NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Supporting Lineage Tracing in Mediator-Based

Information Integration Systems

Ali Taghizadeh-Azari

A Thesis in the

Department of Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montreal, Quebec, Canada
March 2005

© Ali Taghizadeh-Azari, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04452-7
Our file Notre référence
ISBN: 0-494-04452-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Supporting Lineage Tracing in Mediator-Based Information Integration

Systems

Ali Taghizadeh-Azari

Information integration provides users with a uniform interface to multiple (possibly
heterogeneous) data sources. Two main approaches to information integration are data
warehousing and mediator-based. The problem of providing explanation for a query
answer is referred to as lineage tracing. This problem has been studied extensively in the
context of data warehouse systems, however, for mediator-based systems, this is
identified as a research problem [HC*03]. In such a system, the mediator does not store
data. This means for query processing as well as for tracing, the mediator has to
"communicate" with the data sources. While this communication could be expensive, the
real issue is that after a query is being processed, lineage tracing could be more difficult
or even impossible, if the structure of some contributing sources changes, or if the
content of such sources change or a source become unavailable. This means, to support
lineage tracing, we need to collect “enough” data and metadata information during query
processing. In this work, we study this problem, and introduce data structures and
algorithms to support lineage tracing in two modes: batch and interactive. We have
successfully developed a prototype, called ELIT, for Exploration and Llneage Tracing.
We also study query optimization in the content of ELIT and implemented some basic
optimization techniques. While more sophisticated techniques are required in this
context, we believe the ideas proposed in this work lend themselves to useful analysis

and tracing tools in mediator-based systems.

il

Acknowledgment

I am deeply grateful to my supervisor, Professor Nematollaah Shiri, for his
encouragement, support, valuable advice, generous attention, constant help, and
proofreading many drafts of the thesis throughout my studies at Concordia
University. He patiently guided me with his profound knowledge and
encouraged me in tackling various difficult issues. I am greatly honored to
study under his supervision.

This research was supported in part by Natural Sciences and Engineering
Research Council (NSERC) of Canada and Concordia University, ENCS
Faculty Research Support.

My thanks also go to Halina Monkiewicz and Veronica Jacobo-Gutierrez for
their support.

I am extremely grateful to my friend Ali Kiani, who helped me a lot in different
stages of the development of this work.

My special thanks are also due to the faculties and staffs in the Computer
Science Department at Concordia University, who provided me a good
opportunity to learn and progress.

Finally, I would like to thank my parents and my wife for their support and

encouragement in pursing my studies.

iv

Table of Content

L INEPOAUCHION.......c.oviiiiicct ettt st sae e s sae e e 1
1.1 Motivating EXamPIeccccercviriiririiieiiieieenienesereesiassseeesseecnesssessassenssseessesnesesens 3
1.2 Contributions of the Thesis......c.cccvererieiieiienineneniecrreeeeere sttt 7
1.3 Thesis OULINEcciviriiiericiiiiietcree et san et 9

2. Background and Related WorkK................c.oooiiiiiiiiiinieeeeteeeeeeseeeceen 11
2.1 Data WarehOUSEccouivuiieieriiciincrcre ettt 12
2.2 Mediator Based SYSIEIMS........cccccvererrrieienieriine ettt reresre e e 16
2.3 Related WOTK ..c..ooueiuiiiiiineiieeitetetere sttt sttt 18

2.3.1 Lineage TTaCINE ...cceevirieriereriinieriiicncereeree et steee st et ere e s enenne s 19

3. Metadata Collection....................ccoooiviiiiiiininiiiiecce et 25
3.1 Collecting Schema Informationcoceeueouieiniienienninerenntete e 25
3.2 Collecting Schema Information Algorithmccoconiiinininnniinnnencneee 30

4. Query Formulation and Processingccocoeeivviiiiinicinonicncienieceenceeeeneeenen 32
4.1 Visual Query Building........: ... 33
4.2 QUETY TYPE .ttt ettt et ettt n et e 34
4.3 QUETY Parsingcccoeiiriiiiiiiniiiiiiiii et s 36
4.4 Query COMPONENLScceeriiiiririierieieeie sttt et e eree st e teesaeesreesaeeesnesesneseeeenns 37

4.4.1 Collecting Query COMPONENLS.........ccrerrrreirrirerrercreereessersseessseeesaeeesesssesnens 41
4.5 Query Evaluationcooiiiiiieiinicciecieccre et 42
4.6 1INEAZE TTACITZ .euvverereriieeieeeteeteeitte ettt et st s et e me e st st e s bt e e s ssbe e saeeensee e 43

4.6.1 Lineage Tracing AlOrithm.........cccccuvviririinvenenicnecnitienennns 44

5. ELIT: A System Prototype............cccccccevinueinirireeeninnicreeeneesesteesseesseseesessenenees 46
5.1 SYSEM DESIZN «..voveeviieiiiieieeiiicir ettt sttt sr e e e 46
5.2 System IHNUSIIAtION ...c.coviiiiiiiiieiiecie ettt sre st e e e s e sasessbasvaesnans 48
5.3 Architecture Of ELITccccoiiiiiiiiiieeiccer ettt sne s 53
5.4 Performance Evaluation............cccovvvverieineniiinineniesesenienseeeestet e see s evs 55

6. Lineage Tracing in Distributed Database Systems................ccccocoeverviviiiinerieienens 60
6.1 Distributed Database SYSEMSccoccveevverierieriienienienesseeeeeeesee e eressreseeeneesns 60
6.2 Lineage Tracing and Distributed Database SYStEMSccovvevererererrenseeneniennens 65

7. Conclusions and Future Work...............ccccoooviiiiice e, 68
7.1 CONCIUSIONS.......erviiieriiieetenieiire sttt sttt s e sbes et st st s esbesbe e baebasbe st enessensesanessas 68
T2 FUUIE WOTK ..ottt ettt ettt sb et b et et sae s saess 69

REFEIEINCES ...ttt sttt sb e sa e nes 70

APPENAICES........coiniiiiitiieieieicereetese ettt ettt st b et nsets s neesaeseaes 73
Appendix A: System REQUITEMENLS.......coocvioieerininiiiiiernreneneetereeeeeee e esvenrenieenees 74
Appendix B: User Interface SpecifiCationsc..ccceceevierneeienieeeeniincninieseeeneenes 75
Appendix C: List 0f Tables.......cccooverierieriiiinireeieiinenenerteeee et eenes 76
Appendix E: List Of VIEWS ...coouiiiriiiiiciiniirccc ettt cresn e 81
Appendix F: List of User Interfaces in ELIT ..ot 84

F-1: Table Definitioncccccoereriniieeenieneeseett et ee e st e e s sneesneens 84
F-2: XML Source SeleCtioncccoceviiiiiiiiiiieiiiiniiintciienee st seceerec e 85
F-3: Query Component Creation........c..ceeeerieenernermeneereinienteseeseeeseeseeecressereeenes 87
F-4: Lineage Tracing PTOCESScoccevviiiiiiniiiiiiniiiiniiiinncniinecce st sseesnens 90

vi

List of Figures

Figure 1-1: SALES ADIE......coiiiiiirieieriineece ettt sn ettt ste st staesae s e s seesbesanessnen 4
Figure 1-2: Fragments of the XML schema XSD for ITEMc.cccceceveneninincnnenene. 5
Figure 2-1: Star SChemac..coci it 14
Figure 2-2: Data War€houSe SYStEIMc.ecuiiueiriieiieeieeecteieiett et ereeve s esaesee e e eeeieas 15
Figure 2-3: Mediator-based SYSIEIMccocuvuireierenieieineierireniecisieisas v eensene s 18
Figure 2-4: Lineage tracing result for SALES and ITEM data SOUICEScccverreereennene 20
Figure 4-1: Steps in lineage tracing — IMDS creation and query parsing..........c.cceveeuee. 37
Figure 4-2: Transformation functions execution planc.ccccevveeieienenienriniieneneneens 38
Figure 4-3: Preparation steps for lineage tracing.........coccceveievieneciennienieneneseneeeeneens 43
Figure 5-1: Storing query information in internal metadata tables..........cc..cccoecenennenene. 47
Figure 5-2: User query GUIL.......cc.ooioiiiriniiiiietceceresttesret ettt 48
Figure 5-3: DRT after inserting metadata and atomic data values..........c.ccoceeeveeueencennenn 49
Figure 5-4: QUETY TESUIL....cccuiiiiiiiiieeee ettt 50
Figure 5-5: DRT after applying One-Side-Conditionccevevvveceinininnncnricrenieeeneenn 51
Figure 5-6: DRT after applying Two-Side-Condition..........c.cceceeeevererereeceencnnneenenn. 52
Figure 5-7: ELIT processing mMoOdelcccccvvererierienimrinienenrerienecieenenesieseeseesesesvenees 54
Figure 5-8: Lineage tracing evaluation resull..........ccoocveeciiniiininiciiinniciniene e 57
Figure 5-9: Lineage tracing evaluation result — non-optimized..........ccccceovevieneceerecnenne. 58
Figure 5-10: Lineage tracing evaluation result — partial DRT, optimized 58
Figure 5-11: Lineage tracing evaluation result — optimized.........ccoccovencrirniinecenicnnens 59

vii

Figure 6-1: Distributed database system archit€CtUure........c..ccveeveriniviiiiieniinneneieeinnens 62

Figure A-1: Entity relationship diagramcccocceiviniiiiiiniiinniniceccececes 80
Figure A-2: Table definition GUI.........ccciiiiiiiiiiieieeeiceceeceeeceer e 85
Figure A-3: XML source selection GUI.........c.ccoeviiiniiininiinienninienncnenens 86
Figure A-4: XML structure View GUI..........ccoooiiiiiiiiniinieicee et 86
Figure A-5: View definition GUIcccoiiiiiiniiiiiniicienieniteeiieseesenesieenessessesssesseens 87
Figure A-6: Table selection GUIc.cooviiiiiiiniiiiincniictcrecere e 88
Figure A-7: Column selection GUIL.......ccccooiiiiiiiiiiiiiecttet e 88
Figure A-8: Where condition GUI........cccccevviiviiiniiinniiecteeeie ettt 89
Figure A-9: Where condition, column selection GUL...........ccccceeviivievieeneciecneencnnennn 89
Figure A-10: Final select statement GUI.........ccccccvniniiniininciiiireertiere e 90
Figure A-11: Lineage tracing GUIL........c.ccccooiiiiiiiiiniiiieeteneeeeeeee e 91

viii

List of Tables

Table 1: List of forms and related data blocks and

Table 2: List of internal tableseveevveveeneernennnan.

Table 3: List of internal views and their definition

iX

their tablesevvvevveeeeerieieeeeiiieeeeeees

...

Chapter 1

Introduction

Information integration systems provide users with a uniform interface to a multitude of
(possibly heterogeneous) data sources [GMUW‘01]. As in database systems, a user in an
information integration system poses his/her query to the system and system responds by
returning the result back to the user. In order to formulate the query, all the user needs to

know is the structures of the data, i.e., the global schema or a view.

It is the responsibility of the underlying system to check the query for its syntax and the
semantics. If all is in order, then the system dispatches the query to the appropriate
sources to be processed. The results from sources are then combined and returned to the
user as the answer to the query. Data warehouse and mediator-based systems are among
the main approaches for information integration. We will review these two approaches

and study their support for lineage tracing, chapter 2.

In many applications, it is desired to know which atomic data contributed to the query
result, for instance for data analysis which traces data back to the original data. This is
known as the lineage tracing problem [CW‘01]. A question, which may arise at this
point, is: “what do we need to do in order to support lineage tracing?* To address this, we

need the following capabilities:

a) To have all the information about the schema and locations of the data
sources involved. This is required in particular to allow the user to interact

with the system to select the desired data items to be traced and displayed.

b) To have the query itself to define the transformation functions. These

functions are introduced to the system, according to query specifications.
For each condition in the query, a transformation function is used to

transfer an input data set to the same or different output data set.

¢) To deal with multiple data sources because of the nature of the mediator-

based system environment.

Lineage tracing has been studied extensively in the context of data warehouse systems
[CW*01, FP02]. A data warehouse is a centralized database system, defined from data
sources through operations of extraction, transformation, load, and refresh. In a mediator-
based information integration system, on the other hand, we may submit a query to the
system through the mediator and receive the result; no data is explicitly stored in the

mediator and hence the actual data sources will be involved in answering the query.

In such a system, accessing atomic data contributing to the query answer is time
consuming and sometimes impossible. For example, if it takes T; to retrieve the data
from data sources and combine them, and it takes T, for the user to request for lineage
tracing and for the system to apply the linage tracing functions, then, the total time T =T,
+ T, must be considered as a gap between the first attempt to access the data from
sources and the second attempt to provide linage tracing. Considering this gap, a

problem, which may arise in case of some data update in the contributing source(s), after

T, and before T,, lineage-tracing will return the atomic data which have already been
changed in the original data sources. Data caching would be a solution for this problem,

but could be too expensive if the sources involved are huge.

In both data warehouse and mediator-based approaches, we need to identify the atomic
data contributed to the answer. However, due to the dynamic nature of query answering
in a mediator-based approach, there are some new issues here, which we may face in
query processing and lineage tracing as identified as a challenge research [HC*03]. In this
case, we need to study the problem and the various issues involved and develop new

techniques for tracing the data origins.

In this thesis, we attempt to study lineage tracing in mediator-based information
integration systems and develop a framework to address these issues. Our work takes a
fine-grained approach, which means we consider lineage tracing at an instance level.
Other approach is coarse-grained, which produces the lineage tracing answer in a schema
level. Having instance level requires having the schema level itself. This is why in a
mediator-based system some kind of schema mapping to the original data sources should

be applied to obtain the schema information.

1.1 Motivating Example

We consider a simple sales application example to illustrate the problem and our solution
approach. In this example, we have a heterogeneous mediator-based information

integration system consisting of two different types of data sources.

The first data source is a relational database, which contains SALES table with the
attributes StoreID, ItemID, NumSold, and Price as shown in Figure 1-1. The
second data source is an XML data file, ITEM, with the attributes ItemID,

ItemName, and Category as shown in Figure 1-2 (XSD) and 1.3 (data file).

StorelD ItemID NumSold Price
2 1 800 5
2 2 2000 2
2 4 800 35
3 3 1500 45
3 4 600 60
4 3 2100 50
4 4 1200 70
4 5 200 30
1 1 1000 4
1 2 3000 1

Figure 1-1: SALES table

We assume the XML data file does not have any deep nesting structure, in order to
simplify our XML parser. Arbitrary XML and XSD files could be supported at an added

cost of a more complex parser. This is not pursued in this work.

We will illustrate the problem of lineage tracing in this example of lineage tracing
environment and show how explanation could be provided through a collection of lineage

tracing functions.

<xs:complexType name = "ITEM">

<xs:attribute name="ItemID" type="ID" use= "required"/>
<xs:attribute name="ItemName" type="string"
use="required"/>

<xs:attribute name="Category" type="string"
use="required"/>

</xs:complexType>

Figure 1-2: Fragments of the XML schema XSD for ITEM

<ITEM ItemID="1" ItemName="binder"
Category="stationary"</Item>

<ITEM ItemID ="2" ItemName="pencil"
Category="stationary"</Item>

<ITEM ItemID ="3" ItemName="shirt"
Category="clothing"</Item>

<ITEM ItemID ="4" ItemName="pants"
Category="clothing"</Item>

<ITEM ItemID ="5" ItemName="pot"

Category="kitchenware"</Item>

Figure 1-3: Fragments of the XML data files for ITEM

We store in a table pool, all the metadata information as well as the data used in
answering a query. The data pool is essentially a table to which we refer as Data
Reference Table (DRT, for short). Figure 1-4 exhibits an instance of DRT, assuming we

have a query on SALES and ITEMS.

TableName RecordNumber ColumnName Value
SALES 1 StoreID 2

SALES 1 ItemID 1

SALES 1 NumSold 800

SALES 1 Price 5

SALES 2 StoreID 2

SALES 2 ItemID 21

SALES 2 NumSold 2000

SALES 2 Price 2

ITEM 1 ItemID 1

ITEM 1 ItemName Binder
ITEM 1 Category Stationary
ITEM 2 ItemID 21

ITEM 2 ItemName Pencil
ITEM 2 Category Stationary

Figure 1-4: Data Reference Table (DRT)

As shown in the figure, there is a tuple for each individual data value in the data sources
involved in processing the query. For example, consider the first tuple from SALES table

in Figure 1-1.

For each component in the table, there is a unique tuple in the DRT. Here we have
StoreID as a column name having value 2 at row 1. We get a unique tuple in DRT for
each of the four components 2, 1, 800, and 5 in tuple 1 in SALES table. This applies to all

the tables, SALES and ITEM involved in answering this query.

As it can be realized, DRT is a large table needed to support lineage tracing in our
solution by capturing the data items involved in answering a query. Managing DRT
efficiently to support lineage tracing functions, two modes of batch and interactive, is a

main goal in this work.

We have developed a system prototype that implements the proposed algorithms, as a
tool for tracing in mediator-based information integration system. Our ideas together with

the technical contribution in this research are published in ISSADS 2005 [ST05].

1.2 Contributions of the Thesis

Before we highlight our contributions in this work, let us recall our motivation and goals
in lineage tracing in mediator-based approach of information integration. Lineage tracing
has been studied extensively in the context of data warehouse systems [CW*‘01]. In such a
system, data is stored as a central database, after being selected, extracted, cleaned, and
transformed from various existing information sources. Because of the nature of a data
warehouse being a centralized database, answering queries is similar to answering queries
in databases, as all the data and metadata information is available to the query processor

component of the database management system.

In a mediator-based system, on the other hand, there is no data stored in the mediator, and
hence the data has to be retrieved from the sources during processing of the query. This
implies more work and new challenges in query processing in mediator-based systems

than data warehouse systems.

There is another requirement here. In addition, the same data that contributed to a query
answer must be used for lineage tracing. This requirement is more challenging to satisfy
in a mediator-based framework since a data source may no longer be available after query
result is returned and a user requests the system for an explanation, or in case of an
update of the data in the source or changes in the schema, lineage tracing may not even
be possible unless the data or schema used to answer the query is somehow
captured/cached during processing of the query. This of course should be done with care;

otherwise lineage tracing may not be possible.

For instance, a solution might require storing atomic data at the mediator, which is
against the philosophy of the mediator approach. Query processing in a mediator-based
approach in general requires dealing with several data sources, and hence in order to
support lineage tracing, we may need to access data from different sources. All of above
could be challenging subjects, which motivated us in the development of the concepts

and algorithms in this research, listed as follows:

a) We study lineage tracing problem in the context of mediator-based

information integration systems and identify issues to be resolved.

b) We propose a solution technique by extending the corresponding solution
in the data warehouse approach, which takes into account the distributed

nature of the environment and processes in a mediator-based approach.

As a solution idea, we propose to capture the data used in answering a
query in a data pool, called DRT, and to collect metadata information in
IMDS. We also propose algorithms to manipulate these data structures to

support lineage tracing in batch mode as well as interactive mode.

¢) We have successfully developed a prototype, ELIT, to serve as viability

of the ideas and techniques proposed in this research.

d) We studies query optimization in the context of ELIT and reported

experimental results.

e) We also studied lineage tracing in distributed database systems. Our
preliminary result show there are new challenges in this direction, as
many query processing and optimization components in a distributed
database management system will be affected for supporting lineage

tracing.

1.3 Thesis Outline

The rest of this report is organized as follows. In chapter 2 we provide a background and
review of related works on lineage tracing. This includes a description of information

integration systems and its approaches: data warehouse and mediator-based.

In chapter 3, we illustrate the first step of our solution approach, called Collecting

Schema Information, to support lineage tracing.

Chapter 4 includes our main contribution in this research. We first introduce the second
step, called Query Formulation and Processing. We will also introduce the functions and

processes required to extract query components to support lineage tracing.

In chapter 5, we introduce our system prototype, ELIT (Explanation and LIneage
Tracing in information integration), and illustrate its features and capabilities through an

example application. The tracing algorithms are also illustrated in this chapter.

In chapter 6 we study the lineage tracing in distributed database systems. Unlike what we
expect, we will argue that this problem is more difficult to deal with as it requires

changes in almost every aspect of query processing and query optimization.

The last part, chapter 7, includes concluding remarks and possible future directions.

10

Chapter 2

Background and Related Work

Data and data sources are growing rapidly. While they could share a common subject
they model, sources could be heterogeneous in many ways, including their types, values,
semantics, presentations, etc. In many real life applications, users might need to access
several data sources to get answers to their queries. Information integration systems
provide users with an interface to view and access different data sources as a unified,
single data source. The data sources in an information integration system, in general, are
heterogeneous, which are designed, developed, and maintained independently. The
system allows users to interact with different data sources without requiring them to

know the internal structures and the physical design of the sources.

Large companies and enterprises usually have several data sources that support their day-
to-day activities and business processes, in addition to the web technology. Answering
queries over such data sources is both desired and complex. Research is underway

worldwide to address theoretical and practical issues in this regard.

A number of approaches have been proposed to provide this integrated model including
federated databases, data warchouse, mediator-based, and peer-to-peer systems

[GMUW*01].

In a federated database, there is a group of databases “agreed” to cooperate in answering

queries posed from any user of the federated system. Each database in this system has a

11

“connection” to other databases. There is no global schema accessible in a federated
system. In other words, in case these are n databases available in the system, there would
be n x (n-1) interfaces, essentially codes, to support queries between different sources. It
is straightforward to build such a system especially when the number of databases is not

large.

In addition to scalability concern, another problem here is the amount of work involved
in case a new database is added or removed from the system, for the interface to continue

to be applicable and to support the querying over the available sources [GMUW‘01].

As two main approaches to information integration, in what follows we review the basis
of data warehouse and mediator-based systems study the problem of lineage tracing

problem in each of these two contents.

2.1 Data Warehouse

A data warehouse is a collection of data stored in a centralized database system
containing (possibly heterogeneous) data sources. This collection is integrated and
subject oriented, according to William Inmon, considered as the father of modern data
warechouse [1°96]. Data from data sources are selected, extracted, transformed, and
combined into a global database schema accessible by the users. This global schema
looks like an ordinary database. Queries over the warehouse are exactly the same as
queries in single conventional databases; however, user is not allowed to update the data
warehouse, since the original purpose here has been the ability for query analysis and

processing over multiple sources.

12

To maintain a data warehouse, there are a number of approaches, described as follows:

a) Periodic reconstruction: this is the most common way to update the
warehouse. Data warehouse is down during the update period and no
query is allowed to submit. Availability, long time updating process, and
out of date data are disadvantages of this approach.

b) Incremental Update: this is the same as the previous approach, but instead
of having a fixed period of time to update, the required update time
depends on the changes, which have been made to the underlying sources.
Short updating time, which is important for large data warehouse is the
advantage of this approach compared to the first approach. The
disadvantage here is that the process of calculating changes is complex.

¢) Immediate update: data warehouse is updated immediately after any
changes occurred in the underlying data sources. This requires
programming skills to implement practical communication and the

required processing [GMUW ‘01].

Data warehouse systems provide system managers and decision makers a uniform access
to information quickly to answer queries. User in a data warehouse system has the query
result from the integrated, single data source instead of accessing data from multiple
heterogeneous data sources. Having such a unified data storage helps to have query result
in an easy and more efficient way at the cost of building and maintaining the data

warehouse.

13

For the design of a data warehouse, there are alternative schemas, such as star schema
and snowflakes. In a star schema, there is a fact table, e.g., SALES at the center and a
number of dimensions related to the fact, e.g., ITEMS. Figure 2-1 shows a star schema.

The snowflake schema is the same as the star schema but with the dimensions normalized

in a tree format.

Dimension Fact Dimension

Figure 2-1: Star schema

Figure 2-2 illustrates a typical data warehouse system. As shown in the figure, a user can
access the data in the warehouse, which is explicitly stored in the relations and many
views. Typically, views in the data warehouse are summarized data, often required to
retrieve from the sources. For this, there are three procedures, described as follows:

a) Extract: this is a predefined procedure that extracts the data from data
sources. As this is a predefined, all necessary data has to be identified
when designing the system.

b) Transform: This transforms the data from source to the required format
in the warehouse

c¢) Load: this loads the data from sources to the appropriate tables in the data

warehouse.

14

Data Warehouse

Transforming - Extracting - Loading

Legacy

File System

System

1

Figure 2-2: Data warehouse system

In a data warehouse, data is updated on some regular basis, which is application
dependent. Bringing the data in the warehouse and make it up to date, has been a main
issue in data warehouse maintenance, and the solution proposed as similar to view
maintenance problem, in databases studied extensively [GMUW‘01]. Next, we review

mediator-based approach for information integration and study its costs and benefits.

15

2.2 Mediator Based Systems

A mediator-based system is similar to a warehouse system in the way data is collected
data comes from (heterogeneous) data sources, but data is not stored in unified data
storage. This can be implemented using a virtual view or collection of views, which
interact with the original data sources [GMUW‘01].

The information may be different for their types, subjects, models and so on. The system
designer provides a global schema based on which user can pose a query. It is the
mediator’s responsibility to dispatch the query to relevant data sources, process each sub
query, combine answers from the sources, and then return the query result back to the
user [HIST03].

Query processing here is different from processing the queries in relational databases.
Mediator has access to data sources through wrappers, each of which provide the
mediator a view over the available data in the corresponding source. Query processing
includes query rewriting and evaluation. The first step for query processing and
optimization is done in the mediator and the second step in the wrapper. Unlike the data
warehouse, mediators do not hold data. It may have information on the views over the
sources provided by the wrapper.

There are many problems in data warehouse systems solved by the mediator-based
systems. Data in a warehouse may not be the actual data when accessed because there
might be some update transactions running in specific intervals. So at each time, data
could be different from what exists in the origin data source. Another problem is to

maintain the warehouse. Adding a new data source in a data warehouse system may

16

require reducing of the system including the schemas, and procedures of extract,
transform, and load, etc. These two problems are solved in the mediator-based approach.
Because of the mediator nature, data is the actual one since all data are stored and
retrieved from schema and original sources. On the other hand, adding a new data source
requires updating only the global repository. Global repository can be thought of a pool
of values, which is used to answer queries.

The focus on designing a mediator- based system is to develop efficient algorithms in
order to retrieve the relevant data quickly from the source and reduce/avoid network
problems. Data sources are defined independently of each other and can be added or
removed from the system with less effort and overhead. Because there is no data stored in
a mediator, unlike data warehouse, there is no specific schema definition. Instead, there

are some efficient algorithms, which provide quick and reliable access to the data.

To manage all the processes, a mediator needs to have a common ontology as a basis for
integration. Data sources can be mapped to same unified concepts via mediator. This
allows sources to be changed while system is running and access the latest data as a
result. The main task of the system administrator is to keep the metadata repository up-to-

date.

Figure 2-3 illustrates a mediator-based system. As shown in the figure, mediator does
not need to know exactly about the origin of the data sources. Wrappers act as an
interface between the mediator and the data sources. They represent some function to the
data transform and some views over the sources. At each source, there is the function,

which is needed to transform the input query from mediator to a query to the sources.

17

User

Mediator

Wrapper

Data Source Data Source File gig?e%
1 2 System

Figure 2-3: Mediator-based system

The mediator dispatches the user query to the appropriate wrappers; it knows which data
source has the desired data. The wrappers rewrite the query, which then is executed. The
answer is then sent back to the mediator. Mediator is responsible to merge the set of

answer returned into one and present it to the user as the query result.

2.3 Related Work

There have been numerous researches on data transformation in general including

schema, models, and format transformation [CW‘01], which can be divided into main

18

approaches: coarse-grained (schema level) and fine-grained (instance level). In this
context, we study the lineage tracing problem and then discuss works related to ours in

this thesis.

2.3.1 Lineage Tracing

An information integration system retrieves data from multiple data sources. The data
could be materialized in a unified data store as in data warehouse systems or could be
obtained from different sources during query processing, as in mediator-based systems.
This data can be analyzed for decision support systems.

For business data, it is useful to provide explanation for a query result, by identifying the
data in the sources contributed to the result. This process, tracing data from query answer
back to the sources and finding contributing atomic data is known as lineage tracing
[CW01]. It is useful in many areas including: on-line data analysis, processing, and
mining (OLAP/OLAM), scientific databases, data cleaning, authorization management,

view update problem, and etc.

Let us make it more clearly through the following example about Muhammad Ali, the
world’s box champion, taken from New York Times. "Ali is said to have Irish roots.”
Researchers at the Clare Heritage Center claim that Abe Grady came to USA in 1860's
and then left for Kentucky and married a black woman. Their son married a black woman
and one of the couple's daughters, Odessa Grady, married Cascius Clay, who then had a
son named Cascius Clay who changed his name in 1964 to Mohammad Ali. There are
enough evidences to this [T‘02]. As is clear from this example; it is required to know the

origin of the data and the relationship between each transformation.

19

Some of the works in lineage tracing support schema-level or coarse-grained approach,
in that, the lineage tracing provides contributed data at the schema level. The other
approach is fine-grained or instance level, which is more in depth. In general, to support
lineage tracing, we need the metadata, original data, and query information itself. Lineage
tracing uses a combination of information about atomic data, schema, data

transformation, and a number of functions.

Consider again our motivating example of the sales application. We assume that the
unified repository for the system has already been created, so we can submit a query
using a SQL like language and make a join between two data sources. Consider the

following query:

SELECT SUM (NumSold) FROM SALES, ITEM
WHERE SALES.ItemID = ITEM.ItemID AND

ItemName = ‘pencil’;

The query result is 5000. The lineage tracing result is shown as follows.

StoreID ItemID NumSold Price
2 2 2000 2
1 2 3000 1
ItemID ItemName Category
2 | Pencil stationary

Figure 2-4: Lineage tracing result for SALES and ITEM data sources

20

Identifying the contributing atomic data is desired for a number of users, including

information integration designers, administrators, analysts, and system managers.

2.3.2 Lineage Tracing in Data Warehouse Systems

Cui and Widom [CW‘01], propose a complete set of techniques and algorithms to
retrieve original data contributed to a query answer in data warehouse systems using fine-
grained approach. Their solution mainly relies on some transformation functions, each of
which transforms a set of input data to the output set. Transformation functions satisfy a

number of properties listed as follows together with their applications:

a) Dispatcher: Each input data item to dispatcher produces zero or more
output data items.

b) Filter: Eact'l input data item to filter produces a subset of itself.

c) Aggregator: Each input data item is a part of the input partition, including
zero or more other input data items. This partition of input data items to
aggregator produces one output data item.

d) Context-free aggregator: Any two input data items are always in a same
input partition or they are never.

e) Key-preserving aggregator: This property is similar to the aggregator, that
is, there exists a unique key for each input data item and in an input
partition every subset of that partition generates the same output key for

the output item.

21

f) Black-box: This is neither an aggregator nor a dispatcher.
g) Inverse: A transformation T is invertible if there exists a transformation T
-1

such that for each input set I, we have T 1 (T (D) =1, and for every

output set O, we have T (T ' (0)) = O.

There are also some techniques of schema mapping to transfer one input to a new output
set. This new output set might be an intermediate set which is supposed to be used by
some upcoming transformations.
There are two types of indexing. They propose for optimization of queries, as follows:
a) Conventional: locate data items matching a given search value.
b) Functional: these indexes constructed for a given function F which allow
us to quickly locate every data item i such that F (i) = V, for a given value

V. This type of indexing is used by schema mapping functions.

Based on the input query, transformations can be combined or decomposed. There is a
transformation sequence consideration to combine or decompose them. The particular
sequence or order of the transformations depends on each transformation itself. Cui and
Widom proposed a number of algorithms to classify and combine transformations in an
efficient way. Transformations can be done in multiple-input multiple-output way, and
they are all stable and deterministic. A transformation T is stable if it never produces
spurious output items, i.e., T (null) = null. A transformation is deterministic if it always

produces the same output, given the same input.

22

They also developed a prototype in order to demonstrate the feasibility of their solution.
There are some techniques employed in the prototype to improve the efficiency,
indicating that there is a significant improvement in case of indexing and combining

transformations.

2.3.3 Tracing Data Using Schema Transformation Pathways

In this work, we define lineage tracing based on the notions why-provenance and where-
provenance proposed by Fan and Poulovassilis [FP‘02]. The former refers to the source
data used in processing the query without actually appearing in the query result. On the
other hand, where-provenance refers to the actual source data that appears in the query
result. Corresponding to these two types of data, they introduce two internal data
structures, called affect-pool and origin-pool.

They work on high-level data models, e.g., ER, OO, and relational model, as well as
physical data structures. They developed a prototype, called AutoMed, which is based on
a lower level data model, HDM, and define high level data models and schema
transformation in HDM. They used this common data model to prevent semantic
mismatch between models and metadata from different sources. This data model is
similar to the internal representation in our work for creating and updating metadata
information in ELIT.

The authors also describe how transformation functions affect their two different data
pools, called data pool and origin pool. Our IMDS and DRT tables in ELIT used are

similar in sprit to their pools. The difference is in the organization.

23

In our work, IMDS stores only metadata and DRT stores data, while this distinction is not
there in [8]. In AutoMed, there are some sort of automatically reversible transformation
functions to keep track of each change, which might happen to the input data set.

AutoMed provides an Intermediate Query Language (IQL) to issue queries over the data

sources and models.

24

Chapter 3

Metadata Collection

In this chapter, we illustrate the schema collection phase for linage tracing in a mediator-

based system.

3.1 Collecting Schema Information

We introduce the first phase in our solution approach to support lineage tracing in a
mediator-based system. In this phase, we collect information about the schemas of the
information sources in the system. This information is independent of any particular
query. The assumption, however, is that, the query may require explanation, for which

the system has to be prepared, hence justifying this phase.

It is not mandatory to have the original metadata information in a mediator-based system.
In such a system there should be a global repository, in which each data source has at
least an entry so that the mediator can dispatch the query. On the other hand, for the
lineage tracing processes, it is mandatory to have access to metadata while tracing data

back to the source.

We assume there is no global repository for the mediator, so we create metadata
information if the lineage tracing is in point of interest. There is no need to create such a

repository if there is one accessible by mediator.

25

Collecting schema information requires having some kind of schema mapping functions,
since there are heterogeneous data sources, which have to be considered while lineage
tracing processes work. This mapping is different from schema mapping for the

intermediate tables in a data warehouse system [CW‘01].

To support this in our model, we have considered two different schema types: relational
database and XML source. For XML sources, schema mapping is done through some
functions and a parser that collect the metadata information. Schema mapping in this
level contains information about data sources and their individual data items used by the
system. Moreover, there are other functions and internal structures which generate and
store intermediate data sets produced by each transformation function. Intermediate data
sets or results are those created by the transformation functions. It is required to have
intermediate data in order to be able to retrieve the next data result in a chain of
transformation functions, so they have to be in form of bags, since lineage tracing has to

provide all the contributed data for a query. For example consider the user query:

SELECT STORE.StoreName, sum{SALES.NumSold x SALES.Price)
FROM STORES, SALES, ITEMS
WHERE ITEM.Category = ‘sanitary’ AND

ITEM.ItemID

SALES.ItemID AND

STORES.StorelID SALES.StorelD

GROUP BY STORE.StoreName;

Suppose the user is interested to know the original data including the STORE

information. The first step is to produce ItemID’s at the contributing tables in the

26

“sanitary” category. This may include redundancy, since there could be several stores
having the same product. At this point, the bag semantics should be used in order to
include all the relevant data and avoid missing any. The last step is to retrieve the store

information from the sources and return it to the user.

Intermediate results are useful to produce the original data if the have been changed. This
is, possible by applying some kind of formulas and/or aggregation functions on the
intermediate results. They would also be useful to provide user with a “selective” lineage
tracing, a feature that allows a user to specify which intermediate data set is he/she

interested to be supplied.

Lineage tracing is a backward process from query answer to atomic data contributed to
the answer. As a mediator-based system may consist of several heterogeneous data
sources [HMNRSW“99], in order to have metadata of these sources and to be able to
process a query over them, we need to have an Integrated Metadata Schema (IMDS)
[KR03, DDL‘00]. To create IMDS, we need to do some sort of schema mapping

[CW*01]. This integrated schema allows us to:

a) Formulate a query referring to both structured and semi structured data

in data sources.
b) Support lineage tracing as mentioned before.

The IMDS supports the first feature by providing some query components, and supports
the second feature by providing specifications of the transformation functions required.
The first application of IMDS is discussed in section 4.1 to 4.5, while the second one is

explained in section 4.6.

27

In addition to these applications, IMDS also reduces the processing overhead. This is
because IMDS contains “all” metadata information used by current user queries, hence
resulting in a significant saving on references to metadata used by the lineage tracing
processes. Since IMDS is created for lineage tracing purpose, it is not a big repository
with all the metadata available in the network. This implementation gives user a GUI to
define the metadata repository only for lineage tracing. The system administrator is

responsible to do this, to reduce the processing time of lineage tracing.

Query evaluation is done based on the integrated schema model. At this point schema
update is a potential problem. Also, we assume the structure of the information does not
change meanwhile, which is a reasonable upon noting that schema changes are not
frequent. Updating metadata information is the responsibility of the system administrator

and can be done based on some specific predefined plan or on demand.

In order to support these functionalities, we naturally assume that information sources are
cooperative in the sense that the mediator has access to the actual information sources.

The reason for this is that mediator has access to data sources via the wrappers.

There are different ways to define views over the sources in an information integration
system, called global as view - GAV, and local as view — LAV, and global local as view —
GLAV [L‘01]. These approaches provide views for query formulation and processing, and
also extracting data from data sources. However, this is not enough to support lineage

tracing, and that is why we need to have access to atomic data.

In what follows, we introduce the functions required to support the operations in this

phase of collecting schema information. These functions are used to extract metadata of

28

data sources, including table names, column names, data type of data sources, and to

store and manage this information as part of the IMDS.

These functions are defined as follows, where data source type could be structured or
semi-structured. Note that there will be at most one tuple in the IMDS of the form (R, 7,
S), even if various users use or refer to relation (table or XML data source) & of type 7

residing at source §, in many queries.
1. addRelation(R, 7, $): adds to the IMDS a new relation R with type 7.

2. deleteRelation(R®, 7, $): deletes from IMDS the definition of relation £

of type 7.

3. addColumn(R®, C): adds to the IMDS a new column definition C in

relation R,

4. deleteColumn(R, C, 5): deletes from the IMDS the definition of column

Cin relation &,
Consider our Sales application example. Above functions would be as follow:

addRelation (* SALES’, ‘Relation’, 'S1’).

addColumn (* SALES’, ‘StoreID’).
addColumn (' SALES’, ‘ItemID’).
addColumn (* SALES’, ‘NumSold’).
addColumn (*SALES’, ‘Price’).
deleteRelation (* SALES’, ‘Relation’,’S1l’).

29

deleteColumn (* SALES’, ‘StorelID’).
deleteColumn (* SALES’, ‘TtemID’).
deleteColumn (* SALES’, ‘NumSold’).

deleteColumn (' SALES’, ‘Price’).

3.2 Collecting Schema Information Algorithm

We next introduce an algorithm to collect the schema information. Assume there are k
nodes in the system, called N = (N; ..., Nx), where node N;j includes m data sources Dy,
..., D such that each D; is a data source which may be used in a user query. We assume
that data sources at each node are unique, which the same data source D; (with the same
schema) may be used in different nodes. So in order to have all the metadata information
of all data sources, the input set D has to be changed into DY, (i.e.) having all data sources
from k nodes in the system. The output T = (T},..., T,) is a list of tables stored in the

internal data structure, IMDS, where n =k x m.

Input: D, N /* The set of data sources involved */
Output: T /* The IMDS - the metadata of D*/
Algorithm: Collecting Schema Information — Relational Data Source
For each N; in N where i in [1..k]
For each Dj in D' where jin [1..m]
Get the metadata information accessible by mediator.
Create T; if there is no such information in IMDS.

Return.

30

XML metadata collection algorithm retrieves the information from an XSD file. Let X =
(X1,..., Xp) be the input XSD files and W = (W,,..., Wp,) be all the individual words in an

XSD files. To collect all the words in all XSD files we use W

Input: X, W* /* The set of XML sources involved */
Output: T = (Ty,..., Ty) /* The IMDS — the metadata of T*/
Algorithm: Collecting Schema Information — XML Data Source
For each X; in X whereiin [1..n]
For each W;in W' where jin[l..m]

Based on each identified word property do
Create T; if there is no such information in IMDS.

Return.

31

Chapter 4

Query Formulation and Processing

In this chapter we introduce the second phase of our solution method to support lineage
tracing in mediator-based information integration systems. This phase includes query

formulation, processing, and lineage tracing functions.

In a mediator-based environment, each data source can send a query over the network
and obtain the results. The mediator is responsible to receive the query, parse it, and
dispatch it to each related data source. The mediator then collects and combines the

answers, and finally sends it back to the user, which could be a process or a human user.

As mentioned earlier, this process requires that the information about actual sources be
available to other sources. In case a local source is a view over the actual data in that
source, lineage tracing may not be fully possible as, some actual metadata used in the
definition of the view may not be known to the lineage tracing process. Having metadata

information allows users to formulate desired queries, and to support lineage tracing.

Having an integrated data model — IMDS - helps user to use a generic unified query
language to formulate queries over different types of data sources. This query can be
mapped to the appropriate query language suitable for each source in the wrapper level,

and be executed over the source.

32

4.1 Visual Query Building

The number of different information systems exists today is tremendous. Query execution
over a mediator-based system may require retrieving data from different data sources
with different schema types and structures [BDHS‘96]. This query might involve
structured and semi-structured schemas. For a potential user, who is not an expert in SQL
or does not know the data sources structure by hard, it would be very useful to be able to
search desired information in these independent systems, without being required to learn
the different user interfaces and schemas. In this section, we will introduce a query-
building interface, which facilitates formulation of queries over the heterogeneous data

sources in our context [TKR ‘03].

In such a case, the query user developed allows retrieval of data in either of these
schemas. We already introduced IMDS, an integrated data model for structured and semi-
structured schemas, and introduced four mapping functions from one schema to another.
The input to a schema mapping function could be structured or semi-structured schemas
and the output would be structured, basically a relation with the bag semantics which
maintains duplicates. This is important especially when this relation is an intermediate

result.

We propose a frame-based query interface, using which a user can formulate queries in a
visual environment. Since the unified schema mapping is accessible to the mediator, the
user can execute a query assuming the structured format, however both structured and
semi-structured schemas will be used to produce the answer and to support lineage

tracing. This visual query interface generates a “SQL like” statement, which can then be

33

executed over the mediator-based system. The idea here is to support formulation of
queries by non-expert users. Also having such an interface would be useful to have the
query components. Query components are used for lineage tracing. More details will be

presented in section 4.4

User can easily select tables and related columns from the interface, apply aggregation
functions to desired individual columns, build the where clause based on the selected

tables, and produce a SQL like query as the output.

4.2 Query Type

Different query types can be executed in a mediator-based system. So for lineage tracing,
a system should be able to provide query explanation with different query types.

There are different query types, which a user might wish to express and execute. These
queries transfer an input data set to the same or different output data set. There would be
some different tracing procedures based on the query types [CW‘01]. We propose a
general lineage tracing function to support different query types. Query components are
the kind of information required to implement lineage tracing processes. We explain
query components in more detail in section 4.4.

A query may have a number of subqueries. Such a query can be rewritten as a simple
query without any subqueries producing the same output. Subqueries can be considered
as a new data set which one joined with the parent query. In other words, there would be
new tables and conditions, which will be added to the selected tables and conditions in

the parent query.

34

This is true also when there is more than one comparison with constant values in the

where clause of the user query. The following examples illustrate the points.

Suppose, the user query is as follows, which is includes a subquery:
SELECT SUM(NumSold) FROM SALES
WHERE TtemID IN (SELECT ItemID FROM ITEM

WHERE ItemName = ‘pencil’);

Then, the rewritten query would be:
SELECT SUM(NumSold) FROM SALES, ITEM

WHERE SALES.ItemID

ITEM.ItemID AND

ItemName

‘pencil’;

As another example, suppose the original user query is:
SELECT SUM(NumSold) FROM SALES

WHERE ItemID IN (1, 2);

In this case, the equivalent and rewritten query would be:
SELECT SUM(NumSold) FROM SALES, ITEM
WHERE SALES.ItemID = ITEM.ItemID AND

(ItemID = 1 OR ItemID = 2);

35

In this work, our main objective is to support lineage tracing for standard SQL queries of
SELECT_PROJECT_JOIN (SPJ) possibly with aggregation, but without recursion. The

current version of our system prototype supports query conditions for ‘AND’ and ‘OR’.

4.3 Query Parsing

Mediator-based systems are responsible for processing queries. This includes retrieving
and combining the data using a query language. There are several types of data sources in
an information integration system and a query may request data from any of those
sources. Therefore, efficient query processing is of primary concern for the users. The
first step of query processing is query parsing, followed by query evaluation/execution.

We will discuss query evaluation in section 4.6.

Query parsing checks the syntax of the input query. For this, it uses a parser tree. At this
point, we need to have the metadata information, which is physically defined in the

system. In our implementation, this realized through the IMDS, as described before.

Query parsing and analysis is needed before dispatching subqueries over the system. In
case of an invalid query, failing to recognize this would result in waste of resources in the
system. For query evaluation, we would perhaps need to apply query rewriting and
optimization before dispatching the query, in order to reduce network utilization and

increase the efficiency of query processing as well as efficiency of lineage tracing

processes [PV ‘99, D‘97].

The above steps for lineage tracing are shown in Figure 4-1.

36

v

Figure 4-1: Steps in lineage tracing — IMDS creation and query parsing

4.4 Query Components

In order to support lineage tracing, we need some transformation functions [CW‘0l,
WQ*97, AKS‘96]. The role of these functions is to help users identify the data, which
contributed to the query result. Let T be a transformation function with a set S of input
data values. The output of T would be R, where R is a subset of S. Note that R could be
S, a modified subset of S, or empty. Intuitively, this is used when applying the various
conditions in the WHERE clause, each of which may result in filtering out tuples which do
not contribute to the result. To support lineage tracing, we can view T in the reverse
direction as explained before. These types of functions allow us provide query

explanation.

To see how transformation functions work, let us consider the functions in Figure 4-2.
Transformation function T, has the input set S and the output S;. Transformation function
T, has the input set S; and produces S as its output, and finally T3 has S, as the input and

R as its output.

37

In order to identify the atomic data, it is enough to apply each condition to the data in the
DRT and obtain the result. But to have the result of each step, the transformation
functions must be applied in the reverses direction and intermediate results are to be
completed. For example, to obtain the atomic data contributed to R after applying T3, we

can obtain S, by applying 5" to R, i.e. T3' (R) = S,.

S S1
Figure 4-2: Transformation functions execution plan

Transformation functions are created for a query submitted, whenever the query is valid.
Each clause in the query transforms the collection of input data from one stage to another.
For each query, there are several transformation functions that might be applicable,
depending on the query itself. Each WHERE clauses, GROUP BY, HAVING, or any other
clauses may transform an input set to a set or bag. In this case, lineage tracing process has
to know the transformation functiqns and their specifications. For each of these functions
and the corresponding specifications, it is needed to have all query components to which
the appropriate functions are applied. To support linage tracing in an efficient way.
transformation functions must be applied in some particular order. Some of these
functions reduce the output size, and hence it would be better to apply such functions

first.

The following functions are introduced to extract and store data components in IMDS:

38

1. addQuery (Q, P): adds to the IDMS the current query Q with a unique

ID 2 e.g. physical address, process ID, etc.
2. deleteQuery (Q, P): deletes from the IMDS query Q with the ID 2.

3. addTables(Q, 71): adds to the IMDS the list of tables 7L contributing

to the query Q.

4. deleteTable(Q, 7L): deletes from IMDS, the list of tables 7L

contributing to the query Q.

5. addColumn(Q, C): adds to the IMDS the list of columns C contributing
to query Q.

6. deleteColumn(Q, C): deletes from IMDS the list of columns C

contributing to query Q.

7. addCondition(Q, CAD, CNDT, CT). adds to the IMDS, the list of
conditions CAD with type CADT used in query Q having the logical
operator type C7T. (i.e., AND, OR, NOT for the CAD WHERE, GROUP

BY, or HAVING clauses).

8. deleteCondition(Q, CAD). deletes from the IMDS, the list of

conditions CAD used in query Q,

The following example illustrates how these functions maybe used when processing a

user query. Suppose the following query Q1 is submitted to the system from node P1:

39

SELECT SALES.Price, SALES.NumSold

FROM ITEM, SALES

WHERE SALES.ItemID

ITEM.ItemID AND

ITEM.Category = ‘stationary’

Lineage tracing functions below are then applied to IMDS, in the order shown.

addQuery (Ql, P1).

addTable (Q1, “ITEM’, ‘SALES”’).

addColumn (Q1, ‘SALES.Price’).

addColumn (Q1, ‘SALES.NumSold’).

addCondition (Q1, ‘SALES.ItemID=ITEM.ItemID’, ‘WHERE’,).

addCondition (Q1, ‘SALES.Category="stationary’’, ‘WHERE’, ’AND”).

In order to free the resources after executing the lineage tracing processes, we use the

following sequence of functions:

deleteQuery (Q1, P1).

deleteTable(Q1, “ITEM’, ‘SALES”’).

deleteColumn (Q1, ‘SALES.Price’).
deleteColumn(Q1, ‘SALES.NumSold’).
deleteCondition (Q1, ‘SALES.ItemID=ITEM.ItemID’).

deleteCondition(Q1, ‘SALES.Category = 'Stationary' *).

40

4.4.1 Collecting Query Components

Let Q be a query with COL = ((COL,, Fy),, (COLp, Fy,)) as selected columns used in
Q, and F be the formula applied to those columns. T is a list of data sources
referenced/used by Q, where T = (Ty, ..., Ty). The query may have some other
components such as WHERE, GROUP BY and HAVING clauses. We called them as
CON, which may change an input set to another set while processing Q.

They would be in form of CON = ((CON;, CONT}),...,(CONy, CONTY)), where CONT;
is the type of condition CON;. The output would be a set of query components, called
COMP, stored in the internal data structure of the system. The steps of query component

collecting are formulated in the following algorithm.

Input: Q (COL, T, CON)

Output: COMP /* Query Component */

Algorithm: Collecting Query Component

Find all tales Tj, where j is in [1..n]

Find all pair of (COL;, F;), where i is in [1..m]

Match columns and tables using the information in IMDS.
Find all conditions CON, where p is in [1..k].

Store the information in the internal data structure.

Return.

41

4.5 Query Evaluation

The SQL-like user query must be mapped to the real data in the source, using the schema
information maintained by the mediator system.

Processing a query consists of several basic operations each of which may change the
input data to some output. There are several algorithms for implementing each operator.
Also there is no predefined algorithm for implementing an operator; this is an
optimization issue to decide a particular algorithm at the execution time. Some data
factors like relation size; design specifications like existing indexes and even hardware
specifications such as memory size are to be considered to implement the operations

efficiently.

In a mediator-based system query evaluation has to be done for several heterogeneous
data sources. It can be done by the mediator or by the wrapper. Again, in this case, we
need to know the actual data schema of the sources and the schema types. It can be done
by IMDS, however to do it in a more efficient way, more information about physical

storage, indexes, partitions, and etc. is needed.

The mediator can have this information in the global schema, and hence it can execute
the query and retrieve the result, which are then sent back to the requester, which could
be a process or a human user. Figure 4-3 shows the steps of our solution to support

lineage tracing.

42

% Linéfa’gef;;

Figure 4-3: Preparation steps for lineage tracing

4.6 Lineage Tracing

Lineage tracing is a backward process, executed to identify atomic data contributed to a
query answer. In order to support it, we need to know contributed data sources, and their

data, and then apply the transformation function to the input sets in some order.

In section 1.1, we introduced Data Reference Table (DRT), which is a physical storage to
store all data values obtained from data sources while processing a query. Because at the
processing time, it is not clear which particular data items will contribute to the answer,
we need to collect all data from data sources during this processing. This strategy reduces
the risk of reading invalid data contributed to the query answer if the data is updated

during query execution.

Having data and metadata in DRT enables us to provide intermediate results and also an
additional option for the user to do a “selective” lineage tracing. That means a user can

select which data item from the involved tables should be considered and traced. The

43

option to have lineage tracing is specified by the user. If a user is not interested in tracing,
there would be no over head on the system. [This is similar to the “Explain” feature of
Coral, by which a user sets the system to provide explanation [ARRSS‘93]. For lineage
tracing, we have collected enough data of metadata information to which we may just
apply the transformation functions defined earlier. For lineage tracing we have the

following functions:

1. addData(Q, 7, C, 9): adds to the DRT the data for query Q, table 7,
column C, and value 7.

2. deleteData(Q, 7, C, 1): deletes from the DRT, the data for query Q, table
7T, column C, and value ¥/,

3. applyCondition (7, C, CAD): applies condition CAD on column C to table
T and deletes all data which are not satisfies the condition.

4. explainQuery (Q, 7L, CL, V): generates the query explanation for query Q
based on its table list 72 and column list C£ having value ¥.

The application of these functions will appear in the next chapter.

4.6.1 Lineage Tracing Algorithm

The first step in lineage tracing is building the DRT. For this purpose, we need the
information on the set of data source called T = (T},..., Ty) used by the query. T includes
data source D;, and data item COLji , 1.e., all necessary columns in each D;. We also need
the information on node N; All these information are stores in IMDS. DRT can be

populated, while query is executing.

The inputs to the lineage tracing algorithm are DRT, COMP, and the query components.
As mentioned above, COMP is of the form ((C,,Ty), ..., (Cu,Th)). The output of lineage
tracing is a set of tables together with the tuples contributed to the query answer. The
output is of the form O (D, COL, V) where D is the data source, COL is the data item in
D and V is its value. The conditions mentioned in the following tracing algorithm, OS

and TS denote one side and two side conditions.

Input: = {Ty,..., Tn}
Output: DRT
Algorithm: AddData
Find T; from IMDS foriin [1..n]
Fetch data from D;= {Al,...,Am} in T;.

For each COL;j in D;, create a
tuple with appropriate tuple id for that D; where j in [1..m].

Return.

Input: DRT, COMP
Output: O (D, COL,V)
Algorithm: applyCondition
Find all one side conditions in COMP, named OS; where i in [1..h]
Apply OS; to the DRT and delete those tuples in DRT that do not satisfy the
condition, OS;.
Find all two side conditions in COMP named TS; where 1 in [1..h]
Apply TS; to the DRT and delete those tuples in DRT that do not satisfy the
condition considering TS;.

Repeat step 2 until no more tuple is deleted.

Create the output from DRT from the survived tuples.

Return.

45

Chapter 5

ELIT: A System Prototype

We have designed and implemented a prototype for lineage tracing in a mediator-based
information integration system. We refer to this prototype as Explanation and LIneage
Tracing in Information Integration System (ELIT). We assume the structure of each data
source in the system is introduced to ELIT, stored in its internal data structures IMDS, for

lineage tracing purpose.

5.1 System Design

ELIT supports both structured and semi structured schemas to support the lineage tracing.
For the structured schema, it is needed to map the structures from data sources to the
internal data structures. To allow semi-structured data, ELIT includes an XML parser
[DHW‘01]. Information in the XML file is stored in the internal data structures (IMDS),

which will be mapped as a relational table in our implementation.

This function retrieves all the information from XML schema file. Having done this step,
user has a list of available tables and their columns to formulate valid queries over this
schema. In this case, all information sources in the system would be treated as relational
sources. So a query in ELIT may involve information from original relational data as well

as original XML data, treating them in a uniform way.

46

In order to retrieve atomic data for a given query, all query components such as column
names and query conditions must be retrieved. As shown in Figure 5-1 and 5-2, ELIT has
an interface for formulating and submitting queries. The interface displays existing table
names, column names, and conditions in “AND” and “OR” format and includes various

features to guide users in query formulation.

Once the input is prepared and submitted, ELIT generates a “SQL-like” query
corresponding to the input information. This SQL like statement is then parsed for

validity of the syntax and the interfaces of metadata information in the query.

EN
Pl . Edt Weew - Favortes . Took el :
Y R R ek e Al Rh-1

 Acdrees [4) heto:fversa. o 2608, _parl.cs.concorcha. catbuffer_records=NOSdebug_imessages=Notarte ¥ | 6«: s
gl 1: B [Comet =GP t - fof-Games o R Parsoneis .+ D LAUNCH. « [sgnin [5]

Fisia bty vwnsow

B Ao e e u el

: [Select SALES.STORE _ID BALES (TEM_ID .SUM(
1{BALES.NUN_SOLD) NUM_SOLD :
++{ FROM SALES

. SALES ITEW 1D

;_Formuts

Fupiam . SecondAy
?"gg.grgg_m 1660 o

SALES ITEM_ID (166

. . FiAm
o fex {BALEB.NUN_BOLTT
{ [AND far {SALES NUM_SOL{Z

NS

Figure 5-1: Storing query information in internal metadata tables

47

SO T - Mucasolt Teteenet Eiplorer e L aml
Flo © € " Voo Povorkey " Took " Helg Cav
g;*ng):]é:;!;'mb;m Qs 90 L B W3S)

adw | 3-concorda. pan.cs concorda.cobbuter_records=NOtdebug messsgss—onarra v] 59 Go <Lk 15 «
by B A { soncchwaob T 165 pepviip tiocker : Z3mal + - Gy vahoo! T:) Garmes - = 57" Parvans - + - N LAUNGH < [Sgnn |2}

SALES 8TORE_ID SALES.TEM_ID SUM(|
NUM_SOLD) NUM_SOLD {

N

Figure 5-2: User query GUI

ELIT accepts query conditions with “AND” and “OR”. Any other types of conditions
such as “IN” and “NOT IN” for a predefined set or nested SQL statement is not currently
supported in this simple prototype. They can be rewritten as a set of “AND” and “OR”

with inequality conditions.

5.2 System Illustration

After a query is parsed, the DRT is created (Figure 1-3). Regarding our example of
SALES and ITEM, the DRT would have all the SALES and ITEM information. It is
required to get the SALES data from the original relational table and ITEM data from

XML file, accessible to the mediator, and store them in the DRT. This gives a table as

48

query as shown in Figure 5-4.

shown in Figure 5-3. During data insertion into DRT, user can view the result of the

TableName RecordNumber ColumnName value
SALES 1 StorelD 2

SALES 1 ItemID 1

SALES 1 NumSold 800

SALES 1 Price 5

SALES 10 StorelD 1

SALES 10 ItemID 2

SALES 10 NumSold 3000

SALES 10 Price 1

ITEM 1 ItemID 1

ITEM 1 ItemName binder
ITEM 1 Category Stationary
ITEM 5 ItemID 5

ITEM 5 ItemName Pot

ITEM 5 Category Kitchenware

49

Figure 5-3: DRT after inserting metadata and atomic data values

Price NumSold
5 800
2 2000
4 1000
1 3000

Figure 5-4: Query result

All conditions in user query must be applied to the DRT and all the records, which do not
satisfy the conditions, must be removed from DRT. This process can be done in two
modes, batch and interactive. In the batch mode, the system does all the necessary steps
for lineage tracing, in a pre-determined sequence of application of lineage tracing
functions. In the latter, the user may interact with the system to provide a step-by-step

explanation, as desired, through the display interface.

To do this, query conditions should be applied in some order as follows. First, it applies
conditions of the form “A 0 v”, if present in the query, where A is an attribute, v is a
value, and 0 is a comparison operator. We call this as “one-side-condition.” Next, it
considers applying conditions of the form “A 6 B”, which we call as “two-side-

condition.” Intuitively, this order results in increased efficiency by reducing the number

of tuples involved in the join conditions (basically, two-side-conditions).

In our example, ELIT looks for a one-side-condition, which is ITEM.Category=
‘stationary’. It then applies this condition to the DRT and finds 2 records with record

number 1 and 2 from table ITEMN, as indicated under the column TableName in Figure

50

5-5. All the records in the DRT with record number other than 1 or 2 and TableName

‘ITEM’ must be marked as deleted.

TableName | RecordNumber | ColumnName Value
SALES 1 | StoreID 2

SALES 1| ItemID 1

SALES 1 | NumSold 800

SALES 1 | Price 5

SALES 10 | StoreID 1

SALES 10 | ItemID 2

SALES 10 | NumSold 3000

SALES 10 | Price 1

ITEM 1} ItemID 1

ITEM 1 | ItemName Binder
ITEM 1 | Category Stationary
ITEM 2 | ItemID 2

ITEM 2 | ItemName Pencil
ITEM 2 | Category Stationary

Figure 5-5: DRT after applying One-Side-Condition

Next, all two-side-conditions must be applied to the remaining records in DRT. Here, we
have SALES.ItemID = ITEM.ItemID. Because of the one-side-condition effect,

we only have 1 and 2 in DRT as ItemID. Therefore, ELIT looks for records with

51

TableName = ‘SALES’ and ItemID = 1 or 2. This identifies records 1, 2, 9, and 10, so
records with record numbers other than 1,2,9,10 and TableName = ‘SALES’ must be

marked as deleted. Figure 5-6 shows the DRT after this step.

TableName RecordNumber | ColumnName Value
SALES 1 { StoreID 2
SALES 1| ItemID 1
SALES 1 | NumSold 800
SALES 1 | Price 5
SALES 2 | StoreID 2
SALES 2 | ItemID 2
SALES 2 { NumSold 2000
SALES 2 | Price 2
SALES 9 | StorelD 1
SALES 9 | ItemID 1
SALES 9 | NumSold 1000
SALES 9 | Price 4
SALES 10 | StorelD 1
SALES 10 | ItemID 2
SALES 10 | NumScld 3000
SALES - 10 | Price 1
ITEM 1| ItemID 1
ITEM 1 | ItemName Binder
ITEM 1 | Category Stationary
ITEM 2 ItemID 2
ITEM 2 [ItemName Pencil
ITEM 2 | Category Stationary

Figure 5-6: DRT after applying Two-Side-Condition

52

As it can be seen, we have captured the atomic data for the query as well as details of the
query answer. This method can be applied to queries with aggregations as well. In this
case, we first need to find all the information from the table(s) to which we need to apply
the aggregations functions. We can then apply the one-side-condition and two-side-

condition processes to identify all the atomic data relevant to the query.

5.3 Architecture of ELIT

ELIT resides in the mediator and has access to the data sources, as well as the mediator.
It uses a relational database in order to store metadata and temporary data. This can be
done by internal data structures (IMDS) in case of having enough resources. DRT and
metadata information are part of the temporary data which should/could be cleaned up

and released after ending lineage tracing processes.

To support multi-user query and lineage tracing in a mediator-based environment, for
each query, we consider a unique ID for each query. This ID is based on the node, which
issued the query and the query itself. Here having some queries which have been sent
before, is an issue for more investigation and one that how this should be treat in order to

reduce the time of lineage tracing processes.

ELIT processing model is illustrated in Figure 5-7. It has different modules to support
the lineage tracing. “Submit Query” and “Parse Query” are common modules with
mediator if tracing is in point of interest or not. “Create IMDS” is the module, which can
be used in case of having lineage tracing and no metadata information available in the

mediator. After submitting the query, “Retrieve Query Components” and “Create DRT”

53

are those, which have to be done while mediator is running “Retrieve Data”. In case of
successful ending of all above modules, “Lineage Tracing” returns the atomic data

contributed to the query result.

Figure 5-7: ELIT processing model

In terms of development requirements, ELIT has been implemented using Oracle
9i database, Oracle 91 development suite, including Oracle Forms and Oracle
Reports builder, Oracle java enabled web server OC4J for development, and
windows XP. ELIT also uses a CPU Intel Pentium 4 with a speed of 2.40 GHz
and 512 MB for the main memory. Most of the coding is based on PL/SQL

language with more than 2000 lines of code. ELIT can run and used in any java

54

enabled web server and on various operating systems such as UNIX, Linux, and

any other environment, which has the ability to run java Applets.

5.4 Performance Evaluation

To assess our lineage tracing model and evaluate the performance of our prototype, we
generated a range of data sets. ELIT supports two modes of lineage tracing: the batch
mode and interactive mode. In the batch mode, the purpose of lineage tracing is to
identify the atomic data contributed to the result. In this mode, the intermediate results
are not used in tracing, and hence are not stored during the query processing and lineage
tracing. This makes the creation of DRT and lineage tracing more efficient. On the other
hand, in the interactive mode, we need to keep track of intermediate tables to support
requests such as: “which atomic data in the input data set satisfies condition
“ITEM.Category = ‘stationary’ expressed in the user query.” This also provides a

data analysis mechanism, which is useful and required in some applications.

ELIT has a feature available to users to select atomic data with specific values. For
example, in the SALES table with 1,000,000 tuples, there are approximately 100,000
tuples having TtemID = 6. In this case, tuples related to other items are not of interest
and hence will be ignored while “preparing” for lineage tracing. Another useful feature in
ELIT, called column selectivity, allows a user to select which columns he/she would like

to be displayed, while tracing.

55

This is useful in particular when the tables involved have many attributes but only a few
of which are of interest to the user. Ideas similar to the value and/or column selection
capability can help reduce the time and space for the creation of the DRT and its
processing. This causes the creation and management of what we call as partial DRT, as
opposed to the complete DRT required in the batch mode of tracing. Figure 5-8,
illustrates preliminary result of our performance evaluation of ELIT in supporting batch

and interactive modes of lineage tracing.

We have used data sets of 100,000 to 10 million tuples. The size of the partial DRT for
condition TtemID = 6 in the query, the complete DRT, as well as the corresponding
query processing and lineage tracing times are provided in Figure 5-8. The information in
this figure indicates 14 hours to create DRT in a non-optimized processing for 1 million
records is reduced to 46 minutes for 10 million records, by simply using the above basic
ideas of “optimized” processing. For lineage tracing, the processing time reduces from

2.5 minutes to 5 seconds.

There are diagrams from Figure 5-9 to 5-11. They illustrate the ELIT performance
improvements from the very basic implementation to enhanced one. We have non-
optimized lineage tracing in Figure 5-9. X-axis indicates the number processed records,
in the scale of million and Y-axis is the time in the scale of hour. As it is shown, having

more records to be processed, make lineage tracing more time consuming.

In the Figure 5-10 and 5-11, Y-axis is the time in the scale of second. As it is clear from
figures, there is a big enhancement for the lineage tracing processing time with same

number of records,

56

Executing
Tuples in User Creating | Linage .
SALES Query DRT Tracing Number of Records in DRT
FULL DRT ~ » -
Non-Optimized 1,000,000 | 2 14h - (3%5) +(4x 1000000) = 4000015
Partial DRT - » < g s g -
Non-Optimized 1,000,000 | 2 10 * 47 11’ 47 (3%2) +(4x 100305) = 401226
Part.ial. DRT - 1,000,000 | 2~ 243" 40” (3x2) +(4x 100305) = 401226
Optimized
Partial DRT -
Optimized(Using | 100,000 1” 19” 5”7 (3x2) +(4x 10019) = 40082
Rename)
Partial DRT —
Optimized(Using | 1,000,000 | 2” 2’ 43” 19” (3x2) +(4x 100305) = 401226
Rename)
Partial DRT -
Optimized(Using | 5,000,000 | 9~ 22' 26" 2’ 28” (3%2) +(4x 1003050) = 4012206
Rename)
carial DRT= 110,000,000 | 207 46'15" | 3117 | (3x2) +(4x 501525) = 2006118
ptimized

Figure 5-8: Lineage tracing evaluation result

A description of the information in Figure 5-8 is as follows:

Tuples in SALES: number of tuples in sales table.

Executing user query: This is the time to run the query. It does not

include the time to create the output.

Creating DRT: This is the time to create DRT.

Lineage Tracing: Time to do the lineage tracing.

Number of Records in DRT: In our example we have,

57

(number of ITEM columns x number of ITEM tuples) + (number of SALES columns X
number of SALES tuples)

Time, min.

Non optimized

Tuples 10°

Figure 5-9: Lineage tracing evaluation result — non-optimized

Time, sec.
1600

1400
1200
1000

800 § | — Partial DRT-

Optimized
600
400

200

Tuples 10°

Figure 5-10: Lineage tracing evaluation result — partial DRT, optimized

58

Time, sec.
300

250

200
Optimized
150
—— Optimized- using
Rename
100
50
0 Tuples 10°

Figure 5-11: Lineage tracing evaluation result — optimized

59

Chapter 6

Lineage Tracing in Distributed
Database Systems

In this chapter, we study the lineage tracing problem in distributed database systems. For
this, we first review basic concepts in distributed database systems and then discuss

issues and difficulties in supporting lineage tracing in such environments.
6.1 Distributed Database Systems

Information integration systems integrate a uniform access to operational data from
multiple (possibly heterogeneous) data sources. Distributed database systems (DDBS)
provide such an access to data sources designed at the same time at design stage but
implemented to support distributed processing of the data stored at different nodes. A
distributed database management system, DDBMS, is software developed to manage
DDBS and provides data accessibility to the user in a distributed environment [TV ‘99].

DDBS take advantage of database and network technologies. Having a central control
and management of data is one of the objectives of database systems. On the other hand,
the trend in computer network technology is against all centralization efforts. Therefore,
in the context of distributed database systems, we need to deploy the two contrasting

technologies to provide a uniform accessibility to the data sources over a network. A way

60

out of this dichotomy is to view database systems as to emphasizing “integration” and not
“centralization.” We are not in a position to argue on this issue here but it seems this is
exactly what distributed database technology attempts to achieve. In such a DDBS,
physical data distribution creates problems, which are not encountered when the database
is stored in the same computer. In this context, many components in a centralized DBMS
should be revised to support distributed processing of distributed data sources. The
revision is in the database design process itself and extends to changes in the DBMS
components such as query processing and optimization, metadata management,
distributed concurrency control, deadlock management, and reliability. These issues are

influenced by the following three factors:

a) The data in a distributed database system may be replicated. In a DDBS,
the database design process is the same as a conventional, centralized
database. The difference is that a table, or part of it, may be replicated to
improve reliability, availability, and/or efficiency of the system.
Consequently, for query processing, a DDBMS is responsible for choosing
one of the data sources which have the desired data to retrieve data, or in
case of transactions, it is responsible for data consistency by ensuring that
multiple copies of the same data are identical after update.

b) In case of a communication failure, the system has to make sure that the
changes to data will be made to all multiple copies of the same data as soon

as the system recovers from the failure.

61

c) Since there is no global transaction information for a site involved in
processing a query or transaction, the synchronization of transactions that
access multiple sites is a far complicated task compared to doing this in

conventional, centralized database systems.

Figure 6-1: Distributed database system architecture

Figure 6-1, [TV*99], shows a distributed database system, which includes four nodes
connected through a network. A user query may be (formulated and) issued at any node.
The answer to the query is returned to the user by “combining” the results of sub-queries
generated by the DBMS from the user query and evaluated over the entire system, in
general. Distributed database systems have advantages and disadvantages. The

advantages are as follows:

62

Local Autonomy: Users have their local copy of the shared data, and thus
have local control. This allows local policies regarding the use of the data.
Such a partitioning and locally authorization is a motivation for
distributed database systems.

Improved Performance: Because of the parallelism inherent in distributed
systems, performance improvement is possible. Since each site is
responsible for only a portion of the data, the CPU and /O utilization is
not as high as in centralized databases. On the other hand, a transaction
data may be stored in several sources. Therefore, it is possible to handle
transactions in parallel.

Improved reliability/Availability: Since data is replicated, a crash of a node
in the system or a failure in the communication link does not necessarily
make the data inaccessible. In other words, a node or link crash does not
cause total system inoperability. In this case, some data may be
inaccessible, but the DDBS can still provide some limited services.

Extensible: In such a system, it is much easier to accommodate increasing
database size as well as increasing the processing and storage power to the
network.

Data sharing: For many applications, it is more naturally suited to use
DDBS, compared to using centralized database systems, to support their

daily business rules.

63

There are also some disadvantages of using distributed database systems, mentioned as

follows:

Complexity: Such systems are more complex than centralized databases.

Cost: 1t is often required to have additional costs for hardware, software,
and communication links to support distributed query and transaction
processing.

Distribution of control: This was mentioned before as an advantage,
however, it results in difficult issues of synchronization and coordination.
Adequate policies have to be in place in order to resolve these issues
satisfactorily.

Security: It is not difficult to enforce security in the context of one database.
However, in a DDBS environment, there is an additional network issue

that must be addressed for security.

Fortunately, there are powerful DDBS, which have already provided solution to most of
the above issues and problems. For instance, the recent version of IBM WEBSPHERE is
an example of such a system [IBM‘03]. This has a number of features, which can be used
to make a “real” distributed database system. The features include, among others,
enterprise search, data federation, data transformation, data placement (caching and
replication), data event publishing, augmenting a warehouse with real-time data, building
a unified view of customers or products, managing data consistency, distribution, or

synchronization across applications, etc [IBM‘03].

64

6.2 Lineage Tracing and Distributed Database Systems

In a DDBS, data sources are connected via a network, in a physical local (LAN) or in a
wide-area (WAN) network area. In this context, it is not hard to convince ourselves that
providing explanation is useful, or sometime even essential. Some explanations are as
follows.

We have already introduced a solution to the problem of lineage tracing in mediator-
based systems. Having a global and centralized environment for processing lineage
tracing, was a main idea in our solution approach, in which we integrated metadata and
the query components information (IMDS), together with the data itself to support lineage
tracing. Also, in our solution, the lineage tracing processes and routines were conducted
on a centralized data store (DRT).

The quesﬁon at this point is how our solution method may be adapted and used in the
context of DDBS? In other words, what components in a DDBMS should be changed to
support lineage tracing? For each query, for which the user has also indicated that an
explanation is desired, the Query Dispatcher has to be changed in order to communicate
with other nodes in the system and inform them that, in addition to processing of the
query, an explanation is also required. We then need to, create the IMDS and DRT tables
at each node involved in query processing. This means, the Query Processing component
has to be changed accordingly. Besides, lineage tracing processes have to be added to the
internal DDBMS processes for manipulating data in DRT and returning the tracing
results. In a way, we can see that many components in a DDBMS need to be revised and

reengineered to support the lineage tracing.

65

One solution to support lineage tracing would be to extend the one discussed for
mediator-based, mentioned earlier in this report. In this case, each node in the network
can be thought of as a mediator for its data source. For each query, the mediator first
collects the information about the metadata and the query, as well as collecting the data
itself. The system then provides explanation for the given query, using the lineage tracing
functions. It is clear that this solution may require a huge amount of data transferring in
the network, which could be prohibitive when the data is very huge. Also centralized
storing and processing do not mentioned at the design time. It means that to have such a
centralized lineage tracing, it is required to have enough storage media and powerful
processor as well as reliable and fast network communication. In addition of this consider
any changes, which may be happened to the system while the query processing which
causes data inconsistency while creating centralized IMDS and DRT.

Another solution approach, which is closer to the nature of distributed feature of the
systems, is to distribute the lineage tracing processes over the nodes in the network. By
doing this, each node, itself, is responsible to do lincage tracing for the sub-query it
received, which has been submitted by the requester node. The recipient nodes are also
responsible to return the part of the main query explanation, which is related to the sub-
query received. At the end, requester collects the answers, merges them, and manipulates
the results in order to provide the final query explanation.

As in the first solution, this approach requires having lineage tracing processes at each
node, but expectedly in a more efficient away, as there is no need to transfer all the data
for building the DRT and manipulating it. This is essence is more consistent with the

distributed nature of DDBS. This is easier said than done. The problem is efficient

66

implementation of distributed lineage tracing as we need to apply the lineage tracing
functions on a collection of distributed (partial) DRT s, considering the one-way and two-
way conditions discussed earlier, which may not be completely achievable unless the data
at multiple sources are gathered in one source in order to finalize the lineage tracing
processes. In addition, in a more general setting in which the data may be updated by
transactions while lineage tracing is in progress, care must be paid in the construction of
the IMDS and DRT tables. In such a case, an implementation of distributed tracing has to
consider all aspects of distributed environment, including distributed transactions,
distributed commit, etc.

From the above discussions, it becomes evident that lineage tracing in a distributed
database environment is more challenging than a centralized data source, or even in a
mediator-based system. Our objective here was more to discuss the problem of lineage
tracing in distributed database systems. Providing solution requires further investigations.
We just close this chapter by stating that when data is distributed, providing explanation

may be more important for data and business analysis.

67

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Lineage tracing is the problem of recording the history of query processing to provide
users with explanation. This problem has been studied extensively in the context of data
warehouse systems. In this work, we investigate this problem in mediator-based
information integration systems. We identified the difficulties and challenges in this
context and made a first attempt to address some of them. The basic idea in our proposed
solution is to extract and store “enough” data and metadata information of sources
contributed to a query answer. We introduced data structures and algorithms to manage

and manipulate the aforementioned information to support lineage tracing.

We have developed a system prototype, ELIT, which includes a number of user
interfaces for “building” queries and “displaying” traces. In particular, users can
formulate SQL-like queries over structured as well as semi-structured sources through an
“input query” interface. ELIT can trace summarized and aggregated data and find atomic
data step-by-step in an interactive mode, while query processing is in progress. Our
experience in developing ELIT and experimenting with it show viability of the proposed
ideas, which can yield useful tools for lineage tracing, by devising more elaborate query

optimization techniques.

68

7.2 Future Work

We are currently working on improving the efficiency of the ELIT, which would be an
issue when dealing with large data sets. DRT is a large table in which we store all the
necessary information to support lineage tracing. More efficient storage management
with suitable indexes is needed to manage the size of DRT. Another issue that worth
investigation, is to compare the proposed framework when the mediator includes just one
source which is a relational data source with the lineage tracing method proposed for data

warehouse systems to study cost-benefit of ELIT.

The computation model of ELIT can be adapted and used in a peer-to-peer system. To
this end, each peer would be an ELIT system having connection to other peers in the
system. This of course would be a challenge to process user queries and to support
lineage tracing in a large peer-to-peer system with numerous heterogeneous data sources

that deserve further research.

When data is distributed, providing explanation may be more important for data and
business analysis. This requires an independent study. However, as described, lineage
tracing in a distributed database system would be more challenging than a mediator-based

system.

69

References

[AKS‘96]

[ARRSS‘93]

[BDHS96]

[CW*01]

[D97]

[DDL‘00]

[DHW01]

Y. Arens, C.A. Knoblock, and W. Shen: Query reformulation for
dynamic information integration. Journal of Intelligent Information
Systems, Volume 6, Number 2/3, Pages 99--130, May 1996.

T. Arora, R. Ramakrishnan, W. G. Roth, P. Seshadri, and D.
Srivastava: The CORAL deductive database system. In Proc. of 3rd
International Conference on Deductive and Object-Oriented
Databases, 1993.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu: A query
language and optimization techniques for unstructured data. In
Proc. of ACM SIGMOD Int’] Conference on Management of Data.
Pages 505--516, Montreal, Canada, June 1996.

Y. Cui and Widom: Lineage tracing for general data warehouse
transformations. In Proc. of VLDB, 2001.

O. Duschka: Query planning and optimization in information
Integration. Stanford University, ISBN: 0-591-90831-X, 1998.

A. Doan, P. Domings, and A.Y. Levy: Learning source
descriptions for data integration. In Proc. of the International
Workshop on the Web and Databases (WebDB), 2000.

D. Draper, A.Y. Halevy, and D.S. Weld: The nimble XML data

70

[FP‘02]

[GMUW01]

[HC*03]

[HIST03]

[HMNRSW99]

[1°96]

[IBM*03]

[KR03]

integration system. In ICDE, pages 155--160, 2001.

H. Fan and A. Poulovassilis: Tracing data lineage using schema
transformation pathways. In Proc. of Workshop on Knowledge
Transformation for the Semantic Web (with ECAI'02), 2002.

H. Garcia-Molina, J.D. Ullman, and J. Widom: Database systems:
The complete book. Prentice Hall, ISBN: 0130319953, 2001.

A. Halevy and C. Li: Information integration research: Summary
of NSF IDM workshop breakout session. In Proc. of IDM 2003
workshop, 2003.

AY. Halevy, Z.G. Ives, D. Suciu, and 1. Tatarinov: Schema
mediation in peer data management. In Proc. of ICDE 2003.

LM. Haas, R.J. Miller, B. Niswonger, M.T. Roth, P.M.
Schwarz, and E.L. Wimmers: Transforming heterogeneous data
with database middleware: Beyond integration. IEEE Data
Engineering Bulletin, pages 31--36, 1999.

W.H. Inmon: Building the data warehouse. John Wiley & Sons,
Inc., ISBN: 0-471-14161-5, 1996.

IBM Corporation: Business activity management: Your window of
opportunity for better business operations, IBM paper in:

http://www.elink.ibmlink.ibm.com/public/applications/publications

[cgibin/pbi.cgi?CTY=US&FNC=SRX&PBI =G325-2306, 2003.

A. Kementsietsidis M.A. Ren’ee, and J. Miller: Mapping data in

peer-to-peer systems: Semantics and Algorithmic Issues. SIGMOD

71

[L01]

[WQ*97]

[PV99]

[ST05]

[T02]

[TKR ‘03]

[TV*99]

Conference, Pages 325-336, 2003.

M. Lenzerini: Data integration is harder than you thought. In Proc.
of CooplS, September 2001.

J. Widom and D. Quass: On-line warehouse view maintenance. In
Proc. of International Conference on Management of Data, 1997.

Y. Papakonstantinou and V. Vassalos: Query rewriting for semi-
structured data. In Proc. of ACM SIGMOD Int. Conf. on
Management of Data, pages 455-466, 1999.

N. Shiri and A.T. Azari: Lineage tracing in mediator-based
information integration systems. In Proc. of 5™ IEEE International
Symposium and School on Advance Distributed Systems
(ISSADS), Mexico, Guadalajara, January 2005.

T. Duster: Tracing Lineage: A Social Project and a Genetic Stamp
of Approval. In Proc. of African Genealogy and Genetics: Looking
Back to Move Forward, 2002.

T. Katchaounov and T. Risch: Interface capabilities for query
processing in peer mediator system. Technical report 2003-048,
Department of Information Technology, Uppsala University, 2003.
M. Tamer Ozsu and P. Valduriez: Principles of Distributed
Database Systems, Second edition, Prentice-Hall, ISBN: 0-13-

659707-6, 1999.

72

Appendices

In this section, we describe technical details of the design and implementation of ELIT,
including hardware and software specifications, internal data model, including ERD and
list of all relations, their attributes and constraints. We also provide details of main

functions developed in ELIT, and some screen shots of the user interfaces.

73

Appendix A: System Requirements

To implement ELIT, we have considered the following requirements:

a)

b)

d)

Hardware and software availability: ELIT has been implemented as
three-tier network architecture. It can be used in an intranet or Internet.
For this purpose we used different clients, a web server, and a data
server. Each client has a role as data source. The web server role is to
simulate the mediator and wrapper in connection with data sources.
Having a data server helps us manage the internal ELIT data structures.
Appropriate Internet-connection: Reasonable bandwidth in a secure
environment is needed for ELIT.

Data Communication: Metadata and data stored in different clients are
accessible from web sever or mediator.

Development requirements: ELIT has been implemented using Oracle
91 database, Oracle 91 DS, Oracle java enabled web server OC4J for
development, and windows XP. ELIT can run and used in any java
enabled web server and on various operating systems such as UNIX,
Linux, and any other environment, which has the ability to run java

Applets.

74

Appendix B: User Interface Specifications

The following lists all forms and their corresponding internal data structures. Data

structures are related to the tables and views, which we already defined. For each form, a

screen shot will be provided.

Form Name Data Block Name Related Table Name
WH_TABLES WH_TABLES
CONDITION N/A
QUERY WH_TABLE_COLUMNS_V | WH_TABLE_COLUMNS_V
HAVING N/A
USER_BLOCK N/A
. WH_TABLES WH_TABLES
WH_TABLE_COLUMNS WH_TABLE_COLUMNS
WH_VIEWS WH_VIEWS
WH_VIEW_TABLE WH_VIEW_TABLE
WH_DISPLAY | WH-_VIEW_COLUMN_V WH_VIEW_COLUMN_V

WH_VIEW_CONDITION_V

WH_VIEW_CONDITION_V

WH_VIEW_GROUPBY_V

WH_VIEW_GROUPBY_V

USER_BLOCK N/A
XML_BLOCK N/A
XML_SOURCE_BLOCK N/A

Table 1: List of forms and related data blocks and their tables

75

Appendix C: List of Tables

ELIT internal data structure consists of several tables. These tables support IMDS and
DRT concepts, we introduced in this work. The following table contains table names,

column names, and a short description of each column.

Table Name Column Name Description
VIEW_CODE Unique view code.
TABLE_NAME Table name used by input query.
RECORD_NUMBER Record number to make a relation between different
DATA_REFERENCE_TABLE
DRT Rows.
COLUMN_NAME Table name, which input query table, contains.
VALUE Column value.
TABLE_CODE Unique table code.
WH_TABLES TABLE_NAME Table name, which is supposed to be used in a mediator.
XML_SOURCE Indicates if the source is XML.
COLUMN_CODE Unique column code.
TABLE_CODE Unique table code.
WH_TABLE_COLUMNS
COLUMN_NAME Column Name.
COLUMN_TYPE Column type.
VIEW_CODE Unique view code.
WH_VIEWS
VIEW_NAME View name.
VIEW_CODE Unique view code.
COLUMN_CODE Unique column code.
WH_VIEW_COLUMNS COLUMN_NAME Column Name.
OPERATION Aggregation operation for the virtual column.
FORMULA Having a formula instead of having a table column.

76

Table Name

Column Name

Description

WH_VIEW_CONDITION

VIEW_CODE

Unique view code.

SEQ_NUM

Unique sequence number.

PARENT_CODE

In case of having a sub query in a query, this column
indicates the parent query, which has been already
defined.

KEYWORD_TYPE

Condition operator like ‘AND’ and ‘OR’.

OPERATOR

Comparison operator.

FIRST_ARG_TEXT

Text argument in case of having text instead of table

column.

FIRST_ARG_CODE

Table column_code.

SECOND_ARG_TEXT

Text argument in case of having text instead of table

column.

SECOND_ARG_CODE

Table column_code.

WH_VIEW_GROUPBY

SEQ_NUM

Unique sequence number.

VIEW_CODE

Unique view code.

COLUMN_CODE

Column code.

WH_VIEW_HAVING

VIEW_CODE

Unique view Code.

SEQ_NUM

Unique sequence number.

PARENT_CODE

In case of having a sub query in a query, this column
indicates the parent query, which has been already
defined.

KEYWORD_TYPE

Comparison operator.

OPERATOR

Text argument in case of having text instead of table

column.

FIRST_ARG_TEXT

Table column_code.

77

Table Name

Column Name

Description

FIRST_ARG_CODE

Text argument in case of having text instead of table

column.

SECOND_ARG_TEXT

Table column_code.

SECOND_ARG_CODE

Unique sequence number.

Table 2: List of internal tables

78

Appendix D: ERD Diagram of the Main Tables

In this section, we introduce the entity relationship diagram ERD) of the entity sets and
relationships in ELIT. The main relations used in ELIT are WH_TABLES and
WH_TABLE_COLUMNS, which hold the metadata information. If a mediator has its own
repository and metadata information, these tables are not required.

Table WH_VIEWS refers to the entity set, which stores query information. For the
implementation purposes and working environment, we treat each submitted query as a
view. We remark that it is not a real view of the system but only a concept that we can
refer to later.

For storing information about query components, we used two main entity sets:
WH_VIEW_CONDITION and WH_VIEW_HAVING. These entity sets are used by lineage
tracing transformation functions. As explained before, for each individual condition in a
WHERE clause or HAVING clause, there is a tuple in the tables corresponding to these
sets. As discussed earlier in chapter 5, these tables have to be cleaned up after lineage
tracing.

DATA_REFERENCE_TABLE or DRT is the table that holds the metadata and data. This

helps to have intermediate results based on the user interest.

79

WH_VIEW_HAVING

VIEW_CODE
SEQ_NUM
PARENT_CODE
KEYWORD_TYPE
OPERATOR
FIRST_ARG_TEXT
FIRST_ARG_CODE
SECOND_ARG_TEXT
SECOND_ARG_CODE

DATA REFERENCE_TABLE

VIEW_CODE
TABLE_NAME
RECORD_NUMBER
COLUMN_NAME
VALUE

WH_TABLES

TABLE_CODE
TABLE_NAME
XML_SOURCE

A

WH_TABLE_COLUMNS

WH_VIEWS

COLUMN_CODE
TABLE_CODE

COLUMN_NAME
COLUMN_TYPE

> —tt
VIEW_CODE

A

VIEW NAMEfe

A

WH_VIEW_GROUPBY

SEQ_NUM
VIEW_CODE
COLUMN_CODE

WH_VIEW_CONDITION

VIEW_CODE
SEQ_NUM

WH_VIEW_COLUMNS

PARENT_CODE

KEYWORD_TYPE
OPERATOR
FIRST_ARG_TEXT
FIRST_ARG_CODE
SECOND_ARG_TEXT
SECOND_ARG_CODE

VIEW_CODE
COLUMN_CODE
COLUMN_NAME
OPERATION
FORMULA

Figure A-1: Entity relationship diagramb

80

Appendix E: List of Views

The following table lists system internal views and their definitions.

View Name Definition

V_TABLE_COLUMNS

TABLE_COLUMN) AS select
WH_TABLE_COLUMNS_V b.column_code

b.table_code

COLUMN_TYPE) AS select

a.VC_NUM column_code
,a&.VIEW_CODE view_code
,a.VTV_NUM vtv_num
,b.COLUMN_NAME column_name
WH_VIEW_COLUMN_V ,a.0PERATION operation
,a.FORMULA formula

,b.table_code table_code
,b.column_type column_type
from
wh_view_columns a,
wh_table_columns b

wherea.column_code = b.column_code

a.view_code view_code,
a.seq_num seq_num,
a.parent_code parent_code,
a.keyword_type keyword_type,
WH_VIEW_CONDITION_V | a.operator operator,
decode(a.first_arg_text,null,
(fl.table_name ||'.'||b.column_name),
a.first_arg_text) first_arg,

a.first_arg_code first_arg_code,
decode (a.second_arg_text,null,

a.second_arg_code second_arg_code,
fl.table_name f_table_name ,
b.column_name f_column_name,

81

(TABLE NAME, TABLE_CODE, COLUMN_NAME, COLUMN_CODE,
a.table_name, a.table_code, b.column_name,

, a.table_name]|'.'||b.column_name table_column
from wh_tables a , wh_table_columns b where a.table_code =

WH_VIEW_COLUMN_V (COLUMN_CODE,VIEW_CODE, VTV_NUM,
COLUMN_NAME, OPERATION, FORMULA, TABLE_CODE,

WH_VIEW_CONDITION_V (VIEW_CODE, SEQ_NUM,
PARENT_CODE, KEYWORD_TYPE, OPERATOR,
FIRST_ARG, FIRST_ARG_CODE, SECOND_ARG,
SECOND_ARG_CODE, F_TABLE_NAME, F_COLUMN_NAME,
S_TABLE_NAME, S_COLUMN_NAME) AS select

(f2.table_name ||'.'||c.column_name),
a.second_arg_text) second_arg,

View Name

Definition

f2.table_name s_table_name ,
c.column_name s_column_name
from

wh_view_condition a,
wh_table_columns b,
wh_table_columns c,

wh_tables f1,
wh_tables £f2
where
a.first_arg_code = b.column_code(+)

and a.second_arg_code = c.column_code(+)
and b.table_code = fl.table_code(+)

and c.table_code = f2.table_code(+)

WH_VIEW_GROUPBY_V

WH_VIEW_GROUPBY V (SEQ_NUM, VIEW_CODE, COLUMN_NAME
AS select

a.seq_num seq num,

a.view_code view_code,

c.table_name ||'.']||b.column_name column_name
from

wh_view_groupby a,

wh_table_columns b,

wh_tables c

where

a.column_code = b.column_code

and b.table_code = c.table_code

WH_VIEW_HAVING_V

WH_VIEW_HAVING_V (VIEW_CODE, SEQ_NUM, PARENT_CODE,
KEYWORD_TYPE, OPERATOR, FIRST_ARG, FIRST_ARG_CODE,
SECOND_ARG, SECOND_ARG_CODE, F_TABLE_NAME,
F_COLUMN_NAME, S_TABLE_NAME, S_COLUMN_NAME

) AS select

a.view_code view_code,

a.seq num seq numn,

a.parent_code parent_code,

a.keyword_type keyword_type,

a.operator operator,

decode(a.first_arg_ text,null,
(fl1.table_name ||'.'||b.column_name),
a.first_arg_text) first_arg,

a.first_arg_code first_arg_code,

decode (a.second_arg_text,null,
(f2.table_name ||'.'||c.column_name),
a.second_arg_text) second_arg,

a.second_arg_code second_arg_code,

fl.table_name f_table_name ,

b.column_name £_column_name,

f2.table_name s_table_name ,

c.column_name s_column_name

from

wh_view_having a,

wh_table_columns Db,

wh_table_columns c,

wh_tables 1,
wh_tables £2
where

a.first_arg_code
and a.second_arg_code

b.column_code (+)
c.column_code (+)

82

View Name

Definition

and b.table_code

and c.table_code

fl.table_code(+)
f2.table_code(+)

WH_VIEW_TABLE

a.vtv_num
'View'
c.view_name
c.view_code

b.table_name

b.table_code
a.alias_name

and a.tv_code

Decode(tvs_type, 'T','Table')

from wh_view_table_view a,

wh_tables b,
wh_views c
where parent_type = 'V!'

and a.parent_code = c.view_code

= b.table_code

WH_VIEW_TABLE (VTV_NUM, PARENT_TYPE, VIEW_NAME,
VIEW_CODE, OBJECT_TYPE, TABLE_NAME, TABLE_CODE,
ALIAS_NAME) AS select

vtv_num,
parent_type,
view_name ,
view_code,
object_type,
table_name,
table_code,
alias_name

Table 3: List of internal views and their definition

83

Appendix F: List of User Interfaces in ELIT

This section provides screen shots and main functions for each individual user interfaces
in ELIT. The order of presentation of these interfaces in this section is based on their
functionality as query formulation, processing, and tracing proceeds. We start with the
interface that manages the metadata information. It is used to accept, store, and update

the metadata information.

F-1: Table Definition

This GUI has been created to define new tables in a mediator-based system. Data come
from different data sources. Their sources could be structured or semi-structured models.
We consider relational and XML data and develop appropriate mapping functions. For
the XML files, we have introduced additional functions to read and map the XML
structure information to relational model.

We next introduce the query component interface. Using this one, a user creates a query
and submits it to the system for validation and processing. Query components can be
stored in the internal structures as soon as the query is parsed and evaluated correctly.
While system processes the query, the required data is stored in DRT. This technique may
prevent data to become inconsistent, when lineage tracing process is activated by the

uscer.

84

LT - Microsoft Interret Explorer

o G Ve Fovortes Tooks g B 4

D O 2] B D] Ve s G @SB WS T n
Address [) hetp:fvaha & | paiac.conconca.cobdudle _raccrdsmhOBHong_messagesmhOsars] 3 o ks »8 +
Yol [souwchwab [+ |ii1- ooty tlocker | Camat + Q@ hyraboot [Gunms '+ 5 Pecsorae. < LAY + {Son i <] S
2]

[TEM_NAME

[CATEQORY
|
ra

Figure A-2: Table definition GUI

F-2: XML Source Selection

The purpose of this canvas is having a graphical user interface to the network in order to

select the XML and/or XSD file.

85

ZAELLL - Micrasolt et Exglurer . =
Pl Edt View - Favorkes - “Toos Hel 5.
ORACLE' 8

P

T Aol darted. : : R . T] 4

Figure A-3: XML source selection GUI

ook ' Hep L
e

[samcrwas |- - P tttocer Uit = @t Yoot T Goens + 57 o+~ D taimn + [sorm -]

Jerypremp e

Figure A-4: XML structure view GUI

86

F-3: Query Component Creation

This GUI provides user a visual environment over the Web to define queries. Using this,
the user can write a unified query over heterogeneous data sources and enables the

system to store the query components.

L sa D owene qBveds £ L B e VDS
_parl.c3.conconda cabbuffer _recardsmOBdobug_messages=NObarm e |

Nt mml-!;ﬁg-mm— {-Cimet = @My vahoo! - £ Games - 50" Parsoneie D im0t < {montn ||

o
§: [|BALES.NUM_SOLD) NUM_EOLD
1571 FROM SALES

WHERE SALEB.ITEM_ID <> 1000
i AND SALESITEM_ID =» 100

Typr - Tavis e

T S

Sy

5% Vi Conomion

LA ,*.Emm._f..m_ﬂ___ -
£ BALES TEM_ID__ 11000 :

< TAND. £ SALES TEM_ID

NI CH

Figure A-5: View definition GUI

This interface contains several screens to select desired sources and their data items. The
sources are already defined in the IMDS table. This prevents any syntax or semantic
errors. User has the ability to create any SQL query, even those with aggregation

functions.

87

W LLLT - Microsult Internet Exploter

R E:) .« N i
|_pan.5.concorda,cotbuffer_records=NOtdebug_messagesanosarra =] [6o 1 iike 2 5‘4:
.
6| BALES STORE_ID ,BALES.ITEM_ID ,SUM(
{{8ALES.NUM_S0LD) NUM_S0LD i

2

THE 1T - M ronolt Internel Luplores : Sz el

s N T »
Lprenss P €05~ Bl VYR ;
X)_peri.c8.concordha.cotbuffer_rocords=NORdebuQ_messaoes=Notarra |
[Sawetvomb 1] (54 ooy Bocker | (et < G My Yahoo! * (1 Gainas 57" Personas =~ 9 LaH = {Son i [«
Py
g E Seiaci BALES STORE_ID SALES ITEM. D .SUMC
1 §:QALES NUM_SOLD) NUM_SOLD
oM su cs
-
=
£t
SR
[
14
r
T
r
=
.

Figure A-7: Column selection GUI

88

net gsepluree

f.ﬁfw""" Yigromn @i £ 5

S LE- o8

_p.mwmcmr- e, n-sma_j -Go uh*iv{;, -

[Search watr |+)= Pop-ip ot - CIMat » Gty vaboo! T Garmes > " Parscrats "= 13 Lkt = (3gnn | =] -

lact SALES STORE _ID SALES.ITEM_ID SUM(
ES NUM_EGCLD) NUM_SOLD

sstion it

Guey Black Beiord Emid Hah Windsw

TEM.ITEM_NAME
(TEM.CATEGORY

TEST_SALES PRODU

TEST_SALES NUMBE

8T_PRODUCTS PR

TEST_SALES 8TORE_.
TEST_SALES.DATE_S..

TEST_PRODUCTS PR...
TEST_PRODUCTB UN...

Figure A-9: Where condition, column selection GUI

89

e ®-Tvg
APWHExrrd_Dari.cs..concordie.cabbuffer_fecords=NOBdebug_ mm-«ou._] -so e By
[Seurchoweb [« it pop-iotlocker | Cmat = @ sy Yoot} Games '~ 7 Personels i+ SrLaCt o« [senin [2) -

Sewth: < povortis 4% vade € | <]

.40 COUNT(TEST SALES. |
9TORE_I)) STORE JO R e
| FROM [TEN TEST 4 mm ﬁlr_faooum

mowcuums-rsm_m.eamooucr_m)

sl

Figure A-10: Final select statement GUI

F-4: Lineage Tracing Process

This interface provides user choices to guide system to support lineage tracing. The
answer can be illustrated in an interactive mode, after applying the first side condition,
two side conditions, or complete lineage tracing. Each level generates a report containing

the tables, columns, and atomic data involved in providing query answers.

90

R - Miceusalt Internel Fplorer]
o ER_ View ‘Pavcrtes. Took . Hep L

e LT oy B ;.,"jf\é’;‘;})m Sop Paveres 48 Mede @[{’-;E-_Jﬁas S i
o [51 e.concord. _pari 5 concordia.cabbuffer_yacardsmhORlebug_messages=hOtarra | Y o [ts
wr-el [seereh wob [554~ moo-up mockar | -3mat - Gy Yahoo! -} Gome . 57" porsonals -+) taumet v [montn [-] :

acton Lt Qusry g Eials Help Wanduw

Figure A-11: Lineage tracing GUI

91

