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Abstract

Feature Preserving Simplification Techniques for Tetrahedral Meshes

Chao Jin

Due to the wide use of increasingly larger tetrahedral meshes in volumetric visu-
alization, simplification of tetrahedral meshes has become more and more popular in
last two decades. In this thesis, we first introduce a basic tetrahedral mesh simplifi-
cation algorithm based on cell collapse. Then, we present a new feature preserving
simplification algorithm for tetrahedral meshes. The algorithm decimates the original
dataset by iteratively removing tetrahedra without significantly altering boundary or
interior field features. In a pre-processing step, we apply a level set method to find a
segmentation of the volume dataset, and then label vertices on the region boundaries
that potentially contribute to visually perceptible features in the rendered volume.
The simplification algorithm preserves these labeled vertices as much as possible.
Both incremental and greedy strategies are used to decimate tetrahedra that contain
at most one labeled vertex. Field gradients, tetrahedral aspect ratio changes and
variances of interior region values are further used so as to maintain features of the
original dataset in regional interiors. A possible extension of combining edge collapse
also presented to achieve higher decimation rates. We have implemented these algo-
rithms and tested them using a number of standard volumetric datasets. The results
have shown that the feature preserving simplification algorithm is able to preserve
more features at the same decimation rates in comparison to other simplification

algorithms.
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Chapter 1

Introduction

1.1 Motivation

Volumetric visualization plays a very important role in scientific visualization, which
is increasingly used in a wide number of areas such as biology, medicine, chemistry,
computational fluid dynamics, etc.. Scientists and engineers employ a number of
techniques such as contour detection and iso-surface generation, voxel-based tessella-
tion, etc., to create volumetric models with different representations. Although many
representations have been used in last several decades, tetrahedral mesh is still among

the most popular one. This is due to the following factors:

1. The basic representational primitives, tetrahedra, are easy to deform and com-

pute with. It is convenient to assign attributes and functions to the vertices,
edges and tetrahedra. Computational steps such as interpolation, integration,

and differentiation are fast and often can be done through such functions.

2. Tetrahedral mesh provides great flexibility such that other representations can



be converted into it relatively easily.
3. Finite element analysis is often conveniently performed on tetrahedral meshes.

4. The triangles that are generated by tetrahedra may be rendered using hardware

acceleration [62, 42, 48, 59, 14].

However, since the aim of model generating techniques is not efficient rendering, the
resulting models are usually very large in terms of the number of geometric primitives
and complicated in terms of their spatial relationships.

In most cases, the original data contains vast amounts of information and with
considerable noise and speckles, which result in a lot of storage space requirements
and slow rendering speeds. Moreover, in some cases, it may not be necessary to
render the image with its complete original information, such as in level of detail [37]
rendering.

To achieve this purpose, many researchers have used simplification techniques.
Since one of the main advantages of volumetric rendering is the ability to show both
the interior and exterior features of the volumetric dataset, it is extremely impor-
tant to ensure that the simplified dataset retains as many of the significant features
as possible (both boundary and interior). This requires an effective feature detec-
tion/preservation technique combined within the simplification process.

Feature detection has been researched in the last several decades in many areas,
such as computer vision, pattern recognition, and computer graphics. However, it is
still a challenge problem to find good and efficient feature detection algorithms for
volumetric datasets, whose geometrical and topological structures are usually very

complex with redundancy and artificial noise [53, 50, 52, 17, 8, 7, 25, 6]. All existing



simplification algorithms define features based on gradient or iso-surface topological
structure. The first approach may destroy some meaningful features. The second one
keeps much unnecessary information as features [7, 6, 25]. In this research, we have
explored the incorporation of new methods for feature detection and preservation
during the simplification process.

A tetrahedron based volumetric dataset represents a region R in 3D space defined
by a set of vertices and an associated tetrahedral mesh. Each vertex has one scalar
(field) value as its attribute. The field values associated with any other point within R
is determined by using an interpolation function. This interpolation function is based
on the position and field values of the four vertices of the tetrahedron containing the
point. Therefore, the volumetric dataset defines a distribution of attribute or field
values in a 3D region. The objective of simplification is to build another volumetric
dataset with less geometric and topological information than in the original one, and
has as much as possible the same field value distribution as the original. However, an
arbitrary change in the shape of tetrahedra or field values of the tetrahedral vertices
may cause the attribute interpolation to result in a large error in field distribution

[53, 17, 7] and also topological structure errors [50, 8].

1.2 Methodology

To achieve a rendering and storage efficient dataset, we need a tetrahedral mesh sim-
plification tool which can reduce the complexity of the original dataset while preserve
meaningful features. In this thesis, we are proposing to apply a cutting edge tech-
nique from image processing to obtain an improved tetrahedral mesh simplification

algorithm. In addition to gradient based feature detection during the simplification



phase, we add a pre-precessing phase which performs volumetric segmentation to de-
tect the interior features which should also be preserved during simplification. The

two phases in our approach are:

1. Volumetric Segmentation: Using an image processing method, we divide
the 3D space defined by the original dataset into several sub-regions. Inside each
sub-region, its field values are assumed to be following the Gaussian distribution.
Our premise is that the boundaries between sub-regions have more potential
to be features; therefore, we will try to preserve these boundaries during the

simplification phase.

2. Stmplification: During the simplification phase, we simplify each sub-region
individually, while preserving the boundary between neighboring sub-regions.
The algorithm performs mesh decimation by a sequence of cell collapses. The
order of collapse is determined by a predicted error measure, which is defined

as a combination of local error and region based error.

Compared to existing simplification algorithms, our approach has some significant

advantages:

1. It is very robust to noise which is a very major challenge to existing simplifica-

tion algorithms.
2. It can preserve complicated topology of interior regions.

3. It can detect some features that classical gradient methods would normally miss.

This thesis is organized as follows: In chapter 2, we give a brief review of 3D surface
mesh simplification technique and a survey of most popular and traditional tetrahe-

dral mesh simplification methods. In chapter 3, we introduce a basic tetrahedral mesh

4



simplification algorithm with a sequence of edge collapse. A level set segmentation
based feature detection method is proposed in chapter 4. With this method, a feature
preserving simplification algorithm and its extension also described in this chapter.

Chapter 5 is our experimental results, and the final chapter is our conclusion.



Chapter 2

Background and Related Work

2.1 History of Mesh Decimation

Most volumetric decimation algorithms come from 3D surface mesh decimation algo-
rithms. Therefore, we first introduce a brief review of 3D surface mesh decimation
algorithms. And then we present the current state of the art in tetrahedral mesh

simplification.

2.1.1 3D Mesh Decimation

Surface mesh models were introduced to the scientific visualization field much earlier
than the volumetric models. The idea of using the surface to present the object comes
from the real world. Most objects are opaque. Our eyes can tell the object easily
by detecting the object’s surfaces and edges. Scientists explored a huge number of
algorithms to obtain the surface models [10, 43, 51, 56, 1, 41]. Typically, these models
are represented by vertices, edges, and polygons.

The complexity of these models is measured by the number of polygons [38] and



this number is currently growing faster than the ability of graphics hardware to render
interactively. Therefore, many scientists and engineers have designed simplification
techniques to help remove the small, distant, or otherwise unimportant portions of the
model, seeking to reduce the rendering cost without a significant loss in the scene’s
visual content [22]. Also, they explored the idea of multiresolution models [44, 26, 49],
a computer graphics technique which is very old but still current, for visualization
of very large datasets in real time speeds. As early as 1976, James Clark described
the benefits of representing objects within a scene at several resolutions [9],and flight
simulators have long used hand-crafted multi-resolution airplane models to guarantee
a constant frame rate. Recently, a flurry of research has targeted generation of such
models automatically. The main methods for simplification, as classified in [22],
includes decimation methods [21, 16], refinement methods [15, 27, 12, 13], and optimal
methods [39, 11, 3]. In our thesis, we are mainly concerned with decimation methods.

Decimation methods form a significant class of surface simplification algorithms.
This class starts with a polygonized representation and successively simplifies it until
the desired level of approximation is achieved. Most decimation algorithms fall into

one of the following categories:

1. vertex decimation algorithms: This class of algorithms performs the dec-
imation operation by first deleting a vertex, then all edges, and triangles con-

nected to the vertex; and then retriangulating the hole generated by the oper-

ation [32].

2. edge decimation algorithms: This class of algorithms performs the deci-
mation operation by deleting one edge, then the two triangles adjacent to that

edge, and then, merging the two vertices of the deleted edge [16].

7



3. triangle decimation algorithms: This class of algorithms performs the deci-
mation operation by deleting one triangle and all vertices and edges immediately
adjacent to the deleted triangle; and then, retriangulating the hole generated

by this deletion operation.

4. patch decimation algorithms: This class of algorithms performs the deci-
mation operation by deleting several adjacent triangles and then retriangulating

the polygonal hole. [28].

2.1.2 Volume Mesh Decimation

In this section, we review some of the existing algorithms described in the literature
for simplification of irregular mesh volume datasets, which is related to our research.
Based on different atomic decimation operations, we can classify the simplification
algorithms for volumetric datasets into three types: vertex decimation [17, 25], edge
collapse [6, 8, 50, 52] or tetrahedral cell collapse [7, 53].

In 1998, Trotts et al. [53] presented a method for the construction of multiple levels
of detail of tetrahedral meshes approximating a trivariate function at the different
levels by extending a polygonal geometry reduction technique. Their algorithm starts
with a full-detail, high-resolution tetrahedralization of a three-dimensional region, and
constructs increasingly coarser representational levels by a sequence of three edge
collapse operations. The order of tetrahedral collapse is based on error prediction
defined on the triangulation based linear spline function, where the functional values
associated with the vertices are the spline coefficients. They use an incremental
approach with an update of the error bound for each individual tetrahedral cell after

each decimation step. They also discuss the preservation of the boundary. In 1999,



Trotts et al. [52] extended this work by binding the degeneration error to the gradient
of simplified field values determined from the original field values. Also, they changed
from tetrahedron collapse to edge collapse as the primary decimation operation. They
state that their technique achieves 83.9% decimation for the Blunt Fin dataset with
419,297 cells in almost 2 days.

Staadt and Gross [50] extended the work of Hoppe [26] on progressive triangular
meshes to tetrahedral meshes to generate an incrementally refined progressive tetra-
hedralization based on edge collapse. The decimation sequence is based on a pre-
dicted error that includes gradient, volume preservation and uses the edge collapse
and vertex split primitive operations. They also do static sharp boundary checks and
dynamic edge intersection checks to avoid inconsistent topological changes. The flip-
ping problem, where a tetrahedral vertex shifts to the other side of its facing triangle
thus introducing a negative volume tetrahedron, is prevented by checking the sign of
the parallelepipedial product of three edges of the tetrahedron. From the results of
their algorithm, it is evident that the approach does not always preserve boundary
and/or interior features. Also, because their simplification algorithm includes a very
expensive dynamic mesh-consistency test, its computation times are very high, espe-
cially for very large datasets; nearly 5 hours were needed to deal with a dataset of
576,576 cells.

In 2000, Cignoni et al. [8] give a framework for incremental 3D mesh simplifica-
tion also based on edge collapse. In their paper, they propose an approach for the
integrated evaluation of the error introduced by both the modification of the domain
and the approximation of the field of the original volume dataset. They also include

a computation time comparison of various techniques that can be used to compute



the error after simplification.

In 2002, Chopra and Meyer [7] introduced a fast tetrahedral decimation algo-
rithm called TetFusion. During simplification, the algorithm avoids such problems
as negative volume tetrahedra, volume boundary self-intersections, and tetrahedral
boundary self-intersections in regions where the boundary is concave. They are able
to achieve reduction of up to 98% for meshes consisting of 827,904 tetrahedra in less
than two minutes. However, this algorithm does not incorporate any checks to pre-
serve the original distribution of field values or interior features, except in forbidding
any change in volume boundary tetrahedra. Hence for smaller datasets, this algo-
rithm cannot achieve high decimation rates, as larger percentage of the tetrahedra
are on the boundary and are untouchable during simplification.

Recently, Hong and Kaufman [25] described an algorithm that performs simplifi-
cation using vertex decimation. In their algorithm, they classify all interior vertices
as either topologically critical points or regular points. The topological structure is
preserved by not touching these critical points and also by preventing regular vertices
from becoming critical during simplification. To order the vertices during simplifi-
cation, they use a gradient magnitude based error metric. They also pre-compute a
solid angle which is used to detect boundary features that are to be preserved during
the sifnpliﬁcation.

Chiang and Lu [6] use Morse theory to preserve the topological structure among
all isosurfaces during the progressive simplification at multiple levels of a tetrahedral
volume dataset. In the first stage they determine a subdivision to separate the dataset
into topology-equivalent regions with ranges of isovalues by identifying critical points

where the topology of the field values changes. They construct a contour tree that

10



maps out neighbouring topologically equivalent regions with respect to these critical
points. In the second stage they simplify each topologically-equivalent region sepa-
rately using edge collapse. During simplification, any change to the isosurface-based
topological structure is forbidden. The free decimation can only be done though on
a pure-cell whose vertices are not critical points and that are in the same topolog-
ically equivalent region. This results in a strict topology-preserving simplification
that is highly performance limited, as the algorithm will retain even tiny insignificant
features, say, caused by noise.

Base on those researchers’ work, in next chapter, we propose a basic tetrahedral
mesh simplification algorithm with cell collapse. The sequence of collapse operation
is ordered by a predict error defined by a combination of gradient changes and shape

changes.

11



Chapter 3

Basic Volumetric Dataset

Decimation Algorithm

In this chapter, we propose a basic simplification algorithm based on cell collapse,
and discuss such issues as new vertex generation, error metrics, flipping problem and

boundary preservation.

3.1 Goal and Difficulty of Decimation

As defined in [20], mesh decimation describes a class of algorithms which transfer a
given mesh into another one with fewer primitives, such as vertices, edges, faces or
cells. The decimation procedure is usually controlled by user defined quality criteria
which prefer meshes that preserve specific properties of original data as much as
possible. Typically, these criteria are related to the appearance of the final image,

such as color difference, shape of object and topological structure [62, 58].

12



However, the appearance information maybe very unclear before we see the ren-
dered result. In other words, it is very hard to define which information is more
important than others and must remain in the simplified meshes before we obtain
the final image. In medical imaging, for instance, topology may provide critical in-
formation; depending on the application, preserving a hole in the heart wall may be
much more important than preserving the exact shape of the surface. However, in
most rendering applications, we can safely simplify the topology of models. Actually,
it is often desirable to do so. Consider a model of a sponge. When we view very
closely, the intricate structure of holes in the sponge is a visually important feature.
But when viewed from a distance, these holes are imperceptible. The entire sponge
can be adequately approximated by a simple block. In this chapter, we have to opted
to compromise in some respect to a more general algorithm which mainly focuses on
retaining geometry and field value distribution information.

Another big challenge is that for volume data simplification, like most problems
where optimal algorithms are infeasible, a tradeoff exists between quality and effi-
ciency. A fast algorithm capable of producing high-quality approximations has been
the primary goal of simplification work. However, there is always a gap between
the very fastest algorithms, which can produce poor approximations, and those al-
gorithms which produce very high quality approximations, but which can be rather
slow. Therefore, we also have opted to compromise quality in some respects in order

to create a more efficient algorithm.

13



3.2 Definitions

Before we begin the discussion on simplification, we give some definitions which we

use later.

e Tetrahedral Mesh Let D : (X,V,T,S) be our dataset where X is a closed
sub-region in 3D space R, V is a set of sample points within the region X,
I' = {r,7, ..., 7m} is a tetrahedralization of m cells defined on V, and S is
the scalar attribution within region ¥. An assumption widely used in volume
rendering and simplification is that the scalar value of an attributed point p ¢ V
within a tetrahedron can be obtained by linear interpolation of the four sample

vertices of the tetrahedron.

¢ Neighbor set of a tetrahedral cell For V7 € I', A(7) defines a subset of I" ,
which shares one and only one vertex with 7; D(7) defines a subset of I, which
shares at least two vertices with 7. We denote the collection of A(7) and D(7)

as Neighbor (7). More formally:

A(1) = {n; € ['|r; share exact one vertex with 7} (1)
D(r) = {7 € I'|r; share at least two vertices with 7} (2)
Neighbor(t) = A(T) U D(7) (3)

¢ Boundary Cell For all 7 € I, if any of the vertices of 7 are on the boundary,
which means the cell contains at least 1 vertex and at most 3 vertices on the

boundary, we denote 7 as a boundary cell.

14



e Boundary Neighbor Cell For all 7 € I" that are not boundary cells, if any

7; € Neighbor(7) is a boundary cell, we denote 7 as a boundary neighbor cell.

3.3 Decimation Method Based on Cell Collapse

As we discussed before, given an irregular dataset I, the term simplification refers to
the problem of building an approximate representation D’ with less information than
D, built by choosing a set of vertices V' smaller than V, and a new triangulation "
of V' that defines a field value distribution S’ which keeps almost the same scalar
attribution as of S. We have chosen cell collapse as our decimation operation. As
discussed in the previous section, there are mainly three kinds of decimation methods
used in tetrahedral mesh simplification: vertex decimation, edge collapse, and cell
collapse. However, among these three methods, we find that cell collapse has a higher
decimation rate per step in general. The collapse of one cell 7, excluding the boundary
cell results in the removal of exactly three vertices, six edges, and at least 10 additional
tetrahedral cells, which share a edge or a face with 7. Based on a test run on the data
set SPX with 12,936 cells, during each cell collapse, we have found that we decimate
an average of 20 cells. Moreover, it is not required to maintain the edge information
during the decimation process. The simpler data structure of an array of vertices and
an array for tetrahedral cells is sufficient. All these result in less computation time
to implement decimation. In other words, cell collapse may lead us to more eflicient
decimation algorithms.

In each step, we choose one 7 as‘ the collapsing candidate, and then find the
tetrahedra sets A(7;) and D(7;). After the collapse operation, the candidate cell be-

come a vertex; the tetrahedra inside A(7;) moves the vertex shared with the collapsed
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candidate to the newly generated one; the tetrahedra inside D(7;) which share three
vertices with the candidates become edges, and the tetrahedra inside D(7;) which
share two vertices with the candidates become triangle faces. The hole space gener-
ated by the collapse operation is distributed amongst the candidate’s local neighbors.

(See Figure 3.1)

Candidate collapsing cell
become a vertex

Cells become
an edge

Figure 3.1: Demonstration of collapsing operation in 2D a) The candidate collapsing
cell 7 and it’s Neigbhor(7) collection. b) Mesh after the collapsing operation. The
three vertices of the candidate cell become a new vertex. All cells in A(7) set move
one vertex to a new position. All cells in D(7) become an edge.

3.3.1 New Vertex Placement

Because we use cell collapse, it is unavoidable to generate new vertices in original

tetrahedral mesh. Obviously these new vertices must be placed inside the volume of
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collapsed cells. The easiest implementation of the collapse would be to replace three
vertices with the fourth one. However, it is not a good choice, most of the time,
because we cannot be sure that all vertices of a cell have similar attribute values and
have the same classified feature. Also, the hole resulting from a cell collapse operation
is distributed unevenly to its local neighbors in the A(7) set.

Another simple way to replace the new vertex is to use the bary center of the
collapsed cell, and determine its attribute value by a linear interpolation of attribute
values of the original four vertices. The new vertex carries a blended feature of
original vertices. Also, it is a symmetric choice because the hole resulting from the
cell collapse operation is distributed symmetrically amongst the local neighborhood.

For boundary cells, it is more reasonable to have the new vertex appear on the

original boundary complex. Therefore,

1. If the boundary cell contains only one boundary vertex, we choose the boundary

vertex as the new vertex;

2. 1If the boundary cell contains two boundary vertices, we choose the center of

edge defined by the two boundary vertices as the new vertex;

3. If the boundary cell contains three boundary vertices, we choose the bary center

of the face composed by the three boundary vertices as the new vertex.

3.3.2 Error Metrics

Considering that the goal of simplification is that the final mesh has an attribute
value distribution that is as close as possible to the original one, not all tetrahedra

are suitable to become collapsing candidates. As discussed in [53, 50, 52, 17, 25, 6],
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error prediction is very important for a good simplification algorithm. We always
want to choose a tetrahedral cell which causes the least modification to the attribute
value distribution.

We define the change in attribute value distribution S and S’ , before and after

cell collapse, on a 3D region R as our error, denoted by Ae

Ae =) |5, -5 (4)

pEY

However, it is computationally very expensive to calculate the Ae after each col-
lapse operation. Therefore, instead of computing error after each cell collapse, we
want to use some measures for ordering the cells based on the possibility of large Ae
[26, 50, 53, 52, 7, 25, 6].

The first criterion we can use and should use in error metrics is gradients. A large
gradient change means there is a possible feature [31, 34]. Therefore, the cell which
contains big gradient changes may carry more information than the one that contains
small gradient changes. As candidates for decimation, the one with a smaller gradient

is better than the one with a larger gradient. We define the gradient error as follows:

3
1
Egradient — wgradientZ Z |Sz - S;;,l (5)

1=0
where §; are the attribute values of original vertices of the collapsed cell.
Sy, is the attribute value of new vertex which is created after collapsing the cell.
The second criterion we consider is the geometric shape of the tetrahedral cell.

After the collapse of one cell, attribute value distribution inside the area R' which is

defined by Neighbor(7) will change. If R’ is a big area, it may cause more modification
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in distribution. If the candidate cell has big volume, the collapse operation may cause
a large changes in S. The collapse of a sharp cell may cause more Ae than the collapse

of a round cell [36, 33]. Therefore, we define:

5shape = wneighborgneighbor + wsharpssharp + Wyolume€volume (6)
5 Volume(T;)
;€ Neighbor(7)
Eneightor = Volume(T)
3

1

Esharp = Z E :I’Ui - U'nl
=0

v; is the original sample vertex,
U, is the new genertated one
1

Evolume — 'éT'a : (b X C)I

a, b, c represent the three edges sharing one common vertex

We use the summed fraction of volume for all cells inside neighbor set of candidate
with the one of candidate, and stretch length of vertices of tetrahedron to check for
a sharp cell. It is also possible to use the solid angle to check the latter.

Combining the two types of error, we define a simple error metric as follows:

Ag = Egradient + € shape (7)

3.3.3 Boundary Decimation

In TetFusion [7], in order to preserve the geometry boundary, the collapse operation

is forbidden on the following types cells:i) boundary cells, which has at least one
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vertex on the boundary, and ii) the neighbor boundary cells, which have at least
one tetrahedral cell in its Neighbor(r) that is a boundary cell. This requirement
preserves the geometry boundary very well. However, it also prevents reaching higher
decimation rates, especially for volume datasets which have a complicated structure.

Let B be the original boundary defined by the tetrahedral mesh, and B’ be the
simplified boundary after one or more decimation operations. We wish to choose
a suitable criterion measuring the changes between B and B’ as |B — B'|. If this
change is within a reasonable tolerance, we can allow the cell on the boundary to be

a candidate for the collapsing operation.

HausdorfT Distance

Usually when considering distances between two polygons, we mean the shortest one:
for instance, if we have two polygon P, and P,, the distance from a point p; € P,
to the polygon P, we generally assume that it is the distance from p; to the nearest
point p; € P». The same logic applies for distance between two polygons: if two
polygons P; and P, are at some distance from each other, we commonly understand
that distance as the shortest one between any point of P; and any point of P. It is
denoted as:

Dis(Py, P,) = min{min d(p;, p;)} (8)

p:€Py pjePs

We usually refer to equation (8) as the minimal distance between two polygons.
However, the minimal distance can become quite unsatisfactory for some appli-

cations because the minimal distance is totally independent of the shape of each

polygon. For example in figure(3.2) , we can say that the two polygons are very close

to each other because the minimal distance is very small. In fact, sometimes when
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we say two polygons are very close, it really means that no point of one polygon is far
from the other one. In this sense, the two polygons in Figure(3.2) are not so close, as
their farthest points, shown in gray, could actually be very far away from each other.
Another disadvantage of minimal distance is that it carries very low information con-
tent. From Figure(3.3), it is quite obvious that the minimal distance value of these
two polygons is exactly the same as that in figure(3.2), while something did change

substantially with the configuration of these objects.

/: \ ) .\\\\‘-

.

Figure 3.3: The minimal distance doesn’t account for the position of the objects.

Under this situation, we choose the Hausdorff distance measure which does capture
the subtleties, ignored by the minimal distance. Named after Felix Hausdorff (1868-
1942), Hausdorff distance is the maximum distance of a set to the nearest point in
the other set [45]. More formally, Hausdorfl distance from polygon P; to polygon P

is a max-min function, defined as follows:
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hausdorff(Py, P,) = max { min {d(p;, p;)}} (9)

pi€Py " pjEP
where, p; and p; apply to all points inside the polygons, and not only to their vertices.
Another feature of Hausdorff Distance is that it is asymmetric as well; in other
words, it is oriented. Most of the times, hausdorff( Py, P) is not equal to hausdorff( P2, Py).
We call equation (9) as directed Hausdorff Distance. A more general definition of

Hausdorff Distance is:

Hausdorff Distance(Py, P;) = max {hausdorff(P1, P,), hausdorff( P, P1)} (10)

Boundary Simplification based on error predicted with Hausdorff Distance

We use Hausdorff Distance to measure the difference between the original boundary
and a simplified one. For all boundary cells, their cost functions includes the boundary

changes, defined by Hausdorff distance of original boundary and modified one.

Eboundary = wboundaryHau'Sdorﬁ(Ba Bl) (11)

where,

B and B’ present a subset of boundary, defined by boundary cell and its neighbor
set.

As a result, the predicted error of boundary cell and boundary neighbor cell is

defined by the following formula:

Ag = Egradient + €shape + Eboundary (12)
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3.3.4 Flipping Problem

Flipping, also referred as fold-over [6], is a very common problem in volume data
simplification. It means after one decimation operation, for a cell which is affected
by the operation, a new vertex may end up at the opposite side of the plane defined
by the other three unchanged vertices. See Figure (3.4).

Unchanged
triangle face

7

/ o

Figure 3.4: Flipping Problem. a)Cell 7 before collapsing operation. b)Cell 7' after
collapsing operation. Vertex vy moved vj, which is on the other side of triangle face
ViUaUs

We define the signed volume of a tetrahedron as the parallelepipedial product of

its 3 edges e; = Ut es = To0% and es = TgUh:

1 1
6[61’ €2, 63] = 681 . (62 X 63) (13)

In other words, to avoid the flipping problem, after a decimation operation, we
must not produce a tetrahedral cell of negative volume. During the simplification

process, we keep a binary flag of volume sign for each tetrahedron. After one collapse
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operation, we test, for each 7, € A(7,), whether its signed volume has the same sign
(positive or negative) before and after collapsing 7.. If this is true for each 7; € A(7),
then we allow the collapse of 7., otherwise we disallow the collapse operation, and

recover the vertex and cell array.

3.3.5 Basic Decimation Algorithm

There are two kinds of decimation strategies: incremental and greedy. For the incre-
mental model, starting with the original tetrahedral mesh Dy : (X, V,T,5), iterative
simplification algorithms generate a sequence of approximations, D, D, - - -, arriving
at the final approximation Dy. Here, our definition is different from the progressive
mesh notation used by Hoppe [26] where Dy is the base mesh which, by a sequence
of refinements, is transformed into the original mesh D. An incremental represen-
tation is one which encodes the original model Dy, the final model Dy, and all the
intermediate approximations Dy,- - -, Dy_;. However, the available approximations are
restricted to exactly those which were generated during simplification.

The following are the steps for incremental algorithm, which we refer as Basic

Incremental:

1. Compute the predicted error based on the error metrics discussed in section
(3.3.2) for all tetrahedral cells, and put them into a priority queue (we use a

heap), ordered by predicted error.

2. While there is still at least one cell remaining in the priority queue with a
predicted error which is less than the user specified tolerance, pick the first cell

7, and do the following:
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(a) Delete 7 from the priority queue.
(b) Determine A(7) and D(7) for 7.
(c) Determine the position of the new vertex, and update the Vertex Array.

(d) Carry out a flipping check among the cells in A(7). If the collapsing
operation causes any cell flipping, then recover the original vertices of 7,

double the cost of 7, reinsert it into the queue, and skip steps 2e. & 2f.
(e) Delete all cells in D(7) from the priority queue and Cell Array.

(f) Remove all cells in A(7) from the priority queue and recalculate their

predicted errors; then insert them back into the priority queue.

3. Save the simplified tetrahedral mesh.

For the greedy model, starting with the original tetrahedral mesh Dy, we make a
pass through the complete tetrahedral structure and attempt collapse operations for
all cells whose predicted error is less than an error threshold. The following are the

steps for greedy algorithm, which we refer as Basic Greedy:

1. Compute the predicted error based on the error metrics discussed in section
(3.3.2) for all tetrahedral cells, and put them into a priority queue (we use a

heap), ordered by predicted error.

2. While there is still at least one cell remaining in the priority queue with pre-
dicted error less than the user specified tolerance, pick the first cell 7, and do

the following:

(a) Delete 7 from the priority queue.
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(b) Determine A(7) and D(7) for 7.
(c) Determine the position of the new vertex, and update the Vertex Array.

(d) Carry out a flipping check among the cells in A(7). If the collapsing
operation causes any cell flipping, then recover the original vertices of

7,double the cost of 7, reinsert it into the queue, and skip step 2e.

(e) Delete all cells in D(7) from the priority queue and Cell Array.
3. Save the simplified tetrahedral mesh.
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Figure 3.5: Incremental Model

Figure (3.5) and (3.6) demonstrated the processes of both incremental and greedy
strategies. Compare with incremental model, greedy one is much more faster. How-
ever, it cannot reflect the error changes during simplification processing, and it cannot

reach high decimation rates as incremental model.
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Figure 3.6: Greedy Model

3.4 Multi Level Resolution of Tetrahedral Meshes

A multi level resolution model is a model which captures a wide range of levels of
detail of an object and which can be used to reconstruct any one of those levels on
demand. The significant advantage of multi-resolution representation is that it allows
us to extract a fairly wide range of levels of detail. In our work, we use three methods
to generate a set of meshes Dy, Dy, D5, ... ,D,, approximating the original mesh at

multiple levels of resolution:

1. We begin from the original mesh, and choose a sequence of error bounds gy, <
€1 < €2 < ... < &n. Then, we select tetrahedra from the priority queue, collapse
them, and reinsert the stretched tetrahedra into the queue until all tetrahedra

in the queue have Ae > g5. We save the simplified mesh into D;.

After obtaining ID;, we start with it and repeat the decimation operation until
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we get Dy. We continue these steps until we obtain D,,.

2. Specify a number (or a percentage) of tetrahedra to be collapsed in each step.
Then, we perform the incremental decimation algorithm. We keep a variable for
remaining number of tetrahedra; when it reaches our limit, we stop decimation.
The intermediate meshes are defined by those tetrahedra remaining in the queue

after each step. The error for each mesh is stored.

3. As in the work of Gieng et al. [19], we remove a set of tetrahedra from the queue
and collapse them in parallel. There is a restriction that the neighbor set of the

tetrahedra to be collapsed in parallel must not intersect.

The above is for the incremental algorithm. Similarly, we have the following steps

for the greedy algorithm.

1. We begin from the original mesh, and choose a sequence of error bounds gy <
€1 < €2 < ... < gp. Then, we collapse all tetrahedra from the priority queue

whose predicted error is less than €g, Then, we save the simplified mesh into

D;.

After obtaining D, we start with it and repeat the decimation operation until

we get Dy. We continue these steps until we obtain D,,.

2. Specify a number (or a percentage) of tetrahedra to be collapsed in each step.
Then, perform the decimation with greedy algorithm. There is a variable for
remairﬁng number of tetrahedra; when it reaches this limit, stop decimation.
The intermediate meshes are defined by those tetrahedra remaining in the queue

after each step. The error for each mesh is stored.
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3. Remove a set of tetrahedra from the queue and collapse them in parallel. There
is a restriction that the neighbor set of the tetrahedra to be collapsed in parallel

must not intersect.

3.5 Implementation Results

We have implemented both incremental and greedy algorithms on on a Windows
Platform with a 2.39GHz Intel Pentium 4 CPU and NVIDIA Quadro4 900 XGL
adapter with 128M RAM. Also, we use ZSweep [14] as our rendering algorithm to get
the final images.

Table 3.1 shows the parameters used, for both incremental and greedy algoriths,
during simplification of SPX dataset with 12,936 cells and 2,896 vertices. The multiple
levels of simplified results based on incremental algorithm are shown in Figures (3.7)

to (3.11).

Woradient | Wsharp | Wneighbor | Whoundary

2 1 1 3

Table 3.1: Parameters used during simplification of SPX dataset

figure 3.7 | figure 3.8 | figure 3.9 | figure 3.10 | figure 3.11 | figure 3.12
Ae 0 1.492 6.963 14.444 4,338.19 2,239.34
times N/A 0.189 0.335 0.782 1.007 0.125
in second

Table 3.2: The Ae of multi-resolution of SPX dataset

Figure (3.12) shows the simplified result of SPX dataset with greedy algorithm.

The comparison between incremental algorithm and greedy algorithm is shown in

Table (3.2). It shows that incremental algorithm can reach higher decimation rates
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than greedy one. Also, its result is better than greedy one. The drawback of incre-
mental algorithm is slow speed. It has much more computational time than greedy
algorithm. This substantiates our earlier statement that there is always a gap be-
tween the very fastest algorithms, which can produce poor approximations, and those
algorithms which produce very high quality approximations, but which can be rather
slow.

In general, volumetric datasets are full of noise and artifacts. Simplification al-
gorithms should robust to those noise. However, either algorithm Basic Incremental
or Basic Greedy can deal with this problems. Therefore, in next chapter, we intro-
duce new region based feature detection which is obtained by level set segmentation
algorithm. Using that, a feature preserving simplification algorithm is proposed after

that.
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Figure 3.7: The rendering result of SPX dataset with 12,936 cells
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Figure 3.8: The rendering result of simplified SPX dataset with 10,464 cells
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Figure 3.9: The rendering result of simplified SPX dataset with 9,026 cells
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Figure 3.10: The rendering result of simplified SPX dataset with 7,934 cells
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Figure 3.11: The rendering result of simplified SPX dataset with 7,045 cells

35



Figure 3.12: The rendering result of simplified SPX dataset with 7,932 cells by greedy
algorithm.
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Chapter 4

Tetrahedral Mesh Simplification

with Feature Preservation

In this chapter, we propose a new method of detecting features with segmentation
and use this method to introduce a feature preserving simplification algorithm. We
work with the assumption that the interior and exterior boundaries obtained by seg-
mentation contribute more to the final appearance than the rest of the volume. Our
method includes two parts: volume data set segmentation (feature detection) and
simplification. The main purpose of the first step is to detect the features during a

preprocessing phase which should be preserved during the simplification phase.

4.1 Motivation

As discussed earlier in sections (1.1) and (3.1), the task of decimation algorithms
is to reduce unnecessary or unimportant information in tetrahedral meshes, while

preserving important features. The challenging thing is to decide which part includes
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features and which part does not.

Current simplification algorithms tend to keep the boundary information and
decimate only interior cells [7, 17, 50]. When they perform the interior decimation,
they work with the assumption that large gradient has more potential to contain
features. However, this is not enough. Gradient based features tend to be inaccurate
in some case such as Figure (4.1). It shows that the classical gradient based edge
detection method provides a misleading feature information. Figure (4.1-a) shows
the dataset with histogram shown in Figure (4.1-c). A visible edge separates the
dataset into two parts. However, by classical gradient edge detection method, the

features are represent as several disconnected pieces of horizonal edges.

Figure 4.1: Boundaries and features. (a) One slice of Original dataset. (b) Features
detected by Gradient based method. (c) Histogram of field values of slice (a).

In addition to gradient based features, in 2003, Chiang and Lu [6] introduced a
feature preservation method that preserves the topological structure of iso-surfaces.
They restrict decimation operation so that no operations can destroy the topological
structure of iso-surfaces. Free decimation operation can only be done on pure cells,
which means all vertices of the cells are in the same detected topologically equivalent
region and are not critical vertices of Morse iso-surfaces. The downside of their work

is that iso-surfaces often contain many topological errors in the form of tiny handles
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that are not critical for rendering [24, 60, 2]. It keeps too much noise information and
their technique is unable to reach high decimation rates. As shown in their work [6],
in most cases, the percentage of the pure cells is too low. For example, they state in
their paper, the cleanSPX dataset with 12,936 tetrahedral cells has only 97 pure cells
[6].

In this thesis, we present a feature detection method which is based on volumetric
segmentation. The segmentation process divides the dataset into several homogenus
regions (See Figure(4.2). The vertices defining the boundary between different regions
contribute more to the rendered visible features than those vertices in the region
interiors. In our simplification phase, we decimate the dataset while preserving these
features. By this approach, we potentially preserve more of the significant features
than would be possible with the gradient method. Also by simplifying within regions
without worrying about topology, we have greater flexibility during the simplification
phase while preserving the features. As in all other algorithms, we also prevent

flipping of a tetrahedron which is a very common problem during mesh simplification.

Figure 4.2: a) A slice of bluntfin dataset. b) We can roughly separate the slice into
three regions. In each subregion, we have a Gaussian distribution of the attribute
values. Collapsing the cells within each subregion will not cause large changes in the
original data set.

The method proposed in this thesis has the following significant advantages:
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1. In addition to all features detected by classical methods, our method is able
to detect more reliable and noise robust boundary features. The decimation is
separately performed on each sub-region which has a small range of field values.
Thus, collapsing the cells there will not cause huge modification of structure

present in the original data.

2. Unlike gradient based method which is not based on the idea of regions, our
method can define meaningful regions, which must be simplified separately. For
instance, in medical imaging, the segmentation step can give us meaningful re-

gions and boundary, such as bone and tissue, which we must simplify separately.

4.2 Segmentation of Volumetric Dataset

Our feature detection is based on volumetric segmentation. Segmentation is a well
studied area, and there exist approaches based on different needs. In general, a
segmentation method can be classified into two categories. These are region based and
boundary based methods [29]. The former class uses properties of areas of the dataset
to choose among possible segmentations, while the latter looks at the properties of
the dataset only on the boundary of the proposed segmented regions.

Both methods have their advantages and disadvantages. Region based methods
tend to be global, optimizing a functional of the segmentation. On the other hand,
they often ignore important boundary properties such as smoothness. Boundary
based approaches can treat such properties very naturally, but suffer from their own
difficulties. First, most algorithms find only local minima, and thus have no measure

of the significance of the extracted boundary for the dataset as a whole. Second,
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although there do exist algorithms guaranteed to find global minima, using graph
techniques such as dynamic programming and Dijkstra’s algorithm, these do not
adapt easily to closed contours. Unfortunately, open contours do not segment regions
in the image, so that further processing is needed to group the contours into proto-
surfaces. Third, boundary based methods cannot incorporate region information such
as texture easily. In addition, many of the existing algorithms require initialization
by the user in some way, by specifying the end-points of the contour, or by defining
an initial contour that then evolves to a solution.

Therefore, in 1988, Osher and Sethian [40] proposed a new segmentation approach
based on the class of deformable models, referred as “level set” or “geodesic active
contours or surfaces.” The application became extremely popular because of its ability
to capture the topology of shapes in 3D datasets.

In our experiments, we have consider two very popular and basic methods — thresh-
olding and gradient based edge detection, along with the new approach: level set

segmentation; and compare the results.

4.2.1 Thresholding Method

Thresholding approaches segmentation of a dataset by creating a binary partitioning
of the attributes values. It is the simplest segmentation algorithm. The key issue
in this technique is a single value called threshold. When using one threshold, all
points with attribute values greater than the threshold are grouped together into one
class and those with attribute values below the threshold are grouped together into
another class. Use of a single threshold thus results in a binary segmented volume.

Figure (4.2.1) shows a slice of volume dataset and its histogram image.
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Figure 4.3: Example of thresholding. a) one slice for dataset bluntfin (187,395 cells)
b) the histogram of its attributes value distribution.

This technique can be extended to using multiple thresholds, where a region is
defined by two thresholds, a lower threshold and an upper threshold. Each voxel
of the input volume then belongs to one of the regions based on its attribute value.
This technique is known as multi-thresholding {46, 55, 5]. In Figure (4.4) we show the
histogram (Figure (4.4-(b)) for the volume (Figure (4.4-(a)). To apply thresholding,
we take two thresholds T1 and T2 as shown. We then get three distinct regions as
seen from the histogram. Although simple, this technique is very effective in getting
segmentation done in volumes with a very good contrast between regions. The main
drawback of this technique is that the results are too tightly coupled to the thresholds
used. Any change in the threshold values can give a different segmented region.

The thresholds are usually generated interactively by using visual feedback. Some
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Figure 4.4: Example of multi thresholding. a) The slice image of SPX dataset.
b)Histogram of a slice of SPX dataset with two thresholds and dividing the histogram
in three regions.
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automatic methods do exist with varying degree of success to automate the process
of doing correct thresholds [30]. Another drawback which is a direct consequence of
the previous one is that the technique is very sensitive to noise and attribute value
inhomogeneities. Thus in some cases, the segmentation results are not reliable. This

is generally used as the first step towards segmentation of a volume.

4.2.2 Gradient based edge Detection

As a well-developed technique in image processing, gradient based edge detection
plays an important role in 3D and 4D segmentation. One advantage of edge detection
techniques is that they work very well on datasets with good contrast between different
regions. The edges are detected perfectly and can be verified visually. On the down
side, these algorithms detect all the edges. It is very difficult to find the correlation
between the edges and the regions of interest. In addition, these algorithms do not
perform well on datasets with low contrast between regions. These algorithms are
also susceptible to noise. In most of the cases, these algorithms are not used on their
own for segmentation, but are coupled with other segmentation algorithms to solve a
particular segmentation problem.

A number of gradient based edge detecting operators have been proposed until
now. Liu [35] proposed a 3D surface detection algorithm that extends the classical
Robert’s operator into 3D space. Herman and Liu [23] later extended this algorithm
to 4D. Zucker and Hummel [64, 65] developed an optimal three-dimensional edge
detection operator, which was essentially a Sobel Operator. Figure (4.2.2) is the
segmentation of one slice of SPX with 12,936 cells with the Sobel edge detector.

From the results, we come to the conclusion that this method can only give the
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Figure 4.5: Gradient-based edge detection of one slice of SPX with 12,936 cells with
Sobel edge detector. a) One slice of data SPX; b) Segmentation result by Sobel edge
detector.

boundary in local view. Also, it is too sensitive to noise. It is not really suitable for

our purpaose.

4.2.3 Level set method

Proposed by Osher and J. Sethian [40], level set methods have attracted more and
more attention of researchers from different areas. €2 is defined as a bounded open
subset of R?, and O denote its boundary. Let uy : € = R be a given slice of
volumetric dataset, and C(s) : [0,1] = R be a parameterized curve.

The curve C is represented implicitly via Lipschitz Function, which is also referred
as level set function, ¢, by C = {(z,v)|é(z,y) = 0}. The evolution of the curve is
given by the zero-level curve at time ¢. And evolving of the curve C is controlled by

the function ¢(¢,z,y) in normal direction with speed F.
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8¢
5 = [VeIF (14

¢(0,7,y) = ¢(x,y) (15)

where:
the set C' = {(z,y)|do(z,y) = 0} defines the initial contour.
A particular case is the motion by mean curvature. This is given by equation (16)

as the curvature of ¢ passing through(z, y)

— div Vo(z,y)
F=d Qvaawo (16)

As a consequence, the equations become the following:

0 . (V¢
B3 = |V¢|dzv(w), te (0,00), ze€R?

¢(0,z,y) = ¢o(z,y), =z€R?

(17)

where ¢q is initial level set function.

Level Set Segmentation

Level set segmentation has a significant advantage that it is robust to noise and sam-
pling artifacts which is a typical problem of 3D datasets. These noise and artifacts
cause considerable difficulties when applying classical segmentation techniques such
as edge detection and thresholding. These techniques either fail completely or require
some kind of postprocessing step to remove invalid object boundaries in the segmen-

tation results. As described in [47], let Q be an open domain subset of R® with a
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smooth boundary. Let¢g : Q = R3 represent the observed data function. And let €;

be the region defined as follows:
Q= {x € Q] z belongs to the i, region} (18)

1. A partitioning of {2 consists of finding a set {Q} . such that:
=1...

k
Q=) and @u(Q=¢
i=1 i#]

2. The partition {Qz} is a classification of the observed data ¢, and takes into

account the Gaussian Distribution property of the classes:

2
) with respect to €.

C .. Yo — M4
minimaize ;/Qz < (51

As we defined previously 9€Q; is the boundary of €;. Here, we further define
I'; = 09;N as the boundary of 2; within domain (2, and the interface between

2; and €; is given by:
Therefore, we have:

= Jry

J#
See Figure(4.6).
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Figure 4.6: An example partition of region €.

The level set function is modified from Samson et al. [47]. It achieves segmentation
by variational level set method [63, 4, 57]. Thus, it can detect some features that
a local gradient method cannot. As described in Tsai’s work [54], the robustness to
noise makes the boundary more accurate.

In 2000, Samson et al. proposed a supervised classification model to find a par-
tition composed of homogeneous regions, assuming that the number of classes and
their attribute value properties are known. Therefore, for K region segmentation,
the proposed method used K level set functions ¢; : (¢ € [1, K]) to represent each of
them as shown in equation (19), which shows the energy function we used. The en-
ergy function consists of three terms: minimal variance energy FE,,;n,, minimal length
energy E,n;, and non-overlap energy Fyonover- Equation (20) shows the level set

function we use.

E(¢u ¢lc) - Eminu(¢ia ¢k) + Eminl(¢i7 (]slc) + Enonover(¢ia ¢Ic) (19)
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where:

k
Eorino (03, k) = Zei/ H.(¢:)(1 = ¢;)*dady Vi,e; € R
=1 Q
k
Emin(i00) = >4 [ 8a(81A0idody
i=1 Q
k 2
Enonover(¢ia---¢k) = ’/21‘/Q (ZHa(¢z) - 1) dxdy
Adi 2
S — gt = AL Go(gh) [vidw(ﬁ;ﬁ) — el — i) = B iy BHa(9) — 1) }
(20)

In equation (19), H,(-) is the Heaviside Function and c; are the mean of

positive areas in level set function ¢x. In equation(20), d,(:) is the direct delta

function and v; and f are constants.

Figure 4.7: Segmentation result by coupled level set method. a) Detected interior
boundary for SPX dataset. b) Sub-regions based on the detected interior boundary
for SPX dataset (shown in slice).

After the segmentation, we obtain several sub-regions each with distinct Gaussian
distribution of attributes. Our premise is that vertices on the boundary between

different regions are likely to demark visible features. Therefore, during the tetrahedra

decimation process, we seek to preserve as many of these vertices as possible. In Figure
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(4.7), we see a segmentation result by coupled level set function of SPX dataset.

4.3 Tetrahedral Mesh Simplification with Region
Based Feature Preservation

4.3.1 Definition

Before we begin the discussion of feature preserving simplification, we introduce some

definitions which we use later.

Feature Vertex

If Vov; € V is on the boundary detected by segmentation phase, we label it as a

Feature Vertex.

o Feature Cell

If V7; € T' has one or more than one feature vertex v;, we label it as a Feature

Cell.

e Cross Region Cell

If Vr; € T' has vertices in more than one sub-region, we label it as a Cross

Region Cell.

e Cross Region Neighbor Cell
If V7; € T has a neighbor cell 7; € Neighbor(7), which is a cross region cell, we

label it as a Cross Region Neighbor Cell.
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4.3.2 Feature Detection

In our approach, we divide the 3D space defined by the original dataset into several
sub-regions defined by a level set segmentation of the volume. Inside each sub-region,
its field values follow a Gaussian distribution in 3D. During the simplification phase,
we simplify each sub-region individually, and preserve the boundary between neigh-
boring sub-regions. Because the field value distribution of each sub-region has a
specific range, any change in geometric information within each sub-region cannot
affect the field value distribution outside of this range (neighboring sub-regions have
their own distributions of field values). By maintaining the boundaries between these
simplified sub-regions, the features of the original dataset are also preserved. We use
an image processing method based on volume segmentation to detect region bound-
aries inside the 3D volume. These boundaries are more meaningful, and we believe

are features to be preserved.

Mapping feature point from regular mesh to irregular mesh

Currently, our algorithm performs the level set segmentation on a regular mesh. In
other words, we classify the feature points on regular mesh which we generate from
irregular mesh. We define two ways to transfer the feature points back to the original

mesh.

1. Mapping from regular C to irregular mesh D : For each point in regular mesh,
we define a mapping function f, which defines only one vertex in irregular mesh.
When the resolution of the regular mesh C is much bigger than the irregular
one D, the mapping function may map several points in regular mesh onto only

one vertex in the irregular mesh. Therefore, for each vertex v; in irregular mesh,
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we get a set s = {p; = f~'(v;)|[p; € C}. We classify that, for each vertex in
irregular mesh D, if any point inside the set s is a feature point, then the vertex
is a feature vertex. The nearest neighbor algorithm turns out to be a good

choice for the mapping function.

. Mapping from irregular to regular mesh: We first cut the regular mesh into
small cubes, which use the sample points as the vertices. If any cube contains
at least one feature point, we define it as a feature cube. Then we map the
vertices in irregular mesh into the regular mesh. If a vertex of irregular mesh
is inside a feature cube, we classify the vertex as a feature point in irregular
mesh. If the vertex is mapped to the corner or on the edge, we define a cube set
that the vertex belongs to. If any cube in the set is a feature cube; we classify
the vertex as a feature point in irregular mesh. Here, we may meet a problem
when the resolution of regular mesh is much higher than the irregular one, for
example 100 times. To solve this problem, we reasonably increase the size of

the cube, such as every two vertices or more vertices define a corner of one cube.

The results of feature vertex detection is shown in results section 5.1.

Very recently Xu et al. [61] have described a technique for level set segmentation

directly on irregular meshes. This would help avoid the additional conversion steps

involved in our preprocessing phase.

4.3.3 Feature Preservation

Both exterior and interior features are important for volumetric datasets. We have

already defined a way to decimate the exterior boundary while preserving features
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in section (3.3.3). After feature detection, a number of rules are defined to preserve
interior features.

To preserve the interior features, we perform the decimation for each sub-region
(D : (2,V,T,S)) disjoint from the other regions. We also perform the collapse op-
eration on the cell whose predicted error is currently the smallest. We update the
predicted error of each affected cell after each tetrahedral collapse, and we continue
the decimation process until the user specified error tolerance 7 is met. To ensure
preservation of the interior and exterior features of the original dataset, we include a
set, of additional tests to forbid any collapse operation that will cause a change in the
boundary of sub-regions. These tests classify three types of interior cells that need

special attention.

1. Feature Cells: If any 7 has more than one feature point, we do not perform the
collapse operation on it. If 7 has exactly one feature point vy, we define the
collapse operation as collapsing 7 to vy. We denote this operation as 7 — vy.

Figure (4.8) demonstrates this operation.

2. Cross-region Cells : If any 7 has vertices in more than one sub-region, we do

not perform the collapse operation on it.

3. Cross-region Neighbor Cells: For any 7, if its A(7) or D(r) contains only one
cross region cell, doing a collapse operation to the centroid will cause the change
of the structure of the sub-region. To avoid this problem, we define the collapse
operation for such a cell as the collapse of 7 to the vertex v, which is the common
vertex with the cross-region cell. We denote the operation as 7 — v,,. If its

A(7) or D(7) contains more than one feature cell and more than one feature
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vertex, we do not collapse the cell. Cells in D(7) may contain any number of

feature points.

Irarior \ bt
Baudary 1 Candidate Bm:tda
, : call for Collapsn 4

collapse

b)

Figure 4.8: Demonstration of decimation operation with feature preservation. a)
The gray cell in the center is the candidate of collapsing operation. It contains one
feature vertex. The surrounding cells are tetrahedra inside A(7)). b) After collapse
operation, the candidate collapses to the feature vertex. The surrounding cells stretch
themselves to the feature vertex.

The above tests are defined so as to ensure that there is no large change in interior

boundaries. To ensure the preservation of the geometry of exterior boundary, we

define a boundary cell check as follows:

4. Boundary Cells: If 7 has exactly one vertex on the boundary, we define the
decimation operation as a collapse of 7 to v, (the vertex on the boundary). We

denote the operation as 7 — v,. If any 7 has more than one vertex on the

boundary, we do not perform the collapse operation on it.

We denote all cells that are not feature cells, cross region cells, cross region neigh-

bor cells or boundary cells as normal cells. The normal cells may be collapsed freely.

94



Here we define the collapse operation for normal cells as 7 — v, where v, is the cen-
troid of the cell. By choosing the centroid, the volume of the deleted cell is distributed
evenly amongst the remaining local neighboring cells.

We also define a flipping check to ensure no flipping occurs during the simplifica-

tion process.

5. Flipping Check: For any cell inside the A(7), where 7 — wv;, v; should stay
on the same side of its facing triangle. We test all the cells in A(7) and check
whether its signed volume has the same sign (positive or negative) before and
after the collapsing operation. If any cell changes its volume sign, we do not
allow the collapsing operation and return the dataset to the previous state before

the collapse.

4.3.4 Error Prediction

In section (3.3.2), we have already stated the cost function of error predict in equation
(7). However, after we segment the volume, decimation operation may also affect its
regions. The error function defined in equation (7) is not adequate to reflect region

based error. As a result, we define region Level Error Measurement €region:

dc

Eregion = wregiong_ (21)
N

where: dy is the variance of all vertices in region N

v;EN

d. is the variance for four vertices of collapse candidate ¢
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Ag = Eregion + Egradient + € shape + Eboundary (22)

We compute the predicted error using a combination of region level and local error
functions (shown in Equation (22)) and use it to prioritize cells in order of decimation
during the simplification. It may be argued that if the cell is inside an attribute region
that is composed of several disconnected parts, then each vertex of the cell may be
inside different parts. In that situation, based on our test, the cell would be a normal
cell; however, it is a cross boundary cell. Definitely, it is possible that one region is
composed of several disconnected parts, but the situation that is mentioned earlier is
impossible. That is because, attribute value distribution within a cell is defined by the
vertices of the cell by linear interpolation. Therefore, the extreme points could only
appear on the sample vertices [18]. In other words, if all vertices of a cell are within
a region X, the whole cell is also in that region. When we perform the collapsing, the

new vertex will also be in the same region.

4.3.5 Simplification Algorithm

Similar to the algorithms described in section (3.3.5), the core of the tetrahedron
collapse algorithm takes a tetrahedral mesh (D : (3, V,T',S) ) as its input, and out-
puts a new simplified mesh (D, : (3, V,I',.5)) with reduced geometric and topological

information. Below we give an overview of our incremental simplification algorithm,
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which we refer as Featurelncremental:

1. Compute the predicted error based on the error metrics discussed in section

(4.3.4) for all tetrahedral cells, and put them into a priority queue, ordered by

predicted error.

2. While there is still at least one cell remaining in the priority queue, with pre-

dicted error less than the user specified tolerance, pick the first cell 7, and do

the following:

(d)

Delete 7 from the priority queue.
Determine A(7) and D(7) for 7.

Check the type of the current cell 7 : Feature Cell, Cross-region cell, Cross-
region Neighbor Cell, Boundary Cell or Normal Cell, as described in the

previous section.

If the cell is cross-region cell, or has two or more feature vertices, skip steps
2e. 2g. 2f. and 2h. Otherwise, based on the type of the cell, determine the
position of the vertex to replace 7, and replace its original vertices with
the replacement vertex.

Carry out a flipping check among the cells in A(7). If the collapsing
operation causes any cell flipping, then recover the original vertices of
7 and skip steps 2g., 2f. and 2h.

Detect whether the new generated vertex is a feature vertex or not.
Delete all cells in D(7).

Remove all cells in A(7) from the heap and recalculate their predicted

errors; then insert them back into the priority queue.
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3. Save the simplified tetrahedral mesh.

4.4 Decimation Algorithm Combined with Edge
Collapse

In the Featurelncremental algorithm, we successfully preserve both interior and exte-
rior boundary by not touching feature vertices and cells. However, these steps prevent
us from achieving high decimation rate. For example, for SPX dataset with 12,936
cells, the highest decimation rate is 60%. And we expect much higher rates for deci-
mation algorithms. The main reason is we label all boundary cells as unchangeable.
In order to avoid this, we combine cell collapse with edge contraction, which gives us

more freedom when we perform decimation.

4.4.1 Decimation Algorithm

When we encounter a cross region cell, as we have defined before, we do not allow a
collapse operation. However, there maybe some edges on with we can perform a edge
collapse operation.

We calculate the cost for edges within Neighbor (7).

Eedge = Isvi - Svjl : |Ui - 'Uj| (23)

Where s,, is the scalar value of vertex v;. Term |s,, — s,,| refers to the difference
between the scalar value of vertices v; and v;. Term |v; — v;| refers to the distance

between vertices v; and v;.
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Therefore, we change check (2) in section (4.3.2) to the following:

2. Cross-region Cells: If any 7 has vertices in more than one sub-region, we first
detect the neighbor set of the cell. And then, we use the equation (23) to sort
all edges which have their two vertices in the same region. And pick the one

with the least £.44. to perform edge collapse operation.

Note that, the edge collapse operation can also be used when we encounter the

flipping problem.

4.4.2 Topologically Critical Points of Isosurface

To obtain high decimation rate, our labelling of all feature vertices as unchangeable is
not reasonable. We need some measure to sort the importance of feature vertices also,
and allow some of them to be decimated. Here we consider the topological structure

of the volumetric dataset.

Morse Theory

The topology of the scalar field is characterized by its critical point. A point z is a
critical points on the C? scalar function f(z) if all first order partial derivatives of f
evaluated at z are zero, i.e., Af = 0. Gerstner and Pajarola [18] considered piece-
wise linear interpolation applied to tetrahedral grids, which leads to C° continuous
functions, and showed that critical points can only occur at mesh vertices.
Connected components in an edge graph of a surrounding polyhedron correspond
to connected components in a neighborhood of a vertex. From this observation,
Weber et. al. [58] have given a definition for regular and critical points based on the

number of connected components in their local neighborhood. Assume the number
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of “positive” connected components surrounding point z is n,, and the number of
“negative” connected components surrounding point v; is n,. If n, = n, = 1, the
vertex v; is a regular point. If n, =1 and n, = 0, vertex v; is a minimum. If n, =1
and n, = 0, vertex v; is a maximum. If n, 4+ n, > 2, vertex v; is a saddle.

To classify an internal vertex v, we need to carry out the following steps:

1. We take all the tetrahedral cells sharing v as one of their cell vertices. For each
such cell, there is one triangle without v as a vertex. We take all such triangles,
whose vertices are exactly the neighbors of v and whose edges connect these
neighbors together. These triangles then form a graph G with nodes and edges

being the vertices and the edges of the triangles respectively.

2. For each node p in G, we classify p as “ + 7 if its scalar value is larger than the

scalar value of v. Similar, if its scalar value is smaller than v, we classify it as

(13 ”

3. Remove all edges connecting two nodes of opposite signs, and obtain a new

graph G'.

4. Using the depth-first search algorithm, we compute the number of connected

components with the same sign in G'. Then check:
(a) If there is exactly one positive component and one negative component, v
is a normal point.
(b) If there is only one positive component, v is a minimum point.
(c) If there is only one negative component, v is a maximum point.

(d) If there are more than two components, v is a saddle point.
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Number of topologically | Number of Feature Vertices

critical vertices
CleanSPX 852 1,694
Blunt Fin 1,799 5,698

Table 4.1: Number of topologically critical vertices of our testing datasets

Table (4.1) shows the number of vertices which are both region based feature

vertices and topologically critical vertices.

Rank Feature Vertices

We sort all feature vertices into four levels (0-3) based on following criteria:

1. If the feature vertex is a topologically critical point, we give it the highest rank

3.

2. If the feature vertex shares at least one edge with a topological critical point,

we rank it is as 2.

3. If the feature vertex shares at least one edge with other feature vertices, we

rank it as 1.

4. If a feature vertex does not share any edges with other feature vertices, we rank

it as 0.

As a consequence, the check (1) in section (refsc:featureD) changes to following:

1. Feature Cells: If 7 has exactly one feature point vy, we define the collapse
operation as collapsing 7 to vy. We denote this operation as 7 — vy. If any
7 has more than one feature vertex, we check the rank of each feature vertex,

and collapse the cell to the one that has the highest rank. If more than one
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feature vertex has the highest rank, we choose the vertex with larger number
of shared edges with other feature vertices. If the vertices still have the same
number of edge sharing feature vertices, we randomly pick one of these vertices

as the vertex after collapsing.

In next chapter, we show the implementation result of our feature preserving

simplification algorithm.

62



Chapter 5

Implementation Results

We present in this chapter the results from an implementation of our simplification
algorithm applied to a number of bench mark tetrahedral meshes. We have imple-
mented our algorithm on a Windows Platform with a 2.39GHz Intel Pentium 4 CPU
and NVIDIA Quadro4 900 XGL adapter with 128M RAM. Also, we use ZSweep [14]
as our rendering algorithm to get the final images. The bench mark test data sets are
SPX with 12,936 elements, Blunt Fin with 187,395 elements, nucleon with 320,000

elements and CT-head with 3,951,605 elements.

5.1 Experimental Result of Feature Preserving Sim-

plification Algorithm

Table (5.1)gives the details of the 3 volume data sets on which we have applied our
simplification algorithm. Table (5.2) shows the number of feature points detected by
the level set segmentation process. It shows that we get approximately 20% feature

vertices for cleanSPX dataset, 13.6% for bluntfin dataset, and 21.6% for Nucleon
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Number of Cells | Number of Vertices
CleanSPX 12,936 2,896
Blunt Fin 187,395 41,984
Nucleon 320,000 68,921
CT-head 3,951,605 819,200

Table 5.1: Details of experimental datasets

Number of Feature Vertices Used | Total Vertices
CleanSPX 1,694 2,896
Blunt Fin 5,698 41,984
Nucleon 14,855 68,921
CT-head 140,233 819,200

Table 5.2: Number of feature vertices marked by segmentation

dataset. Table (5.3) shows the decimation rates that we can achieve for the given
tolerance values and the corresponding computation times (not including the pre-
processing time). It may be noted that reducing the tolerance requirements can give

us higher decimation rates.

a) b} c)

Figure 5.1: Result of Simplification. a) The original dataset. b) 45% simplifica-
tion without interior feature detection. c) 45% simplification with interior feature
detection

From the images shown in Figure (5.1) we can see that even with 45% decima-

tion, our method preserves features much better, without any excessive increase in
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Decimation Rate Tims in Secs Time in Secs
under incremental model | under greedy model
CleanSPX 60% 19.609 8.587
Blunt Fin 53% 9,423.52 695.35
Nucleon 83% 8,653.69 1,056.93
CT-head 50% N/A 14,027.5

Table 5.3: Decimation rates and computation times (without the preprocessing
phase).

computation times during the rendering phase.

We compare the simplified result with the original one by calculating the value
difference of two images in square root of sum of R, G and B per pixel. The degree of
error between simplified and the original datasets is displayed with this color difference
in Figure (5.2), with the greater amount of red in Figure (5.2-b) indicating more

feature losing in the rendering of the dataset.

A

b

Figure 5.2: Comparison of simplification result. a) The difference for simplification
result with detection of interior features, which is the image shown in Figure (5.1-b).
b) The difference for simplification result without detecting interior features, which
is the image showed in Figure (5.1-c). The two simplified images have the same
decimation rate. w1, from 0 to 512, is the resolution in y direction, and w2, from 0
to 512, is the resolution in x direction.
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Figure 5.3: Comparison of simplification result in slice. a) One slice of original
dataset; b) One slice of 456% simplified dataset

Figure(5.3) compares the original rendered slice with a rendering of a simplified
(45%) slice. This clearly demonstrates that interior features are also well preserved
after simplification.

The result of our segmentation process can be seen in the slice shown in Figures
(6.4-(a)) and (5.4-(b)).

Figure (5.5) shows our algorithm applied to the widely used benchmark standard
volume dataset, Blunt Fin. Once again, the results show that our algorithm preserves
features at high decimation rates.

More implementation results showed in Figures (5.6, 5.7, 5.8, 5.9, 5.12, and 5.13)
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b)

Figure 5.4: a) Detected interior boundary for SPX dataset. b) Sub-regions based on
the detected interior boundary for SPX dataset (shown in slice)

5.2 Experimental Results for Higher Decimation

Rates

In this section, we present our experimental results when attempting higher dec-
imation rates using our algorithm. This is achieved by compromising on feature
preservation criteria.

From figure (5.10) and (5.11), we can tell that the boundary curve has changed.
More results show in Figure (5.12 and 5.13).

All results demonstrate that our algorithm can preserve enough features during

simplification.
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b)

Figure 5.5: Result of simplification. a) The original dataset. b) 52% simplified dataset
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Figure 5.6: Result of simplification of CT Head, a resolution of 128x128x50, with
3,951,605 cells and 819,200 vertices. The Ae is 0.047937 and the decimation rate is
30%
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Figure 5.7: Result of simplification of CT Head, a resolution of 128x128x50, with
3,951,605 cells and 819,200 vertices. The Ae is 0.048926 and the decimation rate is
33%
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Figure 5.8: Result of simplification of CT Head, a resolution of 128x128x50, with
3,951,605 cells and 819,200 vertices. The Ae¢ is 0.112453 and the decimation rate is
37%
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Figure 5.9: Result of simplification of CT Head dataset, a resolution of 128x128x50,
with 3,951,605 cells and 819,200 vertices. The Ae is 7.334761 and the decimation
rate is 48%
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Figure 5.10: Result of simplification for SPX dataset. We achieve 61.6% decimation
rates with combination of cell collapse and edge collapse.
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Figure 5.11: Result of simplification for SPX dataset. We achieve 68.3% decimation
rates with combination of cell collapse and edge collapse.

74



Figure 5.12: Original image of Nucleon dataset.
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Figure 5.13: Result of simplification for Nucleon dataset. We achieve 80% decimation
rates with feature vertices decimation.
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Chapter 6

Conclusion and Future Work

In this thesis, we have proposed and implemented a feature preserving tetrahedral
mesh simplification algorithm. Our method combines region based feature detection
with traditional gradient feature detection. The algorithm has a preprocessing step for
region based feature detection in which a level set segmentation on the original dataset
is performed. We also avoid the tetrahedron flipping problem during simplification.
The use of level set segmentation does introduce relatively more computational effort
during preprocessing, but results in a number of the extremely significant benefits:

e robustness (to noise);

e preservation of complicated topology of interior regions;

e detecting of features which gradient based methods may miss.

Our results also clearly show that we preserve a richer set of features embedded
in the original datasct as compared to similar algorithms, even at high decimation
rates.

In table (6.1), we qualitatively compare this approach with a few of the earlier

methods, namely, Chopra and Meyer’s TetFusion [7], Chiang and Lu’s work [25] and
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Interior Feature Boundary Restriction on Error
Preservation Preservation Decimation Metric(s)
Our Features features measure no decimation | Gradient,
method detected by boundary operations aspect ratio
level set changes with should change | & regional
segmentation Hausdorff interior variance
& gradient distance boundary
Chopra and features boundary cells & | no decimation | aspect ratio
Meyer, 2002 detected by their neighbor | should change
TetFusion | gradient method cells are exterior
untouchable boundary
Chiang & topologically boundary Isosurface Gradient &
Lu, 2003 critical points cells are topologies edge length
& gradient untouchable
based features
Hong & topologically boundary No decimation | Gradient
Kaufman, critical points cells are or generation
2003 & gradient, untouchable of topological

based features

critical points

Table 6.1: Qualitative comparison of related algorithms.

Hong and Kaufman’s work [6]. We consider four aspects: interior feature preservation,

boundary preservation, restriction on decimation and error metrics used.

For our approach, we have not focused on reaching the maximum decimation

rates. Although we could also obtain 99%, it is not very meaningful to achieve very

high decimation rates without preserving features. We have worked on preserving

features during the volumetric decimation. This new technique is very useful during

the visualization. One shortcoming of our current approach is the computation times

for the preprocessing part, which does level set segmentation. In our present imple-

mentation, the 300 x300x 100 dataset took several hours. The level set segmentation

method is not fully studied although it already shows its capability such as robustness

to noise, suitable for disconnected region. With the further investigation in this area,

we think we could get better results, both in feature detection and in computation
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times.

We plan to perform the level set segmentation directly on tetrahedral meshes
without the conversion which causes inaccurate and extra time consuming. Another
possible extension of our current work is to add more criteria for error prediction
when performing the exterior boundary decimation, such as sharp boundary features,
described in [25]. Also, we want to create a user interactive decimation and visu-
alization framework. It will allow users to specify the region they are interested or
not. Based on users’ choice, our frame work will decimate the volumetric dataset

automatically, and render the results.
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