NOTE TO USERS

This reproduction is the best copy available.

®

UMI

DESIGN OPTIMIZATION OF FORK AND JOIN OPEN
ASSEMBLY SYSTEMS VIA SIMULATION

METAMODELING AND GENETIC ALGORITHMS

MAYUR NISHIKANT SHASTRI

A
Thesis
In
The Department
of

Mechanical & Industrial Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Quebec, Canada

Mayur N. Shastri ©September2004

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04430-6
Our file Notre référence
ISBN: 0-494-04430-6
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Fork and Join Assembly Systems are increasingly being used in modern manufacturing
systems. Due to the complexities in their configurations, designing such systems for an
optimal performance may pose a number of challenges. Because of the involvement of
large system parameters and variables, designing an assembly system is not an easy task.
This study presents a design optimization approach in Fork and Join Open Assembly
Systems. Optimal buffer allocations to accommodate the work-in-process inventories in
such systems are optimized in an attempt to maximize the overall system production rate.
Fundamentally the problem is a stochastic, nonlinear, combinatorial optimization
problem with discrete decision variables. Because of the nature of the problem, it is
extremely difficult to find any closed-form expression to determine the expected value of
the production rate. Hence discrete event simulation is used to estimate the expected
value of the production rate. Then simulation model coupled with genetic algorithms is
used to find optimal buffer configuration for maximum production rate. Results obtained
proved the efficiency of simulation optimization method. However, simulation is
extremely time consuming due to lengthy computational requirements for most of the real
life problems. Especially, if system has large parameter space, then any parametric study
becomes impractical. Hence we decided to employ a novel approach of simulation
metamodeling. Simulation metamodels are the models of the simulation models and are
much simpler form of real systems. It provides flexibility in terms of parametric study if
systems have large parameter space. In this study, feedforward, backpropogation based

Artificial Neural Network (ANN) is developed for the system under consideration. ANN

together with GA is then used to find optimal buffer configuration for maximum
production rate. We compared SGA approach with ANN-GA approach and concluded
that ANN-GA gives comparable solutions with more flexibility and less computational
time, which eventually helps systems design engineers to take quick decisions regarding

production controls.

“Vakratund Mahakay Surya Koti Samaprabha

Nirvighnam kurme Devaha Sarva Karyeshu Sarvada”

ACKNOWLEDGEMENT

The author is extremely thankful to his supervisor Dr. A. A. Bulgak for his intellectual

guidance and moral support at key moments.

The author would also like to thank the members of the faculty, staff and fellow students
of the Department of Mechanical and Industrial Engineering, Concordia University for

their assistance throughout the course of the work.

The author is extremely grateful to author’s family members for their affection and

continuous encouragement without which this would not have been possible.

Table of Contents

CHAPTER 1 1
INTRODUCTION 1
1.1 ASSEMBLY SYSTEMS: BACKGROUNDcicvveiireieiiiriierieenieerirraeesesimeisasiarsessesesessecsssesesssesessssaseserssenssssssnsn 1
1.2 BASIC TERMS OF ASSEMBLY SYSTEM ..ciiiviiiiirieieieiiietiiieerieseriseresceseesssssessessseserssssssrsnrsssnssrsssssssssssnsssnsss 2
1.3 CLASSIFICATION OF ASSEMBLY SYSTEMS ..eititttiiiiiiiiiiiierererererereeessesesssrssrsrsseeresemesssesrarssestasssnsssssssssssase 3
1.4 FAILURE AND BREAKDOWNS IN ASSEMBLY SYSTEMS. ..euttvtiiiririrrreeerseescarsrnnremreessesesssssssssrrsessessssasssnees 4
1.5 RESEARCH ISSUES IN THE DESIGN OF ASSEMBLY SYSTEMS......ceverereeeecrarrsrertrereersesassessarensessssanessrareens 5
1.6 OBJECTIVE OF THIS RESEARCH.coietiitiereeiriisiinirieeeeeisissseiesesesissssstassesesessasssassasssassssesssssssassssssosasssnens 6
1.7 CONTRIBUTION OF THIS RESEARCH.....cuvvtetiieeeeirirtereereraeanreeeeessieseresnasanasasesssssssessssasassasssssssssessssasanrsens 8
1.8 ORGANIZATION OF THE DOCUMENT. ..ceviviiitiireiiitrereeteeiiisarrieseseiessssrsesesssiesssssrasssensesessssssssssssesesssosasssese 9
CHAPTER 2 10
LITERATURE REVIEW 10
2.1 MODELING, DESIGN AND ANALYSIS OF MANUFACTURING AND ASSEMBLY SYSTEMS. ...ccvviviereeerinnns 10

2.2 APPLICATION OF ARTIFICIAL NEURAL NETWORKS IN MANUFACTURING AND ASSEMBLY SYSTEMS.. 12

2.3 APPLICATION OF GENETIC ALGORITHMS IN MANUFACTURING AND ASSEMBLY SYSTEMS.........c.c..... 14
2.3 CONCLUDING REMARKS ...uourtetiiietitieeieisentreessssessessieeesesasssssissesssosnesiessssssesssssiasssssssssssrssssserssssssssssnes 16
CHAPTER 3 17
ARTIFICIAL NEURAL NETWORKS: AN OVERVIEW 17
3.1 INTRODUCTIONtvtetrieteiereestntitreeesseeisesostraresestesssstesssessiesssssesesssssssssssesasesesasissssasseseansesesssssanssenssnsans 17
3.2 STRUCTURE OF BIOLOGICAL NEURON AND ARTIFICIAL NEURONccccoittiriieitnrereecireeeesireeereseresecennens 17
3.3 COMMONLY USED FUNCTIONS OF ARTIFICIAL NETWORKS «..vvvviiecierieiiieeeeeeieicieiireeeeseeeseeanseneseeaensnns 20
3.4 NEURAL NET TOPOLOGIESccivetutrrieieieseisireiesesisisisresssiesarsisssessssssssssnssssssssessisesssssssssassesssssssssesasens 24
3.5 LEARNING IN ARTIFICIAL NEURAL NETWORKS ...uuuitieeeieesiiiiissneneresacssssansserarsoresessieessassssessssssessesseeses 28
3.6 APPLICATIONS OF ARTIFICIAL NEURAL NETWORKSouutieiiietitntrnteeeeeerenseeseerersnseesesrsssnsasseesesrnnnnans 33

CHAPTER 4 35

GENETIC ALGORITHMS: AN OVERVIEW 35
4.] INTRODUCTION ...ooiitteeeieieeieeeesetesesesstessasastaessssesesesssesssssssesssssreessnsessinsensesssssssonssssesssntarasssnssesmsrnnens 35
4.2 ELEMENTS OF GENETIC ALGORITHMSuuvviirieiiiiieiireiereeeeiessossreseesesessssnssrsesssesrsssssssesssesssssssssnssssssessses 36
4.3 GA OPERATORS ...eeveeierteiieieeeeteeeesssnrsssestresesassessssssrsssesseesssssnssssensarssasnssesasssesssnsnssassessssesssssssesssssesens 37
4.4 SIMPLE GENETIC ALGORITHM......cuvtutuiururueaiussrnrererssssessssnssasssasssssssssssnsssssessnsnsssssnssnsnsnsnsnsssssssnsnsnssnnssse 41
4.5 TERMINATION CRITERIONuvveeiceeteeeeeenreeaessreseseeseseaeesmeensansseseessesssasssseeesasnseensnnsesssassseeassanesnssnnnennn 42
4.6 RECENT APPLICATIONS OF GENETIC ALGORITHMS ...ccocieerurrereeereirisnrarseeressessssnsensressressssssnsssesasssssnses 43

CHAPTER 5 46

DESIGN OPTIMIZATION OF FORK AND JOIN OPEN ASSEMBLY SYSTEM.....ccccnrcsnnsrrarees 46
5.1 INTRODUCGTIONeuutuertiseiesaeeereteeeteraeerseersrtesrnsssssseseersrersrssssssessessstesesssssssssserssssessssrssssesssssessssssnssensssssn 46
5.2 DESIGN OPTIMIZATION OF FORK AND JOIN OPEN ASSEMBLY SYSTEM VIA GENETIC ALGORITHM 47
5.3.1 INTRODUCTION ...uuturuntunnunriereesesrersrersersersessssstesereresesereresssesessssrsesssestessssretererereretesstersestssssesaresesesesses 60
5.3.2 METAMODELING CONCEPT.......cootertttriereiereiiiereresesesarisrrsessessssasisesesesstesssssaseessssesasstasssasesssossrssesesses 61

5.3.3. APPLICATION OF SIMULATION METAMODELING TO THE DESIGN OPTIMIZATION OF FORK AND JOIN

OPEN ASSEMBLY SYSTEM. coeiiiiiiiiiieieiiititteiesieesiiataseseesssissesesesstesasssissessssessiesssssesesessssstesesessiasssssesesssssns 63
5.3.3.1 DEVELOPMENT OF NETWORK ARCHITECTUREuvururieeiiiiiiiiiineeseeaesnnnereeesesassssnseeesesssessnsssnsesasens 64
5.3.3.2 VALIDATION OF ANN MODEL........cotiitiiiiir ittt etteeieie e s e tsesresesessee e s eranesseie e e sen e s 69
5.3.4 POST METAMODELING ANALYSIS 1iiitiiiiiiiiieiiieiniiieieieinieieieieineresaseressasesasesasasssasasesasesssssesesesesesssssnsnss 71
5.4 COMPARISON OF SIMULATION-GA WITH ANN-GAoovieiiiiirie e ccceitnreee e ceeinreneeaeeserensreeesescensane 73
CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 75
REFERENCES 77
APPENDIX 82

List of Figures

FIGURE 1.1 RESEARCH ISSUES IN THE DESIGN OF ASSEMBLY SYSTEMS....oevvocrreetrmntrrsresentrssessssesesiesssansnnes 5
FIGURE 3.1 STRUCTURE OF A BIOLOGICAL NEURONccectirrterienieeereenrerceesreennereneeanesenessnesonesinersesssecessessinesn 18
FIGURE 3.2 STRUCTURE OF AN ARTIFICIAL NEURONottriiiriiriennieiimirieiintessseesostessseessnssssnesoneecesnersssseeses 20
FIGURE 3.3 STEP FUNCTIONcoecueiiitiieieretteeir et seres et see st eseete seasesseessessesaessnsesssseesnneesnsnessntanesnessonsessan 21
FIGURE 3.4 SIGMOID FUNCTIONcoiiiiiiiiiiiiiiiii sttt sas sttt s bbb nas s s s s 22
FIGURE 3.5 PIECEWISE LINEAR FUNCTIONcoouiitiiientinicereeecetensetenesseesreseenen s sesn e sesasesasoneonsaesnenssne 23
FIGURE 3.6 GAUSSIAN FUNCTIONc.ovtiterieineiieintenetenneeeesenesneestssonesnessussnsssnesanssarssstassessasesssossesnsssassssosaes 23
FIGURE 3.7 LAYERED NEURAL INETWORKcc.cectitrieerieatenuinrentenseestenestssesesseesasenesanesenenerasenensreresnesassencant 26
FIGURE 3.8 ACYCLIC NEURAL NETWORKccoutreiiriirinitiiterinttsinesereesssesiasssnssssesesassesstsnnssssasossanssssssnesses 27
FIGURE 3.9 FEEDFORWARD NEURAL NETWORKovveeterireriicterittsiserisiensstrsssessneresanesssssesosassasesessasesossasasnes 28
FIGURE 4.1 ROULETTE WHEEL SELECTIONc.ccooutetteitereenennieasieeseeseesseseesseesssemecseessessressserseesneessesssesesees 38
FIGURE 4.2 SINGLE POINT CROSSOVERcectiruieautattreteatraraeaeeaaseeersase et eneaesasseesees e asessaesasessaenasraaseessenans 39
FIGURE 4.3 MULTIPOINT CROSSOVERccteiuirtirieriieteetntetereeeseesaeeseesaesneseeasesesesesateneenenateaseseseseshesansrensesnne 39
FIGURE 4.4 MUTATION.......0outiutiuteeieeisieseesissesessnaseseasassssssseseessssenssssessssesensssaseesenssssssmnsessesansessassnsenseseessssesanse 40
FIGURE 5.2.1 TOPOLOGY OF 7 STATIONS FORK AND JOIN OPEN ASSEMBLY SYSTEMcoccicimrieiicinnicnenn, 49
FIGURE 5.2.2 FLOW OF METHODOLOGYvevetesueteeerrererereresesmresesesneesssaseresasererasnesssaeneesasarseesasineessssoreneesasas 52

FIGURE 5.2.3 CONVERGENCE BEHAVIOR OF MAXIMUM AND AVERAGE PRODUCTION RATE OF 7 STATIONS

FORK AND JOIN OPEN ASSEMBLY SYSTEM. ...coeeieiitririeeeeeeraaianreereieeeresreessesessasssessasssesasensresessssessenssas 57

FIGURE 5.2.4 CONVERGENCE BEHAVIOR OF MAXIMUM AND AVERAGE PRODUCTION RATE OF 11 STATIONS

FORK AND JOIN OPEN ASSEMBLY SYSTEM.ovctietrertrceteniereensereerseesueesesaseesnersuesssessseearessssesnessnessnsens 59
FIGURE 5.3.1 METAMODELING CONCEPTcccciortiitrtiemteereeerneesasanesecaencsseensesseesmesnesasereeesessnsesanesanassneesesan 62
FIGURE 5.3.2 ANN METHODOLOGYevvteieetiaaieteranreesireeseemnreteesosssesssaatesasseesassess sareresasosesesessaresessoensesesas 63
FIGURE 5.3.3 ARTIFICIAL NEURAL NETWORKcoceeectiriterranieeieesneeeecesneanecessinecesssonesasesserancessesnsessesennas 65
FIGURE 5.3.4 PERFORMANCE OF ANN FOR Lo = 0.4 ..ottt e e eete e s s meane s saminnasennns 67
FIGURE 5.3.5 PERFORMANCE OF ANN FOR L= 0.45 .ottt ettt stteeeiresessaseeeseenneessanirenesennes 68
FIGURE 5.3.6 PERFORMANCE OF ANN FOR LC=0.5ooctiiiiiiiiiei et e oo 68

FIGURE 5.3.7 PERFORMANCE OF ANN FOR Lem0.0.....ccoivieiieeciiiecreeeteeeteecbesesseesbesassesesssssssseessessnsnesasenens 69
FIGURE 5.3.8 COMPARISON OF ANN OUTPUT WITH SIMULATION QUTPUTcocviririeieeerreerereenreeesssnenesesssnns 70
FIGURE 5.3.9 POST REGRESSION ANALYSES ..utuvttrtiiiieeieiiiisisrerieseaesiaressssessesassiasesesassiosssssssassssessonesssssssssassese 71

FIGURE 5.3.10 COMPARISON OF ANN-GA AND SGA APPROACHESvutiiiiecrnriietirerisirererteeeseresissssssmsseseses 74

LIST OF TABLES

TABLE 3.1 BIOLOGICAL TERMINOLOGY AND ARTIFICIAL NEURAL NETWORK TERMINOLOGYccovuvviruennans 19
TABLE 3.2 DIFFERENT FUNCTIONS OF ANNccuiiiiiiiirienreeeeserisostestensesseseasasesossesuessassesssessessesasesasenseneessane 24
TABLE 5.2.1: ITERATION INFORMATION FOR 7 STATIONS FORK AND JOIN OPEN ASSEMBLY SYSTEM WITH JAM
RATES 0%, 5%, 0%, 0%, 5% AND 5% FOR STATIONS 1 TO 6 RESPECTIVELY......cccceernmeranerecrueranee 56
TABLE 5.2.2: ITERATION INFORMATION FOR 11 STATIONS FORK AND JOIN OPEN ASSEMBLY SYSTEM WITH

JAM RATES 0%, 5%, 0%, 5%, 0%, 0%, 5%,0%, 5% , 5% FOR STATIONS 1 TO 10 RESPECTIVELY.

TABLE 5.3.1 SAMPLE TRAINING DATA SETcivtietitieiieiiriiiiieiereesiesessiastsasassssssesssetessssssenseessessrossasssssssesssesss 66

TABLE 5.3.2 OPTIMAL BUFFER CONFIGURATION BY ANN-GA APPROACHcccciiiieetiieeeeiereeeseesereeesieaeeans 73

CHAPTER 1
INTRODUCTION

1.1 Assembly Systems: Background

Assembly work has a long historic record. People from centuries, knew the creation of
useful objects composed of multiple parts. However, in modern times the main objective
of assembly processes is to manufacture high quality and low cost products. Many
important ideas have been developed to enhance assembly processes. Assembly parts are
standardized. Parts of the same type must have the same specifications. This ensures
uniform quality of the parts. Parts from different sources are then assembled to get final

product [1].

The division of the assembly into sub assemblies is another important innovation in
assembly manufacturing. If too many parts are involved in the assembly task, then the
work may be sub divided into a number of smaller tasks. Each task processes a part of the
assembly. By gradually adding parts to an assembly, a finished product is obtained.
Expertise can be developed in a short period because of relatively limited content of each
task. Thus, assembly speed may be increased and quality can be improved. In many
assembly systems, non-assembly operations such as, parts preparation, inspection, and
testing operations may be inducted in order to assure the high product quality level, and

facilitate assembly work [1].

1.2 Basic Terms of Assembly System

Assembly: Assembly is the process by which various parts are collected and fitted
together in order to manufacture finished product. It is characterized by the parts used
and the operations necessary to combine them. Parts maybe subdivided into two
subgroups, components (purchased) and sub-assemblies (intermediate goods). The

unfinished units of products are called work pieces.

Operation: An operation or task is the portion of total work content in an assembly

system. The time required to perform an operation is called operation time.

Work Station: A workstation is a place in assembly line where a number of operations
are performed on raw parts. These stations can be divided as manual or automated
assembly stations depending on the subjects performing work. The set of task assigned to
a station is called station load. The time required to perform allotted task/work is called

station time.

Cycle Time: The cycle time is the total amount of time that work piece spends in a
production line. The cycle time should be greater than largest station time. The reciprocal

of cycle time is output rate or production rate of the line.

Inter-stage Buffers: Inter-stage buffer is a storage place between two successive work
stations, which can hold semi finished parts when succeeding station is still busy in

processing earlier part. The parts in this storage place or buffers are called as work in

process inventories (WIP). Blocking and Starvation are the two phenomena associated
with inter-stage buffers. Because of limited buffer spaces, a station may be blocked when
the following buffer is full. The blocked station is idle until the succeeding station
requires a part stored in the buffer. The station is starved when the input buffer of a
station is empty after terminating current job. The workstation is idle until a part enters

the input buffer [2].

1.3 Classification of Assembly Systems

Assembly systems are classified as closed or open loop assembly systems, and as
synchronous or asynchronous assembly systems. In synchronous assembly systems, part
transfer between all stations occurs simultaneously at fixed interval of time and the whole
system is placed by the speed of transfer mechanism. In asynchronous assembly systems
(AASs), parts can be transferred independently and can be queued in front of
workstation. This provides certain amount of flexibility from workstation to workstation,

which results in increase in production improvement. [3]

Further, asynchronous assembly systems are built according to system requirements.
AASs can be arranged in either closed loop or open loop fashion. Some assembly
systems may contain serial workstations or some may contain parallel workstations.
Some AAS are designed to incorporate retention of defective parts for rework. These
types of AASs arranged either with feedforward or feedback loops. In AASs transfer of

parts between stations handled by either transfer chain or conveyors or automated guided

vehicles (AGVs). Assemblies are often transported on work carriers or pallets with
fixtures that hold assemblies. A fixed number of pallets always circulate in the AASs as

per system design requirements. [3, 4, 5]

1.4 Failure and Breakdowns in Assembly Systems.

Asynchronous assembly systems are high-speed production lines. Failure of a single
station may cause the complete stoppage of the entire assembly systems. Apart from
these regular failures, AASs are subject to station jams. Although, the station jam is a rare
event, it may affect the overall system performance. A station jam may occur due to
assembling of defective part at particular station or accidental drooping of part held by
robotic assembly station. These jam occurrences are random events. Also, when jam
occurs, operators require random amount of time to clear the jam. Blocking and
Starvation are the two important consequences associated with Jam. Suppose a jam
occurs at assembly station, station will stop processing assemblies for certain time until
jam gets cleared by the operator. During this temporary stoppage of line, buffer space
between the station experiencing jam and one or more upstream stations may get filled.
The upstream station then unable to release part in buffer space or the upstream station is
blocked from releasing the finished assemblies to be processed in the next stations.
Similarly because of limited number of pallets, the jamming of station may lead to

starvation of downstream stations. [3, 4, 5]

1.5 Research Issues in the Design of Assembly Systems.

Designing an assembly system is a complex task because of the involvement of large
system parameter and variables. There are numerous approaches to this difficult task of
designing assembly system. Generally, the overall assembly system design problem is
decomposed into sub-problems of manageable complexity, which in turn are solved
distinctively (Figure 1.1). Valid assumptions are being made to simplify the complex
problems. Then the simplified problem is solved to find out the optimal solution. But
because of NP-HARD (The time required to reach optimal solution increases
exponentially as the size of problem increases linearly) nature, it is extremely difficult to
develop any algorithm or analytical solution, which could solve all the problems of

designing optimal assembly systems.

Assembly System Design
Resource Resource Material Buffer
Requirements Layout Flow Capacity

Figure 1.1 Research Issues in the Design of Assembly Systems

Resource Requirement Problem: The main task is to determine the appropriate quantity
of production resource (example, machines or pallets) in manufacturing/assembly
systems. Generally, the objective is cost-based, such as the maximization of investment

efficiency or time-based such as the maximization of production rate.

Resource Layout Problem: This problem is related with the allocation of a set of
resources in a constrained floor space. The objective is to minimize some combination of

material handling cost, travel time and resource relocation cost.

Material Flow Problem: The objective is the selection of proper material handling
system for assembly line so that cost is minimized, and production rate, flexibility and

reliability of assembly system are maximized.

Buffer Capacity Problem: This problem deals with the optimal allocation of work-in-
process (WIP) or storage capacity in assembly system. Machine utilization and
production rate can be maximized with adequate levels of WIP. So it is imperative that

inter stage buffer capacities be optimized in order to maximize production rate [6].

1.6 Objective of this Research.

While resource requirement problem, resource layout problem and material flow problem
are out of scope of this research, this study concentrates on the inter-stage buffer capacity
problem in a particular AAS topology while considering some design parameters such as
jam rates, jam clear times and total number of pallets. Selection of appropriate buffer
sizes in an automated manufacturing system is a complex task, subject to arbitrary
fluctuations in production rate and transportation delays that are part of material handling

system. If large buffer sizes are provided, then the distance between to work stations will

increase which results in exceptional part transfer delays and also for large buffer sizes
more WIP inventories must be provided, which results in increase in inventory cost. On
the other hand, if small buffer sizes are provided, then small processing delays or station
jam will result in filling of the buffer and the upstream workstations will be blocked from
releasing processed part. In automated manufacturing system, for a fixed number of
pallets, there is always an optimal buffer configuration capable of yielding maximum

production rate with the reduction in blocking and starvation effects [3,4,5].

The problem is stochastic, nonlinear combinatorial optimization type with discrete
decision variables. To this date, there is no analytical solution available to solve the
complete design problem of manufacturing system, discrete event simulation is generally
used to estimate production rate. Simulation has been universally used by the
manufacturing systems design engineers as a flexible tool in modeling and analysis of
complex manufacturing systems. It reduces cost, time and risks associated with the
implementations of new designs. However, simulation is extremely time consuming due
to lengthy computational requirements for most of the real life problems. If a system has
large parameter space, then simulation can be impractical for the parametric study of the
system performance [7]. Systematic performance studies of most real world problems
are beyond reach, even with supercomputers, unless substantial improvement in the
speed of the performance evaluation process can be achieved. One approach to
overcome this limitation is to develop a simpler model to explain the relationship
between the inputs and outputs of the system. Metamodels are the models of

simulation models are increasingly being used in conjunction with the original

simulation, in an attempt to improve the analysis and understanding of decision-
making processes [8]. A simulation metamodel is a simpler model of the real system.
The simulation model is an abstraction of the real system in which a selected subset
of inputs is considered. The effect of the excluded inputs is represented in the model
in the form of the randomness to which the system is subject. Simulation is used to
generate data sets, which in turn are used to build the metamodel. A simulation
metamodel with neural networks is a neural network whose training is provided by a
simulation model. In general, a metamodel takes a fewer number of inputs and is

usually simpler than the simulation model [8].

1.7 Contribution of This Research.

This research focuses on the optimal buffer allocation in fork and join open assembly
system. The study has its foundation in the earlier studies of stochastic design
optimization of AASs [3,4, 5,7, 12, 13]. Whereas, the former studies focused on various
forms of closed loop AASs, we further expand the implementation domain of these
technologies to the new AAS topologies which are not widely studied before. These
systems are called as fork and join open assembly systems (Figure 5.2.1). Fork and join
open assembly systems started gaining importance since past few years. The main areas
of application are refrigeration plants and automotive production plants. The major
contributions of this research are summarized as follows:

> Discrete event simulation model for fork and join open assembly system is

developed from scratch. Simulation model is then coupled with Genetic

Algorithm to find optimal / near optimal buffer allocation for maximizing the
production rate.

» Then, after extensive experimental investigation, an artificial neural network
(ANN) metamodel is developed for simulation model of a fork and join open
assembly system.

» ANN metamodel together with Genetic Algorithm is used to optimize the buffer

sizes in fork and join open assembly system.

1.8 Organization of the Document.

The organization of document is as follows:

» Chapter 2 presents literature review on the study of manufacturing and assembly
systems.

» Chapter 3 presents an introduction to artificial neural networks.

» Chapter 4 presents definitions of search engines and general overview of genetic
algorithm and its applications in various fields.

» Chapter 5 presents design optimization problem of fork and join open assembly
system, ANN model development and application of genetic algorithm as an
optimizer.

» Conclusion and directions of future research are given in chapter 6.

CHAPTER 2
LITERATURE REVIEW

There are numerous studies in the area of simulation optimization of manufacturing
systems. Simulation metamodelling however, started gaining importance in the last
decade. Consequently literature available on simulation metamodelling is limited. The
main focus of this literature review is on the allocation of buffer sizes in the assembly
systems, other areas such as balancing and scheduling of assembly systems will not be
provided. This review is presented in three parts. The first part will focus on design and
analysis of assembly systems. The second part will be on the application of artificial
neural networks in manufacturing systems and the third part is dedicated to research in

the application of genetic algorithms to manufacturing systems.

2.1 Modeling, Design and Analysis of Manufacturing and
Assembly Systems.

Bulgak and Sanders [3] first proposed an analytical model for the performance evaluation
of on automated assembly system considering the splitting and merging of the flow of the
assemblies among the main and repair loops of the assembly system. They estimated the
system throughput as a function of process quality. In further Research, Bulgak and
Sanders [4] presented the concept of implementation of hybrid procedures involving the
use of analytical performance evaluation techniques, discreet event simulation and Monte

Carlo optimization methods for stochastic design optimization of asynchronous flexible

assembly systems with statistical process control (SPC) and repair loops. Dolgui and
Ofitserov [9] presented new approach based on the use of discrete modification of
transforms jointly with some heuristics for local optimization. Their main focus was on
optimization of the launching of the parts in production systems of job shop type.
kouikoglou and Phillis [10] studied continuous flow model for production networks with
finite buffers, unreliable machines and multiple products. They considered both acyclic
and non-acyclic networks. Kavusturucu and Gupta [11] presented a methodology for
analyzing finite buffer tandem manufacturing systems with N-policy. They calculated the
throughput of the system using decomposition, isolation and expansion and compared
their results with the simulation results. Papadopoulos and Vidalis [12] studied the
optimal buffer allocation problem in short p- balanced unreliable production lines. In
their analysis , they presented the effect of distribution of the service and repair times ,
the availability of the stations and the repair rates on the optimal buffer allocation and the
throughput of the lines. Bulgak et al. [13] proposed new analytical approach for
designing asynchronous flexible assembly systems based on the robust design
methodology, aims at studying and reducing the effect of uncontrollable factors in the
process of identifying the most appropriate configuration for an AFAS. Jeong et al. [14]
proposed a method for finding minimum cost configuration, which gives, desired
throughput for an assembly system. They defined the configuration by the machines to be
used and the buffer capacities. They proposed three heuristics, which simultaneously
select the machine to be used in stations and determine the capacities of buffers. Hann
and Park [15] presented an approximation method for the analysis of average steady state

throughput of serial production lines with unreliable machines. They used Taylor series

expansion and probability generating technique in their analysis. They proposed
analytical method for optimal buffer allocation to achieve desired throughput. Paik et al.
[16] proposed effective throughput approximation methods for finite buffered closed loop
production systems with unreliable machines and exponentially distributed processing
times. The approximation methods are based on decomposition and aggregation
principles. Graupner et al. [17] presented novel approach for configuration, simulation
and animation of manufacturing systems via Internet. It allows to present, test and
optimizes manufacturing systems via Internet. Hemchandra and Eedupuganti [18]
presented an approach for enumerating the state space and obtaining the steady state
probabilities of the same for such model under exponential assumptions. They considered
the finite capacity fork and join queuing model for open assembly systems with arrival
and departure synchronizations for their analysis. Inman et al. [19] presented overview
of research issues in the designing of production systems with respect to quality. They
briefly reviewed the limited literature on the intersection of quality and production

system design and suggested several new research issues that are important to industry.

2.2 Application of Artificial Neural Networks in Manufacturing
and Assembly Systems.

Emelyanov and lassinoski [20] studied an Al based object oriented tool for discrete
manufacturing systems simulation. Their approach was based on creating formalization
method on the basis of Artificial Intelligence (AI) and the object oriented approach.
Zheng et al. [21] studied the neural network approach to the early cost estimation of

packaging products. They developed the back propagation neural network model for cost

estimation based on design information only. They established the correlation between
costs related features and the final cost of the product by training a back propagation
network using historical data. The testing results based on this approach showed good
product cost estimation as compare to traditional cost estimation approaches. Kilmer et
al. [22] studied the use of supervised neural networks as a metamodeling technique for
the stochastic simulation of inventory model. Their results showed that, neural network
metamodel is quite competitive in accuracy when compared to simulation itself and once
trained can operate in nearly real time. Lee and Shaw [23] applied the neural net
approach to real time flow shop sequencing. They developed two level neural networks
that incrementally learn sequencing knowledge. Based on the knowledge gained from
learning using a set of training examples, the real network makes real time sequencing
decisions for a set of jobs that arrive in different combinations. Haouani et al. [24]
studied neural network implementation for modeling and control design of manufacturing
systems. Park et al. [25] studied the neural network approach along with heuristic rules to
scheduling jobs on parallel machines. Dengiz and Akbay [26] use a regression
metamodel to optimize batch sizes in a real printed circuit board assembly line
considering a JIT model. Chen and Yang [27] designed a manufacturing system by a
hybrid approach with neural network metamodelling and stochastic local search. They
used back propagation neural network to generate metamodels for simulated
manufacturing systems. Then they solved the optimization model by applying Simulated
Annealing (SA) approach to obtain the optimal configuration with respect to objective of
the systems design. Sabuncuoglu and Touhami [8] did an experimental investigation of

simulation metamodeling with neural networks and illustrated that simulation

metamodels with neural networks can be effectively used to estimate the system
performances. Bulgak et al. [7] studied the optimization of buffer sizes in assembly
systems using ANN metamodel. They developed artificial neural network metamodel for
simulation of an asynchronous assembly systtem and ANN metamodel together with
simulated annealing (SA) was used to optimize the buffer sizes in the system. Jang et al.
[28] developed methodology using an artificial neural network to identify non random
variation patterns to improve dimensional quality in automotive assembly process.
Ghaziri and Osman [29] developed neural network algorithm for traveling salesman
problem with backhauls. The major innovation of their heuristic is based on new network
architecture, which consists of two separate chains of neurons. Their algorithm shows

promising results in terms of solution quality and computational requirements.

2.3 Application of Genetic Algorithms in Manufacturing and
Assembly Systems.

Bulgak et al. [5] applied genetic algorithms for the design optimization of asynchronous
automated assembly systems. In their study, they extended the domain of application of
Genetic Algorithms to Monte Carlo optimization of complex manufacturing systems.
Carson [30] presented the methods and applications of simulation optimization. They
mentioned methods such as Perturbation Analysis (PA), Frequency Domain method
(FDM) stochastig optimization, Genetic Algorithms and Simulated Annealing. Spinellis
and Papadopoulos [31] studied the stochastic algorithms for buffer allocation in reliable
production lines. They compared two stochastic approaches for solving buffer allocation

problem in large reliable production line. The allocation plan was calculated subject to

given amount of total buffer slots using simulated annealing and genetic algorithms.
Sabuncuoglu et al. [32] used Genetic Algorithms for assembly line balancing. They
proposed a heuristic with special chromosome structure that is partitioned dynamically
through the evolution process. Elitism is also implemented in the model by using some
concepts of Simulated Annealing. Loh et al. [33] presented a genetic algorithm for
printed circuit board assembly, which simultaneously solves feeder assignment and
component sequencing problem. The algorithm uses unique gene selection process that
increases convergence rate without degrading the quality of solution. Zhou et al. [34]
presented the genetic algorithm approach for the balanced allocation of customers to
multiple distribution centers in supply chain networks. Su and Chiang [35] applied the
integrated approach of neural networks and genetic algorithms to optimize IC wire
bonding process. Cochran et al. [36] proposed the two stage multi population genetic
algorithm (MPGA) to solve parallel machine scheduling problems with multiple
objectives. Choi et al.[37] presented genetic algorithm to solve asymmetric traveling
sales man problem. The genetic algorithm proposed in this study extends the search space
by generating and including infeasible solutions in the population. Yokoyama and Lewis
[38] applied the genetic algorithm for the optimization of stochastic dynamic production

cycling problem.

2.3 Concluding Remarks

The literature review presented above shows the application of intelligent techniques to
various complex problems. We have summarized our observations from the literature
review as follows.
» Promising results are being obtained by intelligent techniques such as ANN, GA,
Simulated Annealing (SA) and Tabu Search.
» Research interest is increasing in exploring the possibility of applying intelligent
techniques to different application areas.
» Domains of applications using metamodeling and metaheuristic techniques are
still very limited.
In view of our analysis of the review of existing literature, we feel that it is worthwhile to
expand the application domains of these promising techniques to other areas. Our
objective is to implement these techniques to the design optimization problems of open

assembly systems.

CHAPTER 3
ARTIFICIAL NEURAL NETWORKS: AN OVERVIEW

3.1 Introduction

Artificial Neural Networks (ANN) refers to the computing system whose central theme is
borrowed from the analogy of biological neural networks. In other words biological
brain is the basis for ANN. It is a system loosely modeled on the human brain. The field
goes by many names, such as connectionism, parallel distributed processing, neuro-
computing, natural intelligent systems, machine learning algorithms, and artificial neural
networks. It is an attempt to simulate within specialized hardware or sophisticated
software, the multiple layers of simple processing elements called neurons. Each neuron
is linked to certain of its neighbors with varying coefficients of connectivity that
represent the strengths of these connections. Learning is accomplished by adjusting these

strengths in order to obtain appropriate results.

3.2 Structure of Biological Neuron and Artificial Neuron

In this section we will first explain what the biological neuron is and then will discuss
about the structure of an artificial neuron.

3.2.1 Biological Neuron

A typical biological neuron composed of a cell body, a tubular axon, and a number of
hairs like dendrites. The dendrites are extensions of a neuron which connect to other

neurons to form a neural network. The axon is a long, thin tube that splits into branches

terminating in little end bulbs that almost touch the dendrites of other cells. The small gap
between an end bulb and a dendrite is called synapse, across which information is
propagated. Basically synapses are a gateway, which connects to dendrites that come
from other neurons. Hence the biological neuron can be connected to other neurons and

can accept the connection from other neurons and thus form a neural network [39].

A neuron receives information from other neurons through the connections, processes it
and then transmits this information to other neurons. Basically, a biological neuron
receives inputs from other sources, combines them in some way, performs a generally
nonlinear operation on the result, and then output the final result. The figure 3.1 below

shows a simplified biological neuron and the relationship of its four components [40].

4 Parts of &
Typical Nerve Cell
Dendrites: A&ccept inputs
@ -} Sorna: Process the inputs
dxon: Turn the processed inputs
into outputs

Synapses: The electrochernical
contact between neurons

AN

Figure 3.1 Structure of a Biological Neuron

3.2.2 Artificial Neuron

The artificial neuron was originally proposed by McCulloch and Pitts [41]. It is the
basic building block of the artificial neural network, simulating a biological neuron. In
ANN terminology, biological neuron is termed as node or unit or cell or neurode. Other

biological terms and its ANN terminology is given in table 3.1[42].

Table 3.1 Biological Terminology and Artificial Neural Network Terminology

Biological Terminology Artificial Neural Network Terminology
Neuron Node/Unit/Cell/Neurode
Synapse Connection/Edge/Link

Synaptic Efficiency Connection Strength/Weight
Firing Frequency Node Output

A typical artificial neuron is given in figure 3.2 [43]. Each node receives input from some
other nodes or from some external source. Each input has an associated weight w, which
can be modified so as to model synaptic learning. The neuron sums up the net input and
applies an output activation function according to the equation 3.1. Its output, in turn,
can serve as input to other units. The weighted sum is called the net input to unit i, often
referred as net;. Wj; refers to the weight from unit j to unit i. The function fis the unit's
activation function. In the simplest case, f is the identity function, and the unit's output is

just its net input [17]. Detail explanation of output functions is given in Section 3.3.

W;;

Wi
~—f
—_—
-l

y,=f(net;)

Figure 3.2 Structure of an Artificial Neuron
wo= f{_wiy) (3.1}
J

An artificial neuron is an abstract model of the biological neuron. The strength of a
connection is coded in the weight. The intensity of the input signal is modeled by using a
real number instead of a temporal summation of spikes. The artificial neuron works in

discrete time steps; the inputs are read and processed at one moment in time[16].

3.3 Commonly Used Functions of Artificial Networks

In this Section commonly used functions of artificial networks are explained in brief.
Most common functions are step, ramp, sigmoid, piecewise linear function Gaussian

(radial basis function). Each is described as follows:

3.3.1 Step Function

A commonly used step function is shown in figure 3.3. The main feature of the step
function is that its output does not increase or decrease to values whose magnitude is
excessively high. This is desirable as biological or electronic hardware hardly produces

excessively high voltages. The function defined in general as follows:

0if net<=0
F (net) = {3.2}
lifnet>0

Figure 3.3 Step Function

Sigmoid (S-shaped) functions are the most popular functions used in neural net. The
purpose of sigmoid function within an artificial neuron is to generate a degree of non-
linearity between the neuron’s input and output. Basic shape of sigmoid function is given
in figure 3.4. The sigmoid function can be defined by equation 3.3. Sigmoid functions are

continuous and differentiable. The main advantage of sigmoid function is that their

Figure 3.4 Sigmoid Function
smoothness makes it easy to device learning algorithms and understand the behavior of
large networks whose node computes such functions. Also experimental observations of
biological neurons illustrate that neuronal firing rate is roughly of sigmoid shape [42].

1
fix) = TP (33}

3.3.3 Piecewise Linear Function

Piecewise linear transfer function is combination s of various linear functions, where the
choice of linear function depends on the relevant region of the input space. Step and ramp
functions are special cases of piecewise linear functions that consists of some finite
number of linear segments, and are thus differentiable almost everywhere with the second
derivative equal to 0. Piecewise functions are easy to compute as compare to sigmoid

functions [42]. Typical piecewise linear function is shown in figure 3.5.

Figure 3.5 Piecewise Linear Function

3.3.4 Gaussian Functions
Gaussian functions have bell shaped curves as shown in figure 3.6. It is also known as

radial basis function.

Figure 3.6 Gaussian Function

Different types of activation functions and their basic curves are summarized in table 3.2

Table 3.2 Different Functions of ANN

Unit Step "‘L

Sigmoid]

H
Piecewise Linear /
Gaussian ll

Identity ——

3.4 Neural Net Topologies

In this Section, a detailed description of various neural network architectures is given.
Single neuron is unable to solve practical problems of interest, so networks’ consisting of
large number of nodes connected to each other are used to solve complex problems. The
manner in which these nodes are interconnected is very important since it determines

how the network will perform, its processing speed and the accuracy. Hence it’s very

important for network designer to decide the type of network architecture to be used in

early design phase.

3.4.1 Fully Connected Networks

In this type of network each node is connected to every other node. This is the most
generalized type of architecture. The connections between these nodes can be excitatory
(positive weights), inhibitory (negative weights) or almost zero. Fully connected network
is the most general and conceptually simple type of network. Despite of its simplicity,
this network is rarely used because of the large number of parameters. For instance, if
network has n nodes, then total number of weights will be n’ [42, 43]. Hence it’s very
difficult to devise fast learning algorithm for such a complex network. Also in biological
network, it’s almost impossible to establish contacts with geographically distant neurons.
All other architectures or topologies of neural networks are derived from this basic

architecture. In other words all other architectures are special cases of fully connected

O/P Node
Hidden
Ip Node
Node
I/P
Node

™~

O/P Node

Figure 3.6 Fully Connected Network

3.4.2 Layered Networks

In this type of network, nodes are arranged in different subsets or layers. Intra-layer
connections are permitted in this type of networks. The layers are divided in to three
types: input layer, hidden layers and output layer. Input layer and output layer must be
single layers; while there can be one or more hidden layers. Figure 3.7 shows the general
arrangement of layered neurons [44]. In this type of network, neurons of the same layer
may or may not be connected to each other but the neurons of one layer must always be
connected to at least one other layer. Multi layered networks can solve the classification
problem for non-linear sets by employing hidden layers also hidden layers enhance the

separation capacity of the network [43].

INPUT
LAYER

HIDDEN

LAYER

(there may be several
hidden layers)

QUTPUT
LAYER

Figure 3.7 Layered Neural Network

3.4.3 Acyclic Neural Networks
In these types of networks, there are no intra-layer connections but the inter-layer
connections as shown in figure 3.8. Acyclic neural network is the subclass of layered

networks. In acyclic network, computational processes are much simpler than layered

networks due to absence of intra-layer connections. Networks, which are not acyclic, are

referred as recurrent networks.

1/P Layer Hidden Layers O/P Layer

Figure 3.8 Acyclic Neural Network

3.4.4 Feedforward Neural Networks

Feedforward networks are the most popular and widely used neural networks in
numerous applications. They are also known as multi-layer perceptrons. In these types of
networks, only the connection from a node in layer n to other nodes in layer n + 1 is
allowed. These networks are described by a sequence defining the number of nodes in
each layer. For example, the network shown in figure 3.8 is a 3-2-2-3 feedforward
network: it contains 3 nodes in input layer, 2 nodes in first hidden layer, and 2 nodes in

second hidden layer and 3 nodes in output layer [42, 45]. .

I/P Layer Hidden O/P Layer
Layers

Figure 3.9 Feedforward Neural Network

3.5 Learning in Artificial Neural Networks

Learning in ANN involves with the adjustment of weights in the network so that; a set of
inputs can produce desired outputs. The weights are serially adjusted according to some
fixed procedures, so that the outputs progressively converge to the desired values.
Learning is the vital property of neural network, which helps neural network to learn the
desired response from a set of examples in contrast with other computing approaches,
which require algorithms or rules to store knowledge. The benefit of learning from
examples is that there is no requirement of any explicit rule for the task. In brief, learning
in ANN can be seen as an automatic process of extracting rules from a data set [46].
Learning can be categorized in three types: supervised learning, unsupervised learning

and back propagation. Each of these types is explained in this section.

[el

3.5.1 Supervised Learning
In this type of learning, training patterns are composed of two parts: an input vector and
an output vector coupled with input and output nodes respectively. The complete training
cycle can be described in following steps:
I. An input vector is presented at the inputs along with expected or desired
responses one for each node, at the output layer.
II. Then the actual response is calculated at the output layer and then the difference
between actual calculated response and desired response is calculated.
III. The net difference between actual and desired response is used to adjust the
weights in the neural net according to the prevailing learning rule or algorithm.
The term “supervised' was coined from the fact that the desired or expected responses on
output nodes are provided by an external “teacher’. The teacher may be a set of training
data or an observer who evaluates the performance of the network results. Common
learning algorithms, which implement supervised learning, are back propagation
algorithm, delta rule and perceptron rule. Back propagation algorithm is the most widely

used algorithm with feedforward neural networks [42, 44, 45,46].

3.5.2 Unsupervised Learning

In this type, learning of artificial neural networks is conducted without any external
influence or teacher. It is unique method in a sense that, ANN is given a set of inputs
without any desired responses or outputs. The objective is to have the network itself

begin to organize and use those inputs to modify its own neurons’ weights or in other

\\\\\\

words, gets trained by its own. Sometimes unsupervised learning is also known as
adaptation. Unsupervised learning is analogical to human brain learning; latter also learns
by its own. However, success rate with unsupervised learning in ANN is low as

compared to supervised learning [47].

3.5.3 Learning Laws

Learning laws are the mathematical algorithms used to update the connection weights.
Hebb [48] invented the first learning law commonly known as Hebb’s Rule. Most of the
laws are some sorts of variations of Hebb’s rule. In this section commonly used learning

laws are briefly explained.

1 Hebb’s Rule

Donald Hebb [48] was the first person to introduce the concept of learning rule in 1949 in
his book “The Organization of Behavior”. The basic rule he proposed is: If a neuron
receives an input from another neuron and if both are highly active (mathematically have
the same sign), the weight between the neurons should be strengthened. The rule is used to
adjust the weights of a unit in an artificial neural network, so that the actual output of the
network matches that of the expected or desired output. In Hebb’s rule, the weights are
initialized to 0 and weight adjustments (learning) are performed according to the equation

34

W; (new)= W; (old) + X; * T {3.4}

Where W; is the weight associated with input X;and T is the target output.

2 Perceptron Learning Rule
Rosenblatt [49] in 1958 introduced more powerful learning rule than Hebb rule known as
perceptron learning rule. It is iterative learning rule and can give fair amount of
convergence between desired response and calculated response. The rule is stated as
follows:

+» If the calculated output is the same as the expected (or desired) output, then do

nothing.

¢ Else, if calculated output is 1 then decrement all active weights by 1. An

active weight is the one, which leaves a unit whose output is 1.

¢ Else, if calculated output is , zero , increment all active weights by 1.

The perceptron training rule falls under supervised learning category since; implementer
provides the target or expected outputs along with the inputs. Learning equation for the

weights can be formulated as equation 3.5

W; (new) = W; (old) + 1 *X; * T (3.5}

Where 1 is the learning rate ranges between 0 <1 < 1 and other symbols are explained in

Hebb’s rule.

3 Delta Rule
The delta rule was developed by Widrow and Hoff [50] to minimize the mean squared
error. It is an enhancement of the Hebb’s learning rule [48] that takes into account the

error that is defined to be the difference between the desired response and the actual

response. New weights are then assigned by addition of the error multiplied by the
learning rate to the old weight. This learning rule efficiently brings the convergence
between actual weight and ideal weight. For networks with linear activation functions
and no hidden layers, a parabolic curved graph is observed between the error squared and
the weights. Because of negative proportionality constant, the graph is concave shaped
and has minimum value. The vertex of this paraboloid represents the point where the
error is minimized. The weight vector corresponding to this point is then the ideal weight
vector. The delta rule implements a gradient descent by moving the weight vector from
the point on the surface of the paraboloid down toward the lowest point, the vertex. A

detailed explanation of delta rule is given in [51].

4. Backpropagation Algorithm

Backpropogation learning algorithm is based on generalized delta rule. Basically, it is a
gradient descent method, which minimizes the total squared error of the output computed
by the neural net. Training is performed in cycles until a stopping criterion usually an
acceptable error function is met. The negative of the gradient error function provides the
direction in which the function decreases rapidly; hence the weights are adjusted
accordingly. There are many available variations of this algorithm. A detailed discussion
of backpropagation learning algorithm can be found in [51]. In our research we employed

a feedforward backpropogation neural network-as explained in Chapter 5.

3.6 Applications of Artificial Neural Networks

Despite of its invention in 1943, ANN started gaining popularity since the last two
decades. Prominent areas where ANN is widely used are classification, pattern
recognition, optimization, weather forecasting, stock market prediction and in many
manufacturing applications. In this section we tried to explain few of the applications in

brief as follows:

1 Classification

Classification is associated with the assignment of each object to a specific “class”. It is
of prime importance in a many areas such as image and speech recognition, social
sciences etc. Vierrra and Ponz [52] applied the ANN for the automated classification of
stellar spectra. Heckman et al. [53] presented an audio-video speech recognition system
based on hybrid method of ANN and Hidden Markov Model (HMM) approach. Other
practical classification tasks include recognizing printed or handwritten characters,

classifying loan applications into credit-worthy and non-credit worthy groups [54].

2 Pattern Recognition

Pattern recognition is the field that deals with the operation and design of systems that
recognize patterns in data. It encloses sub disciplines like discriminant analysis, feature
extraction, error estimation, cluster analysis (statistical pattern recognition), grammatical
inference and parsing (syntactical pattern recognition). Important application areas are
image analysis, character recognition, speech analysis, man and machine diagnostics,

person identification and industrial inspection. Do et al. [55] applied ANN for the

identification of spiders by providing different images of spider species for ANN
training. Chan and Sandler [56] applied neural network for the complete 2-D shape

recognition system

3 Manufacturing Applications

ANN started gaining importance in the manufacturing applications only in last decade.
As reviewed in Chapter 2, Section 2.2, typical areas include scheduling of machines,
buffer optimization, system performance, cost estimation in packaging industries. Zheng
et al. [21] applied the neural network approach to the early cost estimation of packaging
products. They developed the back propagation neural network model for cost estimation
based on design information only. They established the correlation between costs related
features and the final cost of the product by training a back propagation network using
historical data. Park et al. [25] studied the neural network approach along with heuristic
rules to scheduling jobs on parallel machines. Sabuncuoglu and Touhami [8] did an
experimental investigation of simulation metamodeling with neural networks and
illustrated that simulation metamodels with neural networks can be effectively used to
estimate the system performances. Bulgak et al. [7] studied the optimization of buffer
sizes in assembly systems using ANN metamodel. They developed artificial neural
network metamodel for simulation of an asynchronous assembly system and ANN
metamodel together with simulated annealing (SA) was used to optimize the buffer sizes

in the system.

CHAPTER 4
GENETIC ALGORITHMS: AN OVERVIEW

4.1 Introduction

Genetic Algorithms (GA) are global optimization techniques based on the evolutionary
computation that avoid many of the fallacies exhibited by local search methods on
difficult search spaces such as buffer allocation problem, machine sequencing problem,
part routing problem, pattern recognition problem, etc. Genetic processes of biological
evolutions are the basis of genetic algorithms. From biological perspective, it is
concluded that an organism’s structure and its ability to survive in its environment
(“fitness™) are determined by its DNA. An offspring, which is combination of both
parents DNA, inherits traits from both parents and other traits that the parents may not
have, due to recombination. These traits may increase an offspring’s fitness, yielding a
higher probability of surviving more frequently and passing the traits on to the next

generation. Over time, the average fitness of the population improves [30].

According to the principles of natural selection and Darwin’s theory of “Survival of the
Fittest*, natural population evolves over generations. In nature, individuals with the
highest survival rate, have the comparatively large number of offspring. Highly adopted
or fit individuals spread the genes to an increasing number of individuals in successive
generations. The strong characteristics from different ancestors may sometime produce
super fit offspring in future generation. The fitness of this offspring will be greater than

that of either parent. Holland [57] was the first scientist who simulated the process of

natural adoption on computer and provided the basis for application of GA to
optimization area. Further, Goldberg [58] presented a number of applications of GAs in
search, optimization and machine learning problems. In general, GA is a powerful
technique for combinatorial optimization type of problems. GA does not find the exact
optimal solutions, but it does find near optimal solutions with reasonable computational
requirements [1, 4, 11]. GA starts with the selection of chromosomes from a given set of
chromosomes in the population with subsequent application of crossover and mutation

operators to these selected chromosomes.

4.2 Elements of Genetic Algorithms

All GAs have following elements in common: populations of chromosomes, selection
based on fitness, crossover to produce new offspring and random mutation of new
offspring. In GA terms, chromosome in population is represented as a string of genes.
Each gene represents a variable from the system of interest. These genes can either be
binary coded (0 or 1) for example 1100110 or coded as integers or real numbers for
example 234567, depending on the type of application. Once the suitable representation
scheme is selected, the next task is to generate initial population. In GA, generally the
initial population is randomly generated. From many studies [5, 30, 31, 32], we can
conclude that good GA should have population size between 30 and 100. Then selection
crossover and mutation operators are applied to initial population in order to find the
optimal solution for a given problem. Each of these operators is described in detail in

section 4.3.

""""
5

4.3 GA Operators

GA operators are used to alter the genetic composition of individuals or chromosomes.
Genetic algorithms guarantees that population or chromosomes have a great chance to be
evolved to the optimal solution [34]. GA starts with the selection of chromosomes from a
given set of chromosomes in the population with subsequent application of crossover and
mutation operators to these selected chromosomes. Crossover has higher probability
while mutation has very low probability. Each of these operators is described in detail as

follows:

Selection: - It involves with the selection of chromosomes from a given set of
chromosomes in the population for reproduction. Chromosomes with higher fitness
function have higher selection probability. Fitness proportionate selection is the most
common method in selection. In this type of selection method, the number of times an
individual is expected to be selected for reproduction is the ratio of its fitness to the
average fitness of the population. “Roulette Wheel Sampling” is the simplest method of
implementing fitness proportion selection [12]. The concept of roulette wheel sampling is
giving each individual a sector of a circular roulette wheel equal in area based on the
individual’s fitness. The roulette wheel is then spun and the ball comes to rest on one
wedge shaped sector, and the corresponding individual is selected. Selecting N
chromosomes from population is equivalent to play N games on roulette wheel as each
individual is drawn independently. However, other selection methods apart from roulette

wheel selection are top mate selection, tournament selection and random selection.

& Chromosome 1
E Chromosome 2
o1 Chromosome 3

& Chromosome 4

Figure 4.1 Roulette Wheel Selection

Top Mate Selection: In this type of selection, the first chromosome is selected based on

fitness function while the second chromosome is selected randomly from the population.

Random Selection: In this type of selection, both chromosomes are randomly selected

irrespective of the fitness function. This is the simplest form of selection.

Crossover: - This operator randomly chooses a locus or point and exchanges the
subsequences before and after that locus or point between two chromosomes to create
two offspring. For example, consider two parent chromosomes A and B with string
1100110 and 1001000 respectively. Suppose single point crossover takes place after
4’Th locus in a string of both chromosomes as shown in figure 4.1. The part of the strings
of the parents A and B after the crossover point will be interchanged. Therefore, offspring

A" and B" after crossover will have strings 1100000 and 1001110 respectively.

Parent A 1 {1 (0 (0 |1 |1 |0
\
Single point Crossover — %
Parent B 1 {0 |0 {1 |0 (O {O
Strings after Crossover
Offspring A* 1 (1 (0 (0 |O |0 |O
Offspring B 1 |0 |0 (1 (1 (1 |0

Figure 4.2 Single Point Crossover

In Multipoint crossover, the crossover takes place at two random locations. In this type,

the part of the strings between two crossover points is interchanged as shown in figure

4.2,
Parent A 1 1 0 0 1 1 0
4
Multipoint
Crossover
/[\\
Offspring A 1 1 |0 1 |0 1 |0
Offspring B® L (0 (0 (0 |1 |0 |O

Figure 4.3 Multipoint Crossover

If no crossover takes place then offspring produced are the exact copies of their parents
[12]. The crossover can be single point or multipoint crossover depending upon the type

of GA. Simple GA has single point crossover

Mutation: - Mutation is one of the important genetic operators that randomly flip one or
more bits in a chromosome for example in case of binary coding 1’s to 0°s and 0’s to 1’s.
The objective of the mutation operator is to check the genetic population from
converging to a local minimum and to introduce to the population new possible solutions.
The Mutation takes place only after crossover. Mutation operation randomly changes the
offspring resulted from crossover. The mutation is carried out according to the mutation
probability Pm that is very low. Mutation can occur at any bit position in a string [12].
For example, consider an offspring A with chromosome structure 1101010 undergoes a
mutation operator with probability Py . Suppose the mutation occurred at 4’th bit
position, then the gene 1, at 4’th bit position will change to O and the new offspring A"

will be 1100010 as shown in figure 4.3.

Offspring A 1 1 (o |1 (0 |1 |0

Offspring A” 1 1 0 0 |0 1 0

Figure 4.4 Mutation

4.4 Simple Genetic Algorithm

Genetic algorithms are inspired by Darwin's theory of evolution. Solution to a problem
solved by genetic algorithms uses an evolutionary process (it is evolved). Algorithm
begins with a set of solutions (represented by chromesomes) called population.
Solutions from one population are taken and used to form a new population. This is
motivated by an expectation, that the new population will be better than the old one.
Solutions, which are then selected to form new solutions (offspring) are selected
according to their fitness - the more suitable they are the more chances they have to
reproduce. This is repeated until some condition (for example number of populations or

improvement of the best solution) is satisfied.

Basic Genetic Algorithm
STEP I: Generate random population of # chromosomes (suitable solutions for the

problem)

STEP II: Evaluate the fitness f{x) of each chromosome x in the population

STEP III: Create a new population by repeating following steps until the new

population is complete

[Selection] Select two parent chromosomes from a population according to their fitness

(the better fitness, the bigger chance to be selected)

[Crossover] With a crossover probability cross over the parents to form new offspring

(children). If no crossover was performed, offspring is the exact copy of parents.

[Mutation] With a mutation probability mutate new offspring at each locus (position in

chromosome).

1. [Accepting] Place new offspring in the new population

2. [Replace] Use new generated population for a further run of the algorithm

3. [Test] If the end condition is satisfied, stop, and return the best solution in current
population

4. [Loop] Go to step 2

For combinatorial optimization problems, GA works as follows: a population of solutions
coded as strings of fixed length are maintained during the search. For each iteration, a
new population P ., is created by retaining old solutions and generating new solutions
from previous population P; by applying three operators selection, crossover and

mutation [5].

4.5 Termination Criterion

GA has a general behavior that, the solution of GA keeps improving over generations.
But after a certain number of generations, convergence can occur such that, a fair amount
of agreement between maximum fitness and average fitness can be observed [5]. Despite
of the convergence behavior, GA has no convergence guarantee in arbitory problems [31,
32]. Detailed explanation of stopping criterion can be found in Diwan’s work [59]. In
our application we decided to use stopping criterion, which depend upon the size of the

production system. For example in our study we decided to stop after 15 generations for a

7 stations assembly line. However if no fair agreement is observed at 15™ generation, our

GA search continues till convergence a criterion is observed.

4.6 Recent Applications of Genetic Algorithms

Genetic Algorithms became very popular in combinatorial optimization applications
since the last decade. Variations in basic GA can be efficiently employed to solve the
difficult problems such as NP Hard problems, Machine learning, pattern recognition and
also for evolving simple programs. GAs are also being used in composing music [60].

Typical GA applications are described in brief as follows:

1) Optimization: GAs have been used in solving wide range of optimization tasks such
as numerical optimization combinatorial optimization problems. As reviewed in Chapter
2 Section 2.3, typical combinatory optimization problem includes job shop scheduling,
buffer optimization, and circuit board layout. Bulgak et al. [4] applied the schema
theorem for solving buffer allocation problem in asynchronous assembly systems.
Yokoyama and Lewis [38] applied the genetic algorithms for optimization of dynamic
production cycling. Loh et al. [33] used genetic algorithm for sequential part assignment
for printed circuit board assembly. Cochran et al. [36] developed a multi-population

genetic algorithm to solve the multi- objective scheduling problems for parallel machines.

2) Machine Learning: This is one of the important areas where GAs have been widely

used. Typical application includes classification and prediction tasks, such as prediction

of weather or protein structure [12]. Chen et al. [] applied genetic algorithms for
information retrieval. Genetic algorithms can be effectively used to architecture and

weights of the neural networks.

3) Automatic Programming: GAs have been used to evolve computer programs for
specific tasks and to design other computational structures such as cellular automata and

sorting networks [12].

4) Economics: GAs have been used to model processes of innovation, the development

of bidding strategies and the emergence of economic markets [12].

5) Social Systems: GAs have been used to study evolutionary aspects of social systems,
such as the evolution of social behavior in insect colonies, and more generally, the

evolution of cooperation and communication in multi-agent systems [12].

Once, the basic GA algorithm implemented, we just have to write a new chromosome to
solve another problem. With the same encoding, we simply change the fitness function
and apply GA to other problem. However, for some problems, choosing and

implementation of encoding and fitness function can be difficult.

GA is such a powerful heuristic search method that it can be applied to all of the areas.

Some of the applications of GA are short listed as follows:

¢ Nonlinear dynamical systems - predicting, data analysis

e Designing neural networks, both architecture and weights

ENS
4

Robot trajectory

Traveling sales man problem and sequence scheduling
Evolving LISP programs (genetic programming)
Strategy planning

Finding shape of protein molecules

Functions for creating images

CHAPTER 5

DESIGN OPTIMIZATION OF FORK AND JOIN OPEN
ASSEMBLY SYSTEM

5.1 Introduction

Production/assembly systems nowadays tend to be more expensive and complex because
of the use of sophisticated equipment and flexible nature of the systems. Hence early
design phase of such systems is highly significant. Decisions regarding product family,
processes, machines, flow of the material etc are made in this phase. Hence, it is
imperative to obtain feedback on the impact of such decisions on the system
performance. However, complexity of the whole system makes initial judgment a
dangerous design tool. Hence a model of a system is required to evaluate the performance

of the alternative system configurations before actual implementation [59, 60]

In this chapter, we have presented two different ways of design optimization of fork and
join open assembly systel;ls. One way is the simulation optimization method in which,
GA of Holland [57] works as an optimizer in search of an optimal buffer allocation for
maximum production rate. The second method is simulation metamodeling, in which an
ANN model was developed for simulation model of fork‘ and join open assembly

systems. Then GA was combined with ANN model to find the optimal buffer allocation

for maximum production rate.

5.2 Design Optimization of Fork and Join Open Assembly
System via Genetic Algorithm

5.2.1 Introduction

Fork and join assembly systems are increasingly being used in modern manufacturing
systems. Due to the complexities in their configurations, designing such systems for an
optimal performance may pose a number of challenges. This section presents a design
optimization approach in fork and join open assembly systems. Optimal buffer
allocations to accommodate the work-in-process inventories in such systems are

optimized in an attempt to maximize the overall system production rate.

An assembly system consists of the series of workstations performing specified set of
tasks repeatedly on consecutive product units moving along the line at constant speed.
Each workstation takes the same amount of time to perform an operation on each unit.
This operation time is called as workstation cycle time and reciprocal of workstation
cycle time is called as production rate [32]. Depending on the type of the assembly
system, these workstations are either manually operated or computer controlled. Also,
workstations are connected to each other with some transfer mechanism such as
conveyors or transfer chains or automated guided vehicles. Assembly systems are
classified as close loop or open loop assembly system, and as synchronous or
asynchronous assembly systems. Detail discussion of assembly system can be found in
Chapterl, Section 1.3. In AASs, the transfer of parts between stations is handled by either
transfer chain or conveyors or automated guided vehicles (AGVs). Assemblies are often

transported on work carriers or pallets with fixtures that hold assemblies. The fixed

number of pallets often circulates in the AASs as per system design requirements [2, 3,

4].

Asynchronous assembly systems are high-speed production lines. Failure of a single
station may cause the complete stoppage of the entire assembly system. Apart from these
regular failures, AASs are subject to station jams. Although, a station jam is a rare event,
it may affect the overall system performance. Blocking and Starvation are the two
important consequences associated with Jams. Suppose a jam occurs at an assembly
station, station will stop processing assemblies for certain time until the operator clears
the jam. During this temporary stoppage of the line, buffer space between the station
experiencing jam and one or more upstream stations may get filled. The upstream station
is then either unable to release the part in buffer space or the upstream station is blocked
from releasing the finished assembly to be processed in next stations. Similarly because
of the limited numbers of pallets, the jamming of station may lead to the starvation of

downstream stations [2, 3].

5.2.2 Problem Statement

Because of the involvement of large system parameters and variables, designing an
assembly system is not an easy task. A comprehensive design process involves a
thorough study of the assembly system to determine the required or optimal system
parameters and variables under the available technology constraints and required product
quality standards with an objective that system would operate at a desired production rate
to meet the targeted demand [5]. As explained in Chapter 1, Section 1.5, the design of an

assembly system can be categorized in to resource requirement problem, resource layout

problem, material flow problem and buffer capacity problem. A comprehensive design
process includes optimization of all of the problems. However, the resource requirement
problem, resource layout problem and material flow problem are out of the scope of this
research. The objective of this study is the optimization of inter-stage buffers
simultaneously considering other relevent design parameters such as jam rates, jam clear
times, total number of pallets for fork and join open assembly system. Hence from now
onwards, the term design optimization refers to the aforementioned context rather then a

comprehensive design optimization.

The assembly system (Figure 5.2.1) under consideration is a fork and join open assembly

system and is a modified version of the assembly system described by Hemchandra and

Eedupuganti [8]. The topology of the system is described as follows:
Station

IN p | 7, — our
e
Join

Figure 5.2.1 Topology of 7 Stations Fork and Join Open Assembly System

In this system, bl, b2, b3, b4, b5 and b6 represents the inter-storage buffer capacities
between assembly stations 1-2,2-3,3-7,4-5,5-6 and 6 - 7 respectively. All stations

are arranged in tandem according to the order of the assembly. Parts entering the system

are sent either to station 1 or to station 4 depending on the process requirements. In brief,
the system is divided into two subsystems, the one with stations 1, 2, 3 and the other with
stations 4, 5, 6. At station 7, parts from these two subsystems are assembled and are then
sent either to the next shop floor or to the warehouse. Also, we have assumed that there
are always enough parts entering the system to accomodate the system throughput. Here,
the system that we have considered is an automatic asynchronous type assembly system.
The distance between any two adjacent stations (connected by transfer chain or conveyor)
and the pallet dimensions determine the numbers of pallets than can be accommodated in
between these adjacent stations. The maximum amount for this work in process (WIP)
inventories between each pair of stations in the system (bl, b2, b3...in fig 1.2) constitutes

the buffer sizes (capacities).

Selection of appropriate buffer sizes in an automated manufacturing system is a complex
task, subject to arbitrary fluctuations in production rate and transportation delays that are
part of material handling system. Large buffer sizes lead to excessive parts transfer
delays and larger WIP inventories. Small buffer sizes leads to blocking of workstations
in case of small processing delays or station jam. The production rate can be
significantly affected by varying the inter stage buffer sizes. Hence its imperative that

these inter stage buffer sizes be optimized in order to attain high system performance.

Hence, the buffer sizes between the pairs of stations constitute the vector of decision
variables and the objective is to maximize the production rate. For a fixed number of

pallets in the system, there is always an optimal buffer configuration capable of reducing

the blocking and starvation effects to yield a maximum possible production rate [3, 4].
Fundamentally the problem is a stochastic, nonlinear, combinatorial optimization
problem with discrete decision variables. Let us consider Y is the production rate, which
is function of buffer sizes, and random variable v, which represents randomness of
staions jam occurance and jam clear time. Hence our goal is to optimize the bufer sizes

between stations while considering the effect of jam occurances to maximize Y.

The problem can be formulated as:

Max: Production Rate =Y
Where Y =F (x); xin X

Fx)=E.f(x,v)

Where, x is the vector of decision variable for buffer sizes b1, b2, b3 bo.
X is a set of constraints, (i.e. the upper bound constraint and the lower bound constraint

for each buffer size).

5.2.3 Methodology

Since, the problem described in Section 5.2.2 is a stochastic, nonlinear combinatorial
optimization type of problem with discrete decision variables; it is extremely difficult to
find any closed-form expression to determine the expected value of the production rate.
The production rate is estimated by taking the ratio of the number of finished assemblies

at the last station to the total number of semi-finished assemblies in the system. Discrete

event simulation is used to estimate the expected value of the production rate. The
genetic algorithm of Holland works as an optimizer in search for an optimal buffer
allocation [4]. Assembly system simulation and genetic algorithm are both implemented
through computer programs written in Microsoft Visual Basic 6.0. Simulation model is
developed in ARENA 5.0. As shown in figure 5.2.2, output from the simulation model is
given to the optimizer (GA) to provide feedback on the progress of the search for an
optimal buffer allocation. This feedback in turn acts as an input to the simulation model

for further improvement [10]. The flowchart of the methodology is given in figure 5.2.3

Feedback

Input > Simulation Output Genetic

Model Algorithm

Figure 5.2.2 Flow of Methodology

5.2.4 Implementation

Fork and join open assembly system with different workstations and topology shown in
figure 5.2.1 has been studied. Discrete event simulation and GA are applied to find
production rate and optimal/near optimal buffer allocation for maximum production rate
respectively. The important issues and parameters for assembly system and GAs are

explained as follows.

Assembly Systems Issues

Workstation cycle time, station jam rates, jam clear time and number of pallets are the
most important issues for the simulation of any production system. After going through
various texts, research papers and our past experience with AASs, we decided upon

following values of these issues.

Workstation Cycle Time: The time required to perform allotted task/work under normal
conditions i.e. without any station jam. This is deterministic component of the

workstation service time [3 ,4, 5, 59] and is considered as 5 time units.

Jam Rate: As explained in Chapter 1, Section 1.3, stations are subjected to jam due to
various reasons. Theses are expressed in percentage for a particular station. For our

system we decide to keep jam rate as 5% for stations 1, 5 and 6.

Jam Clear Time: This is expressed in time units required to clear a jam. In many studies
[3, 4, 5] and consultations with design engineers, we understand that it is reasonable to
assume an expected jam clear time approximately four times longer that the station cycle

time. Also, geometric random variable could successfully model the jam clear duration’s

[5].

Number of Pallets: We decided to fixed, total number of pallets always circulating in the
system. Since AAS are designed such that, it can accommodate 3 to 4 pallets between

each pair of assembly stations. Also, it is important to note that considering the number

w

of pallets, as a decision variable would yield an unstable optimization problem as in that
both the number of pallets and buffer sizes would grow astronomically to ameliorate the
production rate [5]. Hence, we decided to keep the total number of pallets as 30, always
circulating in the system. It is important that, there should be some upper bound and
lower bound for each buffer. In our application we kept upper bound for any buffer as 15

and lower bound as 1.

Simulation Parameters: Based on previous studies on AAS’s [2, 3, 4], we decided to
simulate the system around 10000 time units with 10 independent replications. To

remove initial transient effects, a warm up time of 500 units is used for each replication.

GA Issues
After reviewing tfle literature on the studies of GA’s and consultations with other
researchers in this field, we concluded that GA requires high crossover probability, low
mutation probability and modest population size. Based on these suggestions, we
implemented following parameters;

Crossover Probability (P;) = 0.6,

Mutation Probability (Py,) = 0.033

Population Size (n) = 30

Other characteristics of GA are described as follows.
Initial Population: Initial Population consists of binary coded buffer sizes with the
production rate as fitness function. Each buffer space is represented by binary string of 4

(0’s and 1’s), for example string 1111 represents 15. Here we used the same

representation scheme described by Bulgak et al. [4]. The initial population is randomly
created and GA operators: selection, crossover and mutation are applied to this initial
population. Then chromosomes in the population were decoded and the production rate

was estimated by discrete event simulation.

Convergence and Stopping Criterion: GA has general behavior that, the solution of GA
keeps improving over generations and generations. But after a certain numbers of
generations, convergence can occur such that, the fair amount of agreement between
maximum fitness and average fitness can be observed [4]. The stopping criteria depend
upon the size of the production system. For example, in our study a convergence between
maximum fitness and average fitness is reached at 15°th generation. However if no fair
agreement is observed at 15 generation, our GA search continues till convergence

criterion is observed.

Table 5.2.1: Iteration information for 7 stations Fork and Join Open assembly
system with jam rates 0%, 5%, 0%, 0%, 5% and 5% for stations 1 to 6 respectively.

Total Number of Pallets = 30

Gen Binary Coded String Buffer Max Average

No. Fitness/ Fitness/

Production Production

Rate Rate

[bl b2 b3 b4 b5 b6 | I |
[0][010010010011001001010111 [4 9 3 2 5 7 || 04643 | 04520 |
[1][010010010011001001010111 [4 9 3 2 5 7 || 04643 | 04557 |
[2][010010010011001001010111 [4 9 3 2 5 7 | 04643 || 04567 |
[3][001010010001001010000111 J[2 9 1 2 8 7 || 04782 | 04645 |
[4][001010100010000101110111 |[2 10 2 1 7 7 | 04874 | 04770 |
[5][001010100010000101110111 |[2 10 2 1 7 7 || 04874 | 04778 |
[6][001110010010001001100111 [3 9 2 2 6 7 | 04892 | 04798 |
[7 }[001110010010001001100111 [3 9 2 2 6 7 || 04802 | 0480 |
[8][001010000001001001111001 J[2 8 1 2 7 9 || 04804 | 04857 |
[9][001010000001001010010111 |[2 8 1 2 9 7 | 04897 | 04798 |
[10][001010000001001010010111 J[2 8 1 2 9 7 || 0487 | 04810 |
[11][001010000010000101111001 [2 8 2 1 7 9 04892 | 04880 |
[12][001010010010000110001001 J[2 9 2 1 8 9 || 04806 | 04800 |
[13][001010010010000110001001 |[2 9 2 1 8 9 [048%6 | 04892 |
[14][001010010010000110010111 J[2 9 2 1 9 7][04808 | 04894 |
[15][001010000010000110001000 J[2 9 2 1 9 7 | 04898 | 048%6 |
["Opt.][001010010010000110010111 [2 9 2 1 9 7 | 04898 | 0489 |

0.495

0.49

0.485

0.48

0.475

0.47

Production Rate

0.465

0.46

0.455

0.45
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Generation

Figure 5.2.3 Convergence Behavior of Maximum and Average production rate of 7
stations Fork and Join Open Assembly System.

As shown in figure 5.2.3, a convergence between maximum production rate (0.4898) and
average production rate (0.4895) is obtained at 14’Th generation. The corresponding
optimum buffer sizes are 2, 9, 2, 1, 9 and 7. The idea behind tabulating average fitness is
to exploit the fact that at a given point even if the maximum production rate reaches its
peak, average fitness keeps improving as a law of genetic algorithms. Hence we can get
greater values of average production rate. As shown in table 5.2.1, from generation 14-15
the maximum production rate is stagnant at 0.4898 while the average production rate

increased from 0.4894 to 0.4896.

Table 5.2.2: Iteration information for 11 stations Fork and Join Open assembly

system with jam rates 0%, 5%, 0% ,5%,0%,0%,5%,0%,5% ,5% for stations 1 to

10 respectively.

BUFFERS MAX AVG

Generation Prod Prod

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 Rate Rate

0 3 7 2 5 2 1 5 2 7 6 0.4187 | 0.3925
1 2 7 2 6 2 1 7 1 7 5 0.419 | 0.3974

2 2 7 2 6 2 1 7 1 7 5 0.4189 0.3986

3 1 6 3 7 2 3 5 2 6 5 0.4191 | 0.4015
4 1 6 4 5 3 3 5 2 6 5 0.4195 | 0.3996
5 1 7 3 7 1 1 7 2 6 5 0.4194 | 0.4067
6 1 5 2 7 1 3 7 3 6 5 0.4196 | 0.4084
7 1 5 2 6 2 2 7 3 7 5 0.4196 | 0.4093
8 2 5 2 6 2 4 4 3 7 5 0.4193 | 0.4098
9 2 8 1 5 2 2 4 3 8 5 0.4198 | 0.4067
10 2 8 1 4 2 2 7 2 7 5 0.4194 | 0.4093
11 2 6 1 8 2 1 5 2 8 5 0.4216 | 0.4155
12 1 6 2 7 2 1 5 3 8 5 0.4236 | 0.4175
13 1 6 2 7 2 2 4 3 8 5 0.4236 | 0.4189
14 1 6 2 7 2 2 4 3 8 5 0.4236 | 0.4192
15 1 6 2 7 2 2 4 3 8 5 0.4236 | 0.4205
16 1 6 2 7 2 2 4 3 8 5 0.4236 | 0.4205
OPT 1 6 2 7 2 2 4 3 8 5 0.4236 | 0.4205

0.43
0.425
0.42
0.415
0.41
0.405
0.4
0.395
0.39
0.385
0.38

—e—AVG
—a— MAX

Production Rate

0 5 10 15 20

Generation

Figure 5.2.4 Convergence Behavior of Maximum and Average production rate of 11

stations Fork and Join Open Assembly System.

More examples of convergence behavior of maximum and average production rate for

different configurations of fork and join open assembly systems are given in Appendix I.

5.3 Design Optimization via ANN and GA

5.3.1 Introduction

Simulation has been universally used by the manufacturing systems design engineers as a
flexible tool in modeling and analysis of complex manufacturing systems. It reduces cost,
time and risks associated with the implementations of new designs. However, simulation
is extremely time consuming due to lengthy computational requirements for most of the
real life problems. If a system has large parameter space, then simulation can be
impractical for any parametric study of the system performance [7]. Systematic
performance studies of most real world problems are beyond reach, even with
supercomputers, unless substantial improvement in the speed of the performance
evaluation process can be achieved. One approach to overcome this limitation is to
develop a simpler model to explain the relationship between the inputs and outputs
of the system. Metamodels are the models of simulation models and are increasingly
being used in conjunction with the original simulation, in an attempt to improve the
analysis and understanding of decision-making processes. A simulation metamodel
is a simpler model of the real system. The simulation mode] is an abstraction of the
real system in which a selected subset of inputs is considered. The effect of the
excluded inputs is represented in the model in the form of the randomness to which
the system is subject. Simulation is used to generate data sets, which in turn are used
to build the metamodel. A simulation metamodel with neural networks is a neural
network whose training is provided by a simulation model. In general, a metamodel

takes a fewer number of inputs and is usually simpler than the simulation model. [8].

247y

5.3.2 Metamodeling Concept

Although, the simulation model is simpler than the real world system, it is still a very
intricate way of relating input to output. Sometimes, a simpler model may be used as
an auxiliary to the simulation model in order to better understand the more complex
model and to provide a framework for testing hypothesis about it. This auxiliary
model sometimes referred to as a metamodel [61]. The definition of simulation
metamodeling can be found in Kleijgen [62] and Chen et al. [27] and summarized as

follows:

Let us consider X (X ={x;]|j=12,,.r) and Y (Y ={ x| k=12 n }) are the
independent and dependent factors respectively. A factor may be a quantitative or

may be qualitative. Then the response variable yx can be defined as

Yk=f1(X1aX2,--~7Xr) {51}

A simulation model is an abstraction of a system, in which we consider only a subset

of the input factors {x;|j=12, s}. Generally, s is significantly smaller than
the unknown value. Equation 5.2 defines the simulation response Y "as function of b

and random numbers vector v , representing the effects of excluded outputs.

Yk '=f2(X1,X2 sy XS’V) { 52}

A metamodel is a model of simulation model and is further abstraction of the

simulation input variables {x j|j = 1,2, ...m; m <s}. Metamodel response as

YI("=f3(X17X2’-“aXm)+8 {53}

Where ¢ denotes fitting error having an expected value of zero. Figure 5.3.1 shows the

flow of three level abstraction of simulation metamodel.

X1 P
Xy > Real — World System Yk
>
Yk=f1 (xla X255 ones XI’)
Xr »
X2 > Simulation Model Vx|
' |
}’k =f2 (X15 X2 500y XS,V)
X1 ’ v "
X, ——» Metamodel Yk
rr »
Yk =f3(Xi,X2,...,Xm) + €
Xm g

Figure 5.3.1 Metamodeling Concept

5.3.3. Application of Simulation Metamodeling to the Design Optimization of Fork
and Join Open Assembly System.

A neural network is a proven tool in providing excellent response prediction in diverse
application areas such as manufacturing, management, marketing accounting, finance etc.
[63,64]. From recent survey [7, 8, 63, 64] neural networks shows promising results when
compared to other techniques. In this study a design methodology incorporating Back
Propagation (BP) based metamodeling and a GA based optimization technique is applied
to the design optimization problem of 11 stations, Fork and Join open assembly system.

The flow of the methodology is given in figure 5.3.2.

l \

Simulation
Metamodel
F
E
E
D
B
Post Metamodeling A
Analysis via Genetic C
Algorithms K

Figure 5.3.2 ANN Methodology

Figure 5.3.2 shows the hybrid methodology applied to design optimization problem of
fork and join open assembly system. The discrete event simulation model was first

developed for the problem under study. A set of training data and a set of testing data

3.

were generated through this simulation model. The training patterns (set of inputs with
targeted outputs) were then fed into a BP network to learn the relationships between the
input parameters and simulation responses of the interest [7, 27]. Once the neural
network is trained, testing data is used to test the validity of ANN model. Then Genetic
Algorithm in conjunction with the ANN model was applied to optimize the buffer sizes
between the stations of fork and join open assembly system. After the creation of ANN
metamodel, we don’t need to run the simulation model in search of optimal buffer
allocation; hence, the lengthy computational time will drastically be reduced. We, then

compared our results obtained from ANN-GA method with the Simulation-GA method.

5.3.3.1 Development of Network Architecture

Performance of ANN model can be evaluated on several design parameters such as the
number of layers in hidden layer, number hidden neurons in each hidden layer, the size of
training set and training factors [7]. Figure 5.3.3 shows generalized ANN architecture
with single hidden layer. Previous work [7, 64] in ANN showed that a single hidden layer
is sufficient for ANN to approximate any complex nonlinear function as long as enough
hidden neurons are used. It is imperative to decide number of hidden neurons in hidden
layer at the beginning of building ANN. Second important factor in ANN building is size
of the training data set. Since the size of the training data set influences the performance
of ANN, it is essential to determine proper training size. The next important factor is
selecting the learning algorithm. With our past experiences and from other studies [7, 8,

27, 641, we decided to use backpropgation-learning algorithm.

Error Feedback

|

During Training

—
I
N e
P — Neural
U_., & — Network
T 7 I Output
s g
g — ﬂ/[i",ﬁ:)}o Output Layer
__-’ s

Input Layer

Figure 5.3.3 Artificial Neural Network

The value of learning coefficient (I)) significantly affects the effectiveness and
convergence of backpropagation learning algorithm. The choice of I, depends on the class
of learning problem and the network architecture. A larger I will result in more rapid
convergence, but overshooting is generally associated with larger I.. Hence there are
chances of lack of stabilization at any minimum. . Smaller /. ensures true gradient
descent, while the total number of learning steps to reach satisfactory results increases or

in other words time required to reach convergence increases.

Till date, there is no method available to decide or set the optimum parameters for the

building of ANN. Therefore we decided to do experimental investigation on the effect of

number of hidden neurons in a single hidden layer, training data set and learning

65 -

coefficient to find optimal or near optimal above mentioned parameters for ANN. Figures

5.3.4 to 5.3.7 shows the effects of learning coefficient on ANN performance.

Another important part in building ANN is the type of input to be given to train the ANN.
Since the problem under consideration is finding an optimal set of buffers for maximum
production rate with respect to total number of pallets always circulating in the system,
stations subject to jams and their corresponding jam rates. From our previous studies [5,
71 we know that, the buffer sizes between the pairs of workstations and jam rate for each
workstation significantly affect the production rate. Hence we decided to choose buffer
sizes between the pairs of workstations and jam rate for each station as inputs to ANN
model and output as production rate which is the function of inputs. Table 5.3.1 shows
the sample input for ANN model. The training of ANN was carried out using
backpropagation algorithm because of its powerful approximation capacity and its
applicability to both binary and continuous inputs [7]. Neural Network toolbox of

MATLAB 6.5 was used to develop and train ANN.

Table 5.3.1 Sample Training Data Set

Buffer’s | bl b2 b3 b4 b5 b6 b7 b8 b9 b10

4 6 3 5 6 2 9 1 8 2

Stations | WS1 | WS2 | WS3 | WS4 | WS5 | WS6 | WS7 | WS8 | WS9 | WS10

Jam

Rates

After careful experimental investigation, we decided to keep 20 neurons in the input
layer, 10 for buffer sizes and 10 for jam rates for various machines. Table 5.3.1 shows the
sample input to the ANN. Also we deiced to keep a single hidden layer with 12 hidden
neurons, and a single neuron in the output layer to map the objective function, which is
the desired production rate. We used training data set of 150 different buffer

configurations to train ANN.

. Performance.is 2.43105¢-007, Goatis 1e-008
10 T T T T T T3

Training-Blue Goal-Black

1 0~9 i i i 1]
0 50 100 150 200 250 300

306 Epochs

Figure 5.3.4 Performance of ANN for /.= 0.4

67 -

Performance is 9,89979¢-009, Goal is 1e-008

10 T T T T T Y

Training-Blue Goal-Black

L

sad 0 (el

| | i I L
0 50 100 150 200 250 300
334 Epochs

Figure 5.3.5 Performance of ANN for /.= 0.45

Performance.is 9.99393e-009, Goal is 1e-008

101 T T T T T T T T

Training-Blue Goal-Black

cconad ool ol st

Lol s

PRSI S

10° 1 1 I | 1 i 1
] 200 400 600 800 1000 1200 1400 1600

1714 Epochs

Figure 5.3.6 Performance of ANN for lc =0.5

Performance-is 9.:9787e-009,:Goal is 1¢-008
107 ¢ T T T T T T T T

Training-Biue Goal-Black

. 1 ! I 1 I { | |
o 200 400 600 800 1000 1200 1400 1600
1731 Epochs

Figure 5.3.7 Performance of ANN for 1.=0.6

As seen in figure 5.3.4, the performance goal was not met for learning rate 0.4, but ANN
reached its goal when we increase our learning rate to 0.45 (Figure 5.3.5). Then we
further increase our learning rate to 0.5 and 0.6 and found out that there is no significant

difference in error reduction. Hence we decided to keep our learning rate of 0.5.

5.3.3.2 Validation of ANN Model

Another important part of successful ANN model building is to validate ANN model. The
main objective of validation is to ensure proper training of ANN model i.e to make sure
that ANN model is neither over trained nor under trained and to evaluate the performance
of ANN model after training. Since there is no well-specified or theoretical methodology

available, we used a general approach for validating the ANN model. In this approach, a

set of data, which was not used in the model building i.e unbiased data, was used to
evaluate certain performance measures. The commonly used performance measures are:
mean absolute error (MAE), root mean squared error (RMSE) and mean square error

(MSE).

In our application, we used mean square error as a network performance measure and
also we divided our data in to two parts: one is to train the network and another is to test
the network. This approach is called as cross validation method. We then divided our test
data in to two parts: one to ensure that our model is not over trained i.e to decide when
we should stop training ANN model and second part is used after the training to estimate
the error of the trained network [7]. The only disadvantage of this method is it requires
large amount of data. Figure 5.3.8 shows the comparison of two test data sets and

response from trained ANN model.

0.47

0.46

0.45
g _
§_ 0.44 —e—Sim O/P
@ 0.43 —@— ANN O/P
0"

0.42
0.41

0.4

0 5 10 15 20
Data Number

Figure 5.3.8 Comparison of ANN Output with Simulation Output

Regression between the simulated and the actual target outputs

’ ' ' ' O Data Points
- Best Linear Fit
0.4230.998 I A=t

@

1)

///O
0.422} // . |

//,l
P
,///,
<0421} i
,//
e
//
0421 //
&
GQ/
yad
,/'O
0.419} Qj’ |
&
0.419 0.42 0.421 0:422 0423

T

Figure 5.3.9 Post Regression Analyses

As per observation from graph, output from ANN is almost same as the output from
simulation model, which is the indication that our ANN model is successfully built. Also
as per regression analysis shown in figure 5.3.9, our actual and simulated outputs are best
fitted. Now our model is ready to be coupled with any heuristic search algorithms to

find the optimal solutions to our problem.

5.3.4 Post Metamodeling Analysis

Once the metamodel is developed, it can be coupled with variety of search methods to
find optimal/near optimal solutions to the problems of interest. The advantages of

metamodeling includes model simplification, enhanced exploration and interpretation of

the model, generalization to other models of the same type, sensitivity analysis,
optimization and better understanding of the studied system [27,66]. Also Kleijnen [62]
identified four general goals for metamodels: understanding the problem entity,
predicting the response value, aiding the verification and validation and performing the
optimization (simulation-optimization). In this study, we developed an ANN metamodel
for fork and join open assembly system to locate optimal/near optimal buffer allocation
for maximum production rate. There are many simulation optimization methods available
to solve complex problems. However most of them suffer with limitations such as
trapping in local optima, high computation requirements [67]. Recently, more powerful
heuristic search algorithms have been popular in many areas to over come limitations of
other optimizing techniques. The most common heuristic search methods are simulated
annealing, genetic algorithms, evolutionary programming and tabu search [7, 8, 27]. In
this study we developed GA based optimization method to solve design optimization

problem. Detail explanations of GA have been given in Chapter 4.

After preliminary study and going through various literatures [5, 7, 30, 31, 32, 34], we

decided upon following parameters for GA.

Population Size: 50

Crossover Rate: 0.6

Mutation Rate: 0.03

Rest of the parameters, coding of chromosomes, and stopping criterion are same as
explained in section 5.2. Table 5.3.2 shows the optimal buffer configuration obtained

through ANN-GA method.

Table 5.3.2 Optimal Buffer Configuration by ANN-GA Approach

bl b2 b3 b4 b5 b6 b7 b8 b9 b10 | Prod

Rate

1 7 2 6 2 2 3 2 8 5 |0.4261

5.4 Comparison of Simulation-GA with ANN-GA

In this study we first developed simulation model for fork and join open assembly
system. Then GA was coupled with simulation model to find optimal buffer
configuration for maximum production rate. We first studied 7 stations line and then
same application domain was extended to 11 stations fork and join open assembly
system. Our SGA method gives optimal solution in only 16 generations, but time
required to attain optimal solution is very high. Hence we decided to look for an
alternative approach, which can reduce computational time significantly, and we settled
down for simulation metamodeling approach. Complete ANN model development
process is given in Section 5.3. ANN-GA approach gives optimal solution in 24
generations but the computational time is much more less as compared to SGA approach.

Also with ANN-SGA, we have more flexibility if we decided to change any parameter of

interest. For example, if we decided to change the jam rate for any of the machines then
we just have to enter the new jam rate for the machine .We do not have to run the
simulation model again. Hence our lengthy computational time can be saved and quick
decisions can be made regarding the design of assembly system. Figure 5.3.10 shows the
comparison of iteration information for SGA and ANN-GA approach. We included
maximum and average production rate for our analysis. As shown in figure 5.3.10, SGA
approach gives optimal solution in just 16 generations, where as ANN-GA approach
gives the optimal solution in 24 generations. However, despite of getting optimal solution
in 24 generations, time required to reach the optimal solution in ANN-GA approach is
much more less as compared to SGA approach. Hence quick decisions can be made to
meet production requirements. More examples of convergence behavior of maximum and
average production rate for different configurations of fork and join open assembly

systems are given in Appendix II

0.43

0.425

0.42

0.415 —e— SGA MAX

—u— SGA-AVG
ANN-GA MAX
3¢ ANN-GA AVG

0.41

0.405

Production Rate

0.4

0.395

0.39

0 5 10 15 20 25
Generation

Figure 5.3.10 Comparison of ANN-GA and SGA Approaches

CHAPTER 6
CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This research presents two different methods for solving complex design optimization
problem for Fork and Join open assembly systems. The first approach is coupling of a
simulation model of the system under consideration with genetic algorithm to search
optimal configurations of buffer sizes between each pair of work stations while
considering different parameters such as jam rates, jam clear times. The results obtained
indicate that genetic algorithms used in conjunction with simulation can effectively solve
complex design problems such as the one studied in this research. However, if we want to
do any parametric study and especially for large systems, simulation is extremely time

consuming due to lengthy computational requirements.

As a result, we tested the second approach, i.e simulation metamodeling. We developed
ANN network for the simulation model of fork and join open assembly system. However
ANN network development is complicated task, but once the network is developed, it is
relatively easy to change the parameters of the interest and do the analysis. Metamodels
can also be coupled with variety of optimization algorithms. Simulation metamodeling
proved to be an effective tool in overcoming fallacies of simulation models. Metamodels
are much simpler, and more flexible as compared to simulation models. Results indicate
that, ANN coupled GA can effectively solve the complex design optimization problem
much faster than SGA approach but it requires large amount of sample data and expertise

to built an ANN metamodel. We can conclude that ANN metamodeling proved to be an

effective tool in manufacturing applications. However more investigation is needed in

different manufacturing application areas.

The application of the simulation metamodeling approach to the design optimization of
complex topologies of AASs such as incorporating inspection machines, rework centers
and comprehensive comparisons of performances of different heuristic search algorithms
constitutes our future research interests. Also one of the interesting topics to look into is
the application of genetic algorithms for developing and training of artificial neural

networks.

REFERENCES

1. W.M. Chow, 1990, “Assembly Line Design” Marcel Dekker Inc, New Y ork.

2. Armin Scholl, 1995, “Balancing and sequencing of Assembly Lines”, Spriner —Verlag
publications.

3. A.ABulgak and JL.Sanders, 1991, “Modeling and design optimization of
asynchronous flexible assembly systems with statistical process control and repair”,
International Journal of flexible Manufacturing Systems, 3, 251-274.

4. A.A.Bulgak and J.L.Sanders, 1991, “Approximate analytical performance models for
automatic assembly systems with statistical process control and automated inspection”, J.
Manufacturing systems 10, 121-133.

5. A.ABulgak, P.D.Diwan and B.Inozu, 1995, “Buffer size optimization in
Asynchronous Assembly Systems using Genetic Algorithms”, Computers Ind. Engng.
Vol. 28 No 2,309-322.

6. George Chryssolouris, 1992, Chapter 5, “Manufacturing Systems Theory and
Practice”, Springer-Verlag Publications, 221-311.

7. Akif A. Bulgak, Fulya Altiparmak and Berna Dengiz, 2002, “Optimization of buffer
sizes in assembly systems using intelligent techniques” winter simulation conference

8. Ihsan Sabuncuoglu and Souheyl Touham, 2002, “Simulation metamodelling with
neural networks: an experimental investigation” International Journal of Production
Reseach, vol 40,No 11,2483-2505.

9. Alexandre Dolgui and Dimitry Ofitserov, 1997, “A stochastic method for discrete and
continuous optimization in manufacturing systems” Journal of Intelligent Manufacturing,
8, 405-413.

10. V.Kouikoglou and Y.Phillis, 1997, “Continuous flow model for production networks
with finite buffers, unreliable machines and multiple products”, International Journal of
Production Res., Vol. 35, No. 2, 381-397.

11. Ayse Kavusturucu and Surendra M. Gupta, 1998, “ A methodology for analyzing
finite buffer tandem manufacturing systems with N- policy” Computers and Ind Engng,
Vol 34, No 4, 837-848.

12. H.Papadopoulos and M.Vidalis, 1999, “Optimal buffer allocation problem in short p-
balanced unreliable production lines”, Computers and Industrial Eng. 37, 691-710.

13. A. A. Bulgak, Y. Taracki and V. Verter, 1999, “Robust design of asynchronous
flesible assembly systems” Internation Journal of Production Research, vol37 no 14.
3169- 3184

14. K. C. Jeong and Y. D. Kim, 2000, “Heuristics for selecting machines and buffer
capacities in assembly systems” Computers and Industrial Eng, 38,341-360

15. Man-Soo Han and Dong-Jo Park, 2002, “Optimal buffer allocation of serial
production lines with quality inspection machines” Computers and Industrial Eng, 42, 75-
89.

16. C. H. Paik, H.G. Kim and H.S. Cho, 2002, “Performance analysis for closed loop
production systems with unreliable machines and random processing times” Computers
and Industrial Eng, 42,207-220.

17. Tom-David Graupner, H. Richter and W. Sihn , 2002, “Configuration, simulation and
animation of manufacturing systems via internet” Proceedings of the winter simulation
conference.

18. N.Hemchandra and S.K.Eedupuganti, 2003, “Performance analysis and buffer
allocations in some open assembly systems” Computers & Operations Research 30, 695-
704.

19. R. Inman, D.Blumenfeld, N. Huang and J.Li, 2003, “Designing production systems
for quality: research opportunities from an automotive industry perspective”,
International Journal of Production Res., Vol. 42, No. 9, 1953-1971.

20. V.V. Emelyanov and S.I. Tassinovski, 1997, “An Al-based object oriented tool for
discrete manufacturing systems simulation” Journal of Intelligent manufacturing 8, 49-
58.

21. Y.F.Zhang and J. Y. H. Fuh, 1998, “A neural network approach for early cost
estimation of packaging products” Computers and Industrial engng, vol 34, No 2, 433-
450.

22. R. A. Kilmer, A.E. Smith, L.J.Shuman, 1998, “ Computing confidence interval for
stochiastic simulation using neural network metamodels” Computers and Industrial
Engineering, special issue on artificial intelligence.

23. In Lee and Michael Shaw, 2000, “A neural network approach to real time shop flow
sequencing” Computers and Industrial Engineering , 38, 125-147.

24. M. Haouani , M Ferney, N. Zerhouni and A. Elmoudni , 1995 , “ Control of
Manufacturing systems using neural networks” EUROSIM, 1163-1168.

25. Y. Park, S. Kim and Y.H.Lee, 2000, “Scheduling jobs on parallel machines applying
neural network and heuristic rules” Computers and Industrial Engineering, 38, 189-202.

26. B. Dengiz, Akbay and S. Kunter, 2000, “Computer simulation of a PCB production
line: metamodeling approach” International Journal of Production Economics, 195-205

27. M. C. Chen and T. Yang, 2002, “Design of manufacturing systems by a hybrid
approach with neural network metamodelling and stochastic local search” International
Journal of Production Research , 40, Vol 1 , 71-92.

28. K.Y.Jang, K. Yang and C kang, 2003, “Application of artificial neural network to
identify non random variation pattern on the run chart in automotive assembly processes”
International Journal of Production Research, Vol 41, 6, 1239-1254.

29. H. Ghaziri and I. H. Osman, 2003, “A neural network algorithm to traveling salesman
problem with backhauls” Computers and Industrial Engineering, 44, 267-281.

30. Y. Carson and A. Maria, 1997, “Simulation Optimization: Methods and
Applications”, Proceedings of the 1997 winter simulation conference.

31. Diomidis D. Spinellis and C. T Papadopoulos, 2000, “Stochastic Algorithms for
Buffer allocation in reliable production Lines”, Mathematical Problems in Engineering,
5,441-458.

32. 1. Sabuncuoglu, E. Erel and M. Tanyer, 2000, “Assembly line balancing using genetic
algorithms” , Journal of Intelligent Manufacturing 11, 295-310.

33. T. S. Loh, S.T.S. Bukkapatnam, D Medeiros and H. Kwon, 2001, “A genetic
algorithm for sequential part assignment for PCB assembly” Computers and Industrial
Engineering, 40, 293-307.

34. G. Zhou, H .Min and M. Gen, 2002, “ The balanced allocation customers to multiple
distribution centers in the supply chain network: a genetic algorithm approach”
Computers and Industrial Engineering, 43, 251-261.

35. C.T.Su and T. L.Chiang, 2003, “ Optimizing the IC wire bonding process using a
neural networks / genetic algorithms approach” Journal of Intelligent Manufacturing, 14,
229-238.

36. J K Cochran, S M.Hrong and J. W. Fowler, 2003, “A multi-Population genetic
algorithm to solve multi objective scheduling problems for parallel machines” Computers
and Operations Research, 30, 1087-1102.

37. In. Chan Choi, Seong-In Kim and Hak Soo Kim, 2003, “ A genetic algorithm with
mixed region search for the asymmetric traveling salesman problem” Computers and
Operations Research, 30 , 773-786.

38. Masao Yokayama and H. W. Lweis, 2003, “Optimization of stochastic dynamic
production cycling problem by a genetic algorithm” Computers and Operations Research,
30, 1831-1849.

39.http://ieee.uow.edu.au/~daniel/software/libneural/BPN_tutorial/BPN_English/BPN_E
nglish/node5.html.

40. Dave Anderson and George McNeil, 1998, “Artificial Neural Networks Technology”
technical report, data & analysis center for software, Rome- NY.

41. McCulloch, W. S. and W. Pitts, 1943, “A logical calculus of ideas immanent in
nervous activity.” Bulletin of Mathematical Biophysics, 5, 115-133.

42. K. Meherotra, C Mohan and S Ranka, 1997, “Elements of Artificial Neural
Networks” MIT press publications.

43. Albrecht Schmidt, 1996, “A Modular Neural Network Architecture with Additional
Generalization Abilities for High Dimensional Input Vectors.” Masters thesis,
Department of computing, Manchester Metropolitan University.

44. Dave Anderson and George McNeil, 1998, “Artificial Neural Networks Technology”
technical report, data & analysis center for software, Rome- NY.
45. J.A. Anderson, 1995, “Intorduction to Neural Netowrks” Cambridge MA: MIT press.

46. S. Haykin, 1999, “ Neural Networks: A Comprehensive Foundation ” second
edition,Englewood Cliffs , NJ:Prentice Hall.

47. EBrrki 0ja,2002, “ Unsupervised learning in Neural Computation” Journal of
theorotical neural computing, vol 287 , Issue 1,187-207.

48. D. Hebb, 1949 , “ The Organization of Behaviour” Wiley, N.Y

49. F. Rosenblatt, 1958, "The perceptron: A probabilistic model for information storage
and organization in the brain,"” Psychological Review, vol. 65, 386—408.

50. S. Haykin, 1999, "Neural Networks. A Comprehensive Foundation”,
Second Edition, Prentice-Hall, Inc., New Jersey, 1999.

51. Mohammad Hassoun, 1995, “Fundamentals of Artificial Neural Netowrks” , MIT
press publications, ISBN 0-262-08239-X.

52. E. Vierrra and J. Ponz, 1998, “Automated Spectral Classification using Neural
Networks” ASP conference series, VOL 145 508-512.

53. M. Heckman, F. Berthommier and K. Kroschel, 2002, “ A Hybrid ANN/HMM audio
vedio sppech recognition system” Unpublished paper

54. http://www.neuroxl.com/finance_neural_network.htm

55. M.T. Do, J. Harp and K. Norris, 1999, “ A test of pattern recognition system for
identification of spiders” Bulletin of Entomological Research, 89, 217-224.

56. C.K. Chan and M.B. Sandler, 1992, “A complete shape recognition system using the
Hough transform and neural network”, 11th IAPR International Conference on Pattern
Recognition Methodology and Systems, Vol I, 21-24.

57.J. Holland, 1973, “Genetic algorithms and the optimal allocations of trials, SIAM
Journal of Computing, vol 2, no 2, pp. 88 - 105,

58 D.E.Goldberg, 1989, “Genetic Algorithms: In search, optimization and machine
learning” Addison-Wesley publishing company.

59. P.D.Diwan, 1994, “Design Optimization and cost modeling of asynchronous
automated assembly system using genetic algorithms” Master’s thesis submitted at
Concordia University, Montreal, Canada.

60. M. Towsey, A Brown, S. Wright and J. Diederich, 2001, “Towards melodic extension
using genetic algorithms” Educational Technology and Society 4(2) 54-65.

61. Linda Weiser Friedman, 1996, “The Simulation Metamodel”, kluwer academic
publishers ISBN 0-7923-9648

62. J. Kleijnen, 1979, “Regression metamodels for generalizing simulation results”, IEEE
Transactions on Systems, Man and Cybernetics, 9(2), 93-96.

63. A. Vellido, P.J.G Lisoba and J Vaughan, 1999, “Neural networks in business: a
survey of applications “Expert Systems with Applications, 17, 51-70.

64. H.C.Zhang and H. Huang, 1995, “Applications of neural networks in manufacturing:
a state of art survey”, International Journal of Production Research, Vol 33, 3, 705-728.

65. G. Cybenco, 1989, “Approximation by superposition of a sigmoid function”
Mathematical Control Signals Systems, 2, 303-314.

66. L.W. Friedman and I. Pressman, 1988, “The metamodel in simulation analysis: can it
be trusted?”” Journal of Operational Research Society, 39(10), 939-948.

67. H. Pierreval. and J.L Paris, 2000, ‘“Distributed Evolutionary Algorithms For
Simulation Optimization”, IEEE Transactions On Systems, Man And Cybernetics-Part A:
Systems And Humans, 30(1), 15-24.

APPENDIX

> Appendix I: Convergence behavior of Max and Avg production rate for
different configurations of Fork and Join Open assembly systems via
Simulation-GA approach.

> Appendix I1: Convergence behavior of Max and Avg production rate for
different configurations of Fork and Join Open assembly systems via
Metamodeling-GA approach.

Appendix I: Convergence behavior of Max and Avg production rate for
different configurations of Fork and Join Open assembly systems via
Simulation-GA approach.

Table 1A: Iteration information for 7 stations Fork and Join Open assembly system
with jam rates 0%, 3%, 2%, 0%, 2% and 0% for stations 1 to 6 respectively.

Total Number of Pallets = 30

Buffers MAX Prod | AVG Prod

Generation | b1 b2 b3 b4 b5 b6 Rate Rate
0 4 5 6 4 7 4 0.4657 0.4496

1 4 6 5 4 8 3 0.4656 0.451
2 4 6 5 5 7 3 0.4674 0.4533
3 4 4 7 6 6 3 0.4673 0.4542
4 4 4 7 6 6 3 0.4673 0.4551
5 4 4 7 6 6 3 0.4673 0.4559
6 3 4 7 6 7 3 0.4675 0.4571
7 3 4 6 5 8 4 0.4677 0.4568
8 3 4 6 4 8 5 0.4681 0.4574
9 3 4 6 4 8 5 0.4681 0.4576
10 3 4 6 4 8 5 0.4681 0.4575
11 3 4 7 4 8 4 0.4683 0.4578
12 3 4 7 4 8 4 0.4683 0.4579
13 3 4 7 4 8 4 0.4683 0.4579
14 3 4 7 4 8 4 0.4683 0.4579
OPT 3 4 7 4 8 4 0.4683 0.4579

S ot

0.48

0.475

0.47

0.465

—eo— MAX Prod Rate
—a— AVG Prod Rate

0.46

0.455

Production Rate

0.45

0.445

0.44

Generation

Figure 1A Convergence Behavior of Maximum and Average production rate
(Table 1) of 7 stations Fork and Join Open Assembly System.

Table 2A: Iteration information for 7 stations Fork and Join Open assembly system
with jam rates 0%, 2%, 3%, 0%, 3% and 3% for stations 1 to 6 respectively.

Total Number of Pallets = 40

Buffers MAX Prod | AVG Prod
Generation | b1 b2 b3 b4 b5 b6 Rate Rate
0 5 7 9 4 7 8 0.4887 0.477
1 5 8 10 3 7 7 0.489 0.4774
2 4 8 10 3 - 8 7 0.4889 0.478
3 5 7 8 4 9 7 0.4891 0.4786
4 4 7 9 3 9 8 0.4884 0.4782
5 5 7 9 3 9 8 0.4884 0.4782
6 5 6 9 3 9 8 0.4879 0.4776
7 5 7 8 3 10 7 0.4886 0.4785
8 5 7 8 3 8 9 0.4888 0.4791
9 5 9 6 3 9 8 0.4897 0.4795
10 5 9 6 3 9 8 0.4897 0.4798
11 5 9 6 3 9 8 0.4897 0.4801
12 4 10 6 3 9 8 0.4902 0.4806
13 4 10 6 3 9 8 0.4902 0.4808
14 4 10 6 3 9 8 0.4902 0.4808
OPT 4 10 6 3 9 8 0.4902 0.4808

0.5

0.495

0.49
i)
c
s —e— Max Prod Rate
2 0.485
] —u-~ AV G Prod Rate
T
e
2 o048
0.475

0.47

0 5 10 15

Generation

Figure 2A Convergence Behavior of Maximum and Average production rate
(Table 2) of 7 stations Fork and Join Open Assembly System.

Table 3A: Iteration information for 11 stations Fork and Join Open assembly
system with jam rates 0%, 3%, 0%, 2%, 0%, 0%, 3%,2%, 0% and 0% for stations

1 to 10 respectively.
Total Number of Pallets = 40

Buffers MAX AVG

Prod Prod

Generation | b1 b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 | b10 Rate Rate
0 4 8 5 9 3 3 4 3 1 1 0.4319 | 0.4207
1 4 8 3 8 2 4 3 3 2 3 0.4321 | 0.421
2 4 8 4 7 2 4 3 4 2 2 0.4323 | 0.4216
3 3 8 4 6 1 5 4 4 2 3 0.4327 | 0.4218
4 3 8 4 6 1 5 4 4 2 3 0.4327 | 0.4219
5 3 9 3 5 2 4) 4 3 2 0.4322 | 0.4226
6 3 8 3 5 2 5 4 5 3 2 0.4324 | 0.4218
7 3 8 5 6 1 4 5 5 1 2 0.4331 | 0.4223
8 3 7 5 5 2 5 4 7 1 2 0.4338 | 0.4227
9 3 7 5 5 1 5 4 7 2 2 0.4344 0.423
10 3 6 5 6 2 4 6 7 2 2 0.4348 | 0.4234
11 3 7 4 6 2 5 6 6 2 1 0.4351 | 0.4239
12 3 7 4 6 2 5 6 6 2 1 0.4351 0.424
13 3 7 4 6 2 6 5 6 2 1 0.4351 | 0.4244
14 3 7 4 6 2 5 5 4 3 2 0.4357 | 0.4248
15 3 7 4 6 2 5 5 4 3 2 0.4357 | 0.4248
16 3 7 4 6 2 5 5 4 3 2 0.4357 | 0.4248
OPT 3 7 4 6 2 5 5 4 3 2 0.4357 | 0.4248

0.45
0.445
0.44

0.435 1

—e— Max Prod Rate
—m— AVG Prod Rate

0.43

0.425

Producation Rate

0.42

0.415

0.41
0 5 10 15 20

Generation

Figure 3A Convergence Behavior of Maximum and Average production rate
(Table 3) of 11 stations Fork and Join Open Assembly System.

e

Table 4A: Iteration information for 11 stations Fork and Join Open assembly
system with jam rates 0%, 2%, 0%, 2%, 0%, 2%, 2%,2%, 2% and 0% for stations

1 to 10 respectively.
Total Number of Pallets = 40

Buffers MAX AVG

Prod Prod

Generation | b1 b2 | b3 | b4 | b5 | b6 | b7 | b8 { b9 | b10 Rate Rate
0 2 5 3 6 2 4 8 4 4 2 0.441 | 0.4286
1 2 4 2 5 1 4 7 6 7 2 0.4415 | 0.4289
2 2 4 2 5 1 4 7 6 7 2 0.4415 | 0.4294
3 2 4 1 5 2 6 7 5 7 2 0.4418 | 0.4298
4 2 4 1 4 2 6 8 6 5 2 0.4421 | 0.4301
5 1 6 2 4 2 5 7 6 6 1 0.4423 | 0.4301
6 1 6 2 4 2 5 7 6 6 1 0.4423 | 0.4304
7 1 3 2 6 2 7 6 5 6 1 0.4419 | 0.4305
8 2 3 2 5 2 6 7 5 6 1 0.4424 | 0.4307
9 1 4 3 4 3 5 6 5 7 1 0.4426 | 0.4307
10 1 4 3 4 3 5 6 5 7 1 0.4426 | 0.4311
11 2 4 3 3 4 6 5 4 6 3 0.4429 | 0.4315
12 2 4 2 4 5 5 6 4 6 1 0.4431 | 0.4319
13 2 4 2 3 4 6 7 4 5 2 0.4435 | 0.4317
14 2 4 2 3 4 6 7 4 5 2 0.4435 | 0.4321
15 2 4 2 3 4 5 7 4 7 2 0.4439 | 0.4324
16 2 4 2 3 4 5 7 4 7 2 0.4439 | 0.4327
17 2 4 2 3 4 5 7 4 7 2 0.4439 | 0.4328
18 2 4 1 3 3 6 7 4 6 3 0.4437 | 0.4329
OPT 2 4 2 3 4 5 7 4 7 2 0.4439 | 0.4329

CAdEy

0.46

0.45

0.44

0.43

Producation Rate

0.42

0.41

Generation

—e— Max Prod Rate
—a— AVG Prod Rate

Figure 4A Convergence Behavior of Maximum and Average production rate
(Table 4) of 11 stations Fork and Join Open Assembly System.

Appendix II: Convergence behavior of Max and Avg production rate for
different configurations of Fork and Join Open assembly systems via
Metamodeling-GA approach.

0.48

0.475
0.47
2 0.465
c —— Max Prod- SGA
s —##— AVG Prod- SGA
= 0.46
S 4 Max Prod-ANN-GA
o
2 0.455 —>— AVG Prod-ANN-GA
0.45
0.445 1
0.44
0 5 10 15 20
Generation

Figure SA Comparison of ANN-GA and SGA Approaches for 7 stations Fork and
Join Open assembly system with jam rates 0%, 3%, 2%, 0%, 2% and 0% for
stations 1 to 6 respectively.

Total Number of Pallets = 30

0.505
05
0.495
0.49

0.485
—&— Max Prod Rate - SGA

~@— AVG Prod Rate - SGA
- MAX Prod Rate - ANN-GA
~3— AVG Prod Rate- ANN-GA

0.48
0.475

Prodction Rate

0.47
0.465 '
0.46 Q
0.455

0.45
] 5 10 15 20

Generation

Figure 6A Comparison of ANN-GA and SGA Approaches for 7 stations Fork and
Join Open assembly system with jam rates 0%, 2%, 3%, 0%, 3% and 3% for
stations 1 to 6 respectively.

Total Number of Pallets = 40

0.45

0.445
0.44 —— Max Prod Rate -
2 0.435 SGA
T (43 —=— AVG Prod Rate -
c) SGA
9 0.425
§ 4 > - MAX Prod Rate -
3 0.42 ANN-GA
g 0415 % —%— AVG Prod Rate-
0.41 ANN-GA
0.405
04
0 10 20 30
Generation

Figure 7A Comparison of ANN-GA and SGA Approaches for 11 stations Fork and
Join Open assembly system with jam rates 0%, 3%, 0%, 2%, 0%, 0%, 3% ,2% , 0%
and 0% for stations 1 to 10 respectively.

Total Number of Pallets = 40

—e— Max Prod Rate- SGA

[}]

5]

Dc: —#— Avg Prod Rate - SGA

o

g Max Prod Rate-

'g ANN-GA

a —¢ AVG Prod Rate-
ANN-GA

0 10 20 30

Generation

Figure 8A Comparison of ANN-GA and SGA Approaches for 11 stations Fork and
Join Open assembly system with jam rates 0%, 2%, 0%, 2%, 0%, 2%, 2% 2%, 2%
and 0% for stations 1 to 10 respectively.

Total Number of Pallets = 40

Table 5A Optimal Buffer Configuration by SGA and ANN-GA Approaches for 7

Stations Line

Max
System No|Approach| b1 b2 b3 b4 b5 b6 Production
Rate
System 1 SGA 3 4 7 4 8 4 0.4683
ANN-GA 3 4 7 4 8 4 0.4609
SGA 4 10 6 3 9 8 0.4902
System 2
y ANN-GA | 4 9 6 4 9 8 0.4831

Table 6A Optimal Buffer Configurations by SGA and ANN-GA Approaches for 11

Stations Line
Max
System No |Approach| b1 b2 | b3 { b4 | b5 | b6 | b7 | b8 | b9 | b10 | Production
Rate
System 3 SGA 3 7 4 6 2 5 5 4 3 2 0.4357
ANN-GA 3 6 4 6 3 5 5 4 3 2 0.4276
System 4 SGA 2 4 2 3 4 5 7 4 7 2 0.4439
ANN-GA 2 4 2 3 4 6 7 4 6 3 0.4473

