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ABSTRACT

A REDUCED COMPLEXITY
DECODING ALGORITHM FOR
TURBO PRODUCT CODES

Shirin Esfandiari

For effective communication to take place between a source and a destination the
emphasis lies on the reliable transport of information. Given the constraints of the
transport medium, there is much emphasis on the research techniques that allow a good
trade off between complexity and performance. Despite the superior performance of
turbo product codes, one main concern is the implementation complexity of such
systems. With this in mind, in this thesis we present, a reduced complexity decoding
algorithm for turbo product codes. This scheme is based on the reduction of the
complexity of a soft input soft output trellis based iterative decoder by means of
simplifying the trellis structure. We present the details involved in pruning certain
branches based on the values of the received channel information and the extrinsic
information associated to each branch. We introduce the concept of branch pruning by
means of using a threshold, and investigate the methods for compensating for the
performance degradation (in terms of bit error rate) in a system where a structural

complexity simplification such as trellis pruning is in effect.
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Chapter 1

INTRODUCTION

Throughout history reliable and quick communications over long distances has
been a major goal, and a great deal of human effort has been exerted towards reaching
this objective. The Roman Empire, for example, constructed a communications network
ranging more than 4,500 kilometers based on smoke signals. In 1794, the first mechanical
optical telegraph used a network of signal flags mounted on towers to transmit messages
across Europe. Commercial electrical telegraph service began in 1844 when Morse sent a
message from Washington D.C. to Baltimore. Today, telecommunications is a
fascinating, rapid paced industry that affects every aspect of our lives including simple
voice telephone calls, access to the Internet, high speed data communications, satellite
communications, video conferencing and cable TV just to name a few. In Latin, the word
tele signifies distance, hence telecommunication is distance communication, however
thanks to the amazing developments in this field the word “distance” is hardly an obstacle

and research is continuously innovating itself to make flexibility, accessibility and



freedom synonymous with personal communications. However with such a tremendous
growth in mobile communications, great emphasis is placed on high-speed, reliable and
most importantly cost effective techniques, allowing for an error free transmission of any

kind of information in a typical communication system.

1.1 The Communication Model

For effective communication to take place between a source and a destination the
empbhasis lies on the reliable transport of information. A fundamental problem with the
communication between sender and receiver is that errors or distortions can arise during
the transport through the communication channel as a result of noise acting upon that
medium. Depending on the requirements imposed by the receiver, the transport of
information must be error-free to a certain degree. It must therefore be possible to correct
errors, or the transmission must be good enough that certain errors, which are considered
to be less serious, can be tolerated. Error control coding, or channel coding, is a method
of adding redundancy to information so that it can be transmitted over a noisy channel to
another party, and subsequently be checked and corrected for errors occurring during
transmission. Channel coding is especially beneficial for wireless and multimedia
applications, such as cellular phone communications and high definition television
broadcasting. It is also favorable in deep space and satellite communications, and digital
communication and storage. Figure 1.1 shows the basic layout of how information is

transmitted and received in an error control coded channel.



Information Source

Source Encoder
enhance efficiency of converting the
messages from the source to binary

digit

Encipherment
add security to prevent possible
improper use

Channel Coding
enhance the resistance to the defects/
noise over the transmission media

Modulation
converts digital information sequence
into waveforms that are compatible with
the characteristics of the channel.

Channel + Noise

Demodulation
process distorted waveform and
estimate transmitted data symbol

Channel Decoding
check errors in the symbol estimates
and possibly correct them

Decipherment
recover the plaintext

Source Decoding
convert back the binary digits to the
messages that end-user can understand

Destination

Fig. 1.1: Communication System Model
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1.2 Basic Concept of Error Correcting Codes

Considering some of the constraints of a transmission system, namely limited
amount of power and bandwidth availability, the goal of any error control coding scheme
is to reduce the number of errors caused by the channel, while taking bandwidth
limitations into consideration. Generally, there are two ways of achieving this goal, either
by deploying Forward Error Correction (FEC) codes, or Automatic Repeat Request
(ARQ).

An ARQ system detects the errors and asks for retransmission of erroneous
packets. This will minimize the amount of wasted effort/bandwidth needed to control
errors when both the forward-channel and reverse-channel communications are reliable.
For a delay sensitive application, the performance of ARQ, in terms of delay between
consecutive packets, deteriorates as the function of the distance and the transmission
speed (bandwidth). Consequently, the use of ARQ is very limited in the communication
systems deploying broadband real time applications.

On the other hand, FEC adds redundancy to the data stream at the transmitter end,
so that the receiver can both detect and correct errors unilaterally. However, this requires
expanded bandwidth to transfer the coded sequence including the original information
and the error-correcting redundancy. Therefore, one of the engineering goals in this
domain is to find a powerful forward error correcting coding scheme that balances the
transmit power, bandwidth and data reliability.

While channel coding provides protection to the transmitted information, it is also
required to reduce the transmit power which is normally represented in terms of coding

gain. The channel coding performance is determined by the Bit Error Rate (BER) and
4



Signal to Noise Ratio (SNR) of the transmitted signal. The coded system requires less
SNR than the uncoded system to achieve the same BER. This reduction expressed in
decibels (dB), is referred to as the coding gain.

In 1948, Claude Shannon revolutionized the world of modern digital
communication, with the publication of “A Mathematical Theory of Communication” [1],
where he defined the capacity of the Additive White Gaussian Noise (AWGN) channel

as:

S
C:Wlog2(1+-}\—]) (1.1)

where, W is the bandwidth channel in Hertz, S is the signal power, and N =WN, is the
variance of the Gaussian Noise. Shannon’s two classical theorems of source coding and
channel coding have laid the foundation of much research in the field of error correcting
codes. The source coding theorem deals with the least number of bits required to
represent a given source without any loss. The channel coding theorem deals with the
maximum theoretical data rate with a ‘good’ data code for reliable communication. In
other words, if one would use a data rate less then the channel capacity, along with proper
encoding/decoding techniques, one can achieve reliable transmission of information. In
particular, Shannon’s proof was none constructive, which left open the problem of
finding specific good codes. Also, he assumed exhaustive maximum-likelihood decoding,
whose complexity grows exponentially with the code length. It was clear that long codes
would be required to approach capacity and that more practical decoding methods would

be needed.



It was well understood by this time that the key obstacle to practically approaching
the channel capacity was not the construction of specific good long codes, although the
difficulties in finding asymptotically good codes were already apparent (as “expressed by
the contemporary folk theorem: All codes are good, except those that we know of’[2]).
Rather, it was the problem of decoding complexity. In the mid 1960s, G.D. Forney Jr.
took a different approach to the performance vs. complexity problem. He found a class of
codes and associated decoders such that the probability of error could be made to
decrease exponentially at all rates less than capacity, while the decoding complexity
increased only algebraically, so as to achieve an exponential tradeoff of performance vs.
complexity, the solution was a multilevel coding structure called concatenated coding [3].

In [4] Gallager’s work on low-density parity check codes, considered soft iterative
probabilistic decoding of block codes composed of simple parity equations. Other ground
breaking papers in the area of soft iterative decoding include those by Battail [5] and
Lodge [6,7].

In 1993, a group of French researchers described a coding technology based on the
iterative decoding of parallel-concatenated convolutional codes. They called this scheme
“Turbo Coding” in analogy to a turbocharged engine. This provided a performance of
only a few tenths of dB away from the Shannon limit. Unlike single pass decoding with
hard decision output used in other schemes, turbo decoding uses two or more soft-input
soft-output (SISO) decoders that retain confidence information, which in turn is feedback
into the mput of the other decoders. Each pass of data through the decoder improves the
quality of error correction. The iterative decoding of turbo codes can be compared to a

process used to solve a crossword puzzle. The first pass through a crossword puzzle is

6



likely to have a few errors. Some words seem to fit, but when the letters intersecting row
and columns don’t match, one tends to go back and correct the first-pass answers.
Similarly, the turbo decoder iteratively decodes until it converges on the best answer. In
other words, the decoder circulates estimates of the sent data like a turbo engine
circulates air. When the decoder is ready, the estimated information is finally kicked out
of the cycle and hard decisions are made in the threshold component. The result is the
decoded information sequence. A more in depth view of the basic components of Turbo

Codes will be discussed in Chapter 2.

1.3 Description of the Problem

The superior performance of turbo codes relies on the concepts such as parallel
concatenated coding, recursive encoding, pseudo random interleaving, and iterative
decoding. However, with such a superior performance comes the price of increased
complexity. With this in mind, we embark on the quest to find a reduced complexity
decoding algorithm for concatenated linear block codes that allow a tradeoff between
complexity and performance. Our main objective is to develop strategies for complexity
reduction in iterative decoding and to come-up with a reduced complexity algorithm,
while not sacrificing the performance. At this point we expect the reader to be patient,

until these issues are discussed in greater detail in the subsequent chapters.



1.4 Thesis Contribution

In this thesis, an in depth analysis of the complexity of an iterative SISO decoder
for block turbo codes is presented. Moreover, we study the effects of combining the
trellis-based Max-Log MAP decoding algorithm with the augmented list-decoding
algorithm, namely the Chase type-II algorithm. The evaluation of this hybrid scheme,
results in our proposed algorithm, where we aim at reducing the complexity of a SISO

trellis-based iterative decoder by means of reducing the complexity of the trellis.

1.5 Overview

Having defined our objective as contributing towards complexity reduction in
trellis-based iterative decoding, we will now go over the outline and structure of the
concepts presented in this thesis. Since we are dealing with iterative detection and the
concepts involved in encoding/decoding techniques, Chapter 2, consists of a formal
description of linear block codes, followed by convolutional codes and concatenated
coding schemes, which are the building blocks of turbo encoders. In addition, we define
the concept of turbo product code by means of an example, and discuss some of the
applications of these codes. Furthermore, we introduce and analyze the algorithms used
in turbo iterative decoding. Mainly, we discuss trellis-based decoding algorithms such as
the BCJR algorithm and its variants along with the Viterbi algorithm. Finally we end the
chapter with a brief overview of the augmented list decoding for block turbo codes.

In Chapter 3, we present the complexity considerations involved in iterative

decoding. We divide our analysis into two parts, namely the idea behind computational

8



complexity reduction, and the concepts involved in the structural simplifications of the
iterative trellis-based decoder. We also discuss the efficiency of stopping criteria in terms
of complexity reduction. Next, we present a new scheme that is a hybrid of the Chase
type-1I and the Max-Log MAP algorithm. This chapter is concluded with the analysis of
results and the discussion of the problems associated with the presented hybrid scheme,
which further deepens our understanding of complexity reduction and results in the
algorithm proposed in the following chapter.

In Chapter 4, we present a new iterative decoding structural complexity reduction
technique, which involves simplifying the trellis by means of branch pruning. We explain
the details involved in pruning certain “reliable” trellis segments by comparing their
received channel value along with their extrinsic information to a predefined threshold.
Moreover, we also discuss how we compensate for BER degradation by using a
correction factor. Lastly we present the simulation results and discuss the gain in
complexity reduction.

Finally, in Chapter 5, we make a general conclusion of the main ideas involved in
this thesis. We also discuss the potential extensions of the mentioned topics as

suggestions for future work.



Chapter 2

PRINCIPLES OF TURBO CODES

Channel coding is a method of adding redundancy to information, such that once
transmitted over a noisy channel, the receiver can check and correct errors that might
have occurred as a result of noise. For the purpose of this thesis, we will consider a
communication medium that can be modeled as an AWGN channel, which will use the
FEC as an error control strategy. In this chapter, we will review the basic concepts of
turbo codes. We shall begin our discussion with the introduction of linear block codes,
convolutional and concatenated codes, which are all the building blocks of turbo codes
and proceed with turbo decoding. Various trellis based decoding algorithms will be

reviewed in depth with a brief overview of the augmented list decoding.

2.1 Linear Block Codes

A linear block code of length N over a field F, is a linear subspace of F". Let us

define our source alphabet as the binary set y = {0,1}, with the modulo-2 addition and
10



multiplication, thus forming a finite field of order 2 called a Galois Field denoted as
GF(2). Therefore, an (N, K) binary block code can be defined as a mapping of ¥~ into "

where N > K. The amount of redundancy is determined by the rate that is defined by the

ratio K/N.
Given a K-bit source sequence of message m = (my, my, ..., my ), the binary block
code maps each K-bit into an N-tuple codeword ¢ = (cy, ¢y, ..., ¢n-7). In a binary linear

code, the sum of any two codeword is another codeword.

A generator matrix for linear block code C of length N and dimension K is any K x

N matrix G whose rows form a basis for C.

2o oo s Bon-r
g 810 . 811
G=|. = . . . 2.1
181 [ 8k-10 - - - Bk-1n-1]
where gi = (gi0.gi1, ... ,&in1) for 0<i<k. If m = (mgm;, ... ,my.;) is the message to be

encoded, the corresponding codeword is given as follows:

go
g1
c=mG= [I’)’Zo, mg, ..., mk_l] . = mogo + m;g +...+ My 18k-1 (22)

[ 8- 1

In a systematic code the codeword consists of K original information symbols, or

the actual message, and N — K parity symbols. The generator matrix of a systematic code

11



can be expressed as G = [Ix|P], where I is a K x K identity matrix and P is a Kx (N-K)
parity check matrix. A codeword can also be defined using the parity-check matrix H. If
C is an (N, K) linear block code with parity-check matrix H, then an N-tuple ¢ is a
codeword if and only if ¢cH' = 0, where H' denotes the transpose of H which is an (N-
K)x N matrix. For a systematic linear block code with generator matrix G = [Ix|P] the
corresponding parity check matrix will be H = [P'{Iy.x]. This is further illustrated in the

following example of a generator and a parity check matrix of a (7, 4) Hamming code

1000110
1011100
01000T1 1
G= H=|1 110010 2.3)
0010111
0111001
00071101

As the name suggests, the parity-check matrix is used in error detection to test the
validity of a codeword, an extensive proof can be found in [9]. At this point, it is worth
mentioning that the minimum Hamming distance of a code, dy,, is defined as the
smallest Hamming distance between two codewords in a code. As stated previously the
linearity property of block codes requires that the modulo-2-sum of two codewords,
result in another codeword. Consequently, the minimum distance of a linear block code is
the smallest weight of the nonzero codeword in the code. The importance of the
minimum distance parameter is due to the fact that it determines the error correcting and

detecting capability of a code. For example, a binary block code with minimum distance

12



dnin can detect an erroneous N-bit vector with up to d,;, — 1 erroneous bits, and can

correct error patterns with up to ¢ = [ J errors.

It is worth mentioning that one of the important features of the block codes is that a
codeword depends only on the current input message and not on the past messages.
Therefore, the encoder is a memoryless device. The reader can find a more detailed list of

some common linear block codes in [8, 9, 10].

2.2 Convolutional Codes

Unlike block codes, convolutional codes provide a means for encoding stream of
data of an arbitrary length, thereby eliminating the need for decoding with fixed data
blocks. A convolutional encoder can be implemented as a multi-input/multi-output
system, with K bit stream as the input and N bit stream as the output. Encoding begins
with the division of the message bit into K input streams (frequently K =1), which are
passed through an encoder to provide N output streams. These output streams are then
multiplexed together to form the final codeword ¢. As in the case of block codes, the rate
of convolutional codes is also » = K/N. In the convolutional encoder, one shift register is
required for each input stream. The total memory required, M., is the sum of the lengths
of all shift registers associated with each input. The constraint length, K., of an encoder is
the maximum number of bits in an output stream that can be affected by an input bit [11].
While it is possible to change the code rate by varying K, puncturing is the common
practice used to change the code rate. Puncturing consists of deleting some of the output

bits of the encoder [9]. For example, a rate 1/2 code can be changed into rate 2/3 by
13



deleting every 4™ output bit. Although this is a suboptimal design, punctured codes are
very popular due to the fact that a single encoder/decoder can be used for implementing
different code rates. Figure 2.1 illustrates a rate 1/2 convolutional encoder with a

generator matrix:

g =1+D
g®=1+D+D> (2.5)
}m X
m

Fig. 2.1: Convolutional Encoder

A convolutional encoder with memory M, has pMe possible states, which are all
determined by the contents of the shift register(s). The reception of each input bit results
in transition from the present state to one of two possible next states, depending on
whether a 0 or a 1 is received. Each state transition results in an N-bit output. This
encoding operation is clearly laid out in the state diagram of a convolutional encoder. A
state diagram consists of a set of nodes (representing the possible states of the encoder)
connected by links labeled by m/x, where m represents the input bits and x the output bits
corresponding to each state transition. Figure 2.2 illustrates the state diagram of the

encoder in Figure 2.1.
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Fig. 2.2: State Diagram of a Convolutional Encoder

The trellis diagram is a more elaborate visual tool that incorporates the passage of
time to the information already provided by the state diagram. Each node in a trellis
diagram is labeled S;;, where i, represents a specific encoder state, and j represents a
particular instance in time. Figure 2.3 illustrates a sample state diagram for the encoder

given in Figure 2.1.

i=0 i=1 i=2 i=3 i=4

Fig. 2.3: Trellis Diagram of a Convolutional Encoder

For convolutional codes, a unique path through the trellis is associated with every
codeword. This path is known as the state sequence. Although convolutional codes are
characterized by having variable lengths, for certain applications, it is necessary for the

input frames to have a concise length. In the literature this is referred to as trellis
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termination, where the last M, input bits are set to zero in order to force the trellis to

terminate at the all zero state.

2.3 Concatenated Coding Scheme

A concatenated block code consists of two separate codes which are combined to
form a larger code, for the purpose of increasing the coding gain, while maintaining a low
decoding complexity. This can be achieved by different schemes, namely, serial, parallel
and hybrid concatenated block coding. However, before further investigation into these
schemes let us introduce the concept of interleaving of coded data for channels with burst
errors. In almost all concatenated coding schemes an for the purpose of constructing a

code with exceptionally long code words.

2.3.1 Interleaving and Burst Errors

By its very nature, an interleaver or a permutator receives an N-bit input sequence
and rearranges it to construct a new N-bit output sequence. As was previously stated, we
have considered an AWGN channel for our discussions, where the errors occurring
during the transmission are statistically independent. However, some channels
demonstrate bursty error characteristics. In essence, a burst of errors of length / is defined
as an /-bit sequence beginning and ending with 1. As an example, let us consider a multi-
path fading channel, where due to time variant multi-path propagation, the signal falls
below the noise level and results in a large number of errors. Much work has been done
on burst error correcting codes as stated in [5]. However, an effective approach for

dealing with burst error channel is to interleave the coded data such that the bursty
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channel is transformed into a channel with independent errors. As a result of the
interleaving/de-interleaving, errors within a codeword appear to be independent since
error bursts are spread out in time. For that reason, error codes designed for a channel
with statistically independent errors can be used for bursty error channels with the proper

interleaving techniques.

2.3.2 Parallel Concatenated

A parallel-concatenated block coding scheme consists of two encoders and an
interleaver, where the k& information bits are encoded twice by using the original
information and its interleaved version. This concept is further illustrated in Figure 2.4,
where the two systematic binary linear encoders are used to encode the information and
the permuted information. Consequently, the original information bit is transmitted only

once with 2 types of parity check bits.

Information
bits
Systematic Parit
» block encoder. |—#> arty
check bit
(1K) :
Block
interleaver
Systematic Parity '
P block encoder, —» check bit
(nzyk) Pz

Fig. 2.4: Parallel Concatenated Block Code

A parallel convolutional encoder works in the same way, where there are two, or
more convolutional encoders. The first encoder encodes the original information bits.
Next, the original information bits are interleaved and used as the input of the second

17



convolutional encoder. Finally, the output of the encoders is in some cases punctured, and

sent through the channel along with the original information bits.

2.3.3 Serial Concatenated Block Codes

In a serially concatenated block coding scheme, a K-bit block of information is
initially fed into the first encoder, where the output is fed in turn to an interleaver, and the
output of the interleaver is again coded by a second encoder. This concept is further

clarified in Figure 2.5, where S corresponds to the number of outer codewords.

K-bit Linear block S-bit . SK-bit Linear block SN-bit
blocks outer code blocks Block interleaver blocks inner code blocks

Fig. 2.5: Serial Concatenated Block Codes

2.3.3.1 Product Codes: An Example of a Serial Concatenated Block Code

A product code is a multidimensional block code, which combines short block

codes in order to form a longer block code with moderate decoding complexity [9].

3
N
v

VPN
x

v

Fig. 2.6: Product Code
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Let us consider the case of two codes C; (ny, k;, d;) and C; (ny, k,, d2), where n;, &
d;, are the length of coded data, the length of the original information data, and the
minimum hamming distance of code Ci, i = 1, 2. As demonstrated in Figure 2.6, the
product code can be viewed as a matrix PC, with n; columns, and n, rows. First, k, data
blocks are encoded by code Cy, then the #; columns are encoded by code C,. Since all the
columns of the matrix PC are codewords of C;, and all the rows are codewords of C;; the
matrix PC is decoded by alternating between decoding first the rows, and then the
columns. This iterative decoding method will be described in more detail in the
subsequent sections of this chapter.

In terms of the applications of turbo product codes, [9] presents a comprehensive
study of various organizations and companies which use these applications in satellite
communications, wireless Local Area Network (LAN), wireless internet access and

mobile communications.

2.4 Turbo Codes

In 1993, Berrou et al. [12] introduced a coding scheme consisting of two parallel
recursive systematic convolutional encoders, separated by an interleaver, and using an
iterative A Posteriori Probability (APP) decoder. This scheme, achieved an exceptionally
low BER at an SNR close to Shannon’s theoretical limit. Since their introduction, turbo
codes have been the focal point of much research in the field of error control coding. The
two fundamental elements of turbo codes are parallel concatenated encoders and a

decoding procedure with an iterative nature. Since we have already familiarized the
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reader with the concepts behind parallel concatenated encoders in Section 2.3.2,

henceforth we will focus on the turbo decoder.

2.4.1 Turbo Decoding
Let us start by describing the standard Soft-Input Soft-Output (SISO) iterative

decoding used in turbo codes. Once the symbols are encoded in either parallel or a serial
concatenated fashion as described in the previous section, the symbols are then fed into a
modulator that sends out a stream of waveforms over the channel. For the purpose of our
research we consider Binary Phase Shift Keying (BPSK) modulation. Once the symbols
are detected in the receiver, sets of sufficient statistics are obtained by first matched
filtering then sampling the received waveforms [10]. These sets of observables are the
input to the iterative decoder. Since the outputs of each constituent encoder of a turbo
code depend only on the present state and present input bit, the encoding process of a
turbo code can be considered as two joint Markov processes. Given the fact that the two
Markov processes run on the same input data; turbo decoding proceeds by first
independently estimating each process, then refining the estimates by iteratively sharing
the information between the two decoders. This signifies that the output of one decoder
can be used as a priori information by the other decoder. In order to take advantage of
this iterative decoding scheme, it is necessary for each decoder to produce soft-bit
decisions in the form of Log Likelihood Ratios (LLRs). This serves to indicate that a

transmitted bit x; is either a 1 or a 0 given the received information y:

Plx, =1]y]

L) = oy

@2.5)
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A decoder that accepts input in the form of a priori information, and produces
output in the form of a posteriori information is known as a SISO decoder. The important
information elements of the turbo decoding algorithm are the LLR of a posteriori
probabilities, the LLR of a priori probabilities and the exchange of extrinsic values in
each iteration. A turbo decoder is composed of two constituent SISO decoders that are
serially connected through an interleaver, this is the same interleaver used in the encoding
process. The above-mentioned LLRs and the extrinsic information are exchanged

between each decoder and are updated iteratively.

——-L(x): a priori values—» ———LJ)?) : extrinsic values—»
SISO DECODER
A
—L_*y: channel values— ——L(x): a posteriori values—»

Fig. 2.7: SISO Decoder

As expected the channel output is the soft input of the SISO decoder. Let us assume
that a binary random variable x is conditioned on the vector yy, then the conditional LLR,

using Baye’s theorem, will be:

P(x, =+1]y,)
Lx, |y,)=1 2.6
O 1) nP(xk=_1|yk) 26
—In Py, | x, =+1)- P(x, =+1) @2.7)
P(y, | x, =-1)-P(x, =-1)
=1nP(y"|xk=+1)+1nP(x":+l) (2.8)

P(y, |x, =-1) P(x, =-1)
= L(y, | x,)+ L(x;) (2.9)
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However, after transmission over a channel with a fading factor a and additive

Gaussian noise,

P(y, | x, =+1)- P(x, =+1)

o Ly =i e =1 PG, =) 219
E
exp(—— (¥, —a)*) ~
—In 2,/ s P =*D 2.11)
(et (e =D
—In{exp(-~ () =2+, +a =i =2yt ~aH+Lx) (2.12)
E
= Infexp[-—=(~4-a-y,)I} + L(x,) (2.13)
= f]‘ 4-a-y, +L(x,) (2.14)
- L
=L -y, +L(x;) (2.15)

where a =1, for a Gaussian channel.

As can be seen from Figure 2.7, the symbol-by-symbol SISO decoder has two

outputs, namely the extrinsic, and the a posteriori LLR values, L (x)and

A

L(x) respectively, where:

P(x=+1]y)

L(x)=L(x|y)=In P15

(2.16)

In other words, the a posteriori LLR is the logarithm of the ratio of the probability

of a given bit having the value +1/-1, given observation y. The extrinsic information
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A

L,(x) contains the soft output from all “other” coded bits in the code sequence and is not
influenced by L(x), and the L, -y values of the “current” bit. For the systematic codes,

the soft output of the transmitted bit is represented by:

L(x)=L,-y+L(x)+L,(x) (2.17)
L_Q1(X) L : Ln?&) »
DECODER1 : | DECODER2 L

Fig. 2.8: Iterative Decoding Procedure

As indicated in the above figure, the extrinsic value for the first iteration is:

L,(x)=Lx)-[L -y+L(x)] (2.18)
Assuming equally likely information bits, we initialize L(x)=0 for the first iteration.

Decoder2, uses the extrinsic information of Decoderl as a priori information, and

produces its own extrinsic information:

L,(x)=Ly(x)=[L, - y+L,(x)] (2.19)
This 1s in turn considered as the a priori information of Decoder! in the second

iteration and so on. This process is terminated after a fixed number of iterations; usually
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when the soft output of Decoder?2 stabilizes and does not vary between iterations. Finally,

Decoder2 combines both extrinsic values such that:

L) =L, -y +Ly(x)+ L (x) (2.20)

A

and a hard decision is made on bit x [9].

2.4.1.1 Trellis based Decoding Algorithms

Trellis based decoding algorithms are often but not always (as is the case in [13])
used for turbo decoding. This is mainly due to the fact that trellis based decoding
methods are recursive, hence suitable for the estimation of the state sequence of a
discrete-time-finite-state Markov process observed in memoryless noise [9]. Two well
developed and widely used algorithms for determining the state sequence of a trellis
encoder are the Viterbi algorithm (VA), and the Maximum 4 Posteriori (MAP) algorithm
[14]. In 1967, Andrew J. Viterbi published a powerful and practical algorithm for the
decoding of binary convolutional codes [15]. It was further recognized that the VA could
be applied to a variety of applications such as channels with memory {16], and trellis
coded modulation [17]. Although the BCJR algorithm (also referred to as MAP) predated
the VA, and was explicitly applied to convolutional codes only a few years after the
publication of the Viterbi algorithm, it was not until the discovery of turbo codes that the
BCIJR algorithm became popular.

Given the received observation sequence y, the VA determines the most probable

state sequence:
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§ = arg{max_ P[s|yl} (2.21)
Thus, the states estimated by VA will always form a connected path through the trellis.
Another variant of the VA is the Soft Output Viterbi Algorithm (SOVA), which also
accepts and delivers soft sample values. SOVA gives not only the most likely path
sequence on a finite-state Markov chain, but it also gives either the a posteriori
probability for each bit, or a reliability value [18]. On the other hand, the MAP algorithm
attempts to resolve each state transition without regard to the overall sequence of the

trellis:

§;, = arg{max P[s, | y1} (2.22)
Consequently, the resulting trellis is not a connected path. Performance wise, literature
indicates that the VA results in lowering the FER (Frame error Rate), and MAP
minimizes BER [9]. Although both of these algorithms can be used for SISO [14], for the
purpose of our research we have mainly focused on variants of the MAP algorithm.

In terms of the soft symbol detection, we find it pertinent here to remind the
reader that in its most general form, the communication model depicted in our research
resembles a hidden Markov Model. This model is a process that is governed by three
probabilistic phenomena described by three distributions:

1. An initial state distribution that describes the initial state for the underlying
Markov chain.
2. A state transition distribution that describes the probability of the chain

transitioning from any given state to another.
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3. An output distribution that describes the observed random variable y, in
terms of the transition of the “hidden” Markov chain'.

As stated in [14], the problem encountered with this depicted model is that of
estimating the above-mentioned distribution given the observation y. In the early 1960s,
L. Baum and L. Welch [19] proposed an iterative solution to this problem. It was in 1974
however, that Bahl, Cocke, Jelinek and Raviv (BCJR) [20] modified the Baum-Welch
algorithm by assuming a known output distribution and focusing on recursive means in
the Baum-Welch algorithm for estimating the likelihood of the state transition. The BCJR
algorithm is also known as the forward-backward or the a posteriori probability
algorithm, or maximum a posteriori (MAP) algorithm. Ultimately this algorithm results
in the sequence of APP, {P(x, =i|observation),i = 0,1} , where P(x, =i|observation)
is the APP of the data bit x; given all the received sequence [9]. From an implementation
point of view, excessive amounts of calculations, non-linear mathematical functions and
the numerical representation of probabilities, are somewhat tedious and time consuming
in terms of using both hardware and software resources. As an outcome, variants of this
algorithm such as the Log-MAP and the Max-Log MAP algorithms are used in practice.
Although both of these schemes are sub-optimal, their performance is close enough such

that they can be substituted for the MAP algorithm.

2.4.1.1.1 Maximum A Posteriori Probability (MAP) Algorithm

For the purpose of this thesis, the emphasis of our research has been on turbo codes

that are composed of linear binary block codes. Hence we will describe the MAP

! For the interested reader the Discrete Hidden Markov Source is described in detail in [14].
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algorithm and its variants restricted to the case of binary block turbo codes. Let us
consider the example described in Section 2.3.3.1, at this point we will remind the reader
that the PC matrix depicted in Section 2.3.3.1 is decoded by alternatively decoding the
rows, then the columns of the matrix PC. Iterative decoding is only efficient if a SISO
algorithm is used. From the soft decision, an extrinsic information term is extracted and
then used at the input of the next decoder. The following mathematical derivations are
described both in [9][19]. To further describe this algorithm, it is helpful to consider the
description of the binary trellis of a systematic block code.

t, ottt ty

P X

Fig. 2.9: A Sectional View of the Trellis of a Systematic Block Code, Representing a Transition
From State s to s .

We want to compute a soft decision measure for the j’h term of the information

sequence, given the sequence y = {y,,...,¥;,..., ¥y}, Which is the output of the AWGN

channel. From Figure 2.9 this LLR becomes:
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P(x,=+1]y) _ - Z(s,s,),szﬂ P(s,s", y)

S . 2.23)
P(xj =1 | y) z(:,s'),xj=—1 P(S’S"y)

L(x;)=L(x, | y)=1In

The crux of the problem is the determination of the joint probability

distribution P(s, s', y). Given the fact that we are dealing with a Discrete Memoryless

Channel (DMC) we can write P(s,s',y) as:

P(S1S'7y) =P(S',yt<j)'P(S',yt [S)'P(yr>j |S') (224)
=P(s, ) P(s|8') - P(y,|5,5') P(y,,; |5') (2.25)
[ —

a;4(s) ¥ (5,87 B;(s)
past present Sutur

» «a; (s): This term is the MAP measure on n;, based on the first j-/ terms of

y . This is denoted by the y, ; signifying the sequence of received symbols

from the beginning of the trellis up to time j-1. The Greek letter « denotes

this measure.

» y,;(s,s"): This term is the measure on x; based solely on y;. In other words

this is the branch transition probability, and is denoted by the Greek letter y .

>  f;(s"): This last term is a measure on x;, based on the last bits of y from
¥ ;4 to the end of the trellis. Hence this is a measure based on the future and

is denoted by the Greek letter 5.
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The above three definitions are the major key players in the MAP algorithm.

o ;(s") and B;(s) are also referred to as the forward and backward recursion of the MAP

algorithm where,

a;(s)=2. .7;(s.5) a;,(s) (2.26)
a,(0)=1

Bia(s) =2, 7(5:5) B;(s) (227)
By (0)=1

7 5:8) = P(s'|5)- P(y; | 5,5") (2.28)

Based on the assumption that the information bits are statistically independent;

given an (N, K) systematic block code, the branch probability is defined as:

' P(y;|x;) P(x;) 1<j<K
7 £s,s") = (2.29)
P(y,|x,) K+1<j<N

where from [9, 19] we have:

x; /2

P(y;|x; =%1)=B, " (2.30)
P(x, =tl)=4, """ (2.31)

Where both 4;, and B; are equal for all transitions from time j-/ to j and can be
omitted by the ratio in Equation 2.23. Consequently the simplified branch transition

equation can be rewritten as:
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1
(o (Ley +L(x;)) v Yxf2
y(s,s)=e2 T 2 N (2.32)

| o Loy L)1) 1<j<K (2.33)
y(s,s") =

el K+1<j<N

The LLR associated with Equation 2.29, can be expressed by:

L -y, +L(x;) 1£j<K
L(x;;y;)= (2.34)
L -y, K+1<j<N

As indicated by the above equation in a systematic block code a priori probability
L(x,)is equal to zero for all parity bits.

Finally, the soft output of the trellis-based MAP algorithm for systematic block

turbo codes can be written as:

Z:(s,x'),xj=+1 Qi (S)Bj (s")
Z(s,s‘),xj.=_1 a’j—l (S)Bj (S')

L(#)=L, -y, +L(x;)+In (2.35)

2.4.1.1.1.1 MAX-LoG MAP ALGORITHM
Based on the fact that the MAP decoding algorithm involves non-linear functions

and requires a significant amount of memory for exponential and multiplication
operations, it is considered too complex for implementation. In practice, the Log-MAP
algorithm is used in order to avoid exponential functions and to replace multiplication

operations by additions. Furthermore, Max-Log MAP is a suboptimal algorithm, which
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simplifies the representation of probabilities, and reduces the computational complexity
with a negligible degradation in performance [21].

As the name suggests, Max-Log MAP uses logarithmic functions for the forward
and the backward recursions and the branch probability in the MAP algorithm. Before
proceeding to the details of this sub-optimal algorithm, we will remind the reader of the
notations used:

» Jj: refers to the time instant ;.

» 5,5 refer to the trellis state s at time j-/ and s’ at time j.

» K, N: refer to the length of the information sequence and the coded version,
respectively.

Considering the logarithm of the transitional probability Equation 2.33 becomes:

[Lc'yj"'L(xj)]'xj

' L(x‘ay')'x' 2 B
logv,-(s,s)=—~—’—2—i———’—= Loy s (2.36)
——yzf—i K+1<j<N

For simplifying the computation of «,(s)and f;(s"), the following approximation is

used:

log(e® +e” +..+e”) ~ Max, 5. .9 (2.37)
where Max,_,, .0;is obtained by successive computation of (r-1) maximum functions

over 2 values. Hence the forward recursion becomes:
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loga,(s)=log)_ 7,(s,8" ), (s) (2.38)

= Max [logy;(s,s') +loga,  (s)] (2.39)

L(x.,y.) x. (2.40)
- Max, [—(—f—;;)—f +logat,,(5)]
where at time j=0, loga,(0)=0 and loga,( so) =-0.
By the same argument, the backward recursion probability becomes:
logB . (s) =log)_ v,(s,s")-B,(s") 2.41)
= Max[logy ;(s,s') +log §,(s")] (2.42)
L(x.,y.) x. (2.43)
= Maxs‘[__(__l__').;j)_j + 10g[3j (S')]
where at time j=N, £,(0)=0.
Thus the estimated information is approximated by:
Zss' X =+ o - (S)B .(S')
Le(xj)zlog (5,8x;=+1 " J J '
DI ORI CY) (2.44)

= Max, ,, _[loga ., (s) +1ogB,(s')] - Max, . _,[logo. ., (s) + logB (5] (2.45)

Finally the soft output of the Max-Log-MAP algorithm can be written as:

LG) =L, -y, +L(x;)+ L(%,) (2.46)
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Z(s,s'),xj=+1 o, (5)B,(s)

=Ly, +L(x;)+log , (2.47)
L Y e (9B, (5)
=L, -y, +L(x;)+]log Z@,sg,,,/.:“ o, (9B, (") - 0.48)
log Y, . 0 (9B, (5
=L, -y, +L(x,)+Max,, . _.[loga,  (s)+logB,(s")]
L N / (2.49)

- Max(s,s'),x,:—l [log a’j—-l (S) + log Bj (S' )]

Therefore, by changing the multiplication and exponential operations into
comparison and addition operations, the Max-Log-MAP is an attractive algorithm in

terms of feasibility of hardware implementation.

2.4.2 Augmented List Decoding
Apart from trellis based decoding, augmented list decoding is another SISO

iterative method used for turbo block codes. The concept behind list decoding is to form a
list of candidate codewords by considering the channel (soft) information. There exist
numerous methods of producing this list of candidate codewords, such as the Chase-type
IT method [22], the pseudo maximum likelihood algorithm [23], and the Fang-Battail-
Buda Algorithm [24]. In [13], Pyndiah et al. proposed a SISO decoding algorithm based
on the Chase algorithm. The type of product code reviewed is similar to the example
depicted in Section 2.3.3.1. The main idea behind this near optimum algorithm is to use
the received channel information in order to limit the set of received candidate codewords
to a set of highly probable codewords. As a consequence this algorithm is suboptimal

since it does not perform a full search over all valid codewords. In order to find this set of
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candidate codewords, a set of test patterns 7, is generated by using a set of error patterns

E and a hard decision vector y of the received sequence such that:

f=é+y where tel (2.50)

eek
Note that F is generated based on the reliability of the received sequence. Once the set T
is complete, each test pattern is decoded using an algebraic decoder. The decoder output
is a set of candidate codewords. Two codewords are selected from this set, one is referred
to as the decision codeword, and the other will be named the competing codeword. Both
of these codewords have the highest correlation with the received sequence; however

they differ from each other by one bit. Ultimately, given the received vector, the decision

codeword and its competing codeword result in the soft output®.

2.5 Summary

In this chapter, the reader is presented with an overview of the type of
encoding/decoding schemes encountered in turbo codes. Linear block codes and
convolutional codes were discussed, followed by concatenated codes, which were
illustrated by an example of a product code. In terms of decoding schemes, the main
focus was on SISO iterative decoding. A brief overview of trellis based decoding
algorithms such as the VA followed by an in depth analysis of the MAP algorithm and its

variants, namely the Log MAP and the Max-Log MAP were also discussed in detail.

% A detailed well defined description and a concise example of this algorithm is given in [9]. We refrain from repeating
all that information here; although Pyndiah’s work is inspiring, however the core of our work is founded on trellis
based decoding.
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Finally, we concluded the chapter by familiarizing the reader with the concept of

augmented list decoding.
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Chapter 3

DECODING COMPLEXITY OF BLOCK TURBO CODES

In its most general term, any system benefiting from an “unlimited” amount of
resources can achieve superior performance. Realistically speaking, however, that is not
the case. Since, for any type of implementable system, the designer has to consider a set
of well defined criteria and limited resources for a given design concept. The general rule
of thumb for any designer is to increase the system’s performance while decreasing its
complexity. Obviously, a better performance is usually observed as the complexity
increases, unfortunately, iterative decoding is no exception to this general rule. Hence,
before considering any type of reduced complexity techniques let us first understand the
complexity considerations in iterative decoding.

As stated in Chapter 2, an iterative decoding system is composed of multiple
components, which perform the counter actions of the modules in the encoding system.

As expected the overall complexity of an iterative decoding system is thus dependent on
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the complexity of its constituents. This brings us to the following question, which has
generated much interest ever since the introduction of turbo codes: “What kind of
decoding complexities are we dealing with, and how can we reduce them?” For the
purpose of our research, we shall examine both the computational and structural

complexity of iterative decoding of block turbo codes.

3.1 Computational Complexity

As previously mentioned, the additive version of a given SISO algorithm is less
complex then the multiplicative version. An example of this complexity reduction is of
course the Log-MAP algorithm, where the calculations are carried out in the logarithmic
domain as opposed to the exponential domain. However, even in the log domain, we still

need to calculate complex terms such as:

x=In) e (3.1

By using further approximation techniques, the above summation becomes a simple

comparison as in the Max-Log MAP algorithm:

In) e ~ Max(x,) (3.2)

Further details regarding the sub-optimality of the Max-Log MAP can be found in
[9]. In terms of the LLR computation for each received symbol, the MAP algorithm
considers all paths in the trellis, but divides them into two sets, one that has a bit one at

time ¢, and the other having a bit zero, it then proceeds by calculating the LLR for each of
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these two sets. The Max-Log MAP however, considers only 2 paths per trellis segments,
this being the best path with the bit one and the best path with the bit zero at time z. It
then calculates the LLR for each path and returns their difference. Although these paths
might change from one trellis segment to another, one will always remain the ML (Most
Likely) path. A decoding complexity comparison table, between the MAP, Log-MAP,
Max-Log MAP, and SOVA algorithms is presented in [25]. Although each algorithm is
represented by the number of computation operations for a (N, K) convolutional code the
comparison can also be applied to block codes. In addition, for the interested reader, [26]
presents a good comparison of computational complexity for different SISO algorithms,
where the authors have considered the delay, computation per symbol, and memory

requirements in their analysis.

3.2 Structural Complexity

For trellis based decoding algorithms, structural complexity transcends to the
complexity of the trellis diagram. Rewinding back in our statement, it is well known that
whenever the encoders are represented by their FSMs (Finite State Machine), the
decoding procedure can be carried out by using a trellis diagram [9, 10, 14]. By that
account, the complexity of the BCJR algorithm grows exponentially with the number of
states of the corresponding trellis [25]. Hence, reducing the number of states, reducing
the number of branches, or a combination of both, in other words, minimizing the size of
the trellis, is the main focus of decreasing the structural complexity of such decoders. The

idea of state reduction has been the focal point of much research even before the
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introduction of iterative decoding. Two reduced state decoders are proposed in [27,28].
However, both approaches consider transmission channels with ISI (Intersymbol
Interference); which results in a lot of states in the decoder’s trellis diagram, and it is very
complex to decode otherwise. In [29], T. Larsson proposes a state space partitioning
approach to trellis decoding in which the states in the trellis are divided into a number of
classes; [30] proposes reduced state BCJR type algorithms in which the key idea is based
on the construction of a “survivor map” corresponding to a reduced state trellis obtained
in one recursion which is used in other recursions. V. Franz and J.B. Anderson in [31],
present 2 techniques to reducing both branch and state complexity by removing certain
nodes from the full complexity trellis diagram. J. Hagenauer and C. Kuhn propose
another reduced complexity algorithm [32] based on the stack algorithm [8]. Also the
method of early detection is used in [33], where confidence intervals are used to detect
some information symbols, state variables and codeword symbols, in an earlier stage

during the decoding procedure.

3.3 Stopping Criteria

A fundamental property of a turbo decoder is its iterative nature. In each iteration, a
set of a posteriori probabilities that are produced by one decoder are considered as a
priori input for the second decoder, and this set of soft information is “passed” between
the decoders and is more refined in each iteration until a final hard decision is made.
However, when the decoder approaches the performance limit of a given system, further

iterations provide very little improvement. As expected, there is an associated cost to
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each iteration and as the number of iterations will increase, the complexity will also
augment. It is therefore of most importance to consider a good stopping criteria in order
to reduce decoder complexity. In [34], Hagenauer et al. suggest a stopping criterion
based on cross entropy between the distributions at the output of the 2 SISO decoders. In
other words, the cross entropy is defined as a measure of the difference (closeness) of the
two distributions. The suggested stopping criterion is to make a hard decision when the
cross entropy falls within a certain range ~ (102, 10™*). In [35], Shao et al. present two
simple and computationally effective rules referred to as the hard decision aided (HDA)
criterion and the sign change ratio (SCR). Although, both methods are based on the same
concept as [34], they require only integer operations and less memory space. For the SCR
method, the decoder has to only count the number of sign changes between two
consecutive operations. Whereas in HDA, the decoder has to store the hard decisions in
one iteration and compare them to the decisions obtained in the next iteration. Several
other stopping rules can be found in [36] and [37], most of them being based on the same
basic concepts as the ones discussed.

Now that we have shed some light on the various complexity issues regarding
block turbo codes, we will proceed by discussing the thought pattern that has led to our

proposed algorithm.

3.4 A Hybrid Scheme Using Max-Log MAP and the Chase Algorithm

Inspired by the work done by Pyndiah in [34] and Chase [22], our goal is to

generate a set of candidate bits, given a received sequence Y, which are characterized as
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the most reliable bits, therefore a decision will be made on these bits prior to trellis bit
decoding of the received sequence. In other words, a hard decision will be made on these
bits while Max-Log MAP will decode the rest of the received sequence. Our objective is
to reduce the complexity of the trellis by pruning the branches corresponding to the most
reliable bits. We will further clarify the above statement by discussing the background of
Chase’s proposed sub-optimum algorithm for near-ML decoding of linear block codes, as

described in [34], and remove all ambiguity by means of an example.

3.4.1 Background of the Hybrid algorithm

Let us consider the transmission of binary symbols {0, 1} which are coded by a

linear block code C (as in the example in Section 2.3.3.1), over an AWGN with the

following mapping {0 — -1, 1—> +1}. The observation R = (,...,;,...,7,) is given by:

Fr=x+n (3.3)
where X = (%5--s %;5...x, ) 1s the transmitted codeword, and N = (n,,...n,,...n,) is a vector
consisting of the white Gaussian noise samples with standard deviationc . According to

[22], the optimum decision D = (d,,...,d,,...d,) corresponding to the transmitted codeword

X is given by

D=C" ifR-c| <[R-c| 1€{l,..2"} and I=i (3.4)

‘2
. . . L . .12 “ S
where ¢ = (¢;,..¢;,...c,)is the ith codeword of C and |R—c’| =Z(rj —c’)’is the
=1

squared Euclidean distance between R and ¢'. In 1972, Chase proposed a suboptimum

algorithm of low complexity for near-ML decoding of linear block codes. Chase
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observed that at high SNR ML codeword D, is located in the sphere of radius
(6 —Dcentered on'y = (¥,,..., ¥;5..., ¥, ) Where y, = 0.5(1 +sgn(r))and y, € {0,1} . In order

to reduce the set of reviewed codewords, only the set of the most probable codewords
residing within the sphere are selected by using channel information R; this is done by the
following procedure:

1. Determine the position of the p = |_§ / ZJIeast reliable binary elements in y

using R , where & is the minimum distance of the code.

2. Form a set of error patterns E , defined as the combination of all n-bit binary
sequences for the positions found in step 1. Therefore there will be 2°

possible error patterns including the all zero pattern.

3. Form the set of test patterns7 =Y @ E, where @ denotes the modulo 2
addition operation.
4. Decode all test patterns using an algebraic decoder; with the valid
codewords form a subset of restricted reviewed codewords.
We decided to take advantage of a similar concept in our hybrid scheme. We shall

explain the details of this concept with the aid of an example.

3.4.3 Trellis Construction of a Linear BCH Code

Let us consider a product code based on linear block codes, more specifically, we
have considered the BCH (7,4,1)2 built as outlined in Section 2.3.3.1. Transmission is
simulated over a Gaussian channel; using BPSK signaling, with white Gaussian noise,

having a mean of zero and a variance of one. Since we will ultimately decode the
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received information using a trellis, it is therefore, worth mentioning how we have
constructed the trellis for this code.

In 1974, Bahl et al. [38] proposed a method of presenting codewords of a linear
block code by means of a trellis. This method is referred to as the BCJR construction
method, which we have used for our trellis. It is worth mentioning that in 1978, Massey
[39] made a further study of the problem of representing a block code by a trellis, and
proposed an alternative construction. In 1988 Forney [40] described what he called “the
trellis diagram of a code”, which resulted in an explosion of awareness in the subject. For
the interested reader in [41], R.J McEliece provides an excellent, comprehensive tutorial
on this subject. It is important to note that different trellis representations are obtained
from different permutations of the symbol positions of any given block code. Therefore,
there can be many different trellis configurations for a unique BCH code.

In order to remove all ambiguity we shall define what we mean by a trellis as stated
in [25], and all its related terminology, used throughout this thesis. A trellis is a set of
nodes interconnected by unidirectional branches. Every node is assigned an integer j
which is referred to as the depth of the trellis, and an (N-K)-tuple known as a state,
denoted by S;(j) for a certain integer i. Therefore, there exist at most 2V states, which are
ordered from 0 to 2¥%-1, with 0 referring to the all zero state (N-K)-tuple. There is only
one node at depth 0 denoted by Sy(0) and only one node at depth n, denoted Sy(n). A path
in the trellis of length L is a sequence of L branches. The set of node subscripts at depth j

is denoted by I;, representing a subset of the integers {0,1,2,...,2" % —1}. All that being

said, the trellis for the linear block code is constructed as follows:

1. Initialize Sy(0), i.e. at depth j=0 the trellis contains only one node.
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2. For each j=0,1,...,(n—1)the set of states at depth (j+1) is obtained from

the set of nodes at depth j by the following®:

forall i e I.,tel,,,

where ] are binary inputs

le{0} S(+)=S,()+alh

(3.5)

(3.6)

3. For each i in J;, form connecting branches between node S;(j) and two nodes

at depth (j+1) for two different binary values o € {0,1} according to

Equation 3.6. Label each branch by the corresponding ] value.

At depth j=n the final node, Sy(n) is given by:

n—1
So(m) = Sy(0)+ > a/h; =0
i=0

Since both So(n) and Sy(0) are the all-zero states, the above equation implies that:

nz—ia,.’h,. =0
=0

(3.7)

(3.8)

By deploying the above construction method, all possible binary N-tuples (2") are formed

in the trellis.

? At this point we shall remind the reader that the parity check matrix ;1 is what characterizes a code C such that for
c € Cwhere ¢ =(c;,C;,...C;0sC, 1)y € €01}, cH" =cyhy+ch +...+c,h,; =0 .The

parity matrix of the (7,4) BCH code is given by Equation 2.2.
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We illustrate the trellis construction for a BCH (7,4) code with the parity check

matrix;

1011100
H=[1 11 0 0 1 0|=[hyhmrlt] (3.9)
0111001

It is obvious that we have a total of 27*=8 states as illustrated in Figure 3.1.

t=1

1=2 =3 1=4
N 0 ) 0 \0\ | | |
§,=001 \ 0 / s '

=5 1=6 =7

§,=010

§,=0M

§,=100 Q
S,=101

S=110

m Paths not ending
in the all zero state

g,=11"

Fig. 3.1: Trellis of the Binary (7,4) BCH Code
Finally we proceed by removing all branches which are not part of the path ending
in the final all-zero state at depth n=7. Hence the result is the expurgated trellis in Figure

3.2.
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Fig. 3.2: Expurgated Trellis For the Binary (7,4) BCH Code

We would like to point out to the reader that the original simulation was carried out
using both the (31,26) BCH and the (7,4) BCH codes. However, given the complexity of
the trellis of the (31,26) BCH we have considered the (7,4) BCH code for our example

throughout the rest of this chapter.
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3.4.3 An Example of Trellis Reduction Using the Chase Algorithm

Given the received channel information:
r = {1.24,-0.76, 2.14, -0.14, 1.38, 2.06, 0.58}.
We consider p = 1 least reliable* position. Therefore,
y=4{1,0,1,0,1,1,1}
we have a total of 27 = 2! error patterns:
E;={0,0,0,0,0,0,0}
E,={0,0,0,1,0,0, 0}
and a total of 27 = 2' test patterns:
T,={1,0,1,0,1,1,1}
T,=1{1,0,1,1, 1,1, 1}.
We can thus represent this test sequence by means of a trellis resulting in the
reduced state trellis of Figure 3.3, which will be decoded using the Max-Log MAP

algorithm.

* We define the term least reliable by the bit having the lowest absolute channel value given the sequence of channel
values for a received codeword.

47



Fig. 3.3 Reduced State Trellis by Means Of the Least Reliable Bit

Compared to Figure 3.2, one can conclude that the trellis has been significantly
reduced. On the other hand, using the same concept we can also reduce the trellis
complexity by means of finding the most reliable bits. Again we consider the same

received channel information where in this case the most reliable bit is the third bit:

r = {1.24,-0.76, 2.14, -0.14, 1.38, 2.06, 0.58}.

In this case the reduced state trellis will result in Figure 3.4.
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Fig. 3.4 Reduced State Trellis by Means of the Most Reliable Bit

3.4.4 Discussion of Associated Problems

In the first case, although we are capable of significantly reducing the trellis
complexity, we pay a high price in terms of performance. Conversely in the second case
we can achieve a performance similar to the Max-Log MAP algorithm; complexity wise,
however, we don’t have a considerable reduction. Rather than presenting results that have
no significant importance, we shall attempt to analyze what went wrong. Referring to
Figure 3.1, one can see that the trellis of the linear block code fully expands only at a
depth of n-k trellis segments. Therefore, pruning prior to this expansion will remove the
possibility of good paths and effectively result in error. On the other hand since we are
dealing with an expurgated trellis as in Figure 3.2, where branches that are not part of the

path ending in the final all zero state are removed; then it does not make sense to further
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remove the remaining branches in the last N-K trellis segments. Hence we can only
remove branches after a depth of N-K from the begging of the trellis and before a depth
of n-k until the end of the trellis, since only in this region is the trellis fully expanded. In
our particular example this region is limited to only one segment in the trellis, which is
the reason why we have carried our simulations with the (31, 26) BCH code. Obviously
as the code length increases the region where the trellis is fully expanded becomes more
significant.

In [13] Pyndiah demonstrated noticeable results by using the Chase algorithm,
however as stated earlier in Chapter 2, Pyndiah’s LLR computation is based on
augmented decoding and it does not use a trellis. The soft output depends on the decision
D and its competing codeword C. To find C one must increase the size of the space
spanned by the Chase algorithm, which will also increase the complexity. If the

competing codeword is not available, the soft output is defined by soft out=f-D
where [ is set in an empirical manner, and it is a very rough estimate of the soft output.

Ultimately, to exactly apply all of the various factors of Pyndiah’s interpretation of the
Chase algorithm to a trellis based algorithm such as the Max-Log MAP in order to reduce
complexity, will in fact further increase the complexity of the decoding procedure. In this
method the reliability of each bit is based only on the Euclidian distance. Clearly this
cannot be the only constraint in a trellis-based decoding system which is based on the
Max-Log MAP algorithm. Henceforth, in order to take advantage of the robustness of the
Max-Log MAP algorithm we need to consider a new approach, one that takes into
account the various components of the algorithm itself, while avoiding various reliability

and weighting factors as is the case in [13].
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3.5 Summary

In this chapter, two groups of complexity reduction techniques were discussed,
namely, computational and structural complexity. We also talked about the efficiency of
the stopping criterion in terms of complexity reduction. Furthermore, a method for
constructing the trellis of a linear block BCH code was also demonstrated by using the
BCJR construction technique. Moreover, we discussed a possible scenario of combining
the Max-Log MAP with the Chase algorithm for the purpose of complexity reduction,
and finally we wrapped up the chapter with the discussion of the associated problems

with such a scheme.
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CHAPTER 4

A NEW REDUCED COMPLEXITY ALGORITHM BASED ON TRELLIS
PRUNING

As explained in the previous chapter, in terms of complexity reduction, we will
only consider a structural reduction technique, rather then a computational method. In
Chapter 3, it was concluded that for a SISO MAP decoder, the complexity of the decoder
is proportional to the complexity of the corresponding trellis. Therefore, by reducing the
trellis structure and combing that with a computationally reduced algorithm such as the
Max-Log MAP, we expect to observe a large overall reduction in the decoder
complexity. We know that the complexity of a SISO decoder is expressed by the sum of
its various components. As we have already concluded, for the Max-Log MAP decoder,

the three main components are the @ module, the f module, and the y module. From

Equations 2.26 and 2.27 we have:

a, (V=2 ,7(58) a5 4.1)
Bia(s)=2 (5,8 B(s) (4.2)
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Clearly, the Equations 4.1 and 4.2 indicate that both thea, and S modules are
dependant ony. We can thus conclude that by reducing the complexity in the
y calculations we can affect the overall complexity of the decoder. We know that y is the
branch transitional probability, thus reducing the number of branches will also reduce the
number of times y needs to be calculated. From this statement we gather that using the
average number of branches in a trellis section is considered a valid criterion in terms of
complexity reduction. The trellis of a linear block code is shown in Figure 4.1. One can
see that in each trellis segment, a total of two branches are leaving a particular state.
However, as stated previously in Chapter 3, we only consider the segments where the
trellis has fully expanded; we can make the following general statement pertaining to our

trellis: for every state in a fully expanded trellis a total of two branches depart from each

node’.

Fig. 4.1: An Example of a Trellis of a Linear Block Code

Given, a trellis of a linear block code C (¥, K) with number of states S=2NK , and

I decoding iterations, we can define the complexity per SISO decoder as:

¢=2N-2(N-K)]-S-I (4.3)

% Recall that a linear BCH code does not have a unique trellis representation. In this case we are referring to the one
used in our simulations.
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=2(2K -N)-S§-1 (4.4)
where N is also the length of the trellis, (N-K) is the regions where the trellis is not fully
expanded, i.e. this region refers to the beginning of the trellis where the trellis is not fully
expanded, and at the end where we are only considering the paths that lead to the all zero
state. We multiply this by two, since there are always two branches entering and leaving
each node. At this point, it is important to restate what was mentioned in Chapter 3.
There is no unique trellis construction for a BCH code; hence various trellis constructions
might have segments where all the states are not used. However, in our calculations we
consider the worst case scenario, where there are branches leaving from every single

state.

4.1 Pruning Trellis by Means of a Threshold
Obviously, our goal is to eliminate certain branches without paying a high price in
terms of performance. In order to evaluate the value of different branches in the trellis in

the decoding process, an in depth analysis of the branch transition probability () is
required. We recall from Chapter 2 that y is a function of the received channel value
(L, y), and the a priori value L(x)associated to each bit x. Given the fact that the

channel information value does not change, obviously the only “variable” in each
iteration is the a priori probability associated to each bit. As stated previously, the
extrinsic output of one SISO decoder is the a priori input of the other SISO decoder.
Intuitively, we know that in each iteration the extrinsic information that is exchanged
between the decoders is continuously refined. Essentially this information is used in order

to decrease the probability of error.
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Fig. 4.2: Conditional Probability Density Functions: P(z |1), P(z|-1)

Figure 4.2 shows a random Gaussian variable z(?) with a mean of either +1 or ~1,
representing the channel value which is the transmitted signal plus noise. It is important
to note that the only performance degradation we consider is due to white Gaussian noise.
Figure 4.2, plainly indicated that the probability of error in detecting a +1 upon the

transmission of —1 is in the shaded region of the diagram where the absolute value of z(?)

is fairly small. Hence as |z(t)| increases, the probability of error will decrease. This is

exactly the goal of the iterative process, where in each iteration the extrinsic information
is used to prevent erroneous detection of certain bits. We can also conclude that for the
bits with a relatively higher channel value, the probability of making an error in symbol

detection is less than the bits that have a lower|z(t)l, which are closer to the decision

region of Figure 4.2. Referring back to the trellis of a linear block code, based on the

formula in Equation 2.36, we can declare that for each trellis segment the absolute value
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of gamma remains the same for all the branches within that segment, while its sign will
change according to the value of the branch (if the branch corresponds to a 1 = +y, if
branch corresponds to a—1— —y ). That being said, we will proceed by pruning branches

in a given trellis segment j, by comparing their corresponding gamma value to a

predefined threshold 7 > 0, such that:

Case I: (if (L, y; +L(x;) 2 1)

{prune all —1 branches within segement j}

Case 2: (if (L, -y; +L(x;) <-7)

{prune all +1 branches within segement j}

In other words, by evaluating the channel and the a priori value we make an early
decision on the transmitted bit. Let us further explain this concept by means of an
example. Assuming that we have a scenario such as the one depicted in case I, then for a
corresponding trellis segment the number of gamma calculations, i.e. (the number of

branches) will be reduced by one half as indicated in Figure 4.3.

Fig. 4.3: A Pruned Trellis
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4.1.1 Setting an Appropriate Threshold Value

One of the main questions that we are faced with is how to find an appropriate
threshold value for a given system, which will provide a desirable trade off between the
complexity and performance. Intuitively, we deduce that setting a high threshold value
will have less depredating effect on the BER performance. Another important concern is
that if we initially cut too many branches using a low threshold, it will result in a poor
approximation of the extrinsic information for the subsequent iterations. Hence, this can
negatively affect the convergence of the algorithm along with a negative effect on
complexity reduction. Consequently, the threshold value is one of the most important
factors governing the performance of the algorithm. The adopted method to find a
suitable threshold is by means of computer simulations. Given the fact that different
systems are governed by various properties, it is not possible to come up with a general
value by means of a mathematical formula applicable to all systems. Furthermore, it is
not feasible to simulate every possible system in order to come up with a unique value.

Therefore, we start our analysis by setting a threshold value based on the
maximum received channel value within a codeword sequence, and setting that value as a
threshold for all the bits within that particular codeword. In this method the system will
automatically choose a threshold for each received codeword based on the channel
information. For example, if we have a block of information where N =5 as depicted in

Figure 4.4.
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-1.4 0.68 -0.05 3.2 0.91
0.07 2.6 1.34 0.43 -2.89
3.56 0.45 2.03 1.67 3.21
-0.09 1.23 -0.84 3.89 0.84
-2.3 -0.02 1.95 -0.74 -1.45

Fig. 4.4: Sample of the Range of Received Channel Values

We can see that for the first codeword the maximum channel information |Lc . y| is 3.2,

therefore upon pruning in later iterations, the extrinsic information for all the bits within

that codeword will be compared to 3.2. Whereas, for the second codeword the maximum

L,- y| is |-2.89, therefore all the bits within C, will be compared to this value and so on.

We then proceed by changing the threshold value from 100% of the highest | L, -y |

value to 75% and gradually down to 50%. Figure 4.5 indicates the result of simulating
with a turbo product code, where the horizontal codewords and the vertical codewords
are encoded by identical BCH (31, 26) encoders which we shall refer to as BCH(31,26).
Pruning starts after the second iteration; where one iteration corresponds to a horizontal
followed by a vertical decoding step. The complexity varies from 15% to 45%. The BER
vs. SNR plot of Figure 4.5 indicates 4 curves, three of which correspond to pruned trellis
and one is the original trellis with Max-Log MAP. As explained, we can see that as we
decrease the threshold we pay a price in terms of BER performance. Interestingly when
the threshold value is set to the highest channel value, we get the exact performance as
the Max-Log MAP with the original trellis.

58



10 F.

.......... e e ]

&= MAX-LOG-MAP :
) thresh 100% of max channel value |1
§: thresh 75% of max channel value ||

« thresh 50% of max channel value

BER

i : I
0.5 1 15 2 2.5 3 3.5 4 45
SNR Eb/No (dB)

Fig. 4.5: BCH (31,26), Pruning Starts at 2™ Iteration.

In this particular case we only have a complexity reduction of about 15%. This is
an indication that not a lot of branches are being pruned. This implies that the threshold
value is set too high since not many | L, - y | values exceed the threshold value. Again at
this point we are faced with the delicate balance of complexity versus performance. As

previously mentioned, the threshold value plays a very important role in our algorithm,
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thus rather then setting the threshold dynamically for each received codeword, we need to
think of an alternative method.

This brings us to the following question in our analysis: “How can we study the
behavior of channel information given a predefined system?” Of course this is a rather
vague question, for the purpose of our research, however, we are only interested in how
much this value varies for different intervals. For example we would like to know that if
we sent coded and modulated information bits i.e. {-, 1} through an AWGN channel
with a SNR of 2.5 dB; what is the range of the received channel value (r),

where r = {~1+ noise,1 + noise} . In other words, by analyzing the range of the received

channel values, one can get a better sense of finding an appropriate threshold.
Furthermore, this analysis is also an indication of the approximate number of bits that
could be affected by a given threshold. We proceed by plotting the density functions for a
(31, 26) 2 BCH product code, for different SNR values in the range of 0.5dB to 4.5dB,
where transmission is over an AWGN channel with BPSK modulation. The range of the
received channel values in Figures 4.6, 4.7, and 4.8, are distributed over the transmission
of 10 000 blocks for each SNR value, where 1 block corresponds to 31x31 information

and parity bits.
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Fig.4.6: Percentage of the Number of Bits vs. the Absolute Value of the Range of their
Corresponding Recieved Channel Values for 9.61x10° Bits transmitted Over an AWGN Channel
at a SNR of 0.5 dB.
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Fig 4.7: Percentage of the Number of Bits vs. the Absolute Value of the Range of their
Corresponding Recived Channel Values for 9.61x10° Bits transmitted Over an AWGN Channel
ata SNR of 3 dB.
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Fig. 4.8: Percentage of the Number of Bits vs. the Absolute Value of the Range of their
Corresponding Recived Channel Values for 9.61x10° Bits transmitted Over an AWGN Channel
ata SNR of 4.5 dB.

The analysis of Figures 4.6 through 4.8 is indicative of certain factors; such that
as the SNR increases the percentage of channel values with a higher absolute value will
also increase. Therefore, as the system’s SNR value increases, the threshold value has to
increase as well. Moreover, considering the example of Figure 4.6, it is obvious that a
threshold value set to the highest absolute value of the received channel information, will
only aim at less then 1% of the received bits. This further proves our hypothesis: it is not
reasonable to set the threshold value as the highest received channel value, since for low

SNRs, less then 1% of the | L, - y| values fall within that range. Aiming at a complexity

reduction of approximately 50%, we proceed by setting the threshold value within the

range with the highest percentage value for each of the SNRs in Figures 4.6 through 4.8.
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Fig. 4.9: BCH(31,26)* Pruning Starts From 2™ Iteration With Variable Thresholds

The BER vs. SNR curve of Figure 4.9 is the comparison of pruning with various
thresholds, with that of the original trellis. However, the ~0.5dB loss in BER
performance and a complexity of ~ 38% for a SNR of 3dB, is an incentive to consider the
issue of finding an optimum threshold from yet another point of view.

At this point, it is important to remind the reader that the thought pattern behind
the methodology leading to the steps involved in this algorithm were developed in a
parallel fashion. Since the very nature of the propose algorithm deals with a balance
between complexity and performance, it is not possible to only focus on one matter
without dealing with the other. Going back to the issue of complexity, one main objective

is a reduction of approximately 50%, obviously without a considerable degradation in the
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performance. For example, an un-pruned trellis of a BCH (31,26) code, more specifically
the one depicted in our simulations, requires (21*2)*32*31 or 41664 gamma calculations
per block per decoder, we aim at half of this number or 20832 gamma calculations per
decoding iteration. Therefore we will use this factor as a stopping criterion. Now that we
have defined a limit for our system, we shall go back to the matter of finding a threshold.
Intuitively, we know that the higher the threshold value is, the fewer the number
of pruned branches is; consequently there will be less BER degradation. We proceed by
testing the limits of the system described above in terms of increasing the threshold value
while studying the BER performance for a given SNR. Given our defined parameters, the
curve in Figure 4.10 indicates that for a (31,26)* BCH product code transmitted over an
AWGN channel using BPSK modulation with trellis pruning characterized by a 50%
complexity reduction, at a SNR value of 2.5 dB, an optimum threshold value should
reside within the range of /13-15]. We have followed the same methodology to find a

threshold value corresponding to other SNRs given the same system parameters.
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Fig. 4.10: Bit Error Rate vs Varying Threshold for 2.5dB BCH(31,26)* (NOTE: stopping criterion
is 50% of the number of gamma calculations compared to a system with 10 H & V decoding
iterations.)
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4.3 The Addition of a System Level Correction Factor

Having dealt with the concepts behind finding a reasonable threshold value based
on complexity/performance trade offs; we will now tackle another interesting challenge
that arises as a result of pruning: “How to avoid the BER degradation of a pruned system
as opposed to a system using an un-pruned trellis?” In order to overcome the BER
performance issue, we need an in depth analysis of the Max-Log MAP operation. As

outlined in Chapter 2, Equation 2.40 indicates the following:

Fig. 4.11: An Example of Max-Log MAP

Assuming that we have a scenario as the one in Figure 4.11. The Max-Log MAP

algorithm dictates that the value of «; is obtained by:

a, = Max{(a, +7,),(a, +7,)}
o, = Max{(5+10),(8-10)} 4.5
a; =15

Let us assume that our threshold value is 8 and that we are to prune all branches

pertaining to a value of (+1), and keep the (-1) branches. By that account, we have pruned
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the branch withy, =+10. Hence, Max-Log Map is now forced to choosea, =-2.

Obviously this will have a catastrophic effect on the rest of the trellis, since the value of

o, will be used in the next trellis segment. Not to mention that once the trellis is

simplified, the branches are permanently pruned for successive iterations; this is crucial
for having a reduced complexity decoder. Therefore, there is no going back once a wrong
decision has been made. We can conclude from the above analysis that even when we
have a good threshold it is not enough to simply prune a branch in order to maintain a
good BER. If we want to use the strength of the Max-Log MAP to our advantage we need
to apply a system level correction factor to the entire trellis in addition to the segment-by-
segment branch pruning. Referring back to the problem introduced at the beginning of

this section; we observe that by increasing the y value of a given branch, it is possible to

avoid the problem of choosing the wrong « value as a result of pruning. This is further
illustrated in Figure 4.12. In this case the pruning decision is to eliminate the (+1) branch,
and keep the more reliable (-1) branch. Since we have already made a decision on the (-1)
branch, we will further increase the reliability of this branch by increasing its
corresponding branch transitional probability or gamma value by the multiplication of a
correction factor. This same correction factor will be applied to all the branches within
the trellis segment where pruning is taking place. The resulting gamma values will be the
correction factor multiplied by the branch value. Referring to Figure 4.12, the gamma
value pertaining to the (+1) branch, which was originally (10) will be multiplied by a
correction factor of —10 and the new gamma value will now change from (+10 — -100).

By that same account, the gamma pertaining to the (-1) branch, which was originally(-10)
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will be multiplied by the same correction factor of -10 and the new gamma value will

now change from (-10— 100).

Tnew = Yoig COTECtion factor
=-100
a, =5 Ti
@
7,= 100
a,=

Fig. 4.12: Max-Log MAP with a Correction Factor

In this case the Max-Log MAP algorithm will choose the second branch, which is also
the only branch remaining after the pruning operation.
oy =Max{(a, +y,),(a; + )}

a, = Max{(5—100),(8 +100)} (4.6)
a, =108

In other words by increasing the y value we increase the a priori information of the bit
that is to be pruned, which is exactly the same as increasing the reliability of the desired
bit. Referring back to Figure 4.1, by increasing the reliability of the received bit, the
value of z(#) will either increase towards + oo/—o depending on the pruning process.
Nonetheless, it is important to note that if we increase the gamma values by the same

constant value for all consecutive trellis segments where pruning is to take place, than we

have not solved the problem at hand. Although the first segment will be corrected, since
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all alpha values to be considered in the next segment will increase by the same correction

factor then the problem will be repeated once again.

prune + branches
keep - branches
correction factor = -100

5 =
'Y Yorigina = +10

=-100

¥, originai =-
Ynew ™

¥ originai =+10

208

"""-;uriglnat =+10

w110 50 = -100
7on‘ylnu1 =-10
Ynew™ 1
10

Fig. 4.13: Two Consecutive Segments in the Trellis Where Pruning Takes Place

From Figure 4.13 it is obvious that the set of alpha values in the next segment have also
increased. For that reason, in order to prevent the scenario of Figure 4.11 from happening
again, we will continuously increase the correction factor for each pruned segment as we
traverse the trellis in the forward direction.

A detailed analysis of the simulation output at this point indicates yet another issue
to be considered; this being the fact that the Max-Log MAP algorithm traverses the trellis
once in the forward direction to obtain alpha values, and once in the reverse direction to
obtain the corresponding beta values. Thus far, our proposed method to use a correction

factor will only work while traversing the trellis in the forward direction.
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Fig 4.14: Modified Pruned Trellis with an Imposed Correction Factor in the Forward Direction.

If one would use Max-Log MAP on this modified trellis, there would be an obvious
BER degradation due to errors occurring while traversing the trellis in the backward
direction to obtain beta values. An alternate approach is to apply the correction factor to
the trellis while traversing simultaneously in both directions. However as demonstrated in
Figure 4.15, once we reach the middle section of the trellis, we will be faced again with
the same problem where the corresponding alpha/beta values are within the same range

thus nullifying the effect of the correction factor.

N-K N-K
> >
CF=100 CF =200 CF =300 CF =300 CF =200 CF =100

CF : Correction Factor

Fig 4.15: Modified Pruned Trellis with an Imposed Correction Factor in the Both Directions.
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In order to overcome the previously mentioned shortcomings, we adopt the
following method, where we traverse the trellis once in the forward direction, apply the
correction factor to the segments which are to be pruned and obtain the gamma and alpha
values. Similarly, for the set of gamma values being considered for beta calculations, we
shall apply the same operations as described for obtaining alpha, but in the reverse order.
Finally, we will illustrate this concept by the use of an example. Assuming we have the

following received channel information:

R={r,r,,1,1,,75, ¥, 1y}

where the bits corresponding to positions 7, 7y, rs, and 74 are to be pruned. Therefore, the
set of gamma values, which are to be considered for the calculation of alpha, will have
the following correction factors:

Gamma _ Alpha : {y,,y, -100,y;,7, - 200, 7, - 300, 7, - 400, }

Conversely, the set of gamma values used in the calculation of beta will be altered such

that:

Beta _Alpha :{y,,y,-400,y,,7,-300,y, -200,7, -100,7,}

Although we are using two set of different gamma values for calculating alpha/beta, we
are still consistent with the Max-Log MAP algorithm. Since, as previously mentioned in
Equation 2.49 and repeated again in Equation 4.7, the final output of the Max-Log MAP
algorithm is based on the choice of the branch with the maximum Log-alpha + Log-beta
value, similar to our operation where we increase the branch reliability by using a

correction factor.
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L(E) =L -y, +L(x;)+ Max,,, _[loga,;,(s) +log f,(s")]

4.7
-Max, - [loge;  (s)+log B;(s")]

In order to find a suitable correction factor, we adopt the same line of reasoning
used in finding an optimum threshold value; we shall proceed by means of computer
simulation. Using the same system as described previously, the simulation results
indicate that a correction factor within the range of 100 is optimum in terms of
performance. We have therefore adopted this value as one of our system parameters for

the reduced complexity decoder.

4.4 Review of the Proposed Algorithm

Having discussed the issues regarding pruning and finding a suitable threshold,
followed by applying a correction factor in order to gain a better BER performance; we
shall now give a formal definition of the proposed algorithm using Figure 4.16 and the

following steps:

L&) =Lg V-Extrinsic

LX) =L(x)

- "H-Extrinsic
H-Decoder V-Decoder

*—

Channel information | output
*—

N

Fig. 4.16: Iterative Procedure of a Horizontal and Vertical SISO Decoder

1. Initially set the a priori value of the H-decoder L, (x,) =0 i=1..,N.

2. Start the iterative process.
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3. In each decoder, for each trellis segment within a depth of N-K, compare its

corresponding y value (i.e., L, -y+ L, (x;)) to a predefined threshold z such

that for a given trellis section j we have:

F((L,-y; +L(x;) >N

this indicates that we are pruning the branches pertaining to -1 and
keeping the +1 branches within segment j

Prune_branch() /leliminate all -1 branches within segment j
Find_Gamma_Alpha(y, =y, - j-100)

applying correction factor to trellis segment while traversing in the
forward direction

Find_Gamma_Beta(y ; =y, -(x - j)-100)

applying correction factor to trellis segment while traversing in the
backward direction

else if (L, -y; + L(x;) <-7){

this indicates that we are pruning the branches pertaining to 1 and
keeping the -1 branches within segment j
Prune_branch() /leliminate all +1 branches within segment j

Find_Gamma_Alpha(y, =y, - j-—100)
Find_Gamma_Beta(y gz =y 5 - (x = j)-—100)

/

Find Extrinsic(pruned_Trellis, «, )

/
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At this point we ask the reader to pay attention to certain crucial aspects of this
algorithm. Most importantly, the algorithm starts the pruning process at the second entire
iteration, where an iteration is defined as one horizontal followed by a vertical decoding
operation. In other words for the first iteration, the decoding algorithm is similar to Max-
Log MAP. Naturally, we know that in the first iteration the extrinsic information is not
yet refined enough so that it could be compared to a predefined threshold value. This is
further realized in our observation, where pruning at the first vertical decoding produced
noticeable performance degradation in terms of BER. Evidently, the effect of noise is still
very significant at this stage, since we are at an early stage in the iterative process.
Secondly, it is important to note that once the branches are removed from the trellis
structure, the pruning is permanent, and thus it is the pruned trellis which is being used in
the next subsequent decoding iteration. This enduring simplification of the trellis
structure is crucial in terms of complexity reduction. Another important consideration is
the number of iterations and our stopping criteria. Throughout our entire analysis our
basis of comparison is the Max-Log MAP algorithm with 5 entire iterations (10
horizontal and vertical iterations). As stated previously the complexity of such a system
in terms of gamma calculations can be expressed in terms of Equation 4.4, yielding a

value of ¢=2(2*26 + 31)*32*10*31 = 416640 per block. However since we are aiming

at a complexity reduction of ~ 50% then our stopping criteria shall be when the number
of gamma calculations has reached ~ 416640/2 per block.

Complexity wise, in our proposed algorithm, once the codeword is received from
the channel, we compare each bit to a predefined threshold, and then add a correction

factor to the trellis, and we perform the gamma, alpha, and beta calculation modules only
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to the branches which remain in the trellis. Therefore for each codeword we only have
comparison and addition operations.

On the other hand, in the augmented list decoding algorithm proposed by Pyndiah
et al. in [13]; once the codeword is received from the channel several steps need to be
performed prior to the algebraic decoding, and several steps have to be performed after
the algebraic decoding in order to obtain the reliability or in other words the soft
information of each bit. This implies forming test patterns and test sequences for each
codeword as per the algorithm described in Chapter 3, followed by the algebraic
decoding operation, then calculating the square Euclidean distance between each of the
codewords in the set of possible codewords and the received channel information, in
order to find the decision D, and yet again another comparison operation to find a
competing codeword B. In the case where a competing codeword can not be found then
each bit is subject to a reliability factor. In terms of complexity reduction the strength of
this algorithm is based on the simplifications involved in the algebraic decoder. The
complexity of this algorithm will increase with the number of test patterns which are
initially considered by the algebraic decoder and the necessary calculations involved in
obtaining a competing codeword as outlined in [13]. These test patterns are in fact
dependant on the reliability of each of the bits in the received channel value. In a
stationary AWGN channel, the reliability of a received channel value r;, is given by its
absolute value |r;|. Whereas in our case the complexity depends only on the number of
branches remaining in the trellis after a pruning operation, which is a simple comparison
of |r| to a predefined threshold. Figure 4.17 shows the performance of the proposed
algorithm compared to the Pyndiah’s algorithm.
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Fig. 4.17: BCH(31,26)” Product Code, Performance Comparison of the Pruning 50% of Branches
with that of Pyndiah’s Augemented List Deocding Algorithm.
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Fig. 4.18: Flow Chart of the Proposed Algorithm
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We present the simulation results for a (31, 26)> BCH product code. We compare
the performance of the pruned trellis with that of the un-pruned trellis under the same
condition using Max-Log MAP. Figure 4.19 shows the performance of the proposed
algorithm with BCH codes as component code. We use BPSK modulation over an
AWGN channel. As a basis of comparison, we evaluate the performance of our
complexity-reduced algorithm with the normal Max-Log MAP with a correction factor
with 5 and 10 iterations. Figure 4.19, indicates that we get the same performance as that
of the Max-Log MAP algorithm with correction factor with 10 iterations, with the
complexity of a Max-Log Map algorithm with correction factor with only 5 iterations.
Alternatively, by consider the results in Figure 4.19, we can say that given a trellis based
iterative block turbo code decoder capable of obtaining a certain BER performance with a
defined hardware capability of 10 iterations, by applying the proposed reduced
complexity algorithm , the same BER performance can be achieved by using a decoder
with only 5 iterations. Therefore, we save 50% in terms of complexity reduction, with an

acceptable BER performance.
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Fig. 4.19: BCH(31,26)* Product Code, Performance Comparison of the Pruning 50% of Branches
with that of Normal Max-Log MAP with 5 and 10 Iterations

79



4.5 Summary

In this chapter, we discussed the details of our proposed algorithm. Most
importantly we talked about the two crucial factors governing the performance of the
algorithm, namely, finding an appropriate threshold value for branch pruning, and the
application of an overall correction factor to compensate for the BER degradation. From
the results of the simulation for a (31,26)> BCH product code, we can conclude that the
proposed algorithm is capable of producing the BER performance of the Max-Log MAP
algorithm with 10 iterations, however, with the complexity of only 5 Max-Log MAP

iterations.
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Chapter 5

CONCLUSION

In this study, we set up a general conceptual framework to address the complexity
reduction in SISO iterative decoding. We start by introducing the general concepts and
definitions in iterative encoding/decoding techniques, such as linear block codes,
convolutional codes and concatenated block codes, namely the main components of turbo
codes. We then proceed by emphasizing on trellis based decoding algorithms for iterative
turbo decoding with a brief overview of augmented list decoding. Having discussed these
basic concepts, we then analyze the problem of complexity reduction. We study the two
basic approaches to reducing complexity: simplifying the computational complexity, and
structural simplifications for the decoder. However, we focus on the latter, since a
computationally reduced algorithm can be applied to a decoder with a reduced structure.
Given the trellis representation of a linear block code, we conclude that the decoder
complexity is proportional to the size of the trellis. From our observations, along with

indications in literature, we deduce that trellis complexity can be measure in terms of
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number of its branches. The idea of branch elimination is the main idea behind the
algorithms proposed and studied in this thesis.

Next, we studied the effects of combining augmented list decoding such as the
Chase type-II algorithm with a trellis based Max-Log MAP algorithm in a hybrid scheme.
However the results were unsatisfactory mainly due to the fact that we did not employ an
effective threshold unique to our code, instead we used the Chase algorithm for our
pruning decisions, and realized that without the exact use of certain correction factors
which were pointed out in [13], it is not possible to get an acceptable BER performance.
However by studying this hybrid approach and the reasons of its failure, we were able to
deeper our understanding of the proposed pruning algorithm. The underlying idea behind
the pruning algorithm is simple. Starting from the second iteration where the soft
information exchanged between the 2 SISO decoders is more refined, we start by pruning
certain branches based on a pre-defined threshold obtained by means of computer
simulations. Essentially, we prune the branches which have the most reliable information
based on their received channel value and extrinsic information. Moreover, in order to
compensate for the BER degradation, we subject the trellis to an overall correction factor.
We measure complexity, in terms of the number of branches leaving each state for the
segments where the trellis is fully expanded. Given the time variant nature of the trellis of
a linear block code, we consider the worst case scenario where all states are used in terms
of complexity calculations. Finally, we present the simulation results of a BCH (31,26)°
turbo product code, where for the complexity of a Max-Log MAP SISO iterative decoder
with only 5 iterations, we get the performance of the same system but with 10 iterations.

Therefore we are able to reduce complexity by a factor of ~50%.

82



As for future work, it would be interesting to compare the performance of the
proposed algorithm with a larger range of reduced complexity algorithms for block turbo
codes. Another important suggestion is to evaluate the algorithm’s performance for
channel models other then AWGN, such as fading channels. Moreover, the idea of
evaluating complexity in terms of hardware and FPGA implementation is another
interesting avenue. Finally in this thesis, we propose a method to address the complexity
reduction, the proposed algorithm can be applicable whenever the designer is faced with
such a problem; the general ideas presented here can be customized to suite the desired

applications.
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