NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Implementation of Federated Identity in Multimedia

Messaging Service using Liberty Technology

Hong Xia Shi

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montreal, Quebec, Canada

March 2005

© Hong Xia Shi, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04398-9
Our file Notre référence
ISBN: 0-494-04398-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Implementation of Federated Identity in Multimedia Messaging Service
using Liberty Technology

Hong Xia Shi

Multimedia messaging services (MMS) enrich the user experience and create a
major new source of revenue for network operators as well as for content and service
providers. The capability of muitimedia messaging service center (MMSC) in delivering
different types of digital content, such as music, images, and video, presents a huge
opportunity for its use in mobile e-commerce. But in current e-commerce, separate
logins are needed to access different service providers. This limitation prevents MMS to
closely cooperate with other service providers.

The Liberty Alliance standards are intentded to solve the problem of signing on
repeatedly for each service provider. The Liberty Alliance defines the specifications to
share identity information across service providers. However, these specifications have
not been integrated into MMS.

This thesis is concerned with the design of a system wherein the MMS works
with other service providers, MMS acting as Identity provider. When the user federates
his/her accout in MMS with the account at any of the service providers, he/she can send
a service request to a service provider (SP) without being asked for his/her password
with the service provider, and at the same time can have access to the MMS from web
page of that service provider.

To demonstrate the feasibility of this design, a simulation system in compliance
with Liberty single sign-on and federation protocol is developed in Java using a single

service provider based on Liberty identity federation framework (ID-FF).

Acknowledgements

| would like to thank my academic advisors, Dr. M.N.S, Swamy, and Dr. M.
Omair, Ahmad, for their valuable guidance, regular helpful suggestions and constant
support, throughout the development of this thesis.

I would like to thank the Ericsson Digital ID workgroup for directing me into this
area. | would especially like to thank Todd Daley and Makan Pourzandi for their valuable
advice and professional support.

| would like to thank my family members for their understanding and loving care.

Contents

LIST OF FIGURES Vil
LIST OF TABLES XI
ABBREVIATIONS XI1I
GLOSSARY X1v
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION ..ottt s st es st s ssss et esssnessnssssasnsssnns 1
1.2 SCOPE AND PURPOSE OF THE THESIS ...cocuoeveeeeieeieceetceeeeeveneneressesesssnnnen 3
1.3 CONTRIBUTION OF THE THESIS ..ottt sesenenes 5
1.4 THESIS ORGANIZATION........ccceeveierererererereeresserenesesesesesesssessssssssssasssassesnenn 5
CHAPTER 2 BACKGROUND 6
2.1 MULTIMEDIA MESSAGING SERVICEceoovemimeeieeenenetsteseeseseeeeeeseesenensneneenes 6
2.1.1 INEFOAUCEION..........cooeeeeeeeeeeeeeeee e ees e 6
2.1.2 USAQGE SCENAIIOSeoeeeeeeeeeeeeeeeeseeeeeeeeeees st ses s 7
2.1.3 Service Archit@Clture................cooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 7
2.1.4 TransSaction FIOW................eeeeeeeeeeeeeeeeeeeeeee e 10
2.1.5 Interface DEeSCriPLiON ..o 15

2.2 LIBERTY ALLIANCE......c.cieirireeeeeceetenneseseesesesesesessensssssssssssssnssssssssssmassestsensens 18
2.2.1 INErOAUCLION...............ooeeeeeeeeeeeeeeeeeeeeeeeeeeee e 18
2.2.2 The Need for Federated Network Identity.............................. 19
2.2.3 THE LiBeItY ACEOIS........ooeooeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 20
2.2.4 Liberty ProtOCoOIS................oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 21

2.2.5 LIDEITY PrOfil€S ..., 23

2.3 SOURCEID LIBERTY 2.0....ouiiriireeiernriseieinsesesensssssessisenssssssnsssssssssssens 30
2.3.1 Workflow and Open Business Engine.................vveveveenn.. 30
2.3.2 System ArchiteCture...................eeeeeeeeieeeeeeeieeeeeeeeeeeseseeese e 34

2.4 CONCLUSION......ccoitmemnemencanensiasassessessesesesessssssssessssssssasssssssssssassssssnssnsssssses 39

CHAPTER 3 DEVELOPMENT OF AN MMS-BASED SYSTEM FOR

INTEGRATED SERVICES 41

3.1 INTRODUCTION .cccotrririeuereiriieresetsesenensesestsesssessssssesssssssssassesasssssssesssssesasens 41
3.2 SYSTEM SPECIFICATIONcoveiemririreenirietresssesssssesssssssasassessssesesesssssnessens 42
3.2.1 Multimedia Messaging Service Centre...........oooveeeeerevevenen. 42
3.2.2 SEIVICE PrOVIUEN ... 44
3.3 SYSTEM ARCHITECTURE.......cevurenrerreiieeretesesessesssssesesssesesssssassessssssssnessanes 45
3.3.1 USEI ACCESSES........cooooiieieiieeeisieriereee e ee et ss e sass e 45
3.3.2 USEI EXPEIIENCES.............ocooaeereeeeeeeeeeeeeereeeesssesesereeeenns 47
3.3.3 Message FIOW CRArts ..., 49
3.4 INTERACTIONS WITHIN THE FEDERATIONccocsumrrrerrrrererneeserecnesnaenenns 53
3.5 DATABASE ..ottt seis st s ests st ses st nas e seessa s s s s b sens 56
306 SUMMARYcoiiiereiimeiniceeerene s tsessesssesesasssssatsssasss s sessssssessesessessssesessnanes 58
CHAPTER 4 SIMULATION MODEL AND TEST RESULT...................... 59
4.1 SIMULATION SYSTEM REQUIREMENTcoovevueieriernenienericeeeeseeesae s sseeesenenes 59
4.1.1 Hardware Environmentccooeecoceeeeeeeeeeeeeseeesesenn. 59
4.1.2 Software RequUIrementoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen. 60
4.2 SYSTEM DEVELOPMENTc.coerviiertririrereneinerinssessssessssssssssssessesessassssesssssnsenns 60

vi

4.3 ARCHITECTURE AND WORKFLOWc.ccoeverereerrereneenrensseneseanessnesesesenssesenes 61

4,.3.1 AFCHIEECEUTE...........oeeeeee et 61
4.3.2 WOIrKFIOW PacKage..............oeeeeeeeeeeeeeeeeeieeeeeeecveseeevereseesnesaens 63
4.4 JAVA CLASSES AND PACKAGES.........cccoverrreriireireneireneeresesesessssessessssenessesans 64
4.4.1 PArtiCIDANnE ...t 64
G.4.2 WOIK URNiE ...t easse s 66
Go4.3 SEIVIEL ...ttt 66
Go4uG AAPLEN ...t s e nr e 72
4.5 CONFIGURATION FILES......ccecevrirrrrrerririeenenesssssenssessssenssensssssssssssssssssessaes 74
4.6 DATABASE ...ttt iteeese st sssssessssesssse et sas s sssessserese s sesnsasans 75
4.6.1 Table SErUCEUIe ... 75
4.6.2 Database Interface and Application Classes......................... 77

4.7 TEST RESULTS ...oveteeieececeeerereesinetsesstesssssssssssssessssesassesassesasssssssssnssssssssans 78
4.8 SUMMARYooeiririeriniererserersesssssssssssssssssssssssssssssesessassesessssssssssessssessssnsaones 82
CHAPTER 5 CONCLUSION AND FUTURE WORK 83
5.1 CONCLUSION.....ccovterirrcrsiirretaeesirsnssssssssssssssssssssssssssssssssesessssessessssessesonns 83
5.2 SCOPE FOR FUTURE WORKcocevurrrerriereerentsensesssesssssssesessesssessssssssssens 84
APPENDIX 86
REFERENCE 87

vii

List of Figures

Figure 2.1 MMS architeCture [7] ..o 8
Figure 2.2 General transaction flow/Message exchange -single MMSE........... 11
Figure 2.3 General transaction flow/Message exchange - inter-MMSE........... 12
Figure 2.4 General transaction flow/Message exchange - VASP-mobile........ 14
Figure 2.5 General transaction flow/Message exchange — mobile-VASP........ 14
Figure 2.6 Structure of @ SOAP MESSAQEc.eeevirvevrierieireeceee e 17
Figure 2.7 The various forms of identification [117].........ccoviveiiiiiiieieeeee, 19
Figure 2.8 Basic single sign-on profileccceeevvieeeeci e 26
Figure 2.9 Entities in workflow process definition [22].....ccccccovoiiiiiieeiecnn. 31
Figure 2.10 Package definition [22] ..o voiiiiiieeeeeeeeeeeeeceeeee e 33
Figure 2.11 SourcelD Liberty 2.0 B high level architecture..........cccovveeennnee.. 35
Figure 2.12 Workflow processes in SourcelD Liberty 2.0..........ccceevvrieeveennen. 37
Figure 2.13 The process of SP SSO/Fedc.ccocovveevviiecectieeeeeee e 38
Figure 2.14 Breaking down a process definition in Workflow Editor................ 39
Figure 3.1 Proposed integration of Kodak with MMS system............................ 42

Figure 3.2 A circle of trust formed by MMSC and other service providers 45

Figure 3.3 MMSC connecting to core network (via SGSN or GGSN)................ 46
Figure 3.4 Mobile user accessing MMSCc.oooviiieeceeeeeeeceeee e 46
Figure 3.5 User accessing Kodakccceoiiiiiiiiiiieccececeeeeee e 47
Figure 3.6 Identity federation user eXperiencecccocoeevvecececieccecceecvee, 48
Figure 3.7 Single sign-on user experience (access via MMS)c............ 48

viii

Figure 3.8 Single sign-on user experience (access via Kodak) 49

Figure 3.9 Explicit federation: MMSC-initiated federation message flow........ 51
Figure 3.10 Explicit federation: Kodak-initiated federation message flow 52
Figure 3.11 Implicit federation message flow..........ccoeveeeiiiiie i, 54
Figure 3.12 Liberty SSO and Federation initiated by Kodakccccuve.n...... 55
Figure 3.13 Liberty SSO and Federation initiated by MMS.............ccccvevrine.e. 56

Figure 3.14 Insertion of entries into ‘account_federation” tables upon a

federation rEQUEST ...ttt es 58
Figure 4.1 Hardware environment for simulationc..ccccceeiivieiiiicicciene, 59
Figure 4.2 Mapping Java classes to the workflow architecture......................... 62
Figure 4.3 The workflow package pattern for the simulation system.............. 63
Figure 4.4 Process flow of "MMSC Verify” ... 64
Figure 4.5 The class "MMSCParticipant.class”cccooceoreireeeiiciiciie e, 65
Figure 4.6 The class "VerifySender.class"ccccoeveiivieeececceeeeceeeeene 67
Figure 4.7 The servilet "MMSClInitiateServiet.class”..........ccccvviiivvviieeciveeeeeennnn. 68
Figure 4.8 The serviet "MMSCServiet.class”coooveeeeeeie e 69
Figure 4.9 The servilet "ResumeCenterService.class’.........ccoccevvvevercrcecnnnenne. 70
Figure 4.10 The serviet "SOAPRouterServiet.class”c.ccccovvevvirvecerceennen. 71
Figure 4.11 The adpter “"AuthnAdapterImpl.class”ccccceomrvricvrccevevesinnan, 72
Figure 4.12 The adapter "MMSCEventAdapter.class”........cccccocveveevrveverrnenne. 73
Figure 4.13 The adapter "MMSCFederationStore.class”..............ccoovvvveeveeeene... 74
Figure 4.14 MMSC user table before federation..............c.ccoeevveeeeiiiciiceee, 78
Figure 4.15 Kodak user table before federation................ccccccoovviiiviiircnenene 78
Figure 4.16 MMSC federation table “fedtbl”..............ccoorieoi i 78

Figure 4.17 Kodak federation Table “fedtbl”ccceorinieiiiieccrecee e 79

Figure 4.18 Records of VASP table at MMSC side.......ccccooveceveiiiiiiiieeiecee, 79
Figure 4.19 Composition of joel’s message to be sent to Kodak 79
Figure 4.20 The user’s decision to federate with Koda or not.......................... 80
Figure 4.21 MMSC federation table after federation..............c..cccocevvrrirveiinnnnee, 80
Figure 4.22 Kodak federation table after federationc..c.cocovvieviiiennn. 81
Figure 4.23 Printing of the attached picture to a file by Kodak........................ 81

Figure 4.24 Retrieval of user’s multimedia message stored at MMSC via

Kodak WED PagE........cooiriiiiiieeeee et 81

List of Tables

Table 4.1 User table description

Table 4.2 MMSC Federation table description.........c.ccccoovvviiviiicciicciecee e

Table 4.3 MMSC VASP table descriptioncccocoveiiiiivii i

xi

ABBREVIATIONS

API
BS
GGSN
HLR
HTTP
ID-FF
IDP
ISDN
J2EE
LAN
MMS
MMSC
MSISDN
PDU
RN
SAAJ
SAML
SGSN
SOAP
SP
SS7
SsL
SSO

URL

Application Program Interface

Base Station

Gateway GPRS Support Node
Home Location Register

HyperText Transfer Protocol
Identity Federation Framework
Identity Provider

Integrated Services Digital Network
Java 2 (Platform) Enterpﬁse Edition
Local Area Network

Multimedia Messaging Service
Multimedia Messaging Service Center
Mobile Subscriber ISDN Number
Protocol Data Unit

Radio Network

SOAP with Attachment API for Java
Security Assertion Markup Language
Serving GPRS Support Node
Simple Object Access Protocol
Service Provider

Signaling System 7

Secure Sockets Layer

Single Sign-On

Uniform Resource Locator

XH

VAS Value Added Service

VASP Value Added Service Provider
VLR Visitor Location Register
WSP Wireless Session Protocol

Xin

Glossary

Federated Identity

Federated identity infrastructure enables cross-boundary single sign-on, dynamic
user provisioning and identity attribute sharing. By providing for identity portability,
identity federation affords end-users with increased simplicity and control over the
movement of personal identity information while simultaneously enabling companies to

extend their security perimeter to trusted partners.

Java 2 Platform, Enterprise Edition (J2EE)
It defines the standard for developing component-based multitier enterprise

applications. Features include Web services support and development tools (SDK).

JBoss
The JBoss server is the leading Open Source, standards-compliant, J2EE based

application server implemented in 100% Pure Java.

Liberty Alliance
The Liberty Alliance provides the technology, knowledge and certifications to
build identity into the foundation of mobile and web-based communications and

transactions. It defines specifications for Federated Identity and Web Services

Metadata
Metadata describes the attributes of an information bearing object (IBO) -
document, data set, database, image, artifact, collection, etc.; metadata acts as a

surrogate representation of the IBO. A metadata record can include representations of

X

the content, context, structure, quality, provenance, condition, and other characteristics
of an IBO for the purposes of representing the IBO to a potential user - for discovery,

evaluation for fithess for use, access, transfer, and citation.

Mobile Station International ISDN Number (MSISDN)

The Mobile Station International ISDN Number is the standard international
telephone number used to identify a given subscriber. The number is based on the 1TU-T
(International Telecommunications Union-Telecommunication Standardization Sector)

E.164 standard.

Multimedia Messaging Service (MMS)

It is a messaging service for the mobile environment very similar to Short
Message Service (SMS), or text messaging. It provides automatic, immediate delivery of
personal multimedia messages from phone to phone or from phone to e-mail. In addition
to the familiar text content of text messages, multimedia messages can contain images,

graphics, voice, and audio clips.

Multimedia Messaging Service Center (MMSC)
It is the center that provides the MMS. Normally it contains relays, message

store(s), subscriber database, etc.

MySQL

MySQL is a relational database management system, which means it stores data
in separate tables rather than putting all the data in one big area. This adds flexibility, as
well as speed. The SQL part of MySQL stands for "Structured Query Language,” which

is the most common language used to access databases.

Xv

Simple Object Access Protocol (SOAP)

The standard for web services messages. Based on XML, SOAP defines an
envelope format and various rules for describing its contents. Seen (with WSDL and
UDDI) as one of the three foundation standards of web services, it is the preferred
protocol for exchanging web services, but by no means the only one; proponents of

REST say that it adds unnecessary complexity.

Single Sign-on (SSO)
It enables a user to access multiple computer platforms or application systems

after being authenticated only once.

SourcelD

SourcelD is an open source multi-protocol project for enabling identity federation
and cross-boundary security. SourcelD focuses on ease-of-integration and deployment
within existing web applications, products or services. SourcelD provides a high-level of
developer functionality and customization and is designed to shield the integrator and
enterprise from needing to understand the complexities of federation, or the rapidly

evolving federation standards.

SOAP with Attachment API for Java (SAAJ)

It provides a convenient API for constructing SOAP messages without having to

directI\y create the XML yourself.

Chapter 1 Introduction

1.1 Motivation

With the advance of radio and network technologies, the mobile system has
evolved to a ubiquitous personal communication service system that provides users with
new features. Multimedia messaging service (MMS) is a great success to enable mobile
handsets to support multimedia content, such as pictures, animations, music, and video
clips [1]. MMS promises a dramatic increase in messaging capabilities that will enrich
the user experience and create a major new source of revenue for netwbrk operators as
well as content and service providers.

At the same time, e-commerce, the whole range of business transactions over an
electronic network, is growing very rapidly. With the research on the area of mobile e-
commerce [2], the utilization of mobile technologies in e-commerce is also placing
greater importance. In addition to buying physical goods, a considerable part of mobile
e-commerce consists of the purchase of different types of digital content. Currently,
MMS is the best way to deliver the digital content.

It is to think of the opportunities to introduce MMS technologies into mobile e-
commerce. Using MMS in e-commerce will also enhance the features of MMS by
allowing the MMS system to work with other service providers. However, there are some
limitations in e-commerce transactions. The most obvious limitation is that a user has to
remember many unique usernames and passwords in order to access different services
[3]. Furthermore, prompting a user to login separately to closely affiliated sites creates

an awkward user experience.

The limitations of e-commerce will of course affect the cooperation between the

MMS system and the service providers. In order to solve this problem, the drawback of

the current environment will be analysed and solutions will be proposed in the remaining

of this thesis.

The previous discussion suggests that MMS is on a fast growth track. However,

the co-operation between MMS operators and other service/content providers needs

improvement.

Currently multimedia messaging service center (MMSC) has a standalone user

database which has no connections to other service providers. When we introduce MMS

to e-commerce, the limitations are immediately apparent. Some of the drawbacks are

listed below.

Limitations of partners: Currently, MMSC can only work with the content
providers that do not need authentications, for example, weather
broadcasting. Messages are pushed from the content providers to the MMS
users. Content providers cannot yet accept requests directly from an MMS
user.

Multiple authentications: When a user is purchasing digital content, such as
pictures, music, or videos, he/she needs at least two authentications — one
from the MMSC, and the other from the service/content provider.

Waste of resources: MMSC is not aware of whether or not a specific user is
registered with the service/content provider. The only thing that it can do is —
to always forward the requests to the service/content provider without
verifying if the user is allowed to access the content or a service to that
provider. In the case where the service/content provider denies the user

access, thus, MMSC'’s forwarding work becomes a waste.

e Redundant user profiles: Since users have to register both at the MMSC site
and with the service/content providers, the full profiles are stored in two
databases. Hence, username, password, first name, last name, sex, mobile
number, and home address etc, will be found in each database. In principle,
some information can be shared among the service providers, for example,
name and home address.

e Redundant billings: Users have to pay the bills from MMSC and
service/content providers separately.

To overcome the above drawbacks, the limitations of e-commerce have to be
eliminated or reduced as much as possible. The Liberty Alliance is a consortium that
deals with these limitations. This alliance develops specifications for federated identity
management. The identity federation establishes a standards-based mechanism of both
sharing and managing identity information among organizational domains [4]. It also
enables a cost-efficient means of establishing single sign-on to cross-company

information.

1.2 Scope and Purpose of the Thesis

Although the Liberty Alliance has developed a business-ready architecture to
offer more flexible and efficient identity management, its specifications have not been
used in mobile networks. On the other hand, although MMS develops fast, multiple
logins prevent MMS from smoothly working with other service providers.

Currently, the developments of Liberty specifications and MMS are on two

separate tracks and they are not yet benefiting from each other’s progress. This thesis

aims at making the two tracks to interact by implementing a single sign-on and identity

federation protocol into MMS, conforming the Liberty Alliance standards.

1)

2)

3)

Specifically, the thesis aims at accomplishing the following:
Propose a prototype to implement Liberty single sign-on and identity federation in
MMS system by

a) specifying the relationship and communication patterns among the MMS,
service providers, and subscribers,

b) determining the protocols to be used in message format and identity

management

Define the message flow for the prototype:

a) Messages and authentication information should go through mobile
phones, MMSC, and the service providers.

b) Determine as to how the federation will be initiated.

Simulate and test the prototype elaborated in step 1):

a) In the simulation system, Kodak is used as an example of a service
provider. The system demonstrates that a picture print request is sent to Kodak
via MMSC. After Kodak receives the picture data sent by a user, the picture is
printed and can be mailed to the user's home address.

b) The MMSC and Kodak simulators must be designed individually in this
thesis project.

¢) In the simulation system, the Liberty solution will be built based on the

SourcelD’s existing open source software.

1.3 Contribution of the Thesis

A principal contribution of the thesis is the prototype architecture for insertion of
the Liberty technology into MMS. This implementation allows MMS to affiliate with other
services. Thus, MMS users can access various service providers easily; and at the same
time, MMS functionalities will get enhanced and extended.

This thesis also provides a detailed design and simulation for the system. The
detailed design contains definitions of Liberty roles, communication patterns, message
flow, and sequence diagrams.

In the simulation system, the single sign-on and identity federation protocol is
implemented. With the support of this protocol, user can smoothly access a trusting
service site by simply sending MMS messages. The simulation system shows the

feasibility of this prototype.

1.4 Thesis Organization

This thesis contains five chapters. Chapter 2 introduces the background
knowledge of MMS and Liberty. Chapter 3 presents the prototype design including
architectural design, Federation flow, and Database design. In chapter 4, a simulation
system is built for the proposed prototype. Chapter 5 describes the contribution of this

study and gives a few suggestions for possible future investigation.

Chapter 2 Background

2.1 Multimedia Messaging Service

2.1.1 Introduction

The multimedia messaging service (MMS) can be regarded as an example of a
range of messaging services, such as the short message service (SMS), and Internet
mail.

Since 2002, the rollout of the service in many countries constituted the first MMS
wave. MMS allowed mobile users to exchange multimedia messages with the Internet
and mobile domains. Multimedia messages range from simple text messages to
sophisticated messaging, for example, a slideshow composed of text, images and audio
clips [5].

The future success of MMS is believed to rely on four main enablers:

e Availability and penetration of MMS phones: Mobile users require MMS-

enabled phones for composing and sending muitimedia messages.

e Device interoperability and service inter-working: The introduction of any new
telecommunications service in a multi-vendor environment is always subject
to equipment interoperability issues.

e FEase of use: The use of MMS should be very easy. No time should be
required browsing through complex phone menu items.

¢ Added value for the end-user. The user should perceive the added value

using the MMS compared to other messaging systems such as SMS or email.

2.1.2 Usage Scenarios

Person-to-person messaging

The use of MMS in the person-to-person scenarios is tightly associated with the
availability of multimedia accessories such as a digital camera or a camcorder. The user
usually has the possibility of sending the message to one or more recipients belonging to
one of the following groups, MMS users who have an MMS phone and the
corresponding service subscription, users of legacy handsets who have a legacy phone

without support of MMS, and Internet users.

Content-to-person messaging

In the context of MMS, a value-added service (VAS) provider is an organization
that offers an added-value service based on MMS. A VAS application may provide
weather notifications, news updates, and so on, delivered to the phone as a multimedia
message. For this purpose, the provider sets up a VAS application, which generates
multimedia messages and sends them to one or multiple recipients via the MMS
provider infrastructure. In many cases, the user needs to subscribe first to the value-
added service in order to receive the corresponding messages. In order to operate a
value-added service, the VAS provider (VASP) has to establish a service agreement
with the MMS provider. The content-to-person scenario is also referred to as the

machine-to-person scenario [6].

2.1.3 Service Architecture

The MMS architecture is divided into two parts. The first part is the software

messaging application in the MMS phone. This application is required for the

composition, sending and retrieval of multimedia messages. The second part is the
external support structure. In addition, other elements in the network infrastructure are
required to route messages, to adapt the content of messages to the capabilities of
receiving devices, and so on. The MMS client is the software application shipped with
the mobile handset. Figure 2.1 shows the general architecture of elements required for

the realization of the MMS service.

Billing MMS VAS -
System Applications MMS User
Databases
MMS$ MM7 MM5
“Foreign”
S MM1 MMS Relay/Server MMS
S o | [| Relay/Server
ubscriber < T Relay [Ton Server MM4 A
MMI1 —+
\ 4
MMS
--------------------------------- Subscriber B

External External External s External
Server #1 Server #2 Server #3 Server #N
(e.g. E-Mail) (e.g. Fax) (e.g. UMS)

Figure 2.1 MMS architecture [7]

In an MMS environment (MMSE), network elements communicate via a set of
interfaces. Each interface supports a number of transactions such as message
submission, message retrieval and message forwarding. Each operation is associated

with a set of protocol data units with corresponding parameters. Several interfaces have

been standardized in order to ensure interoperability between devices produced by

various manufacturers [6].

The MM1 interface is a key interface in the MMS environment. It allows
interactions between the MMS client, hosted in the mobile device, and the
MMSC. Transactions such as message submission and message retrieval
can be invoked over this interface.

The MM2 interface is the interface between the two internal elements
composing the MMSC: the MMS server and the MMS relay.

The MM3 interface is the interface between an MMSC and external servers.
Transactions invoked through this interface allow the exchange of messages
between MMSC’s and external servers such as email servers and SMS
centers. This interface is typically based on existing IP protocols.

The MM4 interface is the interface between two MMSC’s. This interface is
necessary for exchanging multimedia messages between distinct MMS
environments.

The MM5 interface enables interactions between the MMSC and other
network elements. For instance, an MMSC can request routing information
from the home location register (HLR) or from a domain name server (DNS).
The MM6 interface allows interactions between the MMSC and user
databases.

The MM7 interface fits between the MMSC and external VAS applications.
This interface allows a VAS application to request services from the MMSC
(message submission, etc.) and to obtain messages from remote MMS

clients.

e The MMS8 interface enables interactions between the MMSC and a billing

system.

MMSC is a key element in the MMS architecture. The MMSC is responsible for
handling transactions from MMS phones and transactions from other messaging
systems. The server is also in charge of temporarily storing messages that are awaiting
retrieval from recipient MMS clients. Optionally, the server may also support a persistent
message store where users can store messages persistently in their MM-Boxes.

The MMS offers several features for the support of person-to-person and
content-to-person message scenarios. These features include sending and receiving
multimedia messages, notifying a user that a message is awaiting retrieval, forwarding
messages and managing a network-based box where messages can be stored over a

longer term.

2.1.4 Transaction Flow

Each end-to-end feature offered by the MMS relies on a series of consecutive
transactions occurring over one or more of the eight identified MMS interfaces. These
transactions allow the transfer of messages and the associated reports between MMS
communicating entities including network servers and mobile devices [5], [6]). Person-to-

person and content-to-person scenarios are described below.

Person-to-person scenarios
The simplest transaction flow for a message exchange is the one that involves
two MMS clients attached to the same MMSE. The process of exchanging a message is

composed of four steps as shown in Figure 2.2 and described below.

10

MMSC

1. Message
submissio

2. Message
notification

4. Delivery 3. Message
report retrieval

Originator Recipient
MMS client MMS client

Figure 2.2 General transaction flow/Message exchange —single MMSE

1. Message submission over the originator MM1 interface: This transaction is
composed of submission request, M-send.req PDU (Protocol Data Unit) and a
corresponding submission response, M-send.conf PDU.

2. Message notification over the recipient MM1 interface: This transaction is
composed of a notification indication (M-notification.ind PDU) and a notification
response indication (M-notifyresp.ind PDU).

3. Message retrieval over the recipient MM1 interface: This transaction is composed
of a retrieval request (WSP/HTTP GET.req PDU), retrieval response (M-
retrieve.conf PDU) and optionally a retrieval acknowledgement indication (M-
acknowledge.ind PDU).

4. Delivery reporting over the originator MM1 interface: A delivery report is
conveyed over the MM1 interface only if the generation of a delivery report was

requested during message submission and if the recipient did not deny the

1

generation of such a report. The transaction is composed of a delivery-report

indication (M-delivery.ind PDU).

The exchange of a message between MMS clients attached to distinct MMSEs
involves two MMSCs: the originator MMSC and the recipient MMSC. The two MMSCs
are interconnected via the MM4 interface. The process of exchanging a message is

composed of four to six steps as shown in Figure 2.3.

2. Message
routing forward
Originator Recipient
MMSC MMSC
1. Message 3. Message
submissio N notification
5. Delivery report
6. Delivery ~ routing forward 4. Message
report retrieval
Originator Recipient
MMS client MMS client

Figure 2.3 General transaction flow/Message exchange — inter-MMSE

Step 2 and step 5 are in addition to single MMSE case. Step 2 (routing forward
the message over the MM4 interface) is composed of a forward request
(MM4_forward.req PDU) and a corresponding forward response (MM4_forward.res
PDU). Step 5 (routing forward the delivery report over the MM4 interface) is composed
of a submission request (MM4_delivery reportreq PDU) and a corresponding

submission response (MM4_delivery_report.res PDU). The delivery report is generated

12

by the recipient MMSC upon confirmation of message retrieval by the recipient MMS

client.

Content-to-person scenarios

Content-to-person refers to the scenario where the message originates from a
VAS application and is delivered to one or more MMS recipients. For this purpose, the
VAS provider (VASP) operates a VAS application, usually Internet hosted, and
connected to an MMSC via the MM?7 interface. In this configuration, the MMSC interacts
with recipient MMS clients over the MM1 interface as already described previously.

Figure 2.4 shows interactions among a VAS application, the MMSC and one
recipient MMS client for the exchange of a message from the VAS application down to
the recipient MMS client.

1. Message submission over the MM7 interface. The transaction is composed of a
submission request (MM7_submitreq PDU) and a corresponding submission
response (MM7_submit.res PDU).

2. Message notification over the MM1 interface

3. Message retrieval over the MM1 interface

4. Delivery reporting over the originator MM7 interface: The transaction is
composed of a delivery-report request (MM7_delivery_report.req PDU) and a
corresponding delivery-report response (MM7_delivery_report.res PDU).

5. Read reporting over the MM1 interface

6. Read reporting over the MM7 interface: The transaction is composed of a read-
report request (MM7_read_reply _report.req PDU) and a corresponding read-

report response (MM7_read_reply_report.res PDU).

13

Originator Recipient
MM7
2. Misg notif.
VAS — % | Recipient >
) 3. Msg retriev.
4. Delivery report
P < Recipient
6. Read report 5.Readreport ~MMS client

Figure 2.4 General transaction flow/Message exchange — VASP-mobile

In the reverse direction, the MMS client also has the possibility of submitting a

message addressed to a VAS application. This may be reply related to a previous

message originated by the VAS application or it can be a new unrelated message.

Figure 2.5 shows interactions between the MMS client, the MMSC and VAS application

for the exchange of a message from the MMS client up to the VAS application.

Recipient
MM7

VAS
application

2. Msg delivery

Originator
MMSC

Originator
MM1
1. Msg submission
»
3. Delivery report
Originator
MMS client

Figure 2.5 General transaction flow/Message exchange — mobile-VASP

1. Message submission over the originator MM1 interface

14

2. Message delivery over the MM7 interface. This transaction is composed of a
delivery request (MM7_deliver.req PDU) and a corresponding delivery response
(MM7_deliver.res PDU).

3. Delivery reporting over the MM1 interface.

2.1.5 Interface Description

As described in Figure 2.1, there are eight interfaces, MM1 through MM8, in
MMS. In this thesis, we only introduce MM1 and MM7 interfaces which are closely
related to the proposed system. The description of other interfaces, can be found in [5],

[6], and [7].

MM1 interface, MMS client - MMSC

The MM1 interface allows interactions between the MMS client and the MMSC.
Several primitives, also known as profocol data units (PDUs), can be invoked over this
interface for transactions such as message notification, message submission, message

retrieval, and so on. Three types of PDUs can be exchanged via the MM1 interface.
e Request: A request PDU is invoked from an MMS entity (MMS client or
MMSC) to request a service to be provided by another MMS entity (MMS
client or MMSC). In the context, the serving MMS entity, which accepts or
rejects the request, notifies the requesting MMS entity of the request
status with a confirmation PDU. A request PDU is often marked with a

transaction identifier. The name of a request PDU is suffixed with “.req

(e.g. M-send.req)

15

e Confirmation/response: A confirmation PDU is invoked by serving MMS
entity to confirm the status of the corresponding request PDU. The name
of a confirmation PDU is suffixed with “.conf’ (e.g. M-send.conf)

e Indication: An indication PDU is invoked by an MMS entity to notify
another MMS entity of the occurrence of an event (message notification,
reports, etc.). The name of an indication PDU is suffixed with “.ind” (e.g.

M-notification.ind). An indication is not confirmed.
Descriptions of transactions/PDUs over MM1 interface can be found in [5].

| MM?7 interface, MMSC — VAS application

The MM?7 interface enables interactions between VAS applications and an
MMSC.

MM?7 interface is based on the simple object access protocol (SOAP) with HTTP
at the transport layer.

SOAP is a lightweight protocol for the exchange of information in distributed
environments such as the MMSE. All SOAP messages are represented using XML. The
SOAP specifications consist of three distinct parts:

e Envelope: This part defines a framework for describing the content of a

SOAP message and how to process it.

e Set of encoding rules: Encoding rules are used for expressing instances of

application-defined data types.

e Convention for representing remote procedure calls: This convention helps

entities in a distributed environment to request services from each other in an

inter-operable manner.

16

SOAP may be used over a variety of transport protocols. In the MMSE, SOAP is
used over the HTTP transport protocol for the realization of the MM7 interface. With this
configuration, MM7 request messages are transferred in HTTP Post requests, whereas
the corresponding MM7 response messages are transferred as part of HTTP Response
messages.

A SOAP message, represented using XML, as shown in Figure 2.6, consists of a
SOAP envelope, a SOAP header, a SOAP body and an optional SOAP attachment. For
messages containing a SOAP envelope only, the media type text/xml is used. If the
SOAP message also contains an attachment, then the media type multipart/related is
used and the SOAP envelope is identified with the Start parameter of content type. Each
part. of the SOAP message has, at least, the two parameters Content-Type and Content-

ID.

SOAP Message
SOAP Part
SOAP Envelop
SOAP Header

SOAP Body

Attachment Part
(optional)

Figure 2.6 Structure of a SOAP message

17

The SOAP envelope is the first element to appear in HTTP Post requests and in
the corresponding responses. The SOAPACction parameter is set to the “Null string”. The
MMSC or the VAS server is identified uniquely with a URL placed in the host header

field of the HTTP Post method [8], [9].

2.2 Liberty Alliance

2.2.1 Introduction

From the moment a person is born, he/she has an “identity.” The identity starts
with their name on a birth certificate and evolves over time as labels, interactions, and
relationships are associated with that person. As people grow, they interact with an ever-
larger group of individuals and organizations.

On reaching adulthood, pieces of their identities are scattered across a range of
entities: banks, credit card companies, national IDs, and the places where they work, to
name just a few. The Internet has become one of the prime vehicles for business,
community and personal interactions, and it is fragmenting this identity even further.
Pieces of their identity are doled out across the many computer systems and networks
used by employers, Internet service providers, instant messaging applications, and
online business and content providers, as shown in Figure 2.7. All this occurs with little
coordination, interaction, or control on the part of the individual.

People have to repeatedly enter the same information within the workplace and
in personal business dealings. Everyone concerned may also have to deal with identity

abuse [10].

18

Figure 2.7 The various forms of identification [11]

The Liberty Alliance Project is an attempt to deal with these problems. The
Liberty Alliance is non-profit and government organization. The consortium is committed
to developing an open standard for federated network identity that supports all current
and emerging network devices. Federated identity offers businesses, governments,
employees and consumers a more convenient and secure way to control identity
information in the digital economy, and is a key component to drive the use of e-
commerce, personalized data services, as well as web-based services. Membership is

open to all commercial and non-commercial organizations [11].

2.2.2 The Need for Federated Network Identity

To address the inefficiencies and complications of network identity management

for businesses and consumers, there is a strong need for a federated network identity

19

infrastructure that would allow users to “link” elements of their identity between accounts

without centrally storing all of their personal information.

There are many benefits to a federated network identity infrastructure. Some of

the main ones are as follows.

e |t provides the end user a far more satisfactory online experience, as well
as new levels of personalization, security, and control over identity
information.

e It enables the IT manager to more easily and securely register accounts
and provide access to the right resources.

* Itenables businesses to create new relationships with one another and to

realize business objectives faster, more securely, and at a lower cost.

The Liberty Alliance’s vision is one of a networked world in which individuals and

businesses can more easily interact with one another, while respecting the privacy and

security of shared identity information.

2.2.3 The Liberty Actors

Liberty defines three actors: principals, service providers, and identity providers:

A principal is a user.

A service provider (SP) is an organization offering Web-based services to
principals. It can be car rental or airline, etc.

An identity provider (IDP) is a service provider offering additional services
and incentives so that other service providers affiliate with the identity
provider and principals choose to use the service provider as their identity
provider. The important service an Identity provider gives is authentication of

the principal.

20

2.2.4 Liberty Protocols

A set of protocols collectively provides a solution for identity federation

management, cross-domain authentication, and session management. The Liberty

protocol suite consists of the following protocols [12]:

Single sign-on and federation: The protocol by which identities are
federated and by which single sign-on occurs.

Name registration: The protocol by which a provider can register an
alternative opaque handle (or name identifier) for a principal.

Federation termination Notification: The protocol by which a provider can
notify another provider that a particular identity federation has been
terminated (also known as de-federation).

Single logout: The protocol by which providers notify each other of logout
events.

Name identifier mapping: The protocol by which service providers can
obtain (often encrypted) name identifiers corresponding to an identity

federation in which they do not participate.

Single sign-on and federation is the main protocol used for this thesis. It will be

broken down below. For details on the other protocols, please refer to [5], [12], and [13].

Single sign-on and federation protocol

The single sign-on and federation protocol defines a request and response

protocol by which single sign-on and identity federation occurs. The protocol is

21

conducted between a service provider and one or more identity providers. The protocol
works as follows:

1. This step is optional. A service provider issues an <authnRequest> t0 an
identity provider, instructing the identity provider to provide an authentication assertion to
the service provider. Optionally, the service provider may request that the identity be
federated.

2. The identity provider responds with either an <authnResponse> containing
authentication assertions to the service provider or an artifact that can be de-referenced
into an authentication assertion. In addition, the identity provider potentially federates the
principal's identity at the identity provider_ with the principal's identity at the service
provider. |

Note that under certain conditions, an identity provider may unilaterally (without
receiving an authentication request) issue an authentication response to a service
provider.

The identity provider may be proxying for an authenticating identity provider, in
which case, this protocol may be repeated between the recipient of the original
<AuthnRequest>, and other identity providers.

The service provider issues an initial <authnrequest> to an identity provider. A
set of parameters is included in the request that allows the service provider to specify
desired behavior at the identity providers in processing the request. A requester can
control the following identity provider behaviors:

« Prompt the principal for credentials if the principal is not presently
authenticated.
« Prompt the principal for credentials, even if the principal is presently

authenticated.

22

» Federate the principal’s identity at the identity provider with the principal’s
identity at the requester.
« Issue an anonymous and temporary identifier for the principal to the
service provider.
« Use a specific protocol profile in responding to the request.
o Use a specific authentication context (er example, smartcard-based
authentication vs. username/password-based authentication).
¢ Restrict the ability of the recipient to proxy the authentication request to
additional identity providers.
As mentioned above, the response is either an <authnResponse> element
containing a set of authentication assertions or a set.of artifacts the service provider can

dereference into a set of authentication assertions.

2.2.5 Liberty Profiles

This section defines the Liberty profiles for the use of request and response
messages given in [12]. The combination of message content specification and message
transport mechanisms for a single client type (that is, user agent) is termed a Liberty
profile. The profiles are grouped into categories according to the protocol message
intent.

The following profile categories are defined in by Liberty Alliance [13]:

» Single sign-on and federation: The profiles by which a service provider
obtains an authentication assertion from an identity provider facilitating

single sign-on and identity federation.

23

Name registration: The profiles by which service providers and identity
providers specify the name identifier to be used when communicating with
each other about the principal.

Federation termination notification. The profiles by which service
providers and identity providers are notified of federation termination.
Single logout. The profiles by which service prqviders and identity
providers are notified of authenticated session termination.

Identity provider introduction: The profile by which a service provider
discovers which identity providers a principal may be using.

Name identifier mapping: The profile by which a service provider may
obtain a Nameldentifier with which to refer td a principal at a SAML
Authority.

Name identifier encryption: The profile by which one provider may encrypt
a Nameldentifier to permit it to pass through a third-party without

revealing the actual value until received by the intended provider.

Basic single sign-on and federation profile

Since single sign-on and federation is the most important protocol in this thesis,

we focus on single sign-on and federation profile.

This section defines the profiles by which a service provider obtains an

authentication assertion of a user agent from an identity provider to facilitate single sign-

on. In addition, the single sign-on profiles can be used as a means of federating an

identity from a service provider to an identity provider through the use of the

<NameIDPolicy> element in the <1ib:authnRequest> protocol message as specified in

The single sign-on profiles make use of the following metadata [14] elements:

24

« ProviderID: Used to uniquely identify the service provider to the identity
provider and is documented in these profiles as "service provider ID."

« AffiliationID: Used to uniquely identify an affiliation group to the identity
provider and is documented in these profiles as "affiliation ID."

o SingleSignOnServiceURL: The URL at the identity provider that the
service provider should use when sending single sign-on and federation
requests. It is documented in these profiles as "single sign-on service
URL."

« AssertionConsumerServiceURL: The URL(s) at the service provider that
an identity provider should use when sending single sign-on or federation
responses. It is documented in these profiles as "assertion consumer
service URL."

e SOAPEndpoint: The SOAP endpoint location at the service provider or

identity provider to which Liberty SOAP messages are sent.

All single sign-on profiles can be described by one interaction diagram, provided
that different message types are optional in different profiles and that the actual content
of the messages may differ. Where interactions and messages differ or are optional,
they are designated and detailed within the specific single sign-on profiles. Figure 2.8
represents the basic template of interactions for achieving single sign-on. This should be
used as the baseline for all single sign-on profiles.

In Figure 2.8, Steps 1 through 5 can be considered typical but optional. An
identity provider may initate a SSO profile by unilaterally creating a
<lib:AuthnResponse> Or artifact, and then proceeding with Step 6, as discussed in [13].

It should be noted that multiple identity providers may be involved in the

authentication of the principal. Although a single identity provider is depicted in the

25

profiles, that identity provider may interact with other identity providers to authenticate
the principal using the proxying method described in [13] and [15], and the profiles as
noted below. In such situations, these profiles would be used by the identity provider
originally contacted by the requesting service provider to communicate with other identity

providers.

User Agent Service Provider Identity Provider

>

]
2. Obtain IDP
3. HTTP Response with AuthnRequest() E
i
4. HTTP Request with AuthnRequest()

1. HTTP Request()

N]

5. Process AuthnRequsest

6. HTTP Response with AuthnRequest or Artifact()

7. HTTP Request with AuthnRequest or A"rtifact()

8. HTTP Request with Artifact()

9. HTTP Response with Artifact()

10. Process Assertion

11. HTTP Response()

Y Y Y Y Y A

USRI I, AU R

Figure 2.8 Basic single sign-on profile

Step 1: HTTP request
In this step, the user agent accesses the intersite transfer service at the service

provider with information about the desired target attached to the URL. Typically, access

26

to the intersite transfer service occurs via a redirection by the service provider in
response to a user agent request for a restricted resource.

It is recommended that the HTTP request be made over either SSL 3.0 [16] or
TSL 1.0 [17] to maintain confidentiality and message integrity in this first step.
Step 2: Obtain identity provider

In this step, the service provider obtains the address of the appropriate ident_ity
provider to whom the user agent will be redirected in step 3. The means by which the
identity provider address is obtained is implementation-dependent and up to the service
provider. The service provider may use the Liberty identity provider introduction profile in
this step.
Step 3: HTTP response with <AuthnRequest>

In this step, the service provider’s intersite transfer service responds and sends
the user agent to the single sign-on service URL at the identity provider. The form and
contents of the HTTP response in this step are profile-dependent.
Step 4: HTTP request with <AuthnRequest>

In this step, the user agent accesses the identity provider's single sign-on service
URL with the <1ib:authnrequest> information. This request may be a GET or POST
request; providers must support both methods. As described later, such a POST must
contain an Lareg form element containing the XML protocol request in base64-encoded
format.
Step 5: Processing <AuthnRequest>

In this step, the identity provider must process the <1ib:AuthnRequest> message
according to the rules specified in [12].

If the principal has not yet been authenticated with the identity provider,
authentication at the identity provider may occur in this step. The identity provider may

obtain consent from the principal for federation, or otherwise consult the principal. To

27

this end, the identify provider may return to the HTTP request any HTTP response.
Including but not limited to HTTP authentication, HTTP redirect, or content. The identity
provider should respect the HTTP User-Agent and Accept headers and should avoid
responding with content-types that the User-Agent may not be able to accept.
Authentication of the principal by the identity provider is dependent upon the
<lib:AuthnRequest> Mmessage content.

In case the identity provider responds to the user agent with a form, it is
recommended that the <input> parameters of the form be named whenever possible.
Step 6: HTTP response with <AuthnResponse> or artifact

The identity provider must respond to the user agent with a <lib:RuthnResponse>,
a SAML artifact, or an error. The form and contents of the HTTP response in this étep
are profile-dependent.

Step 7: HTTP request with <AuthnResponse> or artifact

The user agent accesses the assertion consumer service URL at the service
provider with @ <1ib:AuthnResponse> or @ SAML artifact. This request may be a GET or
POST request; providers must support both methods. As described later, such a POST
must contain an Lares form element containing the XML protocol request or artifact in
base64-encoded format.

Step 8: HTTP request with artifact

This step is required only for single sign-on profiles that use a SAML artifact.

In this step the service provider, in effect, dereferences the single SAML artifact
in its possession to acquire the authentication assertion that corresponds to the artifact.

The service provider must send a <samlp:Request> SOAP message to the
identity provider's SOAP endpoint, requesting the assertion by supplying the SAML

assertion artifact in the <samlp:AssertionaArtifact> element.

28

The service provider must provide a mechanism for the identity provider to
authenticate the service provider.

Step 9: HTTP response with assertion

This step is required only for single sign-on profiles that use a SAML artifact. In
this step if the identity provider is able to find or construct the requested assertion, it
responds with a <samlp:Response> SOAP message containing the requested
<saml:Assertion>. Otherwise, it returns an appropriate status code, as defined within the
SOAP binding for SAML in [15].

Step 10: Process assertion

The service provider processes the <saml:Assertion> returned in the
<samlp:Response> Of <lib:AuthnResponse> protocol message to determine its validity
and how to respond to the principals original request. The signature on the
<saml:Assertion> must be verified.

The service provider processing of the assertion must adhere to the rules defined
in [15] for messages such as assertion <saml:Conditions> and <saml:Advice>.

The service provider may obtain authentication context information for the
principals current session from the <lib:authnContext> element contained in
<saml:Advice>. Similarly, the information in the <1ib:Relaystate> element may be
obtained and used in further processing of the request, by the service provider.

Step 11: HTTP response
In this step, the user agent is sent an HTTP response that either allows or denies

access to the originally requested resource.

29

2.3 SourcelD Liberty 2.0

SourcelD is an open source project for federated identity. Sponsored by Ping
Identity [18], SourcelD provides developers and enterprises with a complete suite of
identity federation libraries for SAML, Liberty, and WS-Federation. SourcelD toolkits
focus on ease-of-integration and deployment within existing web applications, products
or services.

SourcelD's mission is to provide open source tools, applications, and
infrastructure for Federated Identity Management. SourcelD uses open protocols and
standards such as those developed by the Liberty Alliance and other project groups [19).

SourcelD Liberty 2.0 is an open source stand-alone identity federation server --
enabling Liberty Identity Federation Framework (ID-FF) 1.2 while focusing on
extendability and flexibility. SourcelD Liberty 2.0's core is a workflow engine. It is a Java

application which was developed on the JBoss application server.

2.3.1 Workflow and Open Business Engine

Workflow is the automation of a business process, in whole or in part, during
which documents, information or tasks are passed from one participant to another for
action, according to a set of procedural rules [20].

Business process is a set of one or more linked procedures or activities that
collectively realize a business objective or policy goal, normally within the context of an
organizational structure defining functional roles and relationships. It has defined
conditions triggering its initiation in each new instance (e.g. the arrival of a claim) and
defined outputs at its completion.

The automation of a business process is defined within a Process Definition,
which identifies the various process activities, procedural rules and associated control

data used to manage the workflow during the process enactment.

30

Workflow management coalition (WfMC) is a nonprofit, Brussels-based
standards organization focused on defining workflow standards. The WfMC has
described the process definition and the interchange of process definitions [21].

The workflow process definition provides contextual information that applies to
other entities within the process. It is a container for the process itself and provides

information associated with administration or to be used during process execution.

|\

Block Activity
Systemand Workflo - Performed by.|-
Environmental }—— Relevant [‘):ta Perft by, #— Worldlow Process :l oA Sub-Process

Data M Activity Definition
‘J L’ Atomic Activity

Workflow

Participant - Invoke
Specification - -To
Workflow l [.
A Application Transaction [——
Declaration Information
m |
Resource Repository]
or Organizational
Model

Figure 2.9 Entities in workflow process definition [22]

According to the WfMC’s description, the workflow process definition is shown in
Figure 2.9. Figure 2.9 shows the relationships between the basic entities and attributes
for the exchange of process definitions. For a process definition the following entities
must be defined [22], [23]:

Workflow process activity: A process definition consists of one or more activities,

each comprising a logical, self-contained unit of work within the process. An activity

31

represents work, which will be processed by a combination of resource and/or computer
applications.

Transition information: Activities are related to one another via flow control
conditions (transition information). Each individual transition has three elementary
properties, the from-activity, the to-activity and the condition under which the transition is
made. Transition from one activity to another may be conditional (involving expressions
which are evaluated to permit or inhibit the transition) or unconditional. The transitions
within a process may result in a sequential or parallel operation of individual activities
within the process.

Workflow participant specification: This provides descriptions of resources that
can act as the performer of the various activities in the process definition. The particular
resources, which can be assigned to perform a specific activity, are specified as an
atiribute of the activity, participant assignment, that links the activity to the set of
resources (within the workflow participant declaration) which may be allocated to it.

Workflow application declaration: This provides descriptions of the IT applications
or interfaces which may be invoked by the workflow service to support, or wholly
automate, the processing associated with each activity, and identified within the activity
by an application assignment attribute (or attributes).

Workflow relevant data: This defines the data that is created and used within
each process instance during process execution. The data is made available to activities
or applications executed during the workflow and may be used to pass persistent
information or intermediate results between activities and/or for evaluation in conditional
expressions such as in transitions or participant assignment.

As indicated in Figure 2.9, the process model includes various entities whose
scope may be wider than a single process definition. In particular the definitions of

participants, applications and workflow relevant data may be referenced from a number

32

of process definitions. The meta-model assumes the use of a common process definition
repository, associated with the workflow management system, to hold the various entity
types comprising the process definition. Within the repository itself and to support the
efficient transfer of process definition data to/from the repository, the concept of a
package is introduced, which acts as a container for the grouping of common data
entities from a number of different process definitions, to avoid redefinition within each
individual process definition.

The package provides a container to hold a number of common attributes from
the workflow process definition entity (author, version, status, etc.). Each process
definition contained within the package will automatically inherit any common attributes
from the package, unless they are separately re-specified locally within the process
definition.

Within a package, the scope of the definitions of some entities is global and
these entities can be referenced from all workflow process definitions (and associated
activities and transitions) contained within the package. Those entities are workflow
participant specification, workflow application declaration, and workflow relevant data.

The package definition model is illustrated in Figure 2.10.

Workflow |

Package [|
. Workflow
Paclkage
Workfiow)
Process
Resource
. Rapository
hd ol Fa 1
| | * Entities can be
Workflow Workfiow Workflow redefined in the
Participant * Relovant Data Applicaton™ workflow process

Figure 2.10 Package definition [22]

33

The open business engine (OBE) is a Java workflow engine implementing
WIMC. It is designed to act as a general-purpose application controller. Highly modular
and configurable, it suits J2EE or embedded deployment.

All changes to a process or activity persist in real-time. Therefore, the OBE
engine does not run in a thread, it is simply a group of APIs and common objects that
handle the flow. When a change to the workflow is made, the engine then processes that
change. When finished, the engine returns. OBE workflow engine uses XPDL as its
process definition language.

The OBE workflow engine currently implements NO, ROUTE, TOOL:Procedure,
and SUB-FLOW type activities [23].

NO: Just as is says, no activity. This describes a 'manual’ activity.
ROUTE: A route activity is used for simply routing to other activities via the transitions.
TOOL:
Application: An external application is invoked. - Not currently implemented.
Procedure: OBE implements procedures as internal service calls.

SUB-FLOW: Sub-flows can be defined as synchronous or asynchronous.

2.3.2 System Architecture

SourcelD Liberty 2.0 is a Java implementation of the Liberty Alliance ID-FF 1.2
protocols. It has a workflow-based architecture that provides a great deal of flexibility
and extensibility. A server-based application, it focuses on making it possible to
seamlessly adapt the Liberty 1.2 federation protocols to existing infrastructure. From a
developer and deployment standpoint, the SourcelD Liberty 2.0 adapter tier is a critical

aspect of the architecture.

34

The adapter tier is a set of Java interfaces (see Figure 2.11) that allow
developers to customize how data is stored and how interactions with the web
application occur. Developers implement these interfaces in order to integrated

SourcelD with their application environment [24].

Interface Adapter Tier

Session Store Event Adapter | AuthN Adapter | Artifact Store . | Federation

Store

SourcelD Liberty 2.0

JBOSS

Figure 2.11 SourcelD Liberty 2.0 B high level architecture

Session Store: It is a mechanism that the SourcelD implementation uses to track which
users have logged in and logged out. An in-memory implementation is provided in
SourcelD Liberty 2.0 (org.sourceid.idff12.adapters.impl.SimpleSessionStore). No
additional configureation is required to use this default adapter.

Event Adapter: It is a notification mechanism that is used to update the local session
system when a SSO event occurs. Separate adaptor instances must be created for
handling IdP and/or SP side behaviour. An implementation of this adaptor must be
provided for a specific deployment (no default implementation is provided).

AuthN Adapter: SourcelD uses this interface to retrieve the session identifier provided in
a previous call to the on SessionCreated method on the EventAdapter interface. The
session identifier is used by SourcelD to track state information about a user’'s current
session so that functionality such as single log out works correctly. Separate adaptor

instances must be created for handling IdP and/or SP side behaviour. An

35

implementation of this adaptor must be provided for a specific deployment (no default
implementation is provided).

Artifact Store: It supports the artifact profile defined in the Liberty specification by
keeping track of an associated array of artifacts to assertions. An in-memory
implementation is provided with SourcelD Liberty 20
(org.sourceid.idff12.adapters.impl.SimpleArtifactSotre). No additional configuration is
required to use this default adapter.

Federation Store: It keeps track of information about account linkages. Hides all
implementation details of mapping user account identifiers to pseudonyms. An in-
memory implementation is provided with SourcelD Liberty 20
(org.sourceid.idff12.adapters.imple.SimpleFederationStore). No additional configuration

is required to use this default adapter.

The package of SourcelD Liberty 2.0 is composed of 13 workflow processes
shown in Figure 2.12 and described below.
sp-authn: SP SSO/Fed. It handles single sign-on and federation on service provider.
idp-authn: IDP SSO/Fed. It handles single sign-on and federation on Identity provider.
idp-artifact: IDP Artifact. This process handies the artifacts on /dentity provider.
idp-slo: IDP SLO. This process handles single logout on Identity provider.
idp-slo-return-http-get: IDP SLO with HTTP Get. It handles Single Log-out by accessing

Identity provider's return URL in GET.

sp-slo-http: SP HTTP SLO. It handles HTTP based single logout on service provider.
sp-slo-soap: SP SOAP SLO. It handles SOAP based single logout on service provider.
sp-slo-init. SP SLO Initiator. it initiates the single logout on service provider.
idp-slo-sp-init-soap: IDP SOAP SLO Initiator. This process initiates SOAP based single

logout on identity provider.

36

rni-handle-request. RNI Request Handler. This process handles the redirection request.
rni-init. RNI Initiator. This process initiates the redirection.
ftn-handle-request. FTN Request Handler. it handles federation termination request.

ftn-init: FTN Initiator. This process initiates the federation termination.

{ SP S50iFed

IDP SLO

OReturn Y} -
BETeny | - .. - ..

('SP 5L0 Soap

f FTN Init]IIIIfIf.’IIIIIIIIIﬁZZIfIIﬁZIZIIfIIIIZZZ:III

Figure 2.12 Workflow processes in SourcelD Liberty 2.0

The graphical and XPDL description of each process can be found in the file

idff12.xpdl.
To look more details into the workflow, process SP SSO/Fed is taken as the

example. This process is illustrated in Figure 2.13.

37

8¢

Pa-/OSS dS 40 sseoosd 8y §4°Z a.nbio

A workflow editor can provide more information on these activities and

applications. Figure 2.14 illustrates the layout of workflow editor.

v Process properties - SP SSlj,-"Fed

Form Authr Request Documert

Form Authy Request Srery
IRequest Authn

Frofile

Farse Artifacts

Query or Doc

Cetermine Soap Endpoint
Walidate Authn Document
Extract Assertions
iGenerate Assertion Request
Prausst Assertion

Extract Assertions

Verify Assertions

Figure 2.14 Breaking down a process definition in Workflow Editor

2.4 Conclusion

In this chapter, the background information about MMS and the Liberty standard
has been introduced. MMS has been running commercially for a couple of years;
therefore, its standards are quite well integrated and developed. Among the interfaces in
MMS, MM7 between the MMSC and the content providers is the most important for this
thesis. The Liberty Alliance defines specifications for the protocols, such as identity

federation and single sign-on, Federation Termination, etc. It also defines various

39

profiles for each protocol, which provides the flexibility for implementations. SourcelD

provides the open source framework for our later simulation of our proposed system.
Based on the background information provided in this chapter, in the following

chapter, a model as to how an MMSC can work with other service/content providers will

be developed.

40

Chapter 3 Development of an MMS-Based System for

Integrated Services

3.1 Introduction

As discussed in Section 1.1, there exist some drawbacks in the current co-
operation between MMS and other service/content providers. The limitations of e-
commerce are the main cause of these drawbacks. As explained in Chapter 2, the
Liberty Alliance specifications are intended to overcome these limitations. The purpose
of this thesis is to develop a prototype to implement Liberty single sing-on and identity
federation into MMS, so that those drawbacks can be solved. In this chapter, we address
the problem of implementing Liberty protocols into MMS.

Compared with the existing systems, the proposed solution adds new
functionalities into the MMS components and modifies some of the message flows so
that identity federation and single sign-on can be integrated into MMS. These additions
and modifications are based on Liberty Alliance specifications.

In order to facilitate the proposed solution, we start with specific example of
service providers, Kodak, and later generalize to other services. In our proposed system,
basically, a user sends a simple SMS or MMS message, which in turn authenticates the
consumer's device and enables him/her to sign up for the Kodak service. After the user’s
request is processed, a simple return message is relayed to the handset in an MMS (or
SMS) response. The Figure 3.1 depicts the proposed system integrating a service

provider (in our case, Kodak) with MMS. It can be seen that single sign-on and

41

federation protocol enables the user to access services from both MMS and Kodak with

only one login.

MMS System Kodak
i 1 [
. Federation
“uto login SSO Access
‘% xml

- Federated ID -

Subscrib < » (Llnked < > User DB
e DB
\ Accounts) Vi

Figure 3.1 Proposed integration of Kodak with MMS system

3.2 System Specification

To bring the Kodak service into the proposed system, the main components and

system roles are described below.

3.2.1 Muiltimedia Messaging Service Centre
The MMSC, as the multimedia message forwarder and storage facility, retains all
of its current functionalities. The necessary additional functionalities are listed below:
o After a message is stored, relay will check if the destination is one of the trusted
service providers.
¢ Relay also checks if the originator has been federated with the service provider.
e The MMSC should be able to initiate or terminate federation upon user’s request

with other service providers.

42

e In the MMSC’s subscriber database, the subscriber table contains the fields for
federation.
e A VASP table contains the fields necessary to indicate whether a trust

relationship is established between the VASP and the MMSC or not.

In Liberty specifications, identity providers and service providers affiliate together
into a circle of trust [25]. In our circle of trust, the MMSC acts as both identity provider
and service provider. On one hand, the MMSC creates, maintains, and manages identity
information for mobile users and provides mobile user authentication to other service
providers (in our case, Kodak). On the other hand, MMSC also provides multimedia
messaging service to mobile users.

The multimedia messaging service is always provided by mobile operators. The
MMSC usually has a completed subscriber database. In our system, users’ requests are
sent as/with multimedia messages. Therefore, it is convenient to use an MMSC as the
identity provider.

The implementation of Liberty affects the following components of MMSC:
Proxy-Relay: Federation verification needs to be added into this component. In the
current MMSC, relay receives and forwards the message from/to the subscribers. With
implementation of Liberty, relay needs to verify if the subscriber has federated his/her
accounts with the service provider.

Message Store: The schedule of retry or delete messages according to whether the user
is federated or not needs to be added. In case of failure to deliver a message to service
providers, message store need to retry delivery if the user is federated, or delete the

message if he/she is not federated.

43

Subscriber Database: Extra tables and fields to mark federated/not federated, and with
whom need to be added. The subscriber table should contain a field indicating whether
this subscriber federates his/her account with other service providers. Then, in the
federation table, records tell with which providers he/she is federated. The federated

providers may number more than one.

3.2.2 Service Provider

Note that for the purposes of this thesis, Kodak is used just as the name of a
service provider. It does not literally mean that a software is being developed for Kodak
Company. Kodak image service is a good example of one of the hundreds of services
available. Kodak is not the only possible service provider -- obviously, we can also have
X Taxi Company or Y Music Centre as service providers too.

The basic components that a Kodak service needs are:
Identity Management Component. This component integrates the Liberty protocols and
profiles to perform authentication, single sign-on and identity federation, federation
termination, etc.
Application Box: This is the service provided; in our case the company receives the
request from a mobile subscriber, prints the picture, sends the print to the customer, etc.
User Database: User profile/information is stored in the database. Mirroring a similar
table contained by the subscriber database at the MMSC, the user table should contain
a field indicating whether this subscriber federates his/her account with other service
providers. The federation table also has the similar characteristics of the table at the
MMSC.

The service provider (in this thesis, Kodak) should be able to initiate or terminate

federation as well as an MMSC. Kodak acts as a VASP connected to an MMSC. On the

MMSC side, Kodak would be registered in the database (VASP table) and marked as a
“trusted” partner, and would be used as a company providing only digital picture printing

service.

3.3 System Architecture

MMSC and service providers affiliate together in a circle of trust (Figure 3.2). This
circle of trust enables mobile subscribers to transact business in a secure and

apparently seamless environment.

Figure 3.2 A circle of trust formed by MMSC and other service providers

3.3.1 User Accesses

In our system, a user needs to access both the MMSC and Kodak to order a
photo print. By accessing MMSC, the user uploads his/her pictures to Kodak; and by
accessing Kodak, the user can have his/her picture printed. When the user accesses
MMSC via the mobile operator's Core Network as shown in Figure 3.3, the access-
based authentication done by the Core Network can be reused at the service layer. This
is achieved by exploiting the MSISDN forwarding mechanism. Thus, the end-user

experiences only a service delivery, seamlessly and transparently incorporating

45

authentication. In other words, if the subscriber does not pass the checking done in Core
Network, he/she cannot send any message to MMSC. On the terminal, he/she will

receive a notification “not allowed to send MM".

Figure 3.3 MMSC connecting to core network (via SGSN or GGSN)

The MMSC can accept the message from an originator if he/she passes the
checking step in Core Network. Before it proceeds with a transaction, however, MMSC
may have to do some additional verification against this originator. For example, it may
be required to check if the originator is in the blacklist, is a pre-paid subscriber, has
sufficient credit to send this message, etc. The additional checking is usually done in the
MMSC subscriber database as illustrated in Figure 3.4.

MMS Proxy

Relay Subscriber

Database

Originator
verification

Figure 3.4 Mobile user accessing MMSC

46

Traditionally, the user accesses Kodak via Internet as shown in Figure 3.5. The

authentication mechanism functions through the use of a username and a password.

www.Kodak.com
username:
password:

Kodak

Figure 3.5 User accessing Kodak

3.3.2 User Experiences

Once the MMSC and Kodak are federated by the Liberty technology, users can

benefit from single sign-on and identity federation.

Identity federation user experience

There are two options available for a federation user: explicit and implicit. They
both lead to user accounts linked between the MMSC and Kodak, as illustrated in Figure
3.6.
Explicit: An identity federation user experience can begin either from the MMSC or from
Kodak. The MMSC sends notification to the user asking if he/she consents to federate
with his/her Kodak account (Alternatively, when user logs onto the Kodak site, he/she
could be asked whether he/she agrees to federate with his/her MMSC account). Upon
answering “yes”, the user gets his’/her MMSC identity (MSISDN) federated with his/her

Kodak identity (user@Kodak).

47

Implicit: The user does not feel the federation initiation. Federation between an MMSC
and Kodak is created by a mutual agreement, after which all MMS subscribers are

considered federated with Kodak by default.

User name: abc

Identity Federation: Yes
MMSC

15147654321

MSISDN: 15147654321
MMSC Identity Federation: Yes
Kodak
abc

Figure 3.6 Identity federation user experience

Single sign-on user experience

Accessing Kodak from MMSC: Single sign-on user experience enables the users to
access Kodak via muitimedia messages. It means that, after federation, and upon being
authenticated in a Core Network, users can send requests to Kodak or receive

responses from Kodak via the MMSC. This user experience is shown in Figure 3.7.

MMSC

From: 15147654321 Kodak
To: Kodak

Request: Print pictures

Attachments: Picture files

Figure 3.7 Single sign-on user experience (access via MMS)

48

Accessing MMSC from Kodak: Single sign-on user experience can also enable the users
to access the MMSC via Kodak, for example, to check their messages via Internet, as
shown in Figure 3.8. This is optional depending on whether or not the MMSC allows

users to download the messages from Internet.

www.Kodak.com

Welcome abc, you are logged in. Kodak

Please select from the following services:
1. Upload pictures for printing

2. Update home addresses

3. Retrieve MMS messages

Figure 3.8 Single sign-on user experience (access via Kodak)

3.3.3 Message Flow Charts

Just as for the user, operators can also have two types of federation, explicit and

implicit. The message flows will again be different with different federation types.

Explicit federation

Explicit federation can be initiated from both sites. Scenario 1 is shown in Figure

3.9, in which the federation is initiated from an MMSC.

49

1. The user switches on his mobile phone. W ith access-based authentication,
he/she gets his/her MMS userID, ie, MSISDN. He/She sends a multimedia
message (MM) with pictures attached for Kodak to print.

2. The MM has to be sent via MMSC. Now MMSC receives the MM.

3. Relay verifies the originator of the MM (ie, the user) by checking subscriber
database whether he has a multimedia-enabled phone and whether he is in
blacklist. If the verification succeeds, the message is stored in message store.

4. Relay verifies if the
destination is Kodak.

No

5’. MMSC sends the MM as
normal message to another
phone or email

5. Relay verifies if the sender is
federated with Kodak?

Ye

6’. MMSC sends the MM as an
MM7 message to Kodak

™

(continued on Page 51)

50

)
l

6. MMSC needs to initiate the federation. MMSC sends a notification to originator “you
are not federated with your Kodak ID. Do you want to federate now?”

7. User presses buttons to
answers yes or no

No

8’. Message (request) is rejected by

MMSC. “You are not allowed to
send MM request to Kodak”

8. MMSC redirects the Mobile to Kodak’s web page. User needs to login once to Kodak.
He/She is prompted with username/password.

9. Kodak authenticates the user.
Successful?

No

10°. Authentication at Kodak fails. Kodak

Yes informs MMSC about this failure.
Message (request) is rejected by MMSC.
User is notified as “You are not
authenticated by Kodak”

10. Kodak’s processes federation and informs MMSC about the success.

11. MMSC sends the MM as an MM7 message to Kodak

Figure 3.9 Explicit federation: MMS C-initiated federation message flow

51

Scenario 2 is shown in Figure 3.10, in which the federation is initiated from

Kodak’s web page. User logs onto Kodak’s web page from his/her mobile phone.

1.The user turns on his mobile phone and logs into Kodak’s web page by
username/password

2. User gets prompt “You may
federate Kodak account with your

MMS account. Do you like to consent
to the federation?

[3’. Continue with Kodak’s services

]

3. No need to redirect to MMSC login page
since mobile accesses the network while
turned on. MMSC may need to verify if the
user is allowed to send MM (in blacklist?
Multimedia-enabled phone?)

4’, MMSC informs the user that it fails to
authenticate him/her

Yes

4. Kodak’s processes federation and informs user & MMSC about the success.

l

5. Start services. Both MMSC and Kodak’s services are accessible now]

Figure 3.10 Explicit federation: Kodak-initiated federation message flow

52

Note that the use of a PC always leads to Scenario 2. When the user logs in to
Kodak from a computer, the browser will direct the user for the federation. In this case,
Step 3 will be different, in that the user may need to provide login information in order to
be authenticated once by MMSC. There are two options:

1. The user needs to type his/her username and password if pre-assigned by the
MMSC.

2. There is no additional username and password. User just uses his/her

MSISDN for authentication. This option has security risk.

Implicit federation

By using implicit federation, user interactions are not involved in the federation
procedure. Federation is done when the MMS operator and Kodak agree to co-operate
to provide the users with enhanced services.

Whenever the user sends a picture to Kodak via a Multimedia message, MMSC
verifies the sender as usual, and then the message is forwarded to Kodak right away.
The message flow is illustrated in Figure 3.11. It is seen from this figure that the use of

the implicit federation is much simpler than that of the explicit federation.

3.4 Interactions within the Federation

If the operator chooses an implicit federation, the federation tags is added into
the user database by the MMSC and Kodak system administrators. In this case, any
extra authentication from Kodak will not be needed. However, implicit federation is not
recommended, because it is completely out of the control of the end-users; thus, it has
security risk, and may cause billing disputes. In this thesis, we therefore focus on the

explicit federation.

53

1. The user switches on the mobile phone. With access-based authentication, he gets his
MMS userID (MSISDN). He sends an MM with pictures attached for Kodak to print.

2. MM arrives at MMSC

3. Relay verifies the sender of the MM (ie, the
user) by checking whether he has a

multimedia-enabled phone or in blacklist, etc.
Verification successful?

No |

4’. MMSC rejects the message]

Yes

4. MMSC verifies if

destination is Kodak? No
5’. MMSC sends the MM as
Yes normal message to another phone

5. MMSC sends the MM as an
MMT7 message to Kodak

Figure 3.11 Implicit federation message flow

54

We use the single sign-on and federation profile that is described in [13].
Scenario 2 of explicit federation is a typical Liberty single sign-on federation profile. In
this profile, Kodak (service provider) obtains an authentication assertion of a user agent
from the MMSC (Identity provider) to facilitate the single sign-on. It is also the means by
which an identity is federated from a service provider to an identity provider through the
use of the_<NameIDPoIicy> element in the <lib:AuthenRequest> protocol message as

specified in [16]. The workflow of scenario 2 is shown is Figure 3.12.

Mobile User Agent MMSC Kodak

User hyperlinks to Kodak

User wants to federate the accounts. Kodak re-directs user to MMSC for an Authentication Reques

t

Authentication Request N

SAML Assertion Production

P MMSC re-directs user to Kodak

l

User provides authentication information (eithef a SAML assertion (POST model or a
SAML artifact on URL line (Pull model))

SOAP-pased back-channel communication if Pull model i used

SAML Assertion Consumption

SSO is enabled between MMSC and Kodak

A

Figure 3.12 Liberty SSO and Federation initiated by Kodak

In Scenario 1 of explicit federation, a mobile user automatically logs into the
MMSC while sending a message. In Figure 3.9, the first six steps are features of the
MMSC; at that time, federation has not yet taken place. The interactions within the
federation start at Step 7 of Figure 3.9. These interactions are broken down as shown in

Figure 3.13.

55

Mobile User

MMSC

Kodak

User turns on his mobile, sends MM, & agrees

MMSC returns introduction cookie to the user

o federate

User hyperlinks to Kodak

Kodak sees that user has a cookie from MMSC
re-directs user to MMSC for an Authentication

and knows user wants to federate the accounts. It
Request

»

<

Authentication Request

4

SAML Assertion Production

MMSC re-directs user to Kodak

User provides authentication information (eithe]
SAML artifact on URL line (Pull model))

I a SAML assertion (POST model or a

SOAP-

SSO is enabled between MMSC and Kodak

used

SAML Assertion Consumption

Figure 3.13 Liberty SSO and Federation initiated by MMS

3.5 Database

The persistent medium storage (such as the MMSC subscriber database or

Kodak user database) might need to be extended in order to store the Liberty-specific

account federation attributes. For each account in the persistent storage, it may be

necessary to the store federation records, indicating that the account has been federated

with an account at a remote service or identity provider. Each such "federation record"

references a single account, and contains three additional attributes.

The provider ID (a string) of the remote provider this account is federated with

56

e The locally-provided name identifier (a string), which the remote provider will use
to identify this user when sending back messages
e The remotely-provided name identifier (a string), which will be used when

communicating with the remote provider about this user.

For the ease of description, examples of table and column name are used in this
section. Assume that a relational database is used to store the account information. Also
assume that a database table “accounts” is already in place, defined with the columns of
“‘username” and “password”. The primary key is “username”.

In this scenario, it is required to add another table “account_federation” to store
the federation attributes, such as “username”, “provider_id", “local_name”, and
‘remote_name”. The column “username” in this table is a foreign key which references
the “username” in the “accounts” table. The columns of “local_name” and
‘remote_name” refer to the locally-provided name identifier and remotely-provided name
identifier mentioned previously. The values in the two columns can be opaque so that
the principal information, such as the real user name or the mobile number, is not
distributed across the network. When the identity provider and the service provider
receive the name identifiers from each other, they use specific mapping rule translate
them to obtain the real user names. The details about the name identifier can be found
in the description of the protocol of name registration and name identifier mapping in
[12].

The “account_federation” table should be created on both the identity provider
and the service provider sites. When there is a federation request, entries will be added
in the “account_federation” table on all sites, in our case, the MMSC and Kodak sites.

Figure 3.14 shows how one federation request affects the two databases.

57

Federation

e ———— - — ———

MSC “request Kodak

Account fed :% Account fed|
o = T .

eration table] eration table
Insert into

Federation table

Figure 3.14 Insertion of entries into ‘account_federation” tables upon a federation request

3.6 Summary

In this chapter, we have developed a model showing how the MMS could work
with other service/content providers, such as the Kodak picture center. We have
proposed the system architecture, system specification, message flows, and database
structures.

There are two options available to perform federation — explicit or implicit. Explicit
federation requires login to a service provider to initiate federation, which is more under
the user’s control. Implicit federation does not require any login for federation; this is
setup by mutual agreement between the MMSC and the service providers.

In the next chapter, we demonstrate how requests/messages are forwarded to a
service provider from the MMSC in different scenarios. Explicit federation, being the

safer solution, is developed in the demo system.

58

Chapter 4 Simulation Model and Test Result

In this chapter, a simulation model is presented in order to test the feasibility of
the MMS-based system for integrated services proposed in Chapter 3. For this purpose,
appropriate software is developed to incorporate the Liberty functionalities into the MMS
and Kodak applications, based on SourcelD Liberty 2.0 framework. The software works
in a network environment and enables the nodes in this network to communicate with

one another.

4.1 Simulation System Requirement

The hardware and software requirements are given below:

4.1.1 Hardware Environment
The simulation system is developed on a LAN network that contains at least two
computers to represent the MMSC and Kodak, as shown in Figure 4.1.
The hardware requirements are:
e Two computers each with a 1GHz or faster CPU, a memory of 256 MB or
more, and at least 20GB of hard disk space

o LAN adapters

LAN

MMSC Kodak
Simulator Simulator

Figure 4.1 Hardware environment for simulation

59

4.1.2 Software Requirement

The simulation software is developed in Java using the JBoss server as the web
service platform. Based on SourcelD Liberty 2.0, MMS and Kodak applications are
developed with customized data storage. The requirements for operating system and
software are listed below.

e Windows 2000 or XP, or Linux (Kernel 2.4.2+)

e Sun Java JDK 1.4.2

o Jboss 3.2.5
e SAAJ API
e MySQL 4.0

¢ MySQL Connector API

e SourcelD Liberty 2.0

4.2 System Development

In this simulation system, two nodes are developed — MMSC and Kodak, as
shown in Figure 4.1. At each node, applications composed of Java classes, servilets, and
JSP files are developed on the JBoss server. In order to integrate the Liberty protocols
with these applications, the interfaces provided by SourcelD Liberty 2.0 are implemented
into the simulation environment.

In general, exchange of messages between the nodes, picture printing, and
Liberty interactions are controlled by the workflow processes. The servlets are used to
send and receive requests, as well as to start the workflow instance. The JSP files
construct the login, logout, and message composition pages.

The functions of the MMSC simulator are as follows.

60

¢ Receive multimedia message from the mobile simulator

e Store messages

o Verify senders and recipients

e Forward the multimedia messages to mobile users or to VASP

e Contain federation information in its subscriber database

The functions of the Kodak simulator are as follows.
* Receive messages sent from the MMSC
e Print the picture that is attached in the multimedia message
e Access the MMSC from the Kodak page, if the user is federated with the
MMSC

e Contain federation information in its user database

In addition, there is a small application that simulates the mobile handset. It
consists of JSP pages and servlets. This “handset” is located at the same node of the

MMSC simulator.

4.3 Architecture and Workflow

4.3.1 Architecture

The simulation system is composed of a web container [26] and a J2EE
container (see the Glossary), which are mapped into the physical Java packages. The
J2EE container is formed from a workflow engine and a workflow package. In this
system, OBE is used as the workflow engine to handle the workflow. In the workflow

package, various processes are defined. Each process is composed of participants,

61

activities, and relevant data, etc. The web container manages the execution of JSP page
and servlet components for J2EE applications.

The high-level architecture shown in Figure 4.2 is constructed by mapping the
Java packages with the J2EE container and Web container into workflow conceptual

architecture.

 J2EE Container

Perform‘

Activities =~ [€7TTTTmmmmemeeees

Applications

Figure 4.2 Mapping Java classes to the workflow architecture

62

4.3.2 Workflow Package
In the simulation system, one new process, “MMSC verify”, is added to the
workflow package. The pattern of the modified workflow package is illustrated in Figure

4.3.

Cp SEOIF d]; SRS :Epwm

C L fFTN Init jIIIIIZIMMScurifv i

Figure 4.3 The workflow package pattern for the simulation system

The process “MMSC verify” has the activities, VerifySender, Fail-verification,
Iskodakdestination, Federation-success, PrintMessage, Mmsc-end, SendMessage,
Response-error, GetFedinfo, InitiateFederation, and Federation-ok. These activities are
mapped into the methods in Java classes. The description of the activities can be found
in Section 4.4. The inter-working of these activities forms the process flow of “MMSC

verify” as shown in Figure 4.4.

63

Figure 4.4 Process flow of “MMSC verify”

The process “MMSC verify” uses the relevant data, Msisdn, Mmheader,
Mmbody, VasplD, Sessioninfo, RelayState, Fedinfo, and Soapmessage. They carry the

information that is needed for the activities to be performed.

4.4 Java Classes and Packages

A Java package is made up of a set of Java classes that deal with specific tasks.
In our simulation system, there are 4 types of Java packages, adapters, participants,

servlets, and work units.

4.4.1 Participant

Participants perform the work represented by workflow activity instances, for
example, log the user out, federate the user, etc. In this simulation system, there is one
participant named “MMSC”. In the participant package, there is one Java class
“MMSCPariticipant.class™. This class specifies the activities that are performed by the

participant “MMSC”. The class is illustrated in Figure 4.5 (see [27] for class diagram).

64

Figure 4.5 The class “MMSCParticipant.class”

The activities are as follows

GetFedinfo: to retrieve federation information and pass it to workflow

65

InitiateFederation: to initiate the federation

PrintMessage: to call the printing service on Kodak side to print the picture
SendBackError: to return the authentication failure from MMSC
SendMessage: to compose and send messages to Kodak

GetHeader: to get the message header

4.4.2 Work Unit

Work units are actually the workflow applications. They handle part of the
processing required to support a particular activity (or activities), for example, create and
return the assertion, or retrieve and return the artifacts.

In the work unit package, there is one class named “VerifySender.class” as
illustrated in Figure 4.6. This class verifies if the sender is a valid MMS user. It queries
the database table to check whether this user is in the blacklist, has enough funds, etc,

and returns the session information indicating the result of querying.

4.4.3 Serviet

Servlets are Java classes that run as part of network services, typically web
servers, and respond to requests from the clients. The single sign-on initiation service,
federation termination service, etc, are implemented via serviets. In our simulation
system serviets are also responsible to start or resume workflow processing. There are
four serviet classes in the package, “MMSCiInitiateServlet.class”, “MMSCServiet.class”,
“ResumeCenterService.class” and “SOAPRouterServiet.class”, shown in Figures 4.7-

4.10, respectively.

66

Figure 4.6 The class "VerifySender.class"

67

As shown in Figure 4.7, “MMSCiInitiateServiet.class” contains one method,
“doPost’. Its functionality is to build up the SOAP message, pass it to workflow, and start

the workflow instance.

Figure 4.7 The serviet “MMSCinitiate Serviet.class”

In Figure 4.8, the serviet “MMSCServiet.class” is illustrated. This serviet
processes the user’s login, redirects the user to Kodak site, and lists the user messages
in his/her message box. The methods and their functionalities in this Java class are as

follows:

68

GetAlINewMessages: to list the received messages of the user

GetAllISendMessages: to list the sent messages of the user

DoGet: to authenticate the user using HTTP GET

DoPost: to authenticate the user using HTTP POST

DoProcess: to authenticate the user and direct the user to appropriate pages
GoTologinPage: to prompt the login page of the identity provider
GoToSPApplicationPage: to login to service provider's page and meanwhile enable the

access to identity provider as well

SetURLAttrs: to set the URL attributes, for example, base URL, returning URL, etc.

Figure 4.8 The serviet “MMSCServiet.class”

69

The serviet “resumeCenterService.class” is composed of one method “doGet” as
shown in Figure 4.9. This servlet is to resume the workflow process. When the workflow
directs the user to another node, it enters a “hanging” status. After the tasks at the other

node are finished, this servlet triggers the workflow process to resume.

Figure 4.9 The serviet “ResumeCenterService.class’

70

The servlet “SOAPProuterServiet.class” is shown in Figure 4.10. It has two
important methods:
DoPost: to build the SOAP message and post it to the service provider

GetHeaders: to retrieve the message header

Figure 4.10 The servlet “SOAPRouterServlet.class”

71

4.4.4 Adapter

Through adapters, workflow activities fetch or update appropriate information,
such as federation information and session information. Adapter classes are illustrated in
Figures 4.11- 4.13.

The adapter “AuthnAdapterimpl.class” shown in Figure 4.11 processes the
session information and get the authentication information. There are two methods in
this class:

GetSessionlInfo: to retrieve the session ID

GetAuthnlinfo: to analyze the session information and retrieve the user’s login status and

principal ID.

Figure 4.11 The adpter “AuthnAdapterimpl.class”

72

The adapter “MMSCEventAdapter.class” is shown illustrated in Figure 4.12. It
adds or removes the provider ID upon the creation or termination of federation. There
are two methods in this class, namely:
onFederationCreated: to add provider ID into the database upon federation created
onFederationTerminated: to remove the provider ID from the database upon federation

terminated

Figure 4.12 The adapter “MMSCEventAdapter.class”

The servlet “MMSCFederationStore.class” is illustrated in Figure 4.13. The
method “isFederateWith” in this adapter queries whether an account is federated with

the other service providers from the federation table in the database.

73

Figure 4.13 The adapter “MMSCFederationStore.class”

4.5 Configuration Files

In order that the Java packages, serviets, workflow, and the database can work
together as a system, configuration files are needed. Some important configuration files
are described below.
idff12.xpdl: This is the workflow configuration file. It defines the processes, activities,
participants, relevant data, and so on in the workflow package.
web.xml: This file defines the mapping relationship between the servlets and Java

classes, so that the web server can locate the physical class files by the serviet names.

74

mysql-ds.xml: This file tells the database name, database type, database location,
communication protocol, and communication port. From this file, Java applications get
the information as to how to communicate with the MySQL database.
sourceid-provider-directory.xml: This file tells how many providers we have, where they
are located, what Liberty protocols they can use, and what profiles are created for those
protocols.

sourceid-pworkers.xml: This file tells how to map the activities in the workflow to the

methods in Java classes.

4.6 Database

SourcelD Liberty 2.0 stores the account information in the memory of computers.
In order to create a simulation system as close as possible to a production system,
MySQL, a popular open source database is used. There are two databases in our

simulation system — the MMSC and Kodak databases, namely “idp” and “sp”.

4.6.1 Table Structure

In the “idp” database, the following tables are created:
usertbl: This table contains MSISDN, username, password, and other user information
such as address and payment type, and is shown in Table 4.1.
fedtbl: This table specifies as to whether a subscriber is federated with his/her Kodak
account (or accounts in other service providers if there are more service providers), and
is shown in Table 4.2.
vasptbl: This table specifies as to how many VASPs the MMSC has, and which VASPs

are in the circle of trust with MMSC, and is shown in Table 4.3.

75

Table 4.1 User table description

Column Name Data Type NULL? Primary Key?
Msisdn Varchar(15) NOT NULL Yes

Address Varchar(250) No
Is_prepaid Char(1) No

If_fed Char(1) NOT NULL No

Password Varchar(10) No
username Varchar(40) No
multimedia Char(1) No

Table 4.2 MMSC Federation table description

Column Name Data Type NULL? Primary Key?
Msisdn Varchar(15) NOT NULL Yes
Vasp_id Varchar(40) NOT NULL No
Idpname_id Varchar(20) No
Spname_id Varchar(20) No

Table 4.3 MMSC VASP table description

Column Name Data Type NULL? Primary Key?
Vasp_name Varchar(30) No
Vasp_id Varchar(40) NOT NULL Yes
Circle_of_trust char(1) No
Vasp_link Varchar(255) No

In the “sp” database, the following tables are created:
usertbl: This table contains MSISDN, username, password, and other user information,
such as address and payment type. The structure of this table is the same as

“idp.usertbl.”

76

fedtbl: This table specifies as to whether a subscriber is federated with his/her Kodak
account (or accounts in other service providers if there are more service providers). The
structure of this table is the same as “idp.fedtbl”. Note that in some service providers, the
MSISDN may not be registered. In this case, the “sp.fedtbl” does not contain the column
of “MSISDN?". In stead, it contains the column of “username” and uses “idpname_id” and

“spname_id” to map the MSISDN in MMSC side.

4.6.2 Database Interface and Application Classes

There are two interface classes, “DBHelper.class” and “JndiHelper.class”, that
allow the system to communicate with the MySQL database.

DBHelper.class: Creates and closes the connection to a database server
JndiHelper.class: Accesses remotely the database server. It is invoked in “DBHelper” to
search for the data source.

The application classes “User.class” and “UserManag.classe” manipulate the
user databases through the database interface classes that were discussed above.
These classes are described below:

User.class: This class creates the connection to the database by calling
‘DBHelper.class”; then queries and updates the table “fedtbl”. When the tasks are
completed, it closes the connection via “DBHelper.class”.

UserManager.class: This also calls “DBHelper.class” to create the database connection;
then queries username and password from usertbl; finally, it closes the connection via

“‘DBHelper.class”.

77

4.7 Test Results

In this section, we can provide some test results using the simulation model
developed in this chapter.
User tables before federation

Before federation, the user tables at MMSC and Kodak sides contain their own
user entries. They can have a common field, MSISDN, as the foreign key. The example
records for the MMSC user table is illustrated in Figure 4.14, and those for Kodak user
table in Figure 4.15. “Joe1” on MMSC and “test1” on Kodak are actually the same user
having an identical mobile number. At this moment, the federation tables don't contain

any records yet. The empty results from the query on MMSC and Kodak sides are

shown in Figure 4.16 and 4.17.

Figure 4.14 MMSC user table before federation

Figure 4.15 Kodak user table before federation

Figure 4.16 MMSC federation table “fedtbl”

78

Figure 4.17 Kodak federation Table “fedtbl”

Mobile subscriber sending a message to Kodak
In our simulation system, the short code for Kodak is “0002". This is stored in

VASP table at the MMSC side. The table structure and the records of this table is shown

in Figure 4.20.

Figure 4.18 Records of VASP table at MMSC side

In order to send a message (which can be a request for picture printing), “joe1”

composes his message as shown in Figure 4.21.

_ ‘béfl%.,weleome to MMSCH Logout
senid &' message to []0002; ' I
P S e

test message 2

attachment

Figure 4.19 Composition of joe1’s message to be sent to Kodak

79

Pending confirmation of federation
If the sender is not federated with Kodak, MMSC asks if he/she would like to

federate, as shown in Figure 4.20. The user can then reply yes or no to this query. The

username and password are needed if the user chooses yes.

lcometnKodak

 User name: Jtesti |

‘Password:- Iﬁ

Figure 4.20 The user’s decision to federate with Koda or not

Federation of account and transmission of message
If the user agrees to federate or already federate with Kodak, a record as shown

in Figure 4.21 and 4.22 is added in the federation tables at the MMSC and Kodak sites.

Figure 4.21 MMSC federation table after federation

80

Figure 4.22 Kodak federation table after federation

Then the client’'s message is sent to Kodak for printing. In our demo, this is

illustrated by printing the picture to a file as shown in Figure 4.23.

Figure 4.23 Printing of the attached picture to a file by Kodak

Accessing MMSC from Kodak
The user logs into the Kodak web page. Since his/her accounts in MMSC and
Kodak have been federated, he/she can also check his/her multimedia messages which

are stored in MMSC, as shown in Figure 4.26.

1. ODAK Application

- Hello testl; welcome to the KODAK Application!

Jlogout
“You have federated with: hitp//mmsc-idp..
‘terminatefedetation 4

Your have sent out messages:
o Message |
514-7770763|jpest message 1]

Figure 4.24 Retrieval of user's multimedia message stored at MMSC via Kodak web page

81

4.8 Summary

In this chapter, a simulation model has been developed to demonstrate the
implementation of the MMS-based system for integrated services proposed in Chapter 3.
Two computers were connected to a LAN to simulate an MMSC and a service provider.
The messages/requests sent across the LAN between two computers use the SOAP
format. Incorporating the MySQL database into the simulation model has provided a
substantial improvement over the memory-storage-based original SourcelD Liberty 2.0
framework. The experimental results have shown that the goal of seamless and

transparent access to service providers can be achieved using proposed scheme.

82

Chapter 5 Conclusion and Future Work

5.1 Conclusion

A prototype for implementation of Liberty identity federation and single sign-on in
multimedia messaging service (MMS) has been proposed in this thesis. MMS offers
subscribers various multimedia content services via a simple click-and-send operation.
Liberty single sign-on and federation protocol enables users to login once, but access
multiple service providers (SP). Hiding additional authentications provides users with a
seamless environment between the multimedia messaging service center (MMSC) and
service providers. This proposed prototype brings the following benefits to the end-
users, operators, service/content providers, and developers.

End-users can have seamless access to the various services. No multiple
authentications are needed. Since services are linked together, it becomes possible for
the users to combine their bills into a single one from the MMSC. Then they do not need
to pay dozens of bills from different service providers.

MMS operators will gain more value-added subscriptions, linking the customers
to different types of content providers. Acting in the new role of Identity provider (IdP),
MMS operators can establish long-term trust relationships between the subscribers and
service/content providers.

The service/content providers can access the larger customer base. They will
encounter fewer barriers in attempting to entice users to try new services. It becomes
possible for the service/content providers to reduce their user database storage, since

they can share some user profiles in the MMSC database.

83

The design proposed in this thesis makes it possible for developers to focus
more on service business logic. Liberty SSO reduces the burden of service developers
to re-implement algorithms for user administration and distributed access control,
allowing for a wider portability and faster deployment of new services.

All these benefits will bring about an increased mobile e-commerce, increased
multimedia content trafﬁg, and of course, new revenue streams.

This thesis has also simulated the proposed prototype. This simulation has
shown that a direct linkage between the MMSC and service providers is implementable.
In the simulation system, simple object access protocol (SOAP) is used as the basic
messaging protocol. Its most significant benefit is that it is not tied to any particular
operation system or programming language. With SOAP, MMSC can exchange
messages with any of the service providers. In our demonstration, the business process
is automated and this improves control of the process, with far less management

intervention, and very little chance for delays or misplaced work.

5.2 Scope for Future Work

This thesis has been an attempt at testing and demonstrating the advantages of
using Liberty single sign-on in multimedia messaging service (MMS). Obviously, the next
step is to implement this system commercially. There is always room to improve the
system or make the system more general.

In the simulation system, a function box has been used to act as the MMSC
system. In fact, MMS is a very complex system. Therefore, in order to add Liberty
features to it, our job is not as easy as simply merging the class files from our simulation
system into relay codes. There will have to be some major changes to be incorporated at

the MMSC and some of these are given below:

84

Proxy-Relay: Relay needs to verify if the subscriber has federated his/her accounts with
the service provider.
Message Store: Message store needs to retry delivery if the user is federated, or delete
the message if he/she is not federated.
Subscriber Database: The subscriber table should contain a field indicating whether this
subscriber has federated his/her account with other service providers. The record in the
federation table should show which of the providers he/she is federated with. The
federated providers may number more than one.

On service/content provider side, serviets are needed to receive and respond to

the request coming from the MMSC.

85

Appendix

The computer programs have been developed using Java language and run on
two computers that are connected to a LAN to demonstrate the implementation of the
MMS-based system for integrated services. The programs are developed based on
SourcelD Liberty 2.0 framework, using JBoss as the web server, MySQL as the
database, SOAP as the message format, and SAAJ API for SOAP attachment. The
simulation programs, web server software, database software, and API packages are

included in a CD-ROM with proper headings, as part of the thesis.

86

Reference

[}

[2]

3]

4]

[5]

(6]

[7]

(8]
(9]

[10]

[11]

[12]

“MMS—Building on the success of SMS”, Ericsson Review, No. 3, 2001

Changjie Wang, Fangguo Zhang and Yumin Wang, “Secure Web Transaction
with Anonymous Mobile Agent”, Journal_ of Computer Science and Technology,
Vol. 18, No. 1, pp.84-89, 2003.

Scott Stark, Marc Fleury and The JBoss Group, ‘JBoss administration and
development”, Sams Publishing, 1999

S. Landau and J. Hodges, “A Brief Introduction to Liberty”’, Sun Publications, Feb
2003

Le Bodic and Gwenaél, “Multimedia message service: an engineering approach
to MMS”, Wiley, 2003

Scott B. Guthery and Mary J. Cronin “Developing MMS applications: multimedia
messaging services for wireless networks” McGraw-Hill, 2003

Daniel Ralph and Paul Graham, “MMS: technologies, usage, and business
models” Wiley, 2004

D. Livingston, “Advanced SOAP for Web Professionals”, Prentice Hall, 2002
Overview of SOAP
http://java.sun.com/developer/technicalArticles/xml/webservices/

Bian R. Richardson, “An Architecture for Identity Management”, Master Thesis,
Massachusetts Institute of Techinology, Massachusetts, US, 2001

Liberty Alliance Project, “Introduction to the Liberty Alliance Identity Architecture”,
Revision 1.0, Mar 2003

S. Cantor and J. Kemp, “Liberty ID-FF Protocols and Schema Specification”,

Version 1.2, Liberty Alliance Project, IEEE-ISTO, 2004

87

3]

(14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

Scott Cantor and John Camp, “Liberty ID-FF Bindings and Profiles Specification”,
Liberty Alliance Project, IEEE-ISTO, 2003

Davis, Peter, eds. "Liberty Metadata Description and Discovery Specification,”
Version 1.0-errata-v2.0, Liberty Alliance Project, Sep 2004

Maler, Eve, Mishra, Prateek, Philpott, Rob, eds. "Assertions and Protocol for the
OASIS Security Assertion Markup Language (SAML) V1.1," OASIS Committee
Specification, version 1.1, Organization for the Advancement of Structured
Information Standards, May 2003

A Frier, P. Karlton, and P. Kocher, “The SSL Protocol Version 3.0, RFC2616,
Hypertext Transfer Protocol -- HTTP/1.1, June 1999

Dierks, T., Allen, C., eds. (January 1999). "The TLS Protocol," Version 1.0 RFC
2246, Internet Engineering Task Force, Jan 1999

“‘Digital Identity Basis”, Pingldentity

http://www.sourceid.org

M. Lu, A. Lao, and Y. Lu, “Reference Architecture of Internet Single Sign-On”,
Master Thesis, University of Waterloo, Waterloo, Ontario, Canada, Mar 2003
“Workflow Management Coalition Terminology & Glossary”, The Workflow
Management Coalition, Issue 3.0, Feb 1999

http://www.wfmc.org/standards/docs/TC-1011_term glossary v3.pdf

C. Plesums, “Introduction to Workflow”, The Workflow Management Coalition,
Jan 2005

N. Stefanovic, S. Bojanic, and V. Puskas, “JaWE Tutorial - Java Workflow
Editor’, Aug 2004

http://jawe.objectweb.org/doc/1.2/Tutorial/index.html

Roberta Norin, “The Workflow Management Coalition Specification’, The

Workflow Management Coalition, Version 1.0, Oct 2002

88

[24]
[29]
[26]

27

SourcelD Project, “SourcelD Liberty 2.0 Beta User's Guide”, Ping Identity
Corporation, 2004

J. Hodges and T. Wason, “Liberty ID-FF Architecture Overview”, Liberty Alliance
Project, IEEE-ISTO, 2004,

Scott Stark, Marc Fleury and The JBoss Group, “JBoss administration and
development”, Sams Publishing, 1999 |

Stevens Perdita, “‘Using UML: software engineering with objects and

components”, Addison-Wesley, 1999

89

