NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Program Slicing based Source Code Feature Extraction

Susmita Haldar

A Thesis

in

The Department of Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of
Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

April, 2005

© Susmita Haldar, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04445-4
Our file Notre référence
ISBN: 0-494-04445-4
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Program Slicing Based Source Code Feature Extraction

Susmita Haldar

Program comprehension is an essential part of software maintenance. As software
systems are becoming larger, understanding the whole program without prior knowledge
is a hard task for the developer and the maintainer. Our approach of feature extraction
reduces the program understanding complexity by identifying features based on input and
output statements at the source code level. The presented feature extraction approach is a
semi-automatic approach that only requires source code and test cases to identify and
extract features. This approach utilizes program slicing, a program reduction technique to
extract statements that implement an identified feature. The algorithm is implemented
within the CONCEPT (Comprehension Of Net-CEntered Programs and Techniques)
project. A case study using an open source project called JUnit was conducted to evaluate

the applicability of the proposed approach.

11

Acknowledgments

I would like to express my gratitude to my supervisor Dr. Juergen Rilling for his kind
support and guidance throughout this work. Without his guidance the accomplishment of
this task would be impossible.

Also, I would like to give thanks to Beverly and Josh Beherman for proofreading this
thesis.

Finally, special thanks to my parents, my husband, and my brother for their

encouragement and support to help me accomplish this research work.

iv

Table of contents

TabIE OF FIGUIES ...ttt et s b n s snne vi
LSt OF £aDIESc.cvieueireecteicccetec ettt en et r bt nerenin viii
I INTOUCHION ..coitiriiieeire ettt ettt et sa et sa s s se s s e s ssebeseebenen 1
1.1 FEAUIES ..ottt sttt bebn 1
1.1.1 Functional feature...........cocoeeveviininininiiiiccreecee e ebe e 3
1.1.2 Non-functional featureecvevevivvereceneiinienerieeerereerers e enens 3

L2 MOUIVAON ettt sissestenssesteesessessseressssste e sesaesessssessssssessesnerensesesserenes 4
1.3 ThesiS OUINEcociruiieiireiicerirere et er e s b b e enns 4

2 Background/Literatlre SUIVEYccoeverrererienieisreieeeeeessersssessssessesessssessosessonesssassses 6
2.1 Software Comprehension and reverse engineering.............ccoeeeveeveveeveereresnsuenn. 6
2.2 Documentation versus source code-driven feature extractioncuouve...... 8
22.1 NOnN-source code basedccccevirereniniiriineeeereeereeee e rereeeee e sreenes 9
222 Feature extraction based on source code...........ccecevverevervnererernreereeveerennes 17

2.3 Source code analysis basedccoveeerereeiereieireieneereerere e res 21
2.4 Discussion and limitation of existing feature extraction methods.................... 30
2.5 EXISHNZ t0OIS..ccuiiiiieiriiireseecstccrcteeeee ettt sns e e sae s eaes 35
2.6 Limitations of feature eXtraction to0ISceceevevierecveveeiireneeecceeeecererearene 40

3 Source code-based feature extraction approachi..........cccovveveeeeeeeevieiinniseneeseininens 43
3.1 MOIVALION . ..evviiiiiiciiterestecreret ettt ettt e s bbb eseese s seereesensens 43
3.2 Feature CategOTIZatiONccccovvvererierereertsenrienressee et eesereereeeeseesessesesnenes 46
3.3 Research approachoceecevveeiieenininiieee et erenr et saeseneen 50
3.4 Feature extraction algOTithimccocovveiiriininenieice ettt 55
3.5 Description of the backward slicing algorithmcccooveveveireevvveirieeiiinnne. 59
3.6 Description of the forward slicing algorithmccceevevvevveereeceeienieniraenne. 61

4 IMPIemMENtAtiON ...co.ccerveiriiirinieirireeete ettt bt r e st e b e ens 72
4.1 Concept System architeCtUIEcocoveerieininerieieneeeeeeereeresseeerneseeeereereerons 72
4.2 Feature extraction algorithm implementation architectureccourvene..... 74
43 Case study and experimental 1€Sult.............coeeeereiiirirerenrerrericrceece s 77
4.3.1 Experimental 1€SUltS........ccoccoeeririiriinriiinierreneicre e 81

4.4 Application of extracted fEAtUrESccceeveeeeieerereieereinrericeeeeer e 91
4.5 Related WOTK ...c.coviiiieieiictceee ettt s 103

5 Conclusions and fUture WOrkccceceveeiieieiieceeicierce e aenes 109
BibHOZIaphy......ociiiiiiiiiicc ettt b e bbb nnene 112
Appendix 1 The Account.java Programi.........cccceeereerereeeeereveserensesereeessssessesnesessosessone 121

Appendix 2 An example of the computation of dynamic backward algorithm [Kor95] 122
Appendix 3 Identified output statements and output feature criteria from the ResultPrinter
Class fOr teSt CASE 1 ...cuiiiiiiiiieiiece ettt n e 124

Table of figures

Figure 1 Use case diagram of an automated banking Systemccccveveeerrerivrerereninnas 11
Figure 2 Diagram of a Use Case Map representation [AmyOO0b]...........ccccevveevererenrnnnne. 13
Figure 3 The phases of feature oriented domain analysis [Kru93]c.cccecvevevrvvirverennn. 16
Figure 4 An example of source code and the PDG representation of the source code..... 26
Figure 5 The computed slice from Figure 4..........cccovevereeeeerereeieeeereeeeeseveeienenes 26
Figure 6 A Sample SOUICE COUEccvviiniiiiinirreineee e r b s senen 28
Figure 7 Forward slicing computation of Figure 6 using Korel’s algorithm 28
Figure 8 Computed slice using Horwitz approach for slicing criterion <3,c>.................. 29
Figure 9 Traditional approaches to feature eXtractionccoevveververereeereceveenesnennenes 44
Figure 10 Feature extraction process based on our research..........c.ccocevureeeureecverreevennnnns 45
Figure 11 Example of a static featurecoeceveviiicrevnenececiceeeececeeeeeene 48
Figure 12 Example of a dynamic feature...........ccocueeveereeeeceiicecceecrcee e 48
Figure 13 Example of an informational feature..............ccccocvvvrueeveeneeccreeceerecveeeenennes 49
Figure 14 Example of a functional feature.............cceoevreeevivvieerrernreesceeeeeerevee e, 49
Figure 15 Method for extracting output feature using backward slicing.............ccov.u..... 51
Figure 16 An example of the output feature extraction technique............cocueevevevreirnennens 52

Figure 17 Provides an overview of the feature extraction approach for input features. ... 53
Figure 18 Input feature extraction techniques using the combination of backward and

FOrWard SLICINGcccvevevereririririrreretceiceec et s s 54
Figure 19 Algorithm for computation of input and output featurecoeververrrennnnnee. 58
Figure 20 a) Last definition example b) First usage reference example................ 61
Figure 21 Modified method from backward slicing algorithm............ccccevvrvrvrvrrevrrnnnnnes 62
Figure 22 Modified procedure added to the algorithmccocoevveeveveneeeveeveceeecennes 63
Figure 23 Sample program with a constructor callccocovvverivirieeeenieeereiereesseeneas 64
Figure 24 Execution Trace of the sample program of Figure 23cccevveverivvnenrennnen. 64
Figure 25 Integrate backward slicing with forward slicing algorithm.............cocvveuneen. 65
Figure 26 Removable blocks of the sample program.............ccecverevvveveerereeninecreeeereeneenas 66
Figure 27 Execution trace and blocks traces of the sample program..............c.ccoevunenee. 67
Figure 28 Highlighted output feature of the account program............ccceevevivverierenevrnennns 68
Figure 29 The extracted input featurecoccoverirvineneeiniecceeneereee e erenees 71
Figure 30 System architecture of the CONCEPT framework...........ccovereeveereereeirernrenenn. 73
Figure 31 High level view of the feature extraction algorithm implementation............... 76
Figure 32 A screen capture of the part of the output features from JUnit......................... 77
Figure 33 VectorTest Class........cccccvivuririnecinenteienieeseieetste e ese s rere e sseessssssnanes 80
Figure 34 Test results generated by JURNIt..........coooeiivivevieeericieeeecee e 80
Figure 35 Executed junit and file id for each execution that was used in 3 separate

EXPEIIIMEINES ..cuvtieuiiriiieiirieircreeiteentereseesteesseereesseesssessseetesseessesreesessssensssssssessesssesnnans 82
Figure 36 Partial listing of modified VectorTest class........c.cccoevverivvieeereererinereeeesreennnn 88
Figure 37 Output produced by the modified Vector Test classccccceveveveveverenenene. 88
Figure 38 A feature extracted by the sample program............cccoeeveerecrececiecrernerereerereneen. 89
Figure 39 Test case With Input fEatureccocvveevivinnecnninin e 90
Figure 40 Output from the AlITest class........ccccvcvvereveiiirirrieieeeee e 90
Figure 41 An example of an input featurecceevvenreviereiciecieceeeeeeeeeee e 91
Figure 42 Measuring coupling and cohesion of the system..........ccoceeeeeveereieerenrecnnecrennna. 93

vi

Figure 43 The overlapping computation formula and overlapping example.................... 97

Figure 44 Applications of feature extraction technique..........cccccevevvereceeeeerecreeereeererenens 98
Figure 45 Partial listing of ReSUMPIINLETccocoeviviivieciiecriecececeeeceeev e 101
Figure 46 Example of the limitation with the invoking objects..........cccoceeveeereeerivvennnne. 102
Figure 47 Differences between two features identified with different test cases............ 106

vii

List of tables

Table 1 Disadvantages of Feature extraction based on the document based technique.... 32

Table 2 The disadvantages of feature extraction from source code............coevrrervrrerernen.. 34
Table 3 Limitations of current feature extraction toolS........ccoceevecvreriererrereriereereeereerenenns 42
Table 4 An overview Of the JUNIt Project........cccevieueceererieesieieeereereeereeeesresesseeesessesnens 78
Table 5 The computed features [ContinuUEd].........cccveeereeieverieeereerinreeeeeee e venenes &3
Table 6 The result obtained from the JUnit when applying feature extraction algorithm 85
Table 7 Features overlapping percentage from JURitcccceiereveeiivreeererveiiecieennes 95
Table 8 The result of Feature 1 and Feature 2 overlappingccccccveveverevveeericrennnnene 96

viii

1 Introduction

From a user perspective, a software system can be viewed as a black box which provides
a set of features that end users must utilize in order to facilitate their tasks. Software
systems have to evolve in order to respond to market needs. Software developers tend to
give preference to the end users’ requirements as the modifications usually starts with the
customers’ request to make changes [Meh02]. They start enhancing an existing
application by familiarizing themselves with the software application. However, the
software systems are typically large, and might be written in different or obsolete
programming languages that the programmer might not be familiar with [EisO1].
Therefore, it is essential to provide both developers and maintainers with means to focus
their attention on these parts of the source code that are relevant to perform the desired
maintenance task. This is done to reduce time and cost associated with these maintenance
tasks. One approach to reduce the comprehension complexity is to identify a group of
source code statements or components which correspond to a certain requirement or

feature of the system [Mur01].

1.1 Features

Having a mental representation of the application is an important factor in providing
effective software maintenance and evolution [May95]. Furthermore, understanding how
a certain feature is implemented is crucial in program understanding, especially when the
understanding is directed to a certain goal such as modifying or extending the features

[Eis01

In order to deal with identifying features and their applications, the traditional definition
of features needs to be understood. Different researchers have used different definitions
of feature based on the context of their research area [Kru93, Tur99b, Wil95, EisO1b,
Meh0O1a]. The IEEE introduced the following two definitions to describe software
features [IEE90]:

Definition 1: “A distinguishing characteristic of a sofiware item (for example,
performance, portability, or functionality).”

Definition 2: “A software characteristic specified or implied by requirements
documentation (for example, functionality, performance, attributes or design
constraints).”

In both of the above definitions, a feature is described as a high-level requirement view
without detailing any implementation issues.

On the other hand, in [Kan90], Kang et al. describe a feature as a prominent or distinctive
user-visible aspect, quality, or characteristic of software system or systems. Features are
often regarded as the attributes of a system that directly affect the end-users. The end-
users have to make decisions regarding the availability of features in the system.

In [Eis01], Eisenbarth et al. provide the following feature definition:

“A feature fis a realized functional requirement (the term feature is intentionally defined
weakly because its exact meaning depends on the specific context). Generally, the term
feature also subsumes non-functional requirement.”

However, in the context of their paper only functional features were relevant.

Specifically, they [EisO1] considered feature as an observable result of value to a user.

Eisenbarth et al’s definition introduces a categorization of features into functional and

non-functional features.

1.1.1 Functional feature

Kang et al. [Kan90] defined functional features fge as services that are provided by the
applications. In addition, according to them, features of this type can be found in the user
manual and the requirements specification document. Based on the definition of feature
[EisO1], frnct can be described as a realized functional requirement implemented by the
system. The IEEE [IEE90] described the term functional requirement as a system or
software requirement that specifies a function that a system or software system or system
component must be capable of performing. These are software requirements that define
the behavior of the system. Specifically, functional requirements define the fundamental
process or transformation that software and hardware components of the system perform

on inputs to produce outputs.

1.1.2 Non-functional feature

A non-functional feature f,5. can be described as a realized non-functional requirement
implemented by the system. In [Kul00], Kulak et al. described non-functional
requirements as addressing the hidden areas of the system that are important to the user
although the users may not apprehend it. They do not deal with the functionality of a
system. Rather, they relate to the system’s overall success. In all, non-functional
requirements are the constraints, limitations, and specifications on performance.
Examples of non-functional requirements are the ability of a software application to run

on UNIX, or for a software system to work in real time etc.

Xavier Franch et al. [Fra98] defined f,5n as “any constraint referred to a subset of the
non-functionality attributes that are in use in a particular software unit”, where non-
functionality attributes are defined as “any attribute of software which serves as a means
to describe it and possibly to evaluate it. Among the most widely accepted, we can

mention: time and space efficiency, reliability and usability.”

1.2 Motivation

Program comprehension is an essential part of software evolution and software
maintenance. A software system’s code base that is not comprehensible cannot be
changed. Programmers attempt to understand only how certain specific features are
reflected in the code [Raj02, EisOla]. The user views the features in terms of the
functionality the system is performing, and the developer views the features in terms of
the implementation of the feature [Tur99a]. This research investigates different
techniques and approaches that can be applied to guide programmers during the
comprehension process. The motivation of this research is two-fold. Firstly, existing
feature extraction techniques and approaches are surveyed and categorized based on their
underlying approaches and feature types extracted. Secondly, we present a semi
automated feature extraction approach that utilizes source code analysis to identify

features in the source code.

1.3 Thesis outline

The remainder of the thesis is as follows. Section 2 describes the background and a
literature survey of existing methods of feature extraction relevant to this thesis. Section 3

provides the definition of features and introduces the techniques for extracting features in

this research. Section 4 presents the CONCEPT’s system architecture, and discusses
implementation issues, and presents a case study. Finally, section 5 provides conclusions

and discusses some future work.

2 Background/Literature survey

Software modification starts with a maintenance request, which is usually expressed in
terms of domain concepts or program features that have to be enhanced or changed. The
majority of maintenance tasks involve perfective maintenance activities which are caused
by changes in the functional requirements, corresponding to features in the software
system [Boh96]. In order to add or modify any feature, the existing features need to be
examined so that the changes do not create any undesirable effect in the system. One
approach to comprehend these existing features in the system is to extract these
functional features from the system to focus the comprehension and maintenance process

on these parts.

2.1 Software Comprehension and reverse engineering

Software reverse engineering research is concerned with developing tools and
methodologies to aid in the program understanding and management of the ever
increasing number of legacy systems. According to Von Mayrhauser and Vans [May95],
“program comprehension” or “program understanding” constitutes a process that uses
existing knowledge to acquire new knowledge. The system requirements are likely to
change while the system is being developed because the environment is changing. A
change in a system to make it meet its requirements more effectively is referred to as
perfective maintenance. Adaptive maintenance is used to change a system in order to
meet new requirements. Finally, corrective maintenance is used when there is a need to
change a system to correct deficiencies in the way it meets its requirements [Boh96].

Boehm [Boe81] described that the software development effort is largely devoted to

maintaining existing systems rather than developing new systems. The proportion of
resources and time devoted to maintenance range from 50% to 80% [McC92].

As aresult, for years researchers have tried to comprehend how programmers understand
programs throughout software maintenance and evolution process [May95]. In addition,
reverse engineering is concerned with the analysis of existing software systems to make
them more understandable for maintenance, re-engineering, and evolution purposes
[Mul94]. Chikofsky and Cross [Chi90] defined reverse engineering as “analyzing a
subject system to identify its current components and their dependencies, and to extract
and create system abstractions and design information.” Current reverse engineering
technology concentrates on retrieving information by using analysis tools, and by
abstracting programs bottom-up by recognizing plans in the source code [Ric90, Ton96].
The main principle of such tools basically is to help maintainers to understand the
program [Rug94]. According to Rugaber [Rug92, Rug95] the process of reverse
engineering must focus on mapping the gap between bottom-up code analysis, and top-
down synthesis of the description of the application, application domain and
programming language etc. In addition, code analysis is intuitively a bottom-up exercise
[Nel96]. However, the code does not contain all the information that is needed. It helps if
knowledge about architecture and design tradeoffs exists. However, these are not
available often [Mul00]. Hence, code analysis necessitates higher level meaning to be
extracted from code fragments, and higher level concepts to be mapped to lower level
implementations. According to Shneiderman [Shn80], programs are comprehended by
bottom-up strategy which involves reading source code and then mentally chunking low-

level software artifacts into meaningful, higher-level abstractions. These abstractions are

further grouped until a high-level understanding of the program is formed. Next, in top
down strategy [Bro83], programs are comprehended by reconstructing knowledge about
the application domain and mapping that to the source code. In all, top down strategy
includes formulating hypotheses and confirming them by examining the program.

Reverse engineering by itself involves only analysis, not change to the system. Reverse
engineering is the basis for the following activities (listed based on their level of impact).
The activities include re-documentation, design recovery, restructuring and reengineering
[Chi90]. Re-documentation, or recreation of documentation, means revision of system
documentation at the same level of abstraction. Design recovery is mainly used when
there is a need for perfective maintenance. In this phase, re-documentation is used with
the aid of domain knowledge and other external information where possible to create a
model of the system at a higher level of abstraction. Restructuring is used when
preventive maintenance is needed. It includes lateral transformation of the system within
the same level of abstraction. Reengineering involves a combination of reverse
engineering for comprehension, and a reapplication of forward engineering to reexamine

which functionalities need to be retained, deleted or added [Nel96].

2.2 Documentation versus source code-driven feature

extraction

Features in terms of system functionality can be extracted from the engineering-based
requirements document, which usually provides the description of the requirement,
design and architectural details of the life cycle of a software development. In order to
extract the code fragments that are associated with a feature, source code analysis is

needed. There are several techniques for source code-driven feature extraction. As a

8

result, feature extraction can be categorized as source code and non-source code based

feature extraction.

There are two major approaches to extract functional features from a system.

(1) Features can be extracted from the documentation of the software such as the
requirements document or user manuals when features are viewed according to
the problem domain.

2) Features can be extracted and reverse engineered from the source code by
identifying which program artifacts correspond to the implementation of a

functional requirement of the system.

2.2.1 Non-source code based

As the need arises to identify those parts of a system that are crucial for the programmer
and maintainer to understand, a possible solution is, if valid and complete documentation
exists, to read the documentation. Good sources for analyzing the main functionality of
the software system are requirements specification documents, user manuals, white
papers etc. In what follows we discuss the major techniques and approaches relevant to

feature analysis and extraction based on non-source code based sources.

Features Analysis based on requirements specification

When software developers are concentrated on the problem domain, they tend to look for
information related to a particular function or feature in the system. A requirements
specification document states the functional and non-functional requirements of the
system which serves as a baseline for the developer to implement the system [Kir97]. In

[Dav82] Davis identified features as a key organization mechanism for requirements

specification. Software requirements specification is part of the first phase of system
development which includes preparing a complete description of the system’s external
behavior. It is a fundamental stage of system development, since specification defects
will become increasingly difficult to repair when the system is proceeding to the
subsequent stage of its life cycle [Dav93]. The concrete result of requirements
specification is the SRS Software Requirement Specification [Kir97]. The requirements
specification ideally captures all the important behavioral characteristics of a software
system. Hence, According to Turner [Tur99a], feature can be viewed as a grouping or
modularization of individual requirements within that specification during the analysis of
the requirements specification document. From a programmer perspective, a feature is an

abstract description of a functionality described in detail in the specification [Won99].

Use cases

A use case is defined as "a sequence of transactions performed by a system, which yields
an observable result of value for a particular actor"[jac97]. Use cases and scenarios are
very common approaches used in the requirements and specification phase. They capture
most of the requirements, which include all functional requirements and also non-
functional requirements such as response times, performance, etc. A use case is a high-
level description of how the software will be used. It identifies a software user or an actor
and how the user interacts with the system. Hence, a single use case describes a subset of
a system’s functionality in terms of the interactions between the system and a set of users
or actors. It specifies the intended behavior of a system. It is initiated by a particular user,

and serves the purpose of delivering some meaningful unit of work, service, or value to

10

the initiator. When capturing requirements, use case views the system as a black box
[But97]. They are suitable for defining functional requirements in the early stages of
system development when the inner structure of the system has not been defined. Also,
they can be used as a basis for defining this structure in terms of classes, packages, etc.,
and can be used for defining test cases. Since use cases do not deal with the mechanics
inside the system but focus on how the system is perceived from the outside, they are the
most useful approach in discussions with end users to make sure that the requirement of

the system will meet the end users demand [Li01]

LD D

/uses/ Deposit Check current balance
Yy <<include>> -7 Y\
p T / Usgs
’ N % \
ser \ T O f ?
u\ss(s —
\ W ithdraw —
" ATM
\ —
A\ -

Oé/ <<include>>

Validate user

Figure 1 Use case diagram of an automated banking system

Use cases have quickly become a widespread practice for capturing functional
requirements. This is especially true in the object-oriented community where they
originated. However, their applicability is not limited to object-oriented systems [Mal99].
An example of a use case diagram is given in Figure 1.

If proper naming conventions are used for the use cases, programmers can obtain a

general idea about the system and its functionality. Checking current balance is used by

11

the ATM system when withdraw use case is executed to verify whether the current
balance shows there are sufficient funds to withdraw the given amount of money.

Each use case can occur under different situations called “scenarios”. For example, a
customer withdrawing money from the ATM machine can have the following scenarios:

- Customer requests $300 to withdraw from the account. The currént balance is
verified by the ATM system, and the user has a balance of $400. Hence, this
amount will be withdrawn with a receipt from the ATM system.

- Customer requests $300 from checking account, but he has only $200 in his
account balance. The ATM system will inform customer that he has “insufficient

funds.”

User manuals

User manuals describe how a user interacts with the application. Traditionally, functional
features are described as the services that are provided by the software application.
Features of this type can be found in user manuals. Operational features are described as
the features that are related to the operation of applications from the user’s perspective;
that is, how user interactions with the applications occur. Hence, user manuals are a good
source for identifying operational features as they contain a detailed description of the
user interaction with the application [Kan90]. The step-by-step information described in
the user manual provides some background on the application domain, and therefore the

extraction of the feature,

12

Use Case Maps

Use Case Maps (UCMs), as proposed by R.J.A Buhr [Buh96, Buh98], are a scenario-
based notation for describing the organizational structure of complex systems and their
evolving behavior in an abstract way. It bridges the modeling gap between use cases or
requirements and detailed design, and aids in visualizing the architectural entities of an
application. In [Amy00a], UCMs were proposed as a notation for describing features.
They showed related use cases in a map-like diagram, and captures functional
requirements in terms of cause and effect relationship scenarios of the abstract
components. [Amy00a]. In all, UCMs are used for capturing requirements, evaluating
architectures, validating and detecting feature interaction. They illustrate reactive or
distributed systems in terms of casual paths that are followed through the optional
components caused by the occurrence of stimuli. When the UCMs illustrates the
components, they are referred to as bound, and if the components are not shown in the

diagram, then the UCMs can be referred to as unbound.

Start point Res ponsibility Condition End Point
Tom / Agent AgentM / Mike /
J N
Ty i
Y [idle]
Request ‘ N j AN I nng
[busyt
Message = X
upd-b
(Tomponcnl/'

Figure 2 Diagram of a Use Case Map representation [Amy00b]

Components shown in UCMs can represent software entities such as objects, databases,
functional entities, network entities, etc. as well as non-software entities such as users,

actors, processors etc. UCMs involve concurrency and partial orderings of activities, and

13

they link causes such as, preconditions and triggering events to effects such as post
conditions and resulting events composed of responsibilities [Amy02]. A short example
of a simple bound UCMes description, taken from [Amy00b] is described below and the
diagram is shown in Figure 2.

Figure 2 shows a UCM where a user called “Tom” is trying to set up a telephone call
connecting with another user “Mike” through some network of agents. Tom and Mike
each have an agent responsible for managing subscribed telephone features such as
Outgoing Call Screening. At first, Tom sends a connection request (request) to the
network through his agent AgentT. This request causes the called agent to verify (vrfy)
whether Mike’s telephone line is idle or busy. If Mike’s phone is idle, then there will be
some status update (upd) and a ring signal will be activated on Mike’s side (ring).
Otherwise, a different update will occur (upd-b) and an appropriate message (stating that

Mike is not available) will be prepared and sent back to Tom (message) [Amy00b].

Domain analysis

The development and maintenance of large and complex sofiware systems require a clear
understanding of the desired system features. Domain analysis is a process for
understanding requirements in a particular problem domain. It helps in understanding
program features by clearly defining the features and capabilities common to systems in
this application domain before implementing the system. As described in [Kan90]
“domain analysis is the systematic exploration of software systems that define and
develop commonality, defines the features and capabilities of a class of related software

systems”. R. Pietro-Diaz [Pie90] defined domain analysis as “a process by which

14

information used in developing software system is identified, captured, and organized
with the purpose of making it reusable when creating new systems.” Domain analysis
approach can support a mapping from the problem space to appropriate objects and
classes, while considering the design context for patterns and frameworks. Domain
analysis creates a domain model which captures the essential entities in a domain and the
relationships among these entities. Several domain analysis methods exist, including
feature oriented domain analysis (FODA) [Tur99a]. According to [Coh98, D0i98, Gri98],
“a feature represents one or more domain requirements, and this feature analysis becomes
an important aspect of domain analysis.” Domain products, representing the common
functionality and architecture of applications in a domain, are produced from domain
analysis. The FODA method focuses on identifying factors that can cause differences
among applications in a domain, both at the functional and the architectural level. In
addition, this method uses those identified factors to parameterize domain products.

In [Tur99a], the term feature is referred to as the capabilities of systems in a domain.
They typically seek to distinguish the features that represent basic, core functionality
from those that represent variant, optional functionality [Tur99b]. Domain analysis
processes existing and potential software applications in order to extract and pack
reusable assets [Suc00]. The feature/contextual view of many domain analysis methods
should become an essential part of object technology for reuse. Described below, the
feature oriented domain analysis (FODA) method establishes three phases of a domain
analysis [Kan90], as illustrated in Figure 3 [Kru93].

Context analysis: The context analysis phase provides the context model, which is used

to define or establish the scope or bounds of a domain analysis. A context model is

15

represented with a structure diagram and context diagram where structure diagram
includes informal block diagrams. The context diagram is represented with data flow
diagrams illustrating data flows between a generalized application within the domain and
the other entities and abstractions with which it communicates [Kru93]. The domain
analyst interacts with users and domain experts to establish the bounds of the domain and
establish a proper scope for the analysis. The analyst also gathers sources of information

for performing the analysis.

Figure 3 The phases of feature oriented domain analysis [Kru93]

Domain modeling: Domain modeling provides a description of the problem space in the
domain that is addressed by software. The FODA domain modeling process includes
three models including the feature model, ent