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ABSTRACT
The Effect of Weekly Quizzes on the Development of
Students’ Theoretical Thinking
GEORGEANA BOBOS

In this thesis, we evaluate the effectiveness of a basic tool for the teaching of
linear algebra at university level: the administration of weekly quizzes. These
tests, each made of two short, conceptual questions, are believed to have the
potential of developing students’ theoretical thinking. At the start of our research
we believed that this kind of thinking is necessary for the understanding of linear
algebra and that it represents, in general, an important educational aim in
university teaching.

To see if, indeed, the quizzes can contribute to the development of
students’ theoretical thinking, we have analyzed students’ solutions to the weekly
quizzes administered in a Linear Algebra Il course at Concordia University in
Montreal, over a one-semester time span. We have used, for this purpose, a
model of thinking that characterizes theoretical thinking by certain properties,
which contrast practical and theoretical thinking.

Our study shows that the administration of weekly quizzes could not
account for the development, in general, of theoretical thinking, with all the
characteristics that it encompasses. We have found that the group’s engagement
with certain features of thinking is directly influenced by the mathematical content
of the questions in the quizzes, and thus it is impossible to evaluate their
development in time. However, the quizzes do have the potential of developing
other features of theoretical thinking, that we have called, more generally “habits

of the mind”, because they are less conditioned by content specificities.
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INTRODUCTION

THE RESEARCH QUESTION

In the literature it is generally recognized that linear algebra is a very difficult subject to
teach and learn (see Dorier et al., 2000; Harel, 2000; Hillel, 2000; Robert and Robinet,
1992, 1996; Sierpinska, 2000) and the problems it poses are sometimes disproportionate
with its intrinsic difficulty, causing frustration to both students and instructors. Research
into the teaching and learning of linear algebra has revealed that students’ difficulties are
both conceptual — stemming from the nature of linear algebra as a subject matter, and
cognitive — related more to students’ ways of thinking (see Dorier and Sierpinska, 2001).
In particular, students’ tendency to think practically rather than theoretically was found
by Sierpinska (2000) to act as an obstacle for their learning of linear algebra.

In this thesis, we want to take a closer look at students’ tendency to think
theoretically and reflect upon an approach to the teaching of linear algebra that may
influence it. Namely, we want to evaluate the effectiveness of a rather basic tool
employed in teaching: the administration of weekly quizzes, that is short, up to ten or
fifteen-minute tests, as a way to enhance students’ theoretical thinking and, consequently,
their learning of linear algebra. The following question was thus at the start of our
research: Can weekly quizzes contribute to the development of students’ theoretical
thinking? To answer this question we have analyzed, using the model of theoretical
thinking proposed by Sierpinska (2000; see also Sierpinska et al., 2002), students’
solutions to seven quizzes — each consisting of two questions — administered in a Linear

Algebra IT (MATH 252) course at the Concordia University in Montreal.



However, along the way, we have developed another interest, related to the
aforementioned model of thinking. In our analyses of the data we have often found the
categories of this model to be rather general for the purpose of analyzing the “concrete
mathematics” of our students. While doing our work of identifying the features of
theoretical thinking to which one or another concrete mathematical behavior corresponds,
we began to reflect on a meta level on our theoretical framework and to anticipate
another possible outcome of this research, namely an operationalization of the model of
theoretical thinking. This operationalization is done to a certain extent by Sierpinska et
al. (2002), but we believed that the quantitative nature of our analyses (we have analyzed
around 700 written solutions of students) would perhaps allow us to better see the
regularities or the recurrences in our students’ problem solving behavior. For a researcher
in mathematics education, or maybe even for a teacher of linear algebra, who is not
familiar with the theoretical issues of research, the result might be a very practical one: a
more comprehensive list of concrete mathematical behaviors corresponding to cach

feature of theoretical thinking postulated in the model.

OUTLINE OF THE THESIS

We precede the empirical part of our research with our answers to the following
questions, describing the positions — theoretical and methodological — from which we
undertake this research:
e What do we mean by “theoretical thinking” and why is it important for learning
linear algebra?

e What was our motivation for undertaking this research?



e How is our research situated in the context of the research into the teaching and
learning of linear algebra?
o What are our means for measuring the development of theoretical thinking?

The first chapter of the thesis, containing essentially our theoretical framework,
addresses the first two issues above. We will discuss the distinction between theoretical
and practical thinking (TT, respectively PT, in the sequel) as defined by Sierpinska
(2000, 2002), in the light of other similar distinctions between ways of thinking, made in
philosophy, psychology and mathematics education. We will add then some important
clarifications fundamental to our understanding of the distinction between TT and PT, in
an attempt to avoid some traps that one — including ourselves — may easily fall into when
using these categories. One such erroneous understanding is the belief that the TT and PT
categories refer to an ontological reality, describing some distinct kinds of human
cognitive activity. We also want escape the attachment of general value judgments to
either TT or PT, such as “TT is good, while PT is bad”.

In Chapter II we depict the current state of the research into the teaching and
learning of linear algebra. Our review unfolds along the following three axes of interest,
which allow us to situate our research in context:

- the hypotheses advanced with regard to the learning and teaching of linear

algebra;

- the characteristics of the experimented teaching designs;

- the methodological means used and the problems encountered at this level.



Chapter III starts with a summary of the features of theoretical thinking, followed
by a description of our method of employing it in the empirical analyses. The main body
of this chapter consists of our empirical analyses of students’ solutions to the quizzes.

In Chapter IV we give a quantitative account of students’ development of
theoretical thinking through quizzes. Chapter V is dedicated to the conclusions of our

research and to the methodological problems we have encountered in our study.



CHAPTER I. THEORETICAL AND PRACTICAL THINKING AND

OTHER SIMILAR DISTINCTIONS BETWEEN WAYS OF THINKING

In our research we wanted to see if weekly quizzes can foster theoretical thinking in
students. In this chapter we explain just what we mean by “theoretical thinking”. Namely,
we will present Sierpinska’s (2000, 2002) definition of theoretical thinking. We have
employed Sierpinska’s distinction between theoretical and practical thinking in our
research because, for us, it appeared to be the best choice in terms of methodological
power. However, we want to give a larger picture of the kind of thinking we envisage the
developing of, by discussing some other similar distinctions between ways of thinking

made in philosophy, psychology and in mathematics education.

THEORETICAL AND PRACTICAL THINKING DISTINCTION

Inspired by some classical understandings of the notion of theoretical thinking, and
particularly by Vygotsky’s (1987) distinction between scientific and everyday concepts,
Sierpinska et al. (2002) characterize theoretical thinking by contrasting it with practical
thinking. For them, the two categories do not refer to an ontological reality; they are not
opposite kinds of human cognitive activity, but rather models of ways of knowing or
descriptions of epistemological positions. In reality, thinking is not either theoretical or
practical, but results from an interaction between the two. Practical thinking identifies
problems and aims at action. It is theoretical thinking then that formulates the problem

and provides possible courses of action for the practical thinking. They function, the



author argues, as epistemological obstacles for one another. In the sense of Bachelard
(1983), an epistemological obstacle is a way of thinking that stands in the way of another
way of thinking that would not exist though (as an obstacle) without this other way of
thinking.

Thus, Sierpinska’s distinction is a methodological one, considered to be useful for
analytic purposes. Her definition of theoretical thinking reflects such an aim: it is
formulated in terms of a certain number of detailed properties of TT. One of them is the
reflective character. This means that theoretical thinking is critical with respect to its own
results. It considers techniques and procedures open to questioning and change, without
taking anything for granted.

Secondly, theoretical thinking is systemic; its objects are not particular actions but
systems of relations between these actions and systems of relations between these
relations. Practical thinking, on the other hand, establishes the meanings of concepts by
reference to concrete objects and actions. Given its systemic character, theoretical
thinking is extremely sensitive to contradictions and it is at all times concerned with the
coherence and the validity of the system; in practical thinking validity depends on the
context at hand. Theoretical thinking is aware of the conditional character of statements
and is interested in exploring all possible logical cases, while practical thinking looks
only at those cases that seem plausible.

Finally, theoretical thinking is analytic, that is, mediated by semiotic systems of
representation. Moreover these systems of signs are objects of reflection and invention. In
its analytical approach to signs, theoretical thinking is sensitive to formal symbolic

notations, to specialized terminology and to the structure of the languages it uses.



Notwithstanding our interest in the development of these characteristics of
thinking in our students, it should be clear that, as a consequence of our understanding of
TT and PT as being complementary, we are attaching no general values to either TT or
PT, such as “TT is good, while PT is bad”, even if we do believe that students’ tendency
to think in practical rather than in theoretical ways in many instances adversely affects

their understanding of linear algebra.

~ SIMILAR DISTINCTIONS BETWEEN WAYS OF THINKING

In philosophy

Distinctions between ways of thinking have been made in philosophy since Antiquity.
The passage from the prehistoric forms of spiritual life to the historic ones is marked by
the shift of focus that took place in the human mind from the mystical and magic
structures to the rational ones, so well illustrated by the unfolding of the Greek thinking
in Antiquity. During those times, not only has reason become prevalent over mystical
ways of thinking, but it also became an object of reflection for philosophers. Aristotle’s
book A of the Metaphysics contains such meta-reflections about the science of
philosophy. In arguing that philosophy is a theoretical science par excellence, he
distinguishes between two different ways of thinking and the accordingly resulting
knowledge. Aristotle’s categories have influenced western culture for a long time and
they seem to be, to the present day, very pertinent if one wants to talk about how people
reason and how they go about knowing. Men of experience, in Aristotle’s distinction, aim

mainly at knowing the facts, while men of art are principally concerned with the causes



of the facts. The latter thus produce universal knowledge, as opposed to knowledge of the
individuals that is the result of experience. While he observes that men of experience are
more likely to succeed when something is to be done, he expresses his appreciation for
men of art that have the ability to understand and not just the ability to do. That a man of
art is able to understand is mainly revealed by his capacity to teach, to transmit his
knowledge. This is a mark of wisdom, in Aristotle’s view, and it is not a trivial ability:
“[...] he who is more accurate and more able to teach the causes in each science is wiser;
[...] a wise man can acquire knowledge of what is hard and not easy for any man to
know” (Aristotle, Metaphysics, Book A, in Apostle, 1966, p.14). Art develops on the
ground of experience: “[And] experience seems to be almost similar to science and art,
but science and art come to men through experience [...]” (ibid., p.12), just as practical
thinking is the ground against which theoretical thinking develops (Sierpinska et al.,
2002).

Kant (1873/1956) contrasts practical and theoretical reason as ways of thinking
about or considering something. Practical reason, in the philosopher’s system, is related
to action, to what one desires to do, as opposed to theoretical reason that is related to
cognition, to what one knows. In his system the two sets of assumptions from which an
object can be viewed are pure, rather dichotomous, and what distinguishes them is the
involvement or non-involvement of will in judgment. They differ thus from the
categories of theoretical and practical thinking which are both somewhat impure,
complementary and related to will, emotions and desires: “The difference between a
theoretically thinking individual and a practically thinking individual is that the former is

able to distance him or herself from what he or she feels, and engage in hypothetical



thinking [...]. The practical thinker makes one with his or her will and emotions and is

unable or reluctant to looking at them from this perspective” (Sierpinska et al., 2002,

p.6).

The Romanian philosopher, Blaga (1969/1998), distinguishes several modes of
rationalization and discusses how they interacted in the history of science:

- Rationalization based on identity: judgments where the relationship between subject
and predicate is either of partial identity, for example “Humans are mammals” or
elastic identity: “Humans are beings capable of progress”;

- Rationalization based on equivalence: equivalence is possible between concepts that
are logically heterogeneous;

- Rationalization based on dialectics: it seeks identity not only under diverse forms but
also under contradictory forms.

The first of the three modes gives birth to generic concepts and it was largely
cultivated in Antiquity, while the second and the third mode generate relational concepts,
are more specific to mathematics and to the Galileo-Newtonian science and are definitely
more fertile in terms of methodological potential. Common sense differs from scientific
spirit in that they adopt different modes of rationalization. Common sense, which is close
to what we understand as practical thinking, is in Blaga’s acceptance “the mentality of
men, as beings acting in a concrete world of senses, without essentially going beyond this
world” (Blaga 1969/1998, p. 171; my translation from Romanian). Common sense adopts
the mode of rationalization based on identity and doesn’t trust or it is even adverse to the
other two modes. One of its defining characteristics is that it believes in “empirical

realism”, i.e., that there exists a world independent of the human conscience that is



directly accessible to men through their senses. However, when talking about common
sense and scientific spirit, Blaga is not referring to some ‘pure’ categories and in this
sense his distinction is closer to that between theoretical and practical thinking: all

thinking is to some extent practical or directed by common sense.

In psychology

Dewey’s (1933) notion of reflective thinking shares many features with that of theoretical
thinking. He argues in favor of reflective thinking as “the better way of thinking” (p. 3)
and describes its characteristics by contrast with other kinds of thought. Reflective
thinking is, for him, “the kind of thinking that consists in turning a subject over in the
mind and giving it serious and consecutive consideration” (p. 3). Reflective thinking
differs from the mere stream of consciousness which can be daydreaming or dreaming
and is composed of sequences of somewhat randomly following ideas. By contrast,
reflective thinking is a chain of units linked together, leading to one another. A
succession of imaginative mental pictures of something not actually present can simulate
reflective thought if it is articulate, but unlike reflective thinking it does not aim at a
consequence.

The mind does not act upon these kinds of thought; they may lead to emotional
commitment but not to intellectual commitment. What impels reflective thinking to
inquiry is the existence of belief, which reflective thinking voluntarily seeks to establish
on a firm ground based on evidence and rationality. Dewey also describes reflective
thinking as a process having several necessary phases. The origin of reflective thinking

lies in some kind of uncertainty. There is then a suggestion of several tentative plans to

10



remove doubt. The data at hand may suggest solutions based on past knowledge and

experience, but do not supply them. With these suggestions available, it may still be that

reflective thinking does not occur: the necessary condition is for the person to be critical,
to engage into searching and to accept doubt. Dewey claims that a person can, if he or she
wants, change his or her ways of thinking to become better (and the better way of
thinking is reflective thinking). Thus, given the values of reflective thinking, it should
and it can be an accessible educational aim.

More interested in the relation between students’ ways of knowing and their
academic success were studies in cognitive psychology like that of Perry (1970) and
Belenky, Clinchy, Goldberger and Tarule (1997). Perry shows how students’ conceptions
change, as they advance throughout their undergraduate years, and how this evolution is
shaping their academic experience. He describes several epistemological positions that
students adopt successively, evolving in their interpretations of the sources of knowledge
and of themselves as knowers:

- basic dualism: the student sees the world in polarities: right/wrong, good/bad,
we/they; he or she is dependent on authorities as sources of truth;

- multiplicity: there begins a gradual search for personal freedom as the student
understands that there exist a multitude of opinions and it may be that authorities do
not detain the absolute truth;

- relativism subordinate: own ideas are not only developed at this stage but evidence is
also added to support them, and an analytical attitude is adopted and cultivated

consciously, at least in academic life;

11



- relativism: the student understands completely the relative, context and framework-
dependent character of truth, not only in academic life but also in everyday life;
knowledge is now understood as constructed and not as given.

Belenky and her collaborators (1997) were also interested in epistemological
positions, but the subjects of their study were women. Perry’s study had very few women
as subjects and only interviews with men were used to illustrate this scheme of evolution
in students’ epistemological positions. The aim of Belenky et al. was to uncover the
specificities of women’s ways of knowing. They identified five epistemological positions
of women. Silent women see the source of knowledge, even of self-knowledge in others;
they are passive and they do not intend to be otherwise as they perceive themselves as
knowing nothing and as not being able to learn anything. Received knowers rely on
authority to tell them what is wrong and what is right and think of truth as being validated
by authorities and not by one’s thinking. Unlike silent women, they do expect to learn but
they do not develop any personal opinion whatsoever. Subjective knowers rely almost
entirely on their intuition as the source of a personal truth. They perceive thus of truth as
being relative, i.e. everybody has his or her own truth, they do develop personal opinions
but they do not make any attempt to assess their own assumptions nor to subject them to
questioning. Procedural knowers follow standard procedures learned from experts but
they have the capacity to engage in objective thinking and have powerful reasoning
abilities. However, they do not perceive themselves as owners of knowledge, and do not
take distance from their own framework. Constructed knowers, on the other hand, are
aware of the fully relative character of knowledge and accept it only after evaluating the

implicit and explicit assumptions on which it is based. Therefore in their epistemological
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approach they integrate both objective and subjective ways of knowing and they perceive
themselves as owners of knowledge.

The categories proposed by Belenky et al. are interestingly evaluated by
Sierpinska et al.(2002) with regard to the three features of theoretical thinking (reflective,
systemic and analytic): silent and received knowers do not exhibit any of the features of
theoretical thinking, while subjective knowers are reflective and concerned with
meanings and justifications, but not with their formal representations. Procedural
knowers can be reflective and analytic, as well as systemic, without being hypothetical
(they are rather systematic). The closest in their epistemological position to theoretical

thinkers are constructed knowers.

In mathematics education

Whether they refer to ways of thinking, to epistemological positions or to forms of
knowledge, distinctions like those mentioned above have frequently been dealt with in
mathematics education. One of such classic distinctions in mathematics education is that
of Skemp (1976). He characterizes instrumental and relational understanding through
analogy with different forms of knowledge of the geography of a locality: instrumental
understanding is equivalent to knowing large numbers of fixed local plans, whereas
relational understanding is equivalent to having a mental map of the town. Relational
mathematics involves the development of a conceptual structure from which one can
produce an unlimited number of plans for getting from any starting point within one's
schema to any finishing point. Referring to the learner’s implicit beliefs about the nature

of mathematical constructs, Sfard (1992) identifies two different sets of such beliefs

13



manifested in two different approaches to mathematics: the structural approach, where
mathematical notions are referred to as object-like entities and the operational approach,
where notions are conceived as computational processes rather than as static products. In
the same volume, dealing with epistemological and pedagogical aspects of the concept of
function, similar observations are made by Dubinsky and Harel (1992) when they
distinguish between process and object conceptions, or by Goldenberg, Lewis and
O’Keefe (1992) as they talk about dynamic vs. static interpretations. The interpretation of
Boero, Pedemonte and Robotti (1997) is slightly different. When they refer to theoretical
knowledge they characterize the objects of knowledge, and not the processes or the
individual’s epistemological ways.

All these interpretations, along with other differently termed distinctions, i.e.
formal/intuitive, conceptual/procedural, analytic/synthetic, etc., express similar ideas and
refer to the same basic dichotomy. What is interesting, for us, about the distinction
between theoretical and practical thinking is that it is tailored for the domain of linear
algebra, with each of the features of theoretical thinking thoroughly justified in terms of
its relevance for the learning of linear algebra (see Sierpinska et al, 2002, p.17). Thus, the
distinction is to some extent operationalized, whence our choice of this model for
measuring the development of theoretical thinking.

However, before embarking on a research that envisages the development of
theoretical thinking, it is worthwhile perhaps to first ask ourselves a more fundamental
(and necessary) question: Can we, as educators, address this problem, can we do
something to cultivate a certain way of thinking? I strongly believe that the university is

the place where no efforts are to be spared to develop thinking, in particular the type of
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thinking that carries the characteristics that we have discussed above. Moreover, my
personal educational path led me to believe that teachers can play a role in this enterprise,
even if the training students get at the university is by far not merely a result of
interactions with their teachers and their textbooks. Of course, an answer to this question
from a personal perspective is not doing more than providing my motivation to proceed in
the research, while a more objective answer with implications for teaching will hopefully

be provided as a result of the research.
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CHAPTER Il. ASURVEY OF THE RESEARCH INTO
THE TEACHING AND LEARNING OF LINEAR ALGEBRA

Research in the teaching and learning of linear algebra as compared to that carried out for
other domains of undergraduate mathematics — like Calculus for example — is relatively
recent, as is the increased attention it receives from the curriculum reform movements in
the last decade. It has tried mainly to diagnose students’ difficulties, to identify their
sources and to conduct teaching experiments offering local remediation.

A research program conducted in France by Robert, Robinet, Rogalski and Dorier
in the late 80s (in Dorier 2000, p. 85-124) played an initiating role in the field, by
revealing the sources of students’ difficulties through a series of diagnostic studies. These
studies pointed to a major obstacle for students’ learning in linear algebra encountered in
all successive generations of students, regardless of the type of teaching: the obstacle of
formalism. Students expressed this difficulty themselves, as revealed by the responses to
a questionnaire: they appeared to be overwhelmed by the highly abstract character of
linear algebra and the great number of symbols, definitions theorems and formal
manipulations it introduces. Teachers, as well, complained about their students’ erratic
use of the tools of logic and set theory. The researchers found out through a series of tests
administered to undergraduate students studying linear algebra in French universities that
a minimum of prior knowledge of logic is indeed a necessary condition for success in
linear algebra. Still, it turned out that it is not a sufficient condition: further in-depth
analysis showed that students did not just have a problem with formalism in general but

with the use of formalism within the theory of vector spaces and with linking their prior
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and more intuitive elements of knowledge with the new formal concepts introduced by
linear algebra. These concepts, as Dorier (2000) argues in his historical survey of the
genesis of the theory of vector spaces, are the final products of a long and complex
process of generalization and unification, which involved various parts of mathematics.
The axiomatic theory of vector spaces did not solve new problems in mathematics, but it
imposed itself as a universal approach and language to be used in a variety of contexts
(functional analysis, quadratic forms, arithmetic, geometry, etc.).

Three hypotheses were advanced as a result of the diagnostic studies and of the
epistemological analysis of the historical development of linear algebra, which then stood
at the basis of the experimental teaching carried out at the University of Lille in France.

The first hypothesis stated the necessity of students’ awareness of the specific
characteristics of linear algebra. The fact that students only have the chance to know the
finite products of a long and awkward process that led to the development of the theory
of vector spaces cannot be ignored. Another advanced hypothesis was that the interaction
between previous related levels of knowledge and the new concepts introduced by linear
algebra could be an insuperable obstacle. A third hypothesis referred to the appropriate
didactic strategy that would combine the use of the meta lever with a long-term teaching
design and the use of changes in points of view as a stimulator.

The meta lever designates the use in the teaching of mathematics of knowledge
about mathematics. The long-term strategy refers to a type of teaching that cannot be
broken into several smaller parts, which is necessary — in the author’s opinion — in order
for the changes in the didactical contracts to operate over a long enough period so as to

be efficient for the students. The change of settings and points of view means that the
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teaching is organized so that the problems and the content of the teaching use translations
from one setting into another (from formal to numerical, from numerical to geometrical,
etc.).

The teaching was then organized comprising several steps and with the
coordinates given by the didactic choices described above. The results showed that the
overall experiment was satisfactory and did not result into major failures. While good
results were obtained regarding the appropriation of some core concepts and of the
changes in points of view, it appeared that only a minority of the students had proven
capabilities to spontaneously model a problem in the setting of linear algebra.

More interested in the curricular aspects of the teaching of linear algebra, Harel
(2000) gives an account of the curricular reform actions in the United States, of which he
was an active promoter as a member of the Linear Algebra Curriculum Study Group
(LACSG). The LACSG was started in 1990 as a study group whose members, mainly
mathematicians with an interest in mathematics education, proposed a set of
recommendations for a first course in linear algebra. The main sources of these
recommendations were research findings in various areas of mathematics education, the
teaching experience of the members of LACSG and the suggestions given by consultants
from various client disciplines.

The work of the LACSG was concretized into several communications at national
meetings on the teaching and learning of linear algebra and into a series of textbooks
written on the basis of the group’s recommendations. Giving a personal perspective of the
recommendations put forward by LACSG, Harel insists on some of the aspects he

considers crucial in these guidelines.
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He first suggests that proofs, which represent an important part in the university
linear algebra course, be emphasized earlier in the mathematics curricula, so that, by the
time they take their first course in linear algebra, students have already reasonably strong
justification skills. Moreover, he proposes that linear algebra basic notions be introduced
in high-school, to compensate for the insufficient time allocated to linear algebra in the
undergraduate mathematics curriculum and thus bridge high-school and university
mathematics. Another pedagogical suggestion proposed by Harel is the incorporation of
technology in the first linear algebra course to prepare students for a matrix-oriented
course, along with a core-syllabus that would follow the LACSG recommendations.

Harel’s set of suggestions is theoretically grounded in three principles he
postulates for the teaching/learning of linear algebra, inspired by the Piagetian theory of
concept development. The Concreteness Principle states that in order for students to
abstract mathematical structures, it is necessary that the concepts of linear algebra first
become conceptual entities for them. Only this way will students be able to operate on
these objects as inputs. In the light of this principle, geometry embodiments are important
in the early phase of teaching linear algebra. However, the researcher observes that there
exists the risk for the students to be less able to abstract later, as they may regard
geometry as the raw material to be studied. Harel illustrates the violation of the
Concreteness principle in practice, giving, among other pieces of evidence, the example
of students’ difficulties to grasp the concept of functions as vectors, as entities in a vector
space. The Necessity Principle postulated by Harel suggests that students should see an
intellectual need for the building of linear algebra concepts. This is indeed a challenging

pedagogical task for the linear algebra teacher. Finally, the Generalizability Principle
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states that students should be encouraged through appropriate instruction to generalize
concepts in the context of linear algebra.

Hillel (2000) observes that students entering their undergraduate program in
mathematics are confronted with proof-related difficulties that are not necessarily specific
to linear algebra; rather, they are encountered in most undergraduate mathematics
courses. He then focuses on describing sources of conceptual difficulties peculiar to
linear algebra, which include:

- the existence of several languages and modes of description

- the problem of representations

- the applicability of the general theory

Hillel distinguishes three modes of description used in linear algebra: the abstract
mode of vectors and of linear operators, the algebraic mode of n-tuples and of matrices
and the geometric mode, of directed line segments, point, lines, planes, etc. He then
shows, by observing students at Concordia University in Montreal, how they are used,
how they interact and how the passage from one mode to the other can confuse students.
He illustrates how students’ attempts to link the new formal concepts of linear algebra to
previous knowledge of geometry only results into a greater epistemological obstacle for
them. On the other hand, difficulties are especially encountered when there is a shift form
the algebraic to the abstract mode of representation and this is the source of a second
epistemological obstacle for students. It stems from their learning of very specific notions
related to R”. Hillel argues that using these notions to solve problems linked to systems of
linear equations involves an algebraic level of description, which then prevents students

from switching to an abstract mode of description, which would allow them to understand

20



the general theory, where other kinds of objects (e.g. functions, matrices or polynomials)
are to be seen as vectors.

Sierpinska (2000) describes three modes of reasoning in linear algebra
corresponding to these three interacting languages: the visual geometric, the arithmetic
and the structural language, illustrating with examples students’ reluctance to enter into
the structural mode of thinking and to move between the three modes. Alves-Dias and
Artigue (1995) reach a similar conclusion, indicating that students’ lack of cognitive
flexibility between settings, thinking modes and points of view and in linear algebra
particularly between the parametric and Cartesian points of view is a major source of
obstacles for their understanding. They extended Pavolopoulou’s work (1993) where
students’ difficulties are explained through a problem of shifting representations, as an
application and verification of Duval’s theory about registers of semiotic representations
and cognitive processes.

Based on several experiments and teaching projects, Sierpinska (2000) argues that
students think in practical rather than in theoretical ways and this creates difficulties for
them in linear algebra. This conclusion was used by Sierpinska, Nnadozie and Oktac
(2002) to conduct a study about the relevance of theoretical thinking for high
achievement in linear algebra. They postulated a model of theoretical thinking and a
method of evaluating an individual’s or a group’s disposition to think theoretically in the
sense of the postulated model. The findings of this study show that theoretical thinking
was not a condition for high achievement in the courses taken by the students in their
study, but it turned out to be very strong in the best of these students, indicating an

unused potential.
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SYNTHETIC OVERVIEW: WHAT DOES RESEARCH TELL US ABOUT THE

TEACHING AND LEARNING OF LINEAR ALGEBRA?

My review of the research in the domain of teaching and learning linear algebra was
largely based on the book “On the teaching of linear algebra” (edited by Dorier, 2000).
Without claiming to provide an ultimate set of guidelines for the teaching of linear
algebra, or to contain an exhaustive collection of research into the teaching and learning
of linear algebra, this book presents however, with a high degree of detail, research works
that have played an initiating role in the field as well as more recent developments. We
give below a synthetic overview of the main results of the research reported in this book.

We also situate our research in this context.

The advanced hypotheses: why is linear algebra difficult and what are the

possible remedies?

Linear algebra is difficult for students because of its specific nature — its core concepts

are the results of a process of generalization and unification, offering a more universal
language to deal with mathematical problems in various contexts. However, it is very
improbable that such a power of simplification be within the reach of undergraduate
students, especially since the notions of linear algebra don’t lend themselves to
illustrations through particular problems. It is therefore important to make students aware
of the epistemological nature of linear algebra and of the theoretical detour it can offer.
Another source of students’ difficulties indicated by this research is their lack of

prior knowledge in logic and set theory. It is proposed that preliminary training in this

area be included as part of the teaching of linear algebra. This is indeed a necessary
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condition for success in linear algebra, but the obstacle of formalism — as the researchers

term the erratic use of the tools of logic and set theory — is not a general problem students
have with formalism. It is rather a problem with the specific use of formalism within the
theory of vector spaces and has to be dealt with in this particular context.

The interaction between students’ prior and more intuitive elements of knowledge

and the new formal concepts introduced by linear algebra is also pointed to as a major

obstacle for their learning. Since many problems can be solved without making use of the
axiomatic theory, most of the times students will use the formal theory only because they
are situated in the context of using it and not because they see any meaning of that.
Making students reflect on their own learning and on the mathematics being taught to
them could help them gain control over their learning.

The change of settings and points of view (geometrical, analytical, logical,

formal, etc.) that is very common in linear algebra is another source of confusions for
students, especially because in most of the cases it’s not made explicitly. Students’

moving between the multitude of languages and modes of description specific to the

different settings is not natural and it therefore requires open debates on the nature and
status of the language in linear algebra (an idea close to that of ‘meta-lever’).

Students’ ways of thinking. Cognitive flexibility, trans-object level of thinking, as

well as an inclination to think theoretically are the main characteristics identified as
necessary for understanding linear algebra. On the other hand many experiments gave
evidence that students, in many cases, do not engage in such ways of thinking.

It is this latter explanation advanced with regard to the causes of students’

difficulties that we take a closer look at, namely, investigating students’ engagement with
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theoretical thinking when solving linear algebra problems and trying then to evaluate an

approach that could enhance an engagement with TT.

The characteristics of the experimented teaching designs

This section refers mainly to the French research (except for point d) which is shortly
addressed in Hillel’s paper). The design of the experimental teaching took into account
the above hypotheses and the choices of didactical strategies were made along the
following axes:

a) The use of the meta lever. The meta activities were present in a preliminary
(preceding the teaching) phase, when problems were solved to be then unified with
the use of vector space theory, pointing at the simplification offered by such an
approach. Then the meta was involved throughout the teaching in clarifying the
specificity of the concepts and in activities that induced students to reflect on various
mathematical concepts and on the methods that could be used to solve problems.

b) The change of settings and points of view. The content of the teaching and the
problems used translations between settings.

¢) The long-term strategy. The course was engineered over a one-year period in order
to take into account the non linearity of the teaching and to be better evaluated.

d) The incorporation of dynamic geometry software (Cabri). It was believed that
introducing linear algebra concepts in a synthetic-geometric way with the aid of Cabri
will stand as a coordinate-free approach, facilitating the notion of general basis.

However, students seemed to perceive the computer screen as an implicit coordinate

24



system and so, the tasks on transformations given in a geometric context, were
approached by the students analytically.

The overall experiment in the French universities was appreciated as having good
results, but some of the students’ problems persisted: they still didn’t seem to overcome
completely the obstacle of formalism or to be able to engage in autonomous questioning.
Also, the capacity for spontaneously approaching a problem in the formal setting of linear
algebra was present only in a small minority of students.

We are trying, in this research, to investigate the effectiveness of a minimalist
approach to the teaching of linear algebra, with no special embodiments. The main
component of this approach is the administration weekly quizzes as a way to enhance
students’ theoretical thinking and consequently their learning of linear algebra. We
believe that weekly administered tests have the potential to cultivate the disposition for
theoretical thinking for at least two reasons:

1. Students are put in the situation of reflecting on their own for a few minutes in every
class and therefore they will most probably develop both a reflective attitude and a
practice in proving activities.

2. The type of problems that suit such limited time tests are hardly likely to be
computational and to require solely the mastery of various procedures; instead they

challenge students to involve deeper thinking abilities in order to solve them.
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Methodological issues

A vast variety of methodological means was used in these research works and problems
encountered at this level were constantly accounted for, in order to provide a more
complete and reliable context for the results. A brief list of the methodological tools used
in the research work reported in the book includes:

- the administration of specially designed questionnaires and analysis (both
qualitative and quantitative) of responses to them in order to evaluate
students’ knowledge and ideas;

- pretests administered to evaluate students’ individual level of knowledge in
basic logic and set theory;

- qualitative analysis of usual tests given throughout the year to determine both
the characteristics and the effects of the teaching by examining the tasks
required by these tests and how these tasks were responded to by students;

- quantitative — through statistical methods — analysis of students’ responses to
the above mentioned tests, involving coding of their responses and awarding
scores according to their manifested behavior in these tests; correlation with
the pretest;

- observation of students behavior during tutorials and workshops; descriptions
of several case studies.

- engineering of teaching sequences based on the conclusions resulted from the
diagnostic studies.

The quantitative analysis of the tests given by the French researchers was limited

by the fact that the tests were not all compulsory for students, and therefore only a small
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sample of sets of tests was finally obtained and analyzed. However, this allowed the
researchers to analyze them more in-depth and to draw some hypotheses which will
eventually serve to build adequate statistical tests involving larger populations of
students.

The main methodological problems were posed by the evaluation of the impact of
the engineering; more precisely, it was very difficult to validate the type of hypotheses
made in this research. First, it was difficult to choose the time appropriate for the
evaluation of long-term teaching, as many significant factors cannot be kept under
control — like students’ own organization of their time. On the other hand, indicators of
students’ reflection at the meta level were not easily traceable, especially in their written
work; most of the time, they would give the answer, but not the means which led to it. In
this context, the researchers stated their next goal to be the finding of better ways to gain
access to the didactical variables they want to evaluate.

Harel’s paper was special in that it reported on developmental research — research
that provided mainly a set of concrete ideas — anchored in theoretical and experimental
work, which found their application in curricular developments and textbooks designs.

A crucial problem that is in fact acknowledged in the Conclusion of the book “On
the teaching of linear algebra” (Dorier, 2000), as an issue requiring serious attention from
research aimed at improving linear algebra teaching, is the transmission to other teachers
of the ideas proposed as fundamental for teaching designs. This is because in most of the
reported research works, the teacher experimenting the projects was one of the
researchers involved in designing it. This brings us to the more general question of the

possibility of transfer of knowledge derived from research in mathematics education to
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regular teachers, who are not necessarily involved in research. Such a fundamental
question is at the basis of the endeavor I want to take in my thesis. There is indeed, as a
result of very extensive and fruitful work in research, a quite comprehensive range of
explanations for students’ difficulties in linear algebra along with suggestions for the
improvement of teaching. My work will try to contribute to making some of these
suggestions — namely students’ development of theoretical thinking — more easily
applicable to teaching practices by evaluating a simple teaching tool for linear algebra
classes. On the other hand I also hope to contribute to another kind of transfer, that from
theory in mathematics education to research practices, by employing the theoretical
model of TT in an operational manner within my research and, on a meta level, by

reflecting on this use of the model in my research.
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CHAPTER Ill. ANALYSIS OF STUDENTS’ SOLUTIONS TO

THE QUIZZES

This chapter starts with a detailed description of the participants and of the data of our
research. Before starting our analyses of the data, we include, for the purpose of quick
reference, a schematic overview of the characteristics of theoretical thinking to which we
refer in our analyses of the data. We give then a general description of our method for
analyzing the quizzes. The main body of this chapter consists of our analyses of the
quizzes: for every question (in total fourteen questions), we describe our a-priori scheme
for analyzing students’ responses, followed by the results of our analyses using this
scheme. We include as well, in order to illustrate these results, samples of students’

solutions.

PARTICIPANTS AND DATA

We have analyzed students’ solutions to the quizzes administered in a Linear Algebra II
(MATH 252) course at the Concordia University in Montreal. The quizzes were given on
a weekly basis, the exceptions being the first and last week of classes, as well as the week
when the midterm exam took place.

There were, in total, nine sets quizzes, but we have analyzed only seven of them.
Quiz 3 was one of the quizzes we have excluded from our analysis because we weren’t
able to photocopy it in the short time that it was in the hands of the instructor for
marking. Our reason for not considering quiz 9 was of a more methodological nature. The

questions in this quiz required very direct answers, without requiring students’ to justify
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them. For instance, a matrix representation of a nilpotent operator was given and students
were asked to find its nullity and its index of nillpotency. Now, this kind of problems did
require our students to involve to some extent their theoretical thinking, but their answers
were, almost without exception, specific numbers. Thus, our analyses of their answers
would have been based on theoretical speculations, with no empirical grounds.

Fifty-seven students were registered for this Linear Algebra II course, but the
number of students answering the quizzes varied slightly from week to week. The
majority of these students were attending the first year in the Actuarial program offered
in the Department of Mathematics and Statistics at Concordia. The clientele of this
program usually consists of mathematically strong students, the main criterion for their
selection in the program being the high grades they have obtained in their pre-university
mathematics courses.

The quizzes were intended to develop students” inclination to think theoretically.
However, they were not designed to satisfy certain characteristics explicitly mentioned,
but rather reflected an implicit goal of the instructor of the course. The problems were in
general not computational or requiring solely the mastery of various procedures; instead

they challenged students to involve deeper thinking abilities in order to solve them.

THE FEATURES OF THEORETICAL THINKING — A SCHEMATIC OVERVIEW

In our analyses of the data, we have considered three main features of theoretical
thinking: REFLECTIVE, SYSTEMIC and ANALYTIC. We present their
characterization below, in a schematic manner, along with the subcategories they

subsume.
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Theoretical thinking is

REFLECTIVE = is critical with respect to its own products

SYSTEMIC = is concerned with systems of representations of relations

between objects, which are relations themselves.

subcategories:

DEFINITIONAL = stabilizes meanings by definitions and theorems
= accepts and understands axiomatic definitions

PROVING = is concerned with the verification of validity; is

sensitive to contradictions
HYPOTHETICAL = takes into account all logically possible cases
=1is aware of the conditional character of mathematical

statements

ANALYTIC = is mediated by semiotic systems of representation; takes
systems of signs as an object of reflection and invention
subcategories:

LINGUISTIC SENSITIVITY

- to the syntax of formal symbolic notations

- to the usage of specialized terminology in less
formal sentences

META-LINGUISTIC SENSITIVITY

- to the symbolic distance between sign and object

- to the structure and logic of mathematical language

- to parts of “mathematical speech”, i.e.:
distinguishes among axioms, definitions, theorems,

proofs, examples, explanations, etc.

31



GENERAL DESCRIPTION OF METHOD

We wanted to see how students’ theoretical thinking evolved as they were taking the
quizzes. For that, we first had to identify in their written answers, instances of behavior
could be characterized as corresponding to acts of theoretical thinking. This identification
was theory-driven. We first analyzed the questions in the quizzes: for each question we
described a set of behaviors that would be, in principle, necessary for solving it correctly.
Each of these expected behaviors was then assigned a code made of the following three
coordinates: TT feature / subcategory of the TT feature / concrete theoretical
behavior. For instance, if, to solve a question it was necessary to distinguish between a
definition and a theorem, then this act represented the concrete theoretical behavior (TB)
requiring analytic thinking, and, more precisely, the meta-linguistic sensitivity. This
expected behavior would then be coded as: Analytic / meta-linguistic / definition-
theorem distinction.

Each student’s solution was analyzed using this a-priori identified set of TT
features. A fourth coordinate was added to this coding, that resulted this time from our
empirical analyses: one of the numbers 1, -1 or 0. The ‘1’ codes signaled an explicitly
theoretical behavior, while the ‘-1’ code was awarded when, with respect to the given
feature of TT, the student’s behavior was practical. In the above example, for instance, if
the student, expected to provide the definition of an object, wrote instead a theorem about
that object, then his behavior would be coded Analytic / meta-linguistic / def-thm
distinction / -1. Our focus thus, in the analyses we have performed on students’ answers,
was on whether or not they engaged in TT when such an engagement was necessary in

order to solve the problem at hand. On the other hand, practical thinking was in many
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cases opportune and even necessary. However, our primary interest being in the
necessary features of TT, we only discussed students’ practical tendencies by contrast
with TT, when students used PT to their detriment.

We coded a behavior with ‘0’ in two situations. Firstly, in some situations a
student’s behavior was neither explicitly theoretical, nor definitely practical. We have
discussed in a previous chapter how closely TT and PT interact in mathematical thinking
and how fine the line that separates them may be. The “0 situations”, as we called them,
illustrate precisely how a definite distinction between TT and PT is sometimes impossible
to be made in practice, especially when dealing with written outcomes of thinking. We
chose not to include them in our quantitative analysis, yet many of these ambiguous —
from the point of view of the TT/PT distinction — were much more interesting for our
qualitative analysis.

Secondly, since we coded pieces of students’ solutions, in some cases, within a
solution, a certain theoretical behavior could only occur if another theoretical behavior
was previously enacted. One of the problems in the quizzes, for instance, asked the
students to give an example of a product over a vector space satisfying two of the
properties of an inner product, but not all three of them. To solve this problem, a student
would first have to involve his' systemic thinking in order to understand and apply
axiomatic definitions. This would enable him to give an example of a function over a
vector space. Another feature of TT he would have then to resort to is his analytical
thinking, in order to correctly introduce and manipulate formal notations throughout the
solution. However, if he did not engage in axiomatic reasoning in order to provide an

example in the first place — for instance if his example was a concrete vector — then,

! The generic pronoun “he” will be used throughout the thesis to alleviate the text.
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obviously, we could not decide whether or not he would have been analytically sensitive
in using formal notations. In such cases, where, say TB2 is conditioned by TB1, and TB1
does not occur, we assigned TB2 a ‘0’ code. Even if in this particular problem situation
TB2 appeared to be dependent on TB1, one could not conclude that in general the two are
dependent and thus code TB2 with ‘-1’ whenever TB1 is coded with *-1°.

In our analyses of the questions in the quizzes we did not intend to investigate all
the possibilities for theoretical thinking that a question may evoke in a student’s mind. In
an a-priori, theoretical analysis of a question there may be an unlimited number of such
possibilities for TT. Our intention, however, in this preliminary endeavor, was rather to
imagine a probable course of action for the solving of the problem, signaling features of
TT that were necessary and sufficient to complete the task. Nevertheless, when looking at
the students’ solutions, we did acknowledge and discuss instances where students
explored theoretical possibilities beyond those required by the mere resolution of the

problem in the quiz.

ANALYSIS OF THE QUIZZES

Quiz 1 — Question 1: Example of an “almost” inner product

The first quiz was administered the second week of classes, after the students were

introduced to the notion of inner product space. In the first question they were asked to

give an example of an “almost” inner product. The question was formulated as follows:
An inner product in a vector space is a product of vectors which satisfies three

conditions: linearity, symmetry and positive definite property. Give an example of
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a product of vectors in a vector space, which satisfies two of these properties but

not all three of them (and therefore is not an inner product).

Analysis of the question

We will use this problem to illustrate how the interplay of acts of theoretical and practical
thinking contributes to the construction of the solution to the problem. In our subsequent
analyses of the questions, as we have mentioned, we will limit our interest to the set of
features of TT that we found necessary and sufficient to complete the task. But for now,
in order to give an idea of our understanding of the TT and PT categories, let us propose
the following scenario of how one may involve his TT and/or PT when solving the

problem above:

PT: To discover the required object one would most probably resort to the
examples one knows of products in a vector space. This does not imply a limitative
process, where the person trying to provide the example would only choose from the
space of known examples. By the involvement of practical thinking here, we just mean
some kind of intuition of what an “almost inner product” would look like, an intuition
which is more likely to be present if some examples of inner products have been
previously viewed and, in this context, quickly reviewed in the search for an appropriate
example. This situation — where previous experience shapes intuition — is often

encountered in the process of doing mathematics, according to Fischbein (1987).

PT&TT: To provide one example then, one involves both theoretical and

practical thinking. Theoretical thinking is necessary for a proper understanding of the
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definition of an inner product. The acceptance of its axiomatic character will enable the
student to give an example of a function over a vector space and not, for instance, an
example of two concrete vectors. However, his task in providing such an example is
made much easier if he will think practically and choose an example whose properties are
easier to check and whose parameters are easier to modify in order to satisfy the
requirements of the problem. The presence of TT in this practical behavior would be
concretized, however, by reference to the axioms that define the inner product. Students’
behaviors resulting from whether or not they involve TT when constructing their example
were coded Systemic / definitional / axiomatic understanding with the fourth

coordinate added as follows:

1, if the inner product is understood as a function over a vector space and reference to the

axioms that it has to satisfy is made.

-1, in all cases where the product is not understood as a function (for instance if a
multiplication of concrete vectors is given as example) or where there is no reference to

the defining axioms of the inner product.

TT: To correctly represent the object and manipulate it throughout the solution
one has to be linguistically sensitive in using formal notations. One first has to engage in
correct discursive procedures to represent the product and then to manage and
discriminate among the notations introduced throughout the solution, for instance:

x, y for vectors, X,,X, andy,,y, for coordinates of these vectors, notations for the

constants involved in the statement of the linear property, etc.
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With regard the manifestation of TT in this linguistic aspect of their written
solutions, we coded students’ solutions with the code Analytic / linguistic / formal

notations:

1, if notations are used correctly, without confusion and control over them is maintained

throughout the solution.

-1, if variables or notations are used in a confused way, leading to failure in solving the

problem.

TT: To validate the chosen example one has to involve systemic thinking and
exhibit a concern with the validity of what he is claiming. In order to justify that two of
the properties of the inner product hold and one of them doesn’t, one has to engage in
proving activity. It is this process, of validating the example through proving, that allows
the student to make adjustments to the initial example, to “fix” it to satisfy the
requirements of the problem. Depending on whether attempts at proving were present or
not, the code Systemic / proving / concern with validity was awarded to students’

solutions, with the values:
1, if there is a justification of the properties being satisfied or not, whether correct or not.
-1, if there is no justification of the properties.

PT: is necessary in all the steps of the solution to perform the necessary algebraic

manipulations.

We would like to restate, at this point, an assumption of the TT/PT model which
is fundamental for our analysis of the question: the two categories represent simplified

ways of understanding human cognitive activity and they do not refer to some separate
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cognitive activities. This being the case, the sequential process that we have described
above should be understood as our simplified description of a possible thinking process
and not as an attempt to faithfully describe a process of human thinking. Human thinking
does not follow such a linear trajectory. Reiterations and alternative paths are most
probably possible in a student’s mind when solving the problem. Also, TT and PT do not
occur separately, each as an individual act of thinking, but most likely, any piece of
reasoning would contain traces of both. The figure below, which represents the simplified
model of thinking we have described, expresses this idea of simultaneous presence of PT
and TT in mathematical constructions in a graphical manner. The acts of TT are enclosed
in rectangular shapes, while those of PT in cloudy, rounded shapes; the results of thinking

are a combination of both: rectangles with rounded edges.

TT/Systemic/Proving:
engaging in validating
attempts

TT/Analytic/Linguistic:
engaging in correct
discursive procedures to
represent the object

PT: resorting
to known
examples

PT:
procedures for
algebraic

manipulations

Space of examples )
of objects

PT: practical decisions TT/Systemic/Definitions: TT/Analytic/Linguistic:
about choosing an understanding and accepting interpreting symbolic
appropriate example in axiomatic definitions (this notations in a rigorous
a limited time frame involves more than a verbal way

(some sort of intuition) reproduction of the definition of

an inner product)

Figure 1: Scenario for a reasoning process — finding an example of an “almost” inner

product.
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Analysis of students’ responses

This was a construction problem and the aim of the instructor was probably to have
students engaged in axiomatic reasoning. Such reasoning would encompass not only the
understanding of the notion of inner product as an operation, satisfying certain properties,
defined over a vector space, but also the undertaking of the freedom to invent any such
structure. Sierpinska et al. (2002) argued that, in practical thinking, this freedom,
resulting from axiomatic understanding of definitions, is not conceivable: definitions
always describe some already existing, real object. In this frame of mind, one could
verify successfully whether a given object satisfies the definition, but would find it a
much more difficult task to construct such an object. We believe that this problem
required at least an acceptance of the axiomatic definition of an inner product: without
accepting its “non-real” character, it is impossible to even conceive of constructing a new

structure, satisfying two out of three properties.

Most of our students did understand the product as a function defined over a
vector space, with only one student out of the 48 having the test that day giving an
example of two concrete vectors. Our doubts however came from the fact that almost

none of them went beyond the example of the product that was presented in class during
the previous lecture, that is: < x,y >over R? defined as x" Ay , where A is a2 by 2

matrix. For this to be an inner product, the matrix A had to meet certain conditions: (1) to
be symmetric — thus assuring the symmetry of the product, and (2) to have a positive
determinant and positive diagonal entries — to assure the positive definite property. It -

becomes then almost trivial to give an example of a product satisfying only two
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properties of an inner product, by simply constructing the matrix accordingly: either not
symmetric but satisfying (2), or symmetric but with either a negative determinant or
negative diagonal entries. This was a perfectly legitimate solution, and it did show proof
of theoretical thinking, as long as those that had this approach linked the properties of the
matrix with the properties of the inner product. The corresponding behavior was coded

Systemic / definitional / axiomatic / 1 and below is an example of a student’s solution

illustrating it:
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It is obvious that, even if the student was practical enough to choose an example
whose parameters could easily be modified to satisfy the requirements of the problem,
she did not do it as if she had memorized the conditions to be met by the matrix without
linking them to the axioms defining the inner product. The properties of matrix

multiplication and addition assured the linearity of the product, symmetry was linked
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with the symmetric property to be satisfied by the product, while the negative sign of the
diagonal entries would mean that not all vectors multiplied with themselves yield a

positive result. In fact she gave a counterexample to prove this last claim.

Her behavior was quite different from that of the student whose solution we
present below. He did give an example satisfying the requirements of the problem, yet
clearly ignored the axioms that define the inner product. He just checked the properties of

the matrix without showing what their relevance is for those of the inner product:
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Not only the matrix whose properties he checked wasn’t the matrix defining the
product he gave as an example, but for him, the three properties of the matrix obviously
represent the three properties of the inner product. Linearity, assured by the properties of
matrix multiplication, was not even considered in his proof of the validity of the example.
Seven out of the 48 students whose solutions we analyzed had a similar behavior focused
on the conditions to be imposed on the matrix, without any mention whatsoever of the

properties of the inner product. We also categorized the student below, who chose as
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example of a product the multiplication of two concrete vectors, as lacking a proper

understanding of axiomatic definitions:
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Yet another student did not even come up with an example, even if he did vaguely

remember the properties that had to be satisfied by an inner product. Theoretically, these
properties represent everything one needs to know in order to at least attempt to come up
with an example as required by the problem. But clearly, for this student, this was just a

verbal reproduction of these properties:
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To summarize, three categories of answers demonstrated a lack of axiomatic

understanding of definitions:
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- examples constructed based on the properties of a certain matrix, but without
justifying how these properties relate to those of the inner product;

- statement of the properties of the inner product without applying them to
construct an example;

- examples of concrete vectors.

In total, nine students — so approximately 18% of the sample — showed such a
complete indifference or misunderstanding of axiomatic definitions. For us, the others, by
simply attempting to name a function and trying to justify its properties were exhibiting,
to some degree, axiomatic acceptance. A deeper engagement in axiomatic reasoning,
which was probably what the instructor aimed at when she included this problem in the
quiz, was a much rarer occurrence. Only two students, like the one whose example we
include below, went beyond the example showed in class the previous day and took the

freedom to invent a different structure:
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This solution is in fact, one may argue, the only one really containing a theoretical
behavior with regard to the TT feature Axiomatic understanding of definitions. It
becomes obvious here how fragile the distinction between TT and PT is and how a

distinction in absolute terms is impossible to make especially in the case of written
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outcomes of thinking, where there is little access to the actual thinking process. The
identification of TT features within the behavior of one student can only be made within
the larger context of the behaviors of the whole population: for instance, the student who
referred to the paradigmatic example shown in class but made links with the axiomatic
definition is clearly more theoretically inclined than the one who is just applying it
without the slightest reflection at an axiomatic level. We often based the decisions we
made when characterizing a certain behavior as being theoretical or not on this kind of

relative judgments.

The engagement in proving was not a behavior prompted by the requirements of
the problem, but it was undertaken by many students, in their attempts to validate why
their example was a satisfactory one. In fact, failure to engage in validating attempts, led
in many cases to examples of functions that were actually inner products, as it was the

case for the student below:
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Were he concerned with the validation of his last statement, he would have had

the chance, at least, to realize that the positive definite property does hold and reconsider

his example.

Examples of products failing to satisfy more than one property were also due to

the same lack of concern with validity. This was the case for the student who wrote the

following solution; she only proved the symmetry of the product, without bothering to
justify the other two properties:
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Twenty-one students did not provide justification of why one or another property

held and, consequently, ten — so approximately half of them — failed to provide a good

example of product, as required by the problem.
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For eight students, the misuse of formal notations led in most cases to wrong
solutions or to obstacles in providing a good solution. Here is an example where the lack

of control over notations prevented the student from providing a good solution:
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He most likely recalled a procedure for checking the positive definite property of
a product over R?involving the discriminant of a quadratic function. This procedure
involves a change of meaning to the initially introduced notations: u,and u, were first
entries of a vector, while for studying the monotony of the quadratic function, one had to

understand, for instance u, as variable and u, as some constant. We believe it was his

lack of control over notations that prevented him from applying this knowledge correctly.
He proved his lack of linguistic sensitivity in at least two instances. First he had trouble
nominating within the quadratic function the variable and the constants: he calculated the
discriminant as if w’u?, u,u, and u} were the coefficients in the quadratic. Secondly,
even if he had calculated the discriminant correctly, apparently, he would have still
obtained the wrong conclusion because he simply associates the positive definite property

with the positive sign of the discriminant. This indicates that he performed those
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algebraic manipulations without having in mind the monotony of the quadratic function.
This type of reasoning, where symbolic expressions are manipulated in order to provide

the solution to a problem, without understanding the actual problem situation, is specific

to what Harel and Sowder (1998) term as symbolic proof schemes.

The confused use of notations is also obvious in the following attempts of a student, and

it prevented him from engaging in any kind of justifications:
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In conclusion, 81% of the students in our group did at least attempt to use the
axiomatic definition of an inner product in order to come up with an example satisfying
only two of its properties, but they failed to produce a good example mainly for two
reasons. One of the reasons was that they did not engage in validating their example by
proving the holding or non-holding of its properties, which led in most cases to examples
of inner products. A second reason, accounting for a smaller number of wrong solutions,

was the misuse of notations, exhibited by 17% of the group. We summarize these results

in the following table:

7B Sys/def/axiomatic { Sys/prov/iconcern | Analytic/ling/formal not

Score 1 -1 1 -1 1 0 -1
Number of students 39 9 27 21 33 7 8
% of the total 81% 19% 56% 44% 69% 16% 17%

Table 1: Students’ behavior in Quiz 1 — Question 1.

47



Quiz 1 - Question 2: Proof verification

The second problem was also on the subject of inner product spaces. Students were
showed a proof that a given product is an inner product and they were asked to verify the

validity of this argument. The question was formulated as follows:

X
InR? we define a product of vectors X = |: ! j| andy = [yl }by the following
X2 Y2

formula :

<Xy >=2x1y; + XYy + X3y — 3%,

Below we prove that this product is an inner product. Check if this proof is
correct.

Explain why yes or why no.

1. Linearity

[ }
2

<x+z,y>=20x +2)y + (5 + 21 )z + 31(x2 +25)=3(x2 +22)72

= (2xyyy + x3yp + ya; = 3%22)+ 2213y + 213 + 2231 = 32202) =<Ky > +
<z,y >

Let K be a real number.

<kx,y >=2kx,y; +kx;y, +kx,y; + 3kx,y,; =k <x,y>

So the product is linear.

2. Symmetry

<%y >=(2y; +y2)x; +(y1 =3y2)%2 =(2x; +x,)y1 + (X1 =3x2 )y, =<x%y >
So the product is symmetric.

3.Positive definite property
2
Let us take any vector, for example X = [1}

Then <X,x>=2-2-2+2:1+1-2-3-1-1=9>0.
If xis a zero vector, then x; = X, =0 and so < x,x >=0.
So the product is positive definite.

Therefore the product is an inner product.
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Analysis of the question

The proof of the positive definite property of the inner product was made using an
example. We expected students approaching this question with a theoretical mind to
notice this mistake in the proof because, in their systemic approach to meanings, they
would seek to establish the validity of general statements based on definitions of concepts
and not on some concrete representations of these concepts. For them, it would not be
acceptable to conclude that for the given product the positive definite property holds

because the product of one particular vector with itself gives a positive number.

Consequently, theoretical thinking would be concretized for this question in the
behavior of rejecting the last part of the proof, on the grounds that it is not a general
proof. We coded with Systemic / definitional / in proving / 1 this category of answers. If
a student does not comment on the mistake in the last part of the proof, regardless of
whether or not he concludes that the given product is not an inner product, we would

code his answer with Systemic / definitional / in proving / -1.

This problem will also provide us with a good opportunity to look at our students’
conceptions about proofs, and in general, about validity in mathematics. Works that
describe the types of proofs that students produce and/or consider acceptable, refer
mainly to two categories of justifications: empirical and analytic (see Harel and Sowder,
1998; Balacheff, 1999; Bell, 1976). Empirical justifications are characterized by the use
of examples as basis for conviction, whereas analytical proofs are characterized by the
use of deduction to obtain conclusions from the given data. A priori, we would assume

that the systemic approach to proving will result in analytic proof schemes, while
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reference to concrete examples engages empirical proof schemes. Let us now check this

hypothesis against our empirical data.

Analysis of students’ responses

Eighteen students — approximately one third of the sample — observed that the positive
definite property was not proved in general, thus refuting the proof because of its last
part. Accordingly, we coded these students’ answers with Systemic / definitional / in
proving / 1. They were all interested also in verifying whether the given product is an
inner product, doing that in essentially two ways. The student whose solution we
reproduce below showed that the positive definite property doesn’t hold by providing a
counterexample:
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To prove the same claim, one could also engage in a direct proof, similar to the
one we include below, where the positive definite property is proved not to hold in the

general case:
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Of the 18 students who refuted the proof in the quiz, only 3 students concluded
that the last property doesn’t hold based on a counterexample. So, even if, clearly, a
significant part of our group (about 35%) would not rely on evidence from examples,
many of them still do not reach what we would like to call a higher level of mathematical
sophistication — understanding that examples can be used to disprove a general statement.
Proving in a straightforward manner is not, of course, a bad thing in itself, but the almost
complete absence of proof by counterexample is an indication that students are stuck with
what Harel and Sowder (1998) called “an envisioned step-by-step creation of the result”
(p.20). This conception leads, in Harel and Sowder’s view, to restrictive proof schemes.
These are analytic proof schemes, they may well be correct, but they encompass a narrow
conception about proof, limiting students’ choices when approaching a proof problem.
We believe that this limiting conception was the main culprit in our students’ preference

for a much longer proof, when a simple example would have done the job.
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The other 33 students (representing two thirds of the group) had essentially two
approaches to this problem. Seventeen of them accepted the last part of the proof. We
coded their answers with Systemic / definitional / in proving / -1. The other half
concluded, based on a direct proof, that the given product is not an inner product, without
making any comment on what exactly was wrong with the proof. We coded their answer
with Systemic / definitional / in proving / 0 since we couldn’t assume in a definite manner
that they accepted the proof by example done in the last part of the problem. I think that
this is a common situation that many instructors encounter and complain about: students
haphazardly engaging in solving a problem without the slightest reflection on the actual

question they have to answer.

Now, to check another theoretical conjecture we have made regarding the
conditioning of analytic proof schemes by the involvement of systemic thinking, we
could see that analytical proofs do not necessarily entail theoretical thinking. Let us
consider the following solution to the problem, containing solely the proof that the given

product is not an inner product without saying exactly what is wrong with the proof:
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It appears that this student’s single concern was to verify if the product defined in
the text is an inner product, without bothering to examine the validity of the reasoning

that led to this result. To arrive at his conclusion, he obviously used deduction and did not
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rely on empirical evidence. His proof scheme is analytical in Harel and Sowder’s sense
(1998), and, in fact, when making our assessment decisions, we may well give this
student the benefit of the doubt, and assume that, since he’s refuting the conclusion of the
proof, he must be considering the proof by example unacceptable, and give him full
points for identifying the proof as flawed. However, the student’s solution does not
appear to involve much theoretical thinking. Let us point to some “signs” that led us to

this conclusion:

- to establish correctness of the linearity of the product he had to rewrite the
statement of this property using the notations u,,u, and v, because these were

probably the symbols used by the instructor when she first introduced the notion

of inner product. This shows his lack of flexibility in using formal notations;

- he studied the symmetry and the positive definite property of the product by
rewriting the product in the form of matrix multiplication, and by checking the
properties of the matrix. The actions he took were not only superfluous, but also
required little, if any, comprehension of the actual meaning of the axioms defining

an inner product. The properties of the matrix are the properties of the inner

2
product, just as the positive result of the multiplication of the vector [1] with

itself is the positive definite property. He put a check mark for all three parts of
the given proof, as if he accepted it as correct, and at the same time reached a
different conclusion in his own proof. The meanings of both the given proof and
of his own proof of the positive definite property were sought in material

reference. Had he involved his systemic thinking, his only reference for
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establishing validity would have been the definition of the positive definite
property, and he would have judged the two “proofs” in relation to this definition,
thus sensing the contradiction between the two results. We marked in red the

contradicting claims in his solution.

- on the whole, his approach to solving this problem is that of a proactive practical
thinker, who prefers undertaking action and checking the properties himself,

instead of reflecting on the given proof.

Sixteen students, as we have mentioned, had a similar approach to this problem,
exhibiting analytical proof schemes, while not engaging in theoretical thinking. They
seemed to have mastered a discourse or a “genre” on a superficial level, but not the
underlying intellectual attitude. We believe that the quizzes can prove to be a powerful
tool for developing theoretical thinking in precisely this kind of situations, where students
have the practical abilities needed to solve the problem, but they do not control them
through theoretical thinking. The teacher can transform such situations into opportunities
for cultivating certain habits of the mind either through assessment — for instance by
subtracting points for such answers that do not give a precise answer to the question — or
simply by using them as starters of meta dialogues about the mathematics they contain.
This kind of communication can be done through written comments on their solutions, or

by commenting, in class, about the most common mistakes done in the quiz.

Students’ scores with regard to the behavior Systemic / definitional / in proving in

this problem is synthesized in the following table:
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7B Sys/deffin proving

Score 1 0 -1
Number of students 18 16 17
% of the total 35% 31% 33%

Table 2: Students’ behavior in Quiz 1 — Question 2.

There appears to be an almost equal share of answers in each category: rejection of the
proof on the grounds that it is based on an example (coded /), rejection of the inner
product, without saying exactly what is wrong with the proof (coded 0) an acceptance of
the proof (coded -/). This may already suggest a distribution of our students’ tendencies
to think theoretically, at least with regard to this feature of TT: one third of the sample
has a definite tendency to think theoretically, while one third is rather practically
inclined. The remaining third does not exhibit an explicit tendency to think either

theoretically or practically.

Quiz 2 - Question 1: Dimension of orthogonal complement

The second quiz had as main subject the notion of orthogonality. In particular, the first

question referred to orthogonal subspaces:

Let V be an inner product space of dimension n, and let W be its subspace of

dimension k,k <n. What is the dimension of the orthogonal complement of W?

Justify.
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Analysis of the question

To reach the conclusion thatdimW* =n —k , one could reason as follows:

W is a subspace of V, and W™ is its orthogonal complement so: V is a direct sum of W
and W' . Since V is a direct sum of W and W' ,dimV = dimW +dimW* hence
dimW'=dimV —-dimW =n-k.

This is a question that requires explicitly the justification of the result. If, when
writing their proofs, students referred to definitions in deciding about the meanings of the
terms involved in the problem (i.e.: dimension, subspace, orthogonal complement, etc.)
their answers would be coded with Systemic / definitional / in proving / 1. Otherwise, if
their approach to meanings is not theoretical, their solutions would be coded with -1 on

this feature.

The dimension of a vector space is equal to the sum of the dimensions of its
subspaces only under the assumption that the vector space is a direct sum of its
subspaces. If one thinks hypothetically, one will be aware that under different
circumstances, i.e. V not being a direct sum of its subspaces, this statement is no longer
true and thus one would be careful to make explicit the condition under which this result
holds. On the other hand, if one’s thinking is not bound by a conceptual system, truths are
facts, not conditional statements. In this frame of mind, one remembers a theorem in a
practical manner, concerned only with its “final product” (for example, a formula), and
not with the conditions under which its conclusions are true. We used the code Systemic
/ hypothetical / assumptions in theorems to classify students’ answers with regard to
their engagement with hypothetical thinking for solving this problem. Following our

empirical analyses a student’s solution would be coded 1 with regard to this feature if the
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dimension of the orthogonal complement was justified by the fact that the vector space is
a direct sum of its subspaces and with -1, if the result was not justified. Of course, we
also expected that some students would not know any of the theorems needed to solve the
problem, but for those cases we wouldn’t be able to decide whether or not they engaged

with hypothetical thinking. Such solutions would be coded 0 on this feature.

We also looked at students’ language in their answers to this question, in
particular to their correct use of mathematical terms. Sensitivity to terminology is more
than just a “definitional” or theoretical approach to meanings. It entails referring to
correct definitions and true theorems, not just to any theoretical (as opposed to
“everyday”) meanings in general. The code Analytic / linguistic / terminology was
added the value 1 for students’ solutions that employed correct terminology and

meanings, and -1 for answers that used incorrect terminology or meanings.

Analysis of students’ responses

Indeed, as we had expected, many students — 20 or 40% of the 49 students answering this
question — came up with the answer n —k for the dimension of the orthogonal
complement of W, failing, nonetheless, in one way or another, to provide the good

justification for it. Let us first look at this student’s solution:
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Her diagram is more appropriate for representing a set-theoretic union of sets with

an empty intersection. This doesn’t mean, however, that she is consciously thinking

within the set-theoretical conceptual frame. “Dimension”, for her, could be no different

than the everyday notion of size of a collection of objects, perhaps even the number of

elements in the collection. This understanding still yields the correct value for the

dimension, but not a correct justification of this result. Eight students, out of the twenty

giving the result without the correct justification, scemed to have a similar

misunderstanding of the notion of dimension of a vector space. We coded their answers

with Systemic / definitional / in proving / -1, which is a code we have used before when

students looked for meaning in some material reference, instead of theorems or

definitions. Such material reference can also be found in the following solution of a

student, who, besides, doesn’t even provide the correct answer:
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This solution reveals the misconception that the dimension of the orthogonal
complement must be greater or equal to the dimension of the subspace. However, the
discriminating factor between the two solutions we have included above is the linguistic
sensitivity of their authors. The first one contains good mathematical “grammar” and the
confusion between direct sum and union of sets still makes sense, i.e. it is still
grammatically correct (it is thus coded Analytic / linguistic / terminology / I). In the

second solution, on the other hand, there are two serious grammatical mistakes:

- the expression “a subspace is the smallest” (probably coming from the definition of a

span of a set S, as “ the smallest subspace containing S”);
- “inner product is of dim n” (confusion between inner product and inner product
space).

We coded it thus with Analytic / linguistic / terminology /-1. Both solutions, on
the other hand, were coded with 0 on Systemic / hypothetical / assumptions in theorems
since, as we have argued above, they failed to provide the good justification for other

reasons than that of the non-involvement with hypothetical thinking.
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Solutions similar to the one we include below (given by 12 students in our group),
where the equality dimV = dimW +dimW™ appears as unconditionally true, were coded
with Systemic / hypothetical / assumptions in theorems /-1
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Twenty-five students — 51% of the 49 students answering this question — gave the
complete answer, similar to the one we have mentioned in our a-priori analysis. A
significant part of the group (40%) provided the correct answer, but lacked the correct
justification. Three reasons accounted for their incorrect (or absent) justifications:

(1) the “concrete” reference for the meanings of some of the terms involved in the
problem (Sys/def/in proving/-1);
(2) the using of a result of a theorem as an unconditionally true fact

(Sys/hyp/assumptions in thms/-1);
(3) the lack of linguistic sensitivity (4nalytic/ling/terminology/-1),

There were 4 students (9% of the group) who didn’t give the correct answer for one of

the reasons (1) or (3) above. We present these results in the table below:

Sys/hyp/assumptions in
B Sys/def/in proving thms Analytic/ling/terminology |
Score 1 0 -1 1 0 -1 1 0 -1
Number of
students 16 15 18 25 12 12 35 8 6
% of the total 33% 3% 37% 51% 24% 24% 71% 16% | 12%

Table 3: Students’ behavior in Quiz 2 — Question 1.
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Quiz 2 - Question 2: Norm of the sum of two vectors

The second question was formulated as follows:

Let V,< .,.> be an inner product space,and let w,v bein V.What is enough
to assume for the following equality to hold :
norm(u + v)> = norm(u)’ + norm(v)”

Justify your answer.

Analysis of the question

We expected essentially two kinds of solutions for this problem:
(1) One approach, considered more likely, would be:

(a) to find, through a series of equivalent transformations of the equality, a

necessary and sufficient condition, namely: <u,v >=0 or u orthogonal

tov.

(b) and then to state, in conclusion, that “it is enough to assume that <u, v>=

0 (or u is orthogonal to v)”.

(2) Another approach would be to give some possible sufficient condition, e.g. one of
the vectors equal to 0, and then verify that the equality holds under this

assumption.

A theoretical behavior for us in this question would be the association of the word
“enough” with the requirement to provide a sufficient condition for the given equality to
hold. This ability to “translate” the meaning of everyday words in the mathematical

register entails meta-linguistic sensitivity, specific to analytic thinking. It is perhaps not
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the very translation of “enough” by “sufficient condition” that we call meta-linguistic
sensitivity, but rather one’s ability to recognize this word as a focal point in the problem,
dictating a mathematical endeavor for solving the problem sensibly different then if it
were replaced by another adverb. This realization then is completed with the carefulness
to use one’s own language in the same sensitive manner. For instance, a student having
such an analytical approach to language will use implication and equivalence symbols

such as: =, < or < so that they point to the correct direction of the implication they

want to express. We coded students’ behavior on this question with Analytic / meta-

linguistic / necessary-sufficient distinction with a fourth coordinate added as follows:
1 was assigned to solutions of the type 1 or 2.

-1 was assigned to solutions of the type 2a with b replaced by a statement of
necessity, such as, “we have to assume that <u, v> =0 (or u is orthogonal to v)”, or, in
general, to solutions stating some necessary condition (not necessarily deduced from a
reasoning of the type 2a). Solutions containing only the reasoning 2a with no statement of
sufficient or necessary conditions, or, in general, solutions without explicit response to

the question were coded 0 with regard to this feature.

We don’t believe that the students scoring -1 on this feature would not in general
understand the logical distinction between a necessary and sufficient condition, nor that
they simply do not associate the word “enough” with “necessary condition”. Ferrari
(2004) shows that advanced students have different linguistic behaviors depending on the
context they are situated in. For instance, in one problem they would interpret correctly
the notions of integer and of real numbers, understanding that any integer is a real

number as well, while in a more complex context, where other parts of the question are
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considered more important and difficult, they tend to interpret the notions of “real” and
“integer” according to their colloquial use, in which the combined use of the two words
may suggest that “real” should mean “non-integer”. So, and this is our claim too with

regard to our students’ interpretation of the word “enough”:

“[...] the interpretation of a text is hardly a plain translation (based on vocabulary and
grammar), but involves the context the text is produced within. [T]he interpretation of
texts is an enterprise which required reader (or hearers) to play an active role, performing
some inferences, recognizing some part of the text as essential and focusing on

them.”(p.386).

The ability to switch between what he calls, with terms borrowed from functional
linguistics, the colloquial register and the literate register, as well as to recognize key-
words in the organization of the problem is what we characterize as meta-linguistic

sensitivity.

Students were also expected, in their solutions, to understand terms such as “inner
product space” and “norm” according to their general meanings and not as referring to
some concrete examples, e.g. the Euclidean plane. We used the code Systemic /
definitional / in proving to characterize students’ behavior from this point of view, as

follows:

1 was a assigned to solutions that contained an understanding of the norm of a

vector u as <u, u>;

-1 was assigned to solutions that used some concrete example of norm.
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Analysis of students’ responses

Many students failed to interpret the word “enough” as the requirement to provide the
sufficient condition for the equality to hold. We coded 26 answers with Analytic / meta-
linguistic / necessary-sufficient distinction / -1. This student, for instance, proved such a
lack of meta-linguistic sensitivity by approaching the problem as if he was required to

produce the necessary condition:
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The verb “have to” in his proof reveals his misunderstanding. Indeed, it so
happened that the condition was both sufficient and necessary but, as we have mentioned,

around half of the students who solved the problem did not notice this fact. Their focus in
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solving the problem was on applying the norm on those vectors and obtaining some

condition on u and v, never mind if it’s the necessary or the sufficient one, concerned

t R 1

only with how these vectors “must”, “need” or “have” to be.

Eighteen students either provided exactly what the problem asked for — the
sufficient condition, or produced a set of equivalent statements to finally conclude that
the equality holds if and only if the vectors are orthogonal, hence the orthogonality of the
vectors is enough for the equality to hold. Below are examples of these other two

approaches undertaken by our students, demonstrating their meta-linguistic sensitivity:

- sufficient condition:
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- sufficient condition deduced from equivalence:
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Their answers were coded with Analytic / meta-linguistic / necessary-sufficient

distinction / 1.

As a side remark we wish to note that these two latter approaches were graded as
100% correct, while the approach in the first example received 75% of the points. The
instructor also wrote short comments on the returned quizzes and made general remarks
in class regarding the most common mistakes she encountered as she corrected them.
This way the quizzes acquired their lever-like character for enhancing students’

inclination to think theoretically.

Besides the two categories of answers we have described above, for six students
we couldn’t decide whether they made the correct distinction between the necessary and
the sufficient condition and we coded their answers with 0 on the aforementioned

theoretical behavior. Only two students had a concrete reference for the conditions under
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which the equality in the problem holds. Namely, they referred to the Pythagorean
theorem, not only failing to realize that they are considering the particular space of R?
equipped with the dot product, but also not even “translating” the familiar theorem in

terms of properties of vectors.
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We coded these two answers with Systemic / definitional / in proving/ -1. Most of

the students in our group (90%) appeared to have a general notion of norm, without
limiting themselves to the familiar Euclidean plane, or at least not exhibiting explicitly
such a limitation. However, only one third of the group noticed the more subtle
requirement of the problem, namely that of producing a sufficient condition for the given
equality to hold, while half of them explicitly confused it with a necessary condition. In

the table below we summarize our students’ behavior in this question:

B Analytic/meta-ling/N-S Sys/def/in proving
Score 1 0 -1 1 0 -1
Number of students 18 8 26 47 3 2
% of the total 35% 15% 50% 90% 6% 4%

Table 4: Students’ behavior in Quiz 2 — Question 2.
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Quiz 3 - Question 1: Definition and product of orthogonal matrices

The third quiz was on the subject of orthogonal matrices. The first question required one
to know the definition of orthogonal matrices: to be reproduced in the first part of the

question and to be used for solving the second part of it. We include its text below:

(a) Define the notion: Orthogonal matrix;
(b) Prove that the product of two mxn orthogonal matrices is an orthogonal

matrix.

Analysis of the question

Either one of the following three conditions on an n x nreal matrix could be accepted as

defining an orthogonal matrix A:

(Def. 1) transpose(A)-A =1.

(Def. 2) transpose(A)- A = A -transpose(A) =1.
(Def. 3) A is non-singular and inverse(A) = transpose(A).

The textbook section on orthogonal matrices starts by assuming that all matrices
are real and that “inner product space” and related concepts will always refer to the
Euclidean space R" with dot product. Since complex matrices are not studied in the
course and the notion of orthogonal matrix is not generalized to Hermitian matrix,
students are not expected to even notice these assumptions. Therefore, we did not plan to
discriminate between solutions where the assumption of the matrix being real was made

and those where it wasn't.
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The textbook defined an orthogonal matrix using both (Def. 2) and (Def. 3),
quoting (Def. 2) as saying the same as (Def. 3), “in other words”. (Def. 1) and (Def. 2) do
not require the assumption of A being non-singular; this property of orthogonal matrices

follows directly from the defining condition.

The equivalence of (Def. 1) and (Def. 2) is never really proved in linear algebra
courses, but it is used all the time by instructors in practice; in general, they do not bother
proving that, say, BA = I, once they have proved that AB = L. It would be a significant
symptom of theoretical thinking in a student if he or she wondered if this instructor’s
behavior was actually mathematically well-founded. On the other hand, following the
instructor's behavior without questioning its discrepancy with the textbook definition, is a
symptom of a (perfectly legitimate and efficient) practical thinking. It would be
impossible to tell, just from the students' responding by (Def. 1) to part (a) of the
question, if it is based on well-founded knowledge of the equivalence, or just on the
observed usage, or simply on poor memory of the conditions given by the textbook.
Therefore, (Def. 1) answers have to be accepted as correct but they cannot serve as a
basis of any statement about students' theoretical behavior with respect to its reflective or

systemic aspects.

On the other hand, the accuracy of quoting (Def. 3) could be used to decide about
an aspect of theoretical thinking. If non-singularity of the matrix A is mentioned then this
can be interpreted as attention being paid to assumptions in definitions and coded as
Systemic / hypothetical / assumptions in definitions / 1. The suffix -1 would be
assigned to solutions using (Def. 3) without the assumption of non-singularity, and 0 to

all other solutions, including solutions using (Def. 1) or (Def. 2), and lack of response.
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But we were aware that students could respond to part (a) with neither of the
above defining conditions 1 - 3, using, instead, the theorem, which, in the textbook,
immediately follows the definition, and characterizes orthogonal matrices as matrices the
set of whose rows (or columns) forms an orthonormal set. This could be a symptom of a
flaw in theoretical thinking, namely a lack of sensitivity to the distinction between a
definition and a theorem in mathematics. Therefore, solutions quoting the *“orthonormal
set of columns (or rows)” characterization would be assigned the code Analytic / Meta-
linguistic / def-thm distinction / -1. The 1 suffix would be assigned to responses
containing any one of the defining conditions 1 - 3, even if the assumption of singularity

were missing. Suffix 0 would be assigned to all other solutions.

Thus, in summary, the following coding scheme is planned to be used in

analyzing solutions in part (a):
- depending on the status of the statement given:
Analytic / meta-ling / def-thm / 1 if only a definition is given

Analytic / meta-ling / def-thm / -1 if there is an answer but it does not contain only a

definition
- depending on the mentioning of the assumptions in the statement:

Systemic / hyp / assumptions in def / 1 if Def. 3 is given and the assumption of non-

singularity is mentioned

Systemic / hyp / assumptions in def / -1 if Def. 3 is given without the assumption of

non-singularity.
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In part b) of the problem, to prove that the product of two matrices, say P and Q,
is orthogonal, one could multiply PQ with its transpose, (PQ)” , and show, based on the

orthogonality of P and Q, that their product is equal to the identity matrix, as follows:

PQ-(PQ)" = PQQ"P” andsince Pand Q are orthogonal, hence P" =P andQ" =Q™":

PQ - (PQ)" =PQQ'P =1 It follows that (PQ)" = (PQ) ™, and thus PQ is orthogonal.
In analyzing students’ solutions we would first discriminate between the proofs

that referred to theory for establishing meanings and those employing concrete examples
as basis for justification. We planned to use the following scheme of coding students’

answers:

Systemic / definitional / in proving / 1, if the proof is based on reference to a general

characterization of orthogonal matrices, whether a definition or a theorem.

Systemic / definitional / in proving/ -1, if the argument is based on a concrete example,
but also, more generally, if there is no explicit reference to some characterization of

orthogonal matrices.

However, the theorem, which characterizes orthogonal matrices as matrices the
set of whose rows (or columns) forms an orthonormal set, while being very practical
from the point of students interested mostly in solving computational exercises of
verifying or constructing concrete orthogonal matrices, is not very practical in “proof”
exercises, such as the one in part (b). Attempting to use this characterization over the
definition in part (b) is, therefore, a symptom of an “im-practical understanding of
theory”. Practical understanding of theory is something quite different than everyday
practical thinking, and should count, indeed, as a feature of theoretical thinking. We

could say that it involves, in this particular case, an awareness of the existence of
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alternative ways of talking and writing about matrices and flexibility in choosing the
most appropriate language depending on the problem at hand. In Definitions 1 - 3,
matrices are written and operated upon as elements of the algebra of matrices (this was
called a “structural understanding of matrices™ in Sierpinska, 2000); in the “theorem” - as
arrays of numbers (“arithmetic” understanding). Choosing to use the “structural”
language in the proof of (b) could thus be regarded as a symptom of a meta-linguistic
sensitivity. Thus, we decided to discriminate solutions to part (b) also on the basis of the
feature Analytic / meta-linguistic / structural understanding of matrices, with the

suffixes +1 and -1 assigned as follows:

+1, if matrices are operated upon as elements of an algebra

-1, if matrices are operated upon as arrays of numbers.

Analysis of students’ responses

a) The definition of orthogonal matrices

28 students — representing 56% of the group — when answering the first part of the
problem, wrote the theorem characterizing orthogonal matrices, instead of the definition.

One category of answers contained only the theorem, in one form or another:

a. as anecessary condition for the orthogonality of matrices:
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b. as an equivalent condition:
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Yet another typical behavior, symptomatic of the lack of meta-linguistic
sensitivity inside this group, was that of writing everything one knows about orthogonal
matrices. The defining property of orthogonal matrices, i.e. transpose equal to inverse,
and the property stated in the theorem, i.e. columns (or rows) forming orthonormal sets,
were not even understood as equivalent conditions, but as independent conditions, both
defining orthogonality for matrices. This understanding is revealed in this student’s

answer.
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The above excerpts from students’ solutions, representative for the behavior of
more than half of the group, demonstrate that our students had the practical knowledge to
give a correct answer, but failed to act selectively towards it. They either didn’t
distinguish between the form of a definition and that of a theorem, or didn’t consider this
distinction important. Such answers were assigned the code Analytic / meta-ling / def-thm
/-1. TT approaches knowledge quite differently: it is not only sensitive to the different
formats of and roles played by various types of mathematical statements, i.¢.: axioms,
definitions, theorems, proofs, examples, etc., but it is also careful to express the

distinctions it senses through language.
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Of the 32 students who referred to the condition “transpose equal to inverse” in
their answers to part a), 22 failed to denote, in their attempts to define orthogonal
matrices, the class of objects to which this definition applies, namely non-singular

matrices. Let us look at this solution of a student, for instance:
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We coded it as follows:

Analytic / meta-ling / def-thm / -1, since it contains more than the definition of
orthogonal matrices (it also contains the characterizing theorem we have talked about, but
only partially, referring to the orthogonality instead of the orthonormality of the set of

column vectors).

Systemic / hyp / assumptions in def /-1, since it mentions the condition “transpose

equal to inverse” without mentioning the non-singularity assumption.

Only five students managed to correctly define orthogonal matrices, scoring / on

both codes that we have set to signal theoretical thinking in this question.
b) Proving that the product of two orthogonal matrices is an orthogonal matrix

The text of the problem, we thought, may trigger in our students’ minds the idea of
generality because of the reference to nx n matrices, and consequently make them prove
the statement in general and not by giving concrete examples of orthogonal matrices.

Indeed 31 students, so more than half of the group did not resort to empirical evidence to
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justify the statement in point b), and their answers were all coded accordingly with
Systemic / definitional / in proving / 1. 25 of them succeeded in their validating attempts
producing the solution that we included in our a-priori analysis of the question. The other
six students, while still thinking in general terms, seemed to have encountered a different
kind of difficulty more peculiar to the domain of linear algebra. Let us present one of
these three almost identical approaches:
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This student constructs the two matrices in an n x n dimension and uses notations
that do no lose sight of generality, demonstrating systemic thinking, but obviously his
approach is not successful. On the other hand as illustrated in point a) of his answer, he
has the necessary knowledge to solve the problem, yet he doesn’t use it. We think that he
understands matrices essentially as tables of numbers, while this problem requires an

understanding of matrices rather as elements of the set M, of nx nmatrices, satisfying

a certain property, i.e.: they are nonsingular matrices with equal transpose and inverse.
To solve the problem, one needs to manipulate matrices as such almost concrete entities,
having certain properties, without caring much (or at all) about their “internal”
appearance. The two different understandings of matrices correspond to two modes of

thinking in linear algebra described in Sierpinska (2000): the analytic-arithmetic mode,

76



corresponding to the language of vectors as lists and tables of numbers and the analytic-
structural mode of vector spaces and linear transformations. We believe that it was the
reluctance to enter in the structural mode of thinking that hindered these students’ success
in this problem, despite their legitimate approach to solving it. This is an indicator for us
of a lack of flexibility to move between the different languages of linear algebra, and we
coded it with Analytic / meta-linguistic / structural understanding of matrices /-1. We
suspect, in fact, a similar obstacle for the seventeen students who used examples to prove
the statement in part b) and whose solutions were coded with Systemic / definitional / in
proving /-1. What leads us to this conclusion is the fact that almost all of them mentioned
in their answers to part a) of the problem the defining property of orthogonal matrices ~
or as they put it: PT =P~ —but failed to use it to construct a relatively simple proof.
Instead they all focused on the entries of the matrix, as it was the case for the student

whose solution we reproduce below:
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From the his attempt to generalize the result to 2 by 2 orthogonal matrices, we
could infer that he did have in mind the idea of generality, but he abandoned it and
replaced it with the three dots. In other words, he had the knowledge he needed to prove
the claim, he also had the “good” intention to prove it in general, yet he ended up by

showing an example of orthogonal matrices whose product is orthogonal. We dare to
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conjecture that his engagement with a proof by example was triggered by his resistance to
leaving the arithmetic mode of reasoning about matrices. This means that he doesn’t hold
an empirical proof scheme (in the sense of Harel and Sowder, 1998): he does not, in
general, obtain conviction from empirical evidence. In fact, it was interesting to see that
he was one of the students who found the proof by example of the positive definite
property in the first quiz unacceptable and provided a deductive proof. Proving by
example then in linear algebra is for him perhaps just a coping behavior, prompted by the

barriers he encounters in understanding and using linear algebra concepts.

We have two tables containing the statistics of students’ engagement with theoretical

thinking, corresponding to the two parts of the problem:

7B Analytic/meta-ling/def-thm Sys/hyp/assumptions in def
Score 1 0 -1 1 0 -1
Number of studenls 28 4 18 22 18 10
% of the total 56% 8% 36% 44% 36% 20%

Table 5: Students’ behavior in Quiz 3— Question la.

Sys/def/in proving Analytic/meta-ling/matrices-structural
1 0 -1 1 0 -1
31 2 17 25 2 23
62% 4% 34% 50% 4% 46%

Table 6: Students’ behavior in Quiz 3— Question 1b.

Quiz 3 — Question 2: 2 x 2 orthogonal matrices

The second problem in the quiz was on the same subject, but “downsized” now to a more

particular domain, that of 2 x 2 orthogonal matrices:
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X

y
Find the number and exhibit all 2 x 2 orthogonal matrices of the form ; 11/
2

Analysis of the question

The set of conditions that imposed on x, y and z give their values for which the matrix is
orthogonal, can be easily derived from the theorem stating that orthogonal matrices have
columns (respectively rows) forming orthonormal sets. Generating this set of conditions
thus depends upon the reference to theory and on the understanding of its implications.
Relying on theory to establish validity is a feature of systemic thinking, and we
characterized the corresponding behavior with the same code we have used before to

signal this feature of thinking in students’ answers:

Systemic / definitional / in proving / 1, if the conditions to be satisfied by x, y and z are

derived from the definition or the properties of orthogonal matrices;

Systemic / definitional / in proving / -1, otherwise, for instance if some examples of

such matrices are given.

The following set of conditions is obtained if one uses the fact that the given

matrix multiplied with its transpose is equal to the identity matrix:

x+z7 =1
1
* +—z=0
(¥ xy 2z
2 1
+—=1
T
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One needs to think of these conditions as forming a system, and explore all the
possible values for x, y and z within this system. A correct solution to this system must
satisfy two conditions: the matrices found should all be orthogonal, and all possible such
matrices should be found. We used the code Systemic / hypothetical / all possible cases
to discriminate between students who searched systematically for all hypothetically
possible cases (suffix +1) and those who were satisfied with finding or guessing just a
few (suffix -1). But once a candidate was found, with whatever approach, theoretical
thinking would compel one to verify if the result is, indeed, an orthogonal matrix. This
entails a concern, from the part of the student solving the problem, with the validity of the
results obtained. The code Systemic / proving / concern with validity was added a

fourth coordinate, based on students’ answers, as follows:

1, if the matrices obtained were orthogonal (regardless if all or only some of them

were found;
-1, if at least one of the matrices obtained is not orthogonal.

In other words, the -1 suffix, added to the two codes we have considered in this

question, corresponds to two kinds of wrong solutions:

Systemic / hypothetical / all possible cases / -1 corresponds to too few matrices

found;

Systemic / proving / concern with validity / -1 corresponds to too many

matrices found.
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Analysis of students’ responses

Of the 47 students answering the question, 40 tried to obtain the conditions for x, y and z
by deducing them from theory. Only 7 students came up directly with an example,

scoring thus -/ on Systemic / definitional / in proving. A typical approach for this type of

arguments is the following:
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They all however, produced at least one orthogonal matrix of the required form,
demonstrating that they know, to some extent, the conditions to be satisfied by
orthogonal matrices. One reason for this approach could be that it wasn’t required of
them to justify their results or that they had the practical attitude to find some of those
matrices by trial and error, without engaging in an approach that would give al/ such

matrices.

Most of the students, as we have mentioned, referred explicitly to theory and
came up with the correct set of conditions to be satisfied by x, y and z. However, many of

them either gave wrong examples of such matrices (answers coded Systemic / proving /
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concern with validity / -1), or did not obtain all the matrices satisfying the premise of the
problem (answers coded Systemic / hypothetical / all possible cases /-I). Let us

exemplify the two categories of wrong solutions:
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This solution does contain the behavior “search for all hypothetically possible
solutions” (coded Systemic / hypothetical / all possible cases / 1), but shows lack of
concern with the validity of the outcome (coded Systemic / proving / concern with
validity / -1), because the student did not eliminate some of these solutions, by checking

their validity (i.e., if they are orthogonal).

Answers in the second category were missing some of the four matrices satisfying
the requirements of the problem. This student, for instance, did not produce all the

possible (x, v, z)-triplets (behavior coded Systemic / hypothetical / all possible cases / -1)
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and thus missed two orthogonal matrices of the given form. However, both his solutions

are valid (his answer is thus coded Systemic / proving / concern with validity / I):
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It turned out that the students in our sample had a high failure rate in solving what
we believed to be a simple system of equations. Even if most of them (85% in this
question), by now, base their reasoning on definitions and general characterizations of
concepts, their engagement with hypothetical thinking is still unsatisfactory: 21 of them,
representing 45% of the group, failed in their solutions because they didn’t explore all
hypothetically possible solutions. A little more than a quarter of the group (28%) showed

a lack of concern with validity by giving examples of matrices that were not orthogonal:

78 Sys/def/in Sys/hyp/all possible Sys/prov/concern with
proving cases validity
Score 1 -1 1 0 -1 1 0 -1
Number of students 40 7 24 2 21 32 2 13
% of the total 85%| 15%| 51% 4%| 45%| 68% 9| 28%

Table 7: Students’ behavior in Quiz 3 — Question 2.
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Quiz 4 - Question 1: Polynomials with matrices as roots

In the fourth week the instructor discussed and proved the Cayley-Hamilton theorem,
after a preliminary part where she explained why it is not obvious at all that any matrix is
a root of its characteristic polynomial. Also in relation with the Cayley-Hamilton
theorem, she talked about polynomials with matrix coefficients, about matrices with

polynomial entries and about matrices as roots of polynomials.

The first question in the quiz was related more to these preliminaries of the

Cayley-Hamilton theorem.

Let f{t) be a polynomial with real coefficients and let A be an nx n real matrix.

Prove :
If Aisarootof f(t)and Bis similar to A, then B is also aroot of f(3).

Analysis of the question

To prove that B is a root of fone could show that f{B) is zero, with B written

asP'AP, where P is a non-singular matrix. It is clear that, to solve the problem

correctly, the student must:

(1) Pay attention to the assumptions made about the symbol “f(t)”. One
assumption we predicted our students might wrongly make is that f(t) is the characteristic
polynomial of A. The assumption that f{t) is the characteristic polynomial of A could be
caused either by the belief in the converse of the Cayley-Hamilton theorem, in which
case there would be a failure of the meta-linguistic sensitivity to logic; or by the

conviction that the symbol “f(t)”, used in the context of matrices, is a name for the
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characteristic polynomial (indeed, “f” was the symbol often used for the characteristic
polynomial in the lectures), in which case there would be a failure of the meta-linguistic
sensitivity to the symbolic character of mathematical signs. However, the question does
not allow us to decide which of these causes is at play. We have only signaled, using the
code Systemic / hypothetical / assumptions of the problem, whether or not our students
assumed that f{t) is the characteristic polynomial of A, according to the following

scheme:
1, if the student understands f(t) as any polynomial;
-1, if the student assumes f(t) to be the characteristic polynomial of A.

(2) Understand the expression “A is a root of f(t)” formally as follows: if f(t) =
a,+ +ajt +...+at", then0=f(A)= aJJ+ajA+... + a,A", where 0 is the nxn zero matrix
and I is the nxn identity matrix. This requires linguistic sensitivity to both the
terminology (the meaning of “matrix as a root of a polynomial”) and the formal notation.
On the other, one would not even engage in writing this equation, unless one is thinking
about matrices structurally. Such and understanding requires meta-linguistic sensitivity.
This kind of understanding is not concerned with the numerical values that make up a
matrix and enables the student to use matrices, in this context, as arguments of
polynomial functions. We have referred to such an understanding before, as
corresponding to the structural mode of thinking in linear algebra (see Sierpinska, 2000).
It is also believed to be at the source of students’ difficulties by Harel (2000). He found
that students do not easily arrive to treating some of the concepts in linear algebra as
concrete entities and this creates problems for them in using some of the abstract

structures of linear algebra in problem solving settings. They engage, as a result, in
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symbolic manipulations that are entirely mechanical and thus much more prone to
mistakes. We believe, thus, that in this particular situation it is the lack of meta-linguistic
sensitivity, i.e.: the inability to think about matrices structurally, that is at the source of

students’ linguistic problems, i.e. of their incorrect symbolic manipulations.

What we may see, when we analyze students’ solutions, are their wrongful
symbolic manipulations but underlying them is a deeper conceptual problem, stemming

from an inability to move flexibly between the different languages of linear algebra.

Therefore, if we code a student’s answer with Analytic / linguistic / notation and
terminology / -1 to signal the inability to manipulate matrices as inputs of polynomial
functions, this also means Analytic / meta-linguistic / structural understanding of

matrices / -1.

(3) Understand “B is similar to A” with reference to the definitional condition, i.e.
the existence of an invertible matrix P such that: B=P ' AP . We believe, however, that
this reference does not necessarily require theoretical thinking: students may simply
remember it as some relationship that they would usually associate with similar matrices,
without being aware of the more subtle theoretical assumptions regarding the existence of
P and invertibility of P. In fact, in this problem, it is enough to use this “formula”

encompassing a very practical understanding of the definition of similar matrices,

namely: “A~B means P AP ”.

(4) prove that f(B) = P~ f{(A)P, which involves the proof, or, at least, a

reference to the non-trivial fact that (P'AP)” = P A"P. A simple algebraic

manipulation gives this conclusion, but we were quite sure that not all students would
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even feel the need to justify this piece of the argument. To discriminate between those
that did and those that didn’t, we used the code: Systemic / proving / concern with
validity with the values 1 and, respectively, —1. In general, students do have this habit of
proving their claims, but we mostly used this code to characterize situations where the

results would seemed obvious to them and they wouldn’t feel the need to prove them.
Thus, in all, this question tests 4 features of theoretical thinking:
Systemic / hypothetical / assumptions of the problem
Analytic / linguistic / notation and terminology
Analytic / meta-linguistic / structural understanding of matrices

Systemic / proving / concern with validity

Analysis of students’ responses

Our students’ first source of failure in this problem was their trying to prove that
B is also a root of the characteristic polynomial of A. Many of them considered this
special polynomial of which A is a root and tried to make deductions on the basis of the
properties of this polynomial. They failed to notice that the assumptions they were
making were not there. We coded the solutions of 14 students with Systemic /
hypothetical / assumptions of the problem / -1 for their attempts to prove that Bis a

root of the characteristic polynomial of A. Below is one such approach:
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However, only partially were these attempts successful even in this particular
frame. Most of these students did not carry them to the end and engaged in some non-
sense symbolic manipulations, that always seemed to be caused by their inability to think
about matrices structurally (in the sense of Sierpinska, 2000) or concretely (in the sense
of Harel, 2000). We wouldn’t be able to illustrate this inability with a typical behavior
because almost every student having such a difficulty with the understanding of matrices
showed it differently in his written language. This student for instance added, in the
second line of his solution, a matrix — f(B)Q(t) with a polynomial — R(t):

>
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Another student exhibits even more serious conceptual misunderstandings, by
talking about the roots of the matrices A and B, and by making some bizarre deductions

based on their similarity:
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In the solution below this student’s persistence with the understanding of matrices
as tables of numbers is even more obvious in his symbolic drawing of A, with the
mention of its dimension. He then uses some matrices A ,A,_;,..., A, as coefficients of,

apparently, the characteristic polynomial of A, without making much notational sense in
his tentative:
Solution . ' - .
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In total, the solutions of 16 students, out of the 51 answering the question, were

hindered by such wrongful symbolic manipulations, and we coded them accordingly with
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Analytic /meta-linguistic / structural understanding of matrices /-1 as well as with

Analytic / linguistic / notation and terminology / -1.

The assumption that f{(t) is the characteristic polynomial of A and the inability to
manipulate matrices as concrete entities were the two main causes accounting for

students’ difficulties in this problem. Thirty-one students encountered none of these
obstacles, but twenty of them ignored to prove that (P ' AP)” = P A"P . Only eleven

students thus produced a complete answer to this question (see Table 8), similar to the

one provided by this student:
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Sys/hyp/assumptions . An_alyuclmeta- Sys/prov/concern
7B of the problem linguistic/struct and with valid
Analytic/linguistic/not&ter
Score 1 0 -1 1 0 -1 1 0} -1
Number of students 34 3 14 33 2 16 10| 20| 21
% of the total 67% 6%| 27% 65% 4% 31% | 20% ]| 39% ]| 41%

Table 8: Students’ behavior in Quiz 4 — Question 1.

Quiz 4 — Question 2: Converse of the Cayley-Hamilton Theorem

The second problem in the quiz tested more directly students’ understanding of the

Cayley-Hamilton theorem:
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Assume A is an nx n real matrix.
True or false:

The Cayley-Hamilton theorem implies that if f(x) is a polynomial of which A is a

root, then f(x) is the characteristic polynomial of A.
Explain.

Analysis of the question

The answer to this question entailed meta-linguistic sensitivity, namely sensitivity
to logic. One has to approach the proposed statement analytically in order to recognize in
it the converse of the Cayley-Hamilton theorem. The code Analytic / meta-linguistic /
logic-converse / 1 was awarded to students’ solutions when they concluded that the
statement is false, while the value -1 was given if they believed it was true.

The justification of the falsity of the converse, on the other hand, required
students to involve their systemic thinking in order to look for a counterexample. It is this
kind of thinking that would attempt at disproving a general statement on the basis of even
one single instance where the statement is not true. Depending on whether or not a
student justified the falsity of the converse by giving a counterexample, his behavior
would be coded with 1 or -1 on the feature Systemic / proving / refutation by

counterexample.

Analysis of students’ responses

Two thirds of the students in our group — in total 33 students — were able to see that the

statement in the quiz was not the formulation of the Cayley-Hamilton theorem. We coded
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their answers with Analytic / meta-linguistic / logic-converse / 1. However, only two
students explicitly mentioned that the proposed statement is the converse of the Cayley-

Hamilton theorem, as this student did:
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The others were less explicit, but still showed signs of understanding that the

given statement contains an implication in a different direction:
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Of these 33 students, 22 students justified the falsity of the converse by giving a
counterexample, while three students mentioned the idea of existence of
counterexamples, as the student whose solution we included above. The remaining 8

students only stated that the given statement is false.
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The other third of the class did not notice the logical distinction involved in the
problem and accepted the statement as true. Their attempts revealed that they are not only
failing to sense the logical distinction involved in the problem, but also that they have
deeper conceptual misunderstandings about the Cayley-Hamilton theorem, as it is the

case for this student:
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This distribution can be read from the table below:

7B Analyticé:)nne\;;t:;lsigg/ logic- Sys/proving/refutation by counterex
Score 1 -1 1 0 -1
Number of students 33 17 25 17 8
% of the total 66% 34% 50% 34% 16%

Table 9: Students’ behavior in Quiz 4 — Question 2.

Quiz 5 — Question 1: Characteristic polynomial, minimal polynomial

Quiz 5 tested students’ knowledge of mainly two notions: the characteristic polynomial
and the minimal polynomial of a matrix. The first question included the requirement to

provide the definition of the minimal polynomial of a matrix.
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(a) Define the notion: Minimal polynomial of a matrix.

(b) Find the characteristic and the minimal polynomial of the matrix A:

(1 2 0 0 0 0]
010000
001100
A=
000100
000030
0 0 001 3

Analysis of the question

In part a) we expected our students to encounter the same kind of problems as in the first
question of quiz 3, related to the distinction between a definition and a theorem, thus
among specific statements within the mathematical discourse. We were afraid that some
students would see properties of the minimal polynomial as its definition. This would
indicate a lack of meta-linguistic sensitivity in approaching this question. We used the
following codes to characterize students’ behavior with respect to the “meta-linguistic
sensitivity” feature of theoretical thinking:
Analytic / meta-linguistic / def-thm distinction / 1, if they gave the definition of a
minimal polynomial of a matrix.
Analytic / meta-linguistic / def-thm distinction / -1, if any other result, whether true or
not, involving minimal polynomials was provided.

We have also looked at students’ linguistic sensitivity the terminology involved in
the definition of the minimal polynomial, using the following coding scheme:
Analytic / linguistic / terminology / 1 was assigned if students used correct terminology

and meanings in their definition.
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Analytic / linguistic / terminology / -1 was assigned if incorrect terminology or
meanings were used.

To solve the second part of the problem one first needed to recognize the matrix
A as a block diagonal matrix and to recall some results about the characteristic and,
respectively, the minimal polynomial of this kind of matrices. The characteristic

polynomial of the block matrix A is the product of the characterization polynomials of

the diagonal blocks: A, = [(1) H,Az = I::) i] and A, = [:: g] , while the minimal
polynomial is equal to the least common multiple of the minimal polynomials of these
matrices. The minimal polynomials of A, Az and A3z can be produced from their
respective characteristic polynomials, using the fact that the minimal and the
characteristic polynomial of a matrix have the same irreducible factors. While the finding
of the characteristic polynomial is almost direct, requiring the student to act practically
and apply directly the results we have mentioned above, for obtaining the minimal
polynomial, there is one instance where their engagement with TT becomes necessary.
To name the possible candidates for the minimal polynomial one needs to engage in
hypothetical thinking. This kind of thinking, due to its systemic character is, in general,
preoccupied with exploring in an exhaustive manner all cases in a given situation. It is
then the feature of TT of being concerned with the validity of the results that compels one

to reject all but one of the found candidates based on some theory-driven validating

criteria. Adopting this frame of mind means that, for instance, if ( 1-x)* is the

characteristic polynomial of A;, one would name (1-x)* as the minimal polynomial only

after verifying that A; is not a root of the smaller degree polynomial (1-x).
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We coded students’ behavior with regard to the hypothetical feature of thinking
with Systemic / hypothetical / all possible cases / 1 if they explored in a systematic
manner all the possibilities for the minimal polynomial, and with Systemic /
hypothetical / all possible cases / -1, if their choice of the minimal polynomial was not
based on such an exhaustive evaluation of all possible cases. The feature Systemic /
proving / concern with validity was added the suffix 1, if the polynomial proposed as a

solution is indeed the minimal polynomial, and the suffix -1, otherwise.

Analysis of students’ responses

Of the 51 students responding to this question, 29 gave the correct definition of the
minimal polynomial of a matrix. Six students did not answer the first part of the question,
while 16 students failed to provide the correct definition. The following answer is
representative of one category of incorrect answers.
!wthm;ammzz Moo e, Dot evreoct it Wm
Aneononoslz st poteranmed.
This “definition” is very much in the style of practical thinking: it contains a theorem that
students most often use when they have to find the minimal polynomial of a given matrix,
thus a very “practical” theorem. The definition of the minimal polynomial then, for this
student, is what he does in a concrete situation in order to find the minimal polynomial of
a matrix. We thus coded it with Analytic / meta-linguistic / def-thm distinction / -1.
Another category of answers revealed linguistic difficulties, with terms used

apparently without any understanding of their meanings. Below are two such examples:
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They were coded Analytic / linguistic / terminology / -1.

In the second part of the problem, for various reasons, many students, after
finding the characteristic polynomial of A, were not able to find its minimal polynomial.
This student for instance, correctly nominated the candidates for the minimal polynomial,
but stopped maybe because the limited time she had at her disposal didn’t allow her to
carry out the lengthy calculations for verifying which of these polynomials has A as a
root:
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In nominating all the candidates for the minimal polynomial, she was thinking
theoretically (Systemic / hypothetical / all possible cases / 1), but it was perhaps her
practical thinking that would have helped her here to look for the minimal polynomials of
Ay, A; and Ajin order to deal with much simpler calculations. We coded her solution
with 0 on the feature Systemic / proving / concern with validity, because she didn’t
propose any of these polynomials as the minimal polynomial, and thus we weren’t able to

decide if she is concerned with the validity of what she is claiming.
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This student, on the other hand, gave the wrong answer because he didn’t engage
in hypothetical thinking in order to nominate the candidates for the minimal polynomial,
nor did he check the validity of the given answer by replacing A in the polynomial that he

had found:
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We coded his answer Systemic / hypothetical / all possible cases /-1 and Systemic
/ proving / concern with validity /-1.

However, of the 30 students who failed to provide the correct answer, only 16
were not preoccupied with exploring all the possibilities for the minimal polynomial or
with verifying the validity of their answer, proving thus a lack of engagement with TT.
The remaining 14 were rather not practical enough in order to look for a way of solving
the problem that would have involved simpler calculations. We considered their behavior
to be theoretical with respect to the hypothetical feature of TT (Systemic / hypothetical /
all possible cases / 1), but we couldn’t decide whether they would be concerned with
validating their results (Systemic / proving / concern with validity /0).

This student’s approach was one of the effective ones for solving the problem in
a limited time frame: she looked at the minimal polynomials of the diagonal blocks,

which were much easier to validate.
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The statistics of students’ engagement with theoretical thinking in this question are

included in the tables below, separately for part a) and part b):

B Analytic/meta-ling/def-thm Analytic/linguistic/terminology
Score 1 0 -1 1 0 -1
Number of students 36 2 7 33 3 9
% of the total 80% 4% 16% 73% 7% 20%

Table 10: Students’ behavior in Quiz 5— Question 1a.

Sys/hyp/all possible cases Sys/prov/concern with validity
1 0 -1 1 0 -1
31 4 16 31 14 6
61% 8% 31% 61% 27% 12%

Table 11: Students’ behavior in Quiz 5— Question 1b.

Quiz 5 - Question 2: Candidates of the minimal polynomial

In the second question of quiz 5, a polynomial was given as the characteristic polynomial
of a matrix and the students were required to nominate the candidates for the minimal

polynomial of this matrix:
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If the characteristic polynomial of a matrix M is (¢ —=1)* (¢t + 3), what are the

possible candidates for the minimal polynomial of M?

Analysis of the question

This is not a difficult question and also not requiring much engagement with theoretical
thinking. One needs to know the theorem stating that the characteristic and the minimal
polynomial of a matrix have the same irreducible factors. However, this is not enough,

and this is where the instructor probably wanted to test the students’ understanding of the

theorem. The given characteristic polynomial is already factored, but one has to factor it
further, into irreducible polynomials, namely into the form (¢ — 1) ( +1)*(¢ + 3),, in order

to nominate all the candidates for the minimal polynomial. The irreducibility attribute of
these polynomials is thus essential in this theorem. We believe that the identification of
the word “irreducible” as a focal point of this theorem requires meta-linguistic sensitivity.

This realization dictates further factoring of the polynomial. Students that do not have
such a sensitive understanding of the theorem will have (¢ —1)*> and (7 + 3) as necessary

factors of the minimal polynomial, and will thus fail to provide all the possible candidates
for the minimal polynomial. One may argue perhaps that it is not the meta-linguistic
ignorance that would induce students into this error, but rather their not knowing of the
definition of the notion of irreducibility of polynomials. We believe, however, that this is
a less likely explanation, not only because our students are advanced math majors, but
also because the teacher specifically insisted on reviewing with the students the notion of

irreducible polynomials in the lecture preceding the quiz.
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We thus coded students’ solutions with Analytic / Meta-linguistic / essential
terms / 1 if they correctly identified the irreducible factors of the characteristic
polynomial and with -1 if they identified only (#* —1)*(t +3) and (#* —=1)(¢ +3)as
candidates for the minimal polynomial.

We also expected answers that would nominate, as candidates for the minimal
polynomial the factors of the characteristic polynomial. For instance one could propose
(t -1, (¢t +1) and (¢ + 3) as candidates, failing to grasp the meaning of “the same
irreducible factors” as “all the same irreducible factors”, missing the general quantifier
implicitly present in this phrase. This is for us a sign of meta-linguistic sensitivity, in
particular a lack of sensitivity to the logic embedded in the mathematical language. We
coded students’ answers with regard to this feature of TT with Analytic / meta-linguistic
/ logic-Universal Quantifier, adding the suffix 1 if the candidates for the minimal
polynomial contain all the factors of the characteristic polynomial, and the suffix -1, if

the proposed candidates do not contain all the factors of the characteristic polynomial.

Analysis of students’ responses

The most frequently encountered mistake in our students’ answers to this problem was
their not looking for the irreducible factors of the characteristic polynomial to provide the

candidates for the minimal polynomial. We give below a sample of this kind of answers:
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We coded them with Analytic / Meta-linguistic / essential terms / -1.

There were only 5 students failing to notice the implicit universal quantifier,
present in the above mentioned theorem. This student, for instance, provided all the
possible combinations of the irreducible factors of the characteristic polynomial as
candidates for the minimal polynomial, failing thus to grasp the meaning of “the same

irreducible factors of...” as “all the irreducible factors of ...”:
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We characterized these students as lacking sensitivity to logic, and their answers

were coded, accordingly, with Analytic / Meta-linguistic / Logic-Universal Quantifier /-1.
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Out of the 52 students who answered the quiz, 34 gave the correct answer to the
question (their answers being coded with / on both features we have considered), while 2
students gave the wrong answer due to a missed exponent in their writing of the
characteristic polynomial (their solutions were coded with 0 on the feature Analytic /
Meta-linguistic / essential terms , and with I on Analytic / Meta-linguistic / Logic-
Universal Quantifier). The lack of meta-linguistic translated in failure to notice that

(> —1)? is not an irreducible factor was the main source of for the students’ incorrect

answers (it accounted for 27% of the wrong solutions), while only 5 students
(representing 10% of the group) came up with the incorrect answer due to their lack of

sensitivity to logic (see Table 12).

B Analytic/Meta-ling /essential terms ﬁ:gﬁ;ﬁ?ﬁg
Score 1 0 -1 Il -1
Number of students 36 2 14 47 5
% of the total 69% 4% 27% 90% 10%

Table 12: Students’ behavior in Quiz 5 — Question 2

Quiz 6 — Question 1: Minimal polynomial of a linear operator

The first question in quiz 6 also involved the notion of minimal polynomial, but now the
setting has slightly changed: while in quiz 5 there was reference to the “minimal
polynomial of a matrix”, now the requirement is to find the “minimal polynomial” of a
linear operator:

Let T:R? = R? be a linear operator such that:

1 -1 3 1
T([ZD = |: 0 ]and T(LD = [sjl What is the minimal polynomial of T ?
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Analysis of the question

To find the minimal polynomial of T one needed to find a basis-dependent matrix
representation for the given operator. Finding the characteristic polynomial then is direct,
and since it is a second degree irreducible polynomial, it is equal to the minimal
polynomial.

Basis representation problems are a domain where students’ difficulties with the
theory of vector spaces often surface. Hillel (2000; see also Hillel and Sierpinska, 1994),
in his paper about modes of description in linear algebra, discusses how basis-dependent
representations of vectors and linear operators represent an areca where students’ inability
to move between the different settings of linear algebra becomes particularly noticeable.
He argues that the shift from the abstract mode of vectors and of linear operators to the
algebraic mode of n-tuples and of matrices is done through a choice of basis for the
underlying vector space. In a finite dimensional vector space, the basis representation
assures the coordination between the two modes often via subtle notational shifts, such

as: a vector v is associated with an n-tuple, denoted by [v] g>anda linear operator T with
a matrix [T] g (Where B is the chosen basis). However, these notational mechanisms don’t

seem to resolve students’ problems related to the distinction between the abstract and the
algebraic modes of description, and one symptom of this persisting problem of movement
between modes is the confusion students make between a vector and its representation
relative to a basis, especially when the underlying space isR" . In the case of the matrix
representation of a linear operator relative to a basis, the confusion lies in the belief that
the columns of the matrix representation of an operator are images of the basis vectors,

and not the coordinates of these images relative to the given basis.
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In our problem, for instance, an answer containing this confusion would be to

-1 1
give the matrix li 8j| as the representation of T in the basis formed of the vectors

1 3
[2] and [4] . We will look at students’ answers to this problem to see if they possess this

or any other kind misunderstandings related to the representation of a linear operator in a
basis. Without hoping to capture the entire complexity of students’ difficulty to move
flexibly between the different “languages” of linear algebra, we will code students’
answers with:

Analytic / meta-linguistic / matrix representation / 1, if they perform correctly the
operation of representing T by a matrix in a basis.

Analytic / meta-linguistic / matrix representation / -1, if they fail to represent T in
some basis.

We will zoom in on their written speech, so to speak, to read how they cope with
this “bilingualism” of linear algebra. At the same time, we realize that, while their
mistakes might give us insights into some of their misunderstandings, given the relative
simplicity of this problem, there may be misunderstandings that will not be revealed by
their solutions to this problem.

Besides the “meta-linguistic sensitivity” code, that we have considered precisely
for signaling students’ flexibility in moving between the two modes of description of
linear algebra, we have also introduced another one, meant to characterize students’
sensitivity in using notations (for instance, if they use basis-sensitive notations) and to
terminology. The code Analytic / linguistic / notations and terminology was used

according to the following scheme:
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1 was added if correct notations and correct terminology is used.

-1 was added if incorrect notations or terminology is used.

Analysis of students’ responses
37 students successfully found a matrix representation for the operator T, either in

1 3
the standard basis or in the basis formed of the vectors [2} and [4} . Their answers were

coded Analytic / meta-linguistic / matrix representation / 1. However, not all of them
exhibited the same linguistic sensitivity. Only 23 of them were preoccupied with
conveying properly, through sensitive notations, the meanings of the notions involved in
the problem (i.e., basis, linear operator, matrix representation, etc.). Here is an example

of this approach:
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Such theoretical behavior with regard to the linguistic aspect of thinking was
coded Analytic / linguistic / notations and terminology/1.

On the other hand, 14 students, while still successful in coming up with the
correct matrix representation for T, seemed to have done it without much linguistic
concern. For these students, the linear operator and its matrix representation seem to be
just two different, equivalent in meaning, arrays of numbers, obtained one from another
through some procedure. They didn’t mention the basis in which they represented T and
they also did not distinguish, through some notational means, the notion of linear
operator from that of a matrix representation of an operator. The following approach is

typical for this group of less linguistically sensitive students:

Wiot i (e minkmal polynocoiel of TT w
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This solution does not contain a conceptual mistake, the student might have a
good technical understanding of theory, but he is certainly less concerned with the
communication of his thoughts. The solutions in this category were coded with code
Analytic / linguistic / notations and terminology/-1.

The more specific representational misunderstanding, mentioned by Hillel and

Sieprinska in their paper (1994) and consisting of the belief that the columns of the
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matrix representation of an operator are the images of the basis vectors, was held by 6
. . |-1 1 . .
students in our group. They all came up with 0 8 as a matrix representation of the

operator T. These solutions were coded Analytic / meta-linguistic / matrix representation
/-1.

Without exhibiting a particular misconception, 7 students failed to solve the
problem seemingly also due to their misunderstanding of the operation of representing a
linear mapping by a matrix, manifested in various ways in their written language. Let us
look at this student’s solution, for instance, which contains more than one instance of

linguistically insensitive behavior:
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We cannot see in this scanned image the final result of her transformations, but
we can nevertheless characterize her behavior by looking at the rest of the solution. Her
misunderstanding of the operation of representation is revealed by the fact that she writes
the basis vectors as rows and the images of these vectors as columns (being thus awarded
the code Analytic / meta-linguistic / matrix representation / -1). For her, “the smallest

monic of which T is a root” is some vector that maps into the zero vector through T. She
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then gives a vector as the minimal polynomial, demonstrating her lack of sensitivity to
mathematical terminology (coded Analytic / linguistic / notations and terminology/-1).
Another student, whose behavior was also coded Analytic / linguistic / notations
and terminology/-1, seemed to have the correct approach for finding the coordinates of
the images through T of the basis vectors, but then apparently, didn’t posses the linguistic
means to use the results she obtained in order to produce a representation matrix for T.

As aresult, she came up with a 4 x 4 matrix, and with 0 as the minimal polynomial:
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Apparently, the students in our group did not have particular difficulties with

representing an operator in a basis. 71% of our group managed to do the operation
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correctly, even if around 40% did not care much about communicating the meaning of
their techniques in a linguistically sensitive manner. Misunderstandings related to the
operation of representation of an operator were exhibited by only 21% percent of the
group, while around 13% (7 students) of the group made serious grammatical mistakes in
their solutions. We include in the table below the statistics of our students’ engagement

with theoretical thinking in this question:

T8 I mAa?r?)l(y::iplrmeztear;rantigon Analytic/linguistic/not&ter
Score 1 0 -1 1 0 -1
Number of students 37 4 11 23 6 23
% of the total 71%| 8% 21% 44% 12% 44%

Table 13: Students’ behavior in Quiz 6 — Question 1.

Quiz 6 — Question 2: Intersection of T-invariant subspaces

The second question in quiz 6 was on the topic of T-invariant subspaces:
Let T:V —V be a linear operator and let W, and W, be T- invariant
subspaces of V.

Prove that the intersection of W, and W, is also a T- invariant subspace of V.

Analysis of the question

It may be said that, in theory, to solve this problem one only needs to know (even at a
purely verbal level) the definition of the invariance of a subspace relative to a linear
operator. Using then basic tools of logic and set theory the proof is trivial: if we take any

element of the intersection set, since it belongs to W1, its image through T also belongs to
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W; (by the definition of T-invariance), but since it also belongs to W5, the image through
T belongs to W, as well. Thus, the image of that element through T belongs to the
intersection of W; and W,, which means that Wy intersected with W, is also T invariant.
I intentionally tried to avoid as much as possible the terminology of linear algebra
(“subspace”, “linear operator”, “vector”, etc.) to show how simple this proof is on the
purely formal level. Assuming that one masters such basic logic skills — a quite
reasonable assumption to make about first year students majoring in math — then we
might expect this problem to create no major difficulty for the students in our group.

We believe however that to solve this problem, one needs to “juxtapose” over this
simple logic a more fundamental competence that only comes with a fairly deep
understanding of some concepts in linear algebra. Each of the linear algebra notions
appearing in this problem needs to be identified with the correct category in set theory,
for instance: a vector is an element of a set and a subspace is a set. A subspace, as a
subset, is included in a vector space, while a vector belongs to a subspace or a space. One
has to be able to connect the plain language of set theory with the language of linear
algebra, and this coupling, we believe, is conditioned by the formation of correct
concepts of linear algebra notions.

We will characterize students’ behavior in this question from the point of view of
their ability to use the language of sets in the context of linear algebra by using the code
Analytic / linguistic / set language / 1 if, throughout the solution, they use correctly the
language of sets to denote linear algebra concepts and the relations between them, and the
code Analytic / linguistic / set language / -1, otherwise. Answers awarded the latter code

are actually the manifestation of what Dorier et al. (2000) termed as the obstacle of
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formalism or the erratic use of the tools of logic and set theory in the context of linear

algebra.

Analysis of students’ responses

23 responses to the quizzes (46% of the total) contained an erroneous use of the set
theory terminology. As we have predicted, the mistakes were often related to the
identification of the linear algebra notions involved in the problem with the
corresponding category in set theory: vectors were not operated upon as elements of sets
and subspaces were not seen as sets. Inclusion was sometimes confused with equality and
the symbols “c” and “e” were not employed according to their meaning, i.e. “c”

characterizing the relation between two sets and “e ” that between an element of a set and

a set. Such confusion is exhibited by the student whose solution we include below:
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In the first line she uses the symbol “&” instead of “ < for the inclusion of the
subspaces Wy and W in the vector space V. However, it is clear that her incorrect use of
symbols is more than just some “sloppy” utilization of language: in the next line w3
appears to be a vector (she uses slightly different notations for vectors and subspaces),

but then she characterizes it as being T-invariant, as if it were a subspace. Thus she is
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clearly mixing up the notions of vector and subspace. This is also obvious in the last line
of the solution where she uses the intersection symbol between what appear to be as two
vectors (“w; € W;” and “wae W7”).

We could see many such “grammatical mistakes” (i.e.: following Wittgenstein,
1974, “signs” not being used according to their defined usage) in students’ solutions,
revealing their conceptual misunderstandings related to the notions of vector and
subspace (mostly the confusion between the two) or T-invariance of a subspace. We
coded these answers with Analytic / linguistic / set language / -1.

The analytic approach to language turned out to be of major importance for
providing a correct answer to this question. While in other quizzes we could see solutions
lacking linguistic sensitivity but still accepted as correct, here, the linguistic component
was crucial for success: the 23 students whose answers were coded Analytic / linguistic /
set language / -1 also failed to produce a proof of the statement in the quiz. On the other
hand, the 27 students who proved to be linguistically sensitive (answers coded / on the
above mentioned feature) also succeeded in proving the T-invariance of the intersection

of the two subspaces. We include these figures in the following table:

TB Analytic/meta-ling/ set language

Score 1 A
Number of students 23 27
% of the total 44% 52%

Table 14: Students’ behavior in Quiz 6 — Question 2.
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Quiz 7 - Question 1: Restriction of a linear operator to a subspace

Quiz 7 was administered in the 9™ week of classes following the lecture on the primary
decomposition theorem. The first question involved the notion of the restriction of a
p q

linear operator to a subspace:

Let T:R> = R®such that:
X -y

y{—>|2x+4y -2z
z 4x +y+4z

Find W = Ker((T - 2I)*) and a matrix representation of the restriction of T to

W.

Analysis of the question

Having a matrix representation of the operator T — for instance that in the standard basis
— one may easily find the kernel of (T —2I)? by finding the solution space of the
homogenous system [(T — 2I)*],, - X = 0, where [(T - 2I)°],, is the representation, in the
usual basis, of (T — 2I)* . Indeed, this subspace of R is the set of elements in R’ that
map into the zero vector through the operator (T - 2I)?, giving thus the kernel
of (T - 2I)>.

If, say, P, is a basis of this subspace (which turns out to be of dimension 2), then

a matrix representation relative to § of the restriction of T to W is a 2 by 2 matrix,

having as columns the coordinates of the images, through T, of the basis vectors, relative
to B.
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The understanding of two general notions seems to be crucial for solving this
problem: that of kernel and that of restriction of an operator to a subspace. However, one
also needs to have quite stable understandings of more basic notions such as that of
subspace or of basis. It is obvious how, at this point in the course, the complexity that
students have to deal with increases, as new concepts and results keep accumulating. This
calls for their ability to think in terms of systems of concepts, where newly introduced
concepts acquire meaning from their relations with already existing, hopefully
internalized concepts. Reference to the definitions of the concepts involved in the
problem is inevitable if one wants to solve it. One has to at least know with what kind of
object one is dealing with: an operator is a function, a kernel is a set, a restriction of an
operator to a subspace is also an operator, not to mention the multitude of relations to
establish between these concepts in order to grasp their meaning: kernel of an operator,
restriction of an operator fo a subspace, etc. This all requires systemic thinking, and we
coded students’ solutions to this problem with regard to this feature of thinking as
follows:

Systemic / definitional / relations between concepts / 1, if correct links between
concepts are made. Examples of such correct understandings may include: a kernel of an
operator is a set having a certain property with regard to that operator, a restriction of an
operator to a subspace is also an operator, etc.

Systemic / definitional / relations between concepts / -1, if the concepts involved in the
problem are not correctly understood and/or linked to each other.

Inevitably, one has to be also quite linguistically capable in order to manipulate,

in writing, the many concepts involved in the problem. To characterize students’ behavior
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from the linguistic point of view we have used the code Analytic / linguistic / notations
and terminology with the suffix 1, for solutions that used correct notations and

terminology, and -1 if incorrect notations or terminology were used.

Analysis of students’ responses

One third of the group — 17 students — provided a correct and complete answer to the
question. For one category of students who failed to provide the correct answer, the main
difficulty surfaced with the finding of the matrix representation of the restriction of T to
the kernel of (T — 2I)* . Some students stopped after finding the kernel, while others
continued but with an incorrect solution. One frequent mistake that they exhibited was
that of obtaining a 3x3 matrix representation of the restriction of T to W. This was the

case for the student whose solution we reproduce below:
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He clearly has difficulties with the concept of the restriction of a linear operator to a
subspace. His approach is correct for finding the kernel of a linear operator and he also
seems to have a fairly good understanding of the operation of representing a linear
operator in a given basis. His concepts of basis, subspace and linear operator are correct,
but he fails to make the necessary connections between these concepts in order to grasp
the meaning of restriction of an operator to a subspace. We coded thus his answer with
Systemic / definitional / relations between concepts /-1.

Other students exhibited even greater difficulties with the concepts involved in

the problem. Let us look at this student’s attempted solution for instance:
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A basis, for him, is a sum of vectors, a subspace is a matrix and a linear operator
is a vector. We coded his answer Analytic / linguistic / notations and terminology/ -1 for
his use of incorrect terminology (i.e.: terms used not according to their defined usage),
and with Systemic / definitional / relations between concepts /-1 for his failure to
establish any conceptual relations between the concepts involved in the problem.

Approximately 18 students (35%) had a linguistically insensitive behavior in this
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question, while 31 (60%) did not link the concepts involve din the problem correctly or

failed to link them at all (see table 15)

Systemic/def/relations | Analytic/linguistic/not&ter
7B between concepts
Score 1 0 -1 1 0 -1
Number of
students 17 4 31 25 9 18
% of the total 33% | 8% 60% 48% 17% 35%

Table 15: Students’ behavior in Quiz 7 — Question 1.
Quiz 7 - Question 2: Assumptions of the primary decomposition theorem

The second question in quiz 7 tested more directly students’ understanding of the primary
decomposition theorem:

Let T :V =V be alinear operator with minimal polynomial equal to (t2 - 1)- (t + 1).
Let W, =Ker(T? —1)and W, = Ker(T +1).
It is necessarily true that V is a direct sum of W, and W,?

Explain.

Analysis of the question

Three features of theoretical thinking would be tested, in principle, by this question:
- hypothetical thinking, namely, the feature Systemic / hypothetical / assumptions in
theorems: one would give a negative answer to the question in the quiz (i.e.: V is not

necessarily a direct sum of W; and W) if one notices that the assumption of the primary

decomposition theorem that would assure this result is not satisfied, i.e.: t% —1 is not

irreducible. If a student stated that V is not necessarily a direct sum of Wy and Wy,

because t> —1 is not irreducible (or because t2 —1 and ¢ -1 are not relatively prime),
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then his answer would be assigned the code Systemic / hypothetical / assumptions in
theorems / 1. Otherwise, if his answer is “yes” to the question stated in the problem, or if
he doesn’t give the correct reason for his “no” answer, the code Systemic / hypothetical /
assumptions in theorems / -1 would be assigned;
- to provide a counterexample then, one needs to engage in systemic thinking, namely to
exhibit the theoretical behavior Systemic / proving / refutation by counterexample. A
student’s solution would score 1 on this feature if he provides a counterexample, and -1,
otherwise.

To signal students’ sensitivity in the linguistic domain we used the code Analytic
/ linguistic / notations and terminology, with the suffix 1 added for solutions that used
correct notations and terminology and with the suffix -1, for incorrect notations and

terminology.

Analysis of students’ responses

A significant number of our students behaved theoretically in this question, with regard to

the hypothetical feature of thinking. 40 of them, representing 77% of the group, noticed

that the statement is not necessarily true because t% —1 is not irreducible. Nine of them
failed to notice that the assumption is not fulfilled, and gave essentially, an answer

similar to the one we include below:
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Only 10 students (representing 19% of the group), however, were able to come up

with a counterexample, while 9 students exhibited serious linguistic difficulties, as this

student did:
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We include the results of our observations of students’ engagement with

theoretical thinking in the table below:

Sys/hypl/assumptions of Sys/provirefutation
7B theorem Analytic/linguistic/not&ter | by counterex
Score 1 0 -1 1 0 -1 1 -1
Number of
students 40 3 9 26 7 19 10 42
% of the
total 77% 6% 17% 50% 13% 37% 19% 81%

Table 16. Students’ behavior in Quiz 7- Question 2
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CHAPTER IV

A QUANTITATIVE EVALUATION OF STUDENTS’ THEORETICAL

BEHAVIOR ALONG THE SEMESTER

In this chapter we use the results of our empirical analyses to discuss how our students’
behavior has changed along the semester from the point of view of their engagement with

theoretical thinking.

INTRODUCTION TO CHAPTER IV

Let us recall, very shortly and for the purposes of explaining our method for measuring
the changes in the group’s tendency to think theoretically, that for each question in the
quizzes, we have identified, a-priori, the features of theoretical thinking we considered, in
principle, necessary to solve the problem. We then evaluated each student’s answer to a
given question with respect to the manifestation, in his behavior, of the respective
features of thinking. The tables we have included after the analysis of each question (in
Chapter III), contained the numbers and the percentages2 of students who acted
theoretically with respect to a given feature (in the column under the rubric labeled “1”),
of those who acted practically (under “~1”), and of those who didn’t have an explicitly
theoretical or practical behavior with regard to that feature (under 0).

At a given time (e.g.: at the time of quiz 1, of quiz 2, etc.), the percentage of

students that have behaved theoretically with respect to a given feature, is, for us, the

2 calculated on the number of students that answered the question
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measure of the group’s tendency to engage in that particular kind of thinking. For each
feature of TT, one such index can be defined and its values calculated for every quiz
testing the respective feature. We labeled these indices, corresponding to individual
features of TT: “fgt_<respective feature of TT>". For instance, one index would be “the
group’s tendency to pay sensitivity to assumptions” labeled “fgt_Systemic/hyp/
assumptions”. The evolution of the values taken by this index in the quizzes where this
feature has been tested expresses how students’ sensitivity to assumptions has changed
along the semester.

Besides these indices, defined for each feature of TT, we have also considered the
index “the group’s general tendency to think theoretically”, labeled “ggt”, whose value
for a given quiz i — ggt_qi — is given by the average of the values taken by the all the
“feature indices” in quiz 1.

In the next section we examine the evolution of the group’s general tendency to
think theoretically, given by the “ggt” index. We look then at the group’s tendency to
think theoretically with respect to some specific features of theoretical thinking. Based on
these evaluations we try then to answer our research question: have weekly quizzes
contributed to the development of students’ theoretical thinking? At the same time we

reflect on the effectiveness of our tools for answering this question.
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EVOLUTION OF THE GROUP’S GENERAL TENDENCY TO THINK

THEORETICALLY

The following values were taken by the index “group’s general TT tendency” in the

seven quizzes that we have analyzed:

ggt ql | ggt g2 | ggt q3 | get q4 | ggt q5 | ggt g6 | ggt q7

52% 57% 58% 54% | 72% 60% 45%

Table 17. The group’s general TT tendency in the seven quizzes.

Graphically, the variation of this index can be observed from Figure 2 below:

Evolution of the group's general tendency to
think theoretically

80%
70%
60%
50%
40%
30%
20%
10%

0%

S B S

ggt_g1 ggt_qg2 ggt_q3 ggt g4 ggt a5 ggt_gbé ggt_q7

Figure 2. Evolution of the group’s general tendency to think theoretically
The first “raw” conclusion we can draw, by looking at these figures, is that the
administration of the quizzes didn’t really improve our group’s inclination to think

theoretically; on the contrary: the last value taken by our index (45%) is smaller than the
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first one (52%). But let us let us have a closer look at these results and deepen our
analysis.

Already in our analyses of the quizzes, as we were coding students’ solutions, we
have “sensed”, without necessarily looking at the numbers, that our students’ theoretical
behavior in a given quiz was strongly influenced by the mathematical content of that
quiz. It was not necessarily the level of difficulty (generally speaking) of that problem
that seemed to be related to students’ engagement with theoretical behavior: some
problems seemed to be quite trivial — as it was the case of the proof that the intersection
of two T-invariant subspaces is also a T-invariant subspace — and yet, they engaged a low
number of theoretical behaviors from the part of our students. The difficulties of our
students were rather related to the nature of concepts involved, and, more specifically, to
the complexity of the conceptual systems that they had to deal with at a given time. This
was again, just a “feeling” that we had as we were looking through our students’
solutions to the quizzes. But it now makes us interested in evaluating the statistical results
we have obtained in relation with the content-wise specificities of each quiz. So let us
now look at the evolution of the group’s general theoretical thinking tendency (ggt in the

sequel), but this time, taking into account the mathematical content of each quiz (see next

page):
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We will organize our comments of this evolution by breaking the graph into four

segments, corresponding to increasing or decreasing portions of the ggt index:

L.

from ggt ql to ggt_q3: the group’s general tendency to think theoretically
increases from 52% to 58%. This segment corresponds to the first three quizzes,
which were all on the subject of inner product spaces and orthogonality. The
context being somewhat unchanged, we may have a better comparability of
results here. The increase observed in the ggt can thus be accounted for by the use
of quizzes as a tool for teaching. There is not, however, a dramatic development
of our group’s inclination to think theoretically.

from ggt_q3 to ggt_q4: a drop in the ggt can be observed, from 58% to 54%. The
change is again not very significant and the decrease is probably explained by the
difficulties that our students encountered in quiz 4, when dealing with matrices
structurally.

from ggt_q4 to ggt_q5: this time the change is quite important, from 54% in quiz
4 t0 72% in quiz 5. We wouldn’t however jump to the conclusion that the increase
in the ggt is exclusively the result of the use of quizzes. Our reason for saying this
is that the problems in quiz 5 involved the notions of characteristic and minimal
polynomial of a matrix. Students, perhaps, found themselves in a more familiar
domain here: they were required to view matrices as arrays of numbers, thus in an

arithmetic-analytic fashion (see Sierpinska, 2000).
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4. from ggt g5 to ggt q7:

- the group’s general tendency to think theoretically first decreases from
72% in quiz 5 to 60% in quiz 6. One reason for this decrease may have been the
change of setting that occurred: in one of the problems students had to find the
characteristic and the minimal polynomial of a linear operator (as compared to
that of a matrix, in the previous quiz). They had to go through the representational
problems that this change of mode of description brought along (see Hillel, 2000).
Many of them succeeded to find the representation matrix of the given linear
operator, but much fewer seemed have had an awareness of the shift in the modes
of description. This lack of awareness was reflected in their linguistic behavior,
whence the low value of the index fgt Analytic/linguistic/notations, apparently
influencing the low value of ggt 6.

- the ggt decreases even further, from 60% in quiz 6 to 45% in quiz 7. This
is where, we believe, the mathematical content involved in the quizzes can
definitely be considered the main factor influencing the decrease. As we have
mentioned in our analysis of these last two quizzes, at that point in the course the
complexity that students had to deal with increased, as new concepts and results
kept accumulating. This called for their ability to think in terms of systems of
concepts, where newly introduced concepts acquired meaning from their relations
with already existing, hopefully internalized concepts. It was precisely students’
engagement with systemic thinking that was low in these quizzes and accounted

for the smaller value of the gtt index.
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Another, more refined conclusion emerges now from our comments above: the
group’s tendency to think theoretically is strongly influenced by the specificity of the
context at hand in each quiz. At this point, for our question: “Can weekly quizzes
contribute to the development of theoretical thinking in students?”, we can formulate a
more nuanced answer. An increase in the group’s tendency to think theoretically can be
attributed to the administration of weekly quizzes only in the first four weeks of classes.
For the rest of the period, the mathematical content of the questions in the quizzes,
different from week to week, influenced significantly our students’ engagement with
theoretical thinking, obscuring thus our attempts to evaluate the effect of the
administration of quizzes on the development of theoretical thinking in students.

However another question arises now with regard to the effectiveness of our tools
for measuring the evolution of our students’ tendency to think theoretically: is the model
of TT, as we have employed it in our analyses, at all effective for measuring the
development of a group’s tendency to think theoretically?

It was again our “qualitative eye” that directed us to an answer to this question.
As we were doing our analyses of the data, we had, sometimes, the impression that
something was improving: our students seemed to have better mathematical “habits”, so
to speak, in their problem solving behavior: they paid more attention to assumptions, they
were more rigorous in their proofs, they were more attentive to the requirements of the
problem, etc. And in fact, when we looked at the “feature” indices (labeled “fgt” —
“feature” group tendency) our impression was confirmed by the quantitative results. In

the next section we examine the evolution of the group’s TT tendencies with regard to
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particular features of TT, an analysis that allowed us to provide an answer to the question

we have formulated in the previous paragraph.

EVOLUTION OF THE GROUP’S TENDENCY TO THINK THEORETICALLY

WITH REGARD TO SPECIFIC FEATURES OF THINKING

We consider, in this analysis, the fgt indices for all the features of theoretical thinking
that were tested at least three times in the quizzes. When a feature appeared twice in the
same quiz (i.e., in both questions of the quiz) we took the average of the corresponding
fgt indices. The fgt indices corresponding to two features of TT have shown an increasing
trend along the semester (see Figure 4a and b, below)

- the sensitivity to assumptions (present in definitions, theorems, or the problem at hand);

- the meta-linguistic sensitivity to logic.

fgt_Sensitivity to assumptions fgt_Meta-linguistic sensitivity to
logic

Figure 4. “fgt” indices — increasing.
a. fgt Sensitivity to assumptions

b. fgt Meta-linguistic sensitivity to logic
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The following features of TT were also tested at least three times through the quizzes,
along the semester:

- the definitional approach to meanings;

- the linguistic sensitivity to notations and terminology;

- the concern with validity.

The fgt_definitional approach to meanings index followed an increasing trend for the
first three quizzes in which it appeared, but in the last quiz (quiz 7) it suffered a dramatic
drop (see figure 5a below). The index calculated for the “linguistic sensitivity to notations
and terminology” feature varied insignificantly in the beginning (but in the high ranges:
between 69 and 71%), to then decrease in a sensible manner towards the end (see figure
5b). The fgt_concern with validity index did not seem to have a steady increasing or

decreasing trend along the semester (see figure 6).

fgt_Definitional approach to fgt_Linguistic sensitivity to
meanings notation and terminology

Figure 5. “fgt” indices — decreasing towards the end.
a. fgt definitional approach to meanings
b. fgt linguistic sensitivity to notations and terminology.
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fgt_Concern with validity

Figure 6. “fgt” index — irregular trend.

The important decrease in Figure 6 is accounted for by a piece of argument in
quiz 4, question 1, that students could only arrive at if they performed other several steps
in the solution. Thus, many answers were coded with 0 on the feature “concern with
validity” because students hadn’t performed the steps in the solution that would have put
them in the situation of being concerned with the validity of the result.

The two indices: fgt_definitional approach to meanings and fgt_ linguistic
sensitivity to notations and terminology follow largely the same trend as our general
index: they reach a peak, to then drop in the last quizzes. We dare to conjecture that this
behavior is caused by the fact that the engagement with any of these two features of
thinking in a problem solving setting is directly conditioned — compared to other features
of theoretical thinking — by a correct understanding of the linear algebra concepts
involved. One’s definitional approach to the meaning of a notion is conditioned by one
having formed a correct concept of that notion. Thus, the nature of the concepts involved
influences directly students’ engagement with this feature of thinking. It is then of no

surprise that when the student has to manage a large number of concepts in a systemic
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way, with all the relations that such complex systems entail, he will not spontaneously
refer to definitions when using one or another linear algebra concept.

The same direct conditioning by the mathematical content characterizes the
feature “linguistic sensitivity to notations and terminology”. It has been argued by many
(Alves Dias&Artigue, 1995; Pavlopoulou, 1993; Hillel, 2000; Sierpinska et al., 2002)
how linguistically demanding linear algebra is. The students use incorrect terminology or
notation and often form non-sensical sentences because they have not grasped the
meanings of the concepts that they want to denote in their written language.

On the other hand, features as: “sensitivity to assumptions”, “meta-linguistic
sensitivity to logic” or “concern with validity” could be, perhaps, characterized as “habits
of the mind”. Even if the nature of the concepts involved may obscure students’
capability of observing assumptions or their logic abilities, the influence of the content on
such abilities is not as direct as for the feature “definitional approach to meanings”, for
instance. Such “habits of the mind” may be enhanced through a certain class culture,
which includes the weekly quizzes as means for cognitive communication between the
teacher and the students and our method of measuring the development of theoretical
thinking is more likely to succeed in checking if such an enhancement has takén place.
The effectiveness of our method for comparing a group’s tendency to think theoretically
at different moments in time is limited to only a part of the features included in the model
of theoretical thinking, namely the ones that are less dependent on the mathematical
content involved. We could thus evaluate the effect of quizzes on only three of the

features of thinking tested by the quiz:
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- the students, as a group, developed their hypothetical thinking, in the sense of becoming
more sensitive to the assumptions made in various mathematical statements (theorems,
definitions, formulations of problems, etc.).

- they have also become more sensitive to the logic of the mathematical language.

- the quizzes, however, did not influence their concern with epistemological validity. The
students were, in general, preoccupied with justifying their results, but we have only
evaluated their behavior with regard to the “concern with validity” feature when a
particular result seemed obvious, thus signaling an authentic concern with validity and
not justifications possibly brought about by the didactical contract. This genuine concern
did not seem to improve in students as a result of the quizzes. The reason can be sought
in the nature of the problems that tested this feature of thinking. We observed that in
some of them the concern with validity was either not relevant for obtaining the good
result in the problem, or the lack of concern with validity was not “sanctioned” by the
grading. For instance, the problem asking students to provide an example of a product
that satisfies only two properties of the inner product was possible to solve using the
example given in class the previous lecture, containing a “recipe” of how one can
construct such a product. The concern with validity was not that relevant then in order to

solve the problem.
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CONCLUSIONS

We wanted, through this research, to give the teacher of linear algebra a practical tool for
bringing about desired ways of thinking in his students. We also wanted to give the
researcher in mathematics education a more refined model for analyzing students’ pieces

of reasoning. What can they learn from the findings of our research?

THE IMPLICATIONS OF OUR STUDY FOR TEACHING

Our study showed that the administration of weekly quizzes could not account for the
development, in general, of theoretical thinking, with all the characteristics that it
encompasses. The main factor influencing our group’s engagement with theoretical
thinking was the mathematical content of the questions in the quizzes. The engagement
with some of the features of theoretical thinking, especially the definitional approach to
meanings and the linguistic sensitivity is very strongly conditioned by the specific nature
of the linear algebra concepts. When the complexity of the systems of concepts increases
students refer less to definitions and become more incoherent in using formal notations
and terminology. Dorier et al. (2000) have reached a similar conclusion with regard to the
obstacle of formalism that students encounter in linear algebra: students do not just have
a problem with formalism in general but with the use of formalism within the theory of

vector spaces.

However, we have found that the administration of weekly quizzes contributed to
the development of our students’ hypothetical thinking, in particular to their awareness of

the conditional character of mathematical statements. It has also made them more
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sensitive to the logic embedded in the mathematical language. These features of thinking
belong to a more general domain of mathematical thinking, we believe, and even if they
are to some extent conditioned by the mathematical context, the influence is less direct.
The quizzes do have the potential of developing these features of theoretical thinking,
that we called, more generally, “habits of the mind”. This potential was not realized for
the “concern with validity” feature of theoretical thinking. As a group, our students were,
already at the outset, preoccupied with justifying their statements and also quite able in
writing mathematical proofs. They seemed to have a habit of justifying their claims.
However, fewer students exhibited a genuine concern with epistemological validity and,
the administration of quizzes did not, apparently, change this situation. Some problems in
the quizzes did appear to have the potential of making the concern with validity
necessary, but somehow, our students were able to avoid it. We have talked about the
problem that asked students to give an example of a product satisfying only two
properties of the inner product, and how many students solved it almost automatically,

without much concern for epistemological validity, by simply making the matrix A (a
2x2 matrix) in the product < x,y >= x" Ay meet certain conditions. This question also

appeared to have the potential of engaging students in axiomatic reasoning, but it did not
fulfill this expectation either. Not only with regard to this question, but also regarding
other questions in the quizzes we have asked ourselves: how could they be changed to
make the engagement with theoretical thinking necessary? For instance, how would our
students answer to the following alternative formulation of the question above: “Give an
example of a product that is symmetric and positively defined, but it is not linear”? Or,

what if the product were required to be defined over a vector space of dimension equal to
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at least 3? For sure, they would be forced to think of another example than the one whose
parameters could so easily be modified to obtain the product that satisfied the
requirements of the problem, and this would have made the concern with validity and the
engagement with axiomatic reasoning necessary. These inquiries make us suggest that the
value of our study for a teacher does not lie so much in our conclusions with regard to
the development of one or another feature of theoretical thinking in students. We think
that what is more interesting, for them, is the kind of analysis we have performed, of the
questions in the quizzes and of the students’ answers, an analysis characterized by the
concern for the tasks’ potential to enhance desired cognitive behaviors. Awareness of
the potential of a task, or of a “piece of mathematics”, to foster a desired students’
behavior, can help a teacher have better chances at changing students’ ways of thinking,
and gaining this access, we believe, is in a way, one of the most desirable goals of
teaching, especially of teaching at university level. Thus, our method, rather than our
results, is perhaps of more interest for a teacher of linear algebra, and of any

mathematics, for that matter.

METHODOLOGICAL REFLECTIONS

We had the illusion that the quantitative nature of our research would allow us to give a
quite definite and reliable answer to our research question. It didn’t: we could not
evaluate, even by analyzing a large amount of data, the impact of quizzes on the
development of theoretical thinking. We could advance the hypothesis that the model we
have used was not effective for that purpose, and maybe we should look for another

model, or alternatively, strive for its improvement. But we do not think that this is the
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reason of our failure to provide a precise answer to our research question. The quizzes,
we realized, were not part of a minimalist approach, as we have initially thought. Many
other factors were in action: the teaching has used the meta-lever advocated by Dorier et
al.(2000) and was also characterized by the long-term strategy suggested by these
researchers. These didactical choices were not explicitly and maybe not consciously
integrated in teaching, but reflected implicit goals of the instructor of the course. The
quizzes then were only another tool for teaching among others, and therefore their exact
impact on the development of theoretical thinking may not even be possible to evaluate.

It was nevertheless the quantitative nature of our research that allowed us to make
sensitive analyses of the questions and of the students’ answers. By analyzing, for
instance, the solutions of 50 students to a given question, we were able to find in the
answers of some of the students the explanations of other students’ conceptual
misunderstandings and also draw more “grounded” conclusions with regard to the
cognitive source of an observed mistake.

We think that our way of analyzing the data partially describes a research tool
based on task problematization. We say partially, because we only perform the first phase
of this process, where we analyze the specific content of the task and observe the impact
of its characteristics on students’ learning. This should be completed then by a proposal
of alternative formulations of the task and perhaps of the study of the changes in learning
determined by a different “piece of mathematics”. We strongly believe in the importance
of detailed epistemological and didactic analyses of the mathematical concepts involved
in a teaching or learning situation for evaluating the impact of that teaching or the

characteristics of that learning. Our task analyses, always concerned with the relationship

137



between a specific piece of mathematics and its cognitive impact on students, have
contributed, we believe, to the endeavor of keeping the mathematics in mathematics

education research.
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