NOTE TO USERS

This reproduction is the best copy available.

®

UMI

A Comparative Study of DCOM/CORBA and .NET/J2EE

Zhuofei Zhang

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

July 2004

© Zhuofei Zhang, 2004

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94762-9
Our file Notre référence
ISBN: 0-612-94762-9

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

[b |

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

The COM and CORBA technologies are viewed as competing architecture for creating distributed
solutions. While the most significant difference between COM and CORBA is their support for
different operating system platforms, people must realize that each technology has its own
strength thét clearly differentiate it from the other. CORBA is considered the industry’s leading
standard for distributed objects and it's the dominant remoting architecture, COM is primarily a

component architecture rather than a remoting architecture.

The decade-old rivalry between Microsoft and Java development communities enters a new
phase. Two major application platforms now dominate the enterprise application development
market: Java 2 Platform, EnterprisevEdition (J2EE) and the Microsoft .NET platform. The decision
about which platférm to use is a business decision, but technology factors can have significant

business impacis.

The paper reviews, examines these candidat‘e‘ architectures, and analyzes the similarities and
differences between DCOM and CORBA, EJB and MTS, from a programmer’s standpoint and an
architectural standpoint. The paper provides an in-depth comparison of the .NET and J2EE
platforms, analyzes their key advantages and disadvantages to support decision making for

building enterprise solutions.

LX)

Acknowledgements

'

| would like to thank Dr. Peter Grogono for his direction, assistance, and guidance. | would like

also to thank Wei Yang, my wife, for her encouragement and assistance.

Table of Contents

Y

GlossaryVIII

List Of Figures'eoaolooe-oeeoo.eo..-eoco.-o‘.[louoo.o-ocoeoo'o--o-o.-.ooo'onoou.oae-.Q-oo..eootooc.oosa-ooeo' XII

List of Tables ccccecerercrcsscnnnoecscrsesses

IntrOduction ©000000000000000000000PCH000C00020000000006000000R0503200000PO0C000IRN0RERE0RODNC0000000G000BC000R 1

1 Microsoft’s Component-based TechnolOgiesccccessesessssessscsescassssesens &

1.1 Overview of COM/DCOM 4
LI1T FromCadt 10 COM ittt ettt s 4
1.1.2 Problem with Traditional APProaCch.........co.ovuvveerveremrrererieeeeerisssssesssemssesseseeseenserens 6
1.1.3 Component Object Modeliieceriiireieee et st 8
1.1.4 COM Interface and COM ObBJECE ...c..ocurreiiieciieieecreneeeec et rece st enaeas 9
1.1.5 Binary Standard and Language Independence..........ccoccoveeeniniencncnineenncneeneneene 11
1.1.6 The IUnknown Interface and Versioning..........ccoccoevvenicrininnincnciecececee 12
1.1.7 Reference COUNINZccociveriiiiieieeiee ettt ettt sre st s ne 13
1.1.8 Component Object Library and Transparent Cross-Process Interoperability 14
1.1.9 Cross-Process Communication in COMcooivriieiociiiinieeneniesenieeeenecenenens 16
1.1.10 ° COM ODbJect CIBALIOMcovvereeririeiiiieereietesteteeteetesnestreeeereesnesressineeeseeses st saesessasseas 16
11,11 DCOM and COMt. ...ttt e 17

2 OMG and JavaSoft’s Component-based Technologieseeuersees 19

2.1 Overview of CORBA 19
2.1.1 Distributed Object and Object Request Broker ... 19
2.1.2 Common Object Request Broker Architecture (CORBA)ccoeciiniviiiieneeenne. 20
2.1.3 CORBA and the Object Management Architecture (OMA)ocoooeveiiivcinciiiienne. 24
2.14 Major Enhancement in CORBA 3.0. ..ot 26

3 Comparisons of CORBA and COM/DCOM......ccccerseensescsssosssosssssocses 29

3.1 The Architectures 29
3.1.1 The Architectural Similarities between DCOM and CORBA ... 29
3.1.2 COM Component ATCHItECTUTEeevveerreriereereresrerearrenreeeeeneessteseeesesasensenseeneessrencs 30
313 COM and ACHVEX oottt ettt ettt a bt e e aeesastesbeenseeneeane 30
314 CORBA Remoting ATChItECIUIE ...eooiiiiiereee ettt cee e 32

32 CORBA, COM Interface Definition Languages and Data Types 32

3.3 Proxies, Stubs and Skeletons 34
331 COM Proxies and STIDS ..ot 36
332 CORBA Interfaces and ProXiSs. ..o iiiiiiierre et eireeete st erteein et scasie e 37
3.33 COM and CORBA Initialization....c..cccoeviiiiineionis e 40
334 Developing @ CHEeMb. oottt 43
335 Developing the SEIVET. ..ot e 44

3.4 Object HandlesS...emseecocescocesaseossonssssessessnsssneses . 45
3.4.1 COM Interface Pointer and Reference COUntingcocoocceurmeriverroineninsecrene e 45
3.42 CORBA Object References and Reference Counting..........occeeviviveeeicncienencennnn 46
343 Creating ObJeCtS oo iiiiiieiiaeie ettt ettt eee e an e e ene e v 47

‘e

344 Destroyiné ODJECIS 1.ttt ettt ettt e st et ea e et 49

35 Exception and Error Handling ‘ 50
3.5.1 CORBA EXCEPUOMS ..oviiiriciiiiiiiniciccni et tess e st nesa s e sosns s 50
352 COM EXCeplions.......cccecvveerviiccinisennenens s e sr e s 52

3.6 Microsoft Transaction Server vs. Enterprise JavaBeans 54
3.6.1 Just In Time Activation and Instance Pooling........cc.cccoeeneinis s 57
3.6.2 LOCUON TTANSPATEIICY ..eevuieriieiiriceietrice et st esce et e s se et sm e s b ae s bo e bt esasnesannees 57
3.6.3 Transaction SUPPOTITcociviiiiiiririeiiiiite sttt st as e ans e 58
3.64 Database Connection POONNEcvioiiiire et 60
3.6.5 Component TYDPE ...oooievivie e s et eta st e nes 60
36,6 IMeroperabIlEY ..ooo oo e et 61

3.7 Building Sample Application in COM ‘ 62
3.7.1 Description of the Sample Project..........ooooiiiiiiiiiicicccneiion 62

3.8 Build Sample CORBA Application 68
3.8.1 Description of the Sample Project.........ccomririrmriiiinireiiiiceneressc e sereeseestsneeens 68

3.9 Assessment Strategy in Choosing COM, CORBA for Building Enterprise Solutions

70
3.10 Conclusion 73
4 Microsoft Net...cciceessessscssassssesssncsscsncsssessnssssssassssns . ves 15

41 COM/DCOM and .NET.... 75

4.2 The .NET Platform Architecture 75

4.3 The NET Framework 76

44 Common Language Runtime 77

45 ASP.NET veen 79

4.6 ADO.NET 79

4.7 .NET Remoting 81

5 J2EE OVETrvIeW..ocivececscsssoossssssssssisssssnssssesossssssssssssssssssssssasssssssssssssssessasss O2

5.1 CORBA and J2EE 82
5.1.1 - I2EE Application Components and CONLAINELScoorevverrineenieniceree s e 83

5.2 J2EE Standard Services 84

6 J2EE Vs. NET — A Technical CompariSoncccecesececsecssascnssescssces 86

6.1 Compare the basic 86
6.1.1 Platform INAependency ..ottt e s 86
6.1.2 Language and RUNUME SUPPOTL ..coviviiiciiiiciiniect et e n e 87
6.1.3 Class LibIaries ..o iieieerrieececn e e e e 87
6.1.4 Development ToolS ..o 88

6.2 Core Platform Capabilities ” 89
6.2.1 DePlOoYIMENt cooviiiiieieiet e et e e es 89
6.2.2 Thin CHENL oottt 89
0.2.3 Al CHENEL ettt s eb et 90
0.2.4 INEEETALION .ooveiiiiiieiien ettt et e b r e e e enceab e e s s e s sa b e srabeshs e nessesbesassbsoress 91
6.2.5 Web Server PrOCESSITIZ. .. cooiuiiririiiieicntiect ettt et este e e el eeens 92
0.2.6 Database STPDOTT...iociiereir ettt ettt st et e ettt e e e 92
6.2.7 IMESSAZINME «.ovviieeerireeirieeraesteesreiesaeaesssaesneatee st et aaseessresaste faaatenaseabesateab b e teesat e r e saaas 95
0.2.8 KIML SUPPOTE c.eiviiiiiiiie ittt et r e b et e et sae s s aae e 96
6.2.9 REIMOUIIE 1ottt ettt st et er e ea e r s e sme st ae s esbe s n s srenae e 96

6.3 .NET and J2EE ‘S Approeaches To Web Services 97

Vi

6.3.1

6.3.3 Microsoft’s NET Web Services

63.4 J2EE and Application Servers......oeienviircinnn.
6.3.5 The Differences in Approaches to Web Services

6.4

6.5 Conclusion "

Building the Sample Application of Application Servers and Web Services

7 J2EE Vs NET - Decision Making in Choosing for New Enterprise
Software Development and Deploymentcoccceccssessensesorsosesssasssnsess 111

WHAL 878 WED SEIVICEST .o.oiiiiiicierese ettt ettt ssee e reebeser e e s se e ebeeee 97
6.3.2 Web Services Implementations.........cc.ccoeevvrvennnennn.

7.1 Background 111
7.2 Scorecard 114
7.3 Vendor Neutrality and Platform Independency 114
7.4 Platform Maturity 116
7.5 Scalability and Performance 117
7.6 Development 122

7.6.1 Programming lanZUAEZEccceoeriiirietiiet ittt enee st sa et se s nenecre e ee 122

7.6.2 Development COMMUIILY ...v.cveerierrerniierierieriieestesrresoeresneeseessseassassiesseseserssassessesens 122

T.0.3 TOOIS SUPPOTL ...ttt ettt st et rae 123
7.7 Framework Support and Productivity 124
7.8 Client Device Independence 125
7.9 Security 126
7.10 Legacy Application Integration 128
7.11 Portability ~129
7.12 High Server Availability 129
7.13 System Cost 130
7.14 Web Services 133
7.15 Risk (Stability) 133
7.16 The overall ratings 133
7.17 Assess the Suitability by Questions.. 135
7.18 How J2EE and .NET will Evolve 136
7.19 Conclusion and Recommendations 137

References 0000006003960 000C00CPE0000R0000000C0000000000000C000C0000E0000000000000000080E00D000P00600900000000D 138

Vil

Glossary

.NET platform - Microsoft's platform for a new computing model built around XML Web
Services.

ActiveX - A set of technologies that enables software components to interact with one another in
a networked environment, regardless of the language in which the components were created.
ActiveX is used primarily to develop interactive content for the World Wide Web, although it can
be used in deskiop applications and other programs.

ADO - ActiveX Data Objects. These are COM objects that allow database access.
ADO.NET - It's a successor to ADO.

Apartment - Apariment is one of the important concepts of COM threading. An apariment is a
conceptual unit that contains one or more threads running in the same process. There are two
type of apartment: single-thread apariments (STAs) and multi-threaded apartiments (MTAs). A
process never has more than one MTA, but can have many STAs.

ASP - Active Server Pages, a specification for a web page that is dynamically created by the web
server and contains both HTML and scripting code. With ASP, programs can be run on a web
server in a simitar way to CGl scripts, but ASP uses the ActiveX scripting engine to support either
VBScript or Jscript.

ASP.NET - The next generation of Microsoft's Active Server Page. it's a technology that allows
for the dynamic creation of documents on a Web server when they are requested via HTTP.

Automation - The binding of a client to a server object at run-time. Automation allows a client to
bind to a server object without having a type library available at compile time. Automation uses
the IDispatch interface.

CLR - Common Language Runtime, a runtime environment that manages the execution of .NET
program code, and provides services such as memory and exception management, debugging
and profiling, and security. The CLR is a major component of the .NET Framework, and provides
much of its functionality by following the rules defined in the Common Type System.

COM - Component Object Model developed by Microsoft. It's Microsoft's ‘de-facto’ standard. It’s
primarily a component architecture rather than a remoting architecture. COM+ - COM+ is an
extension to Microsoft's Component Object Model. COM+ builds on COM's integrated services
and features, making it easier for developers to create and use software components in any
language, using any tool.

Coclasses - COM Classes.

CORBA - Common Object Request Broker Architecture from the OMG. It is the industry’s leading
standard for distributed objects and the dominant remoting architecture.

DCOM - Distributed COM,; it's regarded as COM with a longer wire.
DLL - Dynamic Link Library.

Dl - Dynamic Invocation Interface; It allows a client 1o make dynamic invocations on remote
CORBA objects.

Vil

DSI - Dynamic Skeleton Interface; This is the server side’s analogue to the client side’s Dil. The
DSl allows an ORB to deliver requests to an object implementation that does not have compile-
time knowledge of the type of the object it is implementing.

EJB - Enterprise JavaBee{n‘s; a specification for a Java-based transaction service. Created by a
group of companies led by Sun Microsystems Inc., the initial specification for EJB was released in
spring 1998. While EJB originally stood on its own as a spec, since Dec 1999 it has been rolled
into J2EE, the family of specs owned by Sun and JCP.

GIOP - General Inter-ORB Protocol, a standard CORBA protocol. lIOP is a TCP/iP-based
implementation of GIOP.

GUID - Globally Unigue ldentifier, a 128-bit integer that‘uniquely identifies COM coclasses and
interfaces.

IDL - Interface Definition Language.
IL - Intermediate Language used by .NET platform.

HOP - Internet inter-ORB Protocol, a protocol used for communication between CORBA object
request brokers.

jUnknown - The COM interface class from which all other interface classes are derived. This
interface alliows all COM objects to manage their own lifetime, i.e., to release themselves from
memory when they are no longer connected to any clients.

ISV - Independent Software Vender.

J2SE - Java 2 Standard Edition. (JDK+JRE) for common purposes for example
on PCs. ' ‘

J2ME - Java 2 Platform, Micro Edition. (JDK+JRE) for small devices such as cellular
phones, palmtops etc.

J2EE - Java 2 Platform, Enterprise Editiori, an application server framework from Sun
Microsystems for the development of distributed applications. (J2SE + enterprise Java APIs).

JDK - Java Development Kit.

JRE - Java Runtime Environment.

JavaSoft - The Java Software division of Sun Microsystems, Inc.

JAAS - Java Authentication and Authorization Service, the J2EE AP1 for managing security.

Java Applets - A packaging technology for downloading and running Java code on the client side
in a browser.

JSP - Java Server Pages, the J2EE technology that, along with Java Serviets, is the
programming model for the presentation tier.

Java Servlets - A server side Java program that integrates into a web server for dynamic page
content generation. '

JAXP - The Java APl for XML Processing converts XML into a implementation independent
format.

JDBC - Java Database Connectivity. The J2EE AP for accessing the data tier.
JMS - Java Message Service, the J2EE AP! for accessing message queues.

JNDI - Java Naming and Directory Interface, the API for naming and locating specific instances
used in J2EE.

JIT - Just-in-time.

JITA - Just-in-time activation, the ability of a COM object to be activated only as needed for
executing requests from its client. Objects can be deactivated even while clients hold references
to them, allowing otherwise idle server resources to be used more productively.

Marshaling - The act of formatting parameters for transmission through a proxy / stub pair. A
proxy marshals data to a remote object, and a stub marshals data to a remote client.

Middleware - Software that mediates between an applications program and a network. It
manages the interaction between disparate applications across the heterogeneous computing
platforms.

MIDL - Microsoft IDL. The MIDL compiler generates a type library.

MSMQ - Microsoft Message Queue, a COM service that provides for the passing of messages
between applications.

MTS - Microsoft Transaction Server, the middleware component model for Windows.

Object Adapter - An ORB component that provndes object reference, activation, and state related
services o an object implementation.

OLE - Object Linking and Embedding. A standard for linking and embedding documents in other
documents. OLE is the evolutionary ancestor of COM.

OLE DB - Object Linking and Embedding for Databases. OLE DB is a COM service that enables
a user to access databases. A developer accesses OLE DB services through ADO.

OMG -Object Management Group, an indusiry group with over six hundred member companies
representing computer manufacturers, independent software vendors.

OMA - Object Management Architecture; It defines a broad range of services for building
distributed applications. OMA services are divided into three layers named CORBA Services,
CORBA Facilities, and Application Obiects.

POA - Portable Object Adaptor; It provides the mechanism by which a server process maps
CORBA objects to language-specific implementations, or servants.

Proxy - An object that runs in a client's process that acts as a channel for all communication
between the client and a remote object. When a client atiempts 1o accesses a server object the
proxy intercepts the call and issues an RPC to the real instance of the server object.

RMI - Java Remote Method Invocation.
RMIE-HOP - RMI over IIOP, a version of RMI implemented to use the CORBA HOP protocol. RMI

over lIOP provides interoperability with CORBA objects implemented in any language if all the
remote interfaces are originally defined as RMi interfaces.

ROl - Return On Investment.

SSCLI - Microsoft provides Shared Source Common Language Implementation (also known as
Rotor). it provides a free; shared-source implementation of Microsoft's Common Language
Runtime platform, mcludmg source code for C# compilers, as well as for the Common Language
Infrastructure (CLI) platform itself. 1t is the working implementation to provide a Platform Adaption
Layer (PAL) for academics and researchers.

SOAP - Simple Object Access Protocol, a communication protocol based on XML that simplifies
the complexities of cross-language and cross-platform communication.

Stub - An object that runs in a server's process that acts as a channel for all communication
between the server and a remote client.

Type Library - A bmary file that describes interfaces, coclasses, and other resources in a COM
server.

UUDI - Universal Description, Discovery‘ and Integration specification.
VS.NET - Visual Studio .NET, the programming environment for .NET.
WAS - IBM WebSphere Application Server

Web Services - A Web Service is application or business logic that is accessible using standard
Internet protocols. Web Services combine the best aspects of component-based development
and the World Wide Web. Like components, Web Services represent black-box functionality that
can be used and reused without regard to how the service is implemented. Web Services are
self-contained, self-describing, moduiar applications that can be published, located, and invoked
across the Web.

i

WSDL - Web Services Description Language

Xl

List of Figures

Figure 1-1: Traditional Approach for Software Componentscccvvverevecvnnnnn tererereesestesenesanennranaons 7
Figure 1-2: Client Using COM Object Through an Interface Pointer [COM 95]......ococivivnecciencnnine 9
Figure 1-3: Cellular Phone COM object .. et 10
Figure 1- 4: VTable layout in COMoceeiviniceeireee e eeeeerteea e s enen s er e aesrre e renrnareesans 12
Figure 1- 5: Three Methods for Accessing COM Objects [COM 95].......ccoirirnininnrncnnnecenenneenn 15
Figure 1- 6: Creating a COM object pointer [COM 95] s ee e e eee e eeen e 17
Figure 2-1 The Common Object Request Broker (CORBA) 2.0 Architecture.........cceceeveceevenciennne 22
Figure 2-2: Object Management ArChIECIUIEoeove et 24
Figure 2-3: Request dispatching based on POA ... s s s e s e s e e e 27
Figure 3-1: DCOM ArChIECIUIE......eo ittt s rre e s er et s nenmee e 29
Figdre 3-2: DCOM ArchiteCIUIE.vee ittt s eeme e R 29
Figure 3-3: COM and ActiveX Controls.............. et e e sree e se e 31
Figure 3-4: Proxies, stubs, and skeleton in COM and CORBA ..o 34
Figure 3-5: COM inter-object cOMmUNICAHON ..o vt s s s 36
Figure 3-6: Cross-Process communication in COM [2] ...t 37
Figure 3-7: invoking on @ CORBA ODJECE.....vuiiiieciiein ettt eeir e s re s eeer e s srnee e 39
Figure 3-8: Creating COM ODJECT ..o e e s 48
Figure 3-9: A snapshot of Windows Component Services CONsolecccevvvrenneviciiiccren s 55
Figure 3-10: Setting the properties of RegistrarFactory component.........ccceevermme i eccenennnns 56
Figure 4-1: The INET PO oottt e eia e s s sr e r e s e rnrae e 76
Figure 4-2: Major components of the .NET frameworkoocoo v 77
Figure 4-3: Compiling source code into native code in NET ... 78
Figure 4-4: ADO.NET works both through Web protocols, using XML.......ccooiiin e 80
Figure 4-5: ADO.NET works in traditional client/server architecture ..., 80
Figure 5-1: A J2EE [ogical architECUIEc.vvieiiiiee ettt et aenaes 83

Xi

Figure 5-2: The J2EE aréhitecture with the services available 1o its containers {48]......c..cvounee.. 85

Figure 6-1: Direct-to-DatabasQ Pure Java Driver, and Pure Java Driver for Database Middleware [42] 93
Figure 6-2: JDBC-ODBC, and a native API partly Java technology-enabled driver [42]...........cocoecenieeenns 94
Figure 6-3: .NET Framework data provide(s L 2 U R, 94
Figure 6-4:How web services technologies work togethercoovveiccnvir e 99
Figure 6-5: The .NET Architecture in Web Services ... et 102
Figure 6-6: Web services and application servers ... 103
Figure 6-7: The Sample Web Services ApplICatoNc..ciiciiiiic s e e 108
Figure 7-1: High level érchitectural similarities in .NET and J2EE.......cccccovveruecnirensrneeneneesenennn. 113

Figure 7-2: Throughput, web pages per second, increase as user load increases running the web
application codebases using Oracle 9i database[34]. ..o, 119
Figure 7-3: The maximum throughput achieved during the web application tests using Oracle 9i
- database[34]. ... 119
Figure 7-4: Throughput, web pages per second, increase as user load increases running the web
application codebases using Microsoft SQL Server 2000 database[34].c.oevvienininnnns 120
Figure 7-5: The maximum throughput achieved during the web application tests using Microsoft
SQL Server 2000 database[34].cc.c...... et eeteeareeraesesesateesheerereesaratstestresteseeraatneanarareeanans 120
Figure 7-6, The throughput, web service requests per second, increase as user load increase for
the various configurations34]. ... i 121
Figure 7-7, The maximum throughput achieved by each configuration during the web service

(=] 1o A T OSSP U USRI reeterarreeresareraaearaannnn 121

XIi

List of Tables,

Table 1: Overview of CORBA ServiCes ... 25
Table 2: Assessments of Choosing COM, CORBA for building enterprise solutions................. .73
Table 3: Timeline of Microsoft and Java technologies......... oo es e 117
Table 4: Line of COUE COMPDAITSON ..ivivivii i isrecvrieees s siseres s aressrtaee s e s e srreesreeesesseneessnarenensses 125

Tabie 5. Comparison of development cost for a sample Web Service
Table 86: Cost comparison between IBM’s Express products portfolio and Microsoft's. NET suite
o] oTa 1F Lo = P PPN 132

Tables 7: Scorecard of the COMPATISONSvrviiiicirei ettt e 134

XV

Introduction

Microsoft Component Object Model (COM) and the Object Management Group Common Object
Request Broker Architecture (CORBA) are competing architectures for application development.
Both approaches apply object technology to the design and use of software components to
simplify network programming. DCOM (an extension. of COM) and CORBA also provide
application interopergbility and limited portability in distributed computing environments. Thus,

both architectures are intended for enterprise-scale development.

OMG’'s CORBA is considered the industry's leading standard for distributed objects, and

Microsoft's DCOM is the ‘de-facto’ standard.

Middieware makesrthe network conﬁmunications layer completely transparént to the application
software and provide robust underlying commerce platform that enables developers to craft high-
performing, scalable, maintainable, and multi-user secure commerce systems. Middleware
Component Models take a high level approach ito building distributed systems. Microsoft
Transaction Server (MTS), is based on the Component Object Model (COM), it's the middleware

component model for Windows NT.

Enterprise Java Bean (EJB) is a middieware component model for Java and CORBA. It defines a
set of specifications and component architecture framework for creating distributed n-tier
middleware. Both MTS and EJB target the creation of enterprise level server-side, component-

based, transaction-oriented applications.

The decade-old rivalry between Microsoft and Java development communities enters a new

phase with the emergence of Web services. Each community is working hard to create the best

support for Web servicés standards such as the Simple Object Access Protocol (SOAP), Web
Services Description Language (WSDL), and Universal Description, Discovery, and Integration
(UDDI). As the combaniés fight for the hearté, minds, and pocketbooks of current and future
developers, Microsoft énd the Java vendors differ in the way theyre embracing these new
technologies. This thesis compares and contrasts their approaches to Web services development
and deployment, explain where they coﬁverge and where they diverge, and provide guidelines
and strategies for deciding how to choose an appropriate platform for buiiding an enterprise

solution.

Many {T department are now facing the decision whether to start building application on a J2EE
architecture from Sun Microsystems and adopt the Java Community Process (JCP) or the .NET
architecture from Microsoft. This is a major decision which will affect companies for many years to
éome, not only in terms of the efficiency of IT, but might possibly become a key factor for the

productivity of the company as a whole.

A company needs to anticipate significant implications, reaching far beyond the core middleware
technology. The impact includes operating system choices, development languages and tools,
availability of skilled resources and time to market as a whole. This decision will ailso impact
purchasing decision of new packaged applications, interoperability with legacy systems as well as

business partners.

This thesis reviews anvd examines these candidate architectures, and analyzes the similarities
and differences between DCOM and CORBA, EJB and MTS, from a programmer’s standpoint
and an architectural standpoint. The thesis provides an in-depth comparison of the .NET and
J2EE platforms, and analyzes their key advantages and disadvantages to support decision
making for building enterprise solutions. The thesis covers both theoretical parts and coding
parts. The theoretical part focuses on the study of underlying technigues from the Object-

Oriented, distributed, component-based, and transaction-based prospective. The coding part will

build some application By using Visual C++, VB, ATL, and IONA Orbix2000 eic. Both researches
and sample applications will be concentrated on building enterprise level solutions and refiecting

the real world practices wi{h these aspects.

{

The summary of the thesis work on DCOM/CORBA:

O Reviews and examines these candidate architectures

O Analyzes the similarities and differences

O Compares the two rﬁiddleware component models — MTS and EJB

O Build sample applications both in COM (using Microsoft IDE tocls) and CORBA (Using IONA
Orbix2000) to demonstrate the similarities and differences

O Develops the strategy for assessment of the two technologies

The summary of the thesis work on .NET/J2EE:

v

[

0 Provides in-depth comparisons from both technical and business aspects

Q1 Examine the approaches to building XML-based Web Services in the two platform

0 Provide sample architecture of a Web Services application and demonstrate how the two
platforms can integrate

a Analyzés their key advantages and disadvantages

0 Examine the suitability

1 Analyzes the future trends of both platforms

0 Provides supports for decision making for building enterprise solutions

@ Provides recommendations for choosing the platforms

1 Microsoft’s ;Component—ba{sed Technologies

1.1 Overview of COM/DCOM

1.1.1 From C++ to COM

Object-oriented programming (such as C++) is one of the more recent paradigms to enjoy a long
and somewhat favora‘ble reception by the software industry [7]. Object-oriented programming
became as popular as it did largely because it allowed developers to share code among entirely
different projects. While code sharing and reuse is considered a primary benefit of a well-
implemented object-oriented design, the percentage of code actually being shared is still small,
there are both design-time and runtime obstacles. Many of these obstacles stem from the

compilation and linkage model assumed by C++.

Static Linking

Static linking is a way of code reuse, but it has some disadvantages. The first disadvantage to the
static-linking approach is redundancy. Every client application, which uses the same library, can
share the library’s source code for compilation, but they cannot share their target executabie
image when the machine code is generated. The library code is bound into the client application
for every client application. This will immediately cause the waste of user's hard disk, and
eventually will waste their virtual memory space when these applications are running at the same
time. The second disadvantage is the clients will have to rebuild and reissue their applications to

accommodate the new version of the library.

Dynamic Linking
A solution to the problem inherent in static linking is dynamic linking. Dynamic-link libraries (DLLs)
are pieces of executable code that exists only once on the user’s hard disk. When multiple clients

access the code for the library, the OS’s loader is smart enough to share the physical memory

pages containing the Ilibrary’s executable code between ali client program. The problem of
redundancy caused by static linking is overcome. 1t is also possible 10 ship a new DLL to the
ender user to repair the defects for all client applications. The DLL turns the original C++ class

into a field-replaceable and efficient reusable component.

Betore COM, Inprise, Microsoft and Symantec all support exporting entire C++ classes from a
DLL. However, there is still a downside to exporting C++ class in traditional DLL. When
distributing C++ classes as a DLL, one big problem in porability with C++ is lack of
standardization at the vbinary level. The lack of a C++ binary standard makes it impossible to
create a vendor-independent component substrate. Another problem is the encapsulation in DLL.
Although C++ provides syntax for making members private, protect or public, the semantics don't
apply at runtime. The compilation model of C++ requires the client's compiler to have access to
all‘information regarding object layout in order to instantiate an instance of a class. This includes
information about the size and order of the object’s private and protected data members. When
the DLL vendor exports a class from a DLL, it implicitly provides all sorts of non-inteﬁace-re|ated
information to the client that can vary from compiler to compiier (or even from one version to

another of a single compiler).

Assume a new version of DLL, in which a new private member data is added into a specific class,
is shipped to the client, the client have already coded and built against the layout of that specific
class. Using old client code and new DLL will likely result in a serious program crash. Simply
saying, if you're using new in your client {o allocate objects, you won't be able to change the size

of the object (that is, add any data) without recompiling the world.

When a new function is added to the DLL, the clients that want new functionality recompile, the

old clients simply break. This is an inherent limitation of virtually all C++ environments.

It might seem that malntaining different names for the DLL would help, provided that clients
always load the version of the DLL that they were built against, irrespective of what other versions
{

may be present on the system. Unfortunately, this may cause significant problem in versioning

and configuration management.

Java and COM

Java does solve some of these problems that encountergd by C++, but it also adds some of its
own. The biggest problem is that Java components (e.g. JavaBeans) are only intended to be
used by programs written in Java. In general, except for users who are running Windows (Now
Microsoft virtual machine aliows JavaBeans be used as COM objects, and can therefore be used
from any language), Java is a single-language system: JavaBean componenis can only be used
in Java programs, the program written in any other languages can not access JavaBean

component.

Java also makes you decide when you write your program whether the component you're using is
local (on your machine) or remote (on another machine)—and the methods for using locai and

remote components are quite different.

Java has a couple of other issues that make it a less-than-ideal answer for all component needs
(COM is partially design to serve for this purpose). For instance, it has no really solid way to deal

with versioning.

1.1.2 Problem with Traditional Approach

One solution to the challenges of software development is 1o separate the functionality of a
large, monolithic application intoc smaller components. Traditionally, developers have used
libraries of functions as a way of accessing the functionality of a component. These libraries

implement functions through an Application Programming Interface (APl). Reuse of these

functions is as simple as learning. the semantics of the API and linking to the library. The

following illustration shows how a client can use a component from any vendor by calling it

[

through a standardized API: -

endor #Z’s

| Vendor#l's .
7. Component

“Component

Figure 1-1: Traditional Approach for Software Components

An example of a standardized API is the Microsoft Open Database Connectivity (ODBC) API.
Many software vendors have implemented the ODBC API in their database drivers. Even with
fairly widespread adoption of the ODBC API, interoperability is still challenging because

implementation differences can occur from one vendor to another.

The traditicnal approach of using APis to access the functionality of a software component has
its drawbacks. These drawbacks include evolution of the API, versioning, component
communication, and‘the implementation language. The evolution of an APl is a problem for
both the AP creator and software vendors who want to add value by extending an APL Any
changes made to an API by its creator can potentially break existing applications. Changes
made to extend the AP| can result in inconsistent implementations. Advertising and maintaining
different versions of the API can also be problematic. As an AP! creator, how can you force a
developer to check for the correct version? Enabling components to communicate with each
other is challenging, especially if different developers have created the components. The

programming language you use for creating components greatly impacts how the components

will communicate through an APIL. For example, if you create components in C++ and export

classes from a library, it can be challenging to use C or Visual Basic to create the client of the

f
!

component.

The major goals of COM are language /and vendor independence, location transparency, and
reduced version problems. COM solve basic interoperability and transparent cross-process
interoperability problems — How can developers create their own unique components, yet be
assured that these cqmponents will interoperate with other components built by different
developers? How can we give developers the flexibility to write components to run in-process or

cross-process (and eventually cross-network), using one simple programming model?

1.1.3 Component Object Model

v

COM is a standard (or model) for the interaction of binary objects. An important feature of COM
is that objects are precompiled, which means that the implementation language is irrelevant.
COM is also an integration technology. Components can be developed independently, and
COM provides the standard model for integrating these components. One can think of COM as

an enabling technology, rather than a solution in itself.

COM [COM 95] [1] refers to both a specification and implementation developed by Microsoft
Corporation, which provides a framework for integrating components. This framework supporis
interoperability and reusability of distributed objects by allowing developers to build systems by
assembling reusable components from different vendors which communicate via COM. By
applying COM to build systems of preexisting components, developers hope to reap benefits of

maintainability and adaptability

COM is an object-based programming model that, due to its binary interoperability standard,

facilitates the development of software components at different times by different vendors using a

variety of languages, tools, and platforms. Once developed, COM components are easily
packaged as reusable building blocks without shipping source code, deployed and integrated into
a customer’s environmerﬁt.‘ ‘Corporate application developers can use COM to create new
solutions that combine in-house business objects, off-the-shelf objects, and their own custom

components.

1.1.4 COM Interface and COM Object

COM is a binary compatibility specification and associated implementation that allows clients to
invoke services provided by COM-compliant components (COM objects). COM objects are
different from source-code object-oriented programming (OOP) objects such as those defined in
C++. Component objects usually have some associated data, but unlike C++ objects, a given
coﬁponent object will never have direct access to another component object in its entirety,
Instead, component objects always access other component objects through interface pointers.
This is a primary architectural feature of the Component Object Model, because it allows COM to
completely preserve encapsulation of data and processing, a fundamental requirement of a true
component software standard. it also allows for transparent remoting (cross-process or cross-
network calling) since all data access is through methods that can exist in a proxy object that

forwards the request and vectors back the response.

The services implemented by COM objects are exposed through a set of interfaces that represent

the only point of contact between clients and the object, as shown in Figure 1-2,

2 (COM Object
Interface O :

Pointer L

[Client Application 1

Figure 1-2: Client Using COM Object Through an Interface Pointer [COM 95]

COM defines a binary structure for the interface between the client and the object. This binary
structure provides the basis for interoperability between software components written in arbitrary
languages. As long, as a compiler can reduce language structures down to this binary
representation, the implementation language for clients and COM objects does not matier — the
point of contact is the run-time binary répresentation. Thus, COM objeqts and clients can be
coded in any language that supports Microsoft's COM binary structure.

A COM object can support any number of interfaces. An interface provides a grouped collection
of related methods.' For example, Figure 1-3 depicts a COM object that emulates a cellular
phone. iPhone, IStockAlert and IAddressBook are the interfaces of the cellular phone. The
IPhone interface can provide the appropriate methods to allow making phone calls. The

IStockAlert and |AddressBook interfaces can supply stock alert and address book methods.

O {Phone
O iStockAlert

O lAddressBook

Figure 1-3: Cellular Phone COM object

COM objects and interfaces are specified using Microsoft Interface Definition Language (IDL), an
extension of the DCE Interface Definition Language standard. To avoid name coliisions, each
object and interface must have a unique identifier.

Interfaces are considered logically immutable. Once an interface is defined, it should not be
changed — new methods should not be added and existing methods should not be modified. This
restriction on the interfaces is not enforced, but it is a rule that component developers should
follow. Adhering to this restriction removes the potential for version incompatibility — if an

interface never changes, then clients depending on the interface can rely on a consistent set of

10

services. If new functionality has to be added to a component, it can be exposed through a
different interface. For our celluiar phone example, we can design an enhanced cellular phone
COM obiject supporting th’e‘IStockAiertZ interface that inherits from IStockAlert. IstockAlert2 may

expose new functionality.

1.1.5 Binary Standard and Language Independence

For any given platfor,mv {hardware and operating system combination), COM defines a standard
way to lay out virtual function tables (vtables) in memory, and a standard way to call functions
through the viables (as shown in Figure 1-4). Thus, any language that can call functions via
pointers (C, C++, Small Talk®, Ada, and even Basic) can be used to write components that can
interoperate with other components written o the same binary standard. The double indirection
(thé client holds a pointer to a pointer o a vtable) allows for viable sharing among multiple
instances of the same object class. On a sys’tem with hundreds of object instances, vtable

sharing can reduce memory requirements considerably.

Components can be implemented in a number of different programming languages and used
from clients that are written using completely different programming languages. Again, this is
because COM, uniike an object-oriented programming language, represents a binary object
standard, not a source code standard. This is a fundamental benefit of a component software
architecture over object_—oriented programming (OOP) languages. Objects defined in an OOP
language typically interact only with other objects defined in the same language. This necessarily
limits their reuse. At the same time, an OOP language can be used in building COM componentis,
so the two technologies are actually quite complementary. COM can be used to "package” and
further encapsulate OOP objects into components for widespread reuse, even within very

different programming languages.

11

pinterface ; ! VTable ' / Object \

Figure 1- 4: VTable layout in COM

1.1.6 The IUnknown Interface and Versioning

Each COM object must support at least the standard {Unknown interface. 1Unknown defines
methods that provide the basic building blocks for managing object life cycles and allowing
graceful evolution of interfaces supported by an object. lUnknown has three methods:
Querylnterface, AddRef, and Release. In C++ syntax, IUnknown is as below, the “interface” is just a

macro definition of the key word struct.

interface IUnknown (

virtual HRESULT QueryInterface (IID& iid, wvoid** ppv0Obi) = 0;
virtual ULONG AddrRef () = 0;
virtual JLONG Release() = 0;

}

Versioning in COM is implemenied using interfaces and Unknown::Queryinterface. The COM
design completely eliminates the need for things like version repositories or central management

of component versions.

12

The Queryinterface method of lUnknown is used by clients to determine whether or not a
particular interface, speciﬁed as an 1D, is supported by an object. Over time, an object may
support new interfaces or new versions of the same logical interface, each with its own unique
ID. Existing clients 'can continue using an earlier version of an interface without even being
recompiled, and new clients can query for — and take advantage of -- the latest version of the
interface. Querylinterface returns a pointer called an interface pointer. Internally, an interface
pointer points to a data structure that is dictated by COM's binary interoperability standard. The
standard dictates the way interface functions must be called, regardless of differences in the

implementation environments of the client and server programs.

The combination of the use of interfaces (immutable, well-defined "functionélity sets” that are
extruded by components) and Queryinterface (the ability to cheaply determine at run time the
capabilities of a specific component object) enable COM to provide an architecture in which
corﬁponents can be dynamically updated, without requiring updates to other reliant components.
This is a fundamental strength of COM over other proposed object models. COM solves the
versioning/evolution problem where the functionality of objects can change independently of
clients of that object without rendering existing clients incompatible. In other words, COM defines
a system in which components continue to support the interfaces through which they provided
services to older clients, as well as support new and better interfaces through which they can
provide seWices to newer clients. At run time old and new clients can safely coexist with a given
component object. Errors can only occur at easily handled times: bind time or during a
Querylnterface call. There is no chance for a random crash such as those that occur when an

expected method on an object simply does not exist or its parameters have changed.

1.1.7 Reference Counting

COM does not automatically remove a COM object from memory when the COM object is no

longer being used. The COM object must provide for its removal programmatically based on its

13

reference count. Each hddref call increments, and each Release call decrements, a counter
variable inside the COM object. When the count returns to zero, the interface no longer has any

i '
users, and is therefore free to remove itself from memory.

1.1.8 Component Object Library and Transparent Cross-Process interoperability

Every COM obiject runs inside a server. A single server can support multiple COM objects. There

are three ways in which a client can access COM objects provided by a server (Figure 1-5):

1. In-process server: The client can link directly to a library containing the server. The client
and server execute in the same process. Communication is accomplished through
function calls.

2. Local Object Proxy: The client can access a server running in a different process but on
the same machine through an inter-process communication mechanism. This mechanism
is actuallyVa lightweight Remote Procedure Call (RPC).

3. Remote Object Proxy: The client can access a remote. server running on another
machine. The network communication between client and server is accomplished through

DCE RPC. The mechanism supporting access to remote servers is calied DCOM.

14

Client Process ' b N L S s s .
Local Server Process

Figure 1- 5: Three Methods for Acéessing COM Objects [COM 95]

The Component Object Library is a system corﬁponent that provides the mechanics of COM. The
Component Object Library is the key to providing transparent cross-process interoperability. it
encapsulates all the legwork associated with finding and launching components and managing
the communication between components. The Component Obiect Library insulates components
from the location differences. This means that component objects .can interoperate freely with
other component objects running in the same process, in a different process, or across the
network. The code used to implement a component object in any of these cases is exactly the
same. Thus, when a new Component Object Library is released with support for cross-network
interaction, existing component objects will be able to work in a distributed fashion without

requiring source-code changes, recompilation, or redistribution to customers.

15

1.1.9 Cross-Process Communication in COM

if the client and server are in the same process, the sharing of data between the two is simple.
However, when the server process is séparate from the client process, as in a local éerver or
remote server, COM must format and bundie the data in order to share :t This process of
preparing the data is called marshalling. Marshalling is accomplished through a "proxy" object
and a "stub” object that handie the cross-process communication details for any particular
interface (depicted in Figure 1-5). COM creates the "stub" in the object’'s server process and has
the stub manage the real interface pointer. COM then creates the "proxy" in the client’s process,

and connects it to the stub. The proxy then supplies the interface pointer to the client.

The client calls the interfaces of the server through the proxy, which marshals the parameters and
passes them to the server stub. The stub unma\rshals the parameters and makes the actual call
inside the server object. When the call completes, the stub marshals return values and passes
them to the proxy, which in turn returns them to the client. The same proxy/stub mechanism is
used when the client and server are on different machines. However, the intvernal implementation
of marshalling and unmarshalling differs depending on whether the client and server operate on
the same machine (COM) or on different machines (DCOM). Given an IDL file, the Microsoft iDL
compiler can create default proxy and stub code that performs all necessary marshalling and

unmarshalling.

1.1.10 COM Object Creation

All COM objects are registered with a component database. As shown in Figure 1-6, when a

client wishes to create and use a COM cbject:

16

1. ltinvokes the COM API to instantiate a new COM object.

2. COM locates the object implementation and initiates a server process for the object.

3. The server proces’s‘creates the object, and returns an interface pointer at the object.

4. The client can then interact with the newly instantiated COM object through the interface

pointer.

43 Call interface
members
3) Getobect
interfece pointer
retwum o Client
1) "Create
Chject"
COM im plementation

Figure 1- 6: Creating 2 COM object pointer [COM 95]

1.1.11DCOM and COM+

Distributed COM [DCOM 97] [2] is ah extension to COM that allows network-based component
interaction. While COM processes can run on the same machine but in different address spaces,
the DCOM extension allows processes {0 be spread across a network. With DCOM, components
operating on a variety ‘of platforms can interact, as long as DCOM is available within the

environment.

it is best to consider COM and DCOM as a single technology that provides a range of services for
component interaction, from services promoting component integration on a single platform, to
component interaction across heterogeneous networks. While COM and DCOM represent "low-

level" technology that allows components to interact, OLE, ActiveX and MTS represent higher-

17

level application services that are built on top of COM and DCOM. OLE builds on COM to provide
services such as object "linking" and "embedding" that is used in the creation of compound
documents (documents 'generated from muftiple tool sources). ActiveX extends the basic
capabilities {o allow corﬁponents to be embedded in Web sites. MTS expands COM capabilities
with enterprise services such as transaction and security to allow Enterprise information Systems

(EiS) to be built using COM components. COM+ is the evolution of COM.

COM+ integrates MTS services and message queuing into COM, and makes COM programming
easier through a closer integration with Microsoft languages as Visual Basic, Visual C++, and
J++. COM+ will not only add MTS-like quality of service into every COM+ object, but it will hide

some of the complexities in COM coding.

18

2 OMG and JavaSoft's Component-based Technologies

I t
f .

2.1 Overview of CORBA "
2.1.1 Distributed Object and Object Request Broker

As networks of compu;(ing resources have become prevaient, the concept of distributing related
processing among multiple resources has become increasingly viable and desirable. Some
applications by their very nature are distributed across multiple computers because of the facts
that the data used by the application are distributed, the computation is distributed and the users
of the app!iéation are distributed. Client/Server architecture is today’'s most common approach to
distributed computing. In Client/Server applications, network clients request information or a
service from a server, and that server responds to the client by acting on that request and
returning resuits. A simple Client/Sever application consists of a client layer (also known as tier)
and server layer. Enterprise applications are often built upon 3-tier or N-Tier client/server system,
in which the middleware “acts as the glue or plumbing between two otherwise ‘separate

applications” [37].

Object distribution architectures build upon the middleware concept by encapsulating data within

functional interfaces‘to objects. Like well-designed procedural APls, implementation details are
hidden from the user of the object. Unlike traditional APls, however, object architectures fimit
access to the invocation of methods defined for the object. Furthermore, methods are invoked on
the objects indirectly, via references to the objects, eliminating the need for local instances of the
objects. This near-complete implementation hiding allows distributed object architectures to
support location, platform, and programming language transparency. Such transparency is not

without its costs, however, which has prompted the designers of some distributed object

19

architectures to forego some neutrality in exchange for perceived improvements in performance,

applicability to specific tasks or ease of use.

Three of the most popu‘lar distributed object paradigms are Microsoft's DCOM, OMG’s CORBA
and-JavaSoft's Java Remote Method Invocation (Java RMI). They are all considered as object
request broker (ORB) technologies. An sbject request broker is a middleware technology that
manages communication and data exchange between objects. ORBs promote interoperability of
distributed object systems because they enable users to build systems by piecing together
objects from different vendors that' communicate With each other via the ORB. The
implementation details of the ORB are generally not important to developers building distributed
systems. The developers are only concerned with the object interface details. This form of
information. hiding enhances system maintainability since the object communication details are
hidden from the developers and isolated in the ORB.

ORB technology ;)romotes the goal of object communication across machine, software, and

vendor boundaries. The relevant functions of an ORB technology are

o Interface definition
e Location and possible activation of remote objects

¢ Communication between clients and object

2.1.2 Common Object Request Broker Architecture (CORBA)

The Common Object Request Broker Architecture (CORBA) is a specification of a standard
architecture for object request brokers (ORBs). A standard architecture aliows vendors 1o develop
ORB products that support application portability and interoperability across different

programming languages, hardware platforms, operating systems, and ORB implementations.

20

Using a CORBA-complliant ORB, aiclient can transparently invoke a method on a server object,
which can be on the same machine or across a network. The ORB intercepts the call, and is
responsible for finding arl object that can implement the request, passing ‘it the parameters,
invoking its method,‘and' returning the results of the invocation. The client does not have to be
aware of where the object is located, its programming language, its operating system or any other
aspects that are not part of an object’s interface. The "visibn“ behind CORBA is that distributed
systems are conceived and implemented as distributed objects. The interfaces to these objects
are described in a high-level, architecture-neutral specification language that also supports
object-oriented design .abstraction.‘When combined with the Object Management Architecture,
CORBA can result in distributed systems that can be rapidly developed, and can reap the
benefits that result from using high-level building blocks provided by CORBA, such as

maintainability and adaptability.

The CORBA specification was developed by the Object Management Group (OMG), an industry
group with - over six hundred member companies representing computer manufacturers,
independent software' vendors. The OMG was established in 1988, and the initial CORBA
specification emerged in 1992. Since then, the, CORBA specification has undergone significant
revision, with the latest major revision (CORBA v2.6) [3] released in December 2001.

CORBA ORBs are middleware mechanisms, as are all ORBs. CORBA can be thought of as a
generalizaﬁon of remote procedure call (RPC) that includes a number of refinements of RPC,

including:

o a more abstract and powerful interface definition language
e direct support for a variety of object-oriented concepts

e a variety of other improvements and generalizations of the more primitive RPC

Figure2-1 illustrates the primary components in the CORBA ORB architecture.

21

in args

operation()
args + return value
O

Client

Interface plementatiol
\ Reposito ' ‘ Reposito '

Basic
ORB .
interface Object
Adapter

= Dynamic Interface

4 = Static Interface

Figure 2-1 The Common Object Request Broker (CORBA) 2.0 Architecture

Object — Object, often referred as object implementation or Servant, is a CORBA
programming entity that consists of an identily, an interface, and an implementation. The
Servant is an implementation programming language entity that defines the operations
that support a CORBA DL interface. Servants can be written in a variety of languages,
including C, C++, Java, Smalltalk, and Ada.

Client — Client is the program entity that invokes operations on Servants. Accessing the
services of a remote object should be transparent to the caller.

iDL Stubs and Skeletons — OMG iDL language compilers and translators also
generate client-side stubs and server-side skeletons. Client IDL stubs are used by clients
to interface to object services. A client has an IDL stub for each interface it uses on a
server. Siubs allow clients to call the methods of remote objects as if they are local. A
skeleton is a mechanism that delivers requests to the CORBA object implementation.
Skeletons provide static interfaces to each service exported by the server. The stub and
skeleton handle the underlying protocol issues such as marshaling and un-marshaling

associated with- method calls on server objects.

22

Object Request Broker (ORB) — The ORB takes care of all of the details involved in
routing a request‘rfrom client to object, and routing the response to its destination. The
ORB simplifies di%tributed programminé by decoupling the client from the details of the
method invocations. A number of CORBA implementations exist in the market today,
including Orbix tfrom IONA Technologies (http://www.iona.com), VisiBroker from Inprise,
and JavalDL from JavaSoft (http://java.sun.com/products/idk.idi). Alil CORBA 2.0 (and
above) compliant ORBs are able to interoperate via the Internet Inter-ORB Protocol
{(HOP). The whole purpose of HOP is to ensure that the client will be able to communicate
with a server v;/ritten for a different ORB from a different vendor. Orbix ORB is used to
build a simple application and illustrate how CORBA works in this thesis.

ORB Interface — To decouple applications from implementation details, the CORBA
specification defines an abstract interface for an ORB. This interface provides various
helper functions such as convering object references to strings and vice Versa, and
creating argument lists for requests made through the dynamic invocation interface
described ‘b"elow. ‘ VL

Dynamic Invocation Interface (Dil) — Dil allows a client to make dynamic invocations
on remote CORBA abjects. The client does not have knowledge about an object it wants
to invoke at compile time. Once an object is discovered, the client program can obtain a
definition of it, issue a parameterized call to it, and receive a reply from it, all without
having a type-specific client stub for the remote object.

Dynamic Skeleton Interface (DSI) — This is the server side's analogue to the client
side's DIL The‘ DSI aliows an ORB to deliver requests to an object implementation that
does not have compile-time knowledge of the type of the object it is implementing. The
client making the request has no idea whether the implementation is using the type-
specific IDL skeletons or is using the dynamic skeletons.

Object Adapter — The object adapter is an ORB component which provides object
reference, activation, and state related services to an object implementation. Object

adapters can be specialized to provide support for certain object implementation styles.

23

11

o [Interface Repository — A run-time metadata repository of registered IDL-defined
interfaces, including their methods/operations and the parameters they require.
o Implementation Repository — The run-time database storing all of an ORB's registered

objects, either activated or available for activation by client requests:

2.1.3 CORBA and the Object Management Architecture (OMA)

CORBA is based on Object Management Architecture. OMA defines a broad range of services for
building distributed applications. OMA services are divided into three layers named CORBA
Services, CORBA Facilities, and Application Objects as shown in figure 2-2. ORB communication
infrastructure is required for applications to access these services. These services are actually
definition of different categories of objects in OMA and define a broad range of functionality
needed to support distributed applications. The OMA goes far beyond BPC in scope and

complexity.

Application Objects
o

L

ORB

! !

CORBAServices CORBAFaciiities

Figure 2-2: Object Management Architecture

The Obiject Request Broker (ORB) is a communication infrastructure through which applications
access these services, and through which objects interact with each other. CORBAServices,
CORBAFacilities, and ApplicationObijects define different categories of objects in the OMA, these
objects detfine a range of functionality needed to support the development of distributed software

systems.

24

e CORBAServices—A collection of services that support basic functions for using and

implementing obj'eqts. Services are always independent of application domains. They are

accessed via”mid&leWare APls and are ‘backaged with IDL-specified interfaces. OMG has

published standards for sixteen object services. Among them are asynchronous event

management, transactions, persistence, externalization, concurrency, naming,

relationships, and lifecycle. Table 1 summarizes the purpose of some of these services.

e CORBAFacilities—Include user interface, information management, system

management, task management, and a variety of "verticai market" facilities in domains

such as manufacturing, distributed simulation, enterprise resource management, and

accounting.

e Application Objects—Provide services that are particular to an application or class of

applications. These are not a topic for standardization within the OMA, but are usually

included in the OMA reference model for completeness, i.e., objects are either

application-specific, support common facilities, or are basic services.

"y
¥

Naming
Service

Provides the ablhty to bind a name to an object Similar to other forms of dlrectory service.

“Event Service

: Supports asynchronous message based communlcatlon among objects Supports channlng
slof event channels, and a variety of producer/consumer roles. A client does not directly
.linvoke an operation on an object in a server. instead, the client sends an event that can be
iireceived by any number of objects. The sender of an event is called a supplier; the
lireceivers are called consumers. An intermediary event channel takes care of forwarding
Llevents from suppliers to consumers. Both push and pull model of event transfer are
defined in the CORBA event specification.

“Persistence

Provides common interfaces for the mechanlsms used for retamlng and managmg the
iService - ipersistent state of objects in a data-store independent manner.
Obiect [lobject transaction service (OTS) servers for the common case where only a smgle resourcev
iﬁTr a:nsaction :I(database) is involved in a transaction. Applications built against the single resource OTS
Service ‘ican easily be reconfigured to use a full-blown OTS when it is available, since the lnterfaces
o ‘jare identical.
; gglnvc;‘gérency : Supports concurrent, coordinated access to objects from multiple clients.

Table 1: Overview of CORBA Services

25

&

2.1.4 Major Enhancement in CORBA 3.0

CORBA 3.0 has several major new features, including POA, CORBA messaging, and objects by
value. POA provide‘s} new features that allow applications and their servants to be portable
between different ORBs supplied by different vendors. CORBA messaging adds twoc new
asynchronous request techniques: polling and callback. These new techniques represent a
significant advantage for most programming languages’ because static invocations provide a
more natural programming model than the DIl. CORBA 3.0 also introduce the feature of using

objects by value.

2.1.4.1 Portable Object Adaptor

A portable object adapter, or POA, provides the mechanism by which a server process maps
CORBA objects to language-specific implementations, or servants. All interaction with server
objects takes place via the POA. Portable Object adapters provide a number of services,
including the creation of CORBA objects and their references, dispatching requests to the
appropriate servant that provides an implementation for the target object, and activation and

deactivation of CORBA objects.

in CORBA 2.0, the only standard object adapter defined by the OMG is called the basic object
adapter (BOA), which only provides basic services to allow a variety of CORBA objects to be
created. ORB vendors and developers, however, discovered that the BOA is ambiguous and
missing some features. This led vendors to develop their own proprietary extensions, which
resulted in poor portability between different ORB implementations. The new standard object
adapter, the POA, provides new features that aliow applications and their servants to be portable
between different ORBs supplied by different vendors. This new adapter provides a great deal of

flexibility for server implementations.

26

The POA mediates between the ORB and the server application. Figure 2-3 shows a request

from a client to a server.

Client

: ;-:';;Servant's;

Figure 2-3: Request dispaiching based on POA

The client invokes the request using a reference that refers to the target object. The request is
then received by the ORB, which will dispatch the request to the POA that hosts the target object.
The POA will then dispatch the request to the servant, which subsequently carries the reqguest
and sends the resglts back to the POA, to the ORB, and finally to the client. An application may
have muiltiple POAs, and in order for the ORB to dispatch the request to the right POA, it uses an
object key, which is an identifier that is part of the request that is kept in the object reference. A

part of the object key called the object ID is used by the POA to determine an association

between the target object and a servant.

2.1.4.2 CORBA messaging

CORBA 2.0 provides three different technigues for operation invocations:
» Synchronous - The client invokes an operation, then pauses, waiting for a response.
e Deferred synchronous - The client invokes an operation then continues processing. It
can go back later to either poll or block waiting for a response.
¢ One-way - The client invokes an operation, and the ORB provides a guarantee that the

request will be delivered. In one-way operation invocations, there is no response.

27

Synchronous invocation techniques tend to tightly couple clients and servers. This has led many
people to criticize CORBA as being unable to cope with large distributed systems. For this
reason, a new specification has been adopted by the OMG. This new specification preserves the

invocation techniques in CORBA 2.0 and adds two new asynchronous request techniques:

s Callback - The client supplies an additional object reference with each request
invocation. When the response arrives, the ORB uses that object reference to deliver the
response back to the client. |

e Polling - The client invokes an operation that immediately ’returns a valuetype that can

be used to either poll or wait for the response.

The callback and poliing techniques are available for clients using statically typed stubs
generated from IDL interfaces. These new techniques represent a significant advantage for most
programming languages because static invocations provide a more natural programming model

than the DIl.

2.1.4.3 Objects by Value

One of the criticisms of CORBA 2.0 is the lack of support for passing objects by value. This has
been addressed by adding support for passing objects by value. This has led to the addition of a
new construct to the OMG IDL called the valuetype. A valuetype supports both data members
and operations, much the same as a Java class definition. When a valuetype is passed as an
argument to a remote operation, it will be created as a copy in the receiving address space. The
identity of the valuetype copy is separate from the original, so operations on one have no effect
on the other. It is important to note that operations invoked on valuetypes are local to the process
in which the valuetype exists. This means that valuetype invocations never involve the

transmission of requests and replies over the network.

28

3 Comparisons of CORBA and COM/DCOM

o N

3.1 The Architectgre‘s

3.1.1 The Architectural Similarities between DCOM and CORBA

Both technologies support location transparency; use IDL to define the set of services provided
by the server objects; generate proxy/stub code to facilitate the marshaling of data to a remote

object and marshaliﬁg data to a remote client (as shown in Figure 3-1 and Figure 3-2).

Client Host Server Host

Windows
Registry

Windows
Registry

Client Host Server Host

Skeleton

Figure 3-2: DCOM Architecture

29

3.1.2 COM Componéni Architecture

COM is the dominant component architecture in use today. It is focused on solving development
problem in a desktop‘ environment. The nature of the desktop software development is to create
front-end applications with which users interact. COM is primarily a component architecture rather
than a remoting architecture. There are tﬁ‘ree types of COM server:

1. In-process server

2. Local server

3." Remote server
An application that uses a COM component is not required to know what type of server it is using.
After a client has obtained a COM object instance handie, client interaction with the COM object
instance is the same regardless of server location. This allows for great flexibility when

determining how components should be implemented.

The significant weakness of COM as the ideal remoting solution is the platform limitations. COM
is primarily based on. Windows operating system, with limited support on UNIX and mainframe

platforms.

3.1.3 COM and ActiveX

COM is a very mature component architecture that has much strengths. One of the great
strengths is in building up ActiveX controls, which are in-process COM components. ActiveX
controls, formerly known as OLE controls, are reusable software components that can quickly
add specialized functionality to- desktop applications, Web sites and development tools. ActiveX
controls{36] have become the primary architecture for developing programmable sofiware
components for use in a variety of different containers, ranging from software development tools

to user productivity tools.

30

From the application aspects, an ActiveX control is a COM-based object that can draw itself in its
own window, respond to events (such as mouse clicks), and be managed through an interface
that includes properties a:r‘\d methods similar to{ those in Automation objects. These controls can
be developed for many Q‘ses, such as database access, data monitoring, or graphing. In addition,
an ActiveX control fully supports Automation, which allows the control to expose writable

properties and a set of methods that can be called by the control user.

Huge numbers of third-party ActiveX controls are available in the market that can be used to

quickly create sophisticated end-user application in a wide range of client environments.

OLE ActiveX

OLE 2.0
{Compound
Document)

ActiveX Controls
ActiveX Documeﬁts
ActiveX Scripting

Automation

‘The Component Object Model

i

Figure 3-3: COM and ActiveX Controls

Returning to the history of the evolution of COM, Microsoft Object Linking and Embedding (OLE
2.0) was the first technology from Microsoft to be based on COM. OLE was 1o enable application
integration at the compound-document level. For example, a user would be able to embed or link
a spreadsheet into. a word-processor document. Since OLE was introduced, Microsoft has
released a number of additional technologies based on COM. These technologies include OLE
Automation and OLE Controls. However, the use of the term OLE in the names OLE Automation

and OLE Controls was not quite accurate because these technologies had nothing to do with

31

LK)

linking and embedding. in an attempt to resolve this confusion, Microsoft replaced the term OLE
with the new term ActiveX. The only technologies that kept the name OLE were those that
actually related 1o linking and embedding. The following illustration shows the difference between

ActiveX and OLE, each of which is built on COM.

3.1.4 CORBA Remoting Architecture

CORBA is the dominant remoting architecture in use today. The CORBA specification defines the
foundations of the OMG's object Management Architecture. CORBA provides robust cross-
language, cross-platform, and cross-vendor support for creating servers on a wide range of
operating system platforms. CORBA is an open, standard solution for distributed object systems.

CORBA was intended from the beginning to create a standard for remote method invocation.

The' use of CORBA allows for considerable versatility when implementing distributed system.
CORBA solutions are -available for every common environment and are used to integrate
applications written in C, C++, Java, Ada, Smalltalk, and COBOL, running on embedded systems,
PCs, UNIX hosts, and mainframes. CORBA objects running in these environments can cooperate

seamlessly.

CORBA currently lacks a component model and advanced tool support. Although the CORBA 3.0
specification contains a CORBA Component Model (CCM), it will take time for such a model to
appear in various commercial implementations, and to become mature and stabilized in the

market.

3.2 CORBA, COM Interface Definition Languages and Data Types

Both COM and CORBA aliow for a rich set of data types. This includes support for constants,
enumerated types, structures, and arrays in addition to common fundamental types like iong and

short.

32

interface Definition Language (IDL) was originally part of the Open Software Foundation’s
Distributed Computing Environment (DCE). It described function interfaces for Remote Procedure
Calis (RPCs), so that a ‘compiler could generate proxy and stub code that marshaled parameiers

between machines.

An IDL interface definition typically has the following components:

e Operation definitions

e Definitions of Attribute in CORBA or Property in COM

e Exception definitions (Not in COM)

e Type definitions

e Constant definitions
MIDL is Microsoft's IDL compiler. in addition, Microsoft developed its own Object Definition
Language (ODL), which included the dispinterface keyword for specifying iDispatch’s Iogical
interfaces. ODL seripts could be compiled by MKTYPLIB into type libraries (. TLB files), which
could be used by Automation clients for early bir;ding. By default, if an interface is declared in the
IDL file, MIDL will take the declared functions and generate ali of the files for an RPC interface.

This includes a client proxy, a server stub, and a header file.

Type libraries (. TLB file) were originally binary descriptions of Automation interfaces and the
objects that supported them. However, now they have a more general application. Any object that
has been written in a language that can understand the semantics of COM can query a type
library for information in a language-independent fashion. Type libraries provide a complete
description of an object, including its interfaces, methods, and properties. One can think of a type

library as a language-independent header file.

COM DL is rooted in the data type declaration portion of C and C++. It supports all of the
standard C++ data types as well as the data definition keywords. More importantly, IDL’s data

types and definitions are both language-neutral and platform-neutral,

33

CORBA defines standard mappings from IDL to several programming languages, including C++,
Java, and Smalltak. Each IDL mapping specifies how an IDL interface corresponds to a
language-specific implemeﬁtation. Orbix’'s IDL compiler uses these mappings o convert IDL
definitions to language-specific deﬁnitioné that conform to the semantics of that language. In

Orbix, both client and server program need to include the common IDL file,,

3.3 Proxies, Stubs and Skeletons

The COM and CORBA architectures allow developers to treat distributed objects in much the
same manner as native objects. The developer may need to address certain timing and error-
handling issues, but the syntax for the method invocation is identical in both the native and

remote case.

. Client Server

Client Stub Server Stub
(COM Proxy) (COM Stub)
(CORBA Stub) {CORBA Skeleton)

COM or CORBA runtime system -
- (Communication Bus)

Figure 3-4: Proxies, stubs, and skeleton in COM and CORBA

Both COM and CORBA support location transparency when developing client programs in
distributed system. The underlying techniques rely on client-side and server-side mechanisms to
manage issues related to remoting. These mechanisms are referred to as proxies/stubs in COM
and stubs/skeletons in CORBA (Figure 3-4). This allows developers {o treat distributed objects in
much the same manner as native objects. The developer may need {0 address certain timing and

error-handling issues, but the syntax for the method invocation is identical in both the native and

34

L

remote case. We will refer to the client-side mechanism as a client stub and the server-side

mechanism as a server stub in this paper.

i

A remote method invocation is implemented as follows:

1)

A client invokes a remote method. The remote method is actually invoked in the client
stub.

The client stub creates a message containing information needed for the remote
invocation. (The message creation process is referred to as marshaling.)

The client stub sends the message to the server stub using the communication bus.
(COM or CORBA runtime system.)

The server stub receives the message and unpacks it. (The unpacking process is
referred to as unmarshalling.)

The server stub calls the appropriate server method based on the information provided in
the received message.

The server stub creates a message based on the outputs of the call to the server method
(i.e. the return values and out parameters).

The server stub sends the result message to the client stub using the communication
bus.

The client stub receives the result message, unpacks the message, and return the result

o the client.

The client stub, server stub and the runtime system have done the much of the work. The client

and server stubs must be created to support the custom interfaces that are used in the system.

Hand-coding client and server stubs for every interface would be a tedious and an error-prone

task. COM and CORBA solve this problem by providing tools to generate client and server stubs

from IDL descriptions.

35

3.3.1 COM Proxies and stubs

in. COM, the proxy and stub are packaged in a single DLL. The DLL is associated with the
{ f '

appropriate interfaces in the windows system registry. The COM runtime system then uses the

registry to locate proxy-stub DLLs associated with an interface when marshaling of the interface

is required.

Microsoft RPC is a model for programming in a distributed computing environment. The goal of
RPC is to provide transparent communication so that the client appears to be directly
communicating with ihe server. Microsoft’'s implementation of RPC is compatible with the Open
Software Foundation {OSF) Distributed Computing Environment (DCE) RPC. The inter-object

communication and marshaling detail is as shown in Fig 3-3.

Client) Server
(Visual Basic or C++ Client) (Visual Basic or C++ Server)
Proxy Stub
{RegOffice.dll) ' {RegOffice.dl)
RPC : : : - S
COM/DCOM ,] COM/DCOM

Figure 3-5: COM inter-object communication

The following diagram shows the flow of communication between the components involved. On
the client side of the process boundary, the client's method call goes through the proxy and then
onto the channel, which is part of the COM tlibrary. The channé| sends the buffer containing the
marshaled parameters to the RPC run-time library, which transmits it across the process
boundary. The RPC run time and the COM libraries exist on both sides of the process. The
distinction between the channel and the RPC run time is a characteristic of this implementation
and is not part of the programming model! or the conceptual mode! for COM client/server objects.

COM servers see only the proxy or stub and, indirectly, the channel,

36

Process
Boundary

Serverexe |

| Client.exe

Stub

RPC Rurtime | RPC Ruritime |

I

Transport || gt | Transport

Figure 3-6: Cross-Process communication in COM [2]

3.3.2 CORBA Interfaces and Proxies

When the IDL is compiled, the compiler maps éach IDL interface to a client-side proxy class of the
same namev. Proxy classes implement the client-side cali stubs that marshal parameter values
and send operation invocations to the correct destination object. When a client invokes on a
proxy method that corresponds to an IDL operation, CORBA runtime system conveys the call to

the corresponding server object, whether remote or local.
The client application accesses proxy methods only through an object reference. When the client

brings an object reference into its address space, the client runtime ORB instantiaies a proxy to

represent the object. In other words, a proxy acts as a local ambassador for the remote object.

37

[
//**‘k********
*

//RegOffice.1dl

//********************;&**
i [
* v

module RegOffice

{ i
typedef unsigned long CourseNumber;
!/
interface Registrar
{
boolean CancelCourse{in CourseNumber cnum) ;
/7
}
} '

Given this IDL, the IDL compiler generates the foliowing proxy class definition
for the client implementation:

//-k**
*

//RegOffice.h
//***‘********

*

namespace RegOffice

{

typedef CdRBA::ULong CourseNumber ;
//
virtual CORBA: :Boolean CancelCourse (CourseNumber cnum) = 0;
/7
!

This proxy class demonstrates several characteristics that are true of all proxy classes:

¢ Member methods derive their names from the corresponding interface operations - in this case,
CancelCourse().

e The proxy class inherits from CORBA::Object, so the client can access all the inherited
functionality of a CORBA object.

® RegOffice:: CancelCourse() and all other member methods are defined as pure virtual, so

the client code cannot instantiate the RegOffice proxy class or any other proxy class. Instead,

clients can access the RegOiffice object only indirectly through object references.

38

Client Server Host

Host
Client . Server
{Orbix C++ Client or (Orbix C++ Server)
VisiBroker Java Client)

Client Stub Code
(RegOfficeC.obj or
RegOffice Java Package)

Object Skeleton Code
(RegOfficeS.obj)

Function Call
Object Request Broker

(Orbix ORB in C++ or VisiBroker ORB in Java)

Figure 3-7: Invoking on a CORBA object

OMG IDL languag'é compilers and translators also generate client-side stubs and server-side
skeletons. Since they are translated directly from OMG IDL specifications, stubs and skeletons
are normally interface-specific. Dispatching through stubs and skeletons is often called static
invocation. OMG IDL stubs and skeletons are built directly into the client application and the
object implementation. Therefore, they both have a complete prior knowledge of the OMG IDL

interfaces of the CORBA objects being invoked.

Language mappings usually map operation invocation to the equivalent of a function call in the
programming language. For example, given a Factory object reference in C++, the client code to
issue a request looks like this:

// Ct++

Factory var factory_ objref;

// Initialize factory objref using Naming or

// Trading Service (not shown), then issue request

Object var objref = factory objref->create();

39

This code makes the invocation of the create operation on the target object appear as a regular
C++ member function call. However, what this call is really doing is invoking a stub. Because the
stub essentially is a sjcandviﬁ within the local process for the actual {(possibly rémote) target object.
The stub works directly wifh the client ORB to marshal the request. That is, the stub helps to
convert the request from its repfesentatic)'n in the programming language to one that is suitable
for transmission over the connection to the target object. Once the request arrives at the target
object, the server ORB and the skeleton cooperate to unmarshal the request (convert it from its
transmissibkle form to a programming language form) and dispatch it to the object. Once the
object completes the request, any response is sent baék the way it came: through the skeleton,
the server ORB, over the connection, and then back through the client ORB and stub, before
finally being returned to the client application. Figure 3-7 shows the positions of the stub and
skeleton in relation to the client application, the ORB, and the object implementation. This
description shows that stubs and skeletons play important roles in connecting the programming
language world to the underlying ORB. In this sense they are each a form of the Adapter ancj
Proxy patterns. The stub adapts the function call style of its language mapping to the request

invocation mechanism of the ORB. The skeleton adapts the request dispatching mechanism of

the ORB to the upcall method form expected by the object implementation.

3.3.3 COM and CORBA initialization

Initializing the COM library

Any process that uses COM must both initialize and uninitialize. COM library. Both Client and
Server need o do so. In addition to be a specification, COM also implements some important
service in this library. Provided as a set of DLLs and EXEs (e.g. OLE32.DLL and RPCSS.EXE) in
Microsoft Windows. The COM library provides:

e A small number of fundamental API functions that facilitate the creation of COM

applications, both client and server.

40

e implementation:locator services through which COM determines from a unique ciass
identifier which server implements that class and where that server is located.

e Transparent 'reméte procedure calls whén an object is running in a local or remote server.

e A standard meéhanism to allow an application to control how memory is aliocated within
its process, particularly memory that needs to be passed between cooperating objects

such that it can be freed properly.

To use basic COM se‘rvices, all COM threads of execution in clients and out-of-process servers
must call either Colnitialize or COlnitializeEx function before calling any other COM function, and
most importantly the threading model is being specified at this time (either apartmenti-threaded or
free-threaded). However, In-process servers do not call the initialization functions, because they
are being loaded into a process that has already done so. As a result, in-process servers must

set their threading model in the registry under the inprocServer32 key.

hr = CoInitialigeEX(NULL, COINIT_APARTMENTTHREADED);
if (FAILED (hr)) ‘ ,
cout << "CoInitializeEx failed." << endl;

Apartment is one of the important concepts of COM threading. An apartment is a conceptual unit
that contains one or more threads running in the same process. There are two type of apartment:
single-thread apartments (STAs) and multi-threaded apartments (MTAs). MTAs are often referred
to as free-threaded apartments. Single threaded apartments only ever contain a single thread.
Multi-threaded apartments can contain one or more threads. There can only be zero or one MTAs
in a single process. COM calls that are made across apartment boundary need marshaling, and
interface pointers from one apartment won’'t work in another apartment uniless they are marshaled
first. This marshaling is designed to protect code that has been written with one threading model
from being called by code that has been written with an incompatible threading model. This
means that the code running in.a STA does not need to be written to be thread-safe, the code

running in a MTA must be thread-safe.

41

When an object is run in a STA, access from multiple threads must be synchronized to prevent
corruption of the object’s state. The developer can feel reassured that the object’s state will be
protected from multi—threaded access, because no other thread has direct access to the object.
All other threads must comfnunicate with the object through a proxy-stub. it's up to COM and the

marshaling code to provide synchroniza’gion, which is done using the STA’'s Windows message

queue.

Uninitializing the COM library

After using the compbnent, CoUninitialize must be called to ciose the COM+ library, freeing any

resources that it maintains and forcing all RPC connections to close, as shown hete:

CoUninitialize();

Initializing the ORB Runtime

The mechanisms for initializing and shutting down the ORB on a client and a server are the
same. Before an e{pplication can start any CORBA-related activity, it must initialize the ORB
runtime by calling ORB_init(). ORB_init() returns an object reference to the ORB object; this, in
turn, lets the client obtain references to other CORBA objects, and make other CORBA-related

calls.

C++ Mapping

ORB_init(} is defined as follows:

namespace CORBA {

/.

ORB_ptr ORB init(

int & argc,

char ** aaccv,

congt char * orb_identifier = "*
)i

/).

}

ORB_init() expects a reference to arge and a non-constant pointer 10 aaccv. ORB_init ()
scans the passed argument vector for command-line options that start with -orB and removes

them.

42

‘
!

Shutting Down the ORB

|
\

For maximum portability and to ensure against resource leaks, a client or server should always

shut down and destroy the ORB at the end of main ().

®» shutdown() stops all server processing, deactivates all POA managers, destroys all
POAs, and causes the run() loop .to terminaté. shutdown() takes a single Boolean
argument; if set to true, the call blocks until the shutdown process completes before it
returns control to the caller. If set to false, a background thread is created to handle
shutdown, and the call returns immediately.

e destroy() destroys the ORB object and reclaims all resources associated with it.

3.3.4 Developing a Client

A CORBA client initializes the ORB runtime, handies object references, invokes operations on

objects, and handles exceptions that these operations throw.

Before a client application can start any CORBA-related activity, it must initialize the ORB
runtime, let the client obtain references to other CORBA objects, and make other CORBA-related

calls.

Initiaize ORB

//************’k***********************'k***********'k*************************
//Client.cxx

//'k***‘k**‘k*******'k**‘k****‘k****

// main() -- the main client program.
//

int main{(int argc, char **argv)

int exit_status = 0;
try

{

43

CORBA::0Object var tmp ref; // For temporary object references.
// Initialise the ORB.

// Note: ORB_init will process any -ORB arguments

// and remove them from argc/argv, so it should

// be called before any other argument processing.

// ; b ’

global_orb = CORBA::0RB_init(argc, argv);

// Exercise interface RegOfifice::RegistrarFactory.

//
tmp_ref = read_reference("c:/temp/RegOffice RegistrarFactory.ref");
/7

}

Shut Down ORB

//**

//Client.cxx

//**

// Ensure that the ORB is properly shutdown and cleaned up.

//
try

{

global _orb->shutdown (1) ;
global_orb->destroy();

3.3.5 Developing the Server

n
//**

//Server.cxx
//***

// main() -- set up a POA, create and export object references.
/7

int main{ int argc, char **argv)

{

int exit_status = 0; // Return code from main.

// Variables to hold our servants.

PortableServer::Servant the RegOffice RegistrarFactory = 0;
try

{

CORBA: :Object _var tmp_ref; // For temporary object references.

// Initialise the ORB and Root POA.

//

cout << "Initializing the ORB" << endl;
global orb = CORBA::0RB_init(argc, argv);
//

Shut Down ORE

//**************************ﬁ***

//Server.cxx
//***

// Ensure that the ORB 1s properly shutdown and cleaned up.
//

44

try

t

global_orb->shutdown (1) ;
global_orb->destroy();

} . i

3.4 Object Handles

Object handies are used to reference object instances in a programming language context. To
simplify access to distributed objects, object handles referring to COM and CORBA objects need
to behave much like their native counterparts. When we use COM and CORBA in a language like
Visual Basic, C++, and Java, the syntax for calling an instance method is the same regardless of
whether the object instance is native, local, or remote. COM refers to object handles as interface

pointers where CORBA refers to them as object references.

3.4.1 COM Interface Pointer and Reference Counting

When a component object has been created the client receives an interface pointer. This is a
pointer to the object’s interface, and through this pointer the client can invoke the methods that

are described in the object’s interface. For all component objects the client gets an interface

pointer and using the interface pointer is the only way the client can call the methods of an object.

The client cannot distinguish an in-process object from a local object or from a remote object by
examining the pointer. This means that the client programmer treats all objects identically and all
requests made to the object's services are made by calling interface member functions. The COM
Library provides all the services to transparently make a call, without expecting the programmer

1o know on which host the object resides.

When a client gets an interface pointer, it has to call a method tfo tell the component that it has

gotten a new user. This is because the component is responsible for keeping track of how many

45

clients are using it. Later, when a client is finished using a component it calls another method to

let the component know it.

1

3.4.2 CORBA Object References and Reference Counting

When CORBA is used with C++, reference counting directly affects how object references are
declared. An object reference type that is appended with _ptr never implicitly affects the reference
count of the object that it references. An object reference type that is appended with _var
implicitly decrements: tHe reference count of any object it currently references when it's destroyed

or assigned to a new object.

The RegOffice client declares TouchScreen as a _var type so that it will automatic released when

the TouchScreen session is finished.

RegOffice::TouchScreen var touchscreen;
touchscreen = Fa(btory—>CreateTou¢hScreen(sid, "dummy") ;
touchscreen ->Init (sid); ‘

CORBA C++ mapping provides the CORBArelease (ptr) function to explicitly decrement the
reference count of a CORBA object referenced by ptr. To release the returned pointer, the caller

can explicitly call release() or assign the pointer to a _var type.

The CORBA C++ mapping specifies a static _duplicate() method to be used for incrementing the

reference count,

When using Java to implement CORBA, there is an important advantage compared to C++ —the
garbage collection. Java-based CORBA products rely on the Java runtime system to manage
CORBA object reference counting rather than forcing the user to correctly use explicit constructs

like those used in C++.

46

3.4.3 Creating Objects

‘Creating object instances m languages like C++, Java, and Visual Basic is a simple process: One
simply needs to use the new operator. In comparison, creating a distributed object instance
requires more effort since the object instance is usually created in a different process on a

different machine. An abstraction is needed to redirect creation of a distributed object to a remote

jocation.

COM and CORBA both rely on an abstraction called a facfory to create distributed object
instances. A factory is a special type of distributed object whose main purpose is to create other
distributed objects. A factory lives within the same server process as the objects that it creates.

First, the appropriate factory is located. Then, the factory is used to create the object of interest.

3.4.3.1 COM Class Factory

COM defines a standard interface for factories called IclassFactory.
IClassFactory Interface

interface. IClassFactory: IUnknown {

HRESULT _ stdcall Createlnstance (IUnknown *pOuterUnk, const IID& iid,
void ** ppv);

HRESULT _ stdcall LockServer (BOOL bLock);

}i
A typical COM server implements the [ClassFactory interface, thereby allowing COM object
instances to be created. The creation process for COM objects that rely on IClassFactory is
always the same.

o Use the COM object Class ID (CLSID) to obtain and IClassFactory interface pointer to

the correct factory.
e Call the IClassFactory::Createlnstance() method to create the COM object instance.
o After the COM object is created, an interface pointer to the newly created object instance

is returned, and the factory interface poinier is discarded.

47

@ Locate Factory / \

B Create
instance

€ Client use

the provided
services
© Return
interface pointer
COM Client COM Server

Figure 3-8: Creating COM object

CoCreatelnstance is a helper function which creates a class object associated with the class
identifier (passed és an argument to CoCreatelnstance function), creates an instance of that
class identifier and then releases the class object of that specific class identifier. All the
components are created with a class factory. CoCreatelnstance also uses a class factory behind

the scene to create a component.

Explicit use of the factory is required for bulk creation of COM object instance. To make creation
of many instances efficient, one needs to first get an interface pointer to the factory and to then
create multiple COM object instances using the same factory interface pointer. This eliminates

the need to locate a factory for each instance that is created.

3.4.3.2 CORBA Factories

The CORBA notion of factories is somewhat different from that of COM. CORBA does not specity

a standard implementation for factories. Instead, CORBA provides for persistent objects (i.e.,

48

objects that can live beyond the lifetime of a single process). A persistent object provides a useful
mechanism for creating a factory. The CORBA clients rely on a stringified interoperable object
reference (IOR). A stringified IOR is simply a string of characters that can be used to uniquely
identify a CORBA object instance availqble on the network regardiess of vendor or hardware

platform.

// Create a servant for interface RegOffice::RegistrarFactory.
/7
the RegOffice RegistrarFactory =
RegOffice RegistrarFactoryImpl:: create(my_poa);
oid = my poa-ractivate_object (the_RegOffice RegistrarFactory) ;
tmp_ref = my_poa->id to_reference (oid);
write reference (tmp_ref,"c:/temp/RegOffice RegistrarFactory.ref");

// Activate the POA Manager and let the ORB process reguests.
/7

root_poa_manager->activate () ;
cout << "Waiting for requests..." << endl;
global orb->runf() ;

3.4.4 Destroying Objects

COM and CORBA have very different approaches for destroying distributed object instances.
Although both COM and CORBA use reference counting to determine when an object is no

longer in use with in a specific process, the similarities end there.

COM supports distributed reference counting and garbage collection where by a server object is
destroyed when there are no longer any client referencing it. Supporting such a mechanism is not
a simple task. Many issues related to efficiency and reliability must be addressed. COM'’s built-in

management of object destruction is an extremely useful and important feature.

CORBA takes the stance that a server object’s reference count should not be affected by the
uncontrollable actions of an arbitrary client. In CORBA, server-side reference counts are
maintained separately and have no direct relationship to client- side reference counts. The

reference count maintained in a CORBA server for a specific instance can be manipulated only

49

within the context of the server. This means that the responsibility for releasing all references to a
server object requires a customized solution rather than a standardized approach.
!) 1

'

3.5 Exception and Error Handling
3.5.1 CORBA Exceptions

CORBA specifies an extensible exception capability that maps naturally into languages that have
native exceptions, like C++ and Java, and that maps into exception data in languages that do not.
It is based on user-defined exceptidn types in CORBA IDL. in practice, this me