NOTE TO USERS

This reproduction is the best copy available.

®

UMI

THE USE OF THE BIG ENCRYPTION SYSTEM (BES)
FOR THE CRYPTANALYSIS OF THE ADVANCED
ENCRYPTION SYSTEM (AES)

YING YU

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 2005
© YING Yu, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04404-7
Our file Notre référence
ISBN: 0-494-04404-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

The use of the Big Encryption System (BES) for the Cryptanalysis of the

Advanced Encryption System (AES)

Ying Yu

Because the operations of AES are based on two different Galois Fields, GF(2) and GF(28),
this brings a lot of difficulties and complexities to the cryptanalysis of AES. Therefore,
BES, which stands for Big Encryption System, is introduced. By enlarging the message
space and key space, BES can replicate the actions of AES by just using simple operations
only on GF (28%), thereby enabling an easy and equivalent approach to analyze AES. In or-
der to give more practical support to the cryptanalysis of the AES, the BES implementation
is strongly encouraged.

This thesis discusses the issues related to the BES implementation. Firstly, a detailed
exploration of the implementation of BES encryption is addressed. Then the inverse BES
cipher is proposed with full respect to the design principles of BES. Finally, a testing analy-

sis of the BES implementation is given.

il

Acknowledgments

I would begin by expressing my gratitﬁde to my supervisor, Hovhannes A. Harutyun-
yan, for the support and help in writing my thesis. His charisma of being a intelligent,
dedicated and passionate researcher has inspired me throughout the course of my learning,
and will continue to do so.

Special thanks to my husband, Yang Yu, for his love and patience, for being incredibly
understanding and supportive, and for being such a perfect husband. Thanks to my family
and friends for their sincere encouragement and constant support.

Finally, merci beaucoup, Montreal!

v

Contents

List of Figures

List of Tables

1 Introduction

2

1.1 The Overview of Cryptography

1.2 Thesis Organization oo v it

The Specifications of AES

2.1 TheCipher Structure

2.2 State and the Cipher Key Representation

23 NumberofRounds

2.4 Round Transformation e

24.1

242

243

244

ByteSub Transformation
ShiftRow Transformation
MixColumn Transformation

AddRoundKey Transformation.

viii

ix

25 KeySchedule
26 TheCipher e

27 Thelnverse Cipher

3 The Specifications of BES

3.1 Embedding the AESintothe BES
3.1.1 Mathematical Framework
3.1.2 The Basic Cipher Structure of AES
3.2 TheBigEncryptionSystem
321 StateVector
3.2.2 Round Transformation
3.2.3 Algebraic Representation of the BES Round Function

4 The Implementation of BES Encryption

4.1 State Vector e
42 RoundFunctionof BES
4.2.1 Round Transformation
422 ByteSubOperation
4.2.3 ShiftRow Operation
424 MixColumn Operation
4.2.5 AddRoundKey Operation
43 KeySchedule

5 The Implementation of BES Decryption

vi

23

23

23

26

28

29

29

36

37

37

38

38

39

51

62

63

67

5.1

52

53

54

55

5.6

Inverse RoundFunction, .
InvByteSub Operation
InvShiftRow Operation
InvMixColumn Operation,
AddRoundKey Operation,

Inverse Key Schedule

6 Testing Analysis of the BES Implementation

6.1

6.2

TestingResults

Testing Analysis

7 Conclusion and Future Work

Bibliography

Appendices

A Source Code

vii

89

89

92

97

99

103

103

List of Figures

1 Feistel Structure (DES) and SP-Network Model (AES) 8
2 The State and the Cipher Key (Wy =4)Layout 9
3 AddRoundKey Transformation 15
4 The Round Key Selection for Ny =4and Ny =4 18
5 The AES Cipher Flow Chart 20

6 The Relationship between the AESandthe BES 27

viii

List of Tables

1 Tabular Representation of Sgp(mn) 11
2 TheStateSpace 24
3 Tabular Representationof f~'(mn) 69
4 ABESTestCase: Plaintextd 90
5 ABES Test Case: Original Key 91
6 ABES TestCase: Ciphertext Eg(b) 91
7 A BES Test Case : Decipher(Encipher(®)) 92

1X

Chapter 1

Introduction

Cryptography has a long and fascinating history, which can be traced back to its initial
and limited use by the Egyptians some 4000 years ago. With the proliferation of computer
technology, it becomes more crucially used as a tool to manage the risk in a very wide
range of situations. This chapter introduces, in general terms, the relevant background and

basics of cryptography, and then gives an overall structure of how this thesis is organized.

1.1 The Overview of Cryptography

Cryptography is the study of secret writing, which involves mathematical techniques
related to aspects of information security such as confidentiality, entity authentication and
data origin authentication.

Fundamentally, encryption is the process of the rendering of information into a different

unintelligible form so that its contents are not readily accessible. The original information

is known as plaintext, and the encrypted information as ciphertext. The reverse process of
extracting the original message from ciphertext is called decryption. Both encryption and
decryption depend on particular algorithms, known as ciphers. The shared secret knowl-
edge used in conjunction with a cipher is generally known as the key, which determines the
mapping of the plaintext to the ciphertext. Cryptanalysis is the study of attacks on ciphers.

The ciphers used to encrypt and decrypt data fall into two categories: public key (asym-
metric) and secret key (symmetric). The public key system, also known as asymmetric
cryptography, involves two keys that are mathematically linked such that one key (the pub-
lic key) is used for encrypting plain text, which can then only be decrypted by the other
corresponding key (the private key). The secret key system, also known as symmetric cryp-
tography (which is oldest kind of encryption method), uses the same key both to encrypt
the plain text, and subsequently to decrypt the cipher text. The symmetric systems are
considerably faster than the asymmetric methods, but are vulnerable because of the need
to share the key, and thereby risk it falling into the wrong hands. However, with the de-
velopments in mathematics and the growth of computing power, now it can be effectively
made unbreakable. Symmetric ciphers can be implemented using block ciphers or stream
ciphers. Block ciphers encrypt a fixed-length block of the plain text, under the control of
the secret key, into the cipher text of the same length. The ciphers related to this thesis
are all block ciphers, including DES (the Data encryption Standard), AES (the Advanced
Encryption Standard) and BES (the Big Encryption System). Moreover, all of the above

are iterated ciphers, composed of several rounds, which helps improve security.

DES, deriving from the work of IBM, was adopted a U.S. Federal Information Process-
ing Standard for encrypting unclassified information in 1977. It is designed to encipher and
decipher blocks of data consisting of 64-bit block under control of a 64-bit key (although
the effective key strength is only 56 bits). DES has 16 rounds, which entails that the plain-
text 1s processed through 16 times to produce the ciphertext. In a single round, we split the
64 bits into two 32-bit blocks, and take the 32-bit block on the right-hand-side to make it
the left 32-bit block for the next round, and XOR the left 32-bit block with the calculation
of a Feistel function that operates on the right 32-bit block and a 48-bit key block to pro-
duce the right 32-bit block for the next round. This function will further involve a block
expansion from 32 bits to 48 bits, a key XOR with 48 selected bits out of the available 56
key bits, a substitution using eight 6-to-4 S-Boxes and a permutation to reorder the bits.
For a detailed specification, see [1].

However, DES was showing signs of aging in the 1990s. The resistance to a forced or
brute attack of an encoding system is directly related to its key space: the more bits that
are used will translate into more possible keys, and having more keys means that it takes
longer to compute the full range of possible keys of the entire key space in a forced attack.
DES cuts eight bits off the top of its key, which limits the key space to a great degree,
thereby making the system easier to crack. Moreover, with the increase of well-designed
DES Crackers, DES is no longer secure. This has been especially proved when the DES
cracker, developed by Electronic Frontier Foundation (EFF) for under 250 000 dollars,
completed the DES Challenge II in less than 3 days in 1998 [2]. Half a year later, in Jan

1999, they won the DES Challenge III together with Distributed.Net in 22 hours and 15

minutes by inexpensively applying off-the-shelf technology and minimal engineering. Due
to the insufficient security of DES mentioned above, a replacement was overdue.

In January 1997, the US National Institute of Standards and Technology (NIST) an-
nounced the start of an open competition to develop a new encryption standard: the Ad-
vanced Encryption Standard (AES), replacing the old DES and triple-DES. The minimum
functional requirements for candidate nominations asked for symmetric block ciphers capa-
ble of supporting 128-bit data blocks with 128-bit, 192-bit and 256-bit key blocks. Instead
of performing any security or efficiency evaluation on 15 AES candidate algorithms by
NIST itself, the whole cryptology community was invited to review and evaluate them.
In August 1999, NIST narrowed down the candidates to five finalists: MARS (IBM), RC6
(RSA Laboratories), Rijndael (Daemen and Rijmen), Serpent (Anderson, Biham and Knud-
sen) and Twofish (Counterpane Sys and Univ. Berkeley). The evaluation criteria were
based on security, costs, versatility, key agility and simplicity.

Furthermore, these five algorithms were tested and evaluated on features, performance
in Hardware and Software, IP issues, cross-cutting analysis, attacks against the algorithms,
etc. When considered together, Rijndael’s combination of security, performance, efficiency,
ease of implementation and flexibility made it an appropriate selection for the AES. On Oc-
tober 2, 2000, NIST announced Rijndael as the winner of the AES competition. Finally,
after another year of evaluation, the US Department of Commerce officially declared Ri-
jndael to be AES. The National Security Agency also endorsed Rijndael and the public
evaluation effort led to widespread acceptance. More importantly, Rijndael, or any of its

implementations, are not subject to any patents. For a detailed AES specification, see [3].

As Rijndael was crowned as the Advanced Encryption Standard, a considerable amount
of cryptanalytic attention has been paid to it. However, the operations of the cipher over
two different finite fields, GF(2) and GF(2%), bring many difficulties and complexities to
the AES cryptanalysis. Thus, an extension of AES, BES cipher that involves only simple
operations over GFE(28), has been introduced in order to avoid the conflict.

BES, defined by S. Murphy and M.J.B. Robshaw [7], is a 128-byte iterated block cipher,
which is composed of only simple algebraic operations over GF(28) with fully respecting
encryption in the AES. Since AES can be thought of as being identical to the BES, only
with a restricted message and key space, the properties of the new cipher have a close
affinity with the properties of the AES. This enables BES to preserve algebraic curves of
AES within an enlarged message and key space. Moreover, by using no more operations
over GF(2)8, the new cipher is easier to analyze, which possibly offers a significant im-
provement to the cryptanalysis of the AES. In particular, one consequence of analyzing
the BES is that the security of the AES is equivalent to the solubility of certain extremely
sparse multivariate quadratic systems over GF(28) [7]. However, the BES is only intended
to be used as an analysis tool, and the implementation of BES in my thesis is intended to

facilitate the practical use of BES.

1.2 Thesis Organization

The thesis primarily endeavors to contribute to the issues related to implementation of

the Big Encryption System (BES).

Chapter 2 deals with the basic structure of AES based on the second version of the

original Rijndael documentation [4] .

Chapter 3 starts with introducing the common mathematical framework required to
establish the relationship of AES and BES, and then gives a comprehensive descrip-

tion of the BES structure.

Chapter 4 gives a detailed exploration of the encryption process of BES.

Chapter 5 deals with the implementation of the BES decryption with respect to the

original design idea of BES cipher.

Chapter 6 attempts to analyze the results from the BES implementation.

The final chapter lists the conclusions derived and suggests a direction for future

research.

A thorough list of bibliographic references is presented next.

The source code is added in the appendix to assist the analysis in Chapter 6.

Chapter 2

The Specifications of AES

Rijndael, deriving from SQUARE, is an iterated symmetric block cipher with a variable
block length and a variable key length. The block length and the key length in Rijndael can
be independently chosen as 128, 192 or 256 bits, while the block size in the Advanced
Encryption Standard (AES) is a mandatory 128-bit block length irrespective of the 128-bit,
192-bit or 256-bit key lengths.

The following sections explain the AES cipher structure based on the second version of

the original Rijndael documentation [4] .

2.1 The Cipher Structure

Unlike DES based on the Feistel structure (typically part of the bits of the interme-
diate state are simply transposed in an unchanged format to another position), the round

transformation of Rijndael is based on SP-Network model (typically each block of data is

divided into smaller manageable pieces of the same length, and in parallel every piece goes
through the confusion layer (S-Box) and the diffusion layer (P-Box)). Rijndael consists of
three distinct invertible uniform transformations (called layers), where every bit of the state

is treated in a similar way. These two typical structures are shown in Figure 1.

h 4 ¥ Jr Yy ¥ v k.. h 4

1 [IIITIIT1]

Feistel Cipher S/P-Network

Figure 1: Feistel Structure (DES) and SP-Network Model (AES)

2.2 State and the Cipher Key Representation

The cipher block to which the operations are applied is termed as the State. A state is
pictured as a rectangular array of 8-bit bytes with four rows. The number of columns in the
state denoted by N, is equal to the block length divided by 32. The cipher key is organized
in the same form as the state. Thus, the number of columns of the cipher key denoted by

Ny is equal to the key length divided by 32 as well. The following figure is the example

layout of State (with N, = 4) and Cipher Key (with Ny = 4) layout.

ool g dp2 a
frol S| A2 Ma
a0l Axyf 9221 M
dap| %3y 33| 4z

koo| kea| Kozl Roa
Kg| Ru| ®ig| ki
kao| kil kaz| ko3
kagl kagl ksa] ka3

Figure 2: The State and the Cipher Key (N = 4) Layout

Both the state and the cipher key also can be considered to be one-dimensional array
of 4-byte vectors or words. Therefore, the bytes of the state are mapped onto the array
in the order of ap,a1,0,a20,a30,a0,1,a1,1,a2,1,a3,1,40,2..., while the bytes of the key are
mapped onto the array in the order of kO,O,k1,07k2,0,k3,07k0,1,k1,1 ,kz,l,k:;,],ko’z...

After the FinalRound, the ciphertext will be extracted from the state bytes in the similar

order. Accordingly, the same principle applies to the decryption process.

2.3 Number of Rounds

Rijndael consists of a number of equivalent rounds. The number of rounds denoted by
N, is a function of Nj, and N. For the AES, N}, is fixed at the value 4: N, = 10 for a 128-bit

key (Ny = 4), N, = 12 and N, = 14 for key sizes of 192-bits (N, = 6) and 256-bits (N, = 8)

respectively.

2.4 Round Transformation

The round transfromation denoted by Round is composed of four different transfor-
mations: ByteSubl, ShiftRow?, MixColumn3 and AddRoundKey. The final round of the
cipher denoted by FinalRound is slightly different: the step of MixColumn is not executed.

A pseudo-C notation of Round transformations is given below:

Round(State,RoundKey)

{
ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State,RoundKey);

}

FinalRound(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);

AddRoundKey(State,RoundKey);

'SubBytes in the AES specification
2ShiftRows in the AES specification
IMixColumns in the AES specification

10

24.1 ByteSub Transformation

The ByteSub step is the only non-linear transformation of the cipher. ByteSub consists
of an S-Box (Substitution Box) denoted by Sgp applied to the bytes of the state. The S-Box
is a 256-byte table shown in figure 3 , where the value of the upper nibble m and the lower

nibble » of an input byte is used to determine the value of the output byte.

0 1 2 3 4 5 6 7 8 9 a b c d e f

63 7¢c 77 b f2 6b 6f 5§ 30 01 67 2b fe d7 ab 76
ca 8 ¢9 7d fa 59 47 f0 ad d4 a2 af 9c a4 T2 0
b7 fd 93 26 36 3f f7 cc 34 a5 e5 fl 71 d8 31 15
04 ¢7 23 c¢3 18 96 05 9a 07 12 8 e2 e 27 b2 75
09 83 2¢ la Ib 6Ge Sa a0 52 3b d6 b3 29 e3 2f 84
53 d1 00 e 20 fc bl Sb 6a cb be 39 4a 4c 58 cf
d0 ef aa fb 43 44 33 8 45 f9 02 7 50 3¢ 9f a8
51 a3 40 8 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
cd O 13 e Sf 97 44 17 c4 a7 7e 3d 64 5d 19 73
60 81 4f de 22 2a 90 88 40 e b8 14 de S5e Ob db
e0 32 3a 0a 49 06 24 S5¢c ¢2 d3 a 62 91 95 ed4 79
e7 8 37 6d 8 d5 4de a9 O6c 56 f4 ea 65 Ta a 08
ba 78 25 2 Ic a6 b4 6 e8 dd 74 If 4b bd 8 8a
70 3¢ b5 66 48 03 f6 0e 61 35 57 b9 8 ¢l 1d 9e
el f8 98 11 69 d9 8 94 9 le 87 €9 «ce 55 28 df
8 al 8 0d bf e6 42 68 41 99 24 Of b0 54 bb 16

O A0 TR OO0~ A WN —= O

Table 1: Tabular Representation of Sgp(mn)

Basically the S-Box is defined as a composition of two transformations:

1. Taking the multiplicative inverse in GF(2%).

Rijndael uses the polynomial representation of GF(2%)[6] .The elements of GF(28)
are considered as polynomials whose degree are smaller than 8 over the finite field
GF(2). Multiplication of two polynomials is defined as the algebraic product of the
polynomials modulo the irreducible polynomial x® 4+ x* + x> +x + 1, while the ad-

dition on polynomials in GF(28) corresponds to a simple bitwise EXOR (). This

11

makes the addition and multiplication closed in GF(28). Accordingly, the multi-

plicative inverse a~! is defined by

axa'= 1 (mod B+x*+x+x+1),

where the value 00 is mapped onto itself.

Only with this multiplicative inverse, the algebraic expression of ByteSub is so sim-
ple that it could mount attacks such as interpolation attacks. Therefore, the second

transformation is then employed.

2. Employing an invertible affine transformation over GF(2), defined by:

yol _1 000111 1- 'XJ —J
9 110001 1 1|]|x 1
v 11100071 1}]x]| o
3 1111000 1]]xs] |0
Va 1111100 0] |x| [O
ys 0111110 0f]xs 1

Y6 OOllllle(, 1

y7j 0001111 If]|x 0

For decryption, the inverse operation InvByteSub applies the inverse S-Box to the bytes
of the state. The inverse S-Box is obtained by taking the inverse of the affine mapping

and then taking its multiplicative inverse in GF(28). The inverse of the affine mapping is

12

defined by:

X1 1 001 001 0] | 0
X2 01 00100 1}]|» 1
X3 1 01001 0 0f |y 0
X4 01 01 001 0f|ys 0
X5 0010100 1}/lys 0

X6 1001010 0]|]|y| [0

4 U

2.4.2 ShiftRow Transformation

The ShiftRow transformation is a byte transposition that cyclically shifts the rows of the
state over different offsets. As specified in AES!, for the 16-byte block size , row 0 of the
state vector is left shifted over Co = 0 byte , row 1 over C; = 1 byte, row 2 over C; = 2

bytes, row 3 over C3 = 3 bytes. Mathematically, the byte at position j in row i a; ; moves

to position a; (j14—C;ymod4-

ago 4ol ao2 4o agp 4ol ap2 Ao3
ap an a2 a3 | giprows | @11 @12 @13 Ao
—

azo 4az1 az a; az azxy axp azy

as asy asz asz a3 azp aip asz

The inverse operation InvShiftRow is also a cyclic shift of the 3 bottom row bytes by

IDifferent for Rijndael, because different block sizes N, determine different shift offsets

13

the same offsets in the opposite direction.

2.4.3 MixColumn Transformation

In MixColumn transformation, Rijndael considers the columns of the State as polyno-
mials with coefficients over GF(2%), and then multiplies it with a fixed polynomial ¢(x) =
03’ x4 *01°x%>+ *01’x+ *02° modulo (x* + 1) . Here, ¢(x) is invertible because it is co-
prime to x* + 1.

This modular multiplication with a fixed polynomial can be written as a matrix multi-
plication. Let the output of a MixColumn transformation 5(x) = c(x) ® a(x) (mod x* + 1)
, where a polynomial a(x) = a3 - x> + a3 - x> + a - x! + ag - x represents individual columns

of the state. Then the matrix multiplication is of the form,

- - - - - -

bo 02 03 01 01| |ao
by 01 02 03 01| |a

by 01 01 02 03| [a2

Lb3 LO3 01 01 02} |as

The inverse operation InvMixColumn is similar to MixColumn. Every column is mul-
tiplied with a fixed multiplication polynomial d(x) defined by ¢(x) ® d(x) = 01" (mod

x* 4 1). Then, it’s given by d(x) = *0B’x>+ *0D’x?4 "09’x+ O’ .

14

Accordingly, the matrix multiplication form of InvMixColumn is as follows:

bg OFE OB 0D 09| |ap
b 09 OFE OB 0D] |q

by 0D 09 OE OB| |a

b3 0B 0D 09 OE| |a3

2.44 AddRoundKey Transformation

The AddRoundKey transformation modifies the state by applying a simple bitwise EXOR
of the state bytes and the round key bytes. The round key is derived from the original cipher

key by means of the key schedule. And its length is equal to the block length.

Joa § For | oz | P Koa | Kax | Kaz | %o Ogp | Bpy | Paa | 8o
TN RN PR T o Koo | Kor [Kz | K _ Bro) Bay | B | Dya
Byo | Ban | Fua | Fus Koo | Ko | Koz | Kas byp | By | Loz | B
Ba | ua | A2 | Fas Kyo | Koy | K3z | Ko Byg | Bai | D52 | By

Figure 3: AddRoundKey Transformation

AddRoundKey is its own inverse.

2.5 Key Schedule

The round keys are derived from the cipher key by the key schedule which consists of

two components: the key expansion and the round key selection.

15

1. Key Expansion

The key expansion specifies how the cipher key is expended to a total number of bits,
equal to the block length multiplied by the number of rounds plus 1, since the cipher
requires one round key for the initial key addition and one for each of the rounds.
The expanded key can be considered as a linear array of 4-byte words, denoted by
W([Np(N;+ 1)]. Thus, for the AES with a 128-bit block, the expanded key is denoted

by W[4(N, + 1)] and of 1408 bits (128 x (10 + 1)).

There are two versions of the key expansion function: one for N; equal to or below
6 and one for Ny above 6. For N, < 6, a pseudo C notation for the Key Expansion

process is given as follows:

16

KeyExpansion(byte Key[4*Nk], word W[Nb*(Nr+1)], Nk)
{
word temp;
for(i=0;1 < Ny; i++)
WIi] = (Key[4*i],Key[4*i+1],Key[4*1+2], Key[4*1+3]);
for(i=Nk; i < Nb * (Nr + 1); i++)
{
temp = W[i-1];
if 1 % Nk ==0)
temp = SubByte(RotByte(temp))ARcon[i/Nk];

WIi] = W[i - Nk]Atemp;

In the above description, the SubByte(W) function returns a 4-byte word, where
each byte is the result of applying the S-Box to the corresponding byte of the input
word. The Rotbyte(W) function returns a word wherein the bytes are a cyclic permu-
tation of the input word such that input word (ag,ai,az,a3) returns the output word
(ay,a2,a3,ap). The round constant word array RCon(i) is independent of N, and

defined by a recursion rule in GF(28):
RCon(1)=['01",00,00’,00°]

RCon(i) = [x,/00°,00°,’00’]- RCon(i-1) = [x'~1,700°,00°,00°],

17

with x'~! being powers of x in the field GF(2%).

The first Ny, words are filled with the Cipher Key. The following words are defined
recursively in terms of previous defined words. The recursion function depends on
the position of the word. If i is not a multiple of &,, W[i] is the EXOR of the
previous word W[i-1] and the word Ny, positions earlier W[i-N,]. Otherwise, W[i]is
the EXOR of W[i-N,] and a nonlinear function of W[i-1]. The nonlinear function is
realized by a cyclic shift of bytes of the word (RotByte), a non-linear substitution of

the bytes of the word (SubByte), and then an addition with a round constant (RCon).
For the scheme for Nj, > 6, if i mod Ny=4, SubByte also is applied to W{i — 1]

prior to the EXOR.

. Round Key selection

The Round Key i is given by the Expanded Key words W[4i] to W[4i+3]. This is

illustrated in the following figure.

Wy 00 Wy | W W oo W,

Round Key © Round Key 1 Roumd Key 2

Figure 4: The Round Key Selection for N, =4 and N, = 4

18

2.6 The Cipher

The AES cipher thus consists of an initial RoundKey addition, N, — 1 Rounds and a

FinalRound. In pseudo C code, the cipher is given below:

AES(State,CipherKey)
{
KeyExpansion(CipherKey,ExpandedKey);
AddRoundKey(State, ExpandedKey);
For(i=1 ; i<Nr ; i++)
Round(State, ExpandedKey + Nb*1);

FinalRound(State,ExpandedKey + Nb*Nr);

}

And Figure 5 gives a flow chart of the cipher:

2.7 The Inverse Cipher

The algorithm for the inverse round can be found in a straightforward way by using
the inverse transformations InvByteSub, InvShiftRow, InvMixColumn and AddRoundKey in
a reverse order. Accordingly, in the inverse InvFinalRound there is no InvMixColumn

transformation. A pseudo C notation is given as follows:

19

r Key Expansion

| Add Round-Key

Transformations:
Repeat ~-ByteSub
(Nr—l) -ShiftRow
" ~MixColumn
Times

h

——{ Add Round-Key

Transformation:
~-ByteSub
-ShiftRow

[Add Round-Key

Figure 5: The AES Cipher Flow Chart

InvRound(State,RoundKey)

{
AddRoundKey(State,RoundKey);
InvMixColumn(State);
InvShiftRow(State);
InvByteSub(State);

}

InvFinalRound(State,RoundKey)

{

AddRoundKey(State,RoundKey);
InvShiftRow(State);

InvByteSub(State);

} 20

For implementation reasons, it is often anticipated that the only nonlinear step (S-box
substitution) is the first step of the round transformation and the sequence of inverse trans-
formations is equal to that of the cipher itself. Because the sequence of InvShiftRow and
InvByteSub is indifferent, these two transformations can easily commute. Moreover, be-
cause the order of AddRoundKey and InvmixColumn can be inverted if the round key
is adapted accordingly, we can regroup the inverse Round and FinalRound in the same
sequence as Round and FinalRound. Then, the inverse algorithm can be represented in

pseudo C notation:

21

InvAES(State,CipherKey){
InvKeyExpansion(CipherKey,InvExpandedKey);
AddRoundKey(State,InvExpandedKey + Nj * N,);
For(i=Nr-1;i>0;1-)

InvRound(State, InvExpandedKey + Nb*1);
InvFinalRound(State,InvExpandedKey);

}

InvKeyExpansion(CipherKey,InvExpandedKey){
KeyExpansion(CipherKey,InvKeyExpandedKey);
For(i=1;i< Ny i++)

InvMixColumn(InvExpandedKey + Nj*1);

}

InvRound(State,RoundKey }{
InvByteSub(State);
InvShiftRow(State);
InvMixColumn(State);

AddRoundKey(State,RoundKey); }
InvFinalRound(State,RoundKey){

InvByteSub(State);

InvShiftRow(State);

AddRoundKey(State,RoundKey); }

22

Chapter 3

The Specifications of BES

This chapter starts with explaining the common mathematical framework which is re-
quired to establish the relationship of the AES and the BES, and then gives a detailed
description of the BES structure based on the BES specifications [7] and the steps of its
round transformation, and concludes with an integral algebraic representation of a round

transformation of BES.

3.1 Embedding the AES into the BES

This section describes the common mathematical framework and the basic techniques

required to establish the relationship between the AES and the BES.

3.1.1 Mathematical Framework

1. State Space

23

Here we use the same polynomial representation of GF(2%)[6]. GF(2%) is a Galois
field, wherein both addition (defined as a simple bitwise EXOR) and multiplication
(defined as the algebraic product of the polynomials modulo the irreducible poly-
nomial x® +x* + x> 4+ x4 1) are closed. Bytes are regarded as polynomials! of this

binary field denoted by F.

Both AES and the new cipher BES are defined in terms of a state vector of bytes,
which is transformed by the round operations. In both ciphers, the plaintext is the
input state vector, and the ciphertext is the output state vector. However, while AES
has a 16-byte message and key space, BES is defined to have a 128-byte message
and key space. We denote the state space of AES by A, the state space of BES by B,

and a subset of the BES space that corresponds to the AES by By, so

A | State space of the AES Vector space F10
B | State space of the BES Vector space F 1?8
B, | Subset of B corresponding to A | Subset of F128

Table 2: The State Space

Moreover, instead of describing the state vector by using an array of bytes, here

we represent the state as a column vector, so the operations on the state vector are

represented by matrix multiplications of such a column vector occurring on the left.
2. Vector Inversion

We can easily define the inversion operation.

For a €F, it is identical to the field multiplicative inversion for non-zero elements

I'The set of all possible byte values corresponds to the set of all polynomials with degree Iess than 8 and
coefficients in the finite field GF(2).

24

with 0~ 1= 0.

For an n-dimensional vector a = (ag, a;, . . . , a,—1) € F", the vector inversion can

be viewed as a componentwise operation:

al-l) = (a(—l) (=1) (—11))

0 A e a

. Vector Conjugates

For any element a€ F, we also define that the vector conjugate of a consists of the

eight GF (2)-conjugates of a, denoted by

with a2 being powers of a in the field F.

If using a vector conjugate mapping ¢ from F" to F®" to represent the vector conju-

gate of a € F, while n =1, we have

Accordingly, an n-dimensional vector a = (ag, ...,a,—1) € F" is mapped to

[~}
Il

¢(a) = ((D(a()), s (D(aﬂ—l))a

while

20 ol 92 93 94 5 6 97
®(ao) = (ag ,a5 ,a5 ,a5 ,a5 ,a5 a5 145),

25

20 ol 22 23 94 925 o6 9T
q)(an—l)—(an—l7an—l7an—1’an—laan—han—lvan—laan—l)

Obviously, this vector conjugate mapping ¢ extends the vector space from F” to a

subset of F3", Moreover, 0 is additive and preserves inverses, so

¢la+a)=0(a)+¢(a)and p(a") = ¢(a)™!

Also, 9~1 : F8 — F” can be given to extract the basic vector from a vector conju-

gate.

4. Embedding the AES state space in the BES state space.

By using the above definitions of the vector inversion and the vector conjugate map-
ping ¢, any element? of the AES state space A can be embedded into the BES state
space B. We define B4 = ¢(A) C B to be the AES subset of BES. Therefore, ele-
ments of B4 are embedded images of AES states or subkeys in the BES state space.

Furthermore, B, is also additive and preserves inverses.

The following figure shows the relationship between the AES and the BES based on

the mathematical framework we discussed above:

3.1.2 The Basic Cipher Structure of AES

The AES considered here is the basic version of which encrypts a 16-byte block using

a 16-byte key within 10 encryption rounds, referring to FIPS 197 [3]. A typical round of

Plaintext, ciphertext, intermediate text, or subkey are the elements of the state space.

26

A —*5B,

l {

k —[4ES] « k)
{ 2
A B,

Figure 6: The Relationship between the AES and the BES

AES is defined in terms of the following three significant transformations:

1. The AES non-linear layer: The value of each byte in the state vector is substi-
tuted according to a S table look-up, denote by S-Box. This S-Box consists of three

transformations.

e The input x is transformed by the field multiplicative inverse function, x — y =

x(=1), defined by

e The intermediate value y is considered as a 8-dimension GF(2)-vector and mul-

tiplied by an (8 x 8) GF (2)-matrix L4.
e The result vector the AES S-Box is (L4 - y) + 63, where addition is with respect
to GF (2). The output then is regarded as an element of GF(28).

The second and third steps are GF(2)8 transformations.

2. The AES linear mixing layer: This layer involves ShiftRow and MixColumn trans-
formations. For ShiftRow, each row of the array is cyclically left shifted by a certain

27

number of byte positions. For MixColumn, each column of the array is viewed as an

F-vector and transformed to the column C - y, where Cis a (4 x 4) F-matrix.

3. The AES key addition layer: Each byte of the state vector is added to a byte from

the corresponding position of a round key, with respect to GF (2).

As described before, instead of viewing the input to the AES round function as an array
of bytes , here we can view it as a column vector of bytes. Moreover, the additive constant
(63) in the AES S-Box can be removed by combining it within a slightly modified round
key. Furthermore, each basic operation in a round of AES describes a bijective mapping on
A, so they can be easily replaced with similar operations in the BES.

Therefore, by recasting AES in this way , we ensure that every operation (including the
GF(2)-linear map from the AES S-box) can be represented using simple algebraic opera-
tions over F, with respecting the design principle of AES. Now, the round transformation
of BES can be readily described as consisting of exclusively of inversion in GF(2%), matrix

multiplication in GF (28), and key addition in GF (2%).

3.2 The Big Encryption System

The BES is a 128-byte iterated block cipher, which is composed of only simple algebraic
operations over GF(2%) with fully respecting encryption in the AES. This section further

discusses the basic structure of BES.

28

3.2.1 State Vector

As previously specified, the state vector a of the AES is viewed as an element of A and

represented here as a column vector.

apo 4ol 4aop2 aop3

aip ailr 4aiz a3

)
Il

@ azr ax axn

azp asz) aszy asj

T
:(QOOa ayo, azo, asp, 4oy, ..., 4asl, 4ae, -...,432, ap3, 43, azs, a33>

By using the embedding mapping ¢ on each byte of the state vector a, we have
0(aij) = (bijo, .-, bij7)
Therefore, for the BES, the state vector b € B can be represented as a column vector:
T
b= (booo, boot, .-, boo7, bioo, biot, - bio7, -, b3zo, b3z, ..., b3y >

3.2.2 Round Transformation

Described in the previous section, the round transformation of BES is similar to that of

AES.

29

Round(State,RoundKey)

{
ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State,RoundKey);

}

FinalRound(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);

AddRoundKey(State,RoundKey);

}

Since the last round is just slightly different (MixColumn is removed), we only need to

concentrate on a typical round transformation.

1. Roundkey Addition

For both the AES and the BES, the round key is viewed as an element of the state
space, and then the key addition is to combine the state vector with a round key with
the bitwise EXOR operation. Thus, for a round key (k4); € A3, the AES state vector
a € A is transformed by a — a+ (ka);; for around key (kg); € B, the BES state vector

b € B is modified by b — b+ (kg);.

3} is the number of rounds, 0 < i < 10

30

2. ShiftRow Transformation

In AES, the ShiftRow operation is to cyclically shift the rows of the state array over
different bytes. Because of considering the state vector as a column vector a € A
here, we also consider this transformation as a transformation of the components of
a column vector. Accordingly, it is readily represented by a modular multiplication
of the state vector a € A by a (16x16) matrix R4. The same holds in BES. The
ShiftRow transformation is then represented by a modular multiplication of the state
vector b € B by a (128 x 128) matrix Rg. Furthermore, in order to deduce Rp from

Ry, the vector conjugates should be moved as an integral entity .

3. MixColumn Transformation

In the AES MixColumn transformation, each column y € F 4 of the state array is

multiplied by a (4 x 4) matrix Cy4. Let z € F* be the output column,

02 03 01 01
01 02 03 01

01 01 02 03

03 01 01 02

By translating this operation of the AES state array into an operation of the AES state
column vector, MixColumn can be viewed as a modular multiplication of the state

column vector by (16 x 16) matrix Mix,.

In order to replicate the equivalent operation within BES, we define eight versions of

31

the matrix Cy, denoted by C¥), for k=0, 1,...7

k

02 (3% 01 o1
or (02 ©3)* o

or o1 (0% (©3)?

03 o1 o1 (02

where Cp (0) = C,. Because Cp is an MDS* matrix, it has certain diffusion properties

[8]. Thus, if

(zo,z1,Z2,23)T =Ca-(yo-y1-2 'yB)T then

k k k k k k
(2,28,)T =B . (332 2 2T

Now by using these matrices Cl(;k) and the vector conjugate embedding mapping 0,
the (128 x 128) F-matrix Mixp can be defined to replicate the MixColumn operation

in the AES by a multiplication of the state vector b € B with Mixp in the BES.

. ByteSub Transformtion

As previously described, we consider the ByteSub step (S-Box) as being composed

of two transformations.’

(a) S-Box Inversion

4MDS stands for Maximal Distance Separable
SThe additive constant 63 is removed by combing it within a slightly modified round key.

32

(b)

As defined before, the vector inversion is a componentwise operation on bytes,
so it is straightforward to describe this S-Box inversion for both the BES and
the AES. In the AES, it can be viewed as a componentwise vector inversion of
the state vector a € A, defined by a — a{~Y. Accordingly, for the state vector

b € B, this step is defined by & — b(~1) in the BES.

The S-box GF (2)-linear operation

In the AES specification, this operation operates on each component of the
state vector by considering each component a;; € GF(28) consisting of bit
X0,X1,X2,X3,X4,X5,%6,%X7 as a 8-dimension GF(2)-vector. This transformation,
denoted by f from GF(2%) to GF(2)8, is then represented by a multiplication

of each component by an (8 x 8) GF(2) matrix Ly4.

rxo- —1 000T1T11 1- _xol
X1 1 1000111 |x
X2 1 110001 1f(x
X3 1 111000 1] |xs
X4 I 111100 Of (x4
X5 01 11110 0f{xs

Xg 0011111 0f|xg

L)C7 0001111 1]]|x

L. . L -

In this transformation, the natural mapping v : GF (28) — GF(2)8 is involved

33

by default. Therefore, the componentwise AES GF (2)-linear operation f :
F — F is then defined by f(a) = v~ !(La - (w(a))) for a € F, where y and y~!

bring a lot of complexity to the analysis of the AES.

However, by applying Lagrange interpolation to f : F — F, f can be simply
represented by a polynomial function over F . Thus, the polynomial represen-

tation with coefficients in F is

7 k
flaij) =Y, kk(a?}') for a€F
k=0

where (o, 1, A2,A3, A4, As, Ae, A7) = (05,09, 9,25, £4,01,55,8f).

This polynomial is slightly different from the S-Box interpolation polynomial

6[8], because we separate the inversion out from the rest of the S-Box function.

Now the equivalent operation in BES can be defined. First, by using an (8 X
8) matrix Lp, we can replicate the AES GF(2)-linear map on the first byte of a

vector conjugate set, where

.
The S-Box interpolation polynomial is f(a;;) = ¥, M (a,z;(D+ 63
k=0 ’

34

(ho)?’

(Ae)*

Lg=

(Aa)?

Then, by applying a (128 x 128) F-matrix, Linp, the entire set of GF (2)-linear

(M)?
(o)
(ha)*
(he)?
e
(ha)?
(%a)*

(M2)?

(ho)*
(A2)?
(%6)*
(hs)?
(ha)®

(A3)%

(ha)?
(h2)?
(M)*
(Ro)”
(A7)
(%6)”
(hs)”

(Aa)?

(Aa)?

(ho)*
(A)%
(Ae)?

(As)?

(s (he)?
(M) (hs)?
(Aa)? (ha)?
(h2)? (ha)?
() (h)*
(o) (M)
()% (ho)”

(he)? (Ag)”

map in the AES can be represented within the BES.

5. Key Schedule

While the AES key schedule produces eleven 16-byte round keys (k4); € A, the key

schedule provides eleven 128-byte BES round key (kp); € B.

The key schedule in the AES involves the same operations as the AES round trans-
formation, namely the GF (2)-linear map, componentwise inversion, byte rotation,
and addition. Therefore, we can simply apply the techniques discussed in previous

sections to describe the key schedule for the BES. Thus the key schedule can also be

described using the same simple algebraic operations over F.

35

(A2)?
(h6)?
(hs)”
(ha)?
(ha)*
(h2)?
()?

(ho)?

3.2.3 Algebraic Representation of the BES Round Function

For the input state vector b € B and the round key (kg); € B, the BES round function

can be given by

Roundg(b, (kB),') = MixB(RB(linB(b(_l)))) + (kB),' = MB . (b(_l)) + (kB)i

where Mp is a (128 x 128) matrix performing linear diffusion within the BES.

So far, the round function of BES, and hence essentially the AES can be simply rep-
resented by a componentwise inversion and an affine transformation within the same field
GF(2%). Furthermore, both of them are simple algebraic transformations over B = F28,
so each of them describes an isomorphic algebraic curve on B, which preserves algebraic

curves of AES over A with a reasonable probability.

36

Chapter 4

The Implementation of BES Encryption

Based on the design principles of BES cipher [7], this chapter is an original contribu-
tion which detailedly explores the issues related to the implementation of BES encryption.
While the section 4.1 deals with the input and the output data structure of the cipher, the
section 4.2 is grouped by a detailed description of each operation in a typical BES encryp-

tion round.

4.1 State Vector

As specified in the previous chapter, by using the vector conjugate mapping ¢ from F to

a subset of F8,
20 ol 92 93 94 o5 96 o7
¢(a):(a a ,a ,a ,a ,a ,a ,a)7 fOl’ acF

0 1 2 3 4 5 6 7 .
where a® ,a* ,a* ,a* ,d* ,a* ,d® ,a* are GF(2)—conjugates of a,

37

the 16-byte messages and keys in AES can be extended into the 128-byte messages and
keys in BES. By considering both the state vector a € A and the state vector b € B as column

vectors, we have

T
a:(aOO; aio, a0, 430, 4o, .-, asy, 4ap2, ..-,A32, 4p3y, 4z, a;s, a33)

T
e =<¢(aoo), oy O(aso), 9(aor), -, O(azr), oo, Olas), - ¢(a33),)

Yy — (20 2l 22 93 o4 25 96 o7 .
where q)(alj)"(aijaaij7a[jaaijaaij7a[jaajj7aij)7 0<i,j<3

T
= 2 4 8 16 32 64 128 2 128
b (000, 00> 9000 90> @000 900> 9000 900 > "7 @33, d3z, o, 433) ’

20 21 22 23 24 25 26 27 s
where a;;, a5, a5, a5;, 45,0y, 455, a5 are the powers of a;; in F.

4.2 Round Function of BES

This section deals with the issues related to the implementation of a typical BES encryp-

tion.

4.2.1 Round Transformation

The round transformations of BES has the similar operations to that of AES. Therefore,

a pseudo-C notation can be given as follows:

38

Round(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
MixColumn(State);

AddRoundKey(State,RoundKey);

4.2.2 ByteSub Operation

As described before, this step in AES involves three transformations : a S-Box inversion,
a GF(2)-linear operation and a constant addition. However, the additive constant is removed
from this step by incorporating it into slightly modified round keys, so here we only focus

on the first two transformations.

1. S-Box Inversion

The S-Box inversion in AES is identical to the standard field inversion in F on each

byte of the state vector a;; € F: a;; — agj_l) for non-zero field elements with 0(~1) =

0.

Apparently, in the BES, the S-Box inversion on the state vector b € A can be viewed

as a componentwise standard field inversion on each GF(2)-conjugates of a;; € F :

_ D) — 42 4 8 16 32 64 128
b—d)(a,])—(a,],aij,aij,aij,aij,aij,a,-j,aij)

39

-1 -1 2 4 8 16 32 64 _128\(—1
— bl)=(¢(aij))():(aij’aij’aijvaijvaijvaij’aijaaij)()

- -1 -1 -1 -1 -1 -1 ~1
:(a,(j l)’(a('))2,(a(”))4’(az(‘j))8’(at(j))l6v(a§j))327(‘11(1'))64,(al(j))128)

=0(a;") for 0<i,j<3

2. S-box GF (2)-linear Operation

In AES, the S-box GF(2)-linear operation f : F — F on each byte of the state vector
is represented by a matrix multiplication of each byte with a (8 x8) GF (2) matrix Ly,
wherein each byte a;; € F consisting of bits xq,x1,x2,x3,X4,X5,Xg, X7 is considered as

a GF(2) vector of 8 dimensions.

X0 1 000111 1| fx

X1 1 1700011 1 (|x

X3 1 111000 1f|x;
flaij) =La- =
X4 1 11 1100 0] x4
X5 0111110 0f]lxs

X6 001 1 111 0f|xg

X7 0001111 1|]|x

40

By using Lagrange interpolation formula to interpolate f : F' — F, it can be repre-

sented by a polynomial function:
7 "
f(aij) = k%)\k(aij) for a€F and 0<i,j<3

where (Mo, A1,A2, A3, A, A5, Ae, A7) = (05,09, £9,25, £4,01,55,8f).

Now we can define the GF(2)-linear operation by a matrix multiplication on 8-

conjugate vectors with the following (8 x8) matrix Lg:

05 09 f9 25 f4 01 b5 8f aij
B (05> (09° (f9° (257 (f4° (01 (b5)° a
(G5 M C:72 M (1) R (¢1) A 4 R X R 6 2) M ()N at;
©n* ®9* 8H 05 (09° (9 (25} (f4)° a¥,
(4 D' B9 @ (05 ©9)'° (9 (25 ai®
(25)32 (f4)32 (01)32 (b5)32 (8f)32 (05)32 (09)32 (f9)32 a?jz
(9% 9% (% on* B)* 8H* (05)* (09)* a%
(09)128 (f9)128 (25)128 (f4)128 (01)128 (b5)128 (8f)128 (05)128 a-1»28

05-a;;+09- a,Zi + 9. a;}j +25. "?j + f4- ai‘j@ +01 a?,z +b5 -af,‘-‘ + Sf'ailjZB
(8- aij+ (05)% @ + (09) - atfy + (£9)% - afy + (25) - alf + (£4)7 - a2 + (O1)% - B} + (S - u}8

(05Y* - ay+ (8f)* - @+ (05)* -y + (09)* - af + (£9)* - al + (25)* @ + (f4)* - oS + (O1)* - /28

(O1)% - ay;+ (65)% - ad; + (81)F - afy + (05)° - + (09)F - alf + (f9) - a2 + (25)° -} + (f4) -)28

(f4)'® - ai;+ (0D, + (05)'S - afy + (8)'° - af, + (05)' - alS + (09)'® - 4 + (£9)'° - uf + (25)'% - a}?®

(25) ayj + (f4)2 @l + (01) -y + (65) - b + (81)2 alf + (05)% - @ + (09) - % + (f9) -0} 2

(£9)* -y + (25)% @t + (f™ - af, + (00 - af; + (05)™ - al¥ + (8/)% - f? + (05)% - aff + (09)* - 28

(09)' 2 a5+ (£9)'% -, + (25)"28 - afy + (4)' 2% -y + (01) 28 af® + (65)' 2% 32 + (8£) "% -t + (05)'28 -)28
This matrix in obvious manner applies the GF(2)-linear operation of the AES S-Box
on the first byte of a vector conjugate set and preserves the conjugacy property on the

41

remaining bytes. Thus, the entire GF(2)-linear operation on BES can be represented

by using a (128 x128) F-matrix Ling.

From above, we can have the entire representation of ByteSub operation, denoted by

Srp, as follows :

Srp(b) = Ling - (b_l)

42

€€,
szi?

€t
3%

€€
z?

£5
or”?

€€
wNN

£¢
v@

£,

35/

00
szi?

005
00,

z€?
00

o’
00p
00p

00y

521(50)
+o(60)
«(64)
01(5T)
s(vf)
,(10)
As@)
13

su(f8)
o(S0)
2¢(60)
51(64)
4(S0)
o¥f)
.(10)

Sq

s21(10)
(69
2(/8)
51(60)
4(60)
A(6/)
(ST
12

-
4o(10)

2(59)

o21(§T)
wo(PS)
«(10)
o1(S9)
5(/8)
4(0)
<(60)

6f

gzi(64)
(ST
«7d)
51(10)
o(S9)
+/8)
(s0)

60

51(60)
vol64)
#(50)
(2]
5(10)
S(59)
/8)

S0

s21(50)
+9(60)
7 (64)
01(ST)
o)
,(10)
s9)
/8

ser(48)
+9(60)
£(60)
or(6S)
o(ST)
S
((10)

sq

g21(10)

sz1(vf)
4o(10)
(59
91(/8)
4(50)
,(60)
(64)

74

sz1(64)
1o(ST)
wvh)
o1(10)
o(59)
A{48)
(50

60

471(60)
o(6)
2(50)
o1(#f)
4(10)
(59
A48)

SO

43

szi{10)
o(S9)
£/
51(50)
¢(60)
+(65)
(s7)

v

g1 (7F)
»o(10)
2c(59)
o1(48)
4(50)
4,(60)
L64)

ST

g21(64)
pol§T)
e
51(10)
4(59)
,(/8)
£(50)

60

sar(¥d)
4o(10)
2(59)
or(48)
4(0)
+(60)
64)

154

44

Ammav.wN_AmS+TAm£.§QmV+ Amm&.wﬁ?ﬁ.f _(§n)- gei{10) + | (5 so(v) AmmcvAwm_ﬁmmv+Tﬁmmuv.mﬁab.rT?mcv.wﬁﬁoov

e v)-
1 (5552) - 15(60) + |_(560) - g(50) + | _(§50) - o(#8) + ,_(51P) - pols@) + - (% v.aro:_-Ammuv.sﬁv\.v+~|ﬁmmav (s)+ ,_(550) - 4(6/)
Tfﬂ& w6+ _(52) - (60) + _(5) - ((s0)+ _(§%) - (/8) + () -, - (52) - (10) + | _(¥0) - () + | _(5P) - (o(52)
L (a552) g (ST + | _(589) - 01 (6) + | _(5P) 5, (60) +,_(§17) - 5,(50) + (%) -,(/8) + Amm&.eﬁ? _(%0) - 5,(10) + | _() - o (¥))
(7)) + _(50) - g(sD) + _(50) - l6) + _(5m) - wao (% ;8? (%9, | (551) - 4(s9) + | _(£5P) - o(10)
Tfm&;:oi_lﬁms LN+ () - s+ | _(50) - (6)+ (%) - (60) + _(5p) - (s0)+ _(%p) - ,(/8) + _(t0) - (59)
_(5) - (s + _(80) - (10)+ _(50) - (v + _(§00) - (5D + | _(F0) - (6 + () (60) + | _(%Fp) - ((s0) +,_(¥D)- (/3)
(a5 S8+ _(Hp)-sa+ _(E) 10+ _(50) v+ (%) -se+ (%) -6/ + () 60+ _(¥D) 0

1 {219) - g (500 +_(%7) - g, (/8) + | (1) - gy (50 + _(810) - g (10) + ,_(%0) - g0y (v) + | _(F1) - g0, (SO + (%) - g, (64) + 1_(0) - gy (60)
1 (292) - 5(60) + | _(339) - o(50) + _(0) - o(48) + | _(§07) - o(s0) + (%) o100+ (%) - (0] + (s2)+ ,_(00m) - o(6S)

8Tl 14 A
(s + (%) (10)+ (%) - ((n) + | _(%00) - o(s2)
(%

Tﬁmu_ D) m?\v Aoouv 26(60) + Aumv Nmﬁmov._v @wav Nme A
r%&.aﬁsf-ﬁuv.eaxi (%) (60) + | A%&.eaovf A
Awﬁv o)+ A v.wﬁmmv.f Awmuv.on,\v+~4A%c

7)o
D)
U8)+ (%) g (sa) + _(%) 5, (10)+ ,_(%00) g (1)
) ki
- (s2%) - (10) +_(B) - o)+ _(Fr) - (st)+_(§0) -,
n):
(2

7).

2) g

(% v.wﬁovf-@s §(/8)+ _(v (s9)+ ,_(%D) - (10)

(%) 600+ _(%m) - (0} + _(%Qp) - (#8) + | _(%0P) - (sq)

(% 1 (%99) - (50) + |_(®) - (/3)
2) 6.

(%) 60+ X750

(s30) - (s9)+ (%) - (1) +,(%0) - (o) + _(§) - (sD)+ _(%0) - (6/)+ (%) - (60) +

(B0) S8+ _(p) -sq p) 10+ ,_(§0)-#/+ (%) s+ (%

45

4.2.3 ShiftRow Operation

In AES, the ShiftRow step is to cyclically shift the rows of the state vector over different
bytes: row 0 of the state vector is shifted over 0 byte leftwards, row 1 over 1 byte, row 2

over 2 bytes, row 3 over 3 bytes as follows:

agp 4ol agz a3 app apr a2 aps
ajp aiy a2 a3] al a2 a1z aio
ShiftRow
—

axp a1 d4ax ax azy azz3 dzo azi

asp 4aszr 4z asz aszz azp 4z as

46

By considering the state vector as a column vector, the process can be pictured as the

transformation of the components of a column vectora € A :

ano apo
aio ap
azo az
aso ass
agl aol
arl ap
azl azj

31 | ShiftRows | 430
—_—

a=
ao2 ao2
ap ais
az a0
asz as]
ans aon3
a3 aio
ax as]
asj as?

47

Therefore we can represent this transformation by a matrix multiplication of the state vector

a € Abya (16 x 16) F matrix Ry:

1 000000O0OO0OO0O0OO0OO0OO0OO0O apo aop
000001 0000O0OO0OO0OO0OO0CO ao an
00000O0O0O0O0OO0OT1TO0OO0OO0OO0OO ao ax
0000O0O0O0OO0O0OO0OO0OO0OO0OOO0O1 asg asz
00001 000O0OO0OO0OO0OO0OOOOO ap apl
0000000001 O0O0OO0OO0OOODO apy a
00000000CO0O0OOODOOTI1IO) a
00010000O0OO0OO0OCOO0ODOO0OO asy asp
Ri-a= -
000000001 0O00O0OO0OO0OO0OO aoz a2
00000000O0OO0DO0OO0OO0OT1O0O0 a2 ais
00100000O0OO0OOCODOOOO axy ao
000000O01O00O0OO0OO0OO0OO0ODO azy az|
00000000O0OO0OO0O1O0O00O0 ags ap3
01000000O0OO0OO0OO0OO0OO0OO0O aps ap
0000001 0O0O0O0OO0OO0OOOO a3 az)
00000000O0OO0OO0O1O0O0OO0TO0 ass asy

Accordingly, the ShiftRow step in BES can be represented by a matrix multiplication of the

state vector b € B by a (128 x 128) F matrix Rp. In order to preserve the vector conjugacy

48

while extending matrix R4 to matrix Rp, the corresponding vector conjugates should be
moved as an integral entity. Thus, if the component in R4 equals to 1, then we extend it to

the following (8 x 8) F block in Rp;

0 00O0O0OO0OO

By extending the (16 x 16) F matrix R4 to the (128 x 128) F matrix Rg, now the ShiftRow

step can be represented by a matrix multiplication as follows.

49

I3
sci”
33

VO?.

3
e?
3
917

5y

¥,
w7

Tty

tp

0,
s21?
00
W@V
00p
00
o1”
00
00,

Vo
00p,

33
it
€€,
V@Q
33
€

€€,
o1

€€,
&

€,
£o

22
¢

£€p

i
oty
&
g
o1,
ol

olp
n

00,
sz1”
00,
V@!
OOG
0,
o1”
00p
o0,
vﬁ

09p

00p

”Q<m¥

50

4.2.4 MixColumn Operation

In AES, this step is a permutation operating on the state vector column by column, and
is defined as a matrix multiplication of the state vector a € A by a (4 x4) F matrix C4, where

y; 1s a conceptual column of the state vector a, for 0 < i < 3.

Ca-a=Cs-(¥0,y1,y2,¥3)

02 03 01 01 dgo doi 4oy ags
01 02 03 01 ajp apl aiz aps
) 01 01 02 03 axy a1 axp axp
03 01 01 02 azp a3] azp as

02-app+03-aro+ap+azn 02-ap1 +03 a1 +ay +azr 02-agp+03-app+axn+az; 02-apz+03-a13+axy+as
ap+02-ayp+03-ap+azp agl +02-a;; +03-az; +az; agp+02-a12+03-apy+azy ags+02-a;3+03 a3 + a3
a+aio+02-ax0+03-a30 agr +an+02-ax1 +03 a3y apy+aip+02-ax+03-azz apzs+ai3+02-a33+03-az3

03-ago+aro+axw+02-azp 03-apr +ajy +ax +02-azy 03-app+app+axp+02-az3 03-ags+ai3+ax+02-as
Similarly, we can consider the state vector as a column vector, and then this step can be

considered as a matrix multiplication of the state vector a € A by a (16 x 16) F matrix Mix4.

51

CA-a:

02 - ago +03 - aio + azo +azo
apo+02-a19+03-ax +az
ago+ajg+02-a+03-az
03 -agp+ajg+axp+02- as
02-ap; +03-a; +az +a3;
api +02-a11 +03-az +as3)
apr +a;;+02-a3,+03-a3;
03-ag; +aj+ax +02 a3
02-ap;+03-ayx+axp +as
an +02-a12+03 - ax +az
agp+app+02-ax»n+03-as
03-ap +ajp+ax+02-as
02-ag3 +03-a13+ay; +asz
apz+02-a;3+03-ap3 +ass
apz+a;3+02-ax3+03-az;

03-ap3 +a;3+ax;+02-as3

52

02 03 0 1 0 0 0 0 0 0 0 0 O O O O | aoo
01 0203010 0 0 0 0 0 O O 0 O0 O O ao
01 01 02 03 0 0 0 0 0 O O O O O 0 O ao
03 01 01 2 0 0 O O O O O O O 0 o0 O aso
o 0 0 0 020301010 O O O O O O O aol
0 0 0 0 01 0203010 0 O O O O O O ay
0 0 0 0 01 0102030 0 0 0 0O 0 0 O az|
0 0 0 0 030101020 O O O O O O O as|
0O 0 0 0 0 00 O 02030100 0 0 O ap
0o 0 0 06 0 0 0 0 010203010 0 0 O ap
0 0 0 0 0 0 0 0 010102030 0 0 O ax
0 0 0 06 0 00 0 030101020 0 0 O as»
o 06 0 0 0 0 0 0 0 O O 0 0203 01 01 a3
0o 0 0 6 0 00 0 0 0 0 0 01 020301 a3
0o 0 0 06 0 06 00 0 O 0 0 01 01 0203 ax
0 0 06 0 0 00 0 0 O O 0 0301 01 02 as3

:MixA-a

From above deduction, Mix, is a block diagonal matrix with 4 identical blocks of Cy.

53

Ci 0 0 O Yo

0 CA 0 0 yi
Mixg-a=

0 0 C4 O 2

0 0 0 Cy V3

In order to define Mixp to replicate the MixColumn step in BES, these 8 versions of C4

are defined as follows:

(02)2° (03)% 1 1

o _ 1 02)2 (03)% 1
1 1 (02)% (03)*
03)% 1 1 (02)%

fork=0,---,7, whereCéO) = Cy.

Furthermore, as previously described, Cg() has certain diffusion properties:

if (20,21,22,23)7 =Ca- (yo-y1-y2-y3)7 then

ok ok ok okvy (k) ok ok ok okyT
(5,21 ,25,25) =Cg" (g ¥1 "¥3 "¥3)

where z; is the output column of Cy - y;, for 0 <i < 3.

Therefore, the following is true:

54

128
2

22

55

128

-y

o ¢’ o o o 0o 0o o ?
0 o @ o 6 0o 0o o ¥
0o 0o o & o o o o . 3
0o o o o P o o o i
o 0o o o o & o o 3
o o o o o o ¥ o ¥
o o o o o o o P ey
& 0o 0o 0o 0o 0o 0o o »

o ¢ o o o o o o ¥

o o & o o o o o %

. o o0 0o & o 0o 0 0 #

o o 0o 0o ¢ o o o ¥l

o 0o 0o o o & o o W

o 0o o 0o o o c® o W

o o o o 0o o o WH

2 4 8 16 .32 64 (128

where y;,y7, ¥, ¥, 0, ¥, ¥,y °° are conjugates of y;, for 0< i < 3.

The above is the basis we use to define Mixg. For example, for the first column yy =
(ago, a10,a20,a30) of the state vector a in AES, the MixColumn operation on the vector

conjugate set of yg in BES is described as follows:

56

02

01

01

03

03

02

01

01

01

03

02

01

01

01

03

02

(022 (03 1 1
1 (02)2 (032 1
1 1 (02)2 (03)?
(032 1 1 (02)?

57

(02)128

1

(03)128
(02) 128

1

1
(03)123
(02)128

1

(03)128

(02)128

aio
ax
aso
0
4y
“%o

2
3

128
00

128
dig

128
o

128
0

02 -agy + 03 - a0 + ax + azg

ago+ 02 -a10+03-ax +azg
ago+ajo+02 ax+03-ay

03 -ago +aip +uzg +02-asp

(02)% - ady + (03)2 - ady + ady + &5,
ago+(02)? - afy + (03)? -y +
ady+ady + (02)2 - ady + (03)% - i,
(03)? - ady +adg + adg + (02)% -
(02)* - ady+ (03)* - ady + g + g
aly+(02)* aty +(03)*- a3y +dfy
gy +dfy+(02)* afy + (03)* - afy
(03)* - agy +afy + a3y + (02)* - afy
(02)% - afy + (03)° - by + afy + by
afo+(02)8 ol + (03)% - By + b,
afy+afy +(02)% by + (03)8 -,
(03)8. “80 + a?o + “go +(02)8- a§0
(02)!6 - a8 +(03)!0 - alf + alS +al§
add + (02)16 - alf + (03)'¢ . alf +alf
ald +al§ +(02)1° - ald + (03)16 .)
(03)18. a6 + alf + al§ + (02)!° - alf
(02)2 - ufE +(03)% - e + a3 + a3
“(3)(2) +(02)% -a%(z) + (03)32 -a% + agg
af+ a3t +(02)%2 - a33 +(03)2 - B2
(03)32 - a} + a3k + 33 + (02)% - i3}
(02)%4 . 4} + (03)%* - g + uSh + a$3
aSg+ (02)%4 . af3 + (03)% -afg +afg
a% + a% +(02)%. a% +(03)% ~a%
(03)%4 - a3 + g + ah + (02)%4 - a8
(02)128 .a(lx2)8 + (03)128 ,a}(Z)S +a%(2)8 +a§38
a(lxz)s +(02)!28 ,a}gs + (03)128 ,a%s +a§(2)8

a(l)(2)8 +ll}(2)8 + (02)128 .a%(ZJS + (03)128 '“115(2)8

(03)125 28 + al28 + 0128 1 (02)128 . 0138

Because the MixColumn step in BES respects the vector conjugate mapping, the output

58

. k. .
vector conjugate set of Clgk) . y(z) is derived from the above column vector by some re-

ordering, as follows:
02-agp + 03 - ayp +azo +aso
(02)% - ady + (032 - By + by + &5y
(02)* - ady + (03)* - afy + ady + iy
(02)8 - afy + (03)% - 4+ +
(02)'®- agf +(03)'¢ - alf +alf +aif
(02)2 -4 + (03 - a3} + a3 + a3}
(02)%4. a% +(03)%4. a% + a% + a%
(02)1%8 .)28 1 (03)'28 . 4}28 + (128 4 0i28
apo +02-ajo+03-azo +a3zo
ady + (022 - ady + (03)2 - ddy + dy
“30 +(02)* ~a‘1‘0 +(03)* ‘ago + ugo
ago+(02)8 -y + (03)3 - afy + b,
ald+(02)!8 - alf + (03)1 . al$ 4 ail
a3+ (02)* - aff +(03) - 435 +
a4+ (02)%4 - a4 (03)% . u§f +aSl
alZ® +(02)15 . 28 4 (03)'28 . o128 4 W12
ago +ajo +02-ax+03-ay
ado+ady + (02)2 - ady+ (03)% - a3,
a&) + a‘l‘o +(02)*- ago +(03)*- a§0
afy+ Sy + (02)8 - by + (03)8 - b,
ald +alg+ (02)!% - i + (03)'6 . 4l8
ags +ai + (02)% - 33 + (03) - o3}
Sy + afg + (02)% - 4SS + (03)% - a8
alZ® +al® +(02)128 . 0128 4 (03)128 -alZ®
03 -ago +aro+az+02-as
(03)2 - ady +ady + a3y + (02)% - d,
(03)* . afy + afy + ady + (02)* - af,
(03) - aby + Sy + ady + (02)3 -
(03)'6- al§ + alf + al + (02)16 - il
(03)%2 -« +afd + ad + (02)% - a3}

(03)54. 488 + a4 + aSf + (02)%4 - a$3

(03)/8 . al28 + al2® + P + (02)' - ol

59

Accordingly, the matrix multiplication of the MixColumn on the vector conjugate set of yg

can be represented by Mixg") —

60

o1

01

az

o1

01

()

o1

o

ol

)]

ol

01

1}

ol

1]}

01

01

13

01

03

o1

01

01

01

0l

ol

01

a

01

o1

ol

01

0l

3 ©
o ©
o o
o o
o o
o o
o a
o 8
¥

& o
S

=2

o o
o o
o o
o [=]
e o
o [=]
° B8
L]

§ o
=2

(=] o
o o
o o
o o
o o
o o
e 8
5 ©
o o
(=] o
o o
o o
o o
o o
o B

[0}

o

ol

ot

oL

01

03"

ol

01

02° 0

a

)]

01

o

133

1]

o (03"

0

01

0l

02

01

03

)8

0l

o3

01

01

01

113

()"

01

0l

(2

o1

0l

oz" 0

0

a1

0l

ul

01

61

Apparently, the same deduction is true for the vector conjugate set of column y1,y2,y3.
Furthermore, Mixy ,Mixy,Mix; are identical to Mix).

Therefore, the entire matrix multiplication representation of the MixColumn on the state
vector b € B is given by:

Mixg-b= Diag4(Mix1(3y°)) b

4.2.5 AddRoundKey Operation

While in the AES, this steps modifies the state vector @ € A by combining a round
key (ka); € A with the bitwise EXOR operation: a — a+ (k);, in the BES the similar
bitwise EXOR operation with a round key (kg); € B has applied to the state vector b € B :
b — b+ (kp)i, where 0 < i < Nypyng = 10.

Furthermore, a constant 63 € A addition on each byte of the state vector a € A, which
is removed from ByteSub operation, is conceptually combined into this step in AES. Thus,
in BES, the similar operation is realized by a bitwise EXOR operation on the state vector

b € B with an extended 128-byte constant column vector as follows:
T
(63, (63)%, (63)*, (63)%, (63)'0, (63)*, (63)%, (63)'2, ..., 63, 632, ..., (63)128)

In next section, I further consider how the round keys are generated.

62

4.3 Key Schedule

In AES, round keys are also elements of the state space, so are represented in the same

way as the state vector. Here a round key is considered as a column vector:

koo koi koo ko3

kio kit kiz ki3

koo ka1 koo ko3

kyo k31 kip ki3

T
:(koo, kio, k20, k3o, kor, ---, k31, ---, ko3, ki3, ko3, k33>

Accordingly, by applying the vector conjugate embedding mapping ¢, we can extend a

16-byte round key ky4 to a 128-byte round key kp.

T
kA:("oo, oy ko, kou, -, ko3, o k33>
T
¢
—>kB=(¢(koo), oy O0(kso), O(kor), -+, O(kos), -+ ¢(k33)>
T
= (oo B Ko M K R ke o, W)

In order to get 11 round keys for the 10-round encryption, AES specifies a key schedule
to extend the original cipher key. First, the first round key is filled with the cipher key. The
following round keys are defined recursively by using previously defined sub key.

For the i round of AES , the round key is given by (ka;,k4i11,k4;42,k4i43). There are

two versions of the recursion function.

1. For n=4iis amultiple of 4, k, = k,,_4 + f(kn—1). The non-linear function f includes

63

a S-box substitution, a byte rotation and a round constant RC addition.

koo
k1o
k2o
k3o
ko1
ki
ka1
k31
ko2
kia
ko
k3
kos
ki3

ka3

k33

—ka(i+1)=

koo + Srp (k13) +RC

k1o + Srp (k23)

kao + Srp (k33)

k30 + Sgp (ko3)

ko1 +Srp (k10 +Srp(k23)) + RC

k11 +Sgp (k2o + Srp (k33))

ka1 +Srp (k3o + Srp(ko3))

k31 + Srp (koo + Srp (k13) + RC)

ko2 + Srp (ki1 + Srp (k20 + Srp(k33))) + RC

k12 + Srp (k21 + Srp (kso + Srp (ko3)))

ka2 +Srp (k31 + Srp (koo + Srp(k13) + RC))

k32 + Srp (ko1 + Sgp (k1o + Srp (k23)) + RC)

ko3 +Srp (k12 + Srp (k21 + Srp (k30 + Srp(ko3)))) + RC
k13 + Srp (k22 + Srp (k31 + Skp (koo + Skp (k13) + RC)))
k23 4 Sgp (k32 + Sro (ko1 + Srp (k10 + Srp (k23)) + RC))

k33 + Srp{(koz + Srp (ki1 + Sro (k2o + Srp (k33))) + RC)

2. Forn=4i+1,4i+2,4i+ 3 is not a multiple of 4, k,, = kp,_a + k1.

64

koo
k1o
kag

k3o

ko1

ka1
k3
ko2
k12
k22
k32
ko3
ki3

k23

k33

Unlike the description of BES key schedule in previous chapter based on the BES spec-
ification [7], here in my approach, I’'m not using the same techniques from the previous

sections to describe and implement the key schedule, because of the following two consid-

erations.

First of all, from the matrix representation of k(i+ 1) for n = 4i, we can see the recursion
function brings a lot of complexity to translate the transformation into just a simple matrix
multiplication of the state vector. Second of all, the key schedule is relatively independent

of the round function of the cipher. The way of the generations of round keys will not

—>kA(i+1) =

65

koo + ko3

k1o +ki13

k20 + k23

k3o + ka3

kot + (koo ~+ko3)

kit + (ko +k13)

ka1 + (kao + k23)

k3 + (k3o +k33)

koz + (ko1 + (koo +ko3))

kiz + (ki1 + (k1o + k13))

kaa + (ka1 + (koo +k23))

k3a + (ka1 + (kso +k33))

ko3 + (ko2 + (ko1 + (koo -+ ko3)))
kyz + (kiz + (kiy + (k1o +£13)))
kaz + (ko2 + (ka1 + (k2o +k23)))

k33 + (k32 + (k31 + (k3o + £33)))

reflect on the algebraic representation of the BES round function.
Therefore, in my implementation, the BES ExpandedKey array is directly derived from

the AES ExpandedKey array by using the vector conjugate mapping.

66

Chapter 5

The Implementation of BES Decryption

In the BES specification [7], the inverse BES cipher is not described. The following
chapter is an original contribution and further explores the BES decryption process with

full respect to the design concepts of BES.

5.1 Inverse Round Function

As previously described , the inverse round function of BES is similar to that of AES:
InvRound(State,RoundKey)

{

InvByteSub(State);

InvShiftRow(State);
InvMixColumn(State);

AddRoundKey(State, RoundKey);

}

67

5.2 InvByteSub Operation

In AES, the InvByteSub applies the inverse S-Box denoted by S,;g to the state vector
a € A. It consists of three transformation: the S-Box inversion denoted by g, the inverse
GF(2)-linear operation denoted by f~!and a constant ‘05’ addition. Since g is self-inverse,

we have

Sen(@) =g~ (f(a) +05) = g(f ' (a) +05)

1. Inverse S-box GF (2)-linear Operation

In inverse AES cipher, the inverse GF(2)-linear function f~! : F — F, operating
on each byte of the state vector a € A, is represented by a matrix multiplication of
each byte with a (8 x8) F matrix L;!, wherein each byte a;; € F' consisting of bits

Xo,X1,X2,X3,X4,X5,X6,%7 is considered as a GF (2) vector of 8§ dimensions.

X0 00100101 X0
X1 1 0010010 X
X 01001001 X2
O » X3 10100100 X3
f (aij) =L, - =
X4 01010010 X4
X5 00101001 X5
X6 10010100 X6
X7 01001010 X7

The tabular representation of f~! is given below.

68

n
0 1 2 3 4 5 6 7 8 9 a b c d e f
00 4a 94 de 29 63 bd f7 52 18 6 8 Tb 31 ef a5
a4 ee 30 T7a 8 ¢7 19 53 f6 bc 62 28 df 95 4b 01
49 03 dd 97 60 2a f4 be 1b 51 8 c¢5 32 78 a6 ec
ed a7 79 33 c4 8 50 la bf f5 2b 61 96 dc 02 48
92 d8 06 4c bb ft 2f 65 <c0 8 54 le €9 a3 7d 37
36 7¢c a2 e If 55 8 ¢l 64 2 fO ba 4d 07 d9 93
db 91 4 05 f2 b8 66 2¢c 8 3 I1d 57 a0 ea 34 Te
eb al 56 Ic ¢2 8 2d 67 ©9 f3 04 4de 90 da
25 6f bl fb Oc 46 98 d2 77 3d e3 a9 Se 14 ca 80
81 c¢cb 15 S5f a8 €2 3¢ 76 d3 99 47 0d fa b0 Ge 24
6c 26 f8 b2 45 Of dI 9 3¢ 74 aa e0 17 5d 83 ¢9
c8 8 5 16 el ab 75 3 9a d0 Oe 44 b3 9 27 6d
b7 fd 23 69 9 d4 0O0a 40 e5 af 71 3b cc 8 58 12
13 59 87 cd 3a 70 a e4 41 Ob d5 9f 68 22 fc b6
fe b4 Ga 20 d7 9d 43 09 a e6 38 72 8 cf 11 5b
Sa 10 ce 8 73 39 7 ad 08 42 9c d6 21 6b b5 Af

O A0 O Do~ R LN = O
~1
=)
w
w

Table 3: Tabular Representation of f~!(mn)

The Lagrange interpolating polynomial of f~! is the polynomial of degree 255 that

passes through the 256 points yo = f~!(x00),y1 = £~ (x01), -+ ,yrr = 1 (xpp),

given by:
ff Y —x
_ k
@) Vi
jz / kl_[O Xj— xk
k#j
Written explicitly,

1) (x—x) e (e—x) (x—x0) (x—x2)--(x—x7¢))
)= Go—x1)(mo—m)(xo—x77) >0 + e =x0) (1 —x2) (1 —xp7) V1

) (x—xo) (x—x1)(x—xpe)
T Grr—x0) e —x) - (r—xpe) YIS

Substituting the values in Table 3 for x;,

69

The coefficients in the polynomial are considered as GF (28) vectors, thus the ad-
dition and multiplication of two coefficients are the addition and modular multipli-
cation over F. Accordingly, the division can be represented by the multiplicative
inverse a~! over F . Therefore, f~! can be interpolated by Lagrange formula and

represented by a polynomial function as follows:

7
a,j :2 au for a€F and 0<i,j<3

where(Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7) = (05, fe,7f,5a,78,59,db,6e).

Now we can define the GF(2)-linear operation in the inverse BES by a matrix multi-

plication on 8-conjugate vectors with the following (8 x 8) matrix Lglz

05 fe 7f 5a 78 59 db 6e ajj
6e)* (05 (f0* (1H* (sa)® (18)* (59 (ab)’ al;
@yt (eey* (05" (ro (N* (Sat (@) (59)° af;
(59° (@b)® (60 (05 (fe)* (1H® (sa)® (78)° a;
(78)' (59)' (@n)'* (60)'* (05)'° (f&)'° (1H'® (50)"° alf
(5a)? (718)% (59 (@) (6e)? (05)% (fe)? (19)* aif
InH% Sa® 8% (9% (@)* (6e)* (05)* (fe)* af}
f* (1H™ (5a)'® (18)F (59" (@h)* (60)'* (05)* al?®

70

05-ai;+ fe-af;+7f af;+5a-af,+78-a/f +59-af2 +db-af} +6¢ - af?®

(6e) -aij+(05) -, + (fe) -ab, + (1fV - ab, + (5a) - alf + (78) - 32 + (59) -} + (db)” - o}

(db)* -y + (6)* -+ (05)* -y + (fe)* -af, + (70)" alf + (Sa)* - af? + (78)* - af + (59)* a}P®

(59)%- ayj + (db)® - @ + (6)° -af + (05)* - af + (fo)* - alS + (71)% - a? + (5a)® - aft + (78)% -)78

(78)"° - @iy +(59)'% ad; + (db)'® - afy + (6¢)'® - b, + (05)' - alS + (fe)'® a2 + (71)'® - uft + (50)'® - a}2®
(5a)" - aij +(78) -, + (59) - afy + (db)”? - af, + (6€)™ - alf + (05)% - a2 + (fe)* -t + (1) - }®

(D™ aij+ (50)% a2, + (78)% - af + (59)™ - o, + (db)™ - alf + (6¢)%* - a2 + (05)% - Bt + (fe)** -)28

(fe)'® - ay+ (1) - af + (50)' P - a4+ (78)'2° b + (59)' - S + () - a2 + (6€)'%° - + (05)'2F -}

Therefore, Lgl applies the AES-action of the inverse GF(2)-linear map on the first
byte of a 8-conjugate vector, and preserves the conjugacy property on the remaining
bytes. By using Lgl in a similar way, we can define a (128 x128) F-matrix Lingl to

represent the entire inverse GF(2)-linear operation on BES.

2. S-box Inversion

As described before, this step is self-inverse, for the state vector b € B, we have

2 4 8 16 32 64
b= 0(aij) = (aij, ajj,ai}, a;j, aj; a;j,a;j,

128)
iriprip@ijo ij

a,j

-1 -1 2 4 8 16 32 64 128\(—1
— bl)=(¢(a,-,~))():(aibaij)aij’aijaaij)aijvaijvaij)()

— (7 (=Dy2 (=4 (=088 (=116 (=1)y32 ((=1)y64 ((—1)y128
(a ’(a“)a(a)7(a['),(Cl--) ?(a) 7(a') 7(a"))

if ij ij ij ij

=0a;') for 0<i,j<3

71

Now we can have the representation of inverse S-Box substitution:

Sep(b) = (Ling" - (b) +-05)~!

72

s21{($0)
vo(S0)
{50}
o1{50}
(50)
»(50}

(50)

521(50)
o(50)
z¢(0)
91(50)
(50}
»(60)
(s0)

Y

33
st1?

&
&
§iv
o
€6p

22
¢

00
Fold
00
QOH‘
8§
00,
917
00
0
ﬂﬁ

00p

521(50)
w0/
0
5178}
§(8L)
68}

ap)

gz1(68)

volaP)

sz1(8L)
o(68)
2£P)
01()
5(50)
W20
U0

23

N7 R EY)|
w8 el
8L (@8)
o1(68) 41(80)

+ar) 5(68)

»(29) Har)
(50 (%)
of <0

5z1(50)
vol?/)
e
51(78)
(8L)
»(68)

9p)

sci0?9)
(50
=@
e
5(78)
»(80)
{6s)

r

5e1(8L)
+o(68)
z(aP)
01(29)
(50)
#2f)
e

23

sz{8)
(8L
26(65)
o1ap)
5(29)
(50
e
JL

@)
w1
26(08)
or(8L)
5(68)
Lap}
(29

S0

73

521(50) + g850- . (S0) + 52 o (20) + S0 o (aP) + §50- 0 (68) + 50 4y (8L) + 50 o1 (6) + - o (1) + E2- o (3)
oS0} + 5550+ () + 550+ o (50) +5ip - 4(79) + §i0- o (aP) + 5o - 4(66) + Fp- o (8L) + Ffp - (mE) + €0+ (/1)

o(S0) + 550 (S +5p- () + Ew- (s0) + §ip- (20) + Hp- (ap) + 5 (66) + 5w~ (8L) + i (06)
51(80) + 5557+ o (96) + 5 o (L) + 5o (31) + §ip- o (50) + 5§p- o (79) + 5o+ o (ap) + Hp- (5) + £6 - (81)
5(80) + 5550 (82) + 5 - o(m6) + Ev- o (f1) + i o(af) + 5p- (50) + Epp- o(29) + ¥ip - (qp) + £E0- o (w6)

(S0} + 550 (68)+ 50 (8L) + Ev- (ve) + Eip- (SL) + 550+ (2/) + k- (s0) + Ep- (20) + E¢m- (qP)

50) + ¢557- (ap) + - (65) + Er- (80) + §iv- (v5) + 5o (JL) + 5. (2]) + Ep- (50) + E0- (29)

SO+ 555729 + 150 qp + 50 66 + 57 8L+ B vs + §p- [+ Fp-af + £ 50

s21(50) + 5790 57, (S0) + 997 4 (20) + 87 1, (9P) + 80 4, (65) + %7 57, (8L) + Bp - gy, (06) + %0 g (L) + 000~ o, (2F)
1o(50) + §X7- o (2f) + B o (50) + Fp - (29) + N7+ o(ap) + R - (66) +%r- o (8L) + K- o (88) + W0 (/1)

2e(50) + ¢ Xv- (S1)+ W (2f) + % (s0)+ Fo- (29)+ Q- (ap) + %~ (66} + %~ (81} + %D (1G)

01(50) + g R0+ 5, (76) + 8- o (J1) + R 5 (2f) + - (50) + K- 1 (29) + %o 5 (9P) + %~ o (65) + 00 (82)

3(50) + ¢2v- (82) + B - (w5} + - (f1}+ Ho- () + %p- ((50) + Op - o (29) + %~ (qp) + %0 - (65)

(50) + g0~ (65) + %o (8L) + Ro- (v6) + Q- (J1)+%p- (21) + % (s0) + %o+ (29) + %0 _(qp)

(50) + X0~ (ap) + Bp- (65) + X+ (8L) + - (v5) + %o~ (1) +%p- (2) + %~ (50) + %0 (29)

SO+ g0 29+ qp+ X065+ N 8L+ Qo -v5 + BQp- [+ Q- 2f + 0050

74

1-

Awﬁﬁmov+wmmu wN_Qo:mmu mﬁ?ov+mmm w§33+mmc s21(69) + - wﬁ@nv+mwa.w§?mv+mmu se (/L) + P g (2

(sols0) + 7 (00 + 51+ of50) + Eio-

vo(?9) + &0 o(ap) + Fp-

(50} + §i7 - 1 (29) + Fp -

o(68) +5p- o(82) +p- (pG) + -

2(aP) + 5o (68) + Hp- (8L) + €0

_g&§+%a%5$?&$+%

€€ .
51(50) + 0

£
o(29) + 50

3%
olaP)+47

(o1(50)+ 5857+ (pS) + 550+ 5, (1) + K- (21) + 5

7
3(50) + 560 o(80) + B+ (05) + B0+ (1) + §5- L(01) + o+ 4(50) + - (a0) + - §+§aa

")

)

s))

((p§) + 50 (50))
0)

)

)

TA
(500 + i 66) + 550 (80) + 5o+ (05) + 0 (/1) + 50 (01) + 50 (50) + o+ (o0) + 557 (g
ANGO:&?NGE +%p- (68) + Ep- (82) + 5o+ (v5) + 5o (f1)+5ip- (af) + o (s0) + 0,

_(s0+g5{p- 29+ {5p-qp+ 5p- 66 + §i- 8L+ 5o v + 5o SL+ Hp- 2/ + E0-60)

_lAmN_ﬁov + 40 501 (S0) + 9P 7, (29) + G0 07, (aP) + {0 37, (65) + %0 1, (8L) + % 7, (06) + %0 o (J1) + W0 o (/)

T?QS + 87 (o) + 2o (50} +

w0(79) + 0

TANMFS + g0 (L) 350 (2F) + 50 4e(50) +

T?stws.fgmiwa (fL)+ %o o)+

005
wolaP) + %0 g

00
(29)+ %

(65) +%0p-

wo(8L) + %p - po(PS) + 000

2e(ap) + %0 (65) + %p- . (3)+%p-

- (50) + % (359) + %o - (ap) + K-

01(68) + %00 g

o2+ %o (50) + %o (20) + -

(qp) + - mam

-Axmov+wxu.wav+wa.aamv+ww.x&Nf+m

-

-

O@iﬁfﬁi?_V@s&mf@a% S+ %o (3))+ %0 (s0) +%p - (9) + 000
(50)+ - (ap)+ B (69) + X~ (8L) + - (v5) + %o (/1) + - (24) + % (50) + - (

(_(s0+53ip-29+ 00-9p+ R 66+ Q8L+ %005+ R /1 + %p- 2/ + 00

)
)
s))
(50))
)
(@)
)

$0)

75

5.3 InvShiftRow Operation

In inverse AES cipher, the InvShiftRow step is also a cyclic shift of the rows of the state
a € A over different offsets: row 0 of the state vector is shifted over O byte, row 1 over 3

bytes, row 2 over 2 bytes, row 3 over 1 byte leftwards, as follows:

aoo

aio

axo

asg

By considering the state vector a € A as a column vector, the process can be viewed as

apl

ap]

azl

as]

ao2

a2

az

asy

a3

a3

an

asj

InvShiftRows
—

aoo

a3

an

asy

aol

aio

a;

asp

an2

ari

aso

ass

the transformation of the components of a column vector as follows:

76

aos

a2

as

asg

ago ano

ao a3
azo az
asp asy
aot ao1
ap] aio
az] az

asi InvShiftRows as2
—

a =
ap2 ao2
a2 ap
az; aso
asp ass
ao3 ap3
ais a2
a az|
asj - aso

Then we can further represent this transformation by a matrix multiplication of the state

vector a € A by a (16x 16) F matrix R} .

77

1 00000O0O0O0OO0OO0O0O0OO0OO0O0 ago aoo
00000000O0O0OO0OO0OO0OT1O0O ao az
00000000OCO0O0O1O0O0OO0OO0OO a ax
00000001 000O0O0OO0OO0O azo as|
00001 0000O0O0ODO0OCO0ODODOOO ap aoi
01 00000000OO0OO0OCO0OOO0O ap ao
00000000O0OOOOODOTLO asi a3
00000000O0OO0ODO1O0O0OO0O as| azy
Rgl-a= =
000000001 00O0OO0OO0OO0OO ap ap
0000010000OO0OO0OO0OO0OO0O ap ap
001000000O0OO0OO0OO0OO0ODO0OO a ax
0000O0O0COO0O0OO0OO0OO0OO0OOTO01 az asz
00000000O0O0O0OOCT1OO0OO ae ap
0000000001 00O0OOO0OCO ap ap
00000O0O1000OO0OO0OO0OO0OO0OO ax az)
00010000O0O0OO0COO0OOO0OO asz azo

We can also extend a (16 x 16) F matrix R;l into a (128 x 128) F matrixR,}1 in a similar
way, in order to represent this transformation by a matrix multiplication of the state vector

b € B with Rgl. Therefore, we extend each ‘1’ component in R;l to the following (8 x8) F

78

block

and each 0/ component to

0 000O0O0CO0OO

000O0O0OO0OO0OO

0 000 O0O0OOO

Then the InvShiftRow in BES can be represented as follows:

79

21067
poCE?
23 4%4
o1¢E?
§TEP
7
Lee

[4%4

11
Eriid

1p

€€,
sc1”
€€
QOU

€€,
€”
£,
b
€,
wu
€,
V§
€n
3

€€

it
o
bR
i
oy
%

01
<

0
st1?

00,
V@Q
00,
w€?

o
s1”

0p

00,
ﬁ§

0p

=q- %

80

5.4 InvMixColumn Operation

In AES, this step is also defined to modify each column of the state vector a € A by mul-
tiplying it with a fixed polynomial, and the matrix multiplication of this step is represented

as follows:

OE 0B 0D 09 agy dopl 4oy aops

| | 09 OE OB 0D ajp a4y ap ais
Cy ra=Cy (Yo, y1,¥2,3) =
0D 09 OE OB ary a1 ay ax

0B 0D 09 OF azp ai; asy asz

Considering this step as a matrix multiplication of the state vector a € A by a (16x16) F

matrix M ixgl, we have

ctbo o0 0 Yo
0 Cc'to o0
Mix;['a: A .
0 o0 C'o 2
o o0 o ¢ 3

81

OE 0B 0D
09 OE OB
0D 09 OF
0B 0D 09
0 0 O
0 0 ©
0 0 0
0 0 0
- 0 0 0
0 0 O
0 0 0
0 0 0
0 0 O
0 0 O
0 0 0
0 0 o0

09

0D

0B

0E

0

0

0E

09

0D

0B

0

0

0 0
0 o
0 0
0 0
0B 0D
0E OB
09 OFE
0D 09
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

09

0D

0B

OF

0

0

OE 0B OD 09 0 0 O

09 OE 0B OD O O O

0D 09 OE OB 0 0 O

0

0

0 0 0 OB 0D 09

Similarly, then we consider 8 versions of C/Il.

(c5?) .

(0E)* (0B)* (0D)* (09)%

(09)%

(0E)* (0B)?

(OD)* (09)*

oDy | for

0E)? (0B)* | k=o0,-.7,

08)* (0D)* (09)% (0E)*

82

0D

0B

O0E

aoo

ao

ao

aso

ap1

a

azl

asi

an?

a2

az

asn

a3

as

a3

ass

has diffusion properties in a similar

4
I
3 VI
= e
— 2 *x ® £
e_ o_ oy & e o 2 & e, o, 2. A - . . z. 8
| e rp ows o=z Sz Mo o So o en v owe S- 8o Fo So o se wm ome Za B B Ta D ae ge ome e Te Ee S
- = =, = =, = ES b ES EN . = ES ES S NS =, ES =, EX f B =, B =, A, = N
\) — —_ -— —_ -— —_ —_ — - -— - —_ — — —_ — — — - — — — —_ — i — — —_ —_ - -— —_
— | |] | [1) | [| | | i | | | 1 | i |) | I 1 P | | 1 | | [
e D N N N N N T T T e s e s e s s e e U Sy
N €5 Za Uz Tn Tp Zn €2 €5 £x Zx 8x Cx T %x 8z Sx Ex Tx S9a Sx S Tn Ex En TP S Bx Bx Ta 8x Ex By
6 < % S F S % 7 7 % ¢

S SRS R N N I R R R S R R SR R S R R S SRR R SR R R S N RS SN
N N N N N N N N N N N N N S L S 2

83

I Furthermore, (C

Ca

In particular, (Cl(;)))‘l =

way.

s - A (muv 0 0 0 0 0 0 0

po 0 " () 0 0 0 0 0 0

R 0 0 0 0 0 0

ofk 0 0 0 0 0 0

& 0 0 0 0 &) 0 0 0

2 0 0 0 0 0 o~ A &GV 0 0

£ 0 0 0 0 0 0 - (D) 0

£ 0 0 0 0 0 0 0 - (&)

s - A &G v
ook 0 i |A
& 0
R 0

28 0 0

o¢ 0

% 0

84

Then we use this to define Mixgl. Take the first column yg = (ago,a10,a20,a30) of the
state vector a in AES as an example. Thus, the InvMixColumn operation on the vector

conjugate set of yg in BES is described as follows:

OE OB 0D 09
09 O0E 0B 0D
0D 09 OE OB
0B 0D 09 OF
(0E) (0B} (0D) (09) ;
(9 (EP (0BF (D} :
0D} (9P ©ER (8P :

(B2 (D2 (09 (0EY 2,

(OE)IZS (03)128 (OD)IZS (09)128 a(l)(Z)S

(09)128 (OE)128 (OB)IZS (OD)IZS a1(2)8

(OD)128 (09)128 (OE)lZS (03)128 aé(Z)S

(03)128 (OD)128 (09)128 (OE)IZS a;(l)S

85

0E -ago+0B a0 +0D a0 +09- a3
09 -agy+0E -ay,0+0B-az+0D-az
0D -agy+09-a10+0E -azo+0B-ax
0B -apy+0D-a10+09-ax +0F -azg

(0E)? - agy + (0B)* - afy + (0D)? - a3, + (09)* -

)
W
=3

(09)2-ad, + (0E)* - afy + (0B)* - a3, + (0D)* - a3,
(0D)* - ady+(09)%- aly+ (OE)* - a3, + (0B)* - a3,

(0B)? - a}y + (0D)* - aly + (09) - a3y + (0E)* - a5,

(k)

k . .
Then we reorder the output of (Cp)L y% , with the purpose of reserving the vector con-

(o)

jugacy, to derive (Mixz"’)~! from it. Therefore, InvMixColumn step in BES on the vector

conjugate set of column yg can be represented by a matrix multiplication with (Mix

where

(Mixg*)~! =

86

(OE)IZS -a(l)%s + (03)128 ,a}%S + (OD)IZS _a%S + (09)128 .,
(09)128 X a(1)(2)8 + (0E)128 .a}(2)8 + (03)128 ,a%s + (OD)128 .
(OD)IZS .a(l)(2)8 + (09)128 ~a{%8 + (OE)128 ~a%8 + (03)128 .

(03)128 . aégs + (OD)IZS .a{%S + (09)128 ,a%S + (OE)IZS .

128
a3

128
a3

128
a3

128
a3

0

fgo}

0

0

0

0
{z0)

0

0

0

0
g0

0

0

0

(g0}

0

0

(60}

o

Q

e}

0

0

g0

0

0

0

]

0

ag

0

0 [0 0 [
0 0 [0 0
0 0 0 [} 0
Jfao) 0 0 0 [
0 lao) 0 0 0
[}] {an) []
0 a [o) o
[0 1] [{]
0 i [0 [}
0 0 [] (]
0 [} [0 [}
Ja 0 0 0 2
0 {60) Q 0]
[] {60]]
Q [1] e} o
o [0 [60
0 [0 0 0
0 0 0 0 0
0 0 0 0 0
fg0) [0 0 1]
0 Lao0) 0 9 0
0 [} 2o} o]
0 [4 &0 0
0 0 0 [{1
0 [[o 0
] [} [0 0
0 [0 0 i
{z0) 0 [0 0
0 fg0) 0 i 0
0 [20 0]
0 0 0 lgo) o
o o [0 ge

god

0

0
tao)

¢

0

0 0 0 [
0 [0 0
Q [[} 0
JAg0) 0 0 [
a lg0) 0 0
[0 (Fa} 0
0 1]] lao
o [0 0
1 0 0 0
Q 0 0 0
[0 0 0
o 0]]
0 fao)] 0
d 1] (a0 1]
[0 o tao)
0 0 0 0
0 0 0 0
0 0] 0
[[] 0
Jto0) 0 0 0
0 {e0) 0 0
] [{60) 0
0] [Ls0)
[o 0 0
1] 0 [0
[} [0 0
0 0] o
zo) 0 0 0
0 (g0} 1] 0
[[(20) 0
1] 0 0 {&o}
0 0 0 0

20

87

Similarly, we can deduce (Mixy)~!, (Mix3)~!,(Mixj;)~" for the vector conjugate set
of column y1,y2,y3. Each of these is identical to (Mixy?)~".
Therefore, the entire matrix multiplication representation of the InvMixColumn on the

state vector b € B is given by:

Mixz' b = Diagq(Mix?)™") b

5.5 AddRoundKey Operation

AddRoundKey is its own inverse. In the AES, this steps modifies the state vectora € A
by combining a round key (ks); € A with the bitwise EXOR operation: a — a+ (ks);.
Accordingly, in the BES, the similar bitwise EXOR operation round with a round key

(kp); € B has applied to the state vector b € B: b — b+ (kg);, where 0 < i < Nygyng = 10.

5.6 Inverse Key Schedule

In AES, the only difference between the key schedule and the inverse one is that In-
vMixColumn is applied in the inverse one after the key expansion. Since I use the vector
conjugate set of the AES ExpandedKey as the BES ExpandedKey instead, here the inverse

key schedule of BES is derived from the AES inverse key schedule in a similar way.

88

Chapter 6

Testing Analysis of the BES

Implementation

The following chapter is an original contribution and analyzes the testing results derived

from the BES implementation.

6.1 Testing Results

Although the following testing data may be considered preliminary in that it does not
involve a large volume of data, the testing is based on a random plaintext selection, which
gives the testing analysis great generality.

In an effort to explore how the BES reserves the AES property, here the 128-byte state
vector b of BES cipher is represented by a table with 16 rows and 8 columns, wherein each

row represents the vector conjugate set of the corresponding byte a;; in the state vector a

89

of AES. Thereby, the first column a;; represents the state vector a.

Randomly, take a plaintexta = (7b,17,17,15,2d,4c,59,17,38,4d,4d,2d,de,7b,ea,03)
of AES with the original key= (d,7b, 1c,7a, f5,7,bd,cb,a6,4b,7,91,16,9c¢,ea,20) as an
example.

Thus, the 10-round AES encrypted data is

E4(a) = (9f,d6,d4,21,8¢,c8,6a,a8,57,bd,99,4,b6, 1e,6,db)

and the corresponding decrypted data is

Da(Ex(a)) = (7b,17,17,15,2d,4¢,59,17,38,4d,4d,2d , de, b, ea,3) = a.

Accordingly, the tabular representation of the corresponding plaintext state » in BES is

given in Table 4, wherein the first column represents a.

aij a,zj af; u?j a ,116 a?f agf‘ a}]?s
aoo 7b 99 c0 31 76 c8 71 dd
ao 17 Oc 54 a0 6 52 b4 fd
ax 17 Oc 54 a0 f6 52 b4 fd
as 15 Oa 44 bb a8 b6 9 07
ag] 2d 3d 26 78 9c dl 2b 29
ay 4c fb 03 05 11 la 5f e5
a 59 f1 47 be b9 ac a6 e2
a3 17 Oc 54 a0 f6 52 b4 fd
ap 38 37 62 c3 34 67 d2 2e
ap 4d fa 02 04 10 1b Se e4
az 4d fa 02 04 10 1b Se e4
as 2d 3d 26 78 9¢c dil 2b 29
ags de Te 88 da Ge 93 84 8a
apn b 99 c0 31 76 c8 71 dd
an ea 19 Sa f4 56 ad €6 49
ay 03 05 11 la 5f e5 4c b

Table 4: A BES Test Case: Plaintext b

And the tabular representation of the corresponding original key of BES is given in Table

90

kij i kS, i ki K2 kP K
koo 0d 51 bl ec 0d 5t bl ec
k1o 7b 99 c0 31 76 c8 71 dd
k2o Ic 4b ee 09 41 aa b2 €9
k3o 7a 98 cl 30 77 c9 70 dc
ko f5 57 as e7 48 eb 18 Sb
kit 07 15 0a 44 bb ad b6 9
kan bd be bd be bd be bd be
k3 cb 74 cc 61 c6 25 7d 8d
ko a6 e2 59 f1 47 be b9 ac
ki2 4b ee 09 41 aa b2 e9 Ic
ky 07 15 0a 44 bb a8 b6 9
k3 91 80 9a c5 20 6¢ 97 94
ko3 16 of 55 al f7 53 bS fc
ki3 9c dt 2b 29 2d 3d 26 78
ka3 ea 19 Sa 4 56 a4 e6 49
k33 20 6¢ 97 94 91 30 9a c5

Table 5: A BES Test Case: Original Key

After a 10-round encryption of BES, the ciphertext state Eg(b) is given in Table 6,

wherein the first column equals to the AES ciphertext (E4(a)).

Ep(ai)) Ep(a};) Ep(afy) Ep(df)) Ep(aff) Ep(af} Ep(af}) Ep(aj®)
aoo 9f 7d 84 71 d4 cc 88 c9
ao dé 33 a2 Oa cc c7 5b le
axy d4 7a 12 Oa 1b [If ba
30 21 3b ad 31 61 d9 el of
ag) 8e 75 10 22 dc 96 5c 7d
ar c8 63 16 cd dd 61 eb ce
ay 6a df ed 5b de 2b 15 4af
ds) a8 80 ef bd 7 10 2e df
agy 57 a8 66 2b al 51 ce 8e
ap bd 62 a9 O Se d7 be 19
axn 99 Oe 6a 62 22 2e a7 b0
as) 04 00 54 06 ed 79 83 6¢
dao3 b6 a7 f1 74 a3 c9 72 e9
ap le Te b8 od b3 ef c5 of
a3 6f 41 10 a4 76 5d If 05
a3 db ce el 02 75 le 2e 20

Table 6: A BES Test Case: Ciphertext Eg(b)

Then after a 10-round decryption on the ciphertext state Eg(b), the result Dg(Eg(b)) is

given in Table 7, wherein the first column equals to the AES result of Ds(E4(a)).

91

Dp(Ep(a;j)) Ds(En(a})) Dg(Ep(al;)) Du(Ep(al)) Du(En(alf)) Ds(Esn(a}})) Dp(Es(al})) Dp(Ep(ali®))
ag Tb 38 f9 a7 92 Oe 16 90
apg 17 34 2d 18 67 38 9c as
@ 17 39 71 76 le 8a 32 79
asg 15 a3 a3 a2 36 do 3e of
doy 2d Tc 2d 4e 9b 02 Oe 69
ayy 4c aa b8 e6 2b 8d 8b 2d
@z 59 a6 dd 8d 11 08 21 af
as) 17 b9 Oc d8 94 5d 82 54
ag 38 cc 85 23 fe bb Oe 18
an 4d 01 fb 59 ab do aa 69
a3 4d 3c 4 91 7 d4 c7 a0
ay 2d d4 b7 d7 1b 97 1b 49
aos de as fb 34 31 Te 2a 53
apz 7b c7 d7 do6 2f a8 da 32
axy ea 94 cb 85 ad 4a al 32
asy 03 fd b b5 Te 1f e8 57

Table 7: A BES Test Case : Decipher(Encipher(b))

Obviously, the plaintext in Table 4 and the Decipher(Encipher(plaintext)) in Table 7 is

only partially matched, namely that only the first columns of the tables match. This means

that BES can fully replicate the AES actions, not only encryption but also decryption, on

the first bytes of the vector conjugate sets. Therefore, the conclusion that BES fully respects

the encryption and decryption of AES is true.

However, the inverse BES cipher, derived from the original design principles, can not

convert the remaining bytes in the BES encrypted data into clear data. Since the BES is not

intended to be used for encryption, this decryption issue is acceptable. Next, the following

section will further analysis on this decryption issue.

6.2 Testing Analysis

The issue of BES decryption, described in the previous section, results from the fact of

“originally

»]

implementing the InvByteSub and InvMixColumn steps in BES decryption.

originally” refers to the inverse BES cipher derived from the design principles of BES cipher

92

1. InvByteSub Operation

In AES, the InvByteSub operation denoted by S;ll) can be represented by:
Sepla) =g~ (f ! (a) +05) = g(f ' (a) +05)

Since g is self-inverse, f~! is essential to describe the InvByteSub step. Therefore,

for Sgp(a) = f(g(a))+63 and

f=05a;+09-a%+f9-a};+25-a5 + f4-a° +01- a7 + b5-alf +8f - a;}°,

by applying Lagrange interpolation, there exists
f =05-a;;+ fe- a +Tf- a i +5a- a ;78 a16+59 a32+a’b a64+6e a128
which can let @ = Sz (Srn(a))-

BES replicates this transformation on the first bytes of the vector conjugate sets,
so the first byte of the plaintext state will match the corresponding first byte of
Sep(Skp(plaintext)). However, the cases for the remaining bytes of the vector con-
jugate sets are different. In ByteSub step, the 2"¢,3'¢ ... 7' bytes are modified

respectively by:

Ji=(81)7 - ai+(05)> -+ (09)7 -af; + (f9) -af, + (25)7 - alf + (f4) - a2 + (01) - a8} + (b5)* -}

fo=(65)"ai+(8)* -y +(05)* -af,+ (09)* - af, + (f9)* alf + (25)* - a? + (£4)* - B} + (01)* -0}

S5 =00 aj;+ (b5)° - + (8f)°-af; + (05)° - + (09)° - S + (£9)* - a2 + (25)% - aff + (f4)* - 28
fo= ()" a4+ (01)'0 - ad + (65)'° - af, +(8)'0 - b + (05)'® - al¥ + (09)'0 - a2 + (£9)'0 - aff + (25)'6 - 28
f5= 25V i+ ()2 + (0D - aly + (05 - + (81 -l + (05)72 - + (09)2 - a4 + (£9)* - al28
fo= (9% aij+(25)% ad + (f4) b+ (01)% -, + (65)% -l + (81)% - af? +(05)% - aff + (09)%* -}

f7 :(09)128'aij+(f9)128‘a,2j+(25)128 4 +(f4)128 a +(01)128-a}j6+(b5)128 32+(8f)128 54+(05)128 1jzg

But the inverse f| 1, f3'1 v fq I are not simply the following polynomials used in

93

the “original” inverse BES cipher:

SV (6e)? - aiy+ (057 &+ (fe) -afy + (1) - + (5a) - alf + (78)° - a}? + (59) - aff + (db)* -} P
£V # (b)Yt ai+ (6e)* - a4 (05) -+ (fe)* - af + (1)* -alf + (Sa)* - af? + (78)* - a®f + (59)* -alP®

SV # (598 ai;+ (@) -+ (60) -y + (05)F - af + (fe)® - alf + (1) B2+ (5a)® - aff + (78)° -)2

St #(78)'6 g +(59)' af, +(db)'® -y + (6e)'C - af + (05)' - alf + (£)' - 0P + (71)'C - Bt + (50)'C - alP

SV (50) i+ (78)% -+ (59)2 b + (db) - + (6) - alf + (05)7 0P + (fe) - aff + (1) - alP

fg‘ # (7f)64 “aij+ (Sa)64 . afj + (78)64 ~a;-‘j + (59)64 a,sj + (db)(’4 -a}jﬁ + (6e)64 . a,3]2 + (05)64 . aff + (fe)64 ~a}j28

LA) B ay+ (1) + (5a)' i + (78)' 28 by 4+ (59)'28 - alf 1 (db)'?3 0P + (6e)' P 0B} + (05) - o}
Therefore, by using such an inverse cipher, the remaining bytes of the ciphertext state
can not be efficiently decrypted. One possible solution can be found by enlarging
the BES state space to a certain degree, wherein the vector conjugate set of BES is

considered as a component of the enlarged new space, thereby possibly enabling the

BES decryption in the enlarged new space efficient to the whole vector conjugate set.

. InvMixColumn Operation

Similarly, the (Cg())~1, the inverse of C gd in the previous defined inverse BES cipher,

is also improper, where k =0, ---7 and

(©0E)* (082 (0D)? (09)?* 2% (03F 1 1
(C(k>)—1 _ | e omF ooy oo _ | 02 (03 1
5 oDy (097 (0} (0B)* B 1 1 02 (03)*

©08 (D) (09 (0E)* 3% 1 1 (02)%*

94

Here another version of (Cg‘))“1 can be given as follows:

(0E) (0B)
(09) (0F)
(D) (09)

(0B) (0D)

(52)16 (b7)16
(69)16 (52)16
(Od)l6 (69)16

(b7)16 (0d)16

(fd)* (06)%
(40)% (fd)%
(b1)% (4b)®

(06)64 (1)1)64

(0D)
(08)
(0F)

(09)

(0[1)16
(7)1
(52)16

(e())16

(1) 1)64
(06)%
(ra)®

(4b)%*

(09) (542 (45 (51P (417

(oD) (C(l))_l _ (412 (54)F (4572 (517

o |0 (1P @ (42 (5]

(OE) (452 (S1)? (417 (54)?

(aa)* (f6)* (a9 (ec® (02)°
(b1y* (Cg))_l— (2% (f6)* (a9)® (ec)®
(ba)* (ec)® (22 (f6)* (a9)}
(a0)* (@) (ec)® (62)° (f6)°
(89)16 (b4)32 (f8)32 (51)32 (1(.)32
(0a)' ()1 = (102) (82 (51)®
AL U (107 oo (8
(52)'6 (892 (S1)® (1) (b4)*
(4[))64 (17)128 (14)128 (60)128 (62)128
(b1)64 (C(7))_1 _ (66)128 (17)128 (14)128 (eC)IZS
(06)64 ’ B (8(')128 (66)128 (17)128 (14)128
(fd)64 (14)128 (ec)lzs (66)128 (17)128

Using these 8 new matrices, the new InvMixColumn of BES will decrypt the inter-

mediate state modified by MixColumn for one round correctly. However, this step

is byte-position related, which involves reordering the result vector, thereby making

this new InvMixColumn only suitable for one round transformation. So this only

gives an idea to find the more general InvMixColumn.

From the above testing analysis, conclusions can be drawn that although the encrypted

and decrypted data of BES cipher can only be partially matched, BES fully respects the

95

encryption and decryption of AES, which achieves the original design purpose.

96

Chapter 7

Conclusion and Future Work

There are three important issues related to the BES implementation discussed in the
thesis.

First of all, the thesis gives a detailed exploration of the implementation of BES en-
cryption. The key data structure of BES, a 128-byte state vector, is derived from a 16-byte
state vector of AES by employing a vector conjugate mapping, where all conjugates of
a;j € F are the powers of a;; in F. Then efforts have been made to replicate the AES
actions of a typical round function operating on the state vector within the BES. More-
over, by further translating the the MixColumn, ShiftRow and ByteSub steps of BES into
a matrix representation, the round function can be represented in a simple algebraic form:
Roundp(b, (kg);) = Mixg(Rp(Ling(b\~V))) + (kz); , where the MixColumn, ShiftRow, Byte-
Sub steps are represented by a matrix multiplication with a (128 x 128) F-matrix Mixg, R, Linp
respectively.

Because the decryption of BES is not described the BES specification [7], the next issue

97

was to propose the inverse BES cipher with full respect to the design principles of BES, in
order to support the BES implementation. In an effort to explore the inverse round function
of BES, the InvMixColumn, InvShifRow and InvByteSub steps are respectively considered
as being a matrix multiplication with a (128 x 128) F-matrix Mi)cg1 ,Rgl ,Linl;1 in a similar
way. In particular, in order to describe Lin,}l, Lagrange Formula has been implemented
to interpolate the inverse GF(2) linear mapping, where the addition, multiplication and
division of two coefficients in Lagrange Formula are respectively the addition, modular
multiplication and multiplicative inversion over F.

The thesis further analyzes the testing results of the BES implementation based on a
random plaintext selection. The testing data demonstrate that the BES can fully respect the
encryption and decryption of the AES, which achieves the original design goal. However,
the inverse BES cipher, derived from the original design principles, can not convert the
BES encrypted data into a clear data. This decryption issue results from the original idea of
implementing InvByteSub and InvMixColumn steps. Furthermore, possible solutions are

proposed regarding the decryption issue.

The implementation of BES here demonstrates that BES gives an alternative descrip-
tion of AES by using only simple algebraic operations over F. Moreover, the BES can
offer an easier cryptanalysis, which encourages its wide practical use by the cryptanalytic
community, with the purpose of getting additional insights into the AES cryptanalysis.

Therefore, more future work is expected to be done. Firstly, the research work to find the
suitable InvByteSub and InvMixColumn expects a further step toward solving the problem

of BES decryption. Secondly, efforts also need to be made to incorporate the key schedule

98

of BES into the BES implementation in the future.

99

Bibliography

[1] National Bureau of Standards, Washington D.C. The Data Encryption Standard, FIPS-

Pub.46., January 1977. http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.
[2] DES Cracker, 1998. http://www.eff.org/DEScracker/

[3] Specification for the Advanced Encryption Standard (AES). Fed-
eral Information = Processing Standards Publication 197, 2001.

http://csrc.nist.gov/publications/fips/fips 197/fips-197.pdf.

[4] John Daemen and Vincent Rijmen. AES Proposal: Rijndael, September 1999.

http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf.

[5] John Daemen and Vincent Rijmen. Answer to New Observations on Rijn-
dael.Available at http://www.esat.kuleuven.ac.be/ rijmen/rijndael/answer.pdf,11 Au-

gust 2000.

[6] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications.

Cambridge University Press, 1984.

100

[7]

[8]

[10]

[12]

[13]

[14]

[15]

S. Murphy and M. Robshaw. Essential Algebraic Structure within the AES. In

CRYPTO 2002, pages 1C16, 2002.

J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption

Standard. SpringerVerlag, 2002.

N. Ferguson, R. Shroeppel, and D. Whiting. A simple algebraic representation of
Rijndael. In S. Vaudenay and A. Youssef, editors, Proceedings of Selected Areas in

Cryptography, LNCS, pages 103111, Springer-Verlag, 2001.

S. Murphy and M.J.B. Robshaw. New observations on Rijndael. NIST AES website

csrc.nist.gov/encryption/aes, August 2000.

T. Jakobsen and L.R. Knudsen. The interpolation attack on block ciphers. In E. Bi-
ham, editor, Proceedings of Fast Software Encryption 1997, LNCS 1267, pages 2840,

Springer-Verlag, 1997.

S. Murphy and M.J.B. Robshaw. Further comments on the structure of Rijndael. NIST

AES website csrc.nist.gov/encryption/aes, August 2000.

http://csre.nist.gov/cryptotoolkit/aes/

M. Smid and D. Branstad. Contemporary Cryptology, chapter The Data Encryption

Standard: Past and Future. IEEE Press, 1991.

http://www.minrank.org/aes/

101

[16]

(17]

[19]

[20]

S. Lucks. Attacking seven rounds of Rijndael under 192-bit and 256-bit keys.

In Proceedings of Third AES Conference and also via NIST AES website

csre.nist.gov/encryption/aes, April 2000.

H. Gilbert and M. Minier. A collision attack on seven rounds of Rijndael. Third AES

Conference, NIST AES website csrc.nist.gov/encryption/aes, April 2000.

N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined systems

of equations. IACR eprint server www.iacr.org, April 2002.

N. Courtois, L. Goubin, W. Meier, and J. Tacier. Solving underdefined systems of
multivariate quadratic equations. In D. Paillier, editor, Proceedings of Public Key

Cryptography 2002, LNCS 2274, pages 211-227, Springer-Verlag, 2002.

N. Courtois, A. Klimov, J. Patarin, and A. Shamir. E.cient algorithms for solving
overdefined systems of multivariate polynomial equations. In B. Preneel, editor, Pro-

ceedings of Eurocrypt 2000, LNCS 1807, pages 392407, Springer-Verlag, 2000.

102

Appendix A

Source Code

#include <sys/types.h>

#include <sys/timeb.h>
#include <Windows.h.>
#include <stdio.h>

typedef unsigned char bit8;
typedef unsigned int bit32;
FILE* fp;

bit8 shifts[4] = {0,40,80,120};
bit8 invshifts[4] = {0,104,80,56};
int rounds=10;

bit8 A8[256][8];

bit8 A1[256];

int ROOT = 0x11B;

bit8 log[256];

bit8 alog[256];

int prc;

bit32 RC[307;

bit8 ExpandedKey[11]{4][4];

bit8 MixColumnBox[4]{4] = {0x02,0x03,0x01,0x01,

0x01,0x02,0x03,0x01,

103

0x01,0x01,0x02,0x03,
0x03,0x01,0x01,0x02};
bit8 seed[7][4] = {0x45,0x51,0x41,0x54,
0xba,0xb1,0xaa,0xa0,
0xa9,0xec,0xb2,0xf6,
0xb7,0xd,0xe9,0x52,
0xf8,0x51,0x1¢,0xb4,
0x6,0xb1,0x4b,0xfd,
0x14,0xec,0xee,0x17};
bit8 InvMixColumnBox{8][4][4] = {0x0e,0x0b,0x0d,0x09,
0x09,0x0e,0x0b,0x0d,
0x0d,0x09,0x0e,0x0b,
0x0b,0x0d,0x09,0x0¢ };
bit8 SubByteBox[8][8] = {0x5,0x9,0x{9,0x25,0xf4,0x01,0xb3,0x8f };
bit8 InvSubByteBox[8][8] = {0x05,0xfe,0x7f,0x52,0x78,0x59,0xdb,0x6¢} ;
bit8 stab[256]=
{0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x1,0x67,0x2b,0xfe,0xd7,0xab,0x76,
0Oxca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9¢,0xa4,0x72,0xc0,
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x 15,
0x4,0x¢7,0x23,0x¢3,0x18,0x96,0x5,0x9a,0x7,0x 12,0x80,0xe2,0xeb,0x27,0xb2,0x75,0x9,
0x83,0x2¢,0x1a,0x 1b,0x6¢e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,0x53,
0xd1,0x0,0xed,0x20,0xfc,0xb 1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4¢,0x58,0xcf,0xd0,
Oxef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x2,0x7f,0x50,0x3¢,0x9f,0xa8,0x51,
0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x2 1,0x 10,0xff,0xf3,0xd2,0xcd,
0xc,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x 19,0x73,0x60,
0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x 14,0xde,0x5¢,0xb,0xdb,0xe0,
0x32,0x3a,0xa,0x49,0x6,0x24,0x5¢,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,0xe7,
0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6¢,0x56,0xf4,0xea,0x65,0x 7a,0xae,0x8,0xba,
0x78,0x25,0x2e,0x 1¢,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x 1£,0x4b,0xbd,0x8b,0x8a,0x 70,
0x3e,0xb5,0x66,0x48,0x3,0xf6,0xe,0x61,0x35,0x57,0xb9,0x86,0xc1,0x 1d,0x9¢,0xe 1,
0xf8,0x98,0x11,0x09,0xd9,0x8¢,0x94,0x9b,0x 1¢,0x87,0xe9,0xce,0x55,0x28,0xdf,0x8¢,
0xal,0x89,0xd,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0xf,0xb0,0x 54,0xbb,0x 16 };

//function: ShowState

104

//Function ShowState stores the intermediate state which is a table with 16 rows and 8 columns
void ShowState(bit8 state[1281){
intij;
for (i=0;i< 16;i++){

for (j=0;j<8;j++)

fprintf(fp, "%x\t” state[i*8+j]);
fprintf(fp,”\n");
}
fprintf(fp,”\n");
}
/ffunction: mul is the multiplication on polynomials in GF(2)
bit8 mul(bit8 a, bit8 b){
if (a && b)
return alog[(log[a]+log[b])%2551;

return O
}
/ffunction: BuildLogTables is to initialize the logarithm table and vlog table
void BuildLogTables(){
int ij;
alogf0] =1;
for (i = 1;1 < 256; i++){

j = (alog[i-1] << 1) " alog[i-11;
if ((j & 0x100) !=0) j "= ROOT;

alogli] =3j;
}
for (i=1; 1< 255; i++) log[alog[i]] = i;
}
//function: BuildBoxs is to initialize some vectors for BES calculation
void BuildBoxs(}{
inti,,t;
//the vector A8 are the conjugate vector and the vector A1 is the inverse vector
for (i=0;i<256;i++){

A8[i][0] =1;

105

for (j=1;j<8:;j++){
AS8[i][j} = mul(A8[i](j-1],A8[i1(-11);
for (1=0;t<256;t++)
if (mul(i,t) == 1){
Al =t

break;

}
}

/finitialize the InvMixColumnBox
for (i =0;i<7;i++)
for (j=0;j<4;j++){
InvMixColumnBox[i+1]1{j][0] = seed[i][3-j];
InvMixColumnBox[i+1][j1{1] = seed[i][j!=024-j:j1;
InvMixColumnBox[i+1][j]{2] = seed[i][j!=27abs(j-1):3];
InvMixColumnBox[i+1][j1[3] = seed{il[j!=372-j:3];
}
//initialize the constant for key expansion
RC[0]=0;RC[1]=1;i=1;
for (t=2;t < 30;)
RC[t++] = (bit8)(1 = mul(2, 1));
}
/ffunction: BuildSubByteBox is to initialize the vectors for SubByte and InvSubByte
void BuildSubByteBox(){
int i,j;
for (i=1;i<8;i++)
for (j= 0;j<8;j++){
/fimplement the left shift for the vector
SubByteBox[i][j] = A8[SubByteBox[0][(j-i)<07?j-1+8:j-i]1(j];

InvSubByteBox[i][j] = A8[InvSubByteBox[01[(j-i)<07i-j:8-j+i]1[j];

}

/ffunction: Expansion is to extend the input to its vector conjugate

106

void Expansion(bit8 a[16],bit8 b[128]){
for (inti=0;1i < 16; i++)
for (int j=0; j<8; j++)
b[i*8+j] = A8[ali]I[j;
}
/ffunction: SubByte is ByteSub in the BES cipher
void SubByte(bit8 b[128]){
bit8 temp, bb[128];
int i,j,t,x;
for (i=0;i< 16;i++)
for (j=0;j<8;j++){
X = (8-))%8;
in temp = mul(SubByteBox[j1[x],A1[b[i*8]]);
in for (t=1;t<8;t++)
temp "= mul(SubByteBox[j1[(x+)%8],A 1[A8[b[i*8]1[t]]);
//do something to the different of BES and AES
bb[i*8+j]=temp”A8[0x63](j1;
}
for (1 = 0; i< 128;1++)
b[i] = bb[il;
}
/ffunction: InvSubByte is the InvByteSub in the inverse BES cipher
void InvSubByte(bit8 b[128]){
bit8 temp, bb[128];
int i,j,t,x;
for (i=0;i< 16;i++)
for (j=0;j<8;j++){
X = (8-))%8;
temp = mul(InvSubByteBox[j][x],b[i*8]);
for (t=1;t<8;t++)
temp "= mul(InvSubByteBox[j}[(x+t)%8],A8[b[i*8]1{t]);
//do something to the different of BES and AES

bb[i*8+jl=A1[temp”A8[0x05](j1];

107

}
for (i=0;i<128:i++)
b{i] = bb(il;
}
/ffunction: ShiftRows combines ShiftRow and InvShiftRow of BES
/fdirect: 0—means encryption and 1-—means decryption
void ShiftRows(bit8 state[128],boo! direct){
bit8 temp[128];
int 1,j,t,u; u=0;
if ('direct)
for (i=0; i<4; i++)
for (j=0; j<4; j++)
for(t=0; t<8; t++)
temp[u++] = state{i*32+shifts{j]+t< 128?1*32+shifts[j]+t:i*32+shifts[j]+t-128];
else
for (i=0; i<4; i++)
for (j=0; j<4; j++)
for(t=0; t<8; t++)
temp{u++]=state[i*32+invshifts[j]+t< 12871*32+invshifts[j]+t:i*32+invshifts[j]+t-128];
for (i=0;1< 128;i++)
state[i] = temp[i];
}
/ffunction: MixColumns combines MixColumn and InvMixColumn in BES
//direct: 0—means encryption and 1-—means decryption
void MixColumns(bit8 state[128],bool direct){
bit8 ternp[128];
int i,j,t;
if (!direct)
for (i=0;i<4;i++)
for (j=0;j<8;j++)
for (t=0;t<4;t++)
//do something to adjust the position

temp[i*32+j+t*8)= mul(A8[MixColumnBox[t][0]1[j],A8[state[i*32+j]1[i])

108

“mul(A8[MixColumnBox[t]{11][j],A8[state[i*32+j+8]1(j])
“mul(A8[MixColumnBox[t][2]][j],A8[state[i*32+j+16]1]1[j])
"mul(A8[MixColumnBox[t][3]](j],A8[state[i*32+j+2411[1);
else
for (i=0;i<4;i++)
for (j=0;j<8;j++)
for (t=0;t<4;t++)
//do something to adjust the position
temp[i*32+j+t*8]= mul(A8[InvMixColumnBox[j][t][01][j],A8[state[i1*32+j1](;])
“mul(A8[InvMixColumnBox [j1[t][111{j1,A8[state[i*32+j+811[j1)
“mul(A8[InvMixColumnBox[j1[t}{2]1(j],A8[state[i1*32+j+1611[])
“mul(A8{InvMixColumnBox[j1[t]1[31}[j], A8[state[i*32+j+24]][j1);
for (i=0;i< 128;1++)
state[i] = templi];
}
/ffunction: KeyExpansion is to expand the original cipher key
void KeyExpansion(bit8 k[16]){
int i,j,t,prc = 1;
bit8 tk[4][4];
for (j=0;j<4;j++)
for (i=0;i<4;i++)
tk[i](j] = k[i*4+j];
t=0;
for (j=0;(j < 4)&&(t < (rounds+1)*4);j++,1++)
for (i=0;i<4;i++)
ExpandedKey[t/4][i][t%4] = tk[i]{j];
while (t<(rounds +1)*4){
for (1 =0;i<4;i++)
tk{i]{0] "= stab[tk[(i+1)%4](4-11];
tk[0][0] "= RC[prc];
for(j=1;j<4;j++)
for (i=0;i<4;i++) tk[il[j] "= tk[il[-1];

for (j=0;(j<4)&& (t<(rounds+1)*4);j++,t++)

109

for (i = O;i<4;i++)
ExpandedKey[t/4][i]{t%4] = tk[i][j];
}
}

/ffunction: AddRoundKey is the AddRoundKey in BES

void AddRoundKey(bit8 state[128],int index){
int i,j,t;
t=0;
bit8 temp[16],tk[128};
for (i=0;i<4;i++)

for (j=0;j<4:j++)

temp[t++] = ExpandedKey[index][i][j1;

//do vector conjugate on the subkey of each round
Expansion(temp,tk);
fprintf(fp,°the subkey of %d round\n”,index);
ShowState(tk);
for (i = 0;i< 128;i++)

state[i] "= tk[i];
}
/ffunction: Encrypt is the BES encryption process
int Encrypt(bit8 a[128]){
intr;
AddRoundKey(a,0);

for (r = 1; r<rounds; r++){

SubByte(a);
ShiftRows(a,0);
MixColumns(a,0);
AddRoundKey(a,r);
}
SubByte(a);
ShiftRows(a,0);

AddRoundKey(a,rounds);

retum 0;

110

}

/ffunction: Decrypt is the BES decryption process
int Decrypt(bit8 a[128]){
intr,
AddRoundKey(a,rounds);
InvSubByte(a);
ShiftRows(a,1);
for (r = rounds-1; r>0; r-){
AddRoundKey(a,r);
MixColumns(a,1);
InvSubByte(a);
lin ShiftRows(a, 1);
}
AddRoundKey(a,0);
return 0;
}
/ffunction: coefficient is to calculate the coefficients
/fof Lagrange interpolating polynomial with respect to F

void coefficient(int co[256],int k){

int i)t

co[0]=0;

co[l]=1;

col2]=1;

if (k == 0){
col0] = 1;
co[l]l=1;
co[2]=0;

b

if (k == 1){
col0]=0;
co[l}=1;
cof2] =0,

I

111

for (i = 2;1<256 ;i++){
if i==k)
continue;
t=255;
while(coft] == 0)
=
for (j = t+1; j>0;-){
if (j >255) continue;
co[j] = colj-1];
}
cof0]=0;
for (j = 0; j<t+13j++)
co[j] "= mul(co[j+11,i);
}
}

/ffunction: lagrange is to implement the Lagrange formula with coefficients in F
void lagrange(bit8 result[256]){
inti,j,tx;
int co[256};
int w256[256};
for (1 = 0;1<256;i++)
w256[i} = -1;
for (i=0;i<256;i++){
for (j=0;j<256;++)
co[j]1=0;
coefficient(co,i);
t=1;
for (j =0; j<256;j++){
ifG==1
continue;
x=j";

t = mul(t,x);

112

t = mul(A1{t],result[i]);
for (j=0;j<256;j++)

co[j] = mul(co[jl.t);
for (j=0;j<256;j++)

if (W256[j] == -1)

w256[j] = co[jI;

else
w256(j] "= co[j];
}
}
int main(int argc, char* argv[])
{

bit8 a[16]={123,23,23,21,45,76,89,23,56,77,77,45,222,123,234,3};
bit8 ea[128];

bit8 key[16]={13,123,28,122,245,7,189,203,166,75,7,145,22,156,234,32};
fp = fopen(”result.txt”, "w”);

BuildLogTables();

BuildBoxs();

BuildSubByteBox();

Expansion(a,ea);

fprintf(fp,”the expanded plaintext\n”);

ShowState(ea);

KeyExpansion(key);

Encrypt(ea);

fprintf(fp,’the encrypted text\n”);

ShowState(ea);

Decrypt(ea);

fprintf(fp,’the decrypted text\n™);

ShowState(ea);

fclose(fp);

return 0;

}

113

