined in the domain. The former records how the ontology is
designed. The latter is the HTML outputs, which include information such as classes,
instances, subclasses, and extended parent classes defined exactly by the system and
users. The outputs do not include any inferred or reasoned results. Moreover, Protégé lists
all objects defined within the domain without any filter functions, and it takes some time
for users to find out information of interest to specific questions. It does not support users

to formulate complex queries either.

OntoXpl stresses the importance on both the explicit and implicit information defined in
the domain. Through an easily understandable way for users to quickly catch the domain
information, OntoXpl provides three kinds of output formats — DIG syntax, space-tree

format, and HTML outputs.

First, OntoXpl generates the DIG syntax supported by the Description Logic
Implementation Group (DIG) [10]. DIG is effectively an XML Schema for a DL concept
language with ask/tell functionality. It will allow users to build plug and play applications

where alternative reasoners can be seamlessly interacted with the systems.

The second output format is the space tree supported syntax for concepts, roles and

instances. Very often users would like to find out more about a specific object. Therefore,

— 66—

unrelated information should be excluded as much as possible. On the other hand, users
should only see the contents according to specific interests or problems. By
communicating with Racer, OntoXpl calculates and transforms the OWL definition of
concepts, roles and individuals into a space tree readable XML syntax file. This is useful
when there are hundreds of objects, while users are only interested in part of them. By
generating the space-tree output hierarchies, users are able to focus on the key
information and filter out the less important things. Instead of reading everything one by
one, users may be more curious to know how specific instances are related to other
instances, and what kinds of roles have been used to setup the relationship between

different instance pairs.

As a result, OntoXpl fully supports Abox queries. We formulate three kinds of templates
to help users browse detailed individual information. Also for expert users, we provide a
way for them to formulate complex queries in a lisp-like notation. Details are in section

3.7.

For instances, when users are interested in “Jerry”, OntoXpl will provide only the roles
and instances related to “Jerry” and filters out the unrelated objects. As shown in Figure

ba 2l

4.5. users know that “Jerry first appears in the movie ‘Puss gets the Boot™, “has
character brown, cheeky, cherubic, happy minding own business until cornered piqued or
provoked, impish, look out for other little guys, and small”, “in the same cartoon series

as muscles, spike, the duckling, tome and Toodles”, “is appetizer for Tom”, “a cousin of

muscles”, and “is a friend of spike and the duckling”. However, not all the information is

— 67—

explicitly defined in the domain; some of the inferred results are generated by the
reasoner and displayed to users. For example, users define
“In_same_cartoon_series(Jerry, Tom)”, “In_same_cartoon_series(Spike, Tom)”’, and
“transitive role In_same_cartoon_series”, the reasoner will let us know that

“In_same_cartoon_series(Jerry, Spike)”.

G

hee

s

» ?”%
ﬁ
=
=
m<

{The_duckling

W

Lilom

{foode
. T

_|

i

e IThe_duckiing

Figure 4.5: Abox space-tree generation result

Is_friend_off=

— 68—

The last output format provided by OntoXpl is the HTML or JSP output. Since OntoXpl
itself is a web-based application, it provides a flexible way to give feedback to users. In
addition, all the functions and objects named in the domain have been linked together.
Users can easily retrieve information related to a specific object. More details are

provided in the following section.

4.1.5. System Architecture

As an open-source pure java application, Protégé provides an extensible architecture for
the creation of customized knowledge-based applications. It is often more time-
consuming and complex to develop a Swing and java applet GUI. On the other hand, web
framework provides a way to create the GUI with less efforts and more flexibility.
Besides, many web development tools such as Dreamweaver and FrontPage are available

that can make the web development a much easier task.

OntoXpl, as a web application, has a Client/Server architecture. Compared to pure java
application, OntoXpl requires less resources at the client side; that is, whenever the
HTML browsers have been installed on the computer, it is not necessary that the java
environment be setup at the client side as well. In addition, because of the client/server
architecture, it enables users’ distributing heavy computation tasks to the server side,

which is especially useful for less powerful clients such as PDAs and Cell phones.

- 69 —

In addition, since the goal of OntoXpl is to provide a global picture of the knowledge
base, a web application is a well-suited tool. Firstly, web is the best tool to link
everything together because of the hyperlink function supported by web browsers. Each
of the named objects such as the concept, role and instance name is a functional link.
Users can easily search all the related information concerning the selected object by
opening one or several new windows or viewing the objects within the current page just
by clicking the link. Secondly, web browsers help users browse XML syntax files easily.
Also, with the support of XSLT, users are able to browse the xml outputs easily in a
flexible way. OntoXpl generates the space tree syntactical outputs for concept, role and
instances. Users can easily click the “download” link and read the XML syntax file
through web browsers. However, pure java application requires a “javax.swing.JTree”
object to support showing the XML hierarchy. OntoXpl is a browser-based web
application developed based on the web architecture. Users can run OntoXpl and go
through all functions within OntoXpl through any popular web browser such as Internet

Explore, Netscape, Mozila, etc.

4.2. OntoEdit

OntoEdit, developed by AIFB, University of Karlsruhe, is an Ontology Engineering
Environment that supports the development and maintenance of ontologies using
graphical means. The current version of OntoEdit is 2.6.6. OntoEdit is built on top of an

internal ontology model. The internal ontology model can be serialized using XML.

—70 -

OntoEdit provides a quick and intuitive visualization of the definition according to users’
design. Within the graph, it shows all roles, instances, and concepts. When ontologies
include complex definitions, information will be messed up in the GUL It is hard for
users to find and retrieve only part of the knowledge base such as a specific concept, role,
or instance that they are interested in. Besides, the current version does not support
connecting to any reasoner. OntoEdit will not give feedbacks or reclassify the hierarchy if

there are errors in an ontology design.

Figure 4.6: OntoEdit knowledge base visualization

OntoEdit only accepts DAML+OIL, Directory import, Excel import, Flogic import, and
RDF(s) import. However, it does not support OWL import. OntoEdit supports object
name checking partially. As shown in Figure 4.7, users define concept “CI1I”, role

“ORI”, and instances “indil, ORI and CI11”. In addition, we also know that “C1I” and

~71 -

“C12” are disjoint concepts. However, the system allows users to define “indil” as an

instance for both concepts, “CI11” and “C12”.

¢ (Nesr ontology.

&Relatiis | ingh

Figure 4.7: OntoEdit GUI

4.3. KAON

KAON is an open-source ontology management infrastructure targeted for business
applications. It includes a comprehensive tool suite allowing ontology creation and
management and provides a framework for building ontology-based applications. The
ontology language of KAON [6] is based on RDF(S) with proprietary extensions for
algebraic property characteristics (symmetric, transitive and inverse), cardinality,
modularization, meta-modeling, explicit representation of lexical information. It dose not

support any reasoning results or Abox queries.

—-72 -

i

uty1abcdi-1085012985978-2098449417
e

Figure 4.8: KAON main page

4.4. Apollo

Apollo [14] is developed by the Knowledge Media Institute of the Open University. The
current version is 1.1 released in June 2003. Apollo supports import and export in OWL
syntax. Apollo’s modeling is based on the basic primitives, such as classes, instances,
functions, relations, etc. The internal model is built as a frame system according to the
internal model of the OKBC protocol [23]. Comparing with others, Apollo is the only
tool that provides a way for users to specify the name of axioms. However, Apollo dose
not provide a clear name checking. In Figure 4.9, we can see that concept names, role

names and individual names are messed up through the GUIL For example, “OR2” is

~73—

defined by Apollo as both instance and role, and “indl” is defined as Axiom, role and

instance name.

Apollo 1.1

ind1
- [B% ind1

Current : test

Figure 4.9: Apollo hierarchy information

Apollo dose not provide a hierarchy system very well. For instance, suppose CII is
defined as the only subclass of CI, but not the TOP. Apollo will display CII as the
subclass of CI, and at the same level of CI. In addition, roles, instances, axioms,
concepts are listed in parallel with the same level in the Apollo GUI. As a result, all roles,

instances, concepts are “put” together, making it hard to figure out what is what.

— 74—

4.5. Summary

Convenient and intuitive presentations and manipulations of an ontology interlinking
concepts and relations are essential to understand an ontology structure and contents. In
addition, because many ontology models support multiple inheritance in concept and
relation hierarchies, keeping the associations straight is a challenge. The standard
approach is the use of multiple tree views with expanding and contracting levels. A graph
presentation is less common, although it can be quite useful for actual ontology editing
functions that change concepts and relations. The more effective graph views provide
local magnification to facilitate browsing ontologies. Based on the knowledge
representation services, Table 4.2 illustrates the main features of Apollo, OilEd,
OntoEdit, Protégé, KOAN, and OntoXpl. The features listed are what and how
knowledge can be modeled in the tool in order to resent the KR paradigm underlying the
knowledge model of the tool, the usability of taxonomies for concepts, roles and relations
among instances, the ability to prune the graphs and the possibility to perform zoom into

parts of the interesting information. The criteria are listed in Table 4.1.

—75—

eLI0)LID uostredwo)) (1§ S[qe

s9je[dwra) A19nb jJo spury ospe
‘sjuowrarinbar uo poseq soronb xapdwiod pue sjduurs 9je[NUIo] 01 [NO

A3o[01u0 2y) Jo uoneIoqe[? Juanbasqns A[qissod pue JUUOD WOI]
uoneuLIojul J931e) Jo aanyded pajddIIp-L30[0juo J0] sonrqede)

sduBISUL

3uowe sdiysuorie[ol paiJul pue pauryop NoNdxy - ydv.sd diysuoynjaa npraipus e
UOTJRULIOJUT AY2.4D421Y 2]0Y e

$3daou09 fo uoynorfissvyo paridfur puv paurfop npoydxy e

‘somonb xopdwos are[nuULIO} 01 11oddns
‘urewop 2y} ur sdiysuonepa paLIdjul pue sfenpIAIpu]

1N y3noxy
uoneuuojur Jo1dwr Ae[dsIp pue ‘9ZIuBg10 ‘S)NS3d PIIIIJUl UOSBIY

{ (quorpo 195M01q ©3'0) GIAA) JIA0 dIBM)JOS I} JO ISn} pue
‘(9oedsowreu ‘spy) “3-9) saidojoyuo jueyjduwod-qaps 10j poddng

K3o[o1u0 111nq 9y} U1 passaxdxa oq ueos jey sanienb [ed130] pue [RUONRIUISIAdAT Oy],

due)sul pue 3ol ‘)daduod 10j uondridsop sdengdue] [InjeN

(surroy £3o[0ju0 Suny1y/3uryoreas “3-9)
JUIUOD [BIIXI] SuUIsSII0Id pue SJUSWII[3 AS0[0)U0 JO SUIIUIIIJII [BIIXI] 10] sanIfiqede)

e 7

d5ENGURT AlN() 1208y ndu
M3 9t Joj uonejUIWIdUR [N e p—— “to“_m dns SIOUBISUE JuafeAmnba s1aynuenh Jo asn porydxo ‘stom
‘s303fqo J0j soyerdua) A10n) '« coT) ‘SUOEUIQUI0) ‘SUIOTYE JUTRI)SU0D U pue o g
. UONEIYRAds S99UEISUT o U : ‘sToTR[o
‘AeM PIZIUESI0 e * | sse[ou ‘sadAyeiep pue | sia[[y se suoissadxs Areniqre
: ‘{(aoue)Sun 10 ssepd O[S snyd sjofs
UE U1 W9y} SUOUIE SUOTIR2] . . syuensuod Apradoad ‘ByRpEIW UONEAID ‘sadAjerep
. aant ING) SINOIEIAN] UOHE[Al PUE . - B o A Sasse])
- HoTjXa mza VAU B Stone 1d20u07 oty o dnyngy TRV P 15 T P
SIOUE)ST 53[0 JASIT0D 25MO0IT o
SITESSIUL A[(EP LN
mg ﬁum_au.s P21 swoseq yfnn nonduasap
B UL S90UE)SUT PUE “sajoi “s)daotion Jo] . s oN oN oN
0% 7IN ‘oUT[2U0 UT STOTIPUO) Jo
sjo] uay A, Jdoueo J0j Apig
"SUTELIOP UMy §393(q0 pawreu]
10] SYUI] [eUOTIAUM] SUIP1AOI] "JI0S Aww“o Eﬁwam.wﬁ%%”os mmo_bm PLA SHOSIX uﬁmamsm SWAUOUAS pajrum| oN
[eonaqeydye pue SPTE UEw) oy preopias .-snjd PNPIO . X[dpdnmn
‘A 10 1ffo -
-28 3
EMM th nwwwww Mﬁ MMMM y ,.W.SMH . Jnpa paojuess-adajord;sdyy | sppaojuossjooyfio-afp _—
P E“M P mpmms ['7 UOISIaA | F[moTrsoju0 mamdyy do'o omm dn |
uomuiofl WEG.M% : suonesrdde paseq "0'9'7 UOTSIIA H:ﬁ I h_ “ WEM }_ S0
; -33popmony| pazruoysnd Jo 'sugaul [eanydess s e payio/:dyy ' 0
d3ojomio afs puvisiopun dpomb e UOQE2ID 3} JOJ AIMOIYDIE Fusn sorfojouo §'§ UOISIOA =Mﬁ“__w_w .
S350 &%xm 9[qISUIXa UR [[Jiz [00) Jo 2oueuuRW | “fiO+ TNV JO JBY) Uo paseq st . M__awo .
100) UORE10] eael 3a1nos-uad) <oyps aseq pue juswdop2ap | PANO JO [3pour 28papmotn] AT, - v.‘momzs_ L
uoyeuLIOMT U St [dX 0puQ -apapmours] pue ASojojuo uy a1 Sunoddng [PURHy-Rs y .

‘s1011pa ASojojuo Jo yuoun|ddns e sy

[dX0Q pue ‘NVO3I 989101 ‘VPHOWO ‘PHIIO ‘O[[ody Jo uostiedwod sa1medy Uy 7' 9qeL

souanb Suruoseas xajdwos o s3enfue 150 4q poses aowmgmwim 0 oN sieuosval Mmombwvﬁ oON

Ay 196 TOY poddns o ssepis 3IMOINKS 3Tp U0 paseq Arang) IDeq uo paseq Aranb ydein

TADVJ uo paseq wot "UONBULIOJUI

Suowe uonewIOJUT PajE[2I PUE ‘5192(qO 10] Atpressry spdaosuod UOREULIOJU} AoBIan

: A : y oN ydaouoo Supraead <YYoV oN
3DUIIJUT UONBWLIOJU 5I38Ted [N 2[dung IoAe[151y o1y Supraoig B -
‘3 x ..mo% PuB [JE4 U0 pased '3 X
sradyno xopids 2agg sonds Iade]

pmeisofansip o JBULIOJ 22T [153 -3oLey sums oy JEWLI0] 221 [UL

(tpun s womeoyIssepo 3daouod)((pu
‘put)ojos) ‘(iput-ofo-tpu) dpsuope
[enpraipu pue Spoy 9dsouo)

0 pue 3dadnre))

UL UMOYS 28 SIPOU
parRIdUIS pue
53dasu0s [y -ON]

w0y 9211 wn ydRoue)y ARi(

1deouo) Apup

UonEULIoJU SENPIAIPUL 3l
Aypaerany ydaouos T TH pue san20edg «

synsar Apnb 20U X0qY » SOUB)SUT
: S2OURISUI
ssetjo ypm diysuonepr | usamyaq dijsuone(ar apiacg o 1953150 dUSTOREIS SDIAGLA
SB[JEY) S[ENPIAIPUI SuIsmolg e {oIB2S JWIEU [BNPIAIPUL N AoEwM n_s :Mp :w w_ m:_w. om °N
JQUINTYAUTEY J9TB)SUTO]0T WIS wzﬁﬁﬂ R-LY N . [erpIapI NG PIeD
Aq $20UBISUT PAJE[2I 128 QURU 20UB)SUI
"o paseq - ywoddns sajejdu) xoqy »
JHOVYI JHOVY Sumoseas oN JHOVA Pue DB ON |
FHO HOORIY I DIPLOIUOD S MMM/ U1
82 TN woy ASojojuo proy BLIDDS
[{1o1dde se uni .
S| [euonouny se 5333190 IR R S — STAI[) 30M0SY TR payum] A1aa (saoedsaureu uorjesndde
S20Ue)SUL . paww STIN AT amd yAV(

pue sa]01 ‘53d29u09 10] 30BASIUEN]
TonEsddy paseq-qa

uonedfdde eael amg

uoneosrdde eael amg

4.6. Interface for Knowledge Retrieval

When a knowledge repository gets very large, finding a particular piece of knowledge
can become very difficult. There are two related problems with knowledge retrieval.
First, there is the issue of finding knowledge again once it has been stored,
understanding the structure of the archive in order to navigate through it efficiently.
And second, there is the problem of retrieving the subset of content from the
repository that is relevant to a particular problem or subject. This second problem, the
dynamic extraction of knowledge from a repository, may well set problems for a

knowledge retrieval system that alter regularly and quickly during problem-solving.

In knowledge retrieval, the goal would be to develop user-friendly tools for retrieving
knowledge from repositories. One obvious place to begin is to try to exploit natural
language. Natural language can be used as the basis for the interface to the knowledge
services. For instance, ontologies could be used to interpret knowledge queries in

natural language forms from users.

When knowledge is stored or retrieved, it is important to remove any duplication to
avoid overloading users with knowledge. OntoXpl is supporting a variety of
knowledge fusion techniques to identify and remove such duplications before
presenting knowledge to users. For example, we provide three kinds of template and
other functions for users to query Abox information. Instead of providing instances all
at the same time, only instances related to others have been displayed. Besides, when
users want to know more about a specific instance, only information directly related

to it will be displayed. For example, there exist “RI(indil, indi2), R2(indil, indi3),
—-79 —

R2(indi2, indi3), R2(indi2, indi4)...R999(indi999, indil000), and R999(indi999,
indi1001)” in an ontology file, and users are interested in “indil”. OntoXpl will
display information that are directly related to “indil”, that is, only “RI(indil, indi2)

and R2(indil, indi3)” will be displayed instead of the whole graph.

In case users need NL description or more related information such as “indi2”
displayed in “indil” related information graph, we provide ways for users to change
the current object, and display related information based on a new selected object.

More detailed examples can be found in Chapters 3 and 4.

For expert users, they may want to retrieve information by formatting complex
queries such as the one given in section 3.7. Users are looking for “a disney mouse,
who has nieces, and is a friend of Mickey”. OntoXpl provides an interface to

formulate complex queries in a lisp-like nRQL language [26].

—80—

5. Design and implementation

In this section, we discuss about the system architecture of OntoXpl, algorithms and

the modules used to support OntoXpl’s main features.

5.1. OntoXpl Architecture

5.1.1. System Architecture

OntoXpl system is an ontology knowledge browsing system for a subject-specific
collection of information. The subject area is defined by a set of objects and axioms,
called ontology. OntoXpl separates content from visualization. The project breaks
down into six main modules, shown in Figure 6.1: the OWL ontology file input, user
portals or interfaces, Tomcat server, Servlet business-logical analyzing classes, and
JAVA API for reasoning results. These modules are partitioned into three groups,
those dealing with the Racer reasoning, those dealing with business-logic, and those
dealing with displaying information. The reasoning group consists of the TCP-based
client for Racer, and all classes based on and related to the Racer reasoning results.
The Java Servlets make up the business-logic part, while the style sheet processor, the
web server, and the user interface make up the display group. As illustrated in Figure
6.1, ontologies designed by Protégé or other ontology editors will be loaded to the
tomcat server through the web portal. Servlets send requirements to the reasoning
JAVA API to implement serial reasoning tasks. After that, the results will be sent

back to users through the interface. The main techniques used by the OntoXpl system

— 81—

and sub-system functions are described in the following section. This OntoXpl
structure is the modified version based on the requirements and feedback from

students in a recent graduate class.

- Web Server
Tomcat

Figure 6.1: The OntoXpl system structure

5.1.2. Servlet vs. JSP

Servlets provide platform-independent, 100% Pure Java server-side modules and fit
seamlessly into the framework of the application server. Servlets are compiled into
Java bytecode that can be downloaded or shipped across the network; they are truly
"Write Once, Run Anywhere.” Unlike CGI scripts, Servlets involve no platform-
specific consideration or modifications: they are Java application components that are

downloaded, on demand, to the part of the system that needs them.

~82—

JSP is the Java platform technology for building applications containing dynamic
Web content such as HTML, DHTML or XML.. A JSP page is a text-based document
containing static HTML and dynamic actions that describe how to process a response
to the client. At development time, JSPs are very different from Servlets. However,
they are precompiled into Servlets at runtime and executed by a JSP engine, installed

on a Web-enabled application server such as Tomcat 5.0.

The drawback of this approach is that the creation of the page must be handled in the
Java Servlet, which means that if Web page designers want to change the appearance
of the page, they would have to edit and recompile the Servlet. With this approach,
generating pages with dynamic content still requires some application development
experience. Clearly, the Servlet request-handling logic needs to be separated from the

page presentation.

The solution is to adopt the Model-View-Controller (MVC) paradigm for building
user interfaces. With MVC, the back-end system is OntoXpl’s business or logic
model, the templates for creating the look and feel of the response is the View, and
the code that glues it all together is the Controller. JSPs fit perfectly into this solution
as a way of creating a dynamic response or View. Servlets containing logic or
managing requests act as the Controller, while the existing business logic rules that

implement and realize all the functions of OntoXpl are the Model.

At the beginning of the OntoXpl design phase, only JSPs were used to deal with form
actions and complex business model checking and management tasks. Java codes and
HTML formatting occur in the same files together. Moreover, JSP grammar such as

<% if ... else... %> that are in charge of business logics, and HTML codes such as

—83—

<layer...>, <a href...>, that should take care of only the layout
display are mixed together. This may be easier and quicker to do as a first attempt, but
once more and more intricate logic and pages are added into OntoXpl system, the

system becomes too large and difficult to maintain.

We then switched to using both Servlet and JSP. The main benefit of using Servlets
with JSP, instead of pure JSP, is that the application has a cleaner model, which is
much easier to maintain. The Servlets handle all the business logic (access and logic
checking, session management, etc), store the resulting data in a Java Bean, and

delegate to the proper JSP page.

On the JSP page, we use Java code only when we need it for formatting
purposes, such as grabbing data from a bean. Therefore, the tasks of programming and
page design have been clearly separated — the programming part deals with the
Servlet side issues and are not mixed with the HTML issues. When designing pages,

we will not accidentally delete a line of vital code.

Simple JSP works fine for “quick and dirty” web-applications that do not use any
complicated logic. In order to achieve the best trade-off, OntoXpl uses Servlet to deal
with the business modules and JSP to deal with the presentation. For example, we use
Servlets to take HTTP requests from the web portal, generate the request dynamically
(possibly querying back-end systems to fulfill the request) and then send a response

containing an HTML or XML document to the browser.

— 84—

5.1.3. Parsers for OntoXpl

In order to analyze the definition of objects defined within the domain, we need to
parse the OWL file. As an OWL parser, Jena is used to check whether the physical
expression violates any fundamental data relationships. As an OWL Parser, Jena
checks the physical expression against an OWL ontology. However, it cannot satisfy
the requirements. For example, we are more interested in some kind of JAVA API
that can let us know how many and what roles have been used by a concept, what is
the definition of a concept, what are the explicit and referred relationships between
concepts, roles, and instances. Thus, we moved our attention to XML parsers because
OWL follows the XML presentation syntax. OntoXpl uses the Java XML Technology
and JRacer API to connect to Racer. In the following sections, we will introduce how

Jena and XML Parser such as JAXB, JAXP work.

5.1.4. Jena 2.0 RDF/OWL parser

As a Java framework for building Semantic Web applications, Jena provides a
programmatic environment for RDF, RDFS and OWL, including a rule-based
inference engine. Jena is open source and has grown out of work from HP Labs
Semantic Web Program. The Jena version in the case study is 2.0. In the following
sections, when we only mention “parser”, we mean Jena 2.0. Jena has object classes
to represent graphs, resources, properties and literals. Now we use examples to
illustrate the Jena parsers [1] and writers for RDF/XML (ARP), and N3 RDF triples

[20].

— 85—

First, Jena provides a Java API which can be used to create and manipulate RDF
graphs such as the example in Figure 6.2. This example shows how Jena translates
information to RDF formats. Also the N3 result is shown in Figure 6.3. Jena
dynamically generates new nodes such as the node “Ifc6e42:f77d541d63:-8000” and

illustrates the result in (Subject, Predicate, object) format.

P
/s
veard FN /7
X

John Smith

John Smith

Figure 6.2: Jena parsing Graph result — from
http://jena.sourceforge.net/tutorial/RDF_API/figures/fig2.png

1fc6e42:177d541d63:-8000 http://www.w3.0rg/2001/veard-rdf/3.0#Family "Swmith" .
http://somewhere/JohnSmith hitp://www.w3.0rg/2001/veard-rdf/3.04FN "John Smith" .
hitp://somewhere/JohnSmith hitp:/fwww.w3.0rg/2001/veard-rdff3.04N 1f06e42.177d541463:-8000 .
1fc6e42:£77d541d63:-8000 http://www.w3.0rg/2001/vcard-rdf/3.04#Given "John" .

Figure 6.3: Jena N3 RDF triple translation results

The second example is an OWL parsing case designed by us. In this OWL file, shown

in Figure 6.4, we define two concepts, named ‘r’ and ‘c’, and one role named “p”.

~ 86—

owl source file:

<l version="1.0" encoding="UTF-8"?>

<rdf:RDF xmins:rdf=http.//www.w3.0rg/1999/02/22-rdf-syntax-ns#
xmins:rdfs=http://www.w3.0org/2000/01 /rdf-schema#
xmins:owl=http.//www.w3.0rg/2002/07/owl#
xml;base="http://www.w3.0rg/2002/03 owlt/someValuesFrom/premises002'">

<owl:Clasgs rdf:ID="y">
<rdfs:subClass Of>
<owl:Restriction>
<owl:onProperty rdf:resource="#p"/>
<owl:someValuesFrom rdf:resource="#c"/>
</owl:Restriction>
</rdfs:subClass Of>
</owl:Class>
<owl:ObjectProperty rdf:ID="p"/>
<owl:Class rdf: ID="¢"/>
</rdf: RDF>

Figure 6.4: OWL example for Jena parser

The RDF output result generated by Jena is shown in Figure 6.5. As can be seen, the

[T e_2

type of object “r” is class. “r” is the subclass of concept “A0”, whose definition is “at
least one (or more than one) of its instances is(are) concept c for role p”. Figure 6.6

shows the translation result of the N3 triple.

<rdf:RDF xmins:rdf=http./fwww.w3.org/1999/02/22 rdf-syntax-ns#
amins:rdfs=http./fwww.w3.org/2000/01/rdf-schema#
zmlns:owl="http /fwww.w3.org/2002/07/owl#" >
<rdf:Description rdf: about="hitp .//www.w3.0org/2002/030wlt/someValuesFrom/premisesO02#r">
<rdf:type rdf resource="http://www.w3.0org/2002/07/owl#Class"/>
<rdfs:subClassOf rdf nodeID="44"/>

</rdf Description>

<rdf:Description rdf:nodelD="4¢">
<rdftype rdfiresource="http://www.w3.0rg/2002/07/owl# R estriction"/>
<owl:onProperty rdf:resource="http://www.w3.0rg/2002/030owlt/someValuesFrom/premises002#p />
<owl:someValuesFrom rdf resource="http://www.w3.org/2002/03owlt/someValuesFrom/premisesQ02#c"/>
</rdf Description>
<rdfDescription rdf:about="http.//www.w3.org/2002/03 owlt/someValuesFrom/premisesC02#p">
<rdf type rdf:resource="hitp /www.w3.0rg/2002/07/owl#ObjectProperty'/>
</rdf:Description>
<rdf Description rdf: about="http://www.w3.org/2002/03 owlt/someValuesFrom/premises002#: ">
<rdf:type rdf:resource="http://www. w3.0org/2002/07/owl#Class"/>
</rdf:Description>
</rdf RDF>

Figure 6.5: Jena RDF result

— 87—

Subject: de57db:£77df780b8:-8000

Predicate: http://www.w3.0rg/2002/07/owl#someValues From

Object: http://www.w3.0rg/2002/03 owlt/someValuesFrom/premises002#¢
Subject: http://www.w3.0rg/2002/03owlt/someValuesFrom/premises002#r
Predicate: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type

Object: http://www.w3.0rg/2002/07/owl#CTasy

Subject: http://www.w3.0rg/2002/03 owlt/someValuesFrom/premises002#r
Predicate: http://www.w3.0rg/2000/01/rdf-schema#subClassQf

Object: dc57db:f77df78008:-8000

Subject: http://www.w3.0rg/2002/03 owlt/someValuesFrom/premises002#¢
Predicate: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#typ e

Object: http://www.w3.0rg/2002/07/owl#{iasy

Subject: de57db:£77df780b8:-8000

Predicate: http://www.w3.0rg/2002/07/owl#onProperty

Object: http://www.w3.0rg/2002/03 owlt/someValuesFrom/premisesQ002#p
Subject: dc57db:f77df780b8:-8000

Predicate: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#typ e

Object: http://www.w3.0rg/2002/07/owl#Restriction

Subject: http://www.w3.0rg/2002/03 owlt/someValuesFrom/premises002#p
Predicate: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type

Object: http://www.w3.0rg/2002/07/owl#ObjectProperty

Figure 6.6: Jena N3 result

5.1.5. XML Parser - SAXParser

XML (Extensible Markup Language), a markup language that makes data portable, is
a key technology in addressing the ability of parties to communicate and share legacy
data with each other even if they are using different information systems. As a result,
XML is increasingly being used for enterprise integration applications, both in tightly
coupled and loosely coupled systems. The OWL language uses the XML syntax. In
order to analyze the syntax of an OWL file, we need to be able to parse the XML file.

In the development, we used JAVA SAXParser technology [29] to develop OntoXpl.

— 88—

The Java APIs for XML falls into two broad categories: those that deal directly with

processing XML documents and those that deal with procedures.

¢ Document-oriented —
1. Java API for XML Processing (JAXP) -- processes XML documents
using various parsers
2. Java Architecture for XML Binding (JAXB) -- processes XML

documents using schema-derived JavaBeans component classes

¢ Procedure-oriented (Mainly used by Semantic Web Services)
1. Java API for XML-based RPC (JAX-RPC) -- sends SOAP method
calls to remote parties over the Internet and receives the results
2. Java API for XML Messaging (JAXM) -- sends SOAP messages over
the Internet in a standard way
3. Java API for XML Registries (JAXR) -- provides a standard way to

access business registries and share information.

The basic outline of the SAX parsing APIs are shown in Figure 6.7. To start the

process, an instance of the SAXParserFactory class is used to generate an instance of

the parser.

—89—

SAXParser
Factory

Error |
Handler |

Entity
Resolver

Figure 6.7: SAX APIs

Let us take OntoXpl’s Natural language function as an example, which is developed
based on the SAX Parser. As shown in Figure 6.8, all classes under “information.NL”
package have a relationship with javax.xml.parsers and org.xml.sax. Based on the
SAX API and OWL grammar, OntoXpl is able to check all concepts, roles, and
instances that have been defined within a domain. For example, we defined
<owl:Class rdf:ID="Cartoon_cat”>. In our programs, there exists a method named
“startElement(String namespaceURI, String sName, String qName, Attributes attrs)”,
by which we are able to check the current tag and dispatch functions to roles,
concepts, or instances. In order to treat the definition of a specific concept, role or
instance as a unity, we need to parse the definition of a specific object, generate

temporal xml syntax files, and parse the generated xml files line by line until the end

of the tag. The detailed NL parsing file structures are shown in Figure 6.9.

—90—

I inforrmationHL i

Natural language explanation
> for a specific object

Qoncept Tai’/Q\ Role Tag () Instance Tag/’>

Figure 6.9: NL Parsing Algorithm

—91—

5.1.6. Saving knowledge to database vs. dynamically querying results without saving

At the beginning of OntoXpl’s design, we saved all concepts, roles, and instances into
databases (shown in Figure 6.10). We also designed a user login system to manage
login users. In addition, according to login users and ontology files loaded, we saved
the ontology file and related those ontology files to login users. Thus, concepts, roles,
instances, ontology files and login users had been connected with each other. The
advantage of this design is that we are able to manage different users’ ontology files.
However, there are two disadvantages in this design. When the ontology file is very
large, it takes some time to deal with the database operations. The other problem is
that it takes lots of disk space to save the ontology file information, concepts, roles,
and instances into the database for all users. We assumed that ontology files and their
related information will be deleted from databases after users logout from the
OntoXpl system; that is why we designed the login system. However, if a user fails to
logout, his or her data would be stored in our databases until connections setup by

users are lost due to a time out.

RACLR

Web Portal:
output result

Figure 6.10: Database operation architecture

—92 -

By using the structure in Figure 6.10, every time we want to select or search for a
concept, we need a database operation, where we still need Java API support to get
the final results. Using databases to save object information is helpful when we want
to record and trace the information loaded by login users. However, for OntoXpl,
saving all users login information into the database is only a media; that is, the user
management function is not our goal. In addition, it takes some time to perform
read/write database operations. Thus, based on the example model, we changed the
structure to use only JAVA API and Servlets to realize functions that OntoXpl
provides. The modified system structure already shown in Figure 6.1 provides a more
clear and efficient structure. However, we do not support multi-users’ operation

currently. This is left for future work.

5.2. Modules and relationship

In order to realize the functions provided by OntoXpl mentioned in Chapter 3, we
have designed OntoXpl based on the system architecture in Figure 6.1. In this section,
we explain how the main modules and functions were developed and organized in

order to implement OntoXpl’s features.

OntoXpl uses MVC modules: Servlet, JSP, and java APL Under each part, we
organize our module by functions. For example, we provide ‘“natural language
description”, “information inference”, “Axiom browsing”, “Abox functions”, and so
on. Under Servlet, and java API parts, we organize our modules as shown in Figure

6.11. We will discuss the algorithm and techniques we used for the main functions

provided by OntoXpl in the following sections.

~93_

@ axiom
@ Hierarchy
-8 Info
-0 RaL

T statistics

E} ”‘ rifarrnation racerPart
=-@ ABox

8% ABox_related_individuals java
B ﬁi CheckAbox java

(-0 hierachy

E ﬁﬁ get_concept_tree_result java
get_role_tree_result java

Eﬁ. Set_hierarchy java

ﬁi spacetree_generateAbox java
ﬁ spacetree_generateFile java

"""" i?;ﬁ spacetree_generateFileRole java
[—:]’"@ info

B8 related_info java

& JRACER_source

''''' s!& Assertion java

""" 5& Attribute Assertion java

""" \%ﬁ ConceptAssertion java

---- @ RacerClient java

----- @ RacerConstarts java

----- r@, RacerException java

"""" @ RacerllegalConstruction java

----- £3 RacerSocketClient java

---- t?;i RacerTermParser java

""" &i RoleAssertion java

""" %ﬁ reasoning java

@ﬁ, RALQuery java

Figure 6.11: Servlet and reasoning API modules

5.2.1. Natural language description

Figure 6.12 provides the basic idea of the natural language description function.
Based on the object name, we parse the source file to get the OWL definition and
generate the natural language description. Since the object definition can be scattered
among the whole ontology file, to organize and combine the exact OWL definition for

a specific concept, we parse the source ontology file based on the SAXParser.

— 94—

oy definition

ok t4i2ToIntith (AL TRscurver Flertoon_wause™)]
t/ouirdiniRintii k)

Generate OWL' definition

 Selbeied Ohjort

et O e Generate Natural Tianguage description

i 1A%80T L0 naarOR T IEAL DG aRac ™
£ X dd SUbCLase0T)
(owirdisdalntAtE CAfs eascuces flsrtoon dag™h

{AowE 2 832 edntA)

P g anation

f

.........................

it clars bat ve AedivAGuaLe Sn commen WITH DRiLinh ST
17 1% the subeland of LALLous AN
M clase bos ub dndividuabe A8 St VI (R, et

Figure 6.12: Natural language description function schema overview

The algorithm to parse and generate the selected concept’s OWL source definition is

shown in Figure 6.13. Based on the SAXParser supports, we analyze the source

ontology file. We begin from the xml syntax begin tag such as <owl:Class...>, check

whether the current object is the one that has been selected. If yes, we append the xml

begin tag and its related attributes into a string named “selectConceptOWLDef”. Next,

we check the contents between the begin tag and end tag such as <owl:Class rdf:ID=

“Cartoon_cat” >XXX</owl:Class>, if the current concept is “Cartoon_cat’, we will

append XXX into “selectConceptOWLDef’. Last, we check the end element of the

xml tag, if it is not the end of the ontology file, we add the end tag definition to the

“selectConceptOWLDef” string. Until it is the end of the ontology file, we will write

the definition recorded in “selectConceptOWLDef” into a xml file.

—95_

checking OS system
string selectedConceptOWL Def =,
boolean findSelectedConcept = false;
if (windows)
Setup temporal output file “c:itemp\temp.xml” ;
else if (UNIX, Linux, Muc)
setup temporal output file “/tmp/temp.xm”;
writing xml titles into the temporal output file;
while not the end of XML tag checking
check startElement begin
take the next tag of source ontology file
if (satisfy the searching)
selectedConceptOWL Def += xml tag begin and related attributes;
JindSelectedConcept —true;

else
begin to check characters
check characters begin
if(findSelectedConcept)
selectedConceptOWL Def+= xml contents between the tag,
else
begin to check endElement
check endElement begin
if (satisfy the searching)
selectedConceptOWL Def += xml tag end and related attributes;
end of XML tag checking
write selectedConceptOWL Def into temporal output file

Figure 6.13: OWL source definition generation algorithm

After the OWL definition for a specific object has been generated, we can begin to
analyze and generate the natural language explanation for the object. An object can be
a concept, role, or instance. As shown in Figure 6.14, there are two main parsers. The
first one is in charge of parsing the loaded xml file with all OWL definition for an
object layer by layer. For example, there is a concept defined as in Figure 6.15. Parser
one will generate five layers. Based on these five layers, the second parser will
generate the related NL description. SAXParser provides a good way for us to parse
the xml syntax structure and generate the natural language description based on the

OWL tags in a well-formatted way.

— 96—

xmlfile records T
 OWLDef for an ohject . Parserd

/
/
/

NL for Layer N-1

NL for Layer. N

Figure 6.14: Natural language translation flowchart

<owl:Class rdf:ID="X1">
<rdfs:subClassof>
<ow] :Restriction>

<ow]:onProperty>

<ow1:0bjectProperty rdf:ID="OR1"/>

</owl:onProperty>

<owl:allvaluesFrom>
<owl:Class rdf:ID="Y"/>
</owl :allvaluesFrom>

</ow] :Restriction>
</rdfs:subClassof>

<rdfs:subcClassof>
<owl :Class rdf:ID="X"/>
</rdfs:subclassof>

</fowl:Class>

Figure 6.15: OWL definition for example concept “X1”

5.2.2. Reasoning system based on Racer

In order to provide reasoning results, reasoning commands [24] are sent to the Racer
system via the TCP-based client interface. After parsing the feedback string from
Racer, we save the results that are valid object names defined within a domain into a

vector or a hashtable. Servlet will call the java API reasoning function, read, organize

97—

NL for Layer:1
NL for Layer2

W

[[aS NSV V] W N N O, Y

and send the reasoning results to users. In a way, Servlets, as the business model
controller, take care of the combing calling of the reasoning functions provided by

java APlIs.

setup racer connection (ip, port)
send racer command
(concept-children CN)
(concept-parents CN)
(concept-ancestors CN)
(concept-descendants CN)
(concept-instances CN) ...
use String Tokenizer to parse racer results
getrid of “INV™, “NIL”, “%" and other unrelated information generated by Racer dynamically
save parsed results into Vector or Hashtable

Figure 6.16: Algorithm for reasoning results based on Racer

Two UML example graphs in Figure 6.17 and 6.18 display the relationship between

information.servlet package and the reasoning.java class.

- 98—

.
.
%}%éu“ .

[/

;

Response

.servlet” package

10N

formation for “informat

m

UML package

17:

igure 6.

F

—-99

o,cerCommmd Sting -

%
Do
2
%
2
- racarResut : Siring

% get ‘ail:atomic_concegtinfo() : Yector
A get sk individuals() ; Vector

N get_ail_rotes_info) - Vector

$ get datatyps_Rale(): Vactor

% get objsct Roia()s Vactor

% get resiltStr().; String

% getConcopthum() ; int

$ getDataiypePropentyF orlbdi) : Vector
% getDatatypeRoleNum() int

& getistanceNm() : it

% getOpjectNama() : Vector

i gatOnjectRaleNum() : int

W gatToldValus() : String

& hasinverse(): boolean

¥ isSymmetricRole(). boolean

& load_owl fie(): void

& reasoning() ; void

W setOWFile tullpathName() : vaid

Figure 6.18: UML package information for reasoning.java class

- 100 -

5.2.3. Spacetree output

Though the current version of Spacetree syntax does not support true graphs, it still
provides us a good-way to display concept hierarchies, role hierarchies, and instance
relationships as a tree structure. The general idea to generate Spacetree syntax outputs

based on a ontology source file is shown in Figure 6.19.

& Servlets to Yate
Ontology source file H Racer reasoning API ‘ }’“’ Spacetree sym?xw xanl file

Figure 6.19: Spacetree output generation

The grammar of Spacetree is based on the indents of the combination of the tag pair
“<node></node>". For example, there is one ontology file as defined in Figure 6.20.
The Spacetree syntax result is shown in Figure 6.21. Based on the reasoning results
from the Racer reasoning API developed by OntoXpl, Figure 6.22 provides the
algorithm to generate the Spacetree output for concept hierarchy information. The
Spacetree output for role hierarchy information is similar. However, the relationship
for instances Spacetree output is different. Figure 6.23 displays the algorithm for

individual relationship outputs.

-101-

<?xml version="1.0"7>
<rdf:RDF
xmlns="http://a.com/ontology#"
xmlns: rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schemna$"
xmlns:owl="http://www.w3.0rg/2002/07/0wl#"
xml:base="http://a.con/ontology™>
<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="C2">
<owl:edquivalentClass>
<owl:Class rdf:about="#C1"/>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="C1">
<owl:equivalentClass rdf:resource="#C2"/>
</owl:Class>
<owl:Class rdf:ID="C1l1">
<rdfs:subClassOf rdf:resource="#C1"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="OR1"/>
</rdf:RDF>

Figure 6.20: example ontology source file

<node>TOP
<node>C1l
<node>Cll</node>
</node>
<node>C2
<node>Cll</node>
</node>
</node>

Figure 6.21: Spacetree syntax output file

-102 -

[A A ol s e

20:

: set “Top” concept

set <node> begin tag for “Top”
get hierarchy information based on (current concept name)
if (no sub-concept)
write end tag </node>
return;
else
if(not dup information)
for(i :=0; i<total sub-concept number; i++)
write begin tag <node> for current sub-concept
goto 3 (based on the current sub-concept)
end for
end if
end if
end of get hierarchy information
set </node> for “Top”

Figure 6.22: Spacetree concept hierarchy output generation algorithm

: write begin tag <node> for user selected individual
get all roles related to (current individual)

if(no related Role)
write end tag </node>
return
else
Vector relatedRoleVect saves all related roles
for(i:=0; i<relatedRoleVect size, i++)
String currentRole = relatedRoleVect.get(i)
write begin tag <node> for currentRole
get all individuals related to current individual and currentRole
Vector relatedIndiVect saves all individuals related to current individual and curreniRole
for(j:=0; j< relatedIndiVect size; j++)
curventIndividual = relatedindiVect.get (i)
write begin tag <node> for currentIndividucal
goto 2 using (currentindividual)
end for
end for
end if

end of getting related roles

21: write end tag for user selected individual

Figure 6.23: Spacetree individual relationship output generation algorithm

-103 -

6. Evaluation

In a recent graduate class COMP 691B: Foundations of the Semantic Web, there were
about 40 students divided into 16 groups. Each group was assigned to design a
different ontology. The 16 different ontologies’ domains were: Clothing, Diet,
Storage Area Network (SAN), Watch, Skincare Products, Ontology for Web
Application Patterns (OWAP), Writing tools, Pharmaceutical company, Ski
equipments, Programming languages, Animals, Lodging, Cellular phones, University
Websites, Music, Refrigerator. The average numbers per each ontology file for

concepts, roles and instances were 200, 40, and 100, respectively.

Students used Protégé, the ontology editor, to design and implement their ontology
files, which are the input for OntoXpl (shown in Figure 6.1). Since each member of a
group contributed in the development of their ontology, it was important for them to
understand each other’s tasks and processes at different steps. According to students,
OntoXpl helped them understand the objects they created and modified among group
members. Besides, OntoXpl helped students fix confusing issues such as missing
namespaces, NULL pointers exception for “open NL pages”, installation of the
OntoXpl system on a directory different from ROOT, the support of running RACER
on a different machine, the function to send ontology file from online, and so on. The
feedback from students helped us improve the functionalities of OntoXpl and its

interface.

- 104 -

7. Conclusions and Future work

In this chapter, we provide a summary of our work on developing OntoXpl, and

highlight its features. Concluding remarks and future directions are also provided.

7.1. Conclusions

We have introduced the OntoXpl system, a first step toward an OWL ontology
exploration tool designed to browse knowledge bases and explore information
contained in them. OntoXpl is intended to complement ontology editors or other
ontology visualization tools. The OntoXpl system supports navigation and exploration
of information for ontology-based application development. For example, OntoXpl
helps extract the OWL structure supported by W3C, such as functional properties,
inverse roles, transitive roles, symmetric roles, and so on. In order to avoid providing
literally everything to users, OntoXpl can help narrow down and retrieve only the
relevant information, organizes and displays desired information in a manner

convenient to users.

Also, OntoXpl can be used as a tool to evaluate existing ontology applications. For
example, to help users decide whether to create new ontologies or reuse the existing
ones, based on the structure of the information about roles, concepts, instances,

axioms, etc.

In addition, OntoXpl provides full functional supports for OWL and Aboxes. For

instance, there are three kinds of templates to query Abox information, spacetree

-105-

syntax outputs of relationships between instances, and the GUI for expert users to

formulate complex queries.

In a recent experiment of evaluating OntoXpl, 40 graduate students in a course on
Semantic web, were assigned to design and implement 16 different OWL ontologies
of several hundred concept names, demonstrated that OntoXpl provided helpful
information to users about ontologies that was otherwise not easily available using

ontology editors such as Protégé or OilEd.

7.2. Future work

There are three main items that are in the to do list. First, we plan to implement the
statistics function, a feature to be realized at the right hand side of the main page. This
will include information on the ontology imported, such as how many ontology files
have been imported and what are they. It also includes information on the concepts,
roles, instances used. For example, what are atomic concepts, how many concepts
have only necessary definition, how many concepts have both necessary and
sufficient definition. The second item is optimization for larger ontologies containing
thousands of concept names. We are able to ease the communication load with Racer
through the TCP protocol by optimizing the JAVA API reasoning component. For
instance, instead of sending and retrieving the results thought Racer every time, we
can save the query results into a hash table, vector or an array for most regular
queries. Examples of regular queries include “all-atomic-concepts”, “all-roles”, and

“all-individuals”. Finally, in order to allow multi-users manage their loaded

ontologies, OntoXpl needs a user login mechanism to manage the login users and

— 106 ~

their loaded ontologies. This would allow users to go through different Tbox and
Abox information at the same time. In addition, this would allow users to compare
two or more loaded ontology files. For example, when there are two similar domain
ontology files, an extended OntoXpl could help users to identify main differences

among concepts, roles, instances, axioms, and so on.

- 107 -

8. References

[1] Brian McBride. Jena 2 - A Semantic Web Framework. Hewlett-Packard
Laboratories, Bristol, UK. http://www.hpl.hp.com/semweb/jena.htm;

[2] Clyde W. Holsapple, K. D. Joshi. A Collaborative Approach to Ontology Design
2002 ACM 0002-0782/02/0200;

[3] C. Welty and B. Smith (eds.). Formal Ontology and Information Systems. New
York, ACM Press, 2001;

[4] D. Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF
Schema, http://www.w3.org/tt/2002/wd-rdf-schema-20020430/, 2002;

[5] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language
Overview (W3C Recommendation 10 February 2004);

[6] D. Oberle, R. Volz, B. Motik, and S. Staab. An extensible ontology software
environment. In Handbook on Ontologies, International Handbooks on Information
Systems, chapter III, pages 311-333. Steffen Staab and Rudi Studer, Eds., Springer,
2004;

[7] Dublin Core 2004 (http://dublincore.org);

[8] F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein. OWL web ontology language reference;

[9] Gruber, T.R. Toward principles for the design of ontologies used for knowledge
sharing. Int. J. Hum. Comput. Stud. 43, 5/6 (1995), 907-928;

[10] Ian Dickinson. Implementation experience with the DIG 1.1 specification. HP
Labs Bristol. 10th May, 2004,

[11] International Organization for Standardization (ISO/IEC 11179-1) 1998;

- 108 -

[12] Jeff Heflin, James Hendler, and Sean Luke. SHOE: A Knowledge Representation
Language for Internet Applications, 1999;

[13] J. Grosjean, C. Plaisant, and B. Bederson. Spacetree: Supporting exploration in
large node link tree, design evolution and empirical evaluation. In Procedings of IEEE
Symposium on Information Visualization, pages 57—64, Boston, USA, October 2002;
[14] Matej Koss. Apollo — the user guide(describes version 1.0) 2001-2002
Knowledge Media Institute, The Open University, UK.;

[15] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and M. A.
Musen. Creating semantic web contents with Protege-2000. IEEE Intelligent Systems,
16(2):60-71, 2001;

[16] O. Lassila and R.R. Swick. Resource description framework (RDF) model and
syntax specification. recommendation, W3C, February 1999;

[17] R. Mdller, R. Cornet, and V. Haarslev. Graphical interfaces for Racer: querying
DAMLAOIL and RDF documents. In Proc. International Workshop on Description
Logics — DL’03, 2003;

[18] S. Bechhofer, I. Horrocks, and C. Goble. OilEd: a reason-able ontology editor for
the semantic web. In Proceedings of KI12001, Joint German/Austrian conference on
Artificial Intelligence, September 19-21, Vienna. LNAI Vol. 2174, Springer-Verlag,
2001;

[19] The DARPA Agent Markup Language Homepage http://www.daml.org/;

[20] Tim Berners-Lee, Dan Connolly, and Sandro Hawke. Semantic Web Tutorial
Using N3. May 20, 2003. http://willware.net:8080/cwm-tutorial.pdf;

[21] Tim Berners-Lee, James Hendler and Ora Lassila, “The Semantic Web - A new
form of Web content that is meaningful to computers will unleash a revolution of new

possibilities”. May 2001;

-109 -

[22] T. Liebig and O. Noppens. OntoTrack: Fast browsing and easy editing of large
ontologies. In Proceedings of The Second International Workshop on Evaluation of
Ontology-based Tools (EON2003), located at ISWC03, Sanibel Island, USA, October
2003;

[23] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D. Karp, and James P.
Rice. OKBC: A Programmatic Foundation for Knowledge Base Interoperability. In
Proceedings of AAAI-98, July 26-30, Madison, WI;

[24] Volker Haarslev and Ralf Moller. Racer system description. In Proc. Of the Int.
Joint Conf. On Automated Reasoning (IJCAR 2001), 2001;

[25] Volker Haarslev and Ralf Mboller. Optimization techniques for retrieving
resources described in OWL/RDF documents: First results. In Proceedings of the
Ninth International Conference on the Principles of Knowledge Representation and
Reasoning (KR2004), June 2004;

[26] Volker Haarslev, Ralf Moller, R. Van Der Straeten, and M. Wessel. Extended
query facilities for Racer and an application to software-engineering problems. In
Proceedings of the International Workshop on Description Logics (DL-2004),
Whistler, BC, Canada, June 2004;

[27] Volker Haarslev and Ying Lu and Nematollah Shiri. OntoXpl Exploration of
OWL Ontologies. International Workshop on Description Logics, 2004;

[28] Y. Sure, J. Angele, and S. Staab. OntoEdit: multifaceted inferencing for ontology
engineering. Journal on Data Semantics, 2800/2003:128-152, 2003,

[29] Web Services Made Easier — The Java™ APIs and Architectures for XML. A

Technical White Paper. Sun Microsystems, Inc. JUNE 2002 Revision 3.

-110-

Appendix

A.1 Example about loading OWL ontology into OntoXpl

Assume we have tomcat and java already installed successfully on the machine
running Windows XP. After downloading Racer to the local disk, users need to open a
DOS window, go to the directory saving Racer, and type “Racer —http port number”
to start Racer. For example, “Racer —http 9999”. This causes the system to use http
protocol and port 9999 to communicate with Racer. According to users’ requirements,
typing “Racer —http 07, users can also close the http protocol provided by Racer. We
then open another DOS window, go to “Tomcat_directory/bin/”, type “startup” under
windows operating system or “startup.sh” under UNIX operating system. If the DOS
window closes at once after users’ typing “startup”, it might be because users have
not setup the java environment successfully. One possible reason is because we forgot
to setup the environment variable “JAVA_HOME”. Now users can open a local web
browser, type the address “http://localhost:8080/” or “http://computerName:8080/”.
For instance, if a computer’s name is “CYPRUS”, in the web browser such as Internet
Explore, user can type “http://CYPRUS.cs.concordia.ca:8080/ to start OntoXpl. As
the result, the main menu page of OntoXpl shown in Figure 3.1 will appear on the

screen, and ready to help the user explore the ontology easily and conveniently.

-111-

A.2 Appendix 2 OntoXpl API and package information

I_ oo hasttakie
| Convepts uee selected ¢
 Roles used by con

Figure A2.1: RacerPart Package Info

- 112 -

3 racerPart
[T-]@- ABox
L% ABox_related_individuals java

{—3'“@ hierachy

2% get_concept_tree_resutt java
g@ get_role_tree_result java

% Set_hierarchy java

Qﬁ spacetree_genersteAbox java
{i spacetree_generateFile java
LT& spacetree_generateFileRole java
=@ Info

& related_info java

-4 JRACER_source

Fo k’;ﬁ Assertion java

----- % AftributeAssertion java

{ﬁ ConceptAssertion java

~~~~~ 24 RacerCliert java

{?4 RacerConstarts java

~#%4 RacerException java

Ejﬁ. RacerllegalConstruction java
&% RacerSocketClient java

""" ﬁi RacetTermParser java

""" @ RoleAssertion java

B reasoning java

~~~~ {& RQLQuery java

Figure A2.2: Reasoning racerPart

E@» ahalyze_ow
- 8% Parse_tagjava
[—]@ expl
concept_nl_expl java
individusl_nl_expl java
- Cﬁ, role_nl_expljava
vvvvv ﬁ constructor java
----- ﬁﬁ Constructor_individual java
----- 5& Constructor_role java
-8 GetindividuaibL java
----- & GethlL java
----- 23 GetRoleNL java
ﬁ;ﬁ laop_function java
% Loop_individual_function java
---- x!i Loop_role_function java
----- i:i marePartsAnalyze java
~~~~~ E& ParselLoop_concept java
'''' ﬁi Parseloop_individual java
~~~~~ &% Parseloop_role java
----- E:i Read_user_temp_xml java
---- t:i testing java
----- #£4 WriteToSelectedConceptFile java
----- &4 WriteToSelectedindividualFile java
----- E:i ‘Write ToSelectedRoieFile java

Figure A2.3: Natural language functions

-113 -

’B ehame:: Sring
& ol coneat Veclor
ook Ve
9& cardinally ; bodiean
% currertLayer String
% end haolesn
hostName . String
% isCommerts . hoolean
3 iskiviuel: bocean
& layerConcept: Vector
9& maxCardinaity : boalean
85 niCarcinally booken
B s tig
& s mapping: Hosrtatle
9& s Jabel - hoolean
% seeaisa; booteart
3 s Stirg
8 StringselConcepiFietiane: Srny
$ vérsioninfo: hodlesn

¥ harscters(); void

% endDocumert(): void

% endElement(): void

% getun(): int

& ParseLoop() : void

% PaiseLoopConcept(): void
% relumLayerConoept) : Vector
% setConceptFieNameq): void
% selVector)): void

& seirieFie(): void

¥ startDocument(): void

& startEeinent) : void

tirFhe.: String

Figure A2.4: NL concept parsing class

~114-

1% alconcen_yeut: Vodlor
{8 el vent: Vedlor
e

9@ clrrentlayer - Strng

[-%r defaliNg : String

s end bookan

% hostName: Siring

8 isConmerts booean
9& tayerRole’ Véctor

% niaxCarcinalfy:: hoolesn
8 minCardaty bogean
i sty

9& n3:mepping : Hashtable
3} oviClass oD boolean
2 1ot Label: bookeen

% sl String

3 StrgsetRclefleNane : Sting
@ User: Sirng

T
L e e s s
e e

.
. . L i {
;»51

.
T T

& charscters)’ voig

% endDocument() void
] enElement(): void
 geiun):

% ParseLoop_roke(): void
< ParsaL ooy ol voie
| % Parsel oop.role(): vold
b Parset oogRole() : void
4 refurmLayerRole() : Vector
¥ sefRoleFieName(): vod
W setVector() : void

* serieFle): void

% startDocunent(): vod
& statBinent): voil

& commerts : Sring
& tirFile: String

Figure A2.5: NL Role parsing class

-115-

Oefaikindier

& o soncepls - Vader
&8 ndviduals Vector
¢ tetalypeRole: Yelor
& StisctRo vadh: Vegior
%mm:m

Ty ri_dutatype e imspping hish { Hashtatle
3& 3 ndlviduals, mapping Jssh Hashiabie
A ns_jeging : Hastioble
Ry i staecRole, gy hash Hestiate
i& owilass JafiD : bodiean

St

R parseTaoivee: Sting

& SringeelrdnFiaNae: Stivg
% usec; Strng

& cheeslerst) s void

% sncDocuman(): void

% encelemat(): vobl

% gatthany: it

© Farsed oo divkisk) ol
& Parsalooo_baivikiak): voii
& Parsetoon_ndhickial): vail
% Parsel oopkidvidunt) : void
* relunLaysndiichs): Veslor
% seindvidieF ieare() vokd
 set¥ector(y: voud

& MR Yol

¥ shitDacumant(y; ved

¥ statElement(): voil

L4 sotTconcmptal): vold

& commerls: Shrky

& difis: Steg

& layeecind

| ¢ shectucindviaiNane Sting
| teght: Sty

o

Figure A2.6: NL instance parsing Class

~-116-

.

BufferedArier
!

Figure A2.7: DIG translation function

~117-

Pririt‘ét\ra%;%{:
Printvriter

Figure A2.8: Servlet package information

-118-

---- Qjﬁ abox_tole java
-8 get_abox_individual java
----- aﬁi get_abox_info java
pe % spaceTreeFieGenerate_abox java
----- - Template2 java
gﬁ Template3 java
axiom
---- l%ﬁ concept_disjoint java
"""" & concept_equivalert java
- &@, get_axiom_conhceptMame java
------ & get_disjoint java
'''''' Eﬁ get_disjoint_info java
o L&. get_equivalent java
-8 get_inverse java
-2 role_irverse java
-8 symmetric_role java
L@ transttive_role java

-8 translate_dig jave

3} Hierarchy

...... @ gotoPageHierarchy java

-8 spaceTresWriteConcept java
& spaceTreeWriteRole java
Infa

...... ,éﬁ‘ concept_info java

; ----- &2 individual_info jave
L8 role_jnfo java

- % RGL

PoL 22 getQueryResult java

----- 2% browse_serviet java

.... @ read_owvl java

% view_concept java

% view _individusl java

{ﬁ vieww_role java

Figure A2.9: Servlet Structure

-119-

