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ABSTRACT
Wavelet Domain Image Restoration using Adaptively Regularized

Constrained Total Least Squares

Xiaojun Zhang'

This thesis is concerned with image restoration techniques using adaptively regularized
constrained total least squares (ARCTLS) and wavelet transforms. The objective of the
thesis is to improve the conventional ARCTLS algorithm by exploiting the subband
properties of both the degraded image and the point spread function (PSF) of the
degradation system.

First of all, two most frequently used restoration algorithms, namely, the regularized
constrained total least squares (RCTLS) and its adaptive version (ARCTLS) are
investigated. The solutions of the two techniques in the DFT domain are emphasized in
order to reduce the computational complexity. It is shown that both techniques are very
suitable for the degradation situation where the (PSF) and the observed degraded image
are subject to the same type of error. A new termination criterion is also proposed for the
iterative ARCTLS algorithm to increase the convergence rate. Our simulation results
show that the convergence speed using the proposed criterion is at least 20% faster than
that used of the conventional ARCTLS method.

Secondly, a wavelet-domain image restoration technique using ARCTLS is presented.
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The 1-D and 2-D wavelet transform matrix representations are formulated for both the
degraded image and the degradation convolution operator. A class of orthonormal wavelet
based quadrature mirror filter bank is investigated and applied to the subband
decomposition of the degraded image and the PSF as well such that the conventional
ARCTLS algorithm can be employed for each subband image restoration. The restored
subband images are then reconstructed using the QMF to yield the complete restored
image. Computer simulation of the proposed method is conducted based on some
standard test images. The experimental results show‘that the proposed wavelet-domain
ARCTLS (WARCTLS) technique outperforms the conventional ARCTLS in terms of the

improved signal-to-noise ratio (ISNR) of the restored image.
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Chapter 1

Introduction

1.1 General

It is known that humans receive the vast majority of their sensory inputs through visual
systems. Vision is the most advanced of our senses and plays the key role in human
being’s life. Great efforts have been made to artificially enhance our visual systems.
Eyeglasses, binoculars, telescopes, radar, infrared sensors, and photo-multiplies all
function to improve our view of the world and the universe.

Digital imaging has been widely used in medicine, aerial space, law enforcement,
national defense, and industrial applications. With the rapid development of digital
techniques and devices, such as very powerful computers, the field of image processing
has grown vigorously in the past decades. In addition to applications in medicine and the
space program, digital image processing techniques now days are used in all aspects of
our life. With the increasing use of digital cameras, scanners, and internet services, the
topic of image processing and/or analysis can be carried out more easily and efficiently.
For example, with remote image acquisition systems and the network technology, people
can access to and process on-line image signals that are being captured far away, as

required by remote medical diagnosis and remote sensing.
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Millions of images might be created every day in different fields. However, many of
the images may not be of good quality due to various reasons. For instance, they might be
degraded by the defects of optical lenses, the nonlinearity of electro-optical sensors, the
graininess of film material, the relative motion between an object and the camera,
improper focus, atmospheric turbulence in remote sensing or astronomy, etc. It is,
therefore, very important to develop image restoration/enhancement techniques such that
the original or the undergrade images can be restored.

Image restoration, as a subfield of digital image processing, has been receiving a great
deal of research attention over the past decades. The ultimate aim of image restoration is
to find the best approximation of the original image from the degraded version. It usually
involves some means of undoing a distortion that has been imposed, such as motion blur
or film graininess. Although this reverse process cannot be perfectly completed in most
cases, vast improvements on the restoration quality have been possible in some
circumstances [1]. As an image restoration problem is usually ill-conditioned, it in
general lacks a unique solution. The number of possible solutions is limited only by
human ingenuity. In this sense, the problem of image restoration results in an

unmanageable and diverse field [2].

1.2 Brief Review of Image Restoration Techniques

1.2.1 Discrete Restoration Model

Image restoration can be modeled in different ways according to the specific type of



problem at hand. For example, it may be established as an inverse filtering problem if the
degradation has been caused by a 2-D linear and space-invariant system. Furthermore,
physical processes that govern image processing may make it possible to describe the
degradation in a compact and specific manner such that a numerical/mathematical
solution to the restoration problem can be found. Like most of the image restoration
problems addressed in literature, we assume in this study that the degradation is caused
by a linear space-invariant system and additive noise.

Figure 1.1 shows a model of the linear space-invariant degradation process with

additive noise followed by a restoration process [3].

Restoration

Degradation
Filter(s) —_— j} (m,n)

Am;n) =X function
H

; n(m,n),
' DEGRADATION ' RESTORATION

Figure 1.1 A model of image degradation/restoration process.

The degraded image can be expressed in the spatial domain as following

g(m,n) = h(m,n)* f(m,n)+n(m,n)
=2, hm=i,n=j)fG, /) +n(m,n) 1.1
i
where g(m,n) is the degraded image, h(m,n) the spatial-domain representation of the
degradation function/process, commonly referred to as the point spread function (PSF) of
the degradation system, f(m,n) the original/ideal image, and 1(m,n) a random additive

“* ”

noise process. The symbol denotes the convolution operation. Equation (1.1) can be
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rewritten equivalently in the frequency domain as

G(u,v) = H(u,v)Fu,v)+ N(u,v) (1.2)
where u, v are the spatial frequency variables, and the capital letters G H, F and N
represent the Fourier transforms (FT) of the lower-case counterparts in (1.1). The
restoration problem is to find an estimate of the original image f{m,n) or its FT through

mathematical or optimization means either in the spatial or in the frequency domain.

1.2.2 Typical Image Restoration Techniques

1.2.2.1 Commonly Used Restoration Techniques

Image restoration techniques can be divided into two categories: deterministic methods
and stochastic techniques. Generally speaking, deterministic methods are applicable to
images with little noise and known degradation function. Stochastic techniques, usually
giving better restoration results, seek to minimize some statistical error measurements
such as the total mean squared error between the original image and the degraded one.
Stochastic techniques also need some knowledge about the degradation process but not
necessarily the complete degradation function. Certainly, it is more advantageous if the
degradation function in question is completely known [2]. However, in most practical
applications, there is no sufficient knowledge available about the degradation, and very
often an approximation or estimation of the unknown degradation model has to be
performed. There are basically two methods for implementing such an estimation

depending on whether a priori knowledge or a posteriori knowledge is employed. A priori



knowledge about degradation is often available in many applications. For instance, when
an image is degraded by a relative motion of an object with respect to the sensor, the
degradation model should contain the speed and direction information of the motion of a
capturing device such as a TV camera. The nature of the degradation remains unchanged
during the motion period, and the speed and direction parameters can be estimated by
studying a known sample image. Thus, the motion model and the parameters serve as a
priori knowledge. On the other hand, a posterior knowledge can usually be obtained by
analyzing a degraded image [4].

Most of the existing restoration techniques have attempted to use a priori knowledge of
the degradation process for recovering the original image. This class of restoration
methods is considered to be degradation model oriented. Based on the model used to
introduce a priori knowledge, restoration algorithms may further be classified into two
categories, namely, algorithms using space-invariant (stationary) models and those using
space-variant (nonstationary) models. The use of stationary image models has been
widely considered since these models can simplify the computational complexity of
many restoration algorithms. However, the space-invariant assumption is not always true
for images in real world. Therefore, many space-variant image restoration algorithms
have been proposed in literature. Some examples include the algorithms that exploit the
properties of the human visual system (HVS), and the recursive algorithms employing the
Kalman filter [5], [6], [7]. A local decision process has been proposed in [8] to switch

between different auto-regressive (AR) models, capturing the orientation of the edges
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present at different spatial locations. In [9], an AR model driven by a white noise has
been used to model the residual image. A maximum a posterior probability (MAP)
method has also been proposed for nonstationary images. In [9] and [10],
doubly-stochastic Markov random fields were used to minimize the nonconvex objective
function associated with the restoration problem.

Some linear space-invariant image restoration algorithms, including the maximum
entropy algorithm (MEM) [11], the Richardson-Lucy (RL) algorithm [12], and the
likelihood cross-validation .algorithm [13], have been developed for restoring HVS
images. The pseudo-inverse filter, the minimum mean-square-error filter or the Wiener
filter, and the constrained total least squares (CTLS) filter, have also been used to solve
the restoration problem under the framework of a linear space-invariant degradation
model [11].
1.2.2.2 Techniques Used to Develop the Proposed Approach

In this subsection, a few restoration methods that are closely related to the proposed
approach are reviewed. Because of the presence of noise, solving Equation (1.2) is
usually an ill-posed problem, implying that the solution may not be existent, unique or
stable. In recent years, a lot of research work has been done on image restoration,
resulting in some efficient algorithms. In [14], Katsaggelos et al have proposed the idea
of employing a regularization function for solving ill-posed problems, which is regarded
as a very effective restoration method.

The regularized constrained total least-squares (RCTLS) algorithm using a

6



regularization function has proven more successful than the constrained total
least-squares (CTLS) algorithm and the total least-squares (TLS) algorithm when both
the point spread function (PSF) and the degraded image are subject to the same type of
errors [14]. Since the selection of the regularization parameter in RCTLS is based on the
visual inspection of individual restored result, it is actually a trial-and-error scheme and
there is no guarantee to have a high-quality restored image. To solve this problem, some
researchers have proposed adaptively regularized constrained total least-squares
(ARCTLS) algorithm to improve the RCTLS [15].

Wavelet transform (WT) has been an important tool for mathematical analysis and has
found a wide range of applications in recent years. The wavelet-based subband
decomposition has been extensively used for image compression, transmission, as well as
analysis. It can also be applied to image restoration. A wavelet-based restoration approach
involves the decomposition of the degraded and the estimated images into multiple
channels based on their local frequency contents. The decomposition can be carried out
by using a filter bank derived from a wavelet transform. The restoration problem is then
converted into that of each multi-channel image [16]. The advantages of using the

multi-channel restoration approach can be summarized as follows [17]:

It allows for the regularization of each channel separately by considering the

local properties of both the image and the noise. It also offers the flexibility of

incorporating the inter-channel relations into the restoration.



It allows us to exploit a priori knowledge at various resolution levels. Since one

has a higher confidence in the restoration of lower resolution features in comparison
to finer resolution features, the wavelet enables the determination of the trade-off
between the resolution and the accuracy directly at each resolution level. This makes
it possible to incorporate the data and a priori information about the original image
into the same restoration algorithm at different resolution levels, thus providing a

natural environment for data fusion applications.

1.3 Objective and Organization of the Thesis

It has been stated in the previous section that the RCTLS and ARCTLS algorithms can
efficiently be applied to image restoration where both the PSF and the degraded image
are contaminated by the same type of errors [14]. It has also been shown that the wavelet
based subband approaches have become an appealing image restoration technique in
recent years [18]-[20]. In this thesis, we attempt to develop the wavelet-domain ARCTLS
restoration methods. To the best of our knowledge, the combination of ARCTLS and
wavelets for image restoration has not yet been available in the literature. Our objective is
to improve the conventional ARCTLS algorithm by exploiting the subband properties of
both the PSF and the degraded image.

The rest of the thesis is organized as follows. In Chapter 2, some background material
on wavelet theory is presented including the multi-resolution analysis (MRA) concept of

signal/image, the advantages of using wavelets as well as the most commonly employed
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fast discrete wavelet transforms based on orthonormal wavelet families. Quadrature
mirror filters (QMF) which are based on orthonormal wavelet basis with compact support
are also reviewed.

In Chapter 3, the matrix structures of multichannel linear filtering are described,
followed by a brief discussion of the regularized constrained total least-squares (RCTLS)
restoration algorithm with an emphasis on the adaptively RCTLS (ARCTLS) scheme. A
strategic solution to the ARCTLS problem in DFT domain is derived. A new termination
criterion with appropriate matrix-vector norms is also proposed to improve the
convergence speed. The RCTLS and ARCTLS algorithms are computer-simulated to
show the restoration results for different test images.

Chapter 4 presents the proposed image restoration methodology using the
wavelet-domain adaptively regularized constrained total least-squares (WARCTLS). Both
one-level and two-level wavelet decomposition matﬁces are applied to the input image
and the point spread function (PSF) as well in order to obtain the subband coefficients. It
is shown that a separable two-level decomposition matrix can easily be obtained from the
one-level wavelet matrix. A simulation study of the proposed algorithm is conducted to
confirm the superiority of the wavelet-domain ARCTLS over the two conventional CTLS
methods without using the wavelet decomposition.

Finally in Chapter 5, some concluding remarks on the completed work and suggestions

for future study are provided.



Chapter 2

Introduction to Wavelets

This chapter presents a brief review of wavelets and multi-resolution analysis of
signals and images, including some fundamentals on wavelet transforms and the wavelet

based filters. Detailed discussions in this regard can be found in [16]-[27].

2.1 General

Signal analysis is of crucial importance in many areas. The key idea of signal analysis
is to decompose a signal, denoted as f{x), into a linear combination of expansion
functions

YORPINAC) @1
where a, are real-valued coefficients, k¥ an integer index of the finite or infinite sum,
and ¢,(x) the expansion functions. Then, the signal can be better analyzed/interpreted
in terms of the expansion/basis functions ¢, . In many applications, f(x) can be expanded
as a few terms only, if the coefficients a, and a family of functions ¢, are properly
chosen.

Fourier transform (FT) is the most commonly used transformation for signal analysis

in signal and image processing field. The FT usually converts a signal from either the
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time or the spatial domain into the frequency domain. According to the Fourier analysis,
any signal/image can be expressed as the sum of a number (infinite or finite) of sine and
cosine components. For a finite-duration signal or image f{n), the discrete version of FT

(DFT) is extensively used, which is defined as [28]

N-1
Transform: F(k)= 2 fmwre (2.2a)
n=0
1 N-1
Inverse Transform: f(n) = F21~"(1¢)W,;"" (2.2b)
k=0
-j@n/N)

where, W, =e and N is the length of the signal. The DFT is implemented, in
general, by the fast Fourier transform (FFT). The computational complexity of FFT is
Nlog;N.

The Fourier representation reveals the global spectral content of a signal, but it cannot
reflect some time-varying features of a signal during a particular period of time, or some
local information in particular space coordinates in the description of images. Therefore,
the Fourier representation is not capable of describing transient and nonstationary signals.

To facilitate the analysis of transient signals, i.e., to localize both the frequency and the
time information of a signal, a number of basis functions have been proposed. More
recently, wavelet transforms have been developed for the analysis and processing of
signals and images. Wavelet transforms (WT) are based on small waves, called wavelets,
of varying frequency and limited duration. This composition allows them to provide the

equivalence of a musical score for an image, indicating not only what notes (or

frequencies) to play but also when to play them. Some of the important features of
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wavelets include the good decorrelation property and the sparse representation of images.
Figure 2.1 shows the time-frequency tiles for FFT and a fast wavelet transform (FWT),
where part (a) represents sampled data in the time-domain which provide no frequency
information, part (b) represents a sinusoidal DFT basis in which no time resolution is
reflected, and part (c) is an FWT basis which shows both time and frequency resolutions.
It is also observed from Fig. 2.1 (c) that the time and frequency resolutions can be
converted, namely, a better time resolution can be achieved at the expenses of sacrificing
some frequency detail, vice versa. The main characteristics of wavelets that make them

ideal for signal and image representation can be summarized as follows.

£ouanbazg

Time Time Time

(a) (b) (c)
Figure 2.1 Time-frequency tiling for (a) sampled data (b) FFT, and (c) FWT.

1) Based on the multi-resolution concept, wavelets allow us to decompose and
analyze a signal at different resolution levels (scales).

2) Wavelets have a good smoothness, which can be characterized by their number of

12



vanishing moments. A function defined on the interval [a, b] has n vanishing
moments if
j: FOx'dx=0 2.3)
for i=0,1,...,n-1. The number of vanishing moments represents to what degree of
smoothness a signal can be approximated on a wavelet basis.
3) There usually exist fast algorithms for the discrete wavelet transform such that the

coefficients of the DWT and its inverse can be computed rapidly.

2.2 Multi-Resolution and Wavelets Analysis

2.2.1 Multi-Resolution Analysis

In multi-resolution analysis (MRA), a scaling function is used to create a series of
approximations of a function, each differing by a factor of 2 from its nearest neighboring
approximations. Additional functions called wavelets are then used to encode the
difference in information between adjacent approximations.

Given a vector space L’ of the square integrable functionsin R, i.e.,

L2 = {f T < oo} 2.4)

an MRA of L*(R) is a sequence of closed subspaces {Vj }jeZ of L*(R), satisfying the

following properties:
1. V, cV, _Vje Z; (nesting property)

2. (U ez V; ) =L*(R); (density of the unionin L*(R))
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3. N, V,={0};

KN

. f(x)eV, o f(2x)e V_Vje Z; (scaling property)
J J-1

1%

. f(x)e V, = f(x~n)e V,Vne Z; (invariance under integral translations)

(=)}

. dpeV,> {(00’,, }ne ,» is aRiesz basis of Vo, where

9;.(x)=27" (277 x—k)Vj,k € Z; (existence of a scaling function).

2.2.2 Scaling Function

According to the requirement for MRA, we can choose an appropriate scaling function
¢, and then obtain V, by taking the linear span of integer translation of ¢. Other

subspaces V, can be generated as scaled versions of Vo Figure 2.2 shows the nested

function space spanned by a scaling function

VocV, cV,

<>

Figure 2.2 The nested function spaces spanned by a scaling function.

The real, square-integrable function set {(oj’k (x)} composed of integer translations and
binary scaling is defined as

@, (x)=2"" 92 x-k) (2.5)
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forall j,keZ and ¢, e L’(R).From these MRA properties, the expansion function of
subspace Vjcan be expressed as a weighted sum of the expansion functions of subspace
V;+1. Finally, we can obtain a non-subscripted expression

P(x) = Y by (MN20(2x — ) 2.6)
where the coefficients 4,(n) are called scaling function coefficients, which are often

represented by a scaling vector h,,.

2.2.3 Wavelet Functions
The nested nature of the subspaces allows us to define a wavelet functiony,, which

spans the difference between any two adjacent scaling subspaces, V; and Vj;;. The
component of the wavelet function subspaces W; is orthogonal to V;. The situation is

illustrated graphically in Figure. 2.3.

V,=V,eWw =V, ®W,®W,
2 =N 15% 0 1 V=Vt Wy

"o

Figure 2.3 The relationship between scaling and wavelet function space.

If a set {l// ik (x)} of wavelets is defined as
W (x) =2y (2 x~k) @7

we obtain
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V.=V, &W, (2.8)
<@ (), (x)>=0 j ke Z 2.9
We can also express the space of all measurable and square-integrable functions as
FR)=V,OW,OW,®D...=V,OW, OW, ® ... (2.10)
or
LR)=..OW_,OW_ OW,OW,OW, ®... 2.11)
Any wavelet function, like its scaling function, can be expressed as a weighted sum of
shifted double-resolution scaling functions, that is,
w(x)=Y h, (n)V2¢2x - n) (2.12)
where h, (n) are the wavelet function coefficients which can be written as a vector form,

h

v’

2.24 The Discrete Wavelet Transform (DWT) and Fast Wavelet

Transform (FWT)
Like the discrete Fourier series expansion, the wavelet series expansion maps a

discrete function f{n) into a sequence of coefficients. We define N-point discrete

transform pair as

Ww(jo,k)=7%—2f<n)¢,.o,k(n> @.13)
W, (j.k) =ﬁ2f(n)vf,—,k(n) J o 2.14)
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oo

f(n)=#zwq,(fo,k)m,k(m%ZZW.,(j,k)w,-,,,(n) 2.15)
k k

J=o

where fln), ¢, ,(n),and y,,(n) are functions of the discrete variable n=0,1,2,...,N-1.
The coefficients W, (j,,k)in (2.13) and W, (j,k)in (2.14) are called approximation and
detail coefficients, respectively.

The fast wavelet transform (FWT) is a computationally efficient imi)lementation of the
discrete wavelet transform (DWT) that exploits a very important relationship between the
coefficients of the DWT at adjacent scales. The number of arithmetic operations,
including multiplications and additions, is of O(N). The wavelet-based filter bank
algorithm is shown in Figure 2.4, in which the input signal f{n) is decomposed into two
sub-bands via analysis filters ho(n) and h;(n) followed by a down-sampling process. The
output signal, having the same resolution as the original one, is obtained by up-sampling
and filtering the two subband signals (at a lower resolution) via the synthesis filters go(n)
and g;(n). Carefully designing the analysis and synthesis filters, the input signal can be
reconstructed perfectly at the output.

Quadrature mirror filters (QMFs) have widely been used for speech and image coding
[30]. A pair of low-pass and high-pass QMFs that are complementary in amplitude is
often used for both analysis and synthesis purposes in a filter bank. A QMF bank not only
satisfies the perfect-reconstruction property but also enjoys a low computational
complexity due to its reduced number of independent coefficients. In order to implement

a QMF bank, the filters in Figure 2.4 should satisfy the following conditions,
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how) Lf 2¥ ) | 24 1] g0
i
f(n)o—] ;
h) (i 2V ; 24 - gi(n)
Analysis Synthesis
Decomposition Reconstruction

~

S

Figure 2.4 A two-channel filter bank for 1-D subband coding and decoding.
g () =(-1)"g,(2K-1-n)

h,(n)=g,2K —1-n),

(2.16)

where h; and g; (i=1,2) are the impulse responses of the wavelet based analysis and

synthesis filters. Examples of QMF banks include those designed by Daubechies [8],

Smith and Barnwell [31], and Vaidyanathan and Hoang [32].

2.2.5 Two-Dimensional WT

One-dimensional wavelet transforms can easily be extended to the two-dimensional

(2-D) case for a direct image transform in the 2-D spatial plane. A 2-D WT needs one

separable scaling function ¢(x,y) and three 2-D separable wavelets, y”(x,y) ,

v’ (x,),and wP(x,y), as given below
¢(x,y) = p(x)p(y)
¥ (x,3) =y (x)p(»)
¥’ (x,) = @(x)y(»)

v (x,y) =w(xw(»)
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Given separable 2-D scaling and wavelet functions, extension of the 1-D DWT to its
2-D counterpart is straightforward. One can simply take the 1-D FWT of the rows of
f(m,n), followed by the 1-D FWT on its columns. Similar to the 1-D filter bank algorithm,
the 2-D FWT “filters” an image to generate four subimages, LL, LH, HL and HH, where
the subimage LL is often referred to as the approximation and the other three as the detail

of the original image. Figure 2.5 shows a block diagram for one-level decomposition of

an image.

a(m,n)
LP 2V o e

LP 2v
d"(m,n)
HP 2V o (LD

f(m,n) o |

d%(m,n)
LP 2V | _o P

HP 2v
d®(m,n)

HP 2v
—® @
Rows Columns

A
\4
A
4

Figure 2.5 A filter bank algorithm for 2-D wavelet transform of image.

Note that this decomposition produces four subband images. The low-frequency
subband image (approximations) is further decomposed at the subsequent
decomposition level into another four subband images using the same filter bank
algorithm as discussed above. One may continue such decompositions for a number of

levels until a very fine resolution can be achieved in the low-frequency component of the
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image. The two-level image decomposition mechanism is shown in Figure 2.6.

A(m,n)

Figure 2.6 The 2-D wavelet transform with two-level decomposition.

2.3 Orthonormal Wavelet Based Filters

2.3.1 Orthonormal Wavelets

From the discussion in section 2.2.3,if ¢,, and y,, are orthonormal, i.e.,

Vj 1 Wj,
<(pj,l RN > = 51—1‘
(Wj,l 14 id > = 5,'— j'61—1'

(2.18)

then (2.13) through (2.15) are valid for orthonormal bases and tight frames alone [3].

Examples of orthonormal wavelets are the family of orthonormal wavelets constructed by

Daubechies [8]. The non-symmetrical and compactly supported wavelet is the Symlet-8

wavelets with 8 supporting moments whose scaling and wavelet functions are shown in

Figure 2.7.
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symlet-8 Scaling Function symliet-8 Wawelet Function
. . 1.5 .

1.2

0.5+

(@) (b)

Figure 2.7 Symlet-8 wavelet: (a) scaling function; (b) wavelet function.

2.3.2 Orthonormal Wavelet Based Filters

According to Mallat’s herringbone algorithm [29], the FWT resembles the two-band
subband coding. Figure 2.8 shows a diagram for one-level image subband decomposition

using FWT, where the highest scaling coefficients are samples of the image itself, and

h,(-n) and h,(-n) are the time-reversed version of the scaling and wavelet vectors
defined in previous section. Selecting h,(n) and h,(n) properly such that ¢,
determined from (2.5) and (2.6) and ¥, from (2.7) and (2.12) satisfy the orthonormal
condition (2.18). Moreover, if the scaling and wavelet coefficients also meet the
requirement of quadrature-mirror symmetry as given by (2.16), one can obtain an
orthonormal wavelet based QMF bank. A compactly supported 8-tap QMF bank, namely,
the symlet-8 decomposition and reconstruction filters, are given in Figure 2.9. Note that

the analysis and synthesis filters satisfy the perfect-reconstruction condition although
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they are not linear-phase.

| o W, (J,m,n)

—@ Wy/ (J’m’ n)

—® WW(J,m,n)

—® W,(J,m,n)

2v
h,(-m)
hw (n) 2V
h,p ) 2V
fmn)=g |
W(J+1,m,n)
h, () 2V
hq,(—n) — 2V
h, (-m) 2V
Columns Rows

Figure 2.8 A one-level FWT analysis bank for image decomposition.
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8o(n)=h,(n) g (n)=nh,(n)
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Figure 2.9 8-tap symlet-8: (a) & (b) decomposition filters;

(c) & (d) reconstruction filters.

2.4 Conclusion

In this chapter, we have introduced some background material of wavelet theory,
including the basics of wavelets, their important features and constructions. We have
reviewed the multi-resolution analysis and wavelet transforms, giving the scaling and
wavelet functions used to build wavelet based filter banks. The discrete wavelet
transform and its fast implementation have also been discussed for the subband image
decomposition. Finally in this chapter, we have shown a class of QMF banks constructed
from orthonormal wavelets, which will be used in Chapter 4 for the subband

decomposition of images.
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Chapter 3

Image Restoration using RCTLS and ARCTLS
Algorithms

This chapter presents some image restoration techniques using the regularized
constrained total least-square (RCTLS) algorithm and the adaptively regularized
constrained total-least square (ARCTLS) scheme. The linear filtering matrix structures as
well as fast computations are discussed. A new termination criterion is also proposed in
order to increase the convergence speed of the ARCTLS restoration method. Simulation
results for the RCTLS and ARCTLS solutions in DFT domain are given at the end of this

chapter.

3.1 Basic Mathematics of Image Restoration

3.1.1 Vector-Matrix Formulation of Image Restoration

We can rewrite the degraded image given by (1.1) in a vector-matrix form as
g=Hf +n @.1)
where the vectors f, g and n represent, respectively, the lexicographically ordered original
image, degraded image, and additive noise. The matrix H represents a linear distortion

operator in the discrete form of point spread function (PSF).
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Let us consider an image f{m,n) of the size MxN. In a vector form as in (3.1), f is

presented as a lexicographically ordered column vector, namely,

f=[/0fD N=-D/,0)/,() f,(N-1)

; (3.2)
”‘fM(O)fM (l)fM (N_l)]

where T denotes the transpose of a matrix or a vector. The vectors g and n are also
column vectors of MN elements generated in a similar fashion to f. The H is a square

circulant matrix of dimension MNXMN as given below,

I Ho HM—] HM—z H1
H1 Ho HM—I Hz
H=| H, H, H, - H, 3.3)
_HM—I HM—Z HM—3 I'Io_

Note that H consists of M? partitions, expressed as H; (i=0,1, ... M-1), each being of

size NxN. Further, each partition H; is obtained from the ith row of A(m,n), i.e.,
h@0)  AGN-1) hG,N-2) - h@))]

h(i,)) h(i0)  hG,N-=1) - h(,2)
H =| h@2) h(i,)) BG0) - hG,3) (3.4)

_h(i,];’—l) h(i,]\}—Z) h(i,](/'—3) h(z:,O)_
The MNxMN matrix is referred to as block semi-circulant (BSC) of the linear system (3.1)
[33]. For simplicity, the notation He BSC(M,N) is used to indicate that H is a BSC
matrix of order (M,N).

A dual and equivalent representation of the linear system can be obtained if the input

and the output are arranged in an interlaced fashion. If the input vector f is arranged as
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f=[£0)/£,(0) £, Q) £, D £, (D f,, (D);

3.5)
= fflN =D f5(N=1)- f,, (N =D
Then another square matrix H can be obtained,
1:1“ 1:11’2 }:I]’N
f=| M Haeo o Moy (3.6)
Hy,, H,, - Hy,

That is, it is circulant at the block level but each Hi, ; (1=ij=N) is an MxM matrix. This

NMxMN matrix is referred to as semi-block circulant (SBC) matrix of order (M,N) [33],

[34].

3.1.2 Properties of BSC and SBC Matrices and Fast Computation

The BSC and SBC matrices are very important in image restoration. However, it is
very time-consuming to carry out a direct computation of BSC and SBC matrices, such as
matrix inversion, due to their large size. A great deal of research has been done for
efficient computation of these matrices [33], [34]. We will now briefly look into some of
the useful properties of BSC and SBC matrices in order to simplify their computation.

First of all, it is noticed that both BSC and SBC matrices are closed under addition,
multiplication, and inversion. The size of BSC and SBC is MN xMN, which is very large
since most images have usually a few hundreds of pixels in each direction. Therefore, a
direct computation of these matrices, especially matrix inversion, becomes very difficult.
Fortunately, a fast computation of these large matrices is available in the discrete Fourier

transform (DFT) domain.
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In the DFT domain, a BSC(M,N) matrix is converted into M* block matrices of size
NxN. Equivalently, a SBC(M,N) matrix in the DFT domain is transformed into N’
MxM block matrices. These MxM matrices are all zero matrices except for the N block
matrices along the diagonal. With this structure, both BSC and SBC matrices can be
represented as a spares matrix and thus, a fast and efficient computation can be developed.

The details as how to diagonalize the BSC and SBC matrices are given in appendix A.

3.2 RCTLS Algorithm

3.2.1 General

Regularization is a very effective method for solving ill-posed problems [35]. Its basic
idea is to use regularization parameters to trade off the fidelity to the observed data for
the smoothness of the solution [35], [36], [37].

A large amount of research work has been done to solve (3.1). It is well known that the
total least-square (TLS) is an efficient technique to solve a set of noise contaminated
linear equations in (3.1) [38], [39]. The constrained total least-squares (CTLS) technique
is able to cope well with the case where the noise elements in both H and g are linearly
related and have equal variances [40]. In [41], it has been shown that the regularized
constrained total least-squares (RCTLS) is more successful than the CTLS when both H
and g are subject to the same errors which can be modeled as additive Gaussian noise

with different statistical properties [14].
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We assume that the N x1 PSF can be represented by
h=h+Ah 3.7
where h and Ah e R are the known and the unknown (error) components of the PSF,
respectively. The error component, Ah , is modeled as independent and identically
distributed (IID) noise with zero-mean and variance ;.

It is assumed that the observed vector g is subject to the same error as H and
contaminated by the IID zero-mean additive noise with variance 0'82. Furthermore, the
noise in the PSF and the observed data are assumed to be uncorrelated. Thus, the
degraded image of the vector-matrix form is given by

g =Hf +Ag 3.8)
where g,f, Age R represent the observed degraded image, the source image and the
additive noise in the observed image, respectively, and the Nx N circulant matrix H
can be written as

H=H+AH (3.9)
while H is the known component of H and AH is the error part of the PSF matrix,
which is constituted by Ah according to (3.7) [42]. Since in most of restoration
problems the support region of the PSF is usually much smaller than the actual size of the
image, only a very small change in the dimension of the resulting degraded image is
caused.

Notice that when the blurring operator is circulant, the error component of the PSF

matrix, AH, is also circulant, implying that the elements of AH are algebraically
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related. In [37], Katsaggelos et al have defined an unknown normalized noise vector

ue R*” consisting of Ah and Ag as shown below,

_[ar@ Ao Ag©) | Aev-) T.

o, o, o, o,

(3.10)

Here, the region of support for the noise part of the PSF is assumed to be N. But if the
supporting region of Ah is M (M<M, the remaining N-M components of the noise
vector would be zeros. Equations (3.8) and (3.9) can be reformulated as follows,

Hf —g+ AHf + Ag =0
Hf-g+Lu=0 (3.11)

where L isan N X2N matrix with the circulant structure, as given below

[ 0, f(0) o fWN-1) - o fQ)
o, /(D) 0, f(0) - 0, f(2)
L=| 0,/(2) o f() - 0, f(3) i Oy (3.12)

_O-hf(N'—l) O-hf(N_Z) th(o)

3.2.2 RCTLS Algorithm

Regularization is one of the most powerful approaches for solving ill-posed problems.
In this approach, the recorded data and a priori knowledge are employed in a
complementary way [43]. The RCTLS image restoration problem can be rephrased as

minful’ + 2jef]; (313)

subject to
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Hf —g+Lu=0 (3.14)
where A is a positive regularization parameter and Q is the regularization operator. The
role of the regularization operator is two-fold: a) to replace the small eigenvalues of H
with zero while leaving the large eigenvalues unchanged, and b) to incorporate a prior
knowledge about f into the restoration process [43], [44].

Equation (3.13) represents a quadratic minimization problem that is subject to a
nonlinear constraint due to the term Lu in (3.14). A closed-form solution may not exist
for the quadratic minimization problem. However, the RCTLS problem in (3.13) and
(3.14) can be further simplified by transforming them into an unconstrained optimization
problem. First, (3.14) is rewritten as

Lu = —(Hf — g) (3.15)
from which one can obtain
u=-L"(Hf - g) (3.16)
where L" is the Moore-Penrose pseudoinverse of L [45]. It is easy to see from (3.12) that
L has a rank of N, leading to
L' =L"(@LL")™ (3.17)
Substituting (3.16) and (3.17) into (3.13) and noticing that ||4|*=4"4, it is easy to see that
the minimization of (3.13) is equivalent to the minimization of a nonlinear function
defined by
P(f)=(Hf -g)" (L")" (L")(Hf -g)+ A7 Q" Qf). (3.18)

Noting that
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L") =(LL)” (3.19)

(3.18) can be rewritten as
P(f) = (Af — )" (LLT)™ (Hf — g) + A7 QT Qf). 3.20)
The above equation represents an unconstrained minimization problem. Therefore, the
RCTLS solution of the constrained optimization problem described by (3.13) and (3.14)

can be obtained by minimizing P(f) in (3.20) with respect to f.

3.2.3 RCTLS Solution

It may not be possible to find the minimum of (3.20) in a closed form because of the
nonlinearity in the term (LL")". However, it is possible to obtain a solution numerically
by iterative optimization algorithms.

By taking the DFT on both sides of (3.20), one can obtain an equivalent minimization

problem of P(f) as given below (see Appendix B for detail)

rrlFin{P(Fi )3 (i=0,1--+, N-1) (3.21)
with
A 2
IHiFi_GiI 2112
P(F)=————+AQ[F| (3.22)
o, |F| +o,

where || denotes the modules of a complex quantity. In (3.22), F; and G, are the
DFT coefficients of the corresponding lower case spatial-domain quantities, H , and O,
are the eigenvalues of the circulant matrices H and Q, which can be easily obtained

using the DFT [42]. The resulting computational reduction is obvious. Equation (3.20) is
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decoupled into N equations, each being minimized independently with respect to one
DFT coefficient of f. Each of these equations still requires solving a vector optimization

problem. However, the dimensionality of the problem has been reduced to two, namely,

the real and the imaginary parts of the complex DFT coefficient F;.

3.3 ARCTLS Algorithm

The effectiveness of the RCTLS technique depends on the regularization parameter A.
A high-quality image restoration cannot be guaranteed unless a proper value of A is
selected. For an arbitrary value of A in the RCTLS method, most of the optimization
algorithms including the Davidon-Fletcher-Powell method, may only yield a local
minimum but not a global one. The ARCTLS method is able to overcome this difficulty

by searching for an appropriate value of A.

3.3.1 ARCTLS Algorithm in Spatial Domain
The image restoration problem can simply be rewritten in the space domain as
min L(f) (3.23)
with
L(f) =l| Hf - g|* +A(f) || Qf |I” (3:24)
where the regularization parameter A(f) depends on the image f. The differentiation of

L(f) with respect to f gives

dL(f)

. 2H" (Hf —g) + A (f) | QOf |)° (3.25)
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d(ef|’)
df

For the sake of simplicity, it has been assumed that =0 in obtaining (3.25). In

the iterative process, A(f) is adaptively modified in terms of the current estimate of f , e.g.,

f. Setting d( )—O gives

2
IQf |I*

A(F)+ H (Hf -g)=0 (3.26)

which implicitly implies a constraint on A(f), i.e.,
ﬂ' (f) |Hf g (3'27)
Solving (3.26) with condition (3.27) yields

_2f"H" (Hf - g
1Qf |I”

A(f) = (3.28)

where C is a constant. Without loss of generality, one can choose C=0, since the first term
on the right-hand side of (3.28) can fully satisfy the condition in (3.27). In order to ensure
a numerically stable f anda rigid positive A(f) in the iterative process, it is assumed that

Ay = o 28] (HI-g) (3.29)
g'g

where a(>1) is an adjustable factor of A(f)’s step size. The function A(f) in (3.29) is
obviously a quadratic function of f and describes the proportional relation of the error
energy to the observed vector’s energy. In each iteration, the regularization parameter A(f)
approaches gradually the optimum value when the error energy gets smaller. In the
meantime, the correction factor o plays a very important role. Generally speaking the
smaller the value of o, the smaller the change of A(f) is in each iteration and the more

likely the ARCTLS solution approaches the global optimum. As a result, a high-quality
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restored image can be achieved. Conversely, a large value of o yields a faster varying A(f),
which may lead to a suboptimal solution and a low-quality restoration. The function A(f)
in the ARCTLS scheme is established based on the minimization of the error energy as
seen from (3.29). For a given image to be restored, an optimal regularization parameter A
not only exists but also accelerates the convergence of the iterative process.
According to the regularization scheme, a high-quality image restoration can be
performed by minimization of the following function,
P(f) = (Af - g)" (LLT)™ (Hf - g) + A(F)(f" Q" Qf). (3.30)

However, it is not realistic to minimize the unconstrained objective function (3.30) due to

the following two difficulties [14]:

1) The system of equations structured by P(f) is too large to run in a regular computer.
For example, if an NxN (say 512x512) image is to be restored, the matrix in
Equation (3.30) would be of size N> x N? (262144x262144).

2) P(f) is a high-order nonlinear function of f because of the involvement of the
quadratic function A(f) and the nonlinear elements in (LL”)'. Its first-order
derivative is still a high-order nonlinear function. Conventional optimization

algorithms cannot assure that the numerical solution of (3.30) is global optimal.

3.3.2 The DFT Domain Solution

The function P(f) given by (3.30) can be simplified by using the diagonalization

property of the DFT of circulant matrices [37]. This scheme is able to overcome the first
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difficulty mentioned above. However, the second difficulty still remains. In [14], the
minimization of P(f) in spatial domain is converted into DFT domain. The minimization
problem in the DFT domain can be described as

rrgn{P(Fi)}, for i=01--,N-1 (3.31)
where P(F;) can be locally linearized at each iteration as

k+l
i 2

P(Fik-c-l) — I |2 +l(Fk)|QiI2|Fik+1

S for i=01,-,N—1 (3.32)
olef' +0,;
with
A(F*) = A(Fy B - Ff - Fy ). (3.33)

In (3.32) and (3.33), k is the index of iteration, F, and G, the DFT coefficients of f and
g, respectively, and a , and Q, the eigenvalues of the circulant matrices H and Q,
which can be easily obtained in the DFT domain. As the regularization parameter A(F)
in the DFT domain in (3.33) is a function of all DFT coefficients F,, (i =0,],---,N —1),
it remains the same in each iteration. Moreover, via the local linearization treatment,
Equation (3.32) is reduced to a quadratic convex function in each iteration. Performing
the first-order derivative and letting it be zero, we can obtain a global optimal solution

straightforwardly, so that the second difficulty is tackled. That is, from

aP(FikH ) B

= 34
AE) (3.34)

we have
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Fh = H; G, (=01, N-1) (335)

[ +aEhorhief

where H; is the complex conjugate of H,, and

QFF) = o2|F| + o7 (3.36)
L A ok 2
AFH ==Y [, -G )| (337
EiS
with E being the total energy of the observed image as given by

N-1 2

E=Y|G| (3.38)
i=0

Note that both £ and « are constant in the iterative process. The image restoration
quality of the above method actually depends on two variables, Q in (3.36) and A in
(3.37). The main steps in implementing the ARCTLS algorithm are shown below,

Step 1: Initializing F’ and «,i.e., letting F' =G, (i=0,,---,N ~1) and choosing

any value of o >1;

Step 2: Computing A(F°) using (3.37), or choosing an initial value between 0 and 1;

Step 3: Computing F*' (i=0,1,---,N —1) using (3.35);

Step 4: Computing A(F*"') using (3.37);

Step 5: Computing the termination criterion

TC = R (3.39)

N-t
2 (Fik+l _ Fik)
i=0

S E
i=0

/R

Step 6: Comparing TC with a pre-set small positive number €, if TC>¢g, go to

step 3; otherwise, terminate iteration.

The program flowchart of the DFT-domain ARCTLS algorithm is given in Figure 3.1.
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Initialization
FoizGi

Calculate
AFD
from (3.37)

Calculate
Fk+1 :
from (3.35)

Yy

Calculate
K(Fk—’-] )
from (3.37)

Calculate TC
from (3.38)

NS To<e >

Yes

END

Figure 3.1 Program flowchart of DFT-domain ARCTLS algorithm.

3.3.3 Improvement of Convergence using New Termination Criterion

The ARCTLS algorithm is in general an efficient restoration approach. From our
simulation, however, the termination criterion used in step 5 is not optimal. Through
extensive experimentations, we have found the following criterion

[ - | z <e (3.40)

is more reliable and is able to increase the convergence speed. It is noted that the

conventional criterion (3.39) uses old DFT coefficients to calculate the error ratio during
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entire iteration whereas our new termination criterion makes use of the newly obtained
DFT coefficients. It is also to be mentioned that the Euclidean norm has been used in our
formula to measure the relative error in each iteration, which is considered as the true and
total error. However, the computation implied by (3.39) does not really reflect the total
iteration error and therefore, it is not accurate and does not always yield an optimum

solution.

3.4 Simulation Results

In this section, the ARCTLS algorithm is simulated and compared with the RCTLS
method. The simulation is based on two standard images “Lena” and “Camera-man”,
both having a size of 256x256. The PSF used to blur the two original images is assumed

to be the Gaussian-shaped impulse response,

2 +2

i+ o
2*0‘.]2} (l,.]=0’1a"°aN'—1) (3.41)

h(i, j) = c-exp{-

where c is a constant used to compensate the loss of the distorting system. The discrete
Laplacian operator is selected as the regularization operator due to its high-pass

characteristic. The Laplacian operator can be expressed as

0 1 0
g=l1 -4 1 (3.42)
0 1 0

No matter what restoration scheme is used, the observed data are utilized as the initial
values in the iterative process. As an objective measurement of the restoration

performance for different schemes, the improved signal-to-noise-ratio (/SNR) defined as
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If - 2,

A

Hf—f

ISNR =20 log (3.43)

2

is employed, where f, g, and f', are the original, degraded and restored images,

respectively.

3.4.1 Experiment 1 — Lena Image Restoration I

In this experiment, it is assumed that the Gaussian-shaped PSF has a zero-mean and a
variance of o>=6.25. Its region of support is set to a square of 29x 29 pixels. The PSF is
also contaminated by an additive white Gaussian noise (AWGN) of variance o} =
8x 1077 with a support region of 29x 29 pixels. The Gaussian noise Ag, imposed to the
observed image data, has a unit variance.

The original and degraded images are shown in Figure 3.3(a) and Figure 3.3(b),
respectively. First, the RCTLS algorithm is used, given the restored image shown in
Figure 3.3(c). Images shown in Figure 3.3(d)-(f) are the restored results from the
ARCTLS algorithm. Note that in this experiment an arbitrarily chosen initial value of A is
used for ARCTLS iterations. Figure 3.3(d) depicts the restored image obtained from the
ARCTLS algorithm with the initial values @ =10 and A4, =0.5. Figure 3.3(e) shows
the restored image also resulting from the ARCTLS algorithm but with initial values
a =10 and 4, =0.0001. The last restored image in Figure 3.3(f) is given by the
ARCTLS method having a =100 and A; =0.5 as initial values.

It should be mentioned that since the linear space-invariant model has been used in this

study to degrade the original image, the restored images would in general suffer from the
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smoothing of sharp edges and “ringing” artifacts in the vicinity of edges [17]. In addition,
our restoration program is implemented with Matlab software package. Whenever
convolution or filtering is used, a post-processing of the image boarder is necessary,
which can be done by Matlab functions. There are two typical ways to deal with the
artifacts around the image boundary. One is to implement a full-size convolution
followed by cutting off extra pixels beyond the original image size. Therefore, the filtered
image has the same size as the input one as seen from Figure 3.2 (c). The other is to keep
the same size as the input image for convolution. As this method may lead to some
ringing effect around the image boundary, it is necessary to set the affected pixels to zero.
Therefore, the filtered image is slightly smaller than the input one as seen from Figure 3.2
(d) and (e). We have tested the two methods and compared the ISNR values of the

restored images in Figure 3.2 (c¢)-(f) in Table 3.1.

(a)
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(b)

(c)
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(d)

©)
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®
Figure 3.2 Restoration of “Lena” image using RCTLS and ARCTLS (a)Original image; (b)Degraded

image; (¢)RCTLS restored image; (d) ARCTLS restored image (0=10,A;=0.0001); (¢) ARCTLS
restored image (0=10,A4=0.5); (f) ARCTLS restored image (0=100,1=0.5).

Table 3.1 ISNR values of images in Figure 3.2 (¢) - ()

RCTLS ARCTLS

a =10, ¢=0.5 a =10, A =0.0001 a =100, A =0.5

ISNR Same-size 1.218 4.231 4.228 -3.775

(dB) Full-size 1.025 3.366 3.483 -3.811

It is seen from Table 3.1 that the same-size convolution with boundary pixels set to
zero yields a slightly better ISNR. The last column of the table indicates that an
improperly chosen a would give a poor restoration result. Table 3.2 shows the

regularization parameter A for the image in Figure 3.2 (d) obtained at each iteration with
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respect to the conventional and the proposed termination criterion.

Table 3.2 Regularization parameter A at each iteration for Figure 3.2 (d)

Iteration Conventional Proposed
A¢=0.5 A ¢=0.0001 A¢=0.5 A ¢=0.0001
1 4.5685X10° 8.5542X10° 4.4752%X10° 8.0231%x10°
2 2.8959X10° 2.1213X 107 2.7046 X 107 2.2253%X10°
3 2.7078 X107 2.6053%X 10" 2.6545%X 10 2.6786X 107
4 2.6783X 107 2.6779X 10 2.6803X10° 2.6794X10°
5 2.6810x 10~ 2.6796X 10"

Although it is difficult from Figure 3.1 to see the difference between the RCTLS and
ARCTLS algorithms in terms of the subjective quality of the restored images, our ISNR
values shown in Table 3.1 have clearly indicated the improvement of the ARCTLS
solution over the RCTLS method. In Figure 3.1 (d) and (e), we have selected quite
different initial values for A in the ARCTLS algorithm, and have achieved a final
convergence to the optimal values, implying that the ARCTLS is not sensitive to initial
values of the regularization parameter. Also, the choice of the adjustable factor a does
not seem to affect the convergence. For example, we have selected an improper initial
value for « (see the discussion in Section 3.3.1). However, a better ISNR value has
been obtained by using the ARCTLS method, even though the subjective quality of the
restored image is not appreciated. It is clear from Table 3.2 that the proposed termination
criterion has yielded a faster convergence of the regularization parameter regardless of its
initial values in comparison to the conventional criterion. Actually, the superiority of the

proposed termination formula in convergence is evident as reflected by the computation
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time. For the restored image in Figure 3.2 (d), the computation time corresponding to the
proposed criterion is 9 seconds, while the conventional criterion requires 11 seconds in a

Pentium IV PC computer with 1.7GHz processor and 256M memory.

3.4.2 Experiment 2 — Camera-man Image Restoration

Similar to Experiment 1, a Gaussian-shaped PSF with ¢>=6.25 is used. The PSF is
supported by a 2929 square region and is contaminated by AGWN noise with variance
02=8x107". The observed data are also corrupted by a unit-variance AWGN noise. A
256%256 “camera-man” image as shown in Figure 3.3(a) is selected as the original image

for experimentation. Figure 3.3(b) shows the degraded image.

(a)
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(b)

(c)
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(d
Figure 3.3 Restoration of Camera-man image using RCTLS and ARCTLS (a) Original
image; (b) Degraded image; (c) RCTLS restored image; (d) ARCTLS restored image
with an initial A calculated from (3.37).

Figure 3.3(c) and (d) show the restored images resulting from the RCTLS and
ARCTLS algorithms, respectively. Unlike Experiment 1, the initial value of A4 is
calculated from (3.37) instead of being chosen arbitrarily. It is seen from this experiment

that the ARCTLS gives a better subjective quality than the RCTLS.

3.4.3 Experiment 3 — Lena Image Restoration I1

The same image “Lena” as in Experiment 1 is employed. However, it is assumed in
this experiment that the variance of the Gaussian-shaped PSF is unknown. This is a more

realistic case since the PSF is not exactly known in many applications. We suppose the
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realistic case since the PSF is not exactly known in many applications. We suppose the
true variance of the PSF is ¢?=9, while the actual variance used in the RCTLS and
ARCTLS algorithms is ¢*=16. The support region of the PSF is chosen as 31x31 pixels.
The PSF is perturbed by a Gaussian noise with variance g7 =2.3X 10®, An AWGN noise
with 0'; =(.1 is used to blur the observed image data. The degraded image is shown in
Figure 3.4 (a). Figure 3.4 (b) shows the RCTLS restored image. The restoration results
from the ARCTLS method with different initial values of A are shown in Figure 3.4 (c)

and (d).

(a)
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(b)

(©)

49



The ISNR values of the restored images are shown in Table 3.3. It is observed from
Figure 3.4 and Table 3.3 that the ARCTLS outperforms the RCTLS in both subjective

and objective qualities no matter whether the initial value of % is arbitrarily chosen or

calculated from (3.37).

(d)
Figure 3.4 Restoration of Lena image with unknown variance of the PSF (a) Degraded image; (b)
RCTLS restored image; (c) ARCTLS restored image with 4,=0.0001; (d) ARCTLS restored
image with 24 calculated from (3.37).

Table 3.3 ISNR values of images in Figure 3.4 (b)-(d)

RCTLS

ARCTLS

a=5,A =0.0001

Calculated A

ISNR(dB) 2.271

3.231

3.230
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Table 3.4 shows the A value in each iteration in obtaining the image in Figure 3.4(c)

corresponding to the conventional and the proposed termination criteria. Evidently, the

proposed criterion leads to a faster convergence.

Table 3.4 Regularization parameter A at each iteration for Figure 3.4 (c)

conventional our proposed
Iteration
A ¢=0.0001 calculate A, A =0.0001 calculate A,
1 4.1564%10™ 8.5542X 10" 4.4752X 10" 4. 4645% 10™
2 4.8959% 10™ 4.1213%x10™ 5.0262X10™ 4.9953X10™
3 5.0693 X 10 5.0653 X 10™

3.5 Conclusion

In this chapter, we have discussed the RCTLS and ARCTLS algorithms which are
known to be very efficient when both the degradation process and the observed image are
contaminated by the same type of errors. It has been shown that both RCTLS and
ARCTLS problems can be effectively solved in the DFT domain, resulting in a
significant reduction in computational complexity. Extensive experimentations have
indicated that the ARCTLS method is much better than the RCTLS in terms of ISNR
although both methods sometimes give similar subjective quality. A new termination
criterion has been proposed to increase the convergence rate of the ARCTLS algorithm. It
has been shown through computer simulations that the proposed termination criterion is

at least 20% faster than the conventional termination criterion.
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Chapter 4

Wavelet Domain Image Restoration using
ARCTLS

This chapter presents an image restoration approach using wavelet transform in
conjunction with the adaptively regularized constrained total least squares (ARCTLS).
The matrix representation of 1-D wavelet transform is first formulated for 1-D signal and
convolution operator. Then, the matrix representation of 2-D wavelet transform is derived
for image and the convolutionnal degradation process. Our objective is to formulate the
wavelet transform of image and the 2-D convolution operator properly such that the
ARCTLS method can be employed to restore the degraded image in the wavelet domain.
Finally, the proposed wavelet domain ARCTLS (WARCTLS) approach is simulated

based on some standard images.

4.1 General

In recent years, a lot of work has been done on wavelet domain image restoration. The
major advantages of using a wavelet based restoration approach have been described in
Chapter 1. Additionally, wavelet transform can be efficiently used to decompose a

single-channel linear space-invariant filtering problem into its multichannle counterpart.
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This decomposition allows for the processing of a signal or image and the relevant
convolution operation in 1-D or 2-D frequency subbands. In this approach, since the
convolution operator is also decomposed into several subbands, the
cross-subband/channel relations in the observed data can be explicitly taken into account
[47].

A general wavelet domain image restoration in the matrix-vector form (3.1) can be
rewritten as

Wg=WHW Wf+ Wn
or

g =Hf +A @.1)
where W is the 2-D wavelet transform matrix, §, f and i are the vectors representing,
respectively, the scaling and wavelet coefficients of the degraded image, those of the
original image, and the noise, and H = WHW? is the wavelet domain representation of
the linear degradation operator.

In the following sections, we will derive the partitioned structure of the wavelet
transform matrix W in order to obtain the subband representation of images and the
degradation operator. The derived matrix and vector formulations of the 1-D and 2-D
wavelet transforms are necessary for the implementation of the proposed wavelet-domain

ARCTLS approach.
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4.2 Matrix Representation of Wavelet Transform for 1-D
Signal and Convolution Operator

4.2.1 Wavelet-Based 1-D Filter Bank and Matrix Formulation

As shown in Chapter 2, a 1-D signal can be decomposed into two channels by using a
filter bank. If the filter bank is derived from a wavelet transform, the two-channel
decomposition structure can be redrawn in Figure 4.1, where W, and W, represent
the linear space-invariant wavelet based lowpass and highpass filters, respectively. Here
each filtered signal is decimated by two, such that the total number of samples in the
output signals is the same as that in the input. The two-channel filtering process can also

be expressed

Wh 2V | o fu

Figure 4.1 Wavelet transform based two-channel decomposition of 1-D signal.

Wf =1, 4.2)
where f is an N-dimensional column vector containing the samples of the input signal, W
an NXN system matrix, and f, the output vector containing, in an interlaced fashion,

the samples of the decimated lowpass and the highpass filtered signals. In the case of

even N, f, can be written as
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f, = [fL(O)fH(O)JL(l),fH(U,---,fL(]—z-— Dl 5 1)] 43)

If the coefficients of the impulse responses W, and W, are denoted as wy(i) and

way(i), then W is a SBC( 2,]—;’-) matrix as given by

w,(0) w,()  w@ w@ - wN-2) w@E-D]
wy (0) wy()  wy (D) wy(3) - - wy(N-2) wy(N-1)
w(N=-2) w,(N-1) w0 w@ - - w{N-49 w{-3)
wy(N=2) wy(N=1) w,(0) wy(D) - - wy(N-4) wy(N-3)
w(2) w3 w,@ w0 - w0 AON
Wy (2) wy(3)  wy(@D w3 - - wy(0) wy (D

In what follows, we will introduce a de-interlacing transform matrix to re-order the
output signal vector such that its low-frequency and high-frequency components are
separated.
4.2.2 Output Ordering using De-interlacing Matrix
Let the re-ordered version of f, be given by
f=[/,0, O, - fL(%*l), fa @, fu@), -, f,,(%—l)]’

=[f, £, 1 @.5)
where fi and fy are %-dimensional vectors containing the re-ordered samples of the
decimated lowpass and highpass output signals, respectively. It is easy to see that f can

be expressed as

=~

=Df, (4.6)

where D is an NxN orthogonal matrix as given by

55



I 0 0 0 0 0] o
0 0 0 0 0
0 0 0 0 0 0 2
0 0 0 0 0 0 .
4.7)
D=|0 0 0 0 1 0(N/2-1
0 1 0 0 0 0| N/2
0 0 0 1 0 0
0 0 0 0 0 0| N-2
0 0 0 0 0 | N -1
It is obvious that
DD" =D'D=1 4.8)

where I is the NxN identity matrix. In the mean time, the matrix D should be applied to
the input signal vector, i.e.,
Df =f 4.9)

In the next subsection, we will investigate the re-ordered and partitioned form of the
wavelet transform matrix W due to the involvement of matrix D.
4.2.3 Matrix Formulation of Wavelet Transform
Pre-multiplying D on both sides of (4.2) yields

Wi, =f 4.10)
where W is given by

~ Wi, w9,
W = 4.11
{WEH WOH} ¢ )

The submatrices in (4.11) can be written as
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wi(0)  w(2) - w(N-2)]
wi(N=-2) w(0) - w(N-4)
wE = : C : 4.12)

w, (2 w@) - w0 |
w(®  w@ - w(N-D]
w(N-1) w(1) - w(N-3)
. . . (4.13)

w3 w(®) - w,(1)
For simplicity, the subscript i has been used to represent L or H in (4.12) and (4.13). Note
that the submatrices W” and W are —zx% circulant matrix. However, the matrix
W does not have a circulant structure due to the fact that W/ # W2, Actually, it is a
BSC (2,%) matrix.
4.2.4 Decomposition of Convolution Operator in Wavelet Domain
Ignoring the noise term in (4.1) for the moment, the convolution operation in the
wavelet domain can be written as
g, = WHW'f, (4.14)
Note that the matrix WHW’ is an SBC (2,%) matrix due to the fact that it is the
product of three SBC (2, %/:) matrices. Also H is a circulant matrix. Therefore, the
computation of these matrices can be simplified in the DFT domain (DFT) as discussed
in Chapter 3.
From the discussion in previous subsections, (4.14) can be rewritten in terms of W as
(WD)g = (WDYH (D" W7 )(WD)f 4.15)

For the circulant matrix H representing the convolution of an N-point signal with the
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kernel
oo, h(=2), (1), h(0), R (1), A(2),- - (4.16)

centered at 0, it can be shown that

H, H
H,=(D H DT)=[H(°) H“’] 4.17)
(Y] 0)

where Hg) is an %x% circulant BSC matrix representing the convolution of an
N .. . .
> -dimensional vector with the kernel

(G =4, 80 =2), h(j), (G + 2),h(j + 4), - 4.18)
centered at j. Thus, by using D, the convolution operator can be decomposed into a few
half-length operators Hyj) constituted by the even and odd-indexed coefficients of the
original operator. Re-ordering the elements of f and g lead (4.15) to

g=(WH,W")f =Hf 4.19)

where the re-ordered versions f and g can be viewed as the W -domain
representations of the original signal and the convolution result, respectively, and H is
~ the transformed convolution operator. Since His also a BSC (2,—];—) matrix, it is obvious

that the decomposition of H can easily be implemented in the DFT domain.

4.3 Matrix Representation of Wavelet Transform for 2-D
Signal and Convolution Operator
4.3.1 2-D Wavelet-Based Filter Bank and Matrix Representation
For computational simplicity, the 2-D wavelet decomposition is in general

implemented by applying the 1-D decomposition to both horizontal and vertical
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directions of an image. For an NXN input signal, f{x,y), the 2-D decomposition will yield

four subband signals of size % X-]g— , as shown in Figure 4.2.

WL 2 ¢ d fLL
— WL 2 l

Wi ¢ [efm

S o—]

W1, 2 ¢ o fin
\_ Wy 2 i

Wy 2¢ _.fHH

COLUMNS ROWS

Figure 4.2 Four channel 2-D wavelet-based decomposition filter bank.

We would now like to formulate the matrix-vector representation for the filtering
operations in Figure 4.2. If a lexicographic order by column is used, we can stack the 2-D
NxN signal into a N°x1 vector f,

f=[A0) AN -DL0) fr(N =1 f(0)- fy(N=DJ (4.20)
Then from the general wavelet transform (4.1), our 2-D decomposed output f, using

above filter bank is given by

fo = [00.0).0/00.0)./10.0) 14770 0.0 )y /(1.0 )1 f(1.0) 51 J(1.0) 11y f(1.0) s

N N N N N N N N
) f(?“l’?_ 1)LL’f(_2“_l:‘2-_1)HL:f(_2‘_ 1’—2—_1)LH’.f(—2—_ I»E_I)HH]T

@.21)
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Similar to the 1-D decomposition, we need to define an N>xN? 2-D “de-interlacing”

matrix D, , namely

1 00 - 000 000 -00] O
010.-000 000 -0 0] 1
000 -100 000 - -00| 2
000 -010 000 -00
000 .-000 000 -00

D, = 4.22)
000 -000 000 -00
000 -000 1 00-00
000 -000 010 -0 0] .
000 -000 0 00 -1 0|N*-2
000 -000 000 -0 1|N-1
0 1 2 .NN+1. . . . . N-2+N. .N*-2N-1

It is easy to verify that DD, = I. Using the de-interlacing matrix to the input and output
long vectors, one can obtain

£ =0z, (Fos)", (B0)" > (o0) | (4.23)

=) @) Eu) G T (4.24)

In (4.23), the four subvectors represent the lexicographically ordered images decimated

in the horizontal and vertical directions. For example, fgo stands for a -]2! X —g’— subimage

which is obtained by selecting the pixels with even indices in the x direction and odd

indices in the y direction from the original image. The subvectors in (4.24) represent the

subband images obtained by filtering the original image along the x and y directions. For

instance, fy is the subimage obtained by highpass filtering in the x direction and lowpass

filtering in the y direction of the original image.
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4.3.2 2-D Wavelet Matrix Formulation

The 2-D wavelet transform matrix W can be written as W =W, ~Wy , where W,

and W, represent the 1-D filtering in the x and y directions, respectively. Furthermore,

~

W, and VNVy each are N*xN” matrices of the following partitioned form,

X

WELy W?(L,x) 0 0
~ | Wfay Woaax 0 0
W= W e . 4.25)
0 0 Wy W7y
0 0 Weuay Wouny

WEw 0 Wou, 0
0 WE(L,y) 0 WO(L,y)

T WEay) 0 WO,y 0
0 Wea,) 0 W, |

=T}
I

4.26)

2 2
where 0 is an — x T matrix of zero elements, and the symbol W(’,:,k) (i=L, H, j=FE,

O, and k=x, y) have been used for convenience. The matrices W7 in (4.25) and

W, in(4.26) can be expressed as
Wi, =W/ ®I 4.27)
W({f,y) =I®W/ (4.28)

Where ® 1is the Kronecker product and I the identity matrix. Note that W/ are

%X% circulant matrices as given by (4.12) and (4.13). Since W,, are Kronecker

X

N _ N N? N?
product of two Ry

circulant matrices, they are e X e block-circulant.

However, the N°xN’ matrices W, and VNVy are not circulant but they are usually

2
referred to as block-block semi-circulant (BBSC) matrix of order (4,NT). It is obvious
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W is also a BBSC matrix. These matrices have exactly the same properties as the BSC
matrix when the 2-D DFT is used for their computation [48], [37].
4.3.3 Decomposition of 2-D Convolution Operator

In two dimensions, it is easy to perform the decomposition of the block circulant
convolution operator H using the BBSC notation. Assuming that H is an N*xN? block
circulant matrix representing the 2-D circular convolution of an NxN signal with the

following mask,

R(=22)  h(-12) h(02) k(1,2) h(22)
R(=21)  h(=LD)  ROD kA A1)
B(=2,0) h(-10) k(0,00 h(10) A(20) - 4.29)
h(=2,-1) h(-1,-1) hO~1) h(-1) h2-1)
h(=2,-2) h(~1,-2) h(0,~2) h(1,-2) h(2,-2)

which is centered at (0,0). In a manner similar to the 1-D decomposition case, it can be

shown that (4.19) also holds for the 2-D case. Moreover, § is an N°x1 vector of the

same formas f and Hpis given by

H(O,O) H(—LO) H(O,l) H(—Ll)
H(I,O) H(O,O) H(l,l) H(OJ)
H, = (4.30)
H(O,—l) H(—l’—l) H(O,O) H(—LO)
H(L—l) H(O,-l) H(LO) H(O,O)
2 2

where H; are e x T block circulant matrices that represent the 2-D circular

convolution of an % X% 2-D signal with the following mask centered at (i)
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h(i-2,j+4) h(,j+4) h(i+2,j+4)
hG—=2,j+2) h(i,j+2) hi+2,j+2)
RGi-2,7)  hG,j)  hGE+2,)) - (4.31)
h(i-2,7-2) h(G,j=2) h(i+2,j-2)
h(i-2,j—4) hG,j—4) h(i+2,j-4)

2
As Hp and H are BBSC( 4,NT) and D,HD] is BSBC, the computation required by

(4.19) can be carried out with block matrices in the DFT domain.

4.4 Image Restoration using ARCTLS in Wavelet Domain
From discussions in the previous section, one can decompose the degraded image and
. . ® . 11 N N
the PSF with the 2-D re-ordered wavelet matrix W , yielding four —Z—X-E

lexicographically ordered images, g,,, 8., 8., and g, , and the decomposed PSF

2 2
comprised of four TXT block circulant matrices representing the 2-D circular

convolutions of four %x% subband images. Then, we can use the ARCTLS algorithm
to restore the four subband images. Finally, using the reconstruction filters in the inverse
DWT domain, we get the full size restored image [49].

Following the discussion of higher dimension decomposition in wavelet domain in

Chapter 2, there is a potential of using Wto transform a signal-channel restoration

problem into a higher-dimension multichannel problem. It should be mentioned that the
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more channels used for the decomposition, the smaller the stationary length is assumed.
If we transform a four-channel restoration problem into a sixteen-channel one (two-level
decomposition), the stationary length is reduced to % This is accomplished simply by

multiplying the result of each filter bank operation by a matrix containing four smaller

~

W matrices to produce sixteen subband images. The higher-order subband
decomposition of the restoration problem is not addressed in this study due to it higher

computational complexity.

4.5 Experimental Results

In this section, we will investigate the performance of the proposed wavelet-domain
ARCTLS restoration approach. Simulation of the proposed method and comparison with
the conventional RCTLS and ARCTLS techniques are carried out based on two standard
test images, “Lena” and “Crowd”. Similar to the simulation condition in Chapter 3, each
test image is degraded by the Gaussian-shaped PSF with known and unknown variances
followed by the addition of the AWGN noise. The wavelet-based Symlet-8 orthonormal
quadrature mirror filter (QMF) bank is selected in our simulation.

4.5.1 Lena Image Experiment

The original Lena image has been shown in Figure 3.2(a). Figure 4.4(a) shows the
degraded image from the same degradation process as that in Experiment 1 of Chapter 3.
The parameters for the PSF and the AWGN noise are summarized in Table 4.1. Four

subband images of the degraded Lena obtained from the wavelet filter bank
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decomposition are tiled in Figure 4.3(b). Figure 4.3(c) gives the corresponding
intermediate restoration result, namely, the ARCTLS restored subband images before the
reconstruction of the restored complete Lena in Figure 4.3(d). Figure 4.3(d) depicts the

restoration result given by the proposed WARCTLS method.

Table 4.1 PSF and AGWN parameters for Figure 4.3

Variances Support Region
6.25 29x29
o
& 8x10” 29x29
h
1 29%29
o

(a)
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(b)

)

(c
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(d)

Figure 4.3 “Lena” image restoration with known variance of PSF (a) Degraded Lena image; (b)
Four decomposed components of degraded image; (c¢) Restored suband images using ARCTLS
with a=10, 4;=0.5; (d) WARCTLS restored image.

It is seen from Figure 4.3(b) and (c) that the use of ARCTLS in the wavelet domain has
yielded better restored subband images compared to those before restoration, especially
the diagonal detail subimage. Also, the restored complete image as shown in Figure
4.3(d) is much better in both subjective and objective qualities than those shown in
Figure 3.2(b) to (f) from the RCTLS and ARCTLS approaches implemented in spatial
domain. The ISNR value of the image in Figure 4.3(d) is shown under the column of
WARCTLS-1 in Table 4.3.

The Lena image is also tested for the PSF with unknown variance. The PSF and
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AWGN noise parameters related to the degradation are given in Table 4.2. The degraded
image is shown in Figure 4.4(a). Figure 4.4(b) and (c¢) depict the subband images before
and after the restoration using the ARCTLS in the wavelet domain. Finally, Figure 4.4(d)
shows the complete restored image when the variance of PSF is assumed as 16 in
restoration while the true variance is set to 9. The ISNR value is listed as the column of

WARCTLS-2 in Table 4.3

Table 4.2 PSF and AGWN parameters for Figure 4.4

Variances Support Region
True PSF &’ 9 31x31
Assumed PSF ¢’ 16 31x31
oy 2.3x10°% 31x31
o 0.1 31x31

(a)
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Four decomposed subband components; (¢) WARCTLS restored image; (d) Restored subband
images using ARCTLS with a=10,4=0.01.

(d)

Figure 4.4 “Lena” image restoration with unknown variance of PSF (a) Degraded Lena image; (b)

Table 4.3 WARCTLS ISNR values of Lena image

WARCTLS-1

WARCTLS-2

ISNR(dB)

8.425

12.658

4.5.2 Crowd Image Experiment

In this experiment, a test image “Crowd” of 512x512 pixels as shown in Figure 4.5 (a)
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is used. Similar to the previous experiment, we conduct the restoration for both known
and unknown variances of the PSF. The parameters for the degradation process are the
same as those used in the previous Lena image experiment (see Table 4.1). The degraded
image is shown in Figure 4.5(b). Figures 4.5(c)-(e) depict the restored images resulting
from the RCTLS, ARCTLS, and the proposed WARCTLS methods, respectively.
Although a subjective judgment of the difference among the three restored images is
difficult, yet the ISNR values shown in Table 4.4 (see the row of Known Variance)
indicate that the WARCTLS method significantly outperforms the RCTLS and ARCTLS

methods.
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(d)

(e)
Figure 4.5 “Crowd” image restoration with known variance of PSF (a) Original image; (b)
Degraded image; (c) RCTLS restored image; (d) ARCTLS restored image ARCTLS restored
image with a=5,1y=0.001; (e ) WARCTLS restored image 0=5,,,=0.001.
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The restoration of the degraded Crowd image with unknown PSF variance is also
performed with the degradation parameters shown in Table 4.2. Figure 4.6(a) shows the
degraded image. The relevant restoration results using the RCTLS, ARCTLS, and the
proposed WARCTLS methods are depicted in Figure 4.6(b)-(d). The ISNR values of these
restored images are listed in Table 4.4. It is seen that the ISNR given by WARCTLS is

much larger than that of the RCTLS and ARCTLS restored images.

(a)
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(d)
Figure 4.6 “Crowd” image restoration with unknown variance of PSF (a) Degraded Crowd image;
(b) RCTLS restored image; (c) ARCTLS restored image with 0=5 and A, calculated using (3.37);
(d) WARCTLS restored image with o=5 and A, calculated using (3.37).

Table 4.4 ISNR value of restored “Crowd” image

RCTLS ARCTLS WARCTLS
ISNR | Known variance experiment 2.98 4.63 8.25
(dB) : .
Unknown variance experiment -1.17 3.85 10.74

4.6 Conclusion
In this chapter, the matrix representation for the wavelet transform of both 1-D and
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2-D signals and convolution operators has been developed and employed to decompose
the degraded image as well as the degradation process. The Daubechies symlet-8 wavelet
based filter bank has been used for the decomposition of the degraded image and for the
reconstruction of the restored subband images. The choice of the symlet-8 wavelet filter
bank is motivated by the high regularity of this wavelet, which causes most of the
structural information of an image to be projected into the lowest frequency subbands
[46]. Two standard images have been used to simulate the proposed WARCTLS method.
It has been shown that the WARCTLS method gives a much better ISNR for the restored
images compared to the spatial-domain RCTLS and ARCTLS techniques. Besides the
decomposition of the degraded image in each subband, we have also attempted
decomposing the PSF in each subband such that the degraded images can be restored
with ARCTLS in each subband. The resulting benefit is that one can chose a different
regularization parameter for each subband in the WARCTLS algorithm. By doing so, a
significant improvement in both objective and subjective qualities has been achieved.

It is worth-mentioning that we have also carried out restoration experiments by using
other orthonormal wavelet filter banks, such as the Daubechies 4-tap filter. Similar
restoration results have been obtained, implying that the wavelet-domain restoration
performance does not depend on the filter bank used, as long as the perfect reconstruction

property is satisfied.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis we have investigated digital image restoration techniques using the
RCTLS approach in spatial domain and ARCTLS approaches in both spatial domain and
wavelet transform domain. Our focus has been on the development of the wavelet domain
ARCTLS technique, in which the subband decomposition of the degraded image as well
as the degradation process is not straightforward. The work contained in Chapters 3 and 4
constitute the major contribution of the thesis, which can be summarized as follows.

e The DFT-domain solution of the RCTLS and ARCTLS restoration problems
has been investigated. It has been shown that the BSC and SBC matrices play a
key role in solving these restoration problems. As a lexicographically arranged
column vector image is normally used in the image restoration model, the
computational complexity increases significantly as the size of the image in
question. By using the properties of BSC and SBC matrices in the DFT domain,
the computational complexity of the ARCTLS solution has been reduced
efficiently. We have also shown that the BBSC and BSSC matrices for the 2-D

case share the same structure and property as BSC and SBC matrices.
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It has been shown that the regularization parameters can be used to trade off the
fidelity to the observed data for the smoothness of the solution. The ARCTLS
method using a regularization parameter has proved more effective in solving
ill-posed problems. Our analysis and simulation results show that the ARCTLS
1s more effective in searching for the optimal regularization parameter, thus
assuring a better restored image quality in comparison to the RCTLS.

In implementing the ARCTLS algorithm, two variables, Q in (3.36) and 4
in (3.37), are the most important parameters which determine the quality of the
restored image. The adjustable factor of the step length ¢ is also important
for different degraded images, but it is less sensitive to the additive Gaussian
noise according to computer simulations. If a is not properly selected, one
may get a low-quality restored image.

To increase the convergence speed of the ARCTRLS algorithm, a new
termination criterion has been proposed. The new termination criterion uses
Euclidean norm to measure the true total error, and makes use of the newly
obtained DFT coefficients in each iteration. Our experimental results have
shown that the computational complexity is reduced by at least 20% using the
proposed termination formula.

Matrix representation W of wavelet transform for 1-D and 2-D signal

decompositions has been presented. With the W matrix, we have decomposed

the degraded image as well as the convolution operator into subband
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counterparts. The ARCTLS algorithm is then applied to each subband image
separately, yielding high quality restored subband images and the complete
full-band image. Extensive experimentations based on several standard images
have shown that the proposed wavelet-domain ARCTLS (WARCTLS) gives a
much larger ISNR for the restored image compared to the ARCTLS and RCTLS

techniques.

5.2 Future Work

Some thoughts concerning future study of the restoration topic have arisen from the

completion of this work, these including

Further optimization of the adjustable factor & in ARCTLS and WARCTLS
algorithms — This parameter has been selected through experiment in this thesis.
However, in order to guarantee a high quality restoration, & should be
determined analytically according to a priori information of the degraded
image.

Restoration of degraded images caused by non-Gaussian-shaped degradation
models — This is a more general degradation case where the PSF could be any
linear systems and also the additive noise could be non-Gaussian distributed.
Therefore, it is necessary to develop the wavelet-domain ARCTLS technique
for more general PSF and noisy degradation situations in order to meet the

needs of various applications.

80



ARCTLS restoration based on higher-level subband image decomposition — In
this thesis, only one-level wavelet decomposition of the restored image and the
restoration model is considered. One may apply the ARCTLS method to the
high-level decomposed subband images and then obtain the complete full-size
restored image by reconstructing the subband images at different levels. This
higher-level decomposition requires a much higher computational complexity,

but it may lead to a better ISNR for the restored image.
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Appendix A: Diagonalization of SBC Matrix in DFT Domain

An SBC matrix H € SBC(m,n) can be reduced to a block diagonal (BD) matrix Dy

by the similarity transformation, H = QD,Q", where Dyand Q are given by

D, 0 - 0
])H = 22 (1)
0 0 - Dy,

with D;;beingan M xM matrix, 1<i< N, and

Eo.0lu oy v Eonaly
_1 £10ly euly o Enaly @
N
Evaody Evally 0 Exanaly

with Iyybeing an M x M identity matrix and ¢, , = exp{;j(27I)/ N}.
We now decompose Q'HQ =D, into E'H, E=D,, ., (,j=12-,M),
where Hgj) and Dygj) are N x N matrices containing the (i,j)th elements of Hyx and Dy

(l,k=12,---,N), respectively. The matrix E can be written as

€00 €1 Egna
1| &p St Ea
E —_—— 3 i) > (3)
Envao En-1n T En-ina

It is easy to verify that E™' = E”, where H denotes the Hermitian transpose of a
matrix or a vector since E” is the discrete Fourier transform matrix. Furthermore, Hg;
is circulant since H is block circulant. Therefore, D;; is diagonal and thus D is block
diagonal.

For the sake of convenience, the order of D is referred to as (P, N) and the sub-matrice
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Dy is called the k-th component of D. Also, D(k) is interchangeably used with Dy and

the notation De BD(P,N) is used to denote that D is a BD matrix of order (P,N).

Appendix B: RCTLS Solution in DFT Domain

Let W be NxN DFT matrix. Inserting W'W into (3.20), we obtain
P(f) = (Hf —g)” W"W(LL" )" W# W(HF - g) + A(Qf)” W7 W(Qf) “)
Now, by examining the terms in (4) and using the diagonalization properties of the DFT

for circulant matrices, we obtain

W(Hf - g) = WAW"Wf - Wg=D _,F-G )
(Hf -g)" W" =[W(Hf - g)]" = (D, F-G)" (6)
WQf = WQW”Wf =DF )

Q)" W¥ =(WQf)" =(D,F)” ®)
WLL")" W =[WLL")W? " =(D,)" ©)

where D, and D, and D, are givenby

D, = diag[ﬁOaﬁn”"ﬁN—l] 1)
DQ = diag[Qo’Qla"',QN-l] (12)
D, =diag[oi[F| +02,-,02[Fy| +021. (13)

Having established the above equations, (4) can be rewritten as

AE-G| .
P(F)=Y {————+ Q[ [F|'}- (14)

o?[E|" +o?

Since each term in the right-hand side of (14) is nonnegative, minimizing it is equivalent
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to minimizing each component of the sum, with respect to each frequency, separately.

Therefore, the RCTLS solution in the DFT domain can be obtained via

n}!n{P(Fx)L for (i:()ala"'aN_l)

where

AF-G)| .
P(F) = ———+ Q[ [F}]

a,le,.|2 +0’
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