MILESTONE CHECKPOINTING IN MULTI-AGENT
APPLICATIONS

PINGYE WANG

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

OCTOBER 2004
(© PINGYE WANG, 2004

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04456-X
Our file Notre référence
ISBN: 0-494-04456-X
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Milestone Checkpointing in Multi-Agent Applications
Pingye Wang

Distributed multi-agent systems are useful in handling complex, realistic, and larger
problems. However, they are susceptible to failures. A multi-agent system has some
special characteristics such as sociality, which divides the system into different social
groups so that intra-group coupling is much tighter than inter-group coupling. This thesis
aims at developing a selective checkpoint based rollback-recovery protocol specially
tailored for multi-agent systems, which combines selective checkpointing and logging
technologies to achieve the objectives of simple and domino-free rollback and recovery,
and fast output commit. A methodology is proposed to provide a step-by-step procedure
for designers to follow in deciding where group checkpoints should be inserted. The
methodology is demonstrated on an e-trading system implemented on the JADE agent
platform. Experiments are conducted to show that the methodology can provide

reasonable performance in multi-agent systems.

iii

Acknowledgments

1 would like to express my gratitude and respect to my supervisors Dr. Hon F. Li and Dr.
Radhakrishnan Thiruvengadam for their invaluable guidance, encouragement and support
during the whole period of my research work. Dr. Li and Dr. Radhakrishnan not only
teach me knowledge at class, during meetings and through emails, they also try to
enlighten me of how to do research, how to analyze and solve a problem.

I would also like to thank my colleagues Yu Zhang and Yu Li in the Distributed Systems
research team for their kind support on my thesis.

Especially, I would like to give my special thanks to my parents and my husband whose

patient love enabled me to complete this work.

iv

Table of Contents

LASES OF FIGUIES ..veuvevreeieccrieircieei ettt st e ix
LiSt OF TADIESvoveeeeeireiecicre ettt st X
Table Of ACTONYINScceouiriiiiriiiiiiiccreee et s sm st eab e Xi
Chapter 1 Introductionocceeevierirrecienierenenieinnei s R 1
1.1 MOtIVAION ... ceueeeicteiesieie ettt b et s b s sme e e 1
1.2 Related Work in Agent Technologies.........c..cccceiriieniiiiiniicninicninecccnn, 9
1.2.1 Role Based Methodology for Agent Oriented Analysis and Design.................. 9
1.2.1.1 Role Model Analysis Method in Agent-Based Systemcccocevvveenneee 10

1.2.1.2 Gaia Methodology for Agent-Oriented Analysis and Design................... 12

1.2.2 Agent Architecture and Agent Development Frameworkccocccvvueninnene. 13
1.2.2.1 Agent ArChiteCtUre.......cvvveueieririerieiirieeeeen et cme et e 13

1.2.2.2 Agent Development Framework...........cococvviiiiiiinnvnnncercceccn 15

1.3 Related Work in Rollback-Recovery in Message-Passing Systems...........cceeueen. 18
1.3.1 Chandy & Lamport's AIGOrithmccccooinieiinininnieeiencercee e 19
1.3.2 Selective Coordinated Checkpointingcccoevereeecrirnerencreennrecreeeenecnens 20
1.3.3 Uncoordinated Checkpointingc.coeeemeiriiriniicncnnniieinniicseescceeresneens 21
1.3.4 Log-Based Rollback-Recovery Protocols.........ccccvvrvirirvinencinccienencsnnnnnenn, 23

1.4 Contributions and OULLNE...........cocoreireirirerirereceeen e e 26
Chapter 2 Role-Milestone Based Methodology.........coceeervnimncennininicnen e, 28
2.1 INEPOAUCTION ...ttt ettt et r e et 28
2.2 Role-Based Agent ATChItECTUIEccovevurieriemrinieeierit ettt nnaneas 29
2.2.1 ROIE ATCHITECIUTEcoveeeeereierenieeeete ettt ettt s es b e s n e saare s 29
2.2.2 Agent ATCRItECIUTE.couririeeiierititerie ettt s 30
2.2.3 Mapping Strategy between Roles and Agentsccccoveeeerieirceneeceneeniennnnnn. 31

2.3 Role-Milestone Based Methodologyccecerercrerininnenencimneneceeene e 32
2.3.1 ASSUIMPLION ...ttt ettt et e n et s nas 32
2.3.2 Milestone Dependency Graphicccvceeeveeneeiinniceerinnnseeriesieseneecnnennssessennas 33
2.3.2.1 MILESEOME. ...ttt st ettt ene bbb nans 33

2.3.2.2 EfTort OFf MIIEStONE...ceeeeeeeeeeecieiiitreetesecseereteressesssiereessessesnnssssnnsnnnnnsssnnses 34

2.3.2.3 Milestone Dependency Graph...........ccoviereneiiiiinivnnniinccn, 35
2.3.3 Social Group Identification and Milestone Selection...........coooeveeievninnninnene 39
2.3.3.1 Usage of Individual/Global Milestone Dependency Graph...................... 39
2.3.3.2 Getting Individual/Global Milestone Dependency Graph........................ 39
2.3.3.3 Estimate EffOrt........occoveivverrieierrenee et 40
2.3.3.4 Social Groups and Milestone Selection...........cvecennivniinicnincieneninne, 41
Chapter 3 SCLR Protocolcovieviiiiniriiiiii et srererias et s 44
3.1 INtrOQUCTION. ...eouveteetitirr st sttt e r s s bbb et sre e b e s nesene e 44
3.2 System Model ... 45
3.3 Motivations, Rationale and ObJECtIVE.........cccecueveeirireccnecnriiieniene e 47
3.4 Selective Checkpoint with Log Rollback-Recovery Protocolccccoerevienncne. 50
3.4.1 Checkpoint Group (CG), Checkpoint Group Set (CGS), and Intersection of
CGS (JOGS) ettt b es bbb et 50
3.4.2 Data StrUCIUIEcceeiviiiiirie ettt ettt e s 52
3.4.3 Selective Checkpointing Algorithm........c.ccccooviriinienivninicnicneneeece e, 53
3.4.4 Pruning AIZOTItRMo.couiiiviiiiiciier et 55
3.4.5 Logging AlgOrithmcccceviiiiiieniniiniiinene et sn et se s s saeaan 57
3.4.6 Recovery algorithm.........ococcvvvieriiieniniccciiene et 58
3.5 Correctness ProOf.......ccooviieeiiiiene ettt e 62
3.6 Mixture of Independent Checkpoint with Group Checkpointccccocvvercverenennnne. 65
Chapter 4 Case Study: E-trading SyStem..........coceveeiivirninicnierinecsinieeseeneisessesnensenens 67
4.1 TDTOAUCTION.....c.evveeneienisicieit ettt sttt ettt se e et beene s 67
4.2 An E-trading Multi-Agent SYStem..........ccocecriiiieninneinrcesesesere e ste e enenee 67
4.2.1 BaSIC SCENATIOSc.vetrverrieuerieeeeriniestaseeestetete st ase st sesse e seesretasessessesessseseassasaneas 67
4.2.2 ROIE MOEL ...ttt sttt st b 69
4.2.3 ANt MOEL ...ttt 75
4.3 Apply Role-Milestone Based Methodologycccevevviiiieinienieniineneenecseenreeinnen, 76
4.3.1 Step 1: List Common Goals and Milestonesc..cocvverrecninierenenninnrnnnnen. 76
4.3.2 Step 2: Identify the Loosely-Coupled or Closely-Coupled Agents................. 78

vi

4.3.3 Step 3: Individual Milestone Dependency Graph for Loosely-Coupled Agents

4.3.4 Step 4: Global Milestone Dependency Graph for Closely-Coupled Agents ... 81

4.3.5 Step 5: Estimate Incremental Effort..........cccovevviiiniiiniciniicce 82
4.3.6 Milestone Selection and Group Identification..........ccccccvuievivivninnnnnniccennnn, 82

TN 11211 011 o OO OO 84
Chapter 5 Implementation of Fault Tolerant E-trading System...........ccococvivivinicncnene. 85
5.1 INErOAUCHION ..eveteerterrerriererreecr ettt sttt e b ese e sae e s bt see et san e shesbenaesnens 85
5.2 JADE PLatfOrm.......cocueoiviirriiinieirsincnenine et s 85
5.2.1 JADE ATCRItECHUTE.......cceiriireeeinreceie ettt e 86
5.2.2 JADE Agent Model and Behavior Model.............cccomeceniivnvnincninencnenn, 86
5.2.3 JADE MeSSage PasSingcccoeererereeiirererineenientneesessseseessessesseseesansessensenes 87

5.3 Implementation of Agent ArchiteCture.........ccvcverevermeccnmeiiiceic e 87
5.4 Implementation of the SCLR Protocolccccoevveievinmiienniennenienenenee e, 89
5.4.1 Terminology, Data Structure and Classes..........c.cevevvveerirnriniinininnrineneeennenens 90
5.4.2 Implementation Of SEIVEIS.....c.c.cectruereirrrinern et seneas 92
5.4.3 Integrate Fault Tolerate Mechanism into Application Agent..........cccoccvuneeeee, 95
5.4.3.1 FTAZENE ClaSS c..evviuerireeiriiererieeee sttt saerstesreseeetssn st esse st e saaesesanasens 95
5.4.3.2 Implementation of Selective Checkpointing Algorithm.............oceunn.e.e. 97

5.4.3.3 Implementation of the Logging Algorithm...........ccoccovrvviinnvnvcnnennnnnene. 98
5.4.3.4 Implementation of Recovery Algorithm...........cccccovevenencninnnnnnicnnnnennnn. 99

5.5 SUIMIMATY ..ovrirererieeieii st seee e e s et e e st s resee st s s st eesnesnnesncessesssessesneanes 101
Chapter 6 Performance Test........cccverieierirennenniieriecresreesesresteeneesaesseesssessesssessnensens 102
6.1 INtrOQUCHION.....c.vicviieeiiiiieirr ettt ettt eesre s r e et st s ssnesbesresaens 102
6.2 Experimental SETUPccceevrerteiineieiee ettt s 102
6.3 Percentage of Messages Logged.......covvvviriiriiiinneninenene e seseeeneeseeenaens 103
6.4 Failure-Free PEerformancecccoovieeeiinmnininiiiiescetee et 105
6.5 RECOVETY SPEEA ..eonvvirrieiiicieeiienieeteieseneeer e se st resbe et sseesseesrs e seesbesanensesseanes 107
6.6 SUIMIMATYeviiiiiiiiictiieeiree sttt et sbesbe bt et e s b s e e entenrenaesesneen 108
Chapter 7 CONCIUSION.eivieeerueicreririieecernetteeeeererese s sresee e e e esesseseesnesenenesnens 110
7.1 SUDIMATY ..ottt st s e s e s sbe e 110

vil

7.2 Contribution and FULUIe WOTK......ccvveovverieeseeresioseeereeisieeseeeesetressesseressesessssssessesen

Bibliography

...

viii

Lists of Figures

Figure 1-1: Role model for agent—enhanced workflowccccovvevvininnnniiniinnnnn, 12
Figure 1-2: (a) Example execution; (b) Rollback-dependency graph...........cccccovvruennnne. 22
Figure 1-3: Rollback propagation, recovery line and the domino effectccc.ceu..e. 23
Figure 2-1: ROIE SIIUCIUTEccceviiiriiniieiiriiiicrcineci ettt 30
Figure 2-2: Aent SIIUCIUTEc.c..coeeveueerreerrieereenreeriem et iarts et sresres e nessennes 31
Figure 2-3: Milestone dependency graph ettt e 36
Figure 2-4: (a) Individual milestone dependency graph; (b) Global milestone dependency
o321 o)1 H PO OO O OO 38
Figure 3-1: An example eXeCULION.......cocccrivieiiiiininniie e 46
Figure 3-2: A TUNME SCENATIOerveeerieereeerineieeerretsreereiee e resss st rbereress e saenesseneene 48
Figure 3-3: Coordination ZrOUP SEL.........ecveriererrereeriesieriensesemsesseenesssraseeesseseesssssensessessones 51
Figure 3-4: Pruning al@OTithincccoooiiiiiiieiieincecree et s 56
Figure 3-5: Logging al@orithim........cccocceiiricinriiiinece et 58
Figure 3-6: Recovery algorithm...........cociuiireimeiniccineeeeecnrerececree e 60
Figure 4-1: Role model for e-trading SyStem.........coveririerivrineniniennneneneee e ereeesaesnenns 70
Figure 4-2: Individual milestone dependency graph for the common mission: making a
deal price fOr @ ProAUCEc.ccceveeeiriirrc et 80
Figure 4-3: Global milestone dependency graph for the common mission: making a deal
price for the bidding product....... ..o 81
Figure 5-1 JADE archit@Cturecccocovrineieiniienrence et seene s 86
Figure 5-2 Agent class and the role class the agent plays..........cccccvceerirvrrecirncnnrenonene. 89
Figure 5-3 Code for the reCOVETY SEIVET......covvivriririrerririsierirseesecsresssieesssnsessessesansassesnans 94
Figure 5-4 Code fOr FTAZENLccvcuiuiiniiiccrrinireeisict sttt nee e st ee e 97
Figure 5-5 Code for auctioneer aZentcoceevevieverrecrrenenrcririereesieenereresesessesasvasansanes 101

X

List of Tables

Table 6-1 Percentage of messages logged against messages received.......cccceovvunnn....
Table 6-2 Failure-free overhead..........covvvueeininirernniinencireeescrce e cesese s seraesesennes
Table 6-3 RECOVETY SPEEA......covoiirireririeeciiereeereri sttt e

Table of Acronyms

CG Checkpoint Group

CGS Checkpoint Group Set

FIFA the Foundation for Intelligent Physical Agents
ICGS Intersection of Checkpoint Group Set

MASIF Mobile Agent System Interoperability Facility
OoMG Object Management Group

OwP Outside World Process

PWD Piecewise Deterministic assumption

Xi

Chapter 1 Introduction

1.1 Motivation

Distributed multi-agent technology [Sycara98] represents a new paradigm for
conceptualizing, designing and implementing software systems. It is used for complex,
realistic, and large-scale problems. The strength of multi-agent systems lies in the fact
that they are distributed and that agents communicate and cooperate in order to fulfill the
application objective [Rana00]. However, as distributed systems, multi-agent systems are
susceptible to the same faults that any distributed system is susceptible to, such as,
process failures, communication link failures, or slow downs and software bugs. When a
fault does occur in a multi-agent system, interactions between agents may cause the fault
to propagate throughout the system and cause the entire system to fail. Thus, the issue of
fault tolerance is a significant concern in the development of multi-agent systems. In the
following part, we will first briefly review the existing fault tolerance techniques and
agent techniques. Then, we describe the motivation of introducing existing fault tolerant
techniques into the agent world.

In the literature, a large number of techniques have been developed for fault tolerance.
Among them, checkpoint-based and log-based rollback-recovery protocols are two
important techniques. For rollback-recovery protocols, a distributed system is treated as a
collection of application processes that communicate through a network. The processes
have access to a stable storage device that survives all tolerated failures. Processes
achieve fault tolerance by using this device to save recovery information periodically
during failure-free execution. Upon a failure, a failed process uses the saved information
to restart the computation from an intermediate state, thereby reducing the amount of lost

computation. The recovery information includes, at minimum, the states of the

participating processes, called checkpoints. Log-based recovery protocols may require
additional information, such as logs of the interactions with input and output devices,
events that occur to each process, and messages exchanged among the processes
[Elnozahy02]. In a distributed system, the local state of each participating process is
called a local checkpoint. A set of local checkpoints, one from each of the processes
involved in a distributed computation, is called a consistent global checkpoint if the
system state formed by the global checkpoint is one consistent global state that may occur
during a failure-free, correct execution of a distributed system [Elnozahy02].
Checkpoint-based protocols rely solely on checkpointing for system state restoration.
Checkpointing can be uncoordinated, communication induced, complete coordinated or
selective coordinated. Log-based protocols combine checkpointing with logging of
nondeterministic events, encoded in tuples called determinants [Alvisi98]. Depending on
how determinants are logged, log-based protocols can be pessimistic, optimistic, or
causal [Elnozahy02].

In uncoordinated checkpointing, processes take local checkpoints periodically without
any coordination with each other. This approach allows maximum process autonomy for
taking checkpoints and has no message overhead for local checkpoint. A process
determines consistent global checkpoints by communicating with other processes to
determine the dependency among local checkpoints. It could very well happen that
processes took checkpoints such that none of the checkpointé lies on a consistent global
checkpoint. A local checkpoint that cannot be part of a consistent global checkpoint is
said to be useless, and a local checkpoint that can be part of a consistent global
checkpoint is said to be a useful checkpoint. Upon a failure of one or more processes in a
system, these dependencies may force some of the processes that did not fail to roll back,
creating what is commonly called rollback propagation. This cascaded rollback may

continue and eventually may lead to the domino effect [Wang93], which causes the

system to roll back to the beginning of the computation, in spite of all the saved
checkpoints.

It is obviously desirable to avoid the domino effect and therefore several techniques have
been developed to prevent it, such as communication-induced checkpointing and
coordination checkpointing.

In communication-induced checkpointing, the number of useless checkpoints taken by
processes can be reduced by forcing processes to take communication induced
checkpoints in addition to checkpoints taken independently based on information
piggybacked on the application messages received from other processes. Checkpoints
taken by processes independently are called basic checkpoints, and the communication-
induced checkpoints are called forced checkpoints [Manivannan99, Zambonelli98].
Communication-induced checkpointing algorithm can guarantee that a system-wide
consistent state always exists on stable storage, thereby avoiding the domino effect and
advancing the recovery line [Elnozahy02].

Iﬁ complete coordinated checkpointing, processes synchronize their checkpointing
activities so that a globally consistent set of checkpoints is always maintained in the
system. The storage requirement for the checkpoints is minimum because each process
needs to keep at most two checkpoints (one committed and one possibly not committed)
in stable storage at any given time [Plank97]. The major disadvantages of coordinated
checkpointing are that process execution may have to be suspended during the
checkpointing coordination and it requires extra message overhead to synchronize the
checkpoint activity [Manivannan99].

In selective coordinated checkpointing, a group of processes depending on each other, not
all the processes in the system, participate in a coordinated checkpointing. Upon a failure
of one or more processes in a system, only those processes that are dependent on each

other need to rollback and the remaining processes unaffected can continue with their

computation. The disadvantages of selective coordinated checkpointing are that it has to
keep track of dependencies, resolve the conflict when multiple checkpoint requests come
to a process, and construct the recovery set after a failure [Elnozahy92]. Selective
coordinated checkpointing is better when communication is sparse, while complete
coordinated checkpointing is better when communication is frequent [Kalaiselvi00].

A fundamental goal of any rollback recovery protocol is to bring the system into a
consistent state when the system fails. The reconstructed consistent state is not
necessarily one that has occurred before the failure. It is sufficient that the reconstructed
state be one that could have occurred before the failure in a failure-free, correct
execution, provided that it should be consistent with the interactions that the system had
with the outside world [Elnozahy02]. Checkpoint-based rollback-recovery protocols
could not go beyond the reconstructed consistent state in recovery; however, log-based
rollback-recovery protocols enable processes to replay their execution after a failure
beyond the most recent checkpoint by using logging, which is useful when interactions
with the outside world are frequent [Alvisi98].

A message-passing system often interacts with the outside world to receive input data or
show the outcome of a computation. If a failure occurs, the outside world cannot be relied
on for rolling back. For example, a printer cannot roll back the effects of printing a
character, and an automatic teller machine cannot recover the money that it dispensed to
a customer. To simplify the presentation of how rollback-recovery protocols interact with
the outside world, we model the latter as a special process that interacts with the rest of
the system through message passing. This special process cannot fail, and it cannot
maintain state or participate in the recovery protocol. Furthermore, since this special
process models irreversible effects in the outside world, it cannot roll back. We call this

special process the “outside world process” (OWP) [Storm85].

Because of OWP, before sending a message (output) to outside world, the system must
ensure that the state from which the message is sent will be recovered despite any future
failure to maintain the consistent behavior of the system in recovery. This is commonly
called the output commit problem [Storm85]. Similarly, input messages from OWP may
not be producible during recovery, because it may not be possible for OWP to regenerate
them. Existing methods to deal with output commit problem are checkpoint-based
complete coordinated checkpointing mentioned above, and log-based rollback-recovery
protocols. In coordinated checkpointing, before the system interacts with OWP, a
consistent checkpoint has to be taken, resulting in considerable latency; however, log-
based protocols can avoid taking expensive checkpoints before sending such messages.

Log-based rollback-recovery relies on the piecewise deterministic (PWD) assumption
[Storm85], which postulates that all nondeterministic events that a process executes can
be identified and that the information necessary to replay each event during recovery can
be logged in its determinant. Examples of nondeterministic events include receiving
meésages, 're;:eiving input from outside world, or undergoing an internal state transfer
within a process based on some nondeterministic action such as the receipt of an
interrupt. These protocols require that each process periodically records its local state and
log the messages it received after that state. When a process crashes, a new process is
created, given the appropriate recorded local state, and then the logged messages are sent
to the newly created process in the order they were originally received. By logging and
replaying the nondeterministic events in the exact original order, a process can
deterministically recreate its pre-failure state even if this state has not been checkpointed.
Log-based rollback-recovery in general enables a system to recover beyond the most
recent set of consistent checkpoint. It is therefore, particularly attractive for applications
that frequently interact with the outside world. Additionally log-based recovery generally

is not susceptible to the domino effect. Logging a message may take time. Depending on

whether or not a process should wait for the logging to complete before delivering the
message to the application, log-based protocols can be pessimistic, optimistic, or causal.
Pessimistic logging protocols [Johnson87] synchronously log recovery information on
stable storage in order to simplify recovery. A failed process is restored to its state before
the failure, and processes that survive the failure are not rolled back. In addition, no
latency is incurred in sending messages to the outside world. Synchronous logging of
recovery information however results in high failure-free overhead, unless special-
purpose hardware is used. Optimistic logging protocols [Storm85] reduce failure-free
overhead by logging recovery information asynchronously. Processes that survive a
failure may however be rolled back. Furthermore, the latency of output commit is higher
than in pessimistic message logging since a message cannot be sent to the outside world
without multi-host coordination. This means that, in general, even optimistic message-
logging protocols may block before sending a message to the environment. Causal
logging protocols [Alvisi98, Elnozahy92] attempt to combine the advantages of low
performance overhead of optimistic logging and fast output commit of pessimistic
logging, but they require complex recovery algorithms. In addition, determinants are
piggybacked on the application messages to track the causal dependency relationship.

In this thesis we want to focus on introducing traditional rollback-recovery protocols to
multi-agent systems. We believe modification of these traditional protocols to adapt to
the features of multi-agent systems can result in low overhead, limited rollback, and fast
commit.

A software agent [Guessoum99, Lesperance02, Odell02], as the element of multi-agent
systems, has no universally accepted definition. However, it is generally regarded as a
computational entity that acts on behalf of users, and has the characteristics of autonomy,
reactivity, pro-activeness, and sociality [Pivk, Odell02, JenningsO1]. Autonomy is the

ability of agent to perform a number of functions or activities without external

intervention. Reactivity is the ability to sense and react (stimulus-response) to external
stimulus through simple actions. Pro-activeness is the ability to manage a set of behaviors
to perform a mission. An agent can choose appropriate behaviors and can control
behaviors to work concurrently and cooperatively to achieve its goal. Sociality is the
ability to interact with humans or other agents through communication language in order
to pursue its goal. A multi-agent system has four essential characteristics [Sycara98]: it is
composed of autonomous software agents, it has no single point of control, it interacts
with a dynamic environment, and the agents within it are social (agents communicate and
interact with each other and may form relationships [Guessoum99]).

The sociality [Odell02, Lesperance02] is one most important feature of multi-agent
systems. It consists of organizations, that groups of agents associated together by some
common interest or purpose (such as mutual commitments, global commitments), a set of
activities performed by the agents, a set of connections among agents, and a set of goals
or evaluation criteria by which the combined activities of the agents are evaluated _
[Odell02]. An abstraction of the social aspects of an agent can be given as a role model
[MilesO1, Kendall99-1, Kendall99-2, Riehle98, Cabri0l, Cabri02]. Roles are useful as
they provide a way to describe a multi-agent system as analogous to an organization
without placing heavy restrictions on the behavior of concrete agents at runtime. A role
abstractly represents the goal, function, service, or identification of an agent within an
organization. A role model describes roles and the relationship between roles.
Relationship between roles can be defined by interaction protocols. Roles interact with
each other through interaction protocols to pursue their common goal.

In a multi-agent system, there are roles whose responsibilities, permissions and protocols
have to be fulfilled [Odell02]. As long as these roles in the society are fulfilled, the agent
society can be regarded as stable and the design object of the system can be achieved. In

agent-oriented programming, agents fulfill roles, and agents fulfilling a role must have

the ability to confirm to the obligation of the role. By mapping each agent to roles, an
agent can fulfill one or more roles that define goals, tasks or functions of the agent.
Therefore, agents communicate with protocols within the social group in which they
participate to achieve their goals and the goals of the social group.

Because of the sociality of multi-agent systems, agents with common goals in a multi-
agent system are divided into different social units, or groups. Each group provides a
place for a limited number of agents to interact among themselves and support the
interaction of those agents within the group [Odell02]. From the view of rollback
recovery protocols, a social group is inherently a group for selective coordinated
checkpointing. Complete coordinated checkpointing is better for a dedicated distributed
system computing to carry out only one goal [Kasbekar01]. In such systems, restoring the
task to a consistent state is equivalent to restoring the whole systems to a consistent state.
However, in a multi-agent system containing multiple goals and numerous agents, it may
be required to checkpoint or roll back the states of agents in a given goal. In such
systems, complete coordinated checkpointing is too expensive for taking unnecessary
local checkpoints, and upon a failure it may roll back unnecessary agents that are not
involved.

Selective checkpointing is done groupwise, and unlikely processes, these groups may
split or merge randomly at runtime [Kasbekar01]. Because of casual dependency among
different groups caused by message exchange, recovery upon failures may cause domino
effect if no other facilities are provided. Furthermore, a multi-agent system interacts
within a dynamic environment that may involve frequent interaction with the outside
world. Thus, we want to propose a rollback-recovery protocol on top of the selective
protocols that solves the casual dependency among group checkpoints and output commit
problems in multi-agent systems. We will investigate how isolated groups of agents can

be checkpointed group-wise and how some agents can be rolled back selectively while

others in the system continue to execute. The goal of this thesis is to be able to identify,
checkpoint, and roll back only agents in common social groups in a multi-agent system,

and guarantee the consistency of the system state after a rollback.

1.2 Related Work in Agent Technologies

We have briefly reviewed the characteristics of agents and multi-agent systems. In this
section, we will introduce the agent techniques proposed in the recent years. First, we
will describe the ezcisting role based analysis methodologies that facilitate the analysis
and design of agent-based systems. Then, we will introduce agent-oriented methodology,
which includes agent architecture and agent development framework. Agent architecture
specifies the overall structure, logical components, and the logical interrelationship of an
agent, and agent development framework provides an agent programming and execution

environment.

1.2.1 Role Based Methodology for Agent Oriented Analysis and Design

Existing software development techniques, such as object-oriented analysis and design,
are unsuitable for the task of supporting the development process of multi-agent systems,
because they can not adequately capture an agent’s flexible, autonomous problem-solving
bebavior, the richness of an agent’s interactions, and the complexity of a multi-agent
system’s organizational structures. Therefore, in recent years, many agent-oriented
methodologies and modeling techniques have been suggested to fulfill the task
[Shehory01]. Many approaches build upon and extend existing methodologies and
modeling techniques (for example object-oriented methodology, knowledge
methodology, UML, and design patterns) to the design of agent systems [Wood00,
Tveit01, Iglesias98]. For example, Burmeister’s approach [Burmeister96] extends object-

oriented methodology and suggests three models: agent model, organizational model, and

cooperation model for analyzing an agent system. Odell et al. suggest in “Extending
UML for Agents” [Odell00] that further extension to UML called agent UML (AUML)
can represent all aspects of agents. Others, such as agent-oriented methodology (AOM)
[Wooldridge99] and GAIA [Wooldridge00] extended AOM, concentrate on the modeling
aspect of agent-based system, and specially tailored to the analysis and design of agent-
based systems. Among all these approaches, role modeling becomes more and more
attractive for the ability of modeling the interactions in terms of protocols and the

organizational structures of a multi-agent system.

1.2.1.1 Role Model Analysis Method in Agent-Based System

E A Kendall [Kendall99-1, Kendall99-2, Kendall00] presents a methodology for
identifying, specifying, designing, and implementing agent systems on the basis of agent
roles and role modeling. He indicates that role theory deals with collaboration and
coordination, role models emphasize patterns of interaction, and as interaction and
collaboration are essential aspects of any agent system, role modeling offers a promising
approach for agent analysis and design. Role models could provide an abstraction that
can unify diverse aspects of an agent system including acquaintance models,
collaboration protocols, and task models. In object-oriented software engineering, classes
stipulate the capabilities of individual objects, while role models emphasize how objects
interact with each other. A role model comprised of roles and relationships between them
describe a structure of interacting objects. A role defines a position and a set of
responsibilities within a role model. An object role has responsibilities made up of
services and tasks, and has collaborators that perform other related roles. In agent
systems, objected-oriented role models can be extended to represent patterns of agent
interactions. Agents are defined as extensions of objects that realize autonomous,

proactive, social, reactive, and intelligent behaviors for the roles assigned to them.

10

Therefore, an agent role has more responsibilities than an object role. These include
goals, obligations, and interdictions. An agent role involves co-ordination and negotiation
with others, implemented typicélly in the form of interaction protocols. In agent system
analysis, system goals should be partitioned, and assigned to individual roles. Any agent
application will in fact encompass many specific instance role models that can be
abstracted from scratch by analyzing the application requirements carefully. Often, a role
model catalogue, which contains a set of commonly occurring agent role models and
FIPA protocols, can be used to facilitate the analysis. In agent system design, the roles
that a given agent needs to play have to be identified, and an agent is viewed as a set of
roles. A class is required for every role. An Agent class can be designed by composing or
assembling all of the responsibilities, interfaces, expertise, and protocols from the
individual roles.

Role models of an application in agent-enhanced workflow are given as an example in
figure 1-1 to elaborate the use of role model during agent system analysis and design. In
figure 1-1, the relevant role models appear in the top half of the diagram, while the agents
in the application that play the roles appear in the bottom half. A rounded box represents
a role; an arrow between roles indicates collaboration between them; a filled circle
signifies that more than one agent can play a role at the same time; a box indicates an
agent; and a dashed line indicates assigning one role to an agént. In the diagram, role
models include a supply chain role model and a bureaucracy role model. The supply
chain is modeled at a high level as a predecessor role and a successor role, and the
bureaucracy is comprised of a manager role and a subordinate role. Enterprisel
comprising a set of agents is a manufacturing company with a hierarchical structure of
the bureaucracy role model, and aPlantManager agent inside it plays the roles of a

successor in the supply chain and a manager in the bureaucracy management.

11

Figure 1-1: Role model for agent-enhanced workflow

1.2.1.2 Gaia Methodology for Agent-Oriented Analysis and Design

GAIA proposed by Wooldridge [Wooldridge00] is a general methodology for agent-
oriented analysis and design that allows an analyst to go systematically from a statement
of requirements to a design that is sufficiently detailed that it can be implemented
directly. GAIA views an agent-based system as an artificial society or organization
consisting of various interacting roles. Thus, in the analysis stage, the objective is to
model the roles and their interac‘:tions,lwhich results in a role model and an interaction
model. The role model identifies the key roles in the system, and is comprised of a set of
role schema, one for each role in the system. A role is viewed as an abstract description
of an entity’s expected function. The interaction model captures the dependencies and
relationships between the various roles, and uses links between roles to present them. A
set of protocols is defined in the interaction model, one for one type of inter-role
interaction. A protocol is viewed as an institutionalized pattern of interaction formally
defined and abstracted from any particular sequence for execution steps. In design stage,
the aim is to transform the analysis models into a sufficiently low level of abstraction that
traditional design techniques (including object-oriented) may be applied. The design
process generates three models: an agent model, a service model, and an acquaintance

model. The agent model identifies the agent types (an agent type is viewed as a set of

12

roles) that will make up the system, and the agent instances that will be instantiated from
these types; the services model identifies the services with each agent role, and the
services that an agent will perform are derived from the list of protocols and
responsibilities associated with a role; the acquaintance model defines the communication
links that exist between agent types. Gaia is concerned with how a society of agents
cooperates to realize the system-level goals, and what is required of each individual agent
in order to do this. It does not concern how an agent realizes its services, and leaves this

problem to a particular application domain.

1.2.2 Agent Architecture and Agent Development Framework

Generally, agent oriented methodology includes agent architectures and agent
development frameworks. Agent architecture is in the abstraction level of agent model,
which specifies the overall structure, logical components, and the logical interrelationship
_ of an agent. By defining the agent architecture, we find a way to explain and predict
agent behaviors, and to sﬁpport the design of agents and their interaction in an
implemented system. Agent development framework is in the application programming
level, which supports building practical agent applications from the perspective of
software design. The objectives of agent frameworks are to provide a rapid prototyping
development environment for the systematic construction and deployment of agent

oriented applications and to encourage code reuse and standardization of agents.

1.2.2.1 Agent Architecture

Many agent architectures have been proposed in the literature. However, there is no
standard agent architecture due to lack of standard definition of an agent. In an agent-
based application, the individual researcher should select the agent architecture

depending on the requirements analysis, and customize it. Most of the existing agent

13

architectures belong to three categories: deliberate architecture, reactive architecture, and
hybrid architecture.
The deliberative architecture [Rao91] is based on the physical-symbol system hypothesis,
which assumes that the world is deterministic, accessible, static, symbolic, and its
operators can be fully specified. This architecture is highly influenced by the traditional
Al research. It uses a symbolic model to explicitly represent the world, and make
decisions through logical reasoning based on pattern matching and symbolic
manipulation. However, the architecture does not perform very well for the difficulty in
modeling of the world and relying too much on inadequate sensors. Deliberative agents
are slow, inherently sequential, require large memories, are not scalable, and are not
useful in a dynamic and noisy environment. The BDI (belief-desire-intension)
architecture proposed by Rao & Georgeff in 1991 [Rao91] is the most popular
deliberative architecture. A BDI agent contains a set of beliefs that represent what the
agent "knows", a set of desires/goals that represent what the agent is trying to achieve, a
set of intentions to achieve the agent's current goals, and a set of plans that are
combinations of actions that achieve certain outcomes or respond to events and are used
by the agent to further its intentions. When an event occurs, the agent looks for relevant
plans responding to this type of event, examines each plan with its appropriateness to its
current situation, and finally selects and starts executing the most appropriate plan found.
Additionally the agent performs ongoing reasoning functions to decide what goal to
pursue or alternatively what event to react to, how to pursue the desired goal, and when to
suspend/abandon the goal, or change to another goal.
The reactive architecture [Brooks86] is the opposite of the deliberative architecture,
. which is based on purely reactive behaviors under the assumption that the world is
complex and non-symbolic. Reactive agents have little or no knowledge of the world, and

are constructed in a way that allows them to react to a changing environment by their

14

"instincts". The reactive architecture is inherently parallel, fast, operates on short time
scales and is scalable; however, the purely reactive scheme does not perform well when
performing complex tasks like planning and goal reaching. The best-known reactive
architecture is the “Subsumption Architecture” proposed by Brooks in 1986 [Brooks86].
The architecture proposes a layered design of competing task-accomplishing behaviors.
Lower layers exhibit more primitive kinds of behavior, and have precedence over layers
further up the hierarchy.

The hybrid architecture [Muller97, Fischer97] combines the deliberative and reactive
architectures to have the advantages of both of them; therefore, it combines Al
components and reactive elements into one design model. However, the disadvantage is
that it is hard to design and it is not scalable. A well-known example is INTERRAP
[Muller97]. INTERRAP consists of three layers that serve different purposes. Behavior
based layer implements the reactive behavior of the agent, it reacts very fast to external
requirements without any explicit reasoning. Local planning layer performs the planning
process of an individual agent to achieve its goals, it is also responsible to monitor the
plan execution of the agents current plan. Social planning layer is responsible for the
coordination with the other agents in a multiagent system. The coordination with the
other agents is achieved with explicit negotiation protocols. When an agent perceives
information from the environment, if the event is just for reactive activity, the agent can
directly handle it without planning. If the reactive activity cannot handle it, the local
planner layer will be activated. Moreover, when the local planning layer cannot solve the
problem, the control will be passed to the higher layer, the social planning layer, which

will coordinate with other agents.

1.2.2.2 Agent Development Framework

Agent frameworks provide an agent programming and execution environment, which

15

may be seen as a middleware residing between the underlying host/network operating
system and the application layer. Many agent frameworks have been proposed, they may
focus on different issues, for example, MOLE [Strafer97] mobile agent system focuses
on offering agent mobility, and RETSINA [Sycara96] offers reusable agents to build
applications. Some existing frameworks put agent architectures as the basis of
development for agent based systems, such as ZEUS [Nwana99, Zeus], which
specifically defined their own agent architectures. Some may not provide such a
definition. However, they all have an agent behavior engine, communication interfaces,
and corresponding primitive processing objects. In order to enable interoperability of
agents in different frameworks, the standardization of multi-agent technology is needed.
The Mobile Agent System Interoperability Facility (MASIF) [MASIF] by Object
Management Group (OMG) and the specifications promulgated by the Foundation for
Intelligent Physical Agents (FIFA) [FIFA] are two standards highly accepted. In the
following paragraph, we introduce several frameworks, and choose one as the
programming environment we use in this thesis.

ZEUS [Nwana99, Zeus] is an FIPA compliant tool-kit for engineering distributed multi-
agent systems. It allows the rapid development of Java agent systems by providing a
library of agent components, by supporting a visual environment for capturing user
specifications, an agent building environment that includes an automatic agent code
generator and a collection of classes that form the building blocks of individual agents.
ZEUS agents are composed of five layers: API layer, definition layer, organizational
layer, coordination layer and communication layer. The API layer allows the interaction
with non-agent world; the definition layer manges the task the agent must perform; the
organizational layer manages the knowledge about the other agents; the coordination
layer manages coordination and negotiation with other agents; and the communication

layer allows the communication with other agents. The agent structure transfers

16

information from layer to layer, so any higher behavior depends on lower level
capabilities. This architecture is actually a sequentially executing mechanism, and does
not support concurrent activities. Moreover, ZEUS doesn’t support agent mobility.
Grasshopper [Grasshopper] is a highly reliable and extensible pure Java-based mobile
agent platform, providing all necessary functional capabilities to develop and run agent
applications. It is composed of regions, places, agencies and different types of agents. An
agency is defined as a runtime environment providing the functionality for the execution
of an agent and various agent services. A place is a virtual location within an agency at
which agents may be located for a particular service, e.g., exchange of information or
trading. A region is a grouping of several agencies connected for a common purpose,
which offers location transparency to their agents. A region registry provides
comprehensive look-up functionality to locate agencies, places, services, and agents in
the scope of the region. The registration and de-registration of agencies, places, services
and agents is performed automatically. Grasshopper supports mobile agent based
telecommuﬁications applications, and also supports persistence that agents can be saved
periodically, and in case of unexpected system failures, the agents can be recovered.
Grasshopper conforms to the OMG MASIF standard for MA platform interoperability,
and also supports FIPA agent communications among Grasshopper agents.

JADE [Jade, PoggiO0] is Java Agent Development Framework for developing multi-
agent systems and applications. It simplifies the implementation of multi-agent systems
through a middle-ware that complies with the FIPA specifications and through a set of
graphical tools that supports the debugging and deployment phases. JADE includes two
main products: a FIPA-compliant agent platform and a package to develop Java agents. It
includes an agent foundation class for writing customized agents, a library of protocol
skeletons for tailoring agent conversation and a suite of development tools. The tools

provide runtime agent management, directory facilitation monitoring and editing,

17

message exchange debugging, agent life-cycle control, and a conversation monitoring
tool that draw a sequence diagram of agent interaction. JADE agents are implemented as
one thread per agent, but they can have several behaviors that may execute cooperatively
and concurrently. JADE agents achieve this with co-operative behavior scheduling,
which schedules behaviors in a light and effective way. A JADE agent can send/receive
Java objects that represent FIPA-ACL messages within the scope of interaction protocols.
After reviewing several agent frameworks mentioned above, we decide to choose JADE
as our agent-programming environment. The reason includes: first, JADE supports agent
mobility and JADE agent can run in dynamic environment; second, the cooperative and
parallel agent behaviors help implementing the role mapping, since agent roles can be
mapped to JADE behaviors if a role modeling approach is used; third, JADE is a free and
open source software, which makes it possible to change the source code when needed.
ZEUS and Grasshopper are not chosen because ZEUS does not support current activities

and agent mobility, while Grasshopper is not open source software.

1.3 Related Work in Rollback-Recovery in Message-Passing

Systems

We have briefly overviewed the rollback-recovery protocols in the motivation subsection.
However, as our objective is to propose a new selective-checkpoint based protocol,
specially tailored for multi-agent systems, deeper insight into the existing rollback-
recovery protocols would help us to understand and do the work more properly. In the
following part, we will talk about the Chandy & Lamport's algorithm [Chandy85], which
is the foundation of the checkpoint-based protocols, a selective coordinated
checkpointing protocol for demonstration of the selection of checkpoint groups, an
uncoordinated Checkpointing to show how to build the recovery line. Finally, several

log-based protocols are discussed.

18

1.3.1 Chandy & Lamport's Algorithm

In the literature, many checkpointing algorithms have been proposed for message passing
systems; however, most of therq use Chandy & Lamport’s algorithm [Chandy85]
proposed in 1985 as the base, and modify the algorithm to meet their assumptions. The
system model proposed by them is widely accepted and has become the basis of the
rollback-recovery protocols.

Chandy & Lamport [Chandy85] models a distributed system as a finite set of processes
and a finite set of channels. Processors communicate with each other by exchanging
messages through channels. Channels are assumed to have infinite buffers, to be error-
free, and to deliver messages in the order sent (FIFO). The communication delay of a
message in a channel is arbitrary but finite. The state of a channel is the sequence of
messages sent along the channel, excluding the messages received along the channel. A
process is defined by a set of states, an initial state, and a set of events. An event in a
process is an atomic action that may change the state of the procéss itself and the states of
at most one channel incident on the 4process such as sending or receipt of a message. A
global state of a distributed system is a set of component process and channel states. The
occurrence of an event may change the global state.

Chandy & Lamport's algorithm is used for recording the global state of the system. To
record a correct global state, all the processors in the system have to coordinate currently
to log the channel states at the time of checkpointing. Special messages called “markers”
that have no effect on the underlying computation are used for coordination and for
identifying the messages originating at different checkpoints intervals. The algorithm
starts by a centralized process Py through sending itself a “marker”. Let Py be the process
from which process P; receives the “marker” for the first time. Upon receiving the
“marker”, P; records its local state and relays the “marker” along all its outgoing channels

(no intervening events on behalf of the underlying computation are executed between

19

these steps). The state of the channel from Pyto P; is set to empty and P; starts recording
messages received over each of its other incoming channels. Let Ps be another process
from which P; receives the “marker” beyond the first time. Process P; stops recording
messages along the channel from P; and declares the channel state as those messages that
have been recorded. A process ends its participation in the algorithm once it receives a
“marker” message from all its incoming channels. From the view of checkpoint and
recovery, the global state recorded by the Chandy & Lamport's algorithm is a consistent

global checkpoint that forms a recovery line in the occurrence of failures.

1.3.2 Selective Coordinated Checkpointing

Chandy & Lamport's algorithm requires all processes to participate in every checkpoint.
However, for large scalable systems, it is desirable to reduce the number of processes
involved in a coordinated checkpointing session. Koo and Toueg [Koo87] proposed that
only processes that have communicated with the checkpoint initiator either directly or
indirectly since the last checkpoint need to take a new checkpoint without breaking the
consistency of the global checkpoint.

A consistent global checkpoint forms a snapshot of a consistent system state, and a
consistent global state is one global state that may occur during a failure-free, correct
execution of a distributed system, which means that if the state of a process reflects a
message receipt, the state of the corresponding sender process has to reflect sending that
message. The notion of a consistent global state is central to a rollback-recovery protocol
in that it forms a safe recovery line once a failure occurs [Elnozahy02].

Koo and Toueg use a two-phase protocol to achieve the minimal checkpoint
coordination. In the first phase, the checkpoint initiator identifiers all the processes with
which it has communicated since the last checkpoint and sends them a checkpoint

request. Each process, upon receiving the request, in turn identifies all processes it has

20

communicated with since its last checkpoints and sends them a request, and so on, until
no more processes can be identified. In the second phase, all processes identified in the
first phase take a checkpoint. After the checkpointing protocol, the global checkpoint in
the system can still maintain consistency because there is no message exchange between

processes taking new checkpoints and processes not taking the new checkpoints,

1.3.3 Uncoordinated Checkpointing

Coordinated checkponting algorithms can guarantee the consistency of the recorded
global state and avoid domino effects. However, coordinated checkpointing requires
additional control messages to do the coordination and is not applicable when processes
need to checkpoint independently of each other. Uncoordinated checkpointing is
proposed to have the advantage that each process may take a checkpoint when it is most
convenient or appropriate to do so according to its local decision. This leads to
asynchronous checkpoints that can be taken without inter-process protocols. However,
uncoordinated checkpointing has several disadvantages: the domino effect may happen,
useless checkpoints may be taken, one process may have to maintain multiple
checkpoints, and garbage collection algorithms may be invoked periodically. The
algorithm proposed by Bhargava and Lian in 1988 [Bhargava88] is a typical
uncoordinated checkpointing protocol that uses a rollback-dependency graph to
determine the recovery line once a failure occurs.

Because no consistent global checkpoint is formed during checkponting, once a failure
occurs, the system has to determine one during recovery. For this purpose, dependencies
among the checkpoints of process during failure-free operation have to be recorded.
Bhargava and Lian use the following technique to get the recovery line. For a process P;,
use C;, to identify the x-th checkpoint of process P;, use J;, to identify the checkpoint

interval between checkpoints C;,.; and C;. If process P; at interval J; , sends a message to

21

P, it will piggyback the pair (i, x) on m. When P; receives m during interval ;, it records
the dependency from /i to [;,, which is later saved onto stable storage when P; takes
checkpoint C;,. If a failure occurs, the recovering process initiates rollback by
broadcasting a dependency request message to collect all the dependency information
maintained by each process. Upon receiving the request message, a process stops its
execution and replies with its dependency information. The initiator then can form one
rollback-dependency graph based on the information collected. In the rollback-
dependency graph, each node represents a checkpoint, and a directed edge is drawn from
Cixto G, if either: i # j, and a message m is sent from /;, and received in [;; or i = y and
y =x + 1. An example is given in figure 1-2, where figure (b) shows the rollback-
dependency graph for the execution in figure (a).

Rﬁf}“’ﬂ? Initially
’ io,n .t o2 Feiluse g8 C Iné fk{i’l“—"i—_.&‘ﬁ‘}?ﬁfkﬁd
PN N7 Y '
g e ———X
Py -
ml ~§ | | >
Checkpoi
@ eckpoint (b)

Figure 1-2: (a) Example execution; (b) Rollback-dependency graph.

To compute the recovery line, we still use figure 1-2 as the example. The algorithm first
marks the graph nodes corresponding to the states of process Py and Piat the failure point
(shown in figure in dark ellipses). Then it uses reachability analysis to mark all reachable
nodes from any of the initially marked nodes. The union of the last unmarked nodes over
the entire system forms the recovery line.

For an uncoordinated checkpointing algorithm, the main disadvantage is the domino

effect. We use an example as shown in figure 1-3 to elaborate.

22

line Checkpoint
B
m 2 m_‘ s '
P H—= \l L
)/;1 Y ./:?4 \1 s
c

Figure 1-3: Rollback propagation, recovery line and the domino effect

P\l AFailure

Figure 1-3 shows an execution in which processes take their checkpoints. Horizontal
lines represent time axes of processes; arrows represent messages from the sending
process to the receiving process; and black bars are checkpoints taken by processes.
Suppose process P; fails and rolls back to checkpoint C. Because the rollback invalidates
the sending of message ms, P; must roll back to checkpoint B to invalidate the receipt of
that message, which in turn invalidates message m; and forces Py to roll back as well.
This rollback propagation can continue and eventually cause the system to roll back to
the beginning of the computation, in spite of all the saved checkpoints. This situation is

called the domino effect.

1.3.4 Log-Based Rollback-Recovery Protocols

Uncoordinated checkpointing has the disadvantage of the domino effect. One solution to
avoid it while keeping independent checkpointing is to use communication-induced
checkpointing. Another solution is to use the message logging techniques that lead to log-
based rollback-recovery [Elnozahy02]. Log-based rollback-recovery avoids the domino
effect by enabling a process to replay its execution after a failure beyond its most recent
checkpoint till its pre-failure state [Johnson87, Alvisi98, Elnozahy92]. This is attractive
to applications with frequent interactions with the outside world. However, log-based

recovery relies on the piecewise deterministic assumption (PWD) and can only tolerate

23

process crash failure, while checkpoint-based protocols have no such restriction
[Elnozahy02].

Alvisi proposed in 1996 that all message-logging protocols require satisfying the “no
orphan processes” [Alvisi96] consistency property when recovery is complete. Orphan
processes are surviving processes whose states are inconsistent with the recovered state
of a crashed process. This requirement guarantees that upon recovery, no process is an
orphan and guarantees the consistency of the recovered system. Alvisi defined the
property with a formal condition [Alvisi96]: Ve: —Stable(e) = Depend(e) < Log(e).
Here, e is a nondeterministic event that occurs at process p. Depend(e) is the set of
processes that are affected by e, which consists of p and any process whose state depends
on the event e according to Lamport’s “happened before” relationship [Chandy85].
Log(e) is the set of processes that have logged a copy of e’s determinant in their volatile
memory. Stable(e) is a predicate that it true if e’s determinant is logged on stable storage.
We call it the “always-no-orphan” condition. Satisfying the condition means that for any
surviving process p that depends on an event e, either the event e is logged on stable
storage, or the process p has a copy of the determinant of event e. If neither condition is
true, then the process p becomes an orphan because it depends on an event e that cannot
be generated during recovery since its determinant has been lost.

Pessimistic logging protocols implement a strong property of the always-no-orphan
condition: Ve: —Stable(e) = Depend(e) = 0. It stipulates that if an event has not been
logged on stable storage, then no process can depend on it. Under this condition, a
process delivering a message is not allowed to send any messages until the determinant of
the message is stable, so that the observable state of each process is always recoverable
because failure processes will exactly repeat their pre-failure execution and re-send the
same message. The pessimistic logging has the advantage of no latency in interactions

with outside world, simple recovery, and simple garbage collection. However, pessimistic

24

logging has a performance penalty incurred by synchronous logging. In order to reduce
performance overhead, several techniques have been proposed such as the Sender-Based
Message Logging protocol (SMBL) proposed by Johnson and Zwaenepoel [Johnson87].
SMBL reduces the performance overhead by keeping the determinants corresponding to
the delivery of a message m in the volatile memory of its sender. The determinant of the
message m consists of its data and the order in which it was delivered, including the
identification of its receiver process, the sender sequence number of the sender process,
and the receiver sequence number of the receiver process. The determinant is logged in
two steps. First, before sending m, the sender logs its data in volatile memory. Then when
the receiver of m responds with an acknowledgement that includes the order in which the
message was delivered, the sender adds the ordering information to the determinant.
SBML avoids the overhead of accessing stable storage but tolerates only one failure and
cannot handle nondeterministic events internal to a process.

Optimistic logging protocols [Johnson91, Strom85] reduce the performance overhead by
using asynchronously logging. For example, Strom and Yemini [Strom85] proposed to
keep determinants in a volatile memory, and periodically flush them to stable storage.
However, optimistic protocols do not implement the always-no-orphan condition and
therefore permit the temporary creation of orphan processes. In recovery, it has to satisfy
the property by rolling back orphan processes until their states do not depend on any
message whose determinant has been lost. To perform the rollback correctly, optimistic
logging protocols track causal dependencies during failure-free execution. Upon a failure,
the dependency information is used to calculate and recover the latest global state of the
pre-failure execution in which no process is in an orphan. Optimistic logging needs a
complicated garbage collection algorithm because each process has to keep multiple
checkpoints. Another disadvantage is that an output commit will generally require multi-

host coordination to ensure that no failure scenario can revoke the output.

25

Causal logging protocols [Elnozahy92, Alvisi96, Elnozahy94] combine the advantages of
both optimistic logging and pessimistic logging, but they require more complex recovery
algorithms. Causal logging protocols implement the “always-no-orphan” property by
ensuring that the determinant of each nondeterministic event that causally precedes the
state of a process is either stable or available to that process, for example, the Manetho
[Elnozahy92] system proposed by Elnozahy saves these determinants in the volatile log
of the surviving processes. Each process in Manetho maintains in volatile memory an
antecedence graph (AG) of its current state, and a log that maintains the data and
identifier of each message it sends. An antecedence graph has a node representing each
nondeterministic event preceding the state of a process, and the edges corresponding to
the happened-before relationship among events. When a process sends a message, it
piggybacks the AG on the message to propagate the causal information. The receiver,
upon receiving the message, adds the receipt order indicated in the AG to its volatile log.
By doing this, each process maintains one antecedence graph providing a complete
history of the nondeterministic events that have casual effects on its state. Periodically, a
process records its checkpoint, the volatile log and the AG on stable storage. During
recovery, the failed process restores its checkpoint, message log, and the saved AG from
stable storage. It calculates its AG of the pre-failure state by merging the AGs collecting
from the surviving processes. Then, the recovery process replays its messages by

requesting them from the senders’ log and re-executes them.

1.4 Contributions and Outline

From the review of the existing rollback-recovery protocols, we find that all of them are
designed for general distributed systems without additional assumptions. As a multi-

agent system holds some special characteristics such as sociality and being goal-driven,

26

rollback-recovery protocols considering these new characteristics may work more
efficiently than the traditional protocols.

In this thesis, we propose a new rollback-recovery protocol (strategy) that combines the
selective coordinated checkpointing protocol and pessimistic log-based protocol. The
selective checkpointing has the advantage of lower performance overhead; while the
pessimistic log-based protocol has the advantage of no domino effect, fast output commit,
and simple garbage collection. Our new protocol has the combined advantage of both of
them. Compared with selective coordination checkpointing, our protocol avoids the
dependency tracking. Compared with log-based protocol, our protocol records fewer
messages.

As we have explained in the motivation part, sociality is the main characteristic of multi-
agent systems, and related set of cooperated agents in the system forms different social
groups to achieve their individual goals or/and common goals. Since agents in the same
social group cooperate closely with each other and seldom interact with others outside the
social group, the social group inherently becomes a group for the selective checkpointing.
Based on the assumption that the knowledge of the agent system is clear, we propose a
methodology to identify the social groups of the system. The proposed methodology
describes how to analyze the role model built in the analysis stage of the system
engineering in order to get the social groups. In addition, the methodology also identifies
the suitable place for starting a checkpoint. The theory relies on the observation that the
designer’s static knowledge of the application domain can be used effectively to select
source statements at which checkpoints should be inserted [Silva98, Huang93].

In the rest of the thesis, we will introduce the methodology for identifying a checkpoint
group and checkpoint places in chapter 2, elaborate the new rollback-recovery protocol in
chapter 3, use an application to demonstrate the methodology and the protocol in chapter

4 and 5, test the system performance in chapter 6, and draw the conclusion in chapter 7.

27

Chapter 2 Role-Milestone Based Methodology

2.1 Introduction

In a multi-agent system, related agents form different social groups to achieve their
individual or/and common goals. Such a social group, from the perspective of
checkpointing, is inherently a group for a selective checkpoint. In this chapter, based on
the role model proposed by E. A. Kendall [Kendall00], we propose a role-milestone
methodology to identify where checkpoints should be activated. The methodology
requires knowledge of the agent system, and is applied at the design stage in order to
build a fault tolerant multi-agent system. Hence it is a user-level fault tolerant solution,
unlike the more common user-transparent solution. Input for this methodology is the role
models designed in the agent system. The output is the social groups of agents, and the
suitable places for inserting checkpoints that can be translated to the source codes in the
later implementation stage. The methodology uses a set of milestone dependency graphs,
obtained by analyzing the role models, to identify social groups and checkpoint
placements. Each milestone graph is a labeled directed acyclic graph, which involves a
set of related roles, and their milestones depending on each other to achieve their
common goals. The agents playing these related roles associated with a milestone
dependency graph form a social group in the runtime of the system. Some milestones
satisfying pre-defined criteria can be selected as good places for inserting checkpoints.
The analysis result is used to facilitate the selective rollback-recovery protocol design
which will be presented in chapter 3.

The role-milestone based methodology is derived from the role model analysis agent
methodology of E. A. Kendall. We extend the role model methodology to help building a

robust agent system that has better performance and is easier to build. The extension

28

includes a role-based agent architecture that supports the ability that one agent plays
multiple roles concurrently, and the mapping strategy between roles and agents that helps
to increase the run time performance of the agent system. In the following parts of the
chapter, we will introduce the agent architecture, mapping strategy, and the role-

milestone based methodology one by one.

2.2 Role-Based Agent Architecture

Most of existing agent architectures do not provide support for multiple role-playing parts.
However, as role modeling becomes more and more important, an agent architecture
providing the facility for multiple role-playing becomes urgently needed. In this thesis,
we propose the role-based agent architecture building upon the theory that roles are the
basic elements of an agent. A role here has its architecture called the role architecture,
which describes the logical components of a role. The agent architecture building upon
roles is then as simple as the composition of the element roles. The role-based agent
architecture is quite straightforward, and it simplifies the design of agents to design of
roles. Moreover, the role architecture is not only more specific and accurate, but also
enhances the component reuse as different agents playing the same role can share the
same role component. The role-based architecture fully presented in this research meets
the requirement that multiple roles could be mapped to one single agent according to the

role model agent analysis of E. A. Kendall.

2.2.1 Role Architecture

Roles are described as basic elements of agents that have the ability to accomplish their
responsibilities in our approach. Thus, we borrow some ideas from existing agent
architectures to define the role architecture.

The role architecture consists of one knowledge part, one sensory part, one reactive part,

and one proactive part as show in figure 2-1. The knowledge part stores the knowledge

29

including the local data of the role; the sensory part senses the environment changes and
updates its knowledge periodically; the reactive part includes reactive behaviors that
respond to stimulus without reasoning; the proactive part makes the decisions and
exhibits goal-directed behaviors based on its knowledge, current state, and interaction

with other roles to accomplish its goals.

Proactive » . Environment/
Reactive > Roles
N
RW
Environment/ N ’
Roles -~ > R'W
2 Knowledge
A
\'Y
Activate .
Sensory < Environment

Figure 2-1: Role structure
The proactive part can be described as an activity diagram composed of different
activities and transactions. Each activity presents one behavior implementing a sub-task
of the role, which may read/write knowledge, interact with other roles, and change
environment. A transaction might be a decision-making based on knowledge and current
state, or delivery of a message from other roles. The proactive part has its initial state
indicating the start of achieving its goals, end state indicating end of trying to achieve the

goals. More than one end state might exist.

2.2.2 Agent Architecture

One agent may play multiple roles sequentially or concurrently, so one agent can be seen
as the composition of multiple roles. During the composition, the common parts of
different roles should be integrated together and shared among them in order to lower the
resource cost and avoid the consistency mechanism. Based on the above-mentioned
integration strategy, the agent architecture composed by different roles is shown in figure
2-2.

30

Role-n I
Role -2]
Role- 1
Proactive . <
Reactive [€
1 Y
v R/W Inform N ool
<& gent-leve
IR/W Role-level N Knowledge
n Knowledge
¥
w
| | Activate
Scnsory |«
A

Figure 2-2: Agent structure
Each role in the agent architecture is a separate part; however, the full knowledge or part
of the knowledge from different roles may be common and can be shared. The common
knowledge is taken out from the role component and forms the agent-level knowledge,
which can be read/written by the sensory, reactive, and proactive parts of each individual
role. Interactions of roles inside the same agent depend on the agent-level knowledge in
that if a role changes the agent-level knowledge, it will inform other roles about the

changes.

2.2.3 Mapping Strategy between Roles and Agents

E. A. Kendall proposed in her agent analysis methodology that the roles that a given
agent needs to play have to be identified in the agent system design. However, the
methodology does not include rules to follow in the mapping process. Here, we propose a
mapping strategy to guide the role assignment. The objective of the mapping strategy is
to increase the running performance of the fault tolerant agent system under our rollback
recovery protocol. The strategy includes two rules that help to reduce message

communication while maintaining scalability of the system.

31

Rule 1: Start with a one-to-one mapping between roles and agents.
Rule 2: If two roles share a high volume of message traffic, try to merge them into one

agent

2.3 Role-Milestone Based Methodology

Traditional rollback recovery technique provides a solution to make a distributed system
fault tolerant; however, it is designed for a traditional distributed system, which does not
take into account of the features of a multi-agent system such as sociality. In order to
make a rollback recovery protocol work better in an agent system, a new protocol
considering the agent features is presented. The role-milestone based methodology
described here is proposed to facilitate the design of a selective rollback recovery
protocol for the agent system. The methodology can identify the social groups of the
agent system and locate suitable places for starting a checkpoint by analyzing some static
knowledge of the application at design time. The identified social groups statically point
out the selective checkpoint groups for the protocol, which avoids the complicated and
inaccurate dependency tracking. The suitable checkpoint places provide static
checkpointing, which has advantages such as simplifying the state saving, reducing size
of checkpoints, and providing more flexibility in recovery [Silva98] comparing with
dynamic checkpointing.

In the following part, we will describe the assumptions for the methodology, introduce
the milestone dependency graph, which is the key of the methodology, and explain how
to get the milestone dependency graph, and how to analyze the milestone dependency

graph in order to get the social groups and decide on checkpoint placements.

2.3.1 Assumption

Not all agent systems are suitable to use the role-milestone based methodology and the

selective rollback recovery protocol to achieve fault tolerance. Only those agent systems

32

that satisfy the following assumptions will be able to benefit from the methodology. First,
roles are elements of agents, and each role has one individual goal and is responsible for
accomplishing it. Second, roles collaborate with one another to achieve their individual
goals. Third, collaborating roles have a common goal, and accomplishing the distributed
individual goals are the ways to reach their common goal. Fourth, one agent can
participates in multiple roles sequentially or concurrently. However, one agent should not
play multiple instances of the same role. Fifth, one role may be played by multiple
agents, even if they are the instances of the same agent. The assumptions are not too strict
for agent systems, because as long as an agent system can be modeled by roles and their

relationships, the agent system can be easily designed to meet these assumptions.

2.3.2 Milestone Dependency Graph

The milestone dependency graph is the key of the role-milestone based methodology.
The graph uses milestones of related roles with a common goal as its vertices, and builds
the casual relationship between the vertices. Roles in the graph can be mapped to
application agents. Each vertex can be tagged with an effort that represents the
computation/interaction required before reaching the milestone from the start of the
common mission. By analyzing the graph, the social groups and checkpoint places can be

identified.

2.3.2.1 Milestone

The notion of milestone is obvious in our everyday life, particularly in group planning
and coordinated efforts that would take some time and face some anticipated or
unanticipated events in the working environment. The agent paradigm obviously can
incorporate this notion of milestone in coordinated agent activities to accomplishing a
common mission. This is particularly relevant in the context of agent applications that

correspond to automating traditionally human-oriented solutions. In the model of our

33

agent system, each role has its individual goal, and in its lifeline towards the individual
goal, there might be some important states corresponding to some statements of the
source program to be reached. These states are milestones toward the individual goal, and
the individual goal is viewed as the last milestone of that role.

Milestones are defined by system designers with their own knowledge, and different
designers may define different milestones. However, there are conventions for designers
to follow. For example, a milestone may be an intermediate goal used to evaluate the
progress towards the final set target, a scheduling event that signifies the completion of a
major deliverable or a set of related deliverables, a flag indicating the completion of a
part of project that may be needed by some specific time, a key event that defines the end
of a phase or reaching a target or goal, or a scheduled event to measure progress, etc.

A milestone is inherently a suitable place for starting a checkpoint, because many
distributed system are structured as a sequence of phases, where each phase consists of a
transient part in which useful work is done, and a stable part in which the system cycles
lots of time [Chandy85]. The milestone normally is the transient useful part to do the
work, which contains fewer temporary variables and involves fewer temporary
collaboration agents. Decision as whether indeed a checkpoint is to be taken depends on

the analysis applied in the milestone dependency model to be presented later.

2.3.2.2 Effort of Milestone

Agents cooperate to achieve a common goal, but the cooperation process may fail
because of some agent failure. To recover from this failure, all related agents can roll
back together to a consistent checkpoint, and re-execute. As we have stated that
milestones are good places to make a checkpoint, the question is which milestone should
be selected to insert a checkpoint. The notion of efforts of milestones is proposed to

answer this question.

34

Effort of a milestone is the computation/interaction required for reaching a milestone
from the start of the mission. Effort can be estimated at design time, or measured by
running the system if the agent system is already implemented. The estimated effort is
somewhat inaccurate. However, it is still useful in the design stage. Details about the
effort measurement are given later in subsection 2.3.3.3. The reason for using effort to
select milestones for checkpoints is that after a long execution time, saving the state of
the collaboration agents can avoid restarting the mission from the start point once failure
happens. This strategy aims to optimize the system performance by taking into account

the cost of checkpointing and the latency in recovery.

2.3.2.3 Milestone Dependency Graph

Roles with common interest have to cooperate to achieve their common goal, and the
cooperation towards a common goal introduces dependency among milestones of
different roles. Therefore, strictly speaking, all relevant roles contribute towards a
milestone, and the over-all contribution can be reflected by having causal influence
towards the milestone. Moreover, roles with one common goal have to collaborate
together in a social group.

In order to capture the dependency relationship of milestones toward a common goal and
calculate the over-all effort of a milestone, the milestone dependency graph is developed
to graphically represent the inter-dependence of milestones. In the graph, a box presents a
role, which contains the milestones belonging to this role. A vertex presents a milestone,
a filled circle means the start point of a role towards its goal, and a filled vertex presents
the individual goal of a role. An arrow between vertexes indicates the “happens-before”
relationship, and for the arrow inside a role, a number or a set of numbers is attached to
the arrow indicating the effort needed to reach the destination vertex from the starting

vertex (to be explained later). For example, vertex A-2» vertex B means that milestone A

35

happens before milestone B, and the effort required from A to B is “a”. The A “happens-
before” B relationship indicates that A might lead to B, and if B happens, A must have
happened. The “happens-before” relationship is transitive, for example, if A—»B—»C,

A— C is omitted. A sample milestone dependency graph is shown in figure 2-3.

Role Role Role

® Represent the start of one role to reach its goal

O Represent one milestone towards the goal of the role

Represent the goal of the role

——p Represent “happens-before” relationship

Figure 2-3: Milestone dependency graph
To measure the effort of a milestone, two approaches can be taken into account: i)
individual agent efforts, which are localized to an agent, or ii) global agent efforts, which
include the efforts of all relevant agents that contribute towards this milestone. Before we
elaborate the two approaches, we first introduce three definitions.
Definition 1: effort (4, B) = individual computation/communication required, which is
localized to a role played by the agent under consideration, to reach milestone B from
milestone A.
Definition 2: effort | (4) = individual computation/communication required, which is
localized to an agent, to reach milestone 4 from the start points (each role played by the
agent has one start point; therefore an agent with » roles have » start points) of a common

goal.

36

Definition 3: effort g (4) = global computation/communication required, which is
globally required of all relevant agents, to reach milestone 4 from the start points of the
common goal.

Definition 1 defines the incremental effort between two milestones in a same role. The
effort attached to the arrow in milestone dependency graph is actually an incremental
effort. Definition 2 and definition 3 are for the first and second approaches. “effort (4)”
is the individual agent effort of milestone 4, and “effort (4)” is the global agent effort of
milestone 4. Both the two approaches have their pros and cons, which one is better
depends on the actual situation and the checkpoint recovery algorithm to be used. We
extend the basic milestone dependency graph mentioned above to two extended graphs to
elaborate the two approaches.

i) Individual milestone dependency graph:

Individual milestone dependency graph is for calculating the individual agent effort of
one milestone. In the graph, only the roles played by a same agent and contributing to the
common goal are introduced. Therefore, individual milestone dependency graph includes
only one agent. The graph follows the rules of the milestone dependency graph. In
addition, a dashed box is used to represent an agent.

ii) Global milestone dependency graph:

Global milestone dependency graph is for calculating the global agent effort of one
milestone. In the graph, all the collaboration roles contributing to the common goal are
introduced. Therefore, global milestone dependency graph includes more than one agent.
The graph basically follows the rules of the individual milestone dependency graph.
However, instead of only labeling the incremental effort on the arrow from one vertex to
the other, the number of agents that participate in the transition is also labeled on the
arrow. The reason is that: in the collaboration, one role may be played by multiple agents

concurrently, and for each milestone, the number of agents reaching that milestone may

37

be variable. For example, one auctioneer agent may negotiate with ten bidder agents
currently; however, not all bidder agents can reach the goal of winning the auction.
Therefore, for the incremental effort attached to the arrow towards a milestone in the
global milestone dependency graph, we have to estimate the number of agents
contributing to the milestone in addition to the incremental effort required. The number
of agents is estimated by the designer’s knowledge of the system, and it is graphically
denoted with a separating slash as shown in figure 2-4 (b).

Examples of the individual milestone dependency graph and the global milestone
| dependency graph are given in figure 2-4 (a) and figure 2-4 (b). In the two graphs, agents
playing multiple roles are represented by dashed boxes. Individual milestone dependency
graph includes only one agent, and global milestone dependency graph includes more

than one agent.

Role-1 Role-2

Figure 2-4: (a) Individual milestone dependency graph; (b) Global milestone dependency
graph

38

2.3.3 Social Group Identification and Milestone Selection

A milestone dependency graph can be drawn from role models, and by analyzing the
milestone dependency graph, we will be able to identify the social groups and select the
milestones suitable for starting checkpointing. In the following, we explain the different
usage of individual and global milestone dependency graphs, outline the steps to derive
them, elaborate how to estimate the incremental effort and calculate the individual and

global effort, and finally present the overall solution strategy.

2.3.3.1 Usage of Individual/Global Milestone Dependency Graph

Different rollback recovery protocols may be suitable for different situations. In the same
way, the agent based selective checkpoint recovery protocol we try to propose follows the
same principle. The individual and global milestone dependency graphs aim to answer
the question and distinguish the situation where we should use a selective checkpoint.

Agents collaborate to achieve their common goals, and depending on the role/agent
collaboration frequency, we classify the collaborating agents into two categories: closely-
coupled agents, where many messages are exchanged in their lifelines; and loosely-
coupled agents, where infrequent messages are exchanged in their lifelines. In the two
situations, it is obvious that coordination checkpointing works better for closely-coupled
agents, and log-based rollback recovery works better for loosely- coupled agents. So, we
use individual milestone dependency graphs for loosely-coupled agents to select
milestones suitable for starting independent checkpoints, and global milestone
dependency graphs for closely-coupled agents to identify the social groups and select

milestones for selective checkpointing. More details will be given in subsection 2.3.3.4.

2.3.3.2 Getting Individual/Global Milestone Dependency Graph

Both individual and global milestone dependency graph can be drawn from role models
proposed by E. A. Kendall. The steps are:
39

Step 1: List the individual goals, common goals, and milestones for all of the roles.

Step 2: Identify the loosely-coupled and closely-coupled agents of each common goal.

Step 3: For each loosely-coupled agent, draw the individual milestone dependency graph.

Step 4: For closely-coupled agents of a common goal, draw the global milestone
dependency graph.

Step 5: Estimate the incremental effort of each arrow belonging to one agent.

2.3.3.3 Estimate Effort

The incremental effort attached to the arrow of a milestone dependency graph can be
estimated at design time. However, the incremental effort may be variable and not
necessarily determinable, because milestones are often reached through iterative means
and the number of iterations may vary. To overcome such issues, we provide a <min,
max> range to bind the typical scenarios, and the incremental effort is represented by
“(min + max)/2” to indicate the average between them. Instead of estimation at design
time, another approach is to record the running time of the system. With this approach,
the application system should already be implemented, and the source code should be
instrumented as per milestone. After getting the incremental effort of each
individual/global milestone dependency graph, we can calculate the individual/global
agent effort of each milestone.

i) Individual agent effort calculation:

The individual milestone dependency graph is used to estimate the individual agent
effort. The individual agent effort of one milestone is the sum of all the incremental
efforts attached to the arrows pointing towards the milestone in the individual milestone
dependency graph. For example, in the above figure 2-4 (a), “effort L(4d) =a+b+c+d".

ii) Global agent effort calculation:

40

The global milestone dependency graph is used to get the global agent effort. The global
agent effort of one milestone is the sum of the products of the incremental effort and the
associated number of agents attached to the arrows pointing towards the milestone. For

example, in the above figure 2-4 (b), “effort (B)=axn +bxny+cxn3+dxny”.

2.3.3.4 Social Groups and Milestone Selection

To select the right rollback-recovery protocol and the proper milestones for starting
checkpoints, we should consider both the local and global situation. The basic rule is to
find a trade-off between introducing less failure-free overhead and at the same time
minimizing the rollback distance during recovery.

For an agent with fewer messages exchanged, log-based rollback recovery fits it better.
With the log-based protocol, the failure of an agent triggers recovery of that agent to its
most recent checkpoint and then message replay is applied. Because fewer messages are
recorded, the overhead is small and the runtime performance is better. This solution is a
localized strategy whereby the effect is completely localized to the agent. Upon a failure,
the computation lost is the individual agent effort from the failure point to the recent
checkpoint. Therefore, we use an individual milestone dependency graph to capture the
individual agent effort to reach a milestone. With the pre-known individual agent effort,
all the milestones can be ordered, and one threshold can be defined to be the tradeoff
between failure-free running performance and recovery speed. Every two milestones with
their individual incremental effort beyond the threshold can be selected to start
independent checkpoints.

For closely-coupled agents, the coordination checkpoint solution works better than the
log-based solution. In coordinated checkpointing, an event can trigger a set of local
checkpoints to be taken together among a set of agents to form a consistent state so that it

can be used for recovery when a later failure occurs. In the meantime, the failure of one

41

agent will force all the related agents to roll back to their latest checkpoints. Selection of
milestones for triggering coordinated checkpoints should be based on global incremental
effort. The theory is that in the occurrence of a failure, the global incremental effort
represents the maximum re-execution effort required during recovery.

The coordination checkpoint we talked above is actually a selective checkpoint solution.
To identify the coordination agent group and to calculate the global effort, we use the
global milestone dependency graph. Only agents playing the roles inside the global
milestone dependency graph have to take part in the coordination checkpoint and
therefore form one checkpoint group, one social group in other words. However, strictly
speaking, the actual agents playing the roles may not be statically identified before a
system run. In the dynamic running time, there may be multiple agent instances of a
single agent type running in the system; and these agent instances may form different
groups to achieve different instances of the same common goal. For example, a customer
agent and a merchant agent have to collaborate to achieve an agreement of buying a
product. During the execution, customer agent 4; and merchant agent B; may collaborate
for product P, and customer agent 4, and merchant agent B, may collaborate for product
P;. But, the knowledge of a system is helpful in the dynamic group identification. If
interaction protocols among the types of agents included in the global milestone graph
are properly designed (such as a registration protocol which forces agents to register into
the checkpoint initiator agent before participating in their common goal), the groups can
be dynamically identified during the system run. For instance, in an auction system, if a
subscribe protocol is defined between the bidder and auctioneer agent, at runtime an
auctioneer agent can maintain knowledge of the participating bidders, which includes
agents who should participate in a group checkpoint toward the common goal of

achieving an agreement of buying a product between bidders and auctioneers.

42

Normally the selection of milestones for starting coordination checkpoints follows the
same rule as the log-based solution. By ordering the milestones with their global agent
efforts, we can define one threshold. Every two milestones with their global incremental
effort beyond the threshold can be selected to start coordination checkpoints. However,
global efforts of milestones are impossible to estimate when too many agents play a same
role in the collaboration. For example, in the auction scenario, the number of
participating bidder agents is variable, and may have huge difference. The wide range
makes the global agent effort estimation not valuable. One alternative is to use the critical
(longest effort) path in the global milestone independency graph. The critical path is a
safe ground for serializing coordination so that these checkpoints only happen
sequentially at measurable distances from each other. By measuring incremental effort

along this critical path, a new coordinated checkpoint can be designed into the system.

43

Chapter 3 SCLR Protocol

3.1 Introduction

We have described the methodology for distinguishing the situation when selective
checkpoint based protocol should be used, and elaborated how to identify selective
checkpoint groups and the locations for starting checkpoints. In this chapter, we will
describe the design of such a protocol named “Selective Checkpoint with Log Rollback-
recovery protocol” (SCLR protocol for short).

The SCLR protocol combines selective checkpointing and logging together, which results
in domino-free rollback, simple recovery protocol, simple garbage collection, and fast
output commit. The system includes a checkpointing algorithm, a logging algorithm, a
recovery algorithm, and a pruning algorithm. The checkpointing algorithm is used in pre-
defined program locations to store the states of group of agents and ensure the
consistency of the stored states. The logging algorithm is for logging nondeterministic
events that may not be reproducible. The recovery algorithm uses the checkpoints and
logs to ensure that once failures occur, the agent system can recover to a consistent
system state and the outside world is not affected. The pruning algorithm is in charge of
garbage collection that removes useless checkpoints and logs. The proposed rollback-
recovery protocol is a user-defined solution where we assume the designer has the
knowledge of the whole agent system.

In the following sections of the chapter, we will first describe the system model and the
objectives of the proposed protocol. Then, we elaborate its details. We also provide the
proofs for the correctness of the protocol. At the end, we briefly discuss how to use the

protocol in a multi-agent system.

44

3.2 System Model

The distributed multi-agent system consists of a variable number of agents that
communicate only through messages. The communication systems deliver messages
reliably and in first-in-first-out order. Agents cooperate to execute a distributed
application program and interact with the outside world by receiving and sending input
and output messages. The system is asynchronous. There exists no bound on the relative
speeds of agents, no bound on message transmission delays, and no global time source.
Agents have access to a stable storage device that survives failures.

The execution of an agent consists of a sequence of piecewise deterministic state
intervals [Storm85, Elnozahy92]. Each state interval starts by the occurrence of a
nondeterministic event. Such an event may be: (i) the creation of an agent, (ii) an agent
receives a message from another agent, which is called a message receipt event, (iii) an
agent receives a message from the outside world, which is called an input event, and (iv)
a decision event. A decision event occurs when an agent surveys a known and fixed set of
alternatives, weighs the likely consequences of choosing each, and makes a choice
[Klein93]. Decision events allow an agent to choose and follow different paths through a
scenario, and each choice provides a path for the agent to follow toward the conclusion of
the scenario.

The execution during each state interval of an agent is deterministic, such that if an agent
starts from the same state and is subjected to the same nondeterministic events at the
same locations within the execution, it will always yield the same output [Elnozahy92]. A
concept related to the state interval is the piecewise deterministic assumption (PWD)..
This assumption states that the system can detect and capture sufficient information about
the nondeterministic events that initiate the state intervals.

Figure 3-1 shows a sample execution of a distributed multi-agent system consisting of

three agents p, ¢ and r. The notion of “o ” denotes the i state interval of agent p. the

45

notion of “mP” denotes the i message transmitted by agent p. Horizontal lines represent
the process of the execution, an arrow between two horizontal lines denotes a message
transmission, and a dashed arrow represents an input event from outside. A vertical bar
denotes the beginning of each state interval. In the figure, state interval “c,’” starts with a

I

decision event, and state interval “c;" ” starts with an input event.

P
b 1G0° [O1 o’ -
r ! >
n’l]p 1’112q
q
q 190 o o)’ 9 >
l »
q
m
mlr 1 mzr
r r
r |00 1 O1 lo-2 >
I <l 1 v
Figure 3-1: An example execution

An execution of the distributed system is represented by a run, which is a total ordering p
that includes all of the events in the global history and that is consistent with cach local
history. If a run is pre-defined, the system can follow the same execution, which is the
sequence of global states the system passes through during an execution. Each global
state is a set of agent states and channel states. In the run, only one agent changes its state
between any two adjacent global states. Thus, each pair of adjacent states defines an
event that was executed by an agent, and the resulting sequence of events is ordered by
the partially order happens-before relationship that represents potential causality.

An agent may fail independently, in which case it loses its volatile state and stops
execution according to the fail-stop model [Schlichting83]. However, if the state
information and the afterward events of the agent are saved on the stable storage device
during failure-free execution, the failed agent can be recovered with the saved state

information, and repeat its execution to its pre-failure state by replaying the saved events.

46

3.3 Motivations, Rationale and Objective

In a multi-agent system where many agents collaborate and interact frequently with each
other and with OWP devices, either coordinated checkpoint based rollback-recovery
protocol or log-based rollback recovery protocol will produce heavy overhead. Therefore,
we want to take advantage of sociality of multi-agent systems to propose a selective
checkpoint based rollback-recovery protocol particularly designed for such situations.
The new protocol is supposed to have lower performance overhead, no domino effect,
fast output commit, and simple garbage collection when implemented in multi-agent
systems where many agents collaborate and interact frequently with each other and with
OWP. The protocol should also be able to take advantage of the analysis results from the
milestone dependency graphs described in chapter 2, which means that the checkpoint
groups can be identified without the complicated and inaccurate dependency tracking,
and the checkpoint places are predefined at the design time.

To be able to use the analysis results from the milestone dependency graphs, the new
rollback-recovery protocol has to be a user-defined solution that is not transparent to
designers. As we have mentioned in subsection 2.3.3.4, checkpoint groups can be
identified with properly designed application protocols, so that checkpoint initiator agent
could know the group members before it starts the group checkpoint (refer to subsection
2.3.3.4). The places for starting checkpoints are those program codes corresponding to
selected milestones.

Existing selective checkpoint protocols have high latency of output commit, and they
have to keep track of communication dependencies. On the other hand, pessimistic
logging has been proved to work efficiently in systems with frequent OWP problems, and
it has the benefits of no domino effect and simple garbage collection. Thus, combining
pessimistic logging with selective checkpoint protocol provides a safe ground for our new

SCLR protocol. Moreover, the idea of introducing logging into group checkpointing and

47

rolling back group members at the occurrence of failures leads to the possibility that not
all events occurring in the system have to be logged. We use a scenario shown in the
figure 3-2 to explain it.

In figure 3-2, a vertical line represents the lifeline of an agent; a dashed line denotes the
time instance in the lifeline; a vertical black bar represents an individual checkpoint; a
rectangle box indicates a group coordination checkpoint consisting of individual
checkpoints inside the box; an arrow between two vertical lines denotes a message
transmission; a cross-lines on a lifeline denotes that the agent of the lifeline crashes at
that time; and a helix represents that during the lifelines of the agents covered under the

area, there are heavy messages exchanged among them.

A0 Al A2 A3 A4 A5

_______________________ tl
_____________ t2
Cil|
m0
1
\mA : l .(:.2 _________ t3
{< ------------------ z
\
m3 |1 =t - t5
| —
>

Figure 3-2: A runtime scenario
As shown in figure 3-2, agent 4, 4, and 4; form a group G, and exchange messages
heavily from time # to #; agents 43, 44 and 4s form another group G, with heavy
messages exchanged among them from time # to 5. A;, A; and 43 take group
coordination checkpoint C; consisting of individual checkpoints of Cj(4;), Ci(42) and
Ci(43); A3, A4 and A4s take group coordination checkpoint C, consisting of individual

checkpoints of Cy(43), Ci(44) and Ci(4s). Agent Ay sends and receives messages

48

occasionally. Therefore, from the checkpoint group view of an agent, after time £, 4; and
A, have a checkpoint group G, 44 and 45 have a checkpoint group of G, 43 has two
checkpoint groups of G and G, and 4, has empty checkpoint group. In the scenario, if
logging technique is not adopted, failure of agent A, will cause domino effect that will
force all the agents to roll back to the starting points. However, suppose an agent A has
several individual checkpoints Ci(4), Cx(4), ..., C(A4) belonging to group checkpoints
Cy, Cy, ..., C, with the corresponding checkpoint groups at time ¢ being Gy, Gy, ..., G,
respectively. Then, the intersection of the checkpoint groups of the agent 4 is denoted by

ICGS(A) and defined as ICGS(4) = G; N G, N ... N G,. We find that suppose 4 logs all

the messages from agents not belonging to ICGS(4). Failure of 4 will not cause a domino
effect, and only agents belonging to ICGS(A4) have to roll back to C,, which is the latest
group checkpoint of 4. For instance, if 4; and 4, log all messages sent by agents outside
of group G, 44 and 45 log all the messages sent by agents outside of group G, 43 logs all

messages sent by agents outside of G; NG, (Actually 4; logs all messages from others
because G; N G, = 43), and A4y logs all messages from others (4 has no group). With this

logging strategy, if 4, crashes as indicated in the diagram, only 4,, 4, and A3 (which
belong to ICGS(4,)) have to roll back to their group checkpoint C; and re-execute. No
other agents will be involved in the recovery process because the messages interchanged
among A, A», and A3 will be re-generated, and messages from other agents can be
replayed as they have been logged before the failure. For example, in the recovery
process, A; will replay the messages sent by 4g, and A3 will replay the messages sent by
Ao, As and A4s. The message re-generation and replay will lead agents A, 4; and 43 to
repeat their executions to their pre-failure states that are consistent to the survivor agents.
With this logging strategy, garbage collection is simple too. Because there is no domino
effect, a group checkpoint can be pruned if none of its individual checkpoints is the latest
checkpoint of its corresponding agent.

49

The SCLR protocol explained above inherits the advantages of no domino effect, fast
output commit, and simple garbage collection from pessimistic logging. Moreover,
because in a multi-agent application, message exchanges among agents in different social
groups are infrequent, the strategy can effectively lead to a significant reduction of

messages to be logged at runtime.

3.4 Selective Checkpoint with Log Rollback-Recovery Protocol

We have described the rationale of the SCLR rollback-recovery protocol. In this section,
we will elaborate the details of the protocol. First, we will introduce the concepts of
Checkpoint Group (CG), Checkpoint Group Set (CGS), and Intersection of CGS (ICGS);
then we will describe the data structures for supporting the protocol; finally we will
elaborate the checkpointing algorithm, logging algorithm, recovery algorithm, and

pruning algorithm included in the protocol.

3.4.1 Checkpoint Group (CG), Checkpoint Group Set (CGS), and
Intersection of CGS (ICGS)

Checkpoint Group (CG), Checkpoint Group Set (CGS), and Intersection of CGS (ICGS)
are threc important concepts of the proposed protocol, which capture the checkpoint
group changes of an agent during its lifetime. They focus on the group aspect of an agent
from the view of checkpoint. Because we try to use social groups as our checkpoint
groups, it is reasonable to believe that they also capture the social group aspects of a
multi-agent system.

A Checkpoint Group (CG) is a set of agents participating in a group checkpoint. CG
focuses more on checkpoint aspect. Different agents participating in a same group

checkpoint have the same CG. We can present CG of a group checkpoint C as C.CG.

50

A Checkpoint Group Set (CGS) is a collection of CGs, each CG corresponding to one un-
pruned group checkpoint that an agent holds. CGS focuses more on the agent aspect,
which describes the group changes during one agent’s lifetime. In the lifetime of an
agent, its CGS may increase or diminish since new group checkpoints may occur and
previous group checkpoints may be pruned by garbage collection. We can present CGS
of an agent 4 as CGS(4).

Intersection of CGS (ICGS) is the intersection of all CGs in CGS of an agent, which is a
set including those agents belonging to every CG in GGS. We can formally define it as
ICGS = {4 | 4 € CG for all CG € CGS}. ICGS is the key concept in our protocol. We
can present ICGS of an agent 4 as ICGS(4).

If ICGS(4) is a set S, 4 has to log those messages sent by agents outside S, and in the
occurrence of crash of 4, only agents inside S have to roll back together with 4. Details
about logging and recovery will be explained next. We give an example in figure 3-3 to
show the changes of CGS, where seven agents take selective coordination checkpoints

from time to time in their lifelines.

A0 Al A2 A3 A4 AS A6
Cl is pruned once A0
finishes, and C3 is taken

cil] 1
c2 |
c3 L } 2 is pruned once CS5 is taken
Pas
c4]
A0 fimishes cs | I

Figure 3-3: Coordination group set
In figure 3-3, a vertical line represents the lifeline of an agent; a vertical bar denotes an
individual checkpoint; a box indicates a group coordination checkpoint. According to the
diagram, CGS(45s) after taking group checkpoint C, is {{4s, 4¢}}, CGS(45) after taking

group checkpoint Cs is {{4, As, As}, {42, As, Ae}}, ICGS(4s) after taking group

51

checkpoint Cs is {4, 4s}, and CGS(A4e) after taking group checkpoint Cs is {{42, 45,
As}}.

In the lifetime of an agent, the reduction in its CGS happens because of garbage
collection and the increase is caused by the creation of new group checkpoints. Garbage
collection is only needed when new checkpoints are created, and the diminishment of
CGS helps to reduce the number of messages to be logged. Therefore, the best time to
update CGS of an agent should be right after a new group checkpoint is created. In our
user-level checkpointing algorithm, checkpoint places are pre-defined, so that at runtime
a new group checkpoint is created only at the time when a milestone of a global
milestone dependency graph is reached, which corresponds to the execution of a program
statement of the checkpoint-initiating agent who then starts the group checkpoint. As one
agent may participate in several common goals in its life, one agent may appear in several
global milestone dependency graphs. Therefore, dynamically speaking, in the whole
lifetime of an agent, the agent may take selective checkpoints in different goals, which
increases the complexity of the checkpoint group changes in an agent’s life. In theory, an
agent may appear in both global and individual milestone dependency graph that involve
both selective and independent checkpoint; however, in this chapter, we focus only on the
selective checkpoint part. At the end of this chapter, we will give a brief view of how to

mix these solutions together.

3.4.2 Data Structure

Each agent maintains a set of data structures to support the rollback-recovery protocol.
The data structures include the following:

SI: The index of the current state interval of the agent. It is incremented each time a
nondeterministic event occurs in an agent. SI is important for event replay.

CGS: a table maintaining the CGS of the agent.

52

SSN: a table maintaining the sequence numbers of the messages sent by the agent to each
other agent with which this agent has communicated (SSN,* denotes the sequence
number of the message sent from agent p to agent g). For each receiver agent g, the
sender agent p maintains an SSN,? that starts from 1, and SSN? is attached to the
application message to indicate the order of messages sent to the receiver g. This is used
for duplicate message suppression in recovery.

RSN: a table recording the highest SSN value received in a message sent by each other
agent with which this agent has communicated (RSN,? denotes the highest sequence
number of the message received by p from g). In the occurrence of one agent crash, the
crashed agent will roll back to its latest checkpoint and re-execute. During the recovery,
messages sent before the crash may be re-sent to the receivers, and the highest SSN of the
receiver process is used to detect the duplicate messages. Moreover, in the occurrence of
message delay, the highest SSN can be used to order the receiving messages.

Each of these data items except CGS must be included in the local checkpoint of an
agent. When an agent is restarted from its local checkpint, its value will be restored along
with the rest of the checkpoint data. If ¢ is a local checkpoint, we use ¢.SI, ¢.SSN, and
¢.RSN to identify the above-mentioned data, and use ¢.CID, ¢.CG to identify the
checkpint UID and the Coordination Group (CG). CGS is not included in the checkpoint

as it can be calculated from the checkpoint history.

3.4.3 Selective Checkpointing Algorithm

The selective checkpointing algorithm stores the states of agent groups, which form a
partial consistent state across the group members. We call the stored states as a group
checkpoint, and call the state of each group member as the individual checkpoint of the
group checkpoint. Therefore, group checkpoint indicates all its member individual

checkpoints; however, it is the individual checkpoint that exists. Individual checkpoints

53

of a same group checkpoint have the same CID and CG. CID is a global unique id
generated by the checkpoint initiator to represent a checkpoint UID.
As the algorithm is a user-level solution, designers can make use of their knowledge of
the system to identify the group agents without tracking of the communication among
them. The global milestone dependency graph proposed in chapter 2 provides a way to
identify the group. Application protocols must be properly designed to make sure that the
checkpoint initial agent knows the group members (CG) before starting the group
checkpoint. Moreover, local milestones for starting group checkpoints are statically
chosen from roles of agents by analyzing the global milestone dependency graph. When
an agent finishes the last statement of the program codes corresponding to a selected
milestone, the agent can be programmed to function as an initiator/coordinator and send
marker messages to the group members to start a group-wise consistent checkpoint. In the
following, we describe the checkpointing algorithm. The selective coordinated
checkpointing algorithm is a blocking solution.

The algorithm proceeds as follows:

Step 1: The coordinator agent starts a new group-wise consistent checkpoint by
generating CID and sending marker messages that contain CID and CG to each
group member.

Step 2: Upon receiving a marker message, an agent starts a checkpoint and stops its
computation.

Step 3: After an agent writes its individual checkpoint onto the stable storage, it sends an
acknowledgment message to the coordinator agent.

Step 4: The coordinator agent waits for the responses from the group members, and if all
the acknowledgement messages have been received, it broadcasts a release
message to each group member. When an agent receives a release message from

the coordinator, it resumes its execution.

54

The individual checkpoint of an agent includes CID, CG, all other data defined in
subsection 3.4.2, and its application knowledge. Each individual checkpoint of a same
group maintains a copy of CG. Markers can be application messages attached with CID
and CG, and markers are non-determinant events, which may be logged if necessary
according to the logging algorithm described below.

In the system, because an agent may participate in several different common goals
concurrently, a checkpoint request may arrive before it finishes its first checkpoint. The
interleaving can be avoided by making the checkpointing algorithm an atomic action. An

agent cannot start another checkpoint before it finishes its current checkpoint in progress.

3.4.4 Pruning Algorithm

In our design, a group checkpoint consists of all individual checkpoints of its group
members. When all the individual checkpoints are not the latest checkpoints of their
owner agents, the group checkpoint becomes useless, and all the individual checkpoints
can be pruned. Therefore, the rule for the garbage collection is that a group checkpoint
and the events logged before the checkpoint can be pruned when all its members’
individual checkpoints are not the latest checkpoints of their owner agents. The pruning
algorithm should be called once new checkpoints are created as indicated in subsection
3.4.1.

Figure 3-4 shows the pruning algorithm. We use C to represent an individual checkpoint
of agent p, use C.CID to indicate its checkpoint UID, use C.CG to represent CG of C, use
C.CG(q) to represent the status of the member agent g of C.CG. The status of C.CG(g)
are either “un-prune” or “prune”, which presents that the individual checkpoint C, of
agent g (C, belongs to the same checkpoint group of C with C,CID = C.CID) is the latest
checkpoint of agent g or not respectively. At the time checkpoint C is created, all its

member status is set as “un-prune”. When agent p receives a “release” message from

55

checkpointing algorithm indicating that p creates another new checkpoint successfully, p
sends “prune” messages attached with C.CID to all agents in C.CG indicating that C is no
longer the latest checkpoint of p. If p receives a “prune” message attached with cid (cid =
C.CID) from agent ¢, p can set C.CG(q) as “prune”. When the status of all its member
agents in C.CG of agent p is “prune”, C and all events logged by p before C can be
removed and CGS(p) is re-calculated to make sure that ICGS(p) is the largest possible

set.

Agent p receives release(cid) message {
C « last checkpoint of agent p
For each agent g: (g C.CG)
Send prune(C.CID) message to agent g
}

Agent p receives prune(cid) message from agent g {
C « checkpoint of agent p where C.CID == cid
C.CG(g) « prune

Call prune(C)
}

Procedure Prune(C) {
Prunable « true

For each agent r: (reC.CG)
If C.CG(r) = prune
Prunable « false
Return

If Prunable == true
Remove C
For each logged event e
Ife.SI<C.SI
Remove e

CGS — @
For each checkpoint ¢ taken and not removed
CGS «— CGS v c.CG

Figure 3-4: Pruning algorithm

56

3.4.5 Logging Algorithm

The rollback-recovery protocol we proposed uses partial logging to avoid domino
rollback. Partial logging chooses a subset of messages to be logged, depending on the
ICGS of an agent. This partial logging can reduce the number of messages to be logged.
In our design, receiver-based pessimistic logging is used to simplify the logging
algorithm. We believe pessimistic logging will not introduce much overhead to our
system because fewer events would be logged in our protocol. The events to be logged in
the system include message receipt events, input events, and decision events. To replay
an event in the recovery process, some information must be recorded to deterministically
re-create it. A message receipt event can be determined by a tuple <m.source, m.ssn,
m.dest, m.si, m.data>, where m.source and m.dest denotes respectively the identity of the
sender agent and the receiver agent, m.ssn denotes the unique identifier (a sequence
number) assigned to m by sender, m.si denotes the index of the state interval initiated by
m, and m.data is the application data carried by m. In the same way, an input event is
determined by <m.source, m.dest, m.si, m.data> where m.source denotes the identity of
the outside process. A decision event is determined by <m.dest, m.si, m.data>.

Figure 3-5 shows the logging algorithm. Message receipt events are logged in their
delivery. Input events and decision events are logged right after their occurrence but
before handling them. An agent receives one message if the message is put in the agent’s
message queue by the communication system, and an agent delivers one message if the
message is read from the message queue. Here, we assume the message queue of an agent
is part of the underlying communication system, and it does not fail when the agent

crashes.

Agent p sends data to agent ¢ {
SSN,? — SSN, + 1
m.source «— p
m.ssn «— SSN,*
m.dest «— g

57

}

m.data < data
send mto g

Agent g delivers message m {

}

§ «— m.source
If RSN® = m.ssn then

Ignore the message due to duplication
Else if RSN;® = m.ssn -1 then

SI—SI+1

m.si — SI

RSN’ «— m.ssn

If s ICGS(q)
Log m to stable storage
Deliver m.data

Agent g receives data from environment process p {

}

Sl SI+1

m.source «— p

m.dest — g

m.si — SI

m.data «— data

Log m to stable storage

Decision event e occurs in agent p {

SI—Si+1

m.dest «— p

m.si « SI

m.data — e

Log m to stable storage

Figure 3-5: Logging algorithm

3.4.6 Recovery algorithm

Suppose the most recent local checkpoint of agent p is C(p), which belongs to a group
checkpoint C. When agent p fails, p will be restarted from C(p), and each agent ¢ in
ICGS(p) other than p (CGS(p) can be calculated with the checkpoint history of p) will be
informed to roll back to C(q), which belongs to group checkpoint C and C(g).CID
=C.CID. In the recovery process, these recovery agents will re-execute to their pre-

failures states by re-exchanging their messages among themselves and replaying the

events logged after the group checkpoint.

58

A recovering agent will load its corresponding checkpoint and restore its SI, SSN, RSN,
CGS, and its application knowledge. Therefore, SSN,? of a message resent from p to g
before the failure can be regenerated as the same SSN,? of the original message. In the
receiver side, when agent p receives a message m with SSN¢* from g, p can ignore m as
duplicated message if SSN¢” is less than or equal to RSN,%saved in the restored RSN.
Otherwise, m should be delivered to agent p sooner or later.

Figure 3-6 shows the recovery algorithm. A three-phase protocol is used to guarantee that
all the relevant agents will roll back. When agent p is detected as crash, p is recreated
with its latest checkpoint. After the creation, p will send “rollback” messages to others
agents in ICGS(p). A rollback agent, in the receipt of one “rollback” message, will reset
its state and send “ready” message to p. After all the “ready” messages are received by p,
p will send “commit” messages to members in ICGS(p). All the recovery agents, in the
receipt of “commit” messages, begin to re-execute. The recovery agents include the

crashed agent and the rollback agents.

Recreate crashed agent p {
C « the most recent checkpoint of agent p
Restore C
Log « events logged after the checkpoint C

CGS @
For each un-pruned checkpoint ¢ taken by agent p
CGS «— CGS v c.CG

For each agent ¢q: (9eICGS(p) and g # p)
Send rollback(C.CID) message to agent g

For each agent ¢q: (9eICGS(p) and g # p)
Block to receive ready(C.CID) message from g

For each agent ¢: (¢eICGS(p))
Send commit(C.CID) message to ¢
Block to receive commit(cid) message

}

Agent g receives rollback(cid) message from agent p{
C « the checkpoint of agent ¢ where C.CID ==cid
Log « events logged after the checkpoint C

59

If C is empty
Skip the rollback message
Send ready(cid) to agent p
Continue as normal

If SI> C.SI
Restore C
CGS « C.CG
For each un-pruned checkpoint ¢ taken before C by agent g
CGS <~ CGS v c.CG

Send ready(cid) to agent p

Block to receive commit(cid) message
Else

Skip the rollback message

Send ready(cid) to agent p

Continue as normal

}

Agent g receives commit(cid) message from agent p {

If agent g is waiting for commit(cid) message
While Log is not empty
e «— next event in Log

If (SI+1 == e.si)

SI « SI+1

If (e is of the form (source, ssn, dest, si, data))
RSNdestsoume (_RSNdes‘source +1
Replay the message e

Else if (e is of the form (source, dest, si, data))
Replay the input event e

Else if (e is of the form (dest, si, data))
Replay the decision event e

Else
Block to receive message m from agent r: (reICGS(q))

If RSNy > m.ssn then
Ignore the message due to duplication
Else if RSN == m.ssn -1 then
SI«SI[+1
RSN, —RSN; +1
Deliver m.data
Else if RSNy < m.ssn -1 then
Delay delivering m
Continue as normal
Else
Skip the commit message
Continue as normal

Figure 3-6: Recovery algorithm

60

More than one agent may crash at the same time, and one agent may receive multiple
rollback or crash requests. We use the “First come, first served” strategy to deal with the
multiple requests. If a request for one agent comes after the completion (three-phase
protocol) of the previous request, the two requests are separated; otherwise, they are
interleaved and may cause the interleaved three-phase protocols.

In interleaved three-phase protocols, the action to the first request has been described in
the single crash part, and the actions to the coming request are different according to the
different scenarios. Four scenarios may happen. Scenario 1: the coming request of one
agent is a crash request, which may happen if the agent is first requested to roll back, then
is discovered as crash. In this situation, the agent is recreated with the first rollback
checkpoint, and the crash request is ignored. Scenario 2: the coming request is a rollback
request asking for the agent to roll back to the same checkpoint as the first request, which
may happen if more than one agent in the same group crashes during the same period. In
this situation, the agent just sends a “ready” message to the protocol initiator agent to
inform that the agent has rolled back. Scenario 3: the coming request is a rollback request
asking for the agent to roll back to a checkpoint later than the previous checkpoint. In this
scenario, the request can be regarded as served, and a “ready” message is sent to the
protocol initiator agent. Scenario 4: the coming request is a rollback request asking for
the process to roll back to a checkpoint earlier than the previous checkpoint. In this
situation, the agent sets its state to the new state, and sends a “ready” message to the
protocol initiator agent.

In the four scenarios, scenario 1 and scenario 2 happen when crashed agents share the
same latest group checkpoint. Scenario 3 and scenario 4 happen when crashed agents

have the different latest group checkpoints.

61

3.5 Correctness Proof

The fundamental goal of one rollback-recovery protocol is to bring the system into a
consistent state when inconsistencies occur because of failures, which should be
consistent with the observable behavior of the system from the outside environment
before the failures. Our rollback-recovery protocol guarantees the consistency in the way
that when inconsistency occurs, the rollback-recovery protocol can bring the system into
the consistent state before the failures occur. Let p be a run of the system before the
failures, our recovery protocol guarantees the same events executed in p are again
executed, and the system follows the same run p to the pre-failure global state during
recovery. Once the recovery is complete, there are no orphan agents. That is, no surviving
agents whose states are inconsistent with the recovered states of crashed agents and
rollback agents. Before proving the correctness, we explain some terminologies used in
the proof.

(1) Agent g € ICGS(p): agent g belongs to ICGS(p).

(2) Agent g ¢ ICGS(p): agent g does not belong to ICGS(p).

(3) ICGS(g) < ICGS(p): ICGS(qg) is the subset of ICGS(p).

Lemma 1: When agent p crashes, only agents belonging to ICGS(p) need to roll back. A
crashed agent or a rollback agent will re-execute to its pre-failure state which is
consistent with the survivor agents.

Proof: Suppose agent p crashes, and restarts from its latest group checkpoint C. All
agents q: g € ICGS(p) have to roll back to checkpoint C together. Because g € ICGS(p),
q participates in every group checkpoint that p participates. Thus, ICGS(q) < ICGS(p),
and g logs any message sent by agent outside of ICGS(p). Therefore, agents in ICGS(p)
will re-execute by re-exchanging messages among them and relaying the messages sent

from agents outside the group.

62

Furthermore, according to PWD assumption, if the state information and the afterward
events of an agent are saved on the stable storage device during failure-free execution,
the failed/rollback agent can be recovered with the saved state information, and repeat its
execution to its pre-failure state by replaying the saved events. For a crashed/rollback
agent in our system, all the events that happened after the checkpoint can either be
replayed or re-generated because the events are either logged in stable storage or re-
generated in the recovery process. Therefore, a crashed agent or a rollback agent will re-
execute to its pre-failure state which is consistent with the survivor agents. O
Lemma 2: Multiple agent crashes can be tolerated by the recovery algorithm.

Proof: Each crash triggers a group of agents to recover together and its correctness is
proved in lemma 1. Consider that two agent crashes occur concurrently. If they do not
belong to the same group, the crash triggers two independent crashes and recovery
actions. Hence the correctness is guaranteed by lemma 1. If they belong to the same
group, the crash and recovery manager will accept the first and reject the second, and a
single crash recovery will be triggered. This reasoning applies through induction when
the number of concurrent crashes goes beyond 2. 0
Lemma 3: As selective group checkpoint can be taken correctly in the presence of an
agent crash.

Proof: In a failure-free run, the checkpoint protocol induces a checkpoint to be created in
each agent of the group. However, the checkpoint protocol may be interfered with the
crash or recovery of an agent in the group. Five separate cases have to be considered in
the proof:

Case 1: An agent p crashes at the time of taking checkpoint C before it saves its state to
stable storages, and p is the checkpoint initiator:

Agent p recreates itself with its latest checkpoint, and agents in ICGS(p) roll back with p.

During the recovery, p will re-execute and re-start the checkpointing C. V ¢g: ge C.CG, if

63

gelCGS(p), p will re-execute, re-receive the checkpoint message, and re-do the
checkpoint. If ggICGS(p), then g will stop waiting for the release message, and the
acknowledgement message sent by g to p is either logged by p before p crashes, or
remains in the message queue of p. Agent p, after re-starting the checkpoint C, can
replay/deliver the acknowledgement messages sent by agents outside of ICGS(p), and can
re-receive the acknowledgement messages sent by agents inside ICGS(p) after their
recovery. Therefore, agent p can send release messages to all the checkpoint participators
and finish the checkpoint C.

Case 2: An agent p crashes at the time of taking checkpoint C before it saves its state to
the stable storage, and p is not the checkpoint initiator:

Suppose agent g is the checkpoint initiator. If geICGS(p), ¢ will roll back with p, and re-
start the checkpoint. The situation is similar to case 1. If ggICGS(p), the checkpoint
request message from p to g will be logged by ¢, and ¢ will re-do the checkpoint by
replaying the message.

Case 3. An agent p crashes at the time of taking checkpoint C after it saves its state to the
stable storage but before sending the release messages and agent p is the checkpoint
initiator:

Agent p recreates itself with C, and tries to roll back agents in ICGS(p) to C. Because
ICGS(p) < C.CQG, all the rollback agents participate in C. Suppose agent geICGS(p). If g
already saves its state, g will skip the rollback request, as current SI of ¢ is the same as SI
of its local rollback checkpoint. If g does not save its state, the rollback request will be
skipped also as the rollback checkpoint does not exist. Thus, only p is recreated with C
and it receives/replays the acknowledgment messages, and sends release messages to

complete the checkpoint.

64

Case 4: An agent p crashes at the time of taking checkpoint C after it saves its state to the
stable storage but before receiving the release messages, and agent p could be either the
checkpoint initiator or not:

Proof: The situation is similar with case 3. Agent p is recreated. All the rollback agents
do participated in C, and they will skip the rollback messages. Agent p will receive the
release message after its creation.

Case 5: An agent p receives a rollback request in the process of taking checkpoint C, but
before C was saved to the stable storage.

If the rollback request comes from an agent that participates in C, we have proved its
correctness in the above-mentioned four cases. Consider the situation that the rollback
request comes from a crashed agent g that does not participate in C, and asks p to roll
back to a checkpoint that is taken before C. The situation happens when agent p
participates in each checkpoint that agent g participates in, and p also participates in some
other checkpoints such as C that do not include g as its member agent. In this situation,
agent p will delay the service of the rollback request till the completion of the checkpoint
C. 0
Lemma 4: A state interval from which output is committed will be recovered.

Proof: This follows from lemma 1 and 2. The crashed and rollback agents will re-execute
and follow the same run as they did before the failures to their pre-failure states. So, the

state interval from which an output is committed will be recovered. O

3.6 Mixture of Independent Checkpoint with Group

Checkpoint

An agent may participate in several common goals in its life. Hence it may appear in
several milestone dependency graphs (one graph for each common goal), and each graph

may have several milestones selected for triggering checkpoints. Therefore, dynamically

65

an agent may take several group checkpoints or independent checkpoints for different
goals. The group checkpoints and independent checkpoints of an agent may interleave in
its lifeline and create more complex situations. However, after further analysis, we find
that an independent checkpoint can be viewed as a group checkpoint with only the agent
itself in the group. With this interpretation, independent checkpoint becomes a special
case of group checkpoint, and theoretical results and experimental support can be applied

to both scenarios of use.

66

Chapter 4 Case Study: E-trading System

4.1 Introduction

We have described the role-milestone based methodology and the SCLR protocol. In this
chapter, we will use an e-trading application to demonstrate how to use the methodology
in a multi-agent system. In the following sections, we will describe an e-trading system,
elaborate the role model and agent model for the system, and apply the role-milestone
based methodology to get the milestone dependency graphs that help to locate the

checkpoint places and identify the checkpoint groups.

4.2 An E-trading Multi-Agent System

An e-trading system is designed to help customers and merchants to carry out
transactions online. From the perspective of customers, the system provides services for
searching and purchasing products through bidding or negotiation. From the perspective
of merchants, the system allows them to publicize and sell their products through
negotiation or online auction. In the system, merchant agents reside in malls, and
customer agents reside in customer sites and interact with merchant agents through
message exchanges. Below, we will describe some typical scenarios in the system, build
the role model to capture the social aspects of the system in a high level abstraction, and
build the agent model by mapping roles to agents according to the mapping strategy

proposed in our role-milestone based methodology.

4.2.1 Basic Scenarios

The objective in this exercise is to demonstrate how to build a fault tolerant multi-agent
system using our methodology and rollback-recovery protocol. Three basic scenarios in

the system as described below are incorporated in our design:

67

(1) Product information search

Before a customer decides on a purchase, she has to collect relevant product information.
Therefore, merchants have the responsibility to provide accurate and complete product
information, and customers can collect the information by querying the merchants.

(2) Price negotiation

The system provides a negotiation mechanism for customers and merchants. Negotiation
is a flexible way to trade. During the negotiation, customers and merchants change their
prices, and finally they may both accept a negotiated price or fail to reach an agreement.
If an agreement is reached, customers can book the products, and do the actual payment
later in the product purchase process.

The negotiation strategies the system provides include contract net and English auction.
FIPA has specified the two negotiation strategies as FIPA iterated contract net interaction
protocol [FIPAICN] and FIPA English auction interaction protocol {FIPAEAIP].
Contract net is a strategy for buying and selling goods. A contract net is started by an
initiator who sends out a call for proposals to its participants. Each participant views the
request and may make a proposal. The initiator may choose the best proposal and award a
contract to that participant and reject others, or the initiator may reject all the proposals.
In the original contract net, initiator calls for proposals only once. However, the contract
net protocol can be extended to allow multiple iterations.

English auction is a single-item and ascending-bid auction, where a set of bidders
compete by increasing the current bid. The product sold in the auction is displayed to the
bidders. Each bidder is allowed to place a bid that must increase the current bid by more
than a minimal increment. The product is sold to the bidder who placed the highest bid
when the auction ends.

(3) Product purchase

68

After customers and merchants negotiate successfully, customers have to place orders
and finalize the product purchases. The system should provide rapid and safe purchase

services that can supply standardized receipts to customers.

4.2.2 Role Model

Many role models have been built in the multi-agent trading domain according to the role
model theory of Kendall [Kendall00]. An example is the distributed marketplace and
institutional auction role models proposed in the Zeus Agent Building Toolkit by Collis
[Collis00]. The role model for our E-trading system follows the Zeus role models.
However, instead of using an arrow to represent collaboration between roles, we extend
the role model of Kendall in order to describe the relationships between roles more
precisely. In our role model, relationships between roles are captured by edges and labels.
There are three types of edges: a one-way directed edge, a bi-directed edge, and an
undirected edge. The undirected edge models a static relationship that persists
throughout, and the directed edge models an abstract action (dynamic relationship) that
may be initiated by one role. The asymmetry of the edge is used to represent the initiator
of the action, so that the difference between a one-way directed edge and a bi-directed
edge is that in bi-directed edge the action can be initiated by either role. The label
attached to an edge is used to show the name of the relationship that the edge represented.
The role model for our E-trading system is shown in figure 4-1.

There are three parties in the system: customer, store, and mall. A customer involves five
roles: customer manager, searcher, buyer, bidder and payer. The customer manager
represents a customer and governs the other four roles with a one-to-one relationship. A
store involves four roles: seller, auctioneer, doorman, and accountant. A mall includes the
roles of mall manager and broker. A mall provides the place for stores to reside in and

manages these stores. Each mall has only one agent playing the role of mall manger. The

69

same applies to the broker role. However, a mall may have multiple agents playing the
roles of seller, auctioneer, door-man, and account. We describe each role with its
responsibilities, collaborators, and goals. We describe a relationship between roles with
its initiator, participators, and description. The roles and their relationships in the E-

trading system are described in the following.

| e e 1
i ' Mall !
nquire (\ itiali
: Broker Initialize Mall :
v o\ / \ Manager !
@t e] S 2 I g
| y VTTTe TRt v i o o t
i Customer Register/Deregister Initialize Store !
; L :
! Searcher ¢! 1
1 1
1 fgiats I
Initialize - '
! 3 m Hiddipg !
! i
! '
H "
Initial§ze !
: Xor !
1 T
; Customer \ Initialize Initialize ,
1 Manger H
: :
! 1
1 v '
' s Initialize §
' Initialize '
]
! "
1]

Figure 4-1: Role model for e-trading system

Roles:

(1) Customer Manager

e Responsibilities: A customer manager represents a customer. It receives commands
from a user. Then it manages the purchasing process by assigning different tasks to
an appropriate searcher, buyer, bidder, or payer. Finally it receives results and
communicates them back to the user.

e Collaborators: Its collaborators include searcher, buyer, bidder, and payer.

e Goals: Its main goal is to manage the purchase request from a user.

(2) Searcher

70

Responsibilities: It receives the product features that customer manager has interest
in. Then it asks the broker for product and seller information. After getting the
information, it informs customer manager of the result.

Collaborators: Its collaborators include customer manager, and broker.

Goals: Tts main goal is to collect product and seller information from malls.

(3) Buyer

Responsibilities: Tt receives the information about the product that a customer
manager wants to buy, and the sellers that the customer manager wants to negotiate
with. Then it negotiates with these sellers to get a good discount for the product
using the iterated contract net protocol. Finally it informs the customer manager of

the result.
Collaborators: Its collaborators include customer manager and seller.

Goals: Its main goal is to buy the product with the best price that is acceptable for

the user.

(4) Bidder

Responsibilities: It receives the information about the product that the customer
manager wants to bid for, and the auctions in which the customer manager wants to
participate. Then it bids for a product through the English auction protocol. Finally it
informs the customer manager of the result.

Collaborators: Its collaborators include customer manager, doorman, and auctioneer.

Goals: Its main goal is to book the product with an acceptable price for the user.

(5) Payer

Responsibilities: It receives the information about products that the customer
manager wants to purchase, and the accountants that the customer manager has to
interact with for the payment. Then it interacts with an accountant to pay for the

products. Finally it informs the customer manager of the result.

71

o Collaborators: Its collaborators include customer manager and accountant.

e Goals: Tts main goal is to make payments for products that the user wants to
purchase.

(6) Mall Manager

e Responsibilities: 1t creates the merchant agents, and manages the merchant
information.

o Collaborators: Its collaborators include broker, seller, auctioneer, and accountant.

¢ Goals: Its goals include creating the merchant agents in the mall and updating the
merchant information.

(6) Broker

e Responsibilities: It receives queries from a searcher. Then it generates responses to
be returned to the searcher.

o Collaborators: Its collaborator is the searcher.

e Goals: Its main goal is to provide correct information for searchers.

(8) Seller

e Responsibilities: It negotiates with buyers using the iterated contract net protocol. If
the negotiation succeeds, it delegates the accountant role to do the payment.

e Collaborators: Its collaborators include buyer and accountant.

e Goals: Its main goal is to sell products to buyers.

(9) Doorman

e Responsibilities: It maintains the membership of the bidders participating in the
auction. It also informs the auctioneer about the bidder membership. A bidder must
register with the doorman before it can bid, and a bidder must de-register with the
doorman before it can quit the auction.

e Collaborators: Its collaborators include bidder and auctioneer.

e Goals: Its main goal is to update the bidder list in an auction.

72

(10) Auctioneer

e Responsibilities: It conducts an English auction to sell a product. If the auction ends
successfully, it delegates the accountant to finalize the settlement.

e Collaborators: Its collaborators include bidder and accountant.

e Goals: It main goal is to sell the product to one bidder.

(11) Accountant

e Responsibilities: 1t receives payment requests from payers. Then it gencrates
receipts. Finally it informs payers about the receipt and delivery information.

e Collaborators: Its collaborator is payer.

o Goals: Its mail goal is to provide receipts and delivery information to payers.

Relationships:

(1) Initiate

e [nitiator: Its initiator is customer manager

e Participators: Its participator is searcher

o Description: The customer manager creates and provides a product list to the
searcher. The searcher sends the result to the customer manager.

Many other “initiate” relationships exist in the role model, such as “initiate” relationships

between the customer manager and the buyer, the mall manager and the broker, etc. All

these “initiate” relationships are similar in the sense that the initiator role creates the

participator role, and provides the initial data. We ignore these similar parts to avoid

repetition.

(2) Inquiry

e [nitiator: Its initiator is searcher.

e Participators: Its participator is broker.

73

o Description: The searcher requests the broker for information about sellers and
auctioneers who sell the searched products. The broker sends the answers to the
searcher.

(3) Buying

o Initiator: Its initiator is buyer.

e Participators: Its participator is seller.

e Description: The buyer negotiates with sellers using the iterated contract net
protocol.

(4) Register

o Initiator: Its initiator is bidder.

e Participators: Its participator is doorman.

e Description: The bidder requests for participation of an auction. The doorman
confirms or rejects the bidder for the registration.

(5) De-register

o Initiator: Its initiator is bidder.

e Participators: Its participator is doorman.

o The bidder requests for permission to quit an auction. The doorman confirms or
rejects the bidder for the quitting.

(6) Bidding

e Initiator: Its initiator is auctioncer.

e Participators: Its participator is bidder.

o Description: The auctioneer starts the auction using the English auction protocol.

(7) Delegation

o Initiator: Its initiator is buyer or auctioneer.

e Participators: Its participator is accountant.

o Description: The buyer or the auctioneer sends purchase requests to the accountant.

74

(8) Payment

e [nitiator: Its initiator is payer.

e Participators: Its participator is accountant.

e Description: The payer requests the payment for purchasing of products. The
accountant returns the receipt and delivery information to the payer.

(9) Consistency

e Participators: Its participators include doorman and auctioneer.

o Description: The doorman and auctioneer keep their bidder list consistent in their
lifetimes.

(9) Xor

o Participators: Its participators include buyer and bidder.

e Description: The buyer and bidder will never buy the same product for a user, which

avoids the duplication purchase of the same product.

4.2.3 Agent Model

Agents are the basic entities running in the system. The roles that an agent plays have to
be identified during design. In chapter 2, we have proposed the mapping strategy between
roles and agents, which includes two rules to guide the role assignment. Now we exercise
those rules to identify agents in the system and the roles assigned to them.

According to the two rules, normally an agent should play a single role. However, there is
one exception: two roles should be mapped to the same agent if they share a high volume
of message traffic for information sharing. In our role model, auctioneer and doorman
roles share high information and they can map to the same agent. All the other roles
either share less information, or they could not be mapped to the same agent. Thus, there
are ten types of agents in the system to play the eleven roles. The ten agents are: customer

manager agent, searcher agent, buyer agent, bidder agent, payer agent, mall manager

75

agent, broker agent, seller agent, auctioneer agent, and accountant agent. Each agent
plays its corresponding role, except that the auctioneer agent plays both the doorman and

auctioneer roles.

4.3 Apply Role-Milestone Based Methodology

The essential part of the role-milestone based methodology is the milestone dependency
graph, which helps to identify the social groups of the agent system and the suitable
places for starting checkpoints. Five steps are recommended to get these graphs from the
system role model and agent model. In this section, we demonstrate how to follow the
five steps to get the milestone dependency graphs, and to analyze the graphs to get the

social groups and the checkpoint placements.

4.3.1 Step 1: List Common Goals and Milestones

The first step is to list the common goals, milestones for roles. Common goals are the
common interests of groups of roles. If a group of roles with a common interest must
cooperate with each other to finalize the common interest (and therefore achieve their
individual goals), we say the common interest is the common goal of the group of roles.
Milestones of a role are the important points that a role must reach in its journey towards
its goal. Milestones are defined by system designers with their own knowledge, and
different designers may define different milestones. However, there are conventions for
designers to follow. For example, a milestone may be an intermediate goal used to
evaluate the progress towards the final set target, a scheduling event that signifies the
completion of a major deliverable or a set of related deliverables, a flag indicating the
completion of a part of project that may be needed by some specific time, a key event that
defines the end of a phase or reaching a target or goal, or a scheduled event to measure

progress, etc.

76

By analyzing the eleven roles and their relationships in our e-trading role model, we find
some common goals such as exchanging information between searcher and broker,
making deal prices between buyer and seller, or bidder and auctioneer, making payment
transactions between payer and accountant, etc. Some relationships such as “delegation”
between seller and account, “initiate” between customer manager and searcher, etc., are
more like work assignment than cooperation. In order to conform to our methodology,
groups of roles with such relationships are viewed to have simple common goals named
as work assignments.

The milestones of each role are defined by the designer according to his knowledge. To
avoid repetition of demonstration, we only describe the milestones of buyer, seller,
auctioneer, and bidder. Buyer role has the individual goal of booking a product with the
lowest acceptable price. To fulfill the goal, a buyer starts an iterated contract net protocol
with several sellers selected in the information collection stage. Under this situation,
defining a milestone as a scheduled event to measure progress seems a better choice.
Therefore, a buyer can have several milestones to measure the progress of the price
negotiation, such as “50% negotiation time has elapsed”, “negotiation finishes”, and
“book a product successfully”. If a buyer has a pre-defined deadline time for negotiation,
“50% negotiation time has elapsed” means that half of the allowable time has passed. If
buyer has a pre-defined number of rounds for requesting for proposals, “50% negotiation
time has elapsed” means that the seller has requested for proposals for half of the round
number. The seller role has the individual goal of selling products with the highest
possible prices. Instead of starting a negotiation, a seller waits for the ‘call for proposal’
from buyers. Once a seller receives a request for a product, it sends its proposed price to
the buyer. A seller ends a negotiation when it receives an “accept” or a “cancel” request.
The selection of milestones for a buyer can be scheduling events signifying the

completion of a major deliverable. Thus, the milestones of a seller are: “finish one

77

negotiation with a buyer” that indicates the end of one negotiation, and “send the booking
record to a buyer” that indicates the successful sale of one product. In a similar way, the
milestones for an auctioneer are: “reach the 75% of the minimum acceptable price for
auctioneer”, “reach the minimum acceptable price”, “finish the auction”, and “send the
booking record to the winner bidder”. The milestone for a doorman is “update bidder list

successful”. And the milestones for a bidder are: “register successfully”, “negotiation

ends”, and “receives booking record”.

4.3.2 Step 2: Identify the Loosely-Coupled or Closely-Coupled Agents

After selecting the goals and the milestones, the next step is to identify the loosely-
coupled or closely-coupled agents of a common goal. As described in subsection 2.3.1,
groups of agents collaborate to achieve their common goals. If many messages are
exchanged among the group of agents towards their common goal, the group of agents is
closely-coupled. On the contrary, if few messages are exchanged, the group of agents is
loosely-coupled. The average number of messages that each agent in the group exchanges
for achieving the common goal can be used to classify the two relations. For example, if a
number of # agents exchange a number of m messages to achieve their common goal, m
divides n (m/n) is the average number of messages that each agent exchanges to achieve
the common goal. With the average number (represented as N) of messages exchanged
among the group of agents, we can define a threshold. For a group of agents, if N is more
than or equal to the threshold, the group of agents is closely-coupled; otherwise, they are
loosely-coupled.

In our E-trading system, buyer and seller agents have the common goal of making a deal.
To reach the goal, a buyer agent starts an iterated contract net protocol by sending request
messages to seller agents, asking for the proposal price. A seller agent, upon receipt of

the request, sends the proposal message with its proposal price. Upon receiving the

78

proposals, the buyer agent may choose the best price or reject all of them and start
another round of requests. The elapsed time bound on iterations of the iterated contract
net protocol can be specified by the customer before starting the buying process, and the
maximum number of sellers that a buyer negotiates with is chosen as five in our system.
With an average number of request round of five, the average number of messages that
each agent exchanged during the collaboration process is around twelve. In the auction
case, bidder and auctioneer agents collaborate to achieve the common goal of making a
deal through the auction process. Each participating bidder agent has to send a register
request to the auctioneer agent for registering into the auction first. When the auction
starts, the auctioneer agent first informs the bidder agents of the start. Then it announces
the current bid to all the bidder agents. Each bidder agent, in the receipt of the announce
message, replies with a proposal message carrying its bid price. The auctioneer agent,
upon the receipt of all the proposals, increases the highest bid it gets and announces the
new bid again. The auctioneer repeats the announce-bid process until the end condition is
reached. The auctioneer may sell the product to the bidder who places the highest bid or
refuse all the bidders if its lowest acceptable price is not met. Normally in an auction, the
bid price starts from a very low original price and end with tens of times of the original
price. Therefore, the bidding round in an auction process is huge, which results in
hundreds or thousands of messages exchanged among the auctioneer and bidder agents.
So, in our system, we estimate that the average number of messages that each agent
exchanges is more than forty. If we define the threshold as fifteen, then buyer agent and
seller agent are loosely-coupled to reach their common goal; and bidder agent and

auctioneer agent are closely-coupled while collaborating to achieve their common goal.

79

4.3.3 Step 3: Individual Milestone Dependency Graph for Loosely-

Coupled Agents

As mentioned in subsection 2.3.3.1, log-based rollback recovery works better for loosely-
coupled agents. Once an agent with log-based strategy fails, the agent will be recreated
with its latest checkpoint and replay its logged messages. The computation lost is the
individual agent effort from the failure point to the recent checkpoint of that agent.
Therefore, we use individual milestone dependency graphs to capture the individual
efforts of loosely-coupled agents to select milestones that trigger independent
checkpoints. An example of the individual milestone dependency graph for buyer agent
and seller agent are given in figure 4-2, and each agent should have a separate individual

milestone dependency graph.

Agent: buyer Agent: seller
r | Anlnindaialededbadidebe bl 1
H 1]]
] : i Role: seller !
: i | ‘
1 1] 1
1 1 1 1
] !]]
| : 1 :
: ! ! I 100 H
1 1 1]
1 1 ' 1
! 5_0% negotiation H ! Finish !
1 time has elapsed ! 1 negotiation with ,
: ' : onc buyer '
1 !] 1
! 2800 : ' :
: i ' 5 i
1 [} [l 1
! ncgotiation finishes ! ! - H
| |) Send booking \
' ! ! record message H
: 30 : i ;
1]] 1
) \4 | 1 1
t [} 1 t
! Book a prodiict : ! H
' successfully H ! i
i i ; i
t 1]]
[} L}] 1
1] i 1
_______________________ 1 L e e e Wy |
(a): buyer agent (b): seller agent

Figure 4-2: Individual milestone dependency graph for the common mission: making a

deal price for a product

80

4.3.4 Step 4: Global Milestone Dependency Graph for Closely-Coupled

Agents
Agent: auctioneer Agent: bidder
== mmmmmmm— e mmme- - ' Fom—m=---—-so—-see—mee
| : :)
i Role: auctioneer : " !
1 . = ! .

: Role: door-man : : Role: bidder E

] ! 1
1) \ '
! 300071 ! ! '
' L i
i Current bid reaches ! H !
! 75% of minimum : - 1 ' - H
! acceptable price Update bldti_del' list ! N Regxs;elxl'l !
T » 1
! successfully ! : \ successfully :
1 1 1 H
: / : : '
' : - :

]
\ Current bid reaches ' ' H
H 100% of minimum i ' S00/ !
! acceptable price :) n 1
]
] | : |
i ! t !
] N] !
1 3000/1 ' H '

1 1
] .. . !
\ : | ‘ Finish auction) '
i . ! .
1 ! ' H
H ' H 5/1 '
! ' ! v |
1 % : H 1
H Seniibookmg 1 1 /- ‘Receive booking !
! record message ¥ T tecord message '
1 ! 1 H
€ e e e mcm ;e — e e ——m—— e —em ;e em—————————- i O '

Figure 4-3: Global milestone dependency graph for the common mission: making a deal

price for the bidding product

As mentioned in subsection 2.3.3.4, coordinated checkpointing works better for closely-
coupled agents. In coordinated checkpointing, an event can trigger a set of checkpoints to
be taken together among a set of agents to form a consistent state so that it can be used
for recovery when a later failure occurs. Selection of milestones for triggering
coordinated checkpoints should be based on global incremental effort because in the
occurrence of a failure, the global incremental effort represents the maximum re-
execution required during recovery. Therefore, we use global milestone dependency

graphs, which capture the global effort for closely-coupled agents, to identify the social

81

groups and select the milestones for starting selective checkpointing. An example of the
global milestone dependency graph for auctioneer agent and bidder agent are given in

figure 4-3, and the global milestone dependency graph includes all the related agents.

4.3.5 Step 5: Estimate Incremental Effort

After the milestone dependency graphs are drawn, the next step is to estimate the
incremental efforts of arrows inside the same role in the graphs. The incremental effort of
two adjacent milestones of a role can be measured by running the agent who plays the
role and recording the running time (milli-second) required from the statement
corresponding to the previous milestone to the statement corresponding to the next
milestone. Because different sample data may lead to different results, we run the system
with typical sample data, and use the typical running time as the estimated incremental
effort. For individual milestone dependency graph, the estimated incremental efforts can
be labeled directly on their corresponding arrows since each individual milestone
dependency graph represents an agent. However, global milestone dependency graph is
for calculating global agent efforts towards milestones, and more than one agent is
involved. Therefore, the number of agents contributing towards a milestone should also
be labeled on the arrows. Details can be seen in subsection 2.3.2.3. Figure 2-3 has already
labeled the estimated incremental efforts. Figure 2-4 labels both the incremental efforts
and the number of agents that are involved. However, as the number of bidders involved
in the milestones in figure 4-3 is variable and difficult to estimate, we use » to indicate

that the number is unsure.

4.3.6 Milestone Selection and Group Identification

With one labeled individual milestone dependency graph, we can calculate the individual
agent effort of each milestone in the graph. The individual agent effort of one milestone

is the sum of all the incremental efforts attached to the arrows pointing towards the

82

milestone in the individual milestone dependency graph. After calculating the individual
agent effort of each milestone, all the milestones in the graph can be ordered. Then, a
threshold is defined so that every two milestones in the order with their incremental agent
effort beyond the threshold can be selected to start independent checkpoints. The
threshold is defined to be the tradeoff between failure-free running performance and
recovery speed. Therefore, according to the individual milestone dependency graphs in
the figure 4-2, the individual efforts for the milestones of the buyer agent are 2800, 5600,
and 5630 respectively; and the efforts for the milestones of the seller agent are 100, 105
respectively. If we define the threshold as 2000, the milestones “50% negotiation time
has elapsed” and “negotiation finishes” of the buyer agent are selected to trigger the
independent checkpoints of the buyer agent. To the seller agent, it has no milestone in its
graph that is beyond the threshold. However, one seller agent sells more than one product
to more than one buyer agent in its lifetime. Therefore, once the seller agent sells every
twenty products, the effort of its milestone “send booking record message” accumulates
to be more than 2000, which can be selected to trigger an independent checkpoint of the
seller agent.

With the labeled global milestone dependency graph, we can calculate the global agent
effort of each milestone in the graph. The global agent effort of one milestone is the sum
of the products of the incremental effort and the associated number of agents attached to
the arrows pointing towards the milestone (refer to subsection 2.3.3.3). By ordering the
milestones with their global agent efforts, we can define a threshold that every two
milestones in the order with their incremental global agent effort beyond the threshold
can be selected to start selective checkpoints. The threshold is defined to be the tradeoff
between failure-free running performance and recovery speed. However, in the case that
the global agent effort of a milestone cannot be estimated, the critical (longest effort) path

in the global milestone dependency graph should be used for milestone selection. By

83

measuring incremental effort along this critical path, milestones can be selected to trigger
new group coordinated checkpoint in the group of agents. Moreover, only agents playing
the roles inside the global milestone dependency graph have to take part in the
coordinated checkpoint and therefore form one checkpoint group. In figure 4-3, the
number of auctioneer agents in the collaboration is one, and the number of bidder agents
is variable and may vary significantly from an auction to another. Thus, due to the
difficulty to estimate the global effort, we use the critical/longest path in the graph to
perform the milestone selection. The longest path is shown by the double-lined arrows in
the graph, and the milestones along this longest path have the incremental efforts of 3000,
8000, 11000, 11030. If we define the threshold as 3000, the milestones “Current bid
reaches 75% of minimum acceptable price”, “Current bid reaches 100% of minimum
acceptable price” and “Finish auction” of the auctioneer agent are selected to trigger the
group coordinated checkpoints. Auctioneer agent who plays the auctioneer and doorman
roles should start the group checkpoints when the selected milestones are reached, and
the corresponding bidder agents should participate in the group checkpoints. As register
and de-register protocols are used between the doorman and the associated bidders, the
auctioneer agent who plays the doorman role can maintain a bidder list that includes all

the bidder agents to be involved in a group checkpoint.

4.4 Summary

We have described a sample e-trading system, built the role model, and demonstrated the
steps to apply the role-milestone based methodology to the sample application. Readers
are expected to be able to follow the step-by-step procedure provided in the methodology
to refine their knowledge of the underlying application and apply this methodology to

their applications.

84

Chapter 5 Implementation of Fault Tolerant E-trading

System

5.1 Introduction

In this chapter, we will describe the implementation of our SCLR protocol on the e-
trading multi-agent system. Because the log-based protocol and the mixture of the log-
based protocol with the SCLR protocol are not the focus of this thesis, we will not
describe their implementations. Our objective is to show how to implement a fault
tolerate multi-agent system using the SCLR protocol in practice. Moreover, the
implemented system can serve as a test bed for evaluating the SCLR protocol
performance. In the following, we will introduce JADE (Java Agent Development
Framework) to support the development of the multi-agent system, and describe the
implementation details of the agent architecture proposed in chapter 2, and the four

algorithms of the SCLR protocol.

5.2 JADE Platform

JADE (Java Agent Development Framework) is a software development framework
aimed at developing multi-agent systems conforming to FIPA standards. In the system
level, JADE is a platform (also a middleware) that provides runtime support for
application agents. In the application level, JADE defines a framework to facilitate the
development of multi-agent systems. It defines an agent model from which an agent
developer can extend the abstract model to domain components by following a specific

business logic. We now introduce JADE based on its version 2.61.

&5

5.2.1 JADE Architecture

A JADE platform is composed of containers, which are distributed in machines. A
container is actually a virtual host, which runs on one Java virtual machine and provides
runtime support for agent execution. Main container is the core container of a JADE
platform, and it coordinates all other containers and keeps together the whole platform.
By using containers, agents running in containers are distributed in different machines,
and they will not observe the existence of the underlying network as containers hide such

complexity. Figure 5-1 shows the distributed JADE Architecture.

L@
LV ()
! Agent Contamer L MainContainer k—2 Agent Contawner
1

Network Environment

Figure 5-1 JADE architecture

5.2.2 JADE Agent Model and Behavior Model

A JADE agent is an active object, which adopts a thread-per-agent concurrency model.
However, normally one agent has multiple concurrent activities (roles). Thus, to support
the execution of an agent, JADE comes with a scheduler that schedules the behaviors of
an agent in a non-preemptive way. Statically, a behavior is an abstract class that exposes
an interface called action. A behavior of an agent is modeled as a sequence of actions
taken from the behavior object. An agent naturally can have multiple behaviors. At
runtime, the scheduler, which is embedded inside an agent and hidden to the agent
developer, will take the various behavior objects available and execute them in a round-
robin manner. However, the scheduler cannot save the stack frame of a behavior object.

This means that once a behavior object is executed, it will not yield its execution resource

86

to another behavior object until it returns from its execution. By adopting the thread-per-
agent strategy, JADE aims to limit the number of threads running in the agent platform

and to minimize the thread overhead.

5.2.3 JADE Message Passing

JADE agents can communicate via asynchronous FIPA-compliant message passing. To
send and receive messages, the JADE agent class provides a set of methods such as
Agent.send() method and Agent.receive(). Each agent has a private message queue, which
buffers the messages from the sender agents. The advantage of providing each agent with
its own message queue is to reduce the synchronization among agents in receiving

messages.

5.3 Implementation of Agent Architecture

The agents in the e-trading system are built with the agent structure proposed in chapter
2, and the agent architecture is a composition of roles that have their own structures.
Based on the JADE agent model and behavior model, we can implement the proposed
role structure and agent structure by extending the JADE agent class and behavior class.

A role can be defined as a class, which consists of the role knowledge and three
behaviors: sensory behavior, reactive behavior, and proactive behavior. Sensory and
reactive behaviors can be viewed as JADE cyclic behaviors which run cyclically in the
lifetime of an agent. Proactive behavior is a behavior that has finite states that simulate all
the status of the role while achieving its individual goal. Each state of the proactive
behavior includes a set of programs that achieve a specific task. Proactive behavior
finishes its work once the states corresponding to the end of the behavior are reached. A
role has only one proactive behavior associated with it. However, as one agent may

cyclically repeat one type of work, such as an auctioneer agent may cyclically auction

87

products one by one, proactive behavior, at the time of achieving the end of the behavior,
may restart from the beginning and try to do another work.

With the role class to implement a role, the implementation of the agent structure is
simple. An agent is defined as a class extending the JADE agent class, which consists of
agent level knowledge and the pointers pointing to the roles it plays. Thus, according to
the JADE behavior model, one agent has all the behaviors belonging to the roles it plays.
Figure 5-2 shows a sample of an agent class and a role class played by the agent. In the
figure, “Agent 1” maintains a “role 1” pointer that points to the “role 1” that “Agent 1”

plays.

public class Agentl extends JadeAgent {

Rolel rolel; // a pointer linking to the role the agent plays
Knowledge agentKnowledge;

public Agentl() { //construction
rolel = new Rolel(this);

!
} // end of class Agentl
public class Rolel {

Agent myAgent; /I a pointer linking to the agent who plays the role
Knowledge roleKnowledge;
ProactiveBehavior PB;

public Role1(Agent agent) { //construction
myAgent = agent;
myAgent.addBehaviour(new SensoryBehavior(myAgent)),
myAgent.addBehaviour(new ReactiveBehavior(myAgent));
PB = new ProactiveBehavior(myAgent);
myAgent.addBehaviour(PB);

}

public abstract class SensoryBehavior extends JadeCyclicBehaviour{
SensoryBehavior (Agent agent);
public void action(} { /I perceive action of the role

}
}

public abstract class ReactiveBehavior extends JadeCyclicBehaviour {
ReactiveBehavior (Agent agent);
public void action() { // reactive action of the role

}

88

}

public abstract class ProactiveBehavior extends JadeSimpleBehaviour {

int state;
ProactiveBehavior (Agent agent) { //construction
super(a);
state = 0; /1 0 indicates the initial state of the actions
public void action() { // proactive actions of the role
switch (state) {
case 0: //start the proactive behavior
state = 1;
break;
case 1:
case n: // n indicates the end state of the actions
exit;
} // end of swtich
} // end of action
public int onEnd() { //restart the proactive behavior once it ends
state = 0;

myAgent.addBehaviour(PB);
b

} // end of ProactiveBehavior class
} // end of class Rolel

Figure 5-2 Agent class and the role class the agent plays

We have implemented the proposed role-based agent structure; however, to make the
agent fault tolerant, fault tolerant mechanisms have to be integrated into the above-

mentioned classes to implement the SCLR protocol. Details are given in the next section.

5.4 Implementation of the SCLR Protocol

To make the e-trading system fault tolerant, we provide four servers to provide the
services to facilitate the implementation of the rollback-recovery protocol. The servers
can be implemented with replication techniques to guarantee their availability. The
servers include: (i) a repository server to provide application agents the service of saving
their checkpoints and logs; (ii) a failure detection server to provide the service of

monitoring the liveliness of application agents; (iii) a recovery server to provide the

&9

service of building the recovery line, recreating/restoring the rollback agents with their
checkpoints and logs; (iv) a garbage collection server to remove the useless checkpoints
and logs. With the four servers, we can implement the checkpointing algorithm, logging
algorithm, recovery algorithm and pruning algorithm of the SCLR protocol easily.

In addition to the servers, fault tolerant mechanisms also have to be integrated into
application agents to make them fault tolerant. In a fault tolerant application agent that
conforms to our agent architecture, there is application program code for achieving the
application specific operations, and fault tolerant program code for implementing the
SCLR rollback-recovery protocol. Code for starting a checkpoint should be inserted after
the code corresponding to a selected milestone; code for logging events should be
inserted before events are handled; and code for restoring the state of a recovery agent
and relaying its logged events should also be provided.

In the following, we will first introduce the terminologies, data structures and classes
used in the system. After that we will elaborate the details about the four servers that run
in the JADE platform as system agents. Then we will describe the fault tolerant code that
is integrated into application agents. Finally we will elaborate the implementation of the

algorithms of the SCLR protocol described in chapter 3.

5.4.1 Terminology, Data Structure and Classes

The terminologies used in the system include AID, CID, and SI. AID indicates the
identifier of an application agent. CID indicates the identifier 6f a group checkpoint, and
all individual checkpoints of a group checkpoint have the same CID. SI indicates the
index of the current state interval of an agent.

The data structures used in the system include CHECKPOINT, CG, CGS, EVENT, SSN
and RSN. The CHECKPOINT structure maintains the data of an individual checkpoint of

an agent, which includes CID, AID, SI, SSN, RSN, CG, and DATA (refer to subsection

90

3.4.3). CID and AID form the key of the CHECKPOINT structure, which can uniquely
locate an individual checkpoint. The CG structure is encapsulated in the CHECKPOINT
structure, and it maintains CG (refer to subsection 3.4.1) of its corresponding checkpoint.
The CG structure is a set of pairs “<AID, STATUS>”, where AID indicates the identifier
of the agent who cooperated to take the checkpoint and STATUS indicates whether the
corresponding checkpoint of the cooperated agent is removable or not (refer to subsection
3.4.4). The CGS structure maintains CGS (refer to subsection 3.4.1) of an agent, which is
a set of CG. The SSN structure maintains the SSN table described in subsection 3.4.2 of
an agent, which is a set of pairs “<AID, NUM>", where AID is the identifier of the
receiver agent with which the agent has communicated and NUM maintains the sequence
number of the message sent to its corresponding receiver agent. We use SSN(AID) to
indicate the corresponding sequence number of a receive agent. The RSN structure
maintains the RSN table described in subsection 3.4.2 of an agent, which is also a set of
pairs “<AID, NUM>", where AID is the identifier of the receiver agent with which the
agent has communicated and NUM maintains the highest sequence number of the
message received from its corresponding receiver agent. We use RSN(AID) to indicate
the corresponding highest sequence number of a receive agent. Details about SSN and
RSN can be found in subsection 3.4.2. The EVENT structure maintains the determinant
of an event, which includes SOURCEAID, DESTAID, SI, SSN(DESTAID), DATA, and
TYPE. SOURCEAID and DESTAID denote respectively the identifiers of the sender
agent and the receiver agent. TYPE indicates that an event may be “message receipt
event”, “input event”, or “decision event”. SSN(DESTAID) indicates the sequence
number attached to an event if its TYPE is “message receipt event” (refer to subsection
3.4.5).

Two classes are provided in the system to maintain checkpoints and logs saved by

application agents. They are CheckpointTable class and LogTable class. CheckpointTable

91

class provides the methods such as saveCheckpoint(c: CHECKPOINT) to save a specific
checkpoint to stable storage, getCheckpoint(aid:AID, cid:CID) to read a specific
checkpoint of an agent from stable storage by AID and CID, removeCheckpoint(cid. CID)
to remove a group of checkpoints for pruning, getLatestCheckpoint(aid:AID) to read the
latest checkpoint of an agent from stable storage, and getCGS(aid:AID) to calculate CGS
of an specific agent from its checkpoint history. LogTable class provides the methods
such as saveLog(e:EVENT) to save a specific event of an agent to stable storage,
getLogs(c:CHECKPOINT) to read events saved after an individual checkpoint of an
agent from stable storage, and removeLogs(c:CHECKPOINT) to prune events saved
before a individual checkpoint for pruning. These methods are used by the repository
server, the recovery server, and the garbage collection server to maintain the data shared

among them.

5.4.2 Implementation of Servers

The repository server maintains the ‘checkpoints and messages/events saved by
application agents that run in the system. It also informs application agents of their
current CGS once they take new checkpoints. Application agents can save their
checkpoints or events by sending “checkpointing” messages tagging the CHECKPOINT
data or “logging” messages tagging the EVENT data to the repository server. The
repository server, upon receipt of such messages, saves the CHECKPOINT/EVENT data
on stable storage. After a checkpoint is saved, the repository server also informs the
garbage collection server to do the pruning because pruning should be done after new
checkpoints are created (refer to in subsection 3.4.4). Moreover, by using the centralized
solution, the repository server can work as the coordinator of a group checkpoint in the
way that it sends the “release” messages to the participator agents of a group checkpoint

to complete the group checkpoint once it receives all the individual checkpoints from its

92

members. Before sending a “release” message to an agent, the repository server should
calculate CGS of that agent according to its checkpoint history, so that CGS can be
tagged to the “release” message to inform the destination agent about its current CGS.
The failure detector server is responsible for monitoring the liveliness of application
agents. To do so, application agents have to register with the failure detector server at
their creation time, and de-register before they vanish. The failure detector server sends
“ping” messages to the registered application agents periodically. An application agent,
upon receipt of a “ping” message, will reply with an “alive” message. An application
agent will be regarded as in the ‘crashed’ state if the failure detector cannot receive its
“alive” message within a bounded time. Once the failure detector server finds an
application agent that has crashed, it informs the recovery server by sending a “failure”
message tagging the AID of the crashed agent.

The recovery server is responsible for determining the subset of agents to be recovered,
recreating the crashed agent with its latest checkpoint and logs, and resetting the states of
the survivor agents involved in recovery with their corresponding checkpoints and logs.
Upon the receipt of a “failure” message from the failure detector server, the recovery
server will calculate CGS of the crashed agent according to its checkpoint history,
recreate the crashed agent with its latest checkpoint and logs, load the checkpoints and
logs of the survivor agents belonging to ICGS of the crashed agent (refer to subsection
3.4.1), roll them back with their corresponding checkpoints and logs, and finally restart
all the involved agents. The recovery server works as the recovery coordinator that
implements the three-phase recovery protocol described in subsection 3.4.6. Figure 5-3
shows the skeletal code of the recovery server and the gerCGS(a:AID) method of the
CheckpointTable class. The getCGS() method calculates CGS of an agent according to its
checkpoint history, and the recovery server implements parts of the recovery algorithm.

In the figure, we use C to indicate a CHECKPOINT data, use C.SI, C.SSN, and C.RSN to

93

indicate the data of C. To complete the work of recovery, some fault tolerant codes have

to be inserted into application agents, which will be described later in subsection 5.4.3.4.

CheckpointTable:getCGS(agentid:AID) {
CGS @
For each checkpoint ¢ taken by agent a with a.AID == agentid
CGS — CGS v c.CG
Return CGS
}

Recovery server receives one failure(agentid) message from failure detector server {

//Get CGS of the crashed agent
CGS « CheckpointTable.getCGS(agentid)
ICGS « Intersection of CGS

//Load the most recent checkpoint of the crashed agent
C « CheckpointTable.getLatestCheckpoint(agentid)

//Load logs saved after checkpoint C of the crashed agent
LOG « LogTable.getLogs(C)

Recreate the crashed agent with the same agentid, C and LOG

For each agent g (9. AID€ICGS and q.AID # agentid)
C « CheckpointTable.getCheckpointByCID(q.AID, C.CID)
LOG « LogTable.getLogs(C)
Send “rollback” message to agent ¢ tagging C and LOG

For each agent g: (9. AID€ICGS)
Block to receive ready(C.CID) message from g

For each agent q: (. AID<ICGS)
Send commit(C.CID) message to ¢

Figure 5-3 Code for the recovery server

The garbage collection server implements the pruning algorithm described in subsection
3.4.4 that deletes those checkpoints and logs that are no longer needed in any agent crash.
We have explained in subsection 3.4.4 that the pruning algorithm should be called once
new checkpoints are created. Therefore, once a checkpoint is saved into stable storage
successfully, the repository server should inform the garbage collection server to run the
pruning algorithm. The garbage collection server and the repository server can be

integrated in the same system agent to simplify the communication between them.

94

5.4.3 Integrate Fault Tolerate Mechanism into Application Agent

In addition to the servers, fault tolerant code has to be integrated into agent application
code to achieve fault tolerant agents using the SCLR protocol. This fault-tolerant code
inserted into agents cooperates with the four servers to implement the algorithms of the
SCLR protocol. As the pruning algorithm is implemented totally in the garbage collection
server, we will display how fault tolerant code is inserted into agent programs to
implement the other three algorithms: selective checkpointing algorithm, logging
algorithm, and recovery algorithm. In the following, we will first describe the FTAgent
class, which extends the JADE agent class and encapsulates the data structure and
method needed by a fault tolerant agent. Then we will elaborate the implementation of

the algorithms by inserting fault tolerant code into the agent application code.

5.4.3.1 FTAgent Class

To implement the SCLR protocol, an agent has to maintain some protocol related data
structures, which include SI, CGS, SSN, RSN (refer to subsection 3.4.2), and a list that
stores the logged events during recovery. An agent also has to provide some methods
such as saveCheckpoint(cid:CID, cg:CG, data:DATA) to save its checkpoint to the
repository server, saveEvent(e:EVENT) to save its event to the repository server, and
restoreState(c: CHECKPOINT, events:List, cgs:CGS) to restore its state and logged
events for recovery. Moreover, to implement the logging and recovery algorithms, the
methods for receiving and sending messages provided by the JADE agent have to be
modified to be able to handle the message logging and replay. FTAgent class is defined to
extend the JADE agent class and encapsulate the data structures and methods mentioned
above. Therefore, an application agent in the e-trading system can extend the F7Agent
class to inherit the data structures and methods needed for implementing the SCLR

protocol. Figure 5-4 shows the FTAgent class. In the diagram, Message class is provided

95

by JADE, send(m:Message, a:AID), receive(), and put(m:Message) methods are provided
by JADE agent class to send a message to the receiver agent, deliver a message to the
agent from its message queue, and put a message to the end of the agent’s message queue
respectively. The receiveMessage(m: Message) and sendMessage() are user defined
methods that implement the message logging and message replay recovery protocol and
should be called by fault tolerant agents to deliver and send a message. An input event of
an agent can be modeled as a message receipt event by properly designing the agent
class; therefore, it works with the same mechanism of a message receipt event except that
all input events should be logged. The fault tolerant code regarding a decision event
should be inserted at the place where the event occurs, which are mixed with the

application code and will be explained later in subsection 5.4.3.3.

public class FTAgent extends JadeAgent {
int si;
CGS cgs;
SSN ssn,
RSN rsn;
List logs;
AID repository_server, recovery_server,

public void saveCheckpoint(cid:CID, c¢g:CG, data:DATA) {
CHECKPOINT ¢ = new CHECKPOINT(cid, this.AID, si, ssn, rsn, cg. data);
send(c, repository_server); //send c to the repository server

}

public void saveEVENT (sourceaid:AID, type:TYPE, data:DATA) {

switch (type) {

case MESSAGE_RECEIPT:
event = new EVENT (sourceaid, this.AID, si, ssn(destaid), data, type);
break;

case INPUT _EVENT:
event = new EVENT (sourceaid, this.AID, si, null, data, type);
break;

case LOCAL_EVENT:
event = new EVENT (null, thisAID, si, null, data, type);

break;
}
send(event, repository_server), //send event to the repository server
}
public void restoreState (c:CHECKPOINT, events:List, cgs_in:CGS) {
si=c.SI;
ssn = ¢.SSN;

96

rsn = ¢.RSN;
logs = events;
cgs = cgs_in;

}

public Message sendMessage(m:Message) { // Message class is provided by JADE
ssn(m.receiverAID)++;
send(m, m.receiverAID);

}

public Message receiveMessage() {
if (logs.size() > 0)
¢ = logs.getElementAt(0);
ifsi==e.si-1
logs.removeElementAt(0);
rsn(e.source AID)++;
return ¢; // repay the logged message
else
m = receive();
if rsn(m.senderAID) = = m.ssn -1
rsn(m.senderAID)++;
return m; // re-exchange the un-logged message
else if rsn(m.senderAID) < m.ssn -1
putback(m);
else
m = receive();
if rsn(m.senderAID) = = m.ssn -1
rsn(senderAID)++;
if (cgs # null) and (m.senderAID & Intersection of cgs)
saveEvent(m.senderAID, MESSAGE_RECEIPT, m) // log the message
return m;
else if rsn(m.senderAID) < m.ssn -1
putback(m);

Figure 5-4 Code for FTAgent

5.4.3.2 Implementation of Selective Checkpointing Algorithm

The JADE platform does not provide functions to save and reload the stack of an agent.
Therefore, recovering from a checkpoint can only depend on the states of the logical
control variables that can locate the actual source statement associated with a checkpoint.
According to a thread-per-agent model and the behavior model of JADE, if the state
variable of cach behavior in an agent is saved in a checkpoint, the agent can be recreated

and restarted from the exact execution place by restoring these state variables. In our

97

agent architecture, as sensory behavior and active behavior are simple behaviors that
have no states, only the states of proactive behaviors of the roles that an agent plays have
to be saved in a checkpoint. Thus, the application related data in a checkpoint include the
agent-level knowledge, the role-level knowledge, and the state variables of proactive
behaviors. During recovery, these data are restored and the proactive behaviors of roles
can be restarted from their saved states.

As we have explained in chapter 2, checkpoints are started at the time when selected
milestones are reached. With the agent structure we proposed, reaching a milestone could
be designed as reaching a state of a proactive behavior. Therefore, with the recovery
consideration we mentioned above, code for starting a checkpoint should be inserted in a
proactive behavior at the beginning of the application code. Moreover, as a participator
agent of a group checkpoint can only start its checkpoint at the time of receiving a marker
message, the receiving message event should only occur at the first statement of each
state of a proactive behavior. Figure 5-5 shows the code of a fault tolerant auctioneer
agent, and the code shown from line 47 to 56 demonstrates the checkpoint part of the

agent.

5.4.3.3 Implementation of the Logging Algorithm

Logging and relaying messages have been implemented in the sendMessage() and
receiveMessage() methods of the FTAgent class as shown in the figure 5-4. Therefore, an
application agent class inherits the ability of logging messages as it extends the FTAgent
class. However, the code for logging the decision event is inserted at the place where the
event occurs, which is mixed with the application code. Figure 5-5 shows a sample of
logging a decision event (line 59, 64, and 65) in the proactive behavior of the auctioneer

agent.

98

5.4.3.4 Implementation of Recovery Algorithm

The recovery server has implemented most parts of the recovery algorithm as shown in
the figure 5-3. However, some fault tolerant code has to be inserted into the agent
programs to cooperate with the recovery server. As indicated in figure 5-4, FTAgent class
has implemented the message replay, which is inherited by application agents. The task
left for an application agent is to provide a construction(c:CHECKPOINT, logs:List,
cgs:CGS) method to recreate a crashed agent with its checkpoint, logs and CGS, provide
a rollback(c:CHECKPOINT, logs:List, cgs:CGS) method to roll back a survivor agent
with its checkpoint, logs and CGS, and insert the fault tolerant code at the place where a
decision event might occur for relaying the logged decision event. The construction and
rollback methods of an application agent should send READY messages to the recovery
server to implement the three-phase recovery protocol described in subsection 3.4.6.
Figure 5-5 shows the code of the construction (line 9-20) and rollback (line 21-31)
methods of the auctioneer agent, and the code for the reply of a decision event (line 59-

63) in the proactive behavior of the auctioneer agent.

1 public class AuctioneerAgent extends FTAgent {

2 RoleAuctioneer auctioneer; // a pointer linking to the auctioneer role the agent plays
3 RoleDoorman doorman; // a pointer linking to the bidder role the agent plays

4 Vector bidderlist; // agent-level knowledge

5 public AuctioneerAgent() { //construction

6 auctioneer = RoleAuctioneer(this),

7 bidder = RoleBidder(this);

8 }

//construction for recreation of the crashed agent
9 public AuctioneerAgent(c: CHECKPOINT, logs:List, cgs:CGS) {
10 auctioneer = RoleAuctioneer(this);
11 bidder = RoleBidder(this);

12 bidderlist = c.data.agentknowledge; // restore the agent-level knowledge

13 auctioneer.roleknowledge = c.data.auctioneer.kowledge; //restore the role-level knowledge

14 bidder.roleknowledge = c.data.bidder.kowledge; // restore the role-level knowledge

15 auctioneer.state = c.data.auctioneer.state; // restore the state of auctioneer proactive behavior
16 bidder.state = c.data.bidder.state; // restore the state of the bidder proactive behavior

17 restoreState (c, logs, cgs);

18 Message ready = new Message(READY, ¢.CID);

99

19 sendMessage(ready, recovery_server); // send ready message
20 }

/I roll back the survivor agent during recovery
21 public viod rollback (¢:CHECKPOINT, logs:List, cgs:CGS) {

22 bidderlist = c.data.agentknowledge; // restore the agent-level knowledge

23 auctioneer.knowledge = c.data.auctioneer.kowledge; //restore the role-level knowledge

24 bidder.knowledge = c.data.bidder.kowledge; // restore the role-level knowledge

25 auctioneer.state = c.data.auctioneer.state // restore the state of auctioneer proactive behavior
26 bidder.state = c.data.bidder.state // restore the state of the bidder proactive behavior
27 restoreState (c, logs, cgs) // restore the protocol related data

28 Message ready = new Message(READY, ¢.CID);

29 sendMessage(ready, recovery_server), // send ready message
30 }

31}

32 public class RoleAuctioneer {

33 Agent myAgent, /I a pointer linking to the agent who plays the role
34 Knowledge roleKnowledge;
35 ProactiveBehavior PB;

36 public RoleAuctioneer(Agent agent) {

37 PB =new ProactiveBehavior(myAgent);
38 myAgent.addBehaviour(PB);
39 }

40 public abstract class ProactiveBehavior extends JadeSimpleBehaviour {
41 public int state;
42 ProactiveBehavior (Agent agent) {

43 super(a);
44 state = 0;
45 3

46 public void action() {

// initiator group checkpoint

47 if (state = selected miletones_state)

48 for each bidder in myAgent.bidderlist

49 String cid= myAgent.Name + SI; I/ create CID

50 CG cg = new CG(bidderlist+auctioneer. AID); I/ create CG
// create the marker message attaching CID and CG

51 Message marker = new Message(marker, cid, cg);

52 sendMessage(marker, bidder); // send marker message

53 DATA data = new DATA(bidderlist, auctioneer.roleknowledge,

bidder.roleknowledge, auctioneer.state, bidder.state);

54 saveCheckpoint (cid, cg, data); // store the checkpoint to the repository server
/Iwait for the release message from repository message

55 Message release = receiveMessage(RELEASE);

56 cgs = release.CGS; // set the current CGS of the agent

// end for group checkpoint

57 switch (state) {

100

58

59
60
61
62
63
64

65
66

67
68

case n:

/! At the place where a decision event may occur
if (logs,size() >0)
e=logs.getElementAt(0); // relay the logged event during recovery
if si=e.si-1 and e TYPE = LOCAL EVENT
replay the event;
logs.removeElementAt(0);
else
//in the occurrence of a decision event e in a normal execution, log the event
saveEVENT(this:AID, LOCAL_EVENT, e. DATA),

exit;
} // end of switch

} // end of action

69 } // end of ProactiveBehavior class
70 } // end of RoleAuctioneer

Figure 5-5 Code for auctioneer agent

5.5 Summary

We have demonstrated the implementation of our SCLR protocol using a centralized

solution on the JADE platform. Obviously, there are many possible different

implementations. Readers are expected to understand better the underlying protocols and

implications to their implementations and performance.

101

Chapter 6 Performance Test

6.1 Introduction

In the fault tolerant e-trading system, we have implemented the SCLR protocol and the
log-based protocol. In this chapter, we use the e-trading system as the test case to
evaluate the performance of these two protocols. The evaluation consists of three parts.
The first part compares the percentage of messages logged in the two protocols. The
second part evaluates the failure-free performance of the two protocols. The last part
compares their recovery speeds. The first two tests are related to the cost/overhead of the
protocols in a failure free run, and the last one is to evaluate the recovery performance
when failures occur. Our results are obtained by averaging the results measured over ten

runs of the e-trading system.

6.2 Experimental Setup

We conducted our experiment on 4 Pentium-based workstations connected by 100Mb/s
Ethernet. Each workstation has 256 megabytes of memory and runs Windows 2000
server. In the experiment, each machine hosts one JADE container, which can simulate
one mall site or one customer site. We use 3 machines to simulate 3 mall sites, and each
mall includes one broker agent, three seller agents, one auctioneer agent, and one
accountant agent. The fourth machine is used to simulate the customer site, which
includes 4 customer manager agents, 4 searcher agents, 4 buyer agents and 30 bidder
agents. Searcher and bidder agents move to the mall sites to complete their missions.
Thus, in one auction scenario, we have 10 bidder agents working with 1 auctioneer agent.
In an iterated contract net negotiation, we have 3 seller agents negotiating with each

buyer agent.

102

6.3 Percentage of Messages Logged

Log-based rollback recovery protocol has the advantage of domino-free rollback and fast
output commit. However, it has to log every message in the system, which introduces
heavy runtime overhead and may impede the speed of the underlying application. The
SCLR protocol avoids domino rollback without logging all messages. This can improve
the failure-free performance of the rollback-recovery protocol. The percentage of
messages logged reflects the improvement in overhead reduction when the SCLR
protocol is used.

We use the auction scenario to get the percentage of messages logged in an auction.
According to our system design, auctioneer and bidder agents participate in group
checkpoints during their efforts to achieve their common goal of making a deal (refer to
subsection 4.3.6). The auctioneer agent starts the group checkpoints at the three selected
milestones: “Current bid reaches 75% of minimum acceptable price”, “Current bid
reaches 100% of minimum acceptable price” and “Finish auction”. As ICGS of an agent
(refer to subsection 3.4.1) determines whether a messages should be logged or not, the
checkpoint history can significantly affect the percentage of messages logged. We use N,
to indicate the number of auctioneer agents involved in the achievement of the common
goal, N; to indicate the number of bidder agents involved, N,,; to indicate the number of
agents participating in the first group checkpoint, N, to indicate the number of agents
participating in the second group checkpoint, and N3 to indicate the number of agents
participating in the third group checkpoint. Six test cases are simulated to see how
checkpoint history influences the test result. Table 6-1 presents the percentage of
messages logged against messages received by the auctioneer agent in the SCLR protocol
in six different cases. In the six cases, N, and N, have fixed values: N,= 1 and N,= 10.
N1, Nep2, and N3 are variable, which show the checkpoint history of the participating

agents.

103

Logged message/exchanged message (%) AVG
Case 1: Case 2: Case 3: Case 4: Case 5: Case 6:
Nepi=11 Nepi=8 Nep1=7 Nepi=5 Nepi=4 Nepi=3
Ncp2:1 1 Ncp2=1 0 Ncp2=9 Ncp2=9 Ncp2=8 Ncp2=6
Nepz=11] Nepz=11] Ngz=11] Nepz=11f Nep=11] Ng;=11
15 27 35 47 61 78 44

Table 6-1 Percentage of messages logged against messages received

Analysis:

The logging strategy used in the SCLR protocol is that for an agent A4, only those
messages received by 4 and sent by agents not belonging to ICGS(4) have to be logged
(refer to subsection 3.4.1). Therefore, the bigger the set of ICGS(4) is, the smaller the
percentage of messages logged. Furthermore, group checkpoints are triggered at the
achievement of the three selected milestones: “Current bid reaches 75% of minimum
acceptable price”, “Current bid reaches 100% of minimum acceptable price” and “Finish
auction”, which depend on how the bidding process goes on. As long as there are bidder
agents offering competing prices, the selected milestones can be reached no matter how
many bidder agents are involved in the bidding. Moreover, the time when a bidder agent
registers with an auctioneer agent is unscheduled, which makes the groups of agents in a
group checkpoint undeterminable. Due to the above mentioned reasons, the checkpoint
groups of the three pre-built group checkpoints are variable, and ICGS of the
participating agents are variable accordingly.

The six test cases show the different situations of the three checkpoint groups, and ICGS
of participating agents varies in different cases. For example, in case 1 where Ny, = Ny
= N.p3= 11, all 11 agents participate in each of the three group checkpoints. When a new
group checkpoint is taken, the previous checkpoint is pruned. Therefore, ICGS of the
auctioneer agent always contains 11 agents after the first checkpoint is taken, and no

messages exchanged among the 11 agents have to be logged afterward. In case 2 where

104

Nepi= 8, Ngp2= 10, Ngps= 11, 8 agents are involved in the first group checkpoint. Thus,
after the first checkpoint, ICGS of the auctioneer agent contains 8 agents and messages
sent from the 3 bidder agents outside the ICGS have to be logged by the auctioneer agent.
When the second group checkpoint is taken and the first group checkpoint is pruned,
ICGS of the auctioneer agent comes to contain 10 agents and only messages from one
agent outside the ICGS have to be logged. In the same way, after the third group
checkpoint is taken, all 11 agents are contained in ICGS of the auctioneer agent and no
messages received by the auctioneer agent from the 10 bidder agents have to be logged
afterward. For case 3 to case 6, their situations are similar to what happens in case 2.
Therefore, in a conclusion, ICGS of case 1 and case 2 are larger, so that in case 1 and
case 2, the SCLR protocol logs fewer messages. In the other four cases, as ICGS becomes
smaller and smaller, the protocol logs more and more messages.

The data in table 6-1 also shows that even in the best case, 15% of the messages received
by the auctioneer agent have to be logged. The reason is that before a group checkpoint is
done, all participating agents do not belong to any group and all messages have to be

logged, which contribute to the 15% result.

6.4 Failure-Free Performance

Failure-free performance of a rollback-recovery protocol can be expressed by the
execution overhead introduced to the application. The execution overhead can be
measured by the percentage increase in runtime due to the additional services required to
provide agent-crash fault tolerance. We can get the percentage increase in runtime by
measuring the agent execution time with and without fault tolerance protocols. To
compare the performance of the log-based protocol and the SCLR protocol, we
implement the two protocols using the auction scenario, and run the group of auctioneer

agent and bidder agents under the same condition, which means the number of auctioneer

105

and bidder agents participating in the auction is the same and each bidder agent joins the
auction at the same time respectively in the two protocols. Table 6-2 presents the failure-
free overhead for the SCLR protocol and log-based protocol. Under the SCLR protocol,
we run the group of auctioneer agent and bidder agents with: Ny = 10, N,= 1, Ny =5,

Ngp2=9, and Ngp3= 11, and the percentage of messages logged against messages received

is 41%.
Protocol Execution time without [Execution time with Increase in
Fault tolerance (ms) |fault tolerance (ms) | runtime (%)
Group checkpoint 47966 50100 44
Log—based 47966 52136 8.7
Table 6-2 Failure-free overhead
Analysis:

From the data shown in table 6-2, the SCLR protocol increases only 4.4% of runtime to
the application agent, while log-based protocol increases 8.7% of runtime. The difference
4.3% comes from the fact that 59% messages are reduced for recording due to the group
checkpoint and group rollback recovery. The data shows that logging produces the most
part of the overhead while checkpointing (group coordination checkpointing and
independent checkpointing) produces less. The overhead produced by group coordination
checkpointing is small because by using groups we can limit the number of agents
participating in a group coordination checkpoint into a reasonable size. Moreover, the
overhead for coordination checkpoint is further reduced as messages in channels during
the group checkpoint are logged by the logging algorithm, which introduces this
overhead to the logging algorithm not the checkpointiing algorithm. The above data: 4.3
(8.7 — 4.4) percent of performance improvement shows that the SCLR protocol improves
the failure-free performance significantly compared with the log-based protocol. If the

message traffic among the group of agents increases, the performance improvement

106

should be more dramatic. However, according to the test result, both the SCLR protocol
and the log-based protocol introduce less overhead into the application. The reason is due
to the fact that the Jade platform runs with many disk accesses even in ordinary
applications. Hence the additional disk accesses caused by logging do not change the

execution time profile as much as one might expect.

6.5 Recovery Speed

The recovery speed of a system can be expressed by the recovery time required to restore
the system into a consistent global state from the time when a failure is detected. In the
occurrence of an agent crash, the recovery time 7., for the log-based protocol comprises
three parts. (1) T is the time to restore the state of the failed agent to its latest
checkpoint. (2) T, is the time to retrieve determinants and messages logged of the failed
agent during failure-free execution. (3) Troysva is the time to roll forward the execution of
the failed agent to its pre-crash state. The recovery time 7,.. for the SCLR protocol
consists of five parts. (1) Tuu is the time to restore the states of the failed agent and the
corresponding rollback agents. (2) T, is the time to retrieve determinants and messages
logged of the failed agent and rollback agents during failure-free execution. (3) T3pagse 1S
the time to incorporate the rollback recovery. (4) Ty is the time to roll forward the
execution of the failed agent to its pre-crash state by re-exchanging its un-logged events
and replaying its logged events. (5) Trecover 1S the time to roll forward the execution of
other rollback agents to their pre-failure states by re-exchanging their un-logged events
and replaying their logged events.

To compare the recovery speed of the log-based protocol and the SCLR protocol, we also
use the auction scenario, and run the group of auctioneer agent and bidder agents under
the same condition as shown in the failure-free performance study. We simulate an agent

crash by crashing the auctioneer agent near the end of its mission, and test the time

107

needed to restore the groups of agents to their pre-failure states. Table 6-3 presents the

recovery speed for the log-based protocol and the SCLR protocol.

Protocol Total execution time (ms)| Recovery speed (ms)
Group checkpoint 50100 3983
Log-based 52136 815

Table 6-3 Recovery speed

Analysis:

From the data shown in table 6-3, the SCLR protocol recovers much slower than the log-
based protocol. The difference comes from the fact that more agents have to roll back in
the SCLR protocol than the log-based protocol. Therefore, the SCLR protocol needs
more time in T uand T, than the log-based protocol. The SCLR protocol also requires
extra time for T3ppase and Thecover This result meets our expectation that the SCLR
protocol uses more complex recovery algorithm than the log-based protocol to exchange
for the benefit of better failure-free performance. However, the test result does not take
into account the concurrency of the multi-agent rolling back. With the rollback

concurrency, the recovery speed of the SCLR protocol can be further improved.

6.6 Summary

We have estimated the performance of the SCLR protocol by comparing it with the log-
based protocol. The latency for the output commit is omitted here because no latency is
required for the SCLR protocol as well as the log-based protocol. Our test results show
that the SCLR protocol has better failure-free performance than the log-based protocol
while maintaining the advantages of domino-free rollback, simple garbage collection,
simple recovery protocol, and fast output commit. However, the first evaluation part: the
percentage of messages logged against messages received shows that under the situation

that agent groups in a system are stable, the SCLR protocol has better performance.

108

However, if agents join and leave groups frequently, the SCLR protocol could not
produce the performance that we desired.

According to whether social groups of multi-agent applications are stable or not, we can
divide multi-agent applications into strictly organized applications and loosely organized
applications. With the test results, we can draw to the conclusion that for strictly
organized applications with heavy communication, our SCLR protocol can significantly
improve the performance compared with other rollback recovery protocols. As our
sample E-trading system is not a typical strictly organized application, the test results we

got here just show the average performance of the applicable multi-agent applications.

109

Chapter 7 Conclusion

7.1 Summary

Sociality is one of the most important features of a multi-agent system. Agents form
societies within which they cross couple, depending on the roles they play. Using roles,
different social groups can be identified. Interactions within social groups can be tracked
based on a milestone model detailing the progress of a role in its mission. Using
milestones as guides, a novel checkpoint with selective logging protocol (SCLR) is
proposed and demonstrated to be effective. The methodology and protocol proposed give
a new perspective to guide designers to build fault tolerant multi-agent systems.

The role-milestone based methodology can identify the checkpoint groups and suitable
places for starting checkpoints. Milestone dependency graphs form the key basis in the
methodology. A milestone dependency graph can be constructed from the system role
model by following five simple steps. By analyzing the graph, decisions can be made as
to how groups should be formed and where checkpoints should be inserted.

The methodology involves making decisions about groups and checkpoints at design
time. This contrasts with decisions to be made at runtime. The latter, while possible, may
incur more overhead as tracking of the progress of the communication will likely be
required.

The SCLR protocol guarantees domino-free rollback and aims to optimize checkpointing
with the designer’s knowledge of the system design. Obviously both checkpoints and
message logging incur runtime overhead and may delay the underlying application. The
use of group checkpointing reduces the overhead by coordinating group checkpoints to

reduce the message logging required among group members.

110

We designed and implemented an e-trading fault tolerant system on the JADE platform to
demonstrate the use of the proposed methodology and its effectiveness. The test results
show that the SCLR protocol performs well when agents in the multi-agent application

form groups that do not change too often during their lifetime.

7.2 Contribution and Future Work

In this thesis, we report our efforts in considering multi-agent system features in the
design of a rollback recovery protocol. We successfully designed an SCLR protocol,
which makes use of the sociality of multi-agent systems to form groups and to take group
checkpoints. We also proposed a role-milestone based methodology to facilitate the
identification of social groups in a multi-agent system by providing a step-by-step
procedure. The role-milestone based methodology and the SCLR protocol can help
develop fault tolerant multi-agent systems with reasonable failure-free performance.
However, further work is required to develop this methodology more fully by (i)
identifying applications that may fit the role-milestone based checkpoint strategy better,
(i1) incorporating the methodology on an agent platform to facilitate application design,

and (iii) refining the methodology to cover a large spectrum of applications.

111

Bibliography

[Alvisi96] L. Alvisi "Understanding the Message Logging Paradigm for Masking Process
Crashes", Ph.D. thesis, Department of Computer Science, Cornell University, Ithaca,
New York, January 1996.

[Alvisi98] Lorenzo Alvisi and Keith Marzullo. “Message Logging: Pessimistic,
Optimistic, Causal, and Optimal”, IEEE Transactions on Software Engineering,
24(2):149-159, Feb. 1998

[Bhargava88] B. Bhargava and S. R. Lian. “Independent Checkpointing and Concurrent
Rollback for Recovery - An Optimistic Approach”, Proceedings of IEEE Symposium on
Reliable Distributed Systems, pp.2-12, 1988.

[Booch99] G. Booch, J.Rumbaugh, and I.Jacobson. “The Unified Modeling Language
User Guide”, Addison Wesley, 1999.

[Brooks86] R. Brooks. “A Robust Layered Control Systems for a Mobile Robot”, IEEE
Journal of Robotics and Automation, RA 2(1):14-23, 1986.

[Burmeister96] B. Burmeister. “Models and methodology for agent-oriented analysis and
design”, K. Fischer, editor, Working Notes of the KI’96 Workshop on Agent-Oriented
Programming and Distributed Systems, 1996.

[Cabri01] G. Cabri. “Role-based Infrastructures for Agents”, 8th IEEE Workshop on
Future Trends Distributed Computing System, Bologna, Italy, Oct31-Nov 02, 2001.
[Cabri02] G. Cabri, L. Leonardi, and F. Zambonelli. “Modeling Role-based Interactions
for Agents”, Workshop: Agent-oriented methodologies, OOPSLA 2002, SEATTLE, WA,
USA, pp.4-8, Nov. 2002.

[Chandy85] K. M. Chandy and L. Lamport. “Distributed Snapshots: Determining Global
States of Distributed Systems”, ACM Transactions on Computer Systems, 3(1):63—75,

Feb. 1985.

112

[Collis00] Jaron Collis, Divine Ndumu, “ZEUS ROLE MODELLING GUIDE”, The
Zeus Agent Building Toolkit, ZEUS Methodology Documentation Part I, 1999 British
Telecommunications plc., Release 1.02, September 2000.

[Elnozahy02] E. N. Elnozahy, L. Alvisi, Yi-Min Wang, and D. B. Johnson. “A Survey of
Rollback-Recovery Protocols in Message-Passing Systems”, ACM computing Survey,
34(3): 375-408, Sep. 2002.

[Elnozahy92] E. N. Elnozahy and W. Zwaenepoel. “Manetho: Transparent Roll back-
Recovery with Low Overhead, Limited Rollback, and Fast Output Commit”, /[FEE
Transactions on Computers, 41(5) 526-531, May 1992.

[Elnozahy94] E.N. Elnozahy and W. Zwaenepoel. "On the Use and Implementation of
Message Logging", Proceedings of the Twenty Fourth International Symposium on
Fault-Tolerant Computing (FTCS-24), pp.298—307, Jun. 1994.

[FIPA] Publicly Available Implementations of FIPA Specifications, http://www.fipa.org/
[FIPAEAIP] “FIPA English Auction Interaction Protocol Specification”, Foundation for
Intelligent Physical Agents, http://www.fipa.org/specs/fipa00031/XC00031E.pdf
[FIPAICN] “FIPA Iterated Contract Net Interaction Protocol Specification”, Foundation
for Intelligent Physical Agents, http://www.fipa.org/specs/fipa00030/PC00030D.pdf
[Fischer97] K. Fischer and C. G. Jung. “A layered agent calculus with concurrent,
continuous processes”, In M. P. Singh, A. Rao, and M. J. Wooldridge (eds.), Intelligent
Agents IV: Agent Theories, Architectures, and Languages, LNCS 1365, pp. 245-258,
1997.

[Giang02] N. T. Giang, D. T. Tung, “Agent Platform Evaluation and Comparison”,
Institute of Informatics of Slovax Academy of Science, June 2002.

[Gottlob96] G. Gottlob, M. Schrefl, and B. Rock. “Extending Object-Oriented Systems
with Roles”, ACM Transactions on Information Systems, 14(3):268-296, July, 1996.

[Grasshopper] http://www.grasshopper.de/

113

[Guessoum99] Zahia Guessoum and Jean-Pierre Briot. “From Active Objects to
Autonomous Agents”, IEEE Concurrency, 7(3):68-76, July-September 1999.

[Huang93] Y. Huang and C. Kintala. “Software Implemented Fault Tolerance:
Technologies and Experience”, Digest of Papers (FTCS-23), the Twenty Third Annual
International Symposium on Fault-Tolerant Computing, pp.2-9, 1993

[Iglesias98] Carlos A. Iglesias, M. Garijo, and Jose C. Gonzalez. “A survey of Agent-
Oriented Methodologies”, Proceedings of the 5th International Workshop on Intelligent
Agents V : Agent Theories, Architectures, and Languages (ATAL-98), pp.317-330, 1998.
[Jennings01] Nicholas R. Jennings and Michael Wooldridge. “Agent-Oriented Software
Engineering”, J. Bradshaw, editor, Handbook of Agent Technology, AAAI/MIT Press,
2001.

[Johnson87] D.B. Johnson and W. Zwaenepoel. “Sender-Based Message Logging”,
Proceedings of the Seventeenth International Symposium on Fault-Tolerant Computing
(FTCS-17), pp.14—19, Jun. 1987.

[Johnson91] D. B. Johnson and W. Zwaenepoel. “Transparent Optimistic Rollback
Recovery”, Operating Systems Review, pp.99—102, Apr. 1991.

[Kalaiselvi00] S. Kalaiselvi and V. Rajaraman. “A Survey of Checkpointing Algorithms
for Parallel and Distributed Computers”, Sadhana, 25(5):489-510, Oct. 2000.
[Kasbekar01] M. Kasbekar and Chita R. Das. “Selective Checkpointing and Rollbacks in
Multithreaded Distributed Systems”, The 21st International Conference on Distributed
Computing Systems, Mesa, AZ, pp.39-46, April 2001.

[Kendall99-1] E. A. Kendall. “Role Model designs and Implementations with Aspect-
Oriented Programming”, Proceedings of the ACM Conference on Object-Oriented
Systems, Languages, and Applications, Denver, Colorado, United States, pp.353-369,
1999.

114

[Kendall99-2] E. A. Kendall. “Role Models — Patterns of Agent System Analysis and
Design”, BT Technical Journal, 17(4), October 1999.

[Kendall00] Elizabeth A. Kendall. "Role Modeling for Agent System Analysis, Design,
and Implementation”, IEEE concurrency, 8(2):34-41, April-June 2000

[Klein93] G. A. Klein, J. Orasanu, R. Calderwood and C.E. Zsambok (Eds.). “Decision
Making in Action: Models and Methods”, Ablex Publishing Corporation, Norwood, New
Jersey, 1993.

[Koo87] Richard Koo and Sam Toueg. “Checkpointing and Rollback-Recovery for
Distributed Systems”, IEEE Transactions on Software Engineering, 13(1):23-31, Jan.
1987.

[Labrou97] Y. Labrou and T. Finin. “KQML as an Agent Communication Language”, In
Bradshaw. J., “Software agents”, The MIT Press, 1997.

[Lesperance02] Yves Lesperance. “Introduction to Intelligent/Autonomous Agents and
their Applications”, COSC 6390A Knowledge Representation/ “Intelligent Agents”, Fall
2002, http://www.cs.yorku.ca/course_archive/2002-03/F/6390A/slides/week1-2up.pdf
[Manivannan99] D. Manivannan and Mukesh Singhal. “Quasi-Synchronous
Checkpointing: Models, Characterization, and Classification”, IEEE Transactions on
Parallel and Distributed Systems, 10(7):703-713, Jul. 1999

[MASIF] MASIF-The Object Management Group Mobile Agent System Interoperability
Facility. http://www.omg.org

[Miles01] Simon Miles, Mike Joy, and M. Luck. “Designing Agent-Oriented Systems by
Analysing Agent Interactions”, First international workshop, AOSE 2000 on Agent-
oriented software engineering, pp.171 - 181, 2001

[Muller95] J. P. Muller and M. Pischel. “Modelling Reactive Behaviour in Vertically
Layered Agent Architectures”, Intelligent Agent: Theories, Architectures, and Language

(LNAY Volume 890), pp.261-276, Springer-Verlag: Berlin, Germany, 1995.

115

[Muller97] J. P. Muller. “The Design of Intelligent Agents: A Layered Approach”, LNCS
1177, 1997.

[Nwana99] H. S. Nwana, D. T. Ndumu and L. C. Lee. “ZEUS: An Advanced Tool-Kit
for Building Distributed Multi-Agent Systems”, Proceedings of the Third International
Conference on Autonomous Agents, 1999.

[Odell02] J. Odell, H. V. D. Parunak, M. Fleischer, and S. Brueckner. “Modeling Agents
and Their Environment”, 40SE 2002, pp.16-31. 2002

[Odell00] J.Odell, H. V. D. Parunak, and B. Bauer. “Extending UML for Agents”,
Proceedings of the Agent-Oriented Information Systems (AOIS) Workshop at the 17th
National conference on Artificial Intelligence (AAAI), 2000.

[Petric01] Charles Petrie, “Agent-Based Software Engineering”, Agent-Oriented
Software Engineering, Lecture Notes in Al, Springer-Verlag 1957, 2001, pp.58-76.
Stanford Networking Research Center, Stanford, CA 94305-2232.

[Pivk] Aleksander Pivk and Matjaz Gams. “Intelligent Agents in E-commerce”,
http://ai.ijs.si/Sandi/publications/IAinEC.pdf

[Plank97] James S. Plank. “An Overview of Checkpointing in Uniprocessor and
Distributed Systems, Focusing on Implementation and Performance”, Technical
Report(UT-CS-97-372), University of Tennessee, July 1997.

[Poggi00] A. Poggi and G. Rimassa. “Adding Extensible Synchronization Capabilities to
the Agent Model of a FIPA Compliant Agent Platform”, Proceedings First International
Workshop, AOSE 2000 on Agent-oriented software engineering, pp.206 — 215, Limerick,
Ireland, 2000,

[Poslad00] Stefan Poslad, Phil Buckle, and Rob Hadingham. “The FIPA-OS agent
platform: Open Source for Open Standards”, Nortel Networks. Manchester, UK. April
2000.

116

[Rana00] Omer F. Rana and Kate Stout. “What is Scalability in Multi-Agent Systems?”,
International Conference on Autonomous Agents Proceedings of the fourth international
conference on Autonomous agents, pp.56 — 63, 2000.

[Ra091] Rao and M. Georgeff. “Modeling Rational Agents within a BDI Architecture”,
Proceedings of the Second International Conference on Principles of Knowledge
Representation and Reasoning, Cambridge, MA, pp.473-484, 1991.

[Riehle98] D. Riehle and T. Gross. “Role Model Based Framework Design and
Integration”, Proceedings of the 1998 Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ’98), ACM Press, pp.117-133, 1998.
[Shehory01] Onn Shehory, Amon Sturm. “Evaluation of modeling techniques for agent-
based systems”, Proceedings of the fifth international conference on Autonomous agents,
International Conference on Autonomous Agents, pp.624 — 631, 2001

[Shoham93] Y. Shoham. “Agent-Oriented Programming”, Artificial Intelligence,
60(1):51-92, March 1993.

[Silva98] L. M. Silva and J. G. Silva. "System-Level versus User-Defined
Checkpointing", Proceedings of the Seventeenth Symposium on Reliable Distributed
Systems, pp.68—74, Oct. 1998.

[Storm85] R. Strom and S. Yemini. “Optimistic Recovery in Distributed Systems”, ACM
Transactions on Computer Systems, 3(3):204—226, Aug. 1985.

[StraBer97] M. Straller, J. Baumann and F. Hohl. “Mole - A Java based Mobile Agent
System”, In M. Miihlhéduser: (ed.), Special Issues in Object Oriented Programming,
dpunkt Verlag, pp.301-308, 1997.

[Sycara96] K. Sycara, A. Pannu, M. Williamson and D. Zeng. “Distributed Intelligent
Agents”. IEEFE Expert, 11(6):36-46. 1996.

[Sycara98] Katia P. Sycara. “MultiAgent Systems”, 4] Magazine, 19(2):79-92, Summer
1998.

117

[Tveit01] Amund Tveit. “A survey of Agent-Oriented Software Engineering”, The First
NTNU Computer Science Graduate Student Conference, May 2001.

[Wang93] Y. M. Wang. "Space Reclamation for Uncoordinated Checkpointing in
Message-Passing Systems", Ph.D. Thesis, University of Illinois Urbana-Champaign,
" August 1993.

[Wang95] Y. M. Wang, P. Y. Chung, 1. J. Lin, and W. K. Fuchs. “Checkpoint Space
Reclamation for Uncoordinated Checkpointing in Message-Passing Systems”, [EEE
Transactions on Parallel and Distributed Systems, 6(5):546—554, May 1995.

[Woo0d00] M. F. Wood and S. A. Deloach. “An Overview of the Multiagent Systems
Engineering Methodology”, Proceedings of the first International Workshop on Agent-
Oriented Software Engineering, pp.207-220, June 2000

[Wooldridge00] M. Wooldridge, N. R. Jennings, and D. Kinny. “The Gaia Methodology
for Agent-Oriented Analysis and Design”, Journal of Autonomous Agents and Multi-
Agent Systems, 3(3):285-312, 2000.

[Wooldridge95] M. Wooldridge and N.R. Jennings. “Intelligent Agents: Theory and
Practice”, The Knowledge Engineering Review, 10(2):115-152, 1995.

[Wooldridge99] M.Wooldridge, N.R. Jennings, and D. Kinny. “A Methodology for
Agent-Oriented Analysis and Design”, Proceedings Third International Conferance on
Autonomous Agents (Agents 99), Seattle, WA, pp.69-76, May 1999.

[Xu03] Haiping Xu, “Multi-Agent System And Agent Based Software Engineering”,
CIS602: Advanced Software Engineering, December 11, 2003.

[Zambonelli98] F. Zambonelli. “On the Effectiveness of Distributed Checkpoint
Algorithms for Domino-free Recovery”, 7th IEEE Symposium on High-Performance
Distributed Computing (HPDC-7), IEEE Computer Society Press, Chicago (IL), July
1998.

[Zeus] Zeus, http://more.btexact.com/projects/agents/zeus/

118

