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ABSTRACT

The Effects of Vortex Profile on Sound Generation and

Propagation in Non-uniform Flow
Tinghui Zheng, Ph.D
Concordia University, 2004
This study was motivated by airframe noise in aircraft and blade-vortex interaction

(BVI) noise in helicopters.

In this thesis, the sound generated by vortical disturbances in a subsonic flow
around solid surfaces, using different vortex velocity formulations, was investigated by
numerically solving the linearized or non-linearized Euler equations. Analytical solutions
for this general case are not available because the wavelength of the generated acoustic
wave is comparable to the vortex size, which is at variance to the compact source
assumption of the acoustic analogy. Numerical errors associated with the discretization
and boundary conditions were kept small using a high-order scheme with accurate

non-reflecting boundary conditions.

Stagnation flow on a flat plate, flow around a stationary and rotating cylinder, and
that about two cylinders were taken as prototypes of real-world flows with strong
gradients of mean pressure and velocity. Single and periodic vortices were taken into

consideration. In addition, the effect of vortex core size, the street distance, street
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frequency, and the Mach number of the mean flow on sound generation and propagation

were examined.

The sound wave strength was found to be proportional to the vortex strength. If the
acoustic pressure is normalized by the vortex strength, then all the distinct acoustic
pressure profiles will collapse into single curve. Sound generation by vortex interaction
with a solid surface, as well as its propagation, were found to be totally different between
the Taylor’s and Vatistas’s vortices. The vortex core size and vortex street distance have
minor influences on the acoustic pressure profile for sound waves radiated by the Vatistas
vortex. Nevertheless, the change of the core size or the distance between the vortex rows
significantly affects the sound pressure profile and sound directivity radiated by a Taylor

vortex.

The effects of the non-linear terms on sound wave properties were also investigated.
The non-linear influence was found to increase with the vortex strength. A lifting cylinder

is shown not only to increase the sound wave amplitude, but also to shift its directivity.

The developed methods and computer codes can be used in the future as platforms
to more elaborate methods that will predict the noise generated by multi-element airfoils,
and the undercarriage of an aircraft. This will help reduce the need of costly, time

consuming, wind tunnel and field experiments.
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Chapter 1

Introduction

1.1 Research Motivation

Vortices incident to a rigid body can produce vibrations and substantial unsteady
aerodynamic loadings. Vortex-Body Interaction (VBI henceforth) is thus of importance to
several industrial devices. Although the general theme of VBI has been under scientific
scrutiny for many years, much less is known about the noise generated by vortices. In
particular, eddies that are convected by a non-uniform flow near the rigid surface may be
distorted by the flow, and so radiate sound waves. Furthermore, the emanated waves may
be redirected, amplified or weaken while propagating through the non-uniform flow.
Because of numerical and experimental impediments, several of the associated

aeroacoustic features have not yet been adequately understood.

The problem with airframe noise (the non-propulsive noise of an aircraft in flight),
is most prominent in the landing phase of a flight, where the engines do not operate at full
thrust. In particular, the deployment of the undercarriage gear (wheels, axles, struts,

shafts), along with the high-lift devices such as trailing-edge flaps and leading-edge slats



appear to be a major source of airframe noise. Advances made in reducing engine noise
have led to an increased awareness of landing gear noise. Consequently, these have
prompted computational studies with an aim to understand the landing gear aeroacoustics.
In the past, this area did not receive much attention from researchers. While part of the
landing gear noise may be explained by wing and fuselage turbulent boundary layers,
shedding of vortices from solid objects (wheels, axles, struts) interacting with
downstream rigid surfaces is also an important source of noise production. Periodic
vortices, which are deforming in a non-uniform mean flow in the vicinity of a rigid
surface, create repeated acoustic disturbances. As a result, the corresponding sound is
often stronger than the sound produced by turbulent eddies. Impulsive noise-generation in
multi-element airfoils is caused by surface-vortex interaction (SVI), which results from
the close proximity of trailing edge flaps to the main airfoil. Trailing edge wakes impinge
into an leading edge of the flaps and generate sound. The sound amplifies as it propagates
upstream, reflects from the main airfoil surface, and refracts into the mean flow. Noise
emitted by the slot (gap) ahead of the leading edge of the flap, becomes the major source
of aircraft noise in the landing stage of the flight. Experiments have shown that SVI tonal
single-frequency noise exceeds the broadband noise caused by unsteady turbulent
boundary layers and wakes. The SVI phenomenon causes vastly different noise patterns

when multi-element airfoil design differs even slightly.

The high noise levels produced by aircraft and helicopters (including tiltrotors) are



unacceptable. Their adverse environmental impact, particularly during descent and ascent
from airports, has been identified as a major obstacle in receiving civil acceptance. With
the anticipated demand for integration the tiltrotors into the civil transport arena, the
noise sources of helicopters (including tiltrotors) must be well understood, modeled, and
predicted. The high noise levels of helicopters in descending flight operations are mainly
caused by an impulsive noise-generating mechanism known as BVI. This occurs because
of the close proximity between the main rotor blades and the vortices generated by them
during the descent flight (Gervais 2001, Janakiram 2000). The BVI noise is particularly
bothersome, because the BVI events commonly occur near the ground as the rotorcraft
slows and descends for landing. The frequency of noise introduced by this is in a range
that humans are extremely sensitive to (Collis, et al. 2002). Thus, the BVI can

substantially increase environmental noise pollution.

Another principal noise source mechanism is due to the recirculating fountain flow
phenomenon (Liu et al. 1998, Veigh 1985). Fountain flows occur when the downwash
from the rotors strikes the wings, and is redirected laterally toward the centerline of the
fuselage. When the flows originated from the opposing rotors meet, the flow is forced

upward to form a “fountain”.

The above mentioned phenomena are related to vortices distorting in a non-uniform
flow, vortex impingement on solid body, sound reflection and sound refraction. The

current study will provide a computational insight into the physical mechanisms of sound



generation by VBI and sound propagation in the presence of strong mean flow gradients.
The computational methodology implemented in this study allows the prediction of the
directivity and strength of sound waves caused by deforming vortices. This study is a

necessary step for future noise control efforts.

1.2 Literature review

The literature review contains five sections. In the first section, the vortex profiles
used for acoustic modeling are reviewed. In Section 1.2.2 previous computational
aeroacoustic approaches are appraised. In Section 1.2.3, the orientation of the vortex and
the axis of the body for the VBI phenomena are assessed. Furshermore, the previous
research conducted for the parallel vortex body interaction (that is, the focus of our study),

is reviewed in detail.

1.2.1 Vortex profiles

In aeroacoustic modeling, the choice of the vortex model influences strongly the
predictions (Bhagwat & Leishman 2002). Tip vortex models that accurately predict the
aerodynamic loads on helicopter blades are needed. The potential vortices, that are often
used, do not take into account viscous effects in the wake. On the other hand, a complete
description of a viscous, turbulent, trailing vortex requires a solution of the complete
Navier-Stokes equations, which is not feasible. Analytical solutions to these non-linear

sets of equations are not possible. Even numerical solutions are deterred by formidable



computational costs and technical difficulties. Various closed form solutions obtained by
further simplification of the governing equations are used instead (Burgers, 1948; Taylor,

1918; Vatistas, 1991, 1998).

A. Steady, intense vortices

The most elementary vortex model was proposed by Rankine in 1858. This
involves a linear tangential velocity distribution inside the vortex core, and a hyperbolic
variation outside. This formulation is an exact solution to a simplified form of the
Navier-Stokes equations and it exhibits the main features of a more realistic vortex than a
pure potential vortex. However in Rankine’s model, the swirl velocity and vorticity
distributions are discontinuous at the vortex core boundary. In addition, both the radial

and axial velocity components are zero, i.e.,

Lr 0<r<R,
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where R, is the radial distance from the vortex axis to the position of the

maximum swirl velocity, and I' is the maximum vortex circulation.

Taylor (1918), proposed a vortex formula that corresponds to the vortices created

by localized stirring for a short period of time. It begins with singular tangential velocity



and vorticity at the origin. Notably, this vortex profile assumes a zero total circulation and
constant angular momentum. Also, both the radial and axial velocity components are zero
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given as ['/2zv , is the vortex Reynolds number, v is the kinematic viscosity. Other

variables represent the vortex properties as mentioned previously.

Burgers (1948) put forward a vortex formulation which improves on the correlation
between the observed and predicted values for the tangential velocity. However, it
assumes a linear profile for the radial velocity and a constant axial velocity that makes

the flow unbounded, i.e.,
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Scully (1975) suggested an empirical tangential velocity distribution, in which the

smoothing effects of viscosity in the neighborhood of vortex core were taken into



consideration. However, Scully’s vortex model underestimates most of the measured

values of the tangential velocity near R, .
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Vatistas (1990) proposed a family of algebraic velocity profiles for stationary

vortices, i.€.,
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where n can take values from 1 to oo. This model is now known as the Vatistas
first-generation vortex profile. The n=2 member of this family, has been found to
agree well with experiment data (e.g. Bhagwat and Leishman, 2002), and turns out to be
a solution of simplified Navier-Stokes equations too. It also exhibits the key features of a
viscous vortex: when » goes to oo it behaves like a free potential vortex, but when

r goes to zero, it becomes a forced vortex. Furthermore, this vortex model appears to be



very versatile; given different values of »n other known self-similar vortex models can

be obtained.

Vatistas(1998) presented a second-generation vortex model that offers wider
latitude. Depending on the choice of the scaling parameters, the flow in the azimuthal

plane can assume either a one-cell or two-cell configuration:

/R 2"
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where 5,3,k and m are the scaling constants that must be chosen in such a way

as to allow the tangential velocity to attain its maximum value at » = R,..

According to the boundary condition at infinity (y,, - I forr — ), the constant

C, is given by
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Fork <1.0, a one-cell vortex, which is similar to the first-generation Vatistas vortex,

will be achieved. Its radial velocity is negative and increases in value as the radius



becomes smaller. Fork =1.0, a saddle-like profile for the radial velocity is acquired
(v,=0 atr=0). Fork >1.0, a two-celled vortex that is characterized by an alternating
sign of the radial velocity at the cell interface is obtained. Until now, the two-cell vortex

model] is considered up to the scaling constantk =1.12 (Vatistas, 1998).

Adopting the swirl velocity distribution of the Vatistas vortex family when n=2,
Bhagwat and Leishman (2002) give vortex velocity profiles that are written in terms of a
single integer exponent. The viscous core growth is given by a semi-empirical relation for

the turbulent viscosity that scales as a function of the vortex Reynolds number, i.e.,

r
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where A is a constant that may be determined based on the drag of the generating

wing, i.e.,

Dy
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where Dy is the drag of the generating wing, p is the density, ¢ is the eddy

viscosity coefficient and v is the kinematics viscosity



B. Unsteady vortex profile

Assuming a constant angular momentum of the eddy, Taylor (1918) proposed a

decaying vortex of the form

M
v, (r,t) = E 4;2 exp(—r2/4vl)

R.(1)=+/2v

(10)

where M is the constant angular momentum, v is the dynamic viscosity and p

is the density.

Based on the time dependent Navier-Stokes equations, Oseen (1912) and then

Lamb (1932) formulated the decay of an originally potential vortex model using,

r r?
Vao(r,t) = E—ﬁ;[l -exp[—z‘;H an

R.(t) = VJaavt

where @ =1.25643 , T is the maximum vortex circulation, v is the vortex

dynamic viscosity.

Yasser (2003) presented a theoretical study on the decay of strong isolated vortices.
Based on the tangential momentum equation and using the standard separation of
variables technique, the space-time velocity variation was given in terms of a

Fourier-Bessel series.
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1.2.2 Computational Aeroacoustics

Computational aeroacoustics, which is the science of noise generation and
propagation through airflows, is a relatively young discipline compared to other more
classical fields of mechanics. Although the sound equations are a particular form of the
equations goveming fluid flow, acoustic perturbations are typically at least 10 times
weaker than the corresponding hydrodynamic perturbations and a thousand times smaller
than the mean flow that carries them. On the other hand, acoustic wavelengths are

typically larger than or equal to the corresponding structures in the flow. (Djambazov et

al. 1998).
A. Analytical and Computational Approaches in Aeroacoustics

Typically, in aeroacoustics the solutions can be grouped into frequency-domain
solution and a natural variables (x,t)solution (which was adopted in this study). Within
the aeroacoustics field using natural variables, the different approaches can be

categorized into three groups.

The first group makes use of the acoustic analogy. The most renowned acoustic
analogy is by Lighthill (1952), who rearranged the mass and momentum equations such
that the left-hand side represents an equation that describes the propagation of an acoustic

wave, in a medium at rest, i.e.,

1 8° 2 L2 0T,
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The forcing function on its right-hand side of Eq. 12 represents a distribution of
acoustic sources in the ambient flow at rest, replacing the complex unsteady flow. Ffowcs
Williams and Hawkins (1969) proposed the now classical FW-H equations, which
generalized Lighthill’s acoustic analogy to include the effects of very general types of
surfaces and motions. The FW-H equation includes a quadrupole source distribution in
the volume, and monopole and dipole sources on the surface. Mohring (1978, 1979), put
forward the vortex sound theory for predicting the sound from two and three-dimensional,

acoustically compact, compact vortical flows.

In the analysis of the first group, the computation of sound generation and
propagation is carried out in two steps. First, the source terms in the near-field are
obtained by traditional computational fluid dynamics (CFD) techniques. Next, the
aerodynamic results are taken as an. input in the acoustic analogy to compute the far-field
acoustic field. This group of approaches can compute noise directivity on the ground in
an economical way, because in the far field the flow is actually uniform. However, all of
the acoustic analogies are based on a variety of assumptions such as compact source and
low Mach number. Acoustically compact sources (including a vortex) mean that the size
of the acoustic source is much smaller than the wavelength of the acoustic waves. In fact,
in many practical cases, the wavelength of generated acoustic waves is comparable to that
of the vortices. The advantage of numerical simulation is that this compact source

assumption is not needed.
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The second group of approaches is to make use of acoustic/viscous splitting
method that is based on the expansion about incompressible flow (EIF) approach. In
sound propagation problems the effects of viscosity and heat conduction can be neglected
and the fluid motion can be determined by solving the linearized or the non-linear Euler
Equations. In the EIF method, the instantaneous velocities and density are treated as the
summation of the steady mean flow and the unsteady disturbances. Substituting the sums
to the Euler equations, the dynamic equations for unsteady disturbance components of
mass and momentum fluxes are obtained (Goldstein, 1976). The mean flow can be
obtained analytically or numerically using low-order schemes of CFD. However, it is not
an easy task to obtain steady state solution for the background flow and the acoustic
solution for disturbances simultaneously. Therefore, a multi-stage approach has been
implemented by many researchers: (i) to obtain steady state solution using traditional
low-order schemes; (ii) to find unsteady wave propagation solution using high-order
schemes for space and time to precisely capture the sound pressure. This approach was
developed by Hardin and Pope (1992), and later expanded to compressible and unsteady

mean flow by Shen and Sorensen (1999).

This approach splits the direct simulation approach into a background flow problem
and a perturbation problem, and does not allow for acoustic backscatter into the flow
solution. It makes possible computation of aeroacoustic noise generation and propagation

by viscous, unsteady, non-uniform flows in complex domains that pose substantial
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advantage over the first group of methods. On the other hand, the computing cost
required is much smaller than that for the CFD solution of the time-dependent subsonic
flowfield. When the radiated noise is originated from deforming relatively large
(compared to the size of turbulent eddies) vortices in the flow about the solid surface, the
mean velocity gradients are still significant. Therefore, integral methods, which are often
used to solve the far-field noise, are not applicable to this domain; only the Euler
equations may account for the sound propagation in a non-homogenous flow. Thus, this
approach was adopted for the current research although the first stage (viscous vortex
generation) was replaced by given initial conditions or forcing term in the Euler

equations for the disturbances.

The third group of approaches is to make use of direct numerical simulation (DNS),
where both the fluid motion and the generated sound are directly computed by means of
the Navier-Stokes equations. One of the advantages of DNS over the methods in the first
two groups is its capability to compute the generation and propagation processes of the
sound in the near and intermediate fields, without suffering from restrictions such as low
Mach number, high Reynolds number and compactness of the source region. DNS
methods are specially suited to model broadband noise generated by turbulence and
dedicated frequencies that appear from vortex-structure interactions. This approach
requires tremendous computational resources. Some authors solve the Euler equations for

short-time, high-speed sound-generating phenomena such as shock wave-vortex
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interaction and call it Direct Numerical Simulation (e.g., Inoue el al., 2002) although

these authors neglect viscosity and turbulence.

B. PDE discretization

The acoustic waves are non-dispersive and non-dissipative in their propagation, and
are particularly susceptible to numerical dispersion and numerical dissipation.
Numerical dispersion distorts the phase between various waves and numerical dissipation
reduces the gradients in the solution (Tam, 1995). One straightforward way to overcome
this obstacle is to use a very fine grid along with a standard low-order method. Although
such an approach is possible in principle, such calculations are not truly feasible because
of such dramatic increase of computational time and memory requirements. To accurately
resolve the propagation of the acoustic wave finite difference and time-marching schemes
that have low numerical dissipation, and accurately represent the dispersion relation for
the inviscid equations are required (Inoue et al, 1999). The following high-order schemes

are widely used in computational aeroacoustics.

Lele(1992) analyzed the implicit-in-space high order finite difference scheme, with
spectral-like resolution and a compact stencil. This represents accurately the exact result,
over the broad range of length scales that can be realized on a given mesh of reasonable
size. Choosing different coefficients, forth-order, sixth-order or eighth-order compact

schemes can be obtained on a three-point stencil. Furthermore, after the coordinate
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transformation, this scheme may be used on non-uniform meshes, and a variety of

boundary conditions may be imposed.

Tam & Webb (1993) introduced the now classic explicit DRP
(Dispersion-Relation-Preserving) finite difference scheme. The DRP scheme is fourth-
order of accurate using a seven point stencil in space and a third-order in time. The DRP
approach minimizes the level of dispersion and dissipation by adjusting the

central-difference scheme on a wide stencil to match the characteristics of the wave.

In terms of dispersion properties, the fourth-order DRP scheme is similar to the
fourth-order compact scheme. The DRP scheme does not need to solve 3-diagonal
matrices but a smaller time step is needed for the DRP scheme than that for compact
schemes. And a smaller time step is necessary for the stability of a wider stencil. Both
compact schemes and DRP explicit schemes require adopting special one-sided near
boundary stencils. However, the DRP scheme is less warrant in terms of near-boundary

stability of integration in time.

Runge-Kutta (RK) methods are widely used in CFD to discretize the time
derivative because of their flexibility, relatively large stability limits, and ease of
programming. However, classical Runge-Kutta methods retain both dissipation and
dispersion errors. When classical Runge-Kutta schemes are used in wave propagation

problems using high-order spatial finite differences, to be time accurate in resolving the
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wave propagation, the time steps allowed are much smaller than those dictated by the

stability limit analysis.

To satisfy the low dissipation and low dispersion requirements, several Runge-Kutta
schemes have been developed by various authors. They may have a slightly different
number of stages, memory requirements, and may be explicit or implicit in time.
Consequently, they may have moderately different time steps that are given by a
von-Neumann analysis. Williamson (1980) conceived a fourth-order, five sub-stage, low
storage Runge-Kutta method, which was proven to be low in dissipation and dispersion
errors. The schemes are low-storage in the sense that only two storage locations are
required for the time advancement; one for the time derivative and one for the variable
itself. Hu and co-workers (1996) showed that it is possible to choose the coefficients of
the Runge-Kutta schemes, so as to minimize the dissipation and dispersion for the

convective wave equation.

C. Boundary condition

Aeroacoustics problems are defined on an infinite or semi-infinite domain. The
numerical solution of the discrete equations requires truncation of the infinite domain,
and the imposition of artificial numerical boundary conditions at the edges of the
computational domain. These artificial boundaries not only must ensure non-reflection of

acoustic waves, but must also account for the direction of the mean flow with respect to
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the boundary.

The theoretical basis for nonreflecting boundary conditions stems from a paper by
Engquist & Majad (1977), which discusses both ideal nonreflecting boundary conditions
and a method for constructing approximate forms. Also, a paper by Kreiss(1970) analyzes
the well-posedness of initial boundary value problems for hyperbolic systems. Since then,

a variety of nonreflecting boundary conditions have been developed.

The most widely used nonreflecting boundary conditions for the Euler equations
are the characteristics-based inflow and outflow boundary conditions. These are formed
by a generalization of the one-dimensional Euler equations to the multidimensional cases.
Thompson (1987) and Giles (1990) proposed a nonreflecting boundary condition for the
linearized Euler equations. Watson et al (1991) and Lele (1992) modified Thompson’s
boundary condition for use with the nonlinear Navier-Stokes computations of open flow
problems. The use of characteristic variables is quite straightforward and robust,
especially for up-winding schemes. However, the accuracy of characteristic boundary
conditions is limited by the one-dimensional assumption of wave propagation, because
they usually show the best accuracy when the wave propagation angle is normal to the
boundary. When the wave is convected in an arbitrary direction, the performance of a

one-directional characteristic based scheme deteriorates.

Another type of widely used nonreflecting boundary condition is based on far-field
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asymptotic solutions. Engquist & Majda (1977) proposed a boundary condition that
would replace the wave equation at the grid boundary, by the one-way wave equation for
acoustic and elastic waves. These boundary conditions are suitable for angles of
incidence smaller than 45 degrees. Bayliss & Turkel (1980) obtained a sequence of
radiation boundary conditions for the wave equation with axial and spherical symmetries.
Keys (1985) and Higdon (1986) independently proposed an improved boundary condition
that successfully eliminates the artificial reflections from arbitrary angles of incidence.
The asymptotic solution is accurate when it is applicable. However, the asymptotic forms
are normally difficult to obtain, this type of boundary condition may not be applicable in
many situations. In addition, to implement the asymptotic solution-based boundary
condition, the computational boundary has to be placed further in the field to achieve the

accuracy, which will mean a great cost of computation.

A third type of widely used nonreflecting boundary condition is the buffer zone
technique, in which a non-physical computational domain is introduced to adjoining the
physical computational domain, and the governing equations are accordingly modified to
absorb the incident waves. The buffer zone solutions serve to prevent contamination of
the solution in the physical domain of interest by the reflections from the computational
boundaries. Various types of buffer zone techniques have been used in flow simulations.
For instance, Israeli and Orszag (1981) tried grid-stretching and numerical damping to

damp the numerical solution in the buffer zone. Colonius et al. (1993) used low-pass
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filters to filter the numerical solutions in the extra zone. Ta’asan and Nark (1995)
modified the governing equations in the buffer zone to change the orientation of the
characteristics. The mean flow was accelerated to a supersonic velocity toward the end of
the added buffer sub-domain, thus softening the need for perfectly nonreflecting
boundary conditions. The accuracy of buffer zone methods depends on the gradualness in
which thee different parameters are varied inside the buffer zone. Moreover, the added
buffer zone is usually required to be of substantial length for the method to be effective.

Because of this, increase in computational cost can be quite significant.

The forth type of nonreflecting boundary condition, called the perfectly matched
layer (PML) technique, was first introduced by Berenger (1994) for absorbing
electromagnetic waves of the Maxwell equations. Hu (1996) gave PML equations for
absorbing acoustic waves of the Euler equations. As a follow-up to Berenger’s
formulation, Hu first used split variables in the PML domain. However, with split
variables numerical instability can occur in the PML domain, and ruin the numerical
solution in the computational domain. Hu (2001) proposed to use original physical
variables in PML domain, which is proved to be stable and well-posed. The PML
technique and the other buffer zone techniques, have an added zone which is the
non-physical computational domain to reach the non-reflection boundary condition.
Moreover, the equations to be used in the added region in the PML technique, are

constructed in such a way that, theoretically, the outgoing waves will not cause any
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reflection when entering a PML domain for any frequency and angle of incidence, which

the buffer zone technique can not reach.

If there is either still media or uniform background flow, there should be several
PML forms available. However, for advective problems with non-uniform flow, no
general stable solution is known. Therefore in this study, a considerable effort has been

put to implement appropriate boundary conditions.

D. Vortex-body Interaction

Based on the orientation of the incident vortex with respect to the leading edge or
surface of the body, vortex body interaction can be categorized into three parts:(a)
parallel or two-dimensional blade vortex interaction where vorticity along the axis of the
vortex is perpendicular to thex, yplane of the body, (b) streamwise or perpendicular
vortex interaction where the axis of the vortex is aligned with the direction of the incident
flow and perpendicular to the leading edge of the body, and (c) normal vortex interaction
where the axis of the vortex is perpendicular to the direction of the incident flow and

nominally orthogonal to the direction of the leading edge of the body (see Fig.1.1).

1. Normal vortex-body interaction

Normal vortex-body interaction is particularly representative of rotorcraft
aerodynamic problems. Namely, the impingement of rotor tip vortices on the vehicle

empennage, airframe tail section and tail.... during hover and low-speed flight. This BVI
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leads to strong impulsive forces and moments on the vehicle (Sheridan & Smith 1980; Bi
& Leishman 1990; Bi, Leishman & Crouse 1993). For normal vortex body interaction,
some experiments (Harvey & Perry 1971; Barker & Crow 1977; Brand et al. 1989;

Krishnamoorthy et al. 1999), and numerical investigations (Harvey & Perry 1971; Affes
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Figure 1-1 Configuration of vortex—body interaction (VBI): (a) parallel VBI, (b)

streamwise VBI, (c¢) normal VBI.

et al. 1993; Marshall & Yalamanchile 1994; Krishnamoorthy et al. 1999; Gossler &
Marshall, 2001) have been done. Unlike the movement of the vortex about the body (for
parallel or streamwise vortex body interaction), which involves either direct impingement
upon the body or a miss, a normal vortex-body interaction involves an unavoidable
collision with the leading edge of the body and distortions of the vortex structure are very

rapid. Also the separation of the boundary-layer in the adverse pressure gradient region,
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leads to the ejection of (secondary) vorticity generated on the body into the surrounding
fluid. The secondary vorticity interacts with the original (primary) vortex, and can lead to
such consequences as vortex rebound from the surface or a breakup of the vortex into

small-scale turbulence (Gossler & Marshall, 2001).

2. Perpendicular vortex-body interaction

The study of the encounter of a streamwise vortex, with a blade or airfoil is mainly
motivated by its affect on the lift, and on the blade and acoustic effects, specifically the
impulsive noise. Impulsive noise is generated as a consequence of the unsteady lift,
experienced, during the subsequent parallel blade vortex interactions. To better predict
this noise, the accurate knowledge of the vortex parameters is required, namely, the
vortex core size, the strength and the circulation distribution. A perpendicular blade
vortex interaction can substantially alter the character and development of a trailing
vortex even when the vortex core passes some distance from the blade. Therefore,
perpendicular BVIs can substantially influence the BVI noise generated by the

subsequent parallel blade vortex interaction.

The experimental studies on perpendicular vortex interaction by Ham (1974, 1975),
McAlister & Tung (1984), Rockwell (1993), Mayori & Rockwell (1994), Wittmer &
Devenport (1999), and the numerical studies on perpendicular vortex interaction by Rizk

& Gee (1992), Gee et al (1995), Kandl et al. (1995), Rizzetta (1996), and Visbal (1994,
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1995, 1997), identified some key physical features of the encounter of a streamwise
vortex with blade or airfoil. They are: (a) the displacement of the trajectory of the vortex
in the spanwise direction arising from image effects and the associated mutual induction,
(b) the generation of a local separation zone on the surface of the blade, (¢) the onset of a
vortex breakdown, and (d) the vortex passes the blade without immediate change in the
form and structure of its core (Gossler & Marshall, 2001). However, outside of the core
the flow is modified by the blade wake, which contains negative streamwise vorticity.
This negative vorticity and the turbulent motions of the blade wake, trigger the turbulent
decay of the vortex core resulting in an increase in its size, reduction in its strength, and

loss of circulation in the flows.

3. Parallel vortex-body interaction

The investigation of parallel vortex-body interaction (which this study focuses on),
is mainly concerned with its impulsive BVI noise. Non-impulsive noise prediction (i.e.,
thickness and loading noise) can now be accomplished routinely, and with great
confidence for a steady rectilinear flight. Since the prediction of the rotor flow field and
aerodynamic state is challenging, the prediction of vortex-body-interaction noise is even
more difficult. According to extensive experiments on the topic, the nearer the parallel the
tip vortex is to the blade at the time of interaction, the greater the noise radiation. In fact,

a perpendicular interaction, results in little noise (Widnall, 1971).
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The problem of the numerical simulation of VBI noise is still beyond the
capabilities of direct numerical simulation, so hybrid methods are used in most practical
cases. The idea is to divide the physical space of sound into three domains, in which
specific physical mechanisms are simulated using the most adequate set of equations with

the cheapest discretization strategy (see Fig. 1.2).

Local turbulence prediction :
Unsteady CFD (DNS, LES, unsteady RANS)
Steady CFD (RANS) + stochastic model

i . o
Low turbulence |
Non-uniform |
mean flow

Outer region
with uniform Acoustic propagation
flow through inhomogeneous
flow using
Integral methods : Euler equations

- Acoustic analogy
- Kirchhof¥ integral
- BEM

Farfield
¢ observation

point

Figure 1-2 Physic space of noise generation and possible hybrid strategies (from Sagaut

et al. 2002).

The wake and boundary layer, which are either turbulent or highly viscous, serves
as a nursery of vortices. The thickness is of the order of the airfoil thickness — say 0.1 m.

In this stage, the fluid dynamics of the vortex and the aerodynamics of the blade are the
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main concern. Ziada & Rockwell (1982) visualized the deformation of the vortex
structure, during direct and nearly-direct BVI in inviscid flow. Straus et al. (1988)
measured airfoil surface-pressure variations during parallel BVI (including near head-on
cases), and reported a large flow separation caused by BVI. Wilder et al. (1990)
visualized a sequence of interactions of a blade with the oncoming vorticity and reported
that a secondary vortex is induced by the incident vortex. Tucker & Conlisk (1992)
assumed inviscid flow and employed a large-scale vortex with constant vorticity to
determine the initial stages of vortex deformation. By incorporating the viscous effect,
Lee & Bershader (1991) clearly demonstrated severe vortex distortion during parallel
BVI. Lee & Bershade (1994) calculated the tangential velocity profile of a convecting
vortex from measurements and independently obtained the density and pressure
distribution of the vortex, and the flow separation arose in both the experiment and the
computations. Howe (1995) provided a basis for relating the unsteady loading to the
distortion of the incident vortical structures in incompressible viscous flow. Additional

information can be found in the article by Rockwell (1998).

The non-uniform mean flow around multi-element airfoil, landing gear etc., where
the viscous effects are minor. Deformation of vortices, propagation and refraction of
sound waves occur in this domain. The thickness of this area is 1 to 5 chords lengths =1

to 10m.

In the near field, the mean flow velocity gradients are still significant. The FW-H or
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Kichroff acoustic analogies do not account for the non-linear convection, so these
methods are not suitable for near-field noise prediction. The linearized Euler equations
can handle refraction and reflection of the sound waves in non-uniform mean flows in the
presence of a rigid surface. Therefore, this means that they are capable accounting for
sound propagation in non-homogeneous flow. In comparison, much less work has been
done concerning near-field noise prediction. The amplification or weakening of sound
propagating in non-uniform flows, has attracted considerable researchers, but the
researches are mainly restricted to one-dimensional mean flow. Howe (1976)
demonstrated the downstream amplification, which is a result of the Doppler effect.
Atassi & Grzedzinsky (1989) considered the propagation of unsteady disturbances in
incompressible potential mean flows, that is, around bodies with a stagnation point. They
suggested a single Poisson equation of wave propagation for each single source to replace
all of the governing equations. This significantly simplifies the governing equations.
However, their approach is limited to the immediate vicinity of the stagnation point, and
is not applicable to two-dimensional flows. An integral equation of the Fredholm-type for
the acoustic velocity potential is also used for the acoustic problem, in which additional
assumptions and simplifications are needed to perform the integration. Howe (1989)
studied the noise generation due to interactions of a mean flow with vorticity regions in
the presence of rigid boundaries. He made use of Lightill’s acoustic analogy to solve the
propagation of sound through the mean flow, with a steady vorticity given in advance.

Lee et al. (1994) conducted an experimental and computational study of head-on parallel
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blade-vortex interaction. In this study, the detailed structure of a convecting vortex was
analyzed through independent measurements of density and pressure distribution across
the vortex center, and where viscous effects were thought to play a significant role in
head-on BVIs. Povitsky (2001, 2002) simulated the propagation of acoustic waves
originating from cylindrical and spherical pulses and single vortices (the Taylor vortex)
convected in a non-uniform mean flow in the presence of a rigid wall or a circular
cylinder. In recent study (Povitsky, Zheng & Vatistas, 2004), the influence of the vortex
profile on sound generation, propagation and directivity was investigated using the
linearized Euler equations. The zero-circulation Taylor vortex model, and the
non-zero-circulation Vatistas’ vortex model with n=2 were considered. It was discovered
that the strength, directivity, profile and sector of influence for acoustic waves coming
out of the Vatistas vortex were quite different from the ones generated by the Taylor

vortex model.

Far field noise is at very long distance from the sound source, where the flow can
be assumed uniform. The distance is around 10 m to 100 m. At this location, the effects

of landscape, wind, and buildings on the ground should be taken into consideration.

In the last twenty years, considerable progress has been made to understand, as well
as to predict, BVI far field noise. Many experiments have been performed to obtain the
blade airloads and noise data on the ground (Lee & Mosher, 1979; Maisel &Harris, 1981;

Conner & Wellman, 1994; Mosher & Light, 1994; Polak & George, 1996, Polak &
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George, 1998; Boyd & Burley, 2001). These experiments concluded that the intensity of
BVI noise is strongly dependent on the following factors:(i) tip vortex strength and
structure, (ii) distance between the shed vortex and the subsequent blade, (iii) blade

loading at the time the vortex is generated, and (iv) blade loading during BVI.

For the numerical simulation of far field noise, a variety of indicial,
boundary-element and CFD methods has been used to predict the aerodynamics. These
are combined with FW-H or Kirchhoff methods for predicting the far-field acoustics.
Howe (1976) provided a framework for assessing the generation of sound by parallel
vortex-airfoil interaction. Widnall & Wolf (1980) pointed out that the tip vortex structure
can significantly affect the magnitude, of both the unsteady lift and the transient acoustic
signal. Brentner & Farassat (1994) have reviewed the acoustic theory and the
development in BVI noise prediction. Rahier & Delrieux (1997) used a rotor wake roll-up
model and the FW-H equation for BVI noise prediction. They concluded that a rotor
wake roll-up model is better for BVI noise prediction. Lily (2001) discussed the several
sources of airframe noise and their major characteristics, and pointed out that the
prediction of airframe noise depends on the availability of a space/time accurate unsteady
flow database for the flow-over the complete aircraft and its components. Caradonna et al.
(2000) have reviewed the methods for the prediction of blade-vortex interaction noise.
One of the outcomes of the computational work was the TRAC code, which was

specifically developed by NASA to predict the noise far field of tiltrotor aircrafts. The
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TRAC system is found to very accurately predict, the peak value of the BVI sound pulse
and its general shape. However, the two side peaks are not evident in the computations,
and the computed pulse width is approximately double that of the experimental data

(Kitaplioglu & Johnson, 2002).

In the current study, the radiated noise results from sources located near solid walls,
where velocity gradients are still significant. In this case, the discretised Euler equations,
which may account for the propagation in non-homogeneous flows, was adopted as the
governing equations for the sound generation by VBI and sound propagation in

non-uniform flow.

1.3 Contributions

In summary, because of the numerical and experimental obstacles involved, many
aspects of the aeroacoustics phenomena related to airframe noise or blade vortex
interaction noise have not yet been understood. Specifically, compared with the far-field
noise prediction, much less is known about the noise generation and propagation in

non-uniform flows.

To simulate numerically the sound generation and propagation in a non-uniform
flow, it is important to have computational tools with high-order numerical schemes,
high-order time integration methods and elaborate artificial boundary conditions. To

understand the mechanisms of vortex-body interaction noise, we should be able to predict
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the pressure quadrupole generation and the radiation of acoustic waves.

The objective of this research is to develop high-performance computing tools for
aeroacoustic predictions. The developed tool will then help provide insi ght into the
physical mechanisms and the influence that the strong mean flow gradients have on the
directivity and strength of sound waves generated by a deforming vortex while
propagating in such a flow. This research is are aiming at to numerically examine the

effect that the various vortex profiles have on the generated sound wave.

The sound generation, propagation, and refraction in a non-uniform flow around a
solid surface were analyzed in the current study for a sequence of increasingly complex

configurations of rigid elements. The work includes:

The modeling of noise generation and propagation when the mean potential
stagnation flow carries a single vortex that impinges on a flat plate (Case A). This is a
simplified set-up to approximate the impingement of vortices, which are shed by

multi-element airfoils or by the landing gear, into the fuselage surface.

The numerical simulation of the interaction between either a convected single
vortex or a vortex-street and a stationary cylinder (Case B). This set-up represents a
simplification of the blade-vortex and airfoil-vortex interaction problem. Both weak and

strong vortices were modeled and the nonlinear effects were also investigated.

The impingement effects of the mean flow, carrying a single vortex or vortex street,
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into the flow around rotating cylinder (Case C), which satisfies the Kutta condition.

Sound generated by a periodic acoustic pulse or vortex trapped between two
cylinders (Case D), is considered as the prototype of sound generation by several bodies

in close proximity to each other, such as a multi-element airfoil.

1.4 Significance of Contributions

The uniqueness and significance of this research is as follows:

1. For the first time, single and periodic vortices combined with various vortex velocity
profiles were considered in the same computational framework. This provided a
computational insight into the physical mechanisms of the influence of mean flow

gradients on the directivity and strength of sound waves.

2. The role that the vortex strength, vortex core size, vortex street frequency, the Mach
number of mean flow, and the vortex profile play on the sound radiation were

examined, and simple scaling laws were obtained where possible.

3. The effects of the non-linear terms in the Euler equations (in terms of disturbances)
were investigated. Several crucial features of the acoustic field obtained by
non-linear simulations were shown to be different from those obtained by linear
simulations. While linear predictions have suggested a zone of silence around the

centerline, the non-linear simulation results reveal that the acoustic pressure was
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actually far from zero on the centerline.

Sound generation and propagation by a turbulence vortex model was investigated. It
was found that consideration of the turbulence in the vortex would not change the

sound directivity but would enhance the sound strength of the radiated noise by VBI .

The strength and directivity of acoustic wave patterns were found to be similar for all
one-cell non-zero-circulation vortex models. The influence of the radial velocity on
the sound generation and propagation was investigated. For the first time, sound

waves radiated by a two—cell vortex were investigated.

The mean flow around a lifting cylinder, which was a prototype of a loaded airfoil,
was considered. Computations revealed that the sound was amplified and the

directivity was shifted.

Multi-body vortex interactions were examined as prototypes of noise generated by
several bodies in close proximity to each other. In this case, bipolar and elliptic

coordinate transformations were used.

In terms of tool development, this research centered on a single-grid approach and
implements the corresponding transformation of coordinates. The advantage of
single-grid approach over multi-zone or unstructured grid approaches is that it
requires less strict stability constraints and reduces the time required to run and

develop the codes.
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The developed codes can be used as a core part of software that effectively predicts
the noise of deploying multi-element airfoil and undercarriage noise. They will
reduce the need for costly wind tunnel and field aeroacoustic experiments for the

future design of multi-element airfoils.
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Chapter 11
Methodology

In this section, the methodology developed for this study will be introduced. In
Section 2.1, the mathematical methodology is outlined. In Section 2.2, the vortex models
used are introduced. The high-order spatial derivatives and time-marching scheme are

provided in Section 2.3. The boundary conditions are provided in Section 2.4.

2.1 Mathematical Model

In sound propagation problems, the effects of viscosity and heat conduction can be
neglected and the fluid motion can be determined by solving the linearized Euler
Equations. To solve the governing unsteady Euler equations, the expansion about
incompressible flow (EIF) method, which was proposed by Hardin & Pope (1992), was
implemented. The EIF approach splits the direct simulation approach into a mean flow
problem, and a perturbation problem. It does not allow for the acoustic perturbation
problem to backscatter into the flow solution. In the near field, the perturbation quantities
are the differences between the unsteady compressible and steady incompressible

flowfield variables, e.g., pressure quadrupoles. The perturbation quantities are equivalent

35



to the acoustic quantities in the far field. The variable split used in the EIF, reduces the
difficulties associated with:(a) the small amplitude resolution of the acoustic wave
fluctuations relative to the mean flow quantities, (b) the long propagation distance of
acoustic waves to the far field, and (c) the large acoustic temporal scales, a characteristic
for periodic vortices. The EIF approach provides an effective method of predicting
acoustic fields resulting from low Mach number noncompact source region (Slimon et.

al.1990).

Introducing a disturbance, the instantaneous velocities and density are treated as

sums of the given steady mean flow and the unsteady disturbances, i.e.,

u=U+u',v=V+v,p=P+p,p=R+p' (13)

where u',v',p’,p' are acoustic disturbances, U,V,P,R are background steady
mean flow components. This may be given, either analytically or numerically. Upon
substitutions of the sums to the Euler equations, the dynamic equations for the unsteady

disturbance components of mass and momentum fluxes yield in Cartesian coordinates:

(R+p) oA +u) =- A+p) U +u'XR+ ,0')'6(Ua: ¥)_ (V +vXR+ p')'a(Ua; )

ot Ox
R+ p) a(V(,; V). a(Pa; ) (s uw)R+ p')—a(Va;r ) +v)r+ o) a; v)
R+p)_ dU+u')R+p') 8 +v)R+p)
a Py EY

(14)

The fluctuating quantities have been non-dimensionalized by the following scales:
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Length scale = Characteristic length, L

Velocity scale = ambient speed of sound, ¢,

Time scale = L

Coo

Density scale = ambient gas density, p_
Pressure scale = p_c?

Neglecting the second or higher order, after subtracting the mean flow equations,

the linearized Euler equations for disturbance are obtained as

@z:-R(g_u%]_U%_V%_wg@-vvgi_p{?g%)
X X Y X

o __ 1o o _ o oU  oU , (,0U ,0U)\p (15)
o8 Roax @ oy ox Oy o R

v _ 1o L v v, aVv,_( oV aVJg

U—~+V—
ot R oy oy ox Ox oy R

o Oy

If the compressibility of the background flow is considered, the local density R

and the local speed of sound are given by:

R- (1_77—1((,2 Ry )W-”)

1 " (16)
c=(1—77_(U2 +72 —M(%) )

where M, is the Mach number in the reference point where the speed of sound

and the density of mean flow are set equal to unity. Povitsky (2002) demonstrated the
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accounts for the compressibility in the mean flow (i.e., variable density and speed of
sound) for M < 0.4 leads to modest changes in the directivity of sound. In our study,
incompressible background flow is assumed, and the equation is normalized in such a
way that ¢ =1 and R =1, therefore the normalized disturbance pressure and density are
identical. The governing equations for the pressure p' and density p', will be the same

and only one of them is required to be solved.

2.2 Models of vortex

As mentioned in the literature review, different vortex profiles have been developed
by different authors. Those vortices can be categorized into two groups in accordance
with the total circulation of the vortex, I' = IQdA (where Q is the vorticity in the
2-D flow). The first group includes zero-circulation vortex model such as the Taylor
(1918) vortex, in which the tangential velocity decays exponentially fast. The
non-zero-circulation vortex models include: the Scully (1975) vortex, and a family of
Vatistas (1991, 1998) vortices in which the tangential velocity decays proportional
tol'/(277), and where » is the distance away from the vortex center. The velocity

distribution of different vortex models is presented in Fig. 2.1.

Taylor’s vortex, a representative zero-circulation vortex, is compact. This means that,
the tangential velocity decays exponentially outside the vortex core, as shown in Fig. 2.1.
The tangential velocity is negligibly small for#/Rc > 3.5 . For non-zero circulation vortex

models, the tangential velocity decreases proportionally toT'/(2) outside the vortex
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core. The radial velocity is several orders of magnitude smaller than the tangential
velocity. The radial distribution of the vortical disturbance has the same sign everywhere
and reach zero at the vortex center for the one-cell vortices. For a two-cell vortex model,

the radial velocity experiences a direction reversal at the cell interface.
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Figure 2-1  Vortex velocity distributions with respect to the distance to vortex center: ()

tangential velocity and, (b) radial velocity.

All the vortex models that were considered above assume that the vortex is laminar,
which only occurs when Reynolds number is low. In reality, many wings operate at
conditions where the vortex Reynolds number is in the intermediate (transitional) regime

where the vortex is neither fully laminar nor fully turbulent (see Fig. 2.2).

The following vortex model takes into consideration the effects of turbulence and is
formulated by curve-fitting the experimental results of Leishman (2004) and Ramasamy
& Leishman (2003). The assumed velocity profile used to approximate the data via the

least-Squares method is:
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V = (17)

8 m
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Figure 2-2 A representative flow visualization image of a tip vortex emanating
from a rotor blade showing three distinct regions: (1) Laminar region, (2) Transitional

region, (3) Turbulent region (from Ramasamy & Leishman, 2004).

Where a and m are constants that are to be determined. The requirement that V'

must be maximum at r =1 yields,

20
m= 18
a+4 : (18)

The value of ais then found by minimizing the square error £, i.e.,

E=Yl;)- 7)) (19)

N 2
j=l

where f; and Vjare the experimental and theoretical values of the velocity

respectively.

For minimum E the above equation must satisfy:
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The value of ais then determined finding the root of the following equation,

atr}+ri+rd+r}

3 iPr —fir;ij\4;+B;)=0
szl( )yf(j)(, /)

J J J (21)
where
f=a+4
B
=1 22
7= (22)
r.
4= i L infg]
J ( 2. 4 6 s)V 20
a+rj +I’j +}"j +rj
and
riBy 5 Z g 8+ln[a+rjz+rf+r]6+rf]
a+rj +rj +rj +rj
Bj = (23)
a2+t 284 r8)

The zero may be obtained numerically using, say, the secant method. This gave

a =0.3993330202959833. The value of m then is 4.546136783752

Finally, the swirl velocity distribution is approximated well by,

r r

2mRe (0.399 + }72 + ,‘«4 + ’—.6 i ’78 )m

Vo

( 24)
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Where 7 is dimensionalized by R ., the vortex core radius.

theory of Ramasamy
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— — - lversen (1976)
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~-=-=- Burgers (1949)

present curve - fit
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and Leishman (2003)
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Figure 2-3  Swirl velocity distribution with respect to r

The tangential velocities for different turbulent vortex models are presented in Fig.
2.3. It must be noted that in this model the vortex Reynolds number is high R, =48,000.
Within the vortex core, the vortex is still laminar, outside the core however, the vortex is

fully turbulent.

In the present study, the interaction of a single vortex, a vortex dipole, and a vortex
street with a solid body, in which, a vortex dipole is composed of a pair of vortices with

same strength but counter-spinning, were investigated. Two types of vortices were used,
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the weak or small vortex, which has a vortex core of 0.04 and a circulation of 0.00005.
The other is the strong or large vortex, which has a vortex core of 0.25 and a circulation
of 0.12. If not specified, the Vatistas vortex represents the one-cell Vatistas vortex with

n =2, which formula is given in Eq. 5.

2.3 Numerical method

To accurately resolve the propagation of acoustic waves, finite difference and
time-marching schemes that have low numerical dissipation and represent accurately the
dispersion relation are required (Tam, 1995). In this study, the forth-order-accurate
central-difference compact scheme of Lele (1992), which is characterized by low
dissipation, and near spectral representation of the dispersion relationship, was chosen for

the numerical approximation of the spatial derivatives in the Euler equations.

If the values of a function on a set of nodes are given, the finite difference
approximation to the derivative may be expressed as a linear combination of the given
. oo o ' . ...du
function values. The finite difference approximation U; of the first derivative ——(x;)
at the node i, depends on the function values at nodes near i, i.e.,

pUp +aUj_ +U; +aUjy + BUjs,

U3 -Ui3 +bUi+2_Ui—2 +an+1_Ui—1 25)
6Ax 4Ax 2Ax

=cC

where U is the function value. In this study «',v',p'. [’ represent the spatial

derivative of {J and Ax isth e grid step.
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The relations between the coefficients a,b,c anda,f, are derived by matching

the Taylor’s series coefficients of various orders. The first unmatched coefficient,

determines the formal truncation error in the approximation of Eq. 25

The constraint for fourth order scheme is:
1
a+22b+320=2%(a+22,3) (26)

If the dependent variables are periodic in x, then the system of relations (25)
written for each node, can be solved together as a linear system of equations for the

unknown derivative values. This linear system is a cyclic tridiagonal when g is zero. If
c=0 is made, a one-parameter (a) family of fourth-order tridiagonal schemes is

obtained. For these schemes

p=0. a=2(a+2) b=2(ta-1) c=0 (27)

If a=% 1s chosen, thus azg and b=0

Substitute the above values into Eq. 25 and the classical Pade scheme is obtained:

1., , 1, 3
ZU1‘~1 + Ui + ZUHI = E( i+1_Ui—1) (28)

At the boundary of computational domain, the first derivative at node i=1may be

obtained from a relation of the form (Lele, 1992):

U'ptal' 5= i(aU1+bU2+cU3+dU4) ( 29)
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If a third-order-accurate scheme is desired, the coefficients must satisfy the

following constrains:

a=_11+2a’ b=6—a, c=2a—3, d=2—a (30)

If d=0 isgiven,then a=——;—, b=2, ¢c=—

Thus, a third-order-accurate compact scheme biased toward the interior nodes is

obtained:

U +2U; = é(— —52—U1+2U2 + %U3j

1 5 1 Gl
U;l + 2U;,1_1 = E(—EU’{FzUn_I +5Un_2j

Classical Runge-Kutta schemes not only provide relatively large stability limits, but
also include low storage requirements. This is important for computational acoustics
applications, where large memory use is expected. However, Runge-Kutta schemes retain
both dissipation and dispersion errors, the time step is limited by the tolerable dissipation
and dispersion errors in computing acoustic waves. A family of low-storage schemes
which is proposed by Williamson (Williamson, 1980) and implemented by Wilson et al.

(Wilson, 1998), gives low amplitude and phase errors of traveling wave solutions.

To simplify this discussion, consider the following convective wave equation:

oU U U _

EJFEJFE;_O (32)
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The equation is advanced from time level, n, to n+1in ( substages. The

advancement from substage M to M +1, is defined by:
UM My pMH N M (33)

where M =1,...,5 is the particular stage number; At is the time step, b™ is the
coefficient, and UM represents the U value at the M, sub -stage. The term H M s

given as the sum of all the right-hand side terms of Eq. 24, and the accumulation from the

previous sub-stage or from the initial conditions at =0

M M
agx +S, OU™ | qMpM-1 (34)

M
HM =5,

The low-storage requirement is accomplished by continuously overwriting the

storage location for the time derivatives and unknown variables at each sub-stage:

M M-1 M
a " H > H (35)
UM pMAIN M M+

The notation — is used to indicate that the storage locations, H M _l,U M are

overwritten by H M ,U M+ at each time, respectively.

For a fourth-order, five sub-stage Runge-Kutta low storage scheme, the coefficients

a"and bY are given in (Wilson, 1998) as:

1 ~0.41789047;a° = -1.19215169;a* = —1.69778469;a° = —1.51418344

a =0;a2 =
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bl =0.14965602;b% = 0.37921031;53 = 0.82295502;5* = 0.69945045;b° = 0.15305724
(36)

In the current study, the conservative schemes which precisely satisfy the continuity
equations, and non-conservative scheme, which satisfy the continuity equations with the

error of O(Axn ), were both used.

For a conservative scheme, the time marching of the Runge-Kutta scheme is done

by the following formulas:

1 [a( uw+a<h§vw]+aMHM1

hyhy, o0& on ( 37
: o a(h ”) a(hq")
where the spatial derivatives of 62’ and P are computed by compact scheme
n

For a non-conservative scheme, the time marching of the Runge-Kutta scheme is
done as follows

o [l a1 a1 M
ey Py o he 0F h, o

UM+1 - UM +bM+1AtHM

HM= +aMH

(38)

The computer code was tested using available analytical and numerical solutions

(Colonius et al. 1994).
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2.4 Boundary conditions

When the vortex field is implemented as an initial condition, it may violate the
non-penetrating boundary condition if its core reaches the rigid wall. On the solid surface
(flat plate and cylinder wall), to satisfy the zero normal velocity boundary condition, a

vortex image system is employed at 1 =0.

For disturbance variables, the reflection boundary conditions dp/dn=0 and
dv/dn=0 are used for pressure disturbance and for the tangential component of velocity.
The normal to rigid surface component of velocity is set equal to zero. Discretization of
spatial derivatives in the direction perpendicular to a rigid boundary is computed by

one-sided finite differences at all boundaries (Povitsky, 2002).

In Case B, C, D, special attention is paid to coinciding points € = -7 and =7
in polar coordinates. Foré = -, all disturbance components are computed directly by
solving the dynamical equations. For § =7 , periodic boundaries are employed,
namely u,V, p,__, = U,V, p,_,. Spatial derivatives for the = -7 boundary are taken

as the average of one-sided spatial derivatives of § =-7 and @ =r.

At the outer boundary, artificial boundary conditions (ABC) should be set-up to
eliminate reflections of acoustic energy back into the computational domain. First the
Characteristic boundary condition, which have been proposed by Thompson (1987) and

improved by Giles (1990), was tried. The characteristic boundary-based ABC is
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satisfactory for Case A, however, unacceptable numerical reflections are observed in

cases B, C and D.

Ymax [ o720 0,70
X 29 X
o Ox=0. oy, 3 P
Ox#0 o0
ay-o [ Euler °y='°
24 29
3y 2y
- 0,#0 . ] o
c;do o0, o, Fi o;:g
Y min ,
Xmin Xmax

Figure 2-4 Computational domain that combines the Euler and PML domains

(from Fang Q. Hu, 2001).

To guarantee the non-reflection boundary condition, the perfect matched layer at
the artificial boundary proposed by Hu (1996, 2000) was implemented in the current
study, which substantially reduces the numerical reflections at the outer boundary. By
introducing a non-physical domain adjacent to artificial boundaries, the Euler equations
are solved in the interior field, and the proposed PML equations are solved in the PML

domain, thus absorbing all outgoing waves.

Considering the linearized Euler equations in a vector form:

a—u+AQLi+Ba—u=O (39)
ot Ox oy
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Two absorption coefficients o,,0, and one auxiliary variable ¢ are introduced

into the PML equations:

a T oax oy Ox oy (40)
% _
ot

where the coefficients o, and o, are chosen so that o, is the same across an

y
interface normal to x, and o is the same normal to y so as o, or o, will be zero
across an interface normal to x or y between an interior domain and a PML domain.

The auxiliary variable ¢ is needed only inside the PML domains; it is neither computed

nor stored inside the Euler domain (see Fig. 2.4).

The absorption coefficients used in this study are given by:

(41)

Where x, or y,denotes the location where the PML starts, and D is the width of
the PML. To compute o, the relationso,Ax =2, where Axis the grid size, and f =2

are used for all computations.

A simple damping term in the near-boundary layer (so-called sponge layer) was

employed as a simplified alternative to the perfect matched layer technique:

a—u+Aa—u+B§L—l+oﬁ=0, (42)
o Cox oy
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where o is the damping t erm.

To test the effect of non-reflecting boundary conditions and near-boundary
damping layer, computations were compared using different size of computational

domains and various grid step sizes.

The computational procedure for this numerical method is as follows:

1. Compute the right-hand side of Eq. 42, using values of the governing variable U

from the previous time step.

2. Compute the spatial derivatives solving tridiagonal systems in x and y spatial

directions.

3. Compute the right-hand side of Eq. 34 using the spatial derivatives computed on Step

2 and update governing variables using the Runge-Kutta scheme.

4. Compute boundary values of governing variables using non-reflecting boundary

conditions.

5. Repeat computational steps 1—4 for all stages of the Runge-Kutta scheme.

o

Repeat computational steps 1—>5 for all time steps.

2.5 Code Validation and Grid Refinement Study

In this study, the computer of Dell Dimension 4550, Pentium (R)4, CPU 2.53GHZ,
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1.00GB of RAM are used and Microsoft Visual C++ 6.0 is taken as the compiler.

To validate the code, the computations were performed on a set of numerical grids
where the wave spreads under static ambient conditions and in presence of the flat plate.

For the given initial conditions for the acoustic pressure pulse

(43)

x2+y2
a

p=¢ exp{~

where £ and a are constants.

The analytic solution for the acoustic pressure in case of the infinite 3D domain is

given by

p=2Ar el ar -]+ ¢+ Dessl-alr+ ] (@4

r

where ris the location of the pulse center at +=0. The solution for the

semi-infinite domain is obtained by the use of the image pulse located at —r, i.e.,
p=p(r)+p(=r). (45)

The code was run with a fixed time step size, At =0.001 an d final time ¢ r=10.

Varying the mesh size from %= 0.012 to /4 =0.004. The time step size is chosen small
enough in such a way that it does not corrupt the results for spatial convergence. At the

final time, the solution fields are compared to the analytical solution using a L, error

norm. The result is presented in Fig. 2.5, and m 1is the slope of the fitting line. The
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expected 0(h4) spatial accuracy is achieved.

Then the mesh size is fixed tos =0.006, while the time step size is varied from

t,=0.1 to ¢, =0.001. And the expected O(At4) time accuracy is also achieved (see

Fig. 2.6).

A Grid refinement study was conducted using the Vatistas vortex model for each

case.

For Case A, the computational domain Q = [0 <x< 1.0]x [— 05<y< 0.5] is
covered with 150x150, 250x250, 350x350 and 400x400 uniform numerical

grids.

The acoustic pressure time history at the point(0.2,0.2) is presented in Fig. 2.7.
The maximum of acoustic pressure (sound directivity beam) is directed through this point.
For the coarse grid of 150x150, there is an obvious difference between the results
compared to the results of the 400x400 grid. The acoustic pressure profiles for the
350x350 and 400x400 grids are almost overlapped with each other with the
maximum difference below 1% . Therefore, the 350x350 uniform numerical grid is
used in this study. The time step is computed by At = CAx, where the Courant numer,

C, is taken equal to 0.25.

For Cases B and C the computational domain Q =[0.5<r <3.0|x[-7 <6 < 7]

is covered with 360x360, 540x540 and 720x 720 uniform numerical grids.
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The RMS of acoustic pressure is shown in Fig. 2.8 with respect to angle 6 from
the centerline. It was discovered that the RMS of acoustic pressure profiles for the
540x540 and 720x720 grids were almost the same (the maximum difference was
within 1%). Therefore, the 540 x 540 uniform numerical grid was used. The time step is

computed by At = CAx, where the Courant number, C, is taken equal to 0.25.

For Case D, the computational domain Q=[0.5<r<3.0}x[0<¢ <27] is

covered with the 200 x 200 and 300x300 uniform numerical grids.

The RMS of acoustic pressure is shown in Fig. 2.9 with respect to angle & from
the centerline. It was discovered that the RMS of acoustic pressure profiles for the
200x200 and 300x300 grids were almost the same. Therefore, the 200x 200

uniform numerical grid was used.
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Figure 2-5 Log-Log plot of pressure error vs. mesh size (%) for a fixed time step size
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Chapter 111

Impingement of Single Vortex into Flat
Plate

The ratio of the vortex core size to the downstream rigid bod may vary from zero to
infinity. If the vortex shed by the multi-element airfoil or landing gear impinges into the
fuselage, the vortex core diameter is much smaller than the size of the fuselage.
Impingement of the mean flow carrying the vortex toward the flat plate may appear to be

a reasonably simplified model of such an interaction.

The profile of the flow in a vortex depends on the geometry of the upstream rigid
body, the “age” of the vortex when it impinges into the downstream surface, initial
vortex-to-core ratio, and many other factors. In the current study, the strength and

directivity of the produced sound waves are compared keeping the core size and the

maximum circulation for Vatistas model (# = 2) and Taylor model the same (R, = 0.04

and ' =0.00005).

3.1 Problem Set Up

Figure 3.1 shows an overview of the vortex impingement on a flat plate framework.
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Figure 3-1 Case A: Physical set-up of vortex impingement onto flat plate.

A schematic diagram of the computational domain is presented in Fig. 3.2a
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Figure 3-2 C ase A: (a) computational domain, (b) streamlines of the background flow.

The boundaries of the computational domain are given as follows:
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Upstream boundary x,, =1.0;
Flat plate atx,,, =0.0;

Exit boundaries for impingement flow: + y, =+0.5.

If a PML boundary layer is implemented, the thickness of the PML domain is
twenty grid nodes. Initial location of the vortices are x, =0.25,y =0 for a single vortex;

and x, =0.25,y =10.1 for a vortical dipole.

The background flow (see Fig. 3.2b the flowfield) is analytically given in the

Cartesian coordinate system and the stagnation flow velocity has been normalized in such

a way that
U=-x, V=y (46)

The linearized Euler equations for unsteady disturbance components of mass and

momentum fluxes in Cartesian coordinates are:

@__(5_”+3V)+xaﬁ_ &

a \ox o) "ax 2oy
g—“—:—ai+x@—ya—u+u'—xp’ 7
ot Ox oy oy

o' op' v, oV

= —y—+x——v'-yp’

a oy Ty ox

where p',u',v' are the disturbance components.
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3.2 Boundary Condition Comparison

When the vortex flowfield is implemented as an initial condition of the disturbance,
it might violate the non-penetrating boundary condition if the non-zero tangential
velocity of vortex reaches the rigid wall. On the flat plate, to satisfy the zero normal

velocity boundary conditions, a vortex image system is employed at 1=0.

An oppositely spinning vortex of equal strength is put at its mirror image location

O'(see Fig. 3.3).

NN

AN

o 0

NN NN

Figure 3-3 Vortex image system.

The inverse point O and O' lie onaline OAO', which is normal to the flat plate,

and satisfies

04=0'4

On the outer boundary, to satisfy the non-reflecting wave coming back to the
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computational domain, two boundary conditions were respectively used to guarantee that
no waves are reflected from the artificial boundary: one is the characteristic boundary

condition (Gele, 1990); the other is the PML boundary condition (Hu, 1996, 2001).

First the characteristic boundary condition, which was proposed by Thompson
(1987) and improved by Giles (1990), was implemented. The basic idea of the
characteristic boundary condition is to decompose the hyperbolic Euler equations into
quasi-linear characteristic wave modes of definite velocities. The direction normal to the
computational boundary and the amplitudes of outgoing waves could be defined entirely
from the variables inside the computational domain. Whereas, those of incoming waves

should be specified by proper characteristic boundary conditions (Kim & Lee, 2004).

Assuming one-directional background flow perpendicular to the boundary with

constant speed u and constant pressure, the Riemanm invariants are

wy =0.5(u'+p')

Wy = O.S(u'—p') (48)

where the velocity component #' is perpendicular to the boundary. For the right
boundary, the invariant w; belongs to the incoming characteristic while the invariant
wy corresponds to the outcoming characteristic. And the disturbance V' is

approximated using a one-sided difference.

The acoustic pressures generated by Taylor’s vortex and Vatistas’ vortex distorting
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in the flow are shown at time moment ¢#=1.0 in Fig. 3.4 (a) (c). It is clear that the

characteristic boundary conditions are appropriate with the local-in-space Taylor’s vortex,

however, for the Vatistas vortex there are oscillations of the pressure.

In order to obtain a better non-reflection boundary condition for Vatistas’ vortex,

the perfect matched layer at the artificial boundary, proposed by Hu (1996, 2000), was

implemented.

In introducing a non-physical (PML) domain, adjacent to artificial boundaries, the
Euler equations are solved in the interior field, and the proposed PML equations are

solved within the PML domain to absorb all outgoing waves.

In the horizontal layer (that is, perpendicular to the y direction):

aiz—(.a_u~+_a_v_]+xa_p__y_a£_o-y(x.d&+_dﬂ)_o-yp'

o \ox o) & o d | dx
Ou :_ai+x@_y@-+u'—xp'—ay xiq—‘+% —o,u (49)
o ox oy oy d  dx

ov' op' ov o dq, \
=————y—+x—=V-)p +0'ygx—0'yv

& oy "y ox

In the vertical layer (that is, perpendicular to the x direction):

' 1 ! ' ' d
X

ot ox (_3; oy dy dy
a_u:_a£+xial_y?_u_.*.u'_xp'—o'xy%—dxu' (50)
ot x oy oy dy

v :_aﬁ—yﬁ+x§l)——v'—yp’—0'x y%—% —oV

ot & oy ox dy dy
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In the corner intersection of two sponge layers:

aiz_ a_u+§v_ +xa£_y._a£_o- — _dq_3+iq_L _O-x V_ngi_i.iq}_
ox Oy g

ot ox oy dx  dx dy dy
—(G'X+O'y)p'

w__% xa—v—y——+u' xp'—o xi@+—c—1—3— + Xy—ﬁ—(ax+0' '

ot ox 0oy oy \dx o dx Y

v __@_ 2+x——v'—yp' o, y%+%J—nyilq—‘(ax+a )v'

ot oy " oy dx  dx dy Y
D

and

a1 _

dt

dq,

—:V' 52

" (52)

day _

dt

Two absorption coefficients 0x,0, and one auxiliary variable g are introduced

into the PML equations.

The auxiliary variable g is needed only inside the PML domains; it is neither

computed nor stored inside the Euler domain.

The absorption coefficients used in this study are

; (53)
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where x, or y, denotes the location where the PML starts, and D is the width of
the PML. To compute o, the relationso, Ax =2, where Ax is the grid size, and f =2 are

used for all computations.

The pressure iso-line at time ¢=1.0 under the PML boundary conditions are
presented in Figs. 3.4 (c) and (d). The pressure iso-lines for both vortices turn out to be
very smooth, which shows that there are no waves coming back from the boundary into
the computational domain. The PML boundary layer performs perfectly, for both Taylor’s

and Vatistas’s vortices.

For the Taylor’s vortex, the two boundary conditions produce a minor difference
(within 1%) in terms of disturbance pressure. For Vatistas vortex with the adopted PML
boundary condition, the acoustic pressure history curve is smooth. However, the curve
corresponding to the characteristic boundary is oscillatory and produces noticeable
difference in the acoustic pressure amplitude (see Fig 3.5). Therefore, the PML boundary

conditions have been adopted for the current study.

The acoustic pressure, as a function of time at locations (0.2,0.2), is presented in

Fig. 3.5.

3.3 Computational Results

While an acoustic pulse travels with the speed of sound relative to a mean flow, the

vortices travel with the mean flow. When a vortex is convected with a uniform speed, 1t
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does not contribute to aeroacoustic noise. In study, the initial vortex is strongly distorted
by the non-uniform stagnation flow; four pressure spots of alternating sign amplitude
(quadrupoles) are clearly seen. These spots elongate and generate pressure waves. The

influence of the mean flow appears to be very different for the Vatistas’s and Taylor’s

vortices.

Sound waves emanating from a distorting Taylor’s vortex develop faster than that
for a Vatistas’s vortex. For example at ¢ = 0.5, for former vortex the pressure waves are
separated from the quadrupole and are propagating outwards, whereas for the latter
vortex the pressure waves are not separated from the quadrupole (see Fig. 3.7). Later on,
Vatistas’ vortex becomes more distorted and its quadrupole becomes more spatially
distributed than that for a Taylor’s vortex. Sound waves emanating from the Vatistas’
vortex covers a larger domain with significantly smaller zone of silence at the centerline.
Although the vortex core size and vortex circulation was the same for both vortices, the
results of the numerical simulations show that the amplitude of acoustic pressure is
approximately one and a half times larger for the Vatistas’ model than that of Taylor’s.
The directivity of propagation of sound for Vatistas’ vortex is close to 45°; while fof the

Taylor’s vortex the locus of maximum acoustic pressure corresponds to 30°.

Acoustic radiation from a vortex dipole in the stagnation flow was studied, and the
results for the two models are shown in Fig. 3.8. Each of the vortices is distorted along

the wall producing a quadrupole. Waves of the same sign merge near the centerline are
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seen to propagate upstream of the stagnation flow. In the dipole cases, the acoustic
pressure distribution looks more alike for both vortices than that of a monopole vortex.
The maximum acoustic pressure for sound waves emanating from the Vatistas’s

formulation is almost twice larger than that for Taylor’s.

3.4 Summary of Findings

The propagation of acoustic waves, originating from the distortion of vortices in a
non-uniform base flow, was presented. The flow around flat plate was taken as the
prototype. Non-reflecting boundary conditions were tested, and the perfect matched layer
boundary condition proved to work adequatelly for both vortex models. When the vortex
is convected by the non-uniform stagnation flow towards the rigid surface, the vortex is
strongly distorted. As a result of this deformation, the pressure field becomes non-circular,
producing a quadrupole. As the vortex deformation proceeds, pressure waves are formed.
The intensity and directivity of acoustic wave pattern appear to be quite different for the
Vatistas’s and Taylor’s vortex models. The sound wave pressure fields generated by a
vortex dipole with Vatistas’ and Taylor’s velocity profiles have more similarities than the

wave generated by a monopole vortex with the same strength. The mutual cancellation of

outgoing sound waves made the wave pattern similar.

The impingement onto the flat plate model for the mean flow has a deficiency

related to the fact thatU, — . Therefore, the flow about cylinder with fixed U,

represents a more appropriate model.
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Figure 3-6  Generation of pressure quadrupole and acoustic waves for Taylor and
Vatistas vortices: (a) the Taylor’s vortex, (b) the Vatistas’s vortex. Negative line
represents negative pressure values.
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Figure 3-7 Generation of pressure quadrupole and acoustic wave for Taylor and Vatistas

vortex dipole: (a) the Taylor’s vortex, (b) the Vatistas’s vortex (n = 2).
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Chapter 1V

Single Vortex Impingement into Solid
Cylinder

Vortex interaction with a blade or airfoil is often complicated by
three-dimensionality of the problem. Depending on the flight trajectory of a helicopter, or
the operating conditions of a propulsion system, the blade-vortex interaction may involve
an oblique vortex, a relatively simpler but challenging parallel vortex, or in the extreme
case, either a normal or a streamwise vortex incident upon the leading edge of the blade.
According to experiments (Windnall, 1971), the more parallel the tip vortex is to the
blade at the time of interaction, the greater the noise radiation. Therefore, the sound
generated by a head-on two-dimensional parallel vortex interaction, can be taken as a

basic prototype case.

Nakamura (1981) pointed out the importance of the blunt leading-edge of the blade
in the vortex and blade surface interaction process. Because blades have blunt leading
edges, flows around the circular cylinder with either zero or non-zero circulation are used

as prototypes for flow around the leading edge region of a blade.
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4.1 Problem Setup

An overview of the vortex impingement on a cylinder is presented in Fig. 4.1.

A
— cylinder
—
— O I > 5
—>

Figure 4-1 C ase B, C: an overview of single vortex impingement on cylinder.

Sponge laver

Computational domain

Figure 4-2 A schematic of the computational problem.

The vortex moves near the 2-D cylinder and the computational domain is given as
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the space between two circles, where the outer boundary is 7,, = 2.5, the inner boundary
coincides with the cylinder surface r,,, =0.5, and in an angular direction -7 <@ <7

(see Fig. 4.2). A sponge layer was set up to eliminate reflections of acoustic energy back

into the computational domain.

The mean flow around a non-rotating cylinder is analytically given in a polar

system as follows:

2

Rcyl
U=U,cos0(1-—-)

rR ) (54)
V=-U_sin6(1+ r;j’)

Figure 4-3 Background flow around non-rotating cylinder.

Where U, is the flow velocity in the infinity, R, is the radius of the circular

cylinder, and r,0 are the polar coordinates. The flow field around the solid cylinder is

presented in Fig. 4.3
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The linearized mass and momentum flux equations in polar coordinate are:

ot o r ro0) or r 00
w _ o Uai_ég 1 Va“ +6U ) Uﬁ ly?_g_ly 0
at or or Or ¥ 08 06 or r 06 r

w1 g Vo Yy oy | -u L Ly Ly
08 00 or r 060 r

%:_(Gquu lév) Uap IV@_

61 r 00 or ar r

(55

For moderate and small vortex strength, the second-order products of velocity
disturbances are often neglected, and linearized Euler equations are used to determine the
unknown disturbance variables. However, as the vortex circulation increases, the
contribution to the sound generation by non-linear terms becomes non-negligible, and

should be accounted for by the following mathematical description:

! ! ’ 2
(1+p)8u _op' 8u u,a_U_pUGU v ou ) ou o ou +2Vv +p'£/—
ot or 8r or or roé roé rod r r
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+p/ ==+ P+ p) = pu' ==+ PV + pV)
LoU v am v
t—tp—tp'—
¥ r
(1+ ,)8\1' _%_ o' ,ﬂ/__ , Q_I-/__Vévl aV oV u'v YU
ot roo or or or rob r69 rod r ¥
~p—-+pU+ —='+pV+
P+ pU+ pu) ="+ PV + pV) =
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r 0 P roé r ¥ v 12
( 56)

where u',V',p',p' are acoustic disturbances and U,V,P,R are background
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steady mean flow components.

4.2 Boundary Conditions:

When the vortex flowfield is implemented as an initial condition, it might violate
the non-penetrating boundary condition if its core reaches the rigid wall. On the cylinder
wall, to satisfy the zero normal velocity boundary condition, a vortex image system is

employed atf =0.

Figure 4-4 Images of a vortex in a fixed circular cylinder.

The inverse points S; and S,, lie on a line OA through the centre O of the

circle (see Fig. 4.4) and satisfy:

08,008, = 0A% Triangle OPS; and triangle OPS; are similar. Because of this

property the following ratio holds true:

S,P:S,P = OP:0S,=constant 67
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The stream function for a pair of vortices with equal circulation I' but opposite

rotation, situated at S|, and S, respectivel y, is given by:

T | r
go=g(lnr1—lnr2)=§—;ln—l— ( 58)

r
where r; and r, are the distances of a point from §; and §; respectively.

On the cylinder surface the stream function becomes:

r. S,P
@=—"7In
2r S|P

=constant (59)

Hence, the cylinder surface is a streamline, and a fixed boundary can be placed
there without altering the flow. However, the vortices located at S} and S, give zero
circulation at infinity. This is because of the fact that the sum of their strengths is zero,
where Sjalone gives the circulation I'at infinity. To restore this circulation a vortex
equal to S is placed at the origin. To sum up, the image system consists of an equal but
oppositely spinning vortex at the inverse point, and an equal vortex with same rotation at

the origin (Duncan et al., 1970) (see Fig. 4.4).

The initial vortical field after the image vortex system was employed is presented
in Fig 4.5. The Taylor vortex (Figure 4.5a) velocity field was not affected by the image
vortex combination because of its localized velocity distribution. On the contrary, the

one-cell Vatistas 7 =2 vortex image system, produces a non-trivial flowfield that is
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different from the original Vatistas’s vortex in infinite space, see Fig. 4.5b. The non-zero

flow rear the side of the cylinder causes a downstream sound propagation that will be

discussed in this chapter.

YT T T

o
~ b
[
YT

Figure 4-5 Initial flowfield after the image system is implemented: (a) the Taylor’s

vortex, (b) the Vatistas’s vortex (n=2).

Special attention is paid to coinciding points 6 =-7 and @=7x in the polar
coordinates. For 6 = —r, all disturbance components are computed directly by solving
the dynamical equations. For @ =7 , periodic boundaries are employed, namely

u,v,p, =u,v,p . Spatial derivatives for the @ =-n boundary are taken as the

average of one-sided spatial derivatives, @ =-7 and O=7.

At the outer boundary, artificial boundary conditions (ABC) are set-up to eliminate
reflections of acoustic energy back into the computational domain. The characteristic

boundary conditions produce excessive reflected waves in this case. Instead, a simple
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damping term in near-boundary layer (so-called sponge layer) was employed as a
simplified alternative to the perfect matched layer technique. In ABC, the mean flow was

switched off, and the equations used in the ABC were:

aiz—(au +E_+la_‘))_o-rp'

ot o r roé

o __P sy (60)
ot or

o' __ 1o

o  roo '

(61)

where 7, denotes the location where the PML starts, and D is the width of the
PML. To computeo,, the relationso, Ar =2, where Ar is the grid size and f =2 are

used for all computations.

4.3 Computational Results:

The results are composed as follows. In Section 4.1, a noise generation by
interaction of cylinder with a convected single vortex was investigated for the zero-
circulation Taylor vortex model and the non-zero circulation Vatistas vortex model. In
Section 4.2, a turbulence-generated vortex was considered as a source of sound

generation. In Section 4.3, the nonlinearity effect on sound generation and propagation
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was investigated.

The averaged-in-time, root mean square of acoustic pressure (RMS) is usually

measured by experimenters as an indicator of noise intensity:

Prms = \’ Jgpz dt/T (62)

where pis the instantaneous acoustic pressure and T is the time period of
integration which needs to cover the passing of transmitted and reflected waves. In this
study the RMS acoustic pressure distributions with respect to angle 6 from the
centerline were presented to show the sound strength and directivity. In the following
RMS computations, if not specified, the RMS acoustic pressure was computed at various

angular locations. Alsor =5R,, =2.0,and T is given equal t03.5 to cover the passing

of transmitted and reflected waves.

4.3.1 Non-zero circulation vortex

First, the influence on the sound generation and propagation in a non-uniform flow
of different vortex profiles which belong to the same non-zero-circulation vortex family,
were investigated. The effects of the radial velocity that are often neglected on sound
prediction were studied in detail. Also a two-cell deforming vortex as a source of sound

was examined.

A. One-cell vortex
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The computational results were obtained by solving the linearized Euler equations
adopting different non-zero circulation vortices. To make a fair comparison of sound

generation, all considered vortices have the same vortex core size (R, =0.25), the same
maximum circulation (I'_, =0.15) and the background mean flow has the same Mach
number (M, = 0.2). In Fig. 4.6 p,, (r.0) is shown as a function of angle 6 from the
centerline. Although there is some difference between the RMS profiles produced by the
different vortices, the maximum intensity difference is within 5% for all vortices. The
maximum acoustic pressure occurs at 45" from the centerline. To summarize, the sound
directivity and intensity for all vortices, are similar to each other for all considered

one-cell vortices.

Scully vortex

— -~ — One-cell Vatistas vortex n=2
————— One-cel Vatistas vortex n=3
--------------------- Two-cell Vatistas vortex

~ \\

L
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0.0008 | Py i
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Figure 4-6 The RMS of acoustic pressure for one and two- cell vortices by linear

simulation by Eq. (55).
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The Vatistas vortex with n=2, given in Eq. 5, is chosen as a representative of
one-cell non-zero-circulation vortex models, to investigate the influence of vortex radial
velocity on sound generation. In Figs 4.7a and 4.7b, p,,, (r,@) is shown as a function of
angle @ from the centerline. If the radial velocity is taken into account, the sound
pressure is not equal to zero at the centerline for both linearized and non-linear Euler
simulations. Nevertheless, the maximum RMS acoustic pressure difference is within 5%
for the linearized and non-linear Euler equations. Therefore, it is justified to neglect the

radial velocity influence for predicting sound generated by one-cell vortices.

Zero initial radial velocity

zero initial radial velocity

— — = . Non-zero initial radial velocity - — — npon-zero initial radial velocity
0.0009 o001
- o ~
s r /4
0.0008 0.0009 |- /
—- - s ~
w 0.0007 - =~ 0.0008 |- N
£ 3 o
- o -
< q.0008F E 0.0007
£ - 4 :
@ 0.0005F 3 0.0006 |
B [":] N
95’_ o o [
o 00004fF % 0.0005 |-
g F Q i
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3 00003f 9 0.0004 |
2 F 8 [
0.0002F < g0003F
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ot do s L TS WA 0.0001IIIIIIIIIIIIIIIIlllllllllllllllh'll
150  -100  -50 0 50 100 150 150 -100  -50 0 50 100 150
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(@) (b)

Figure 4-7 The RMS pressure distribution for linear and non-linear Euler
simulations of one-cell vortical disturbances with and without initial radial velocity: (a)

linear simulation by Eq. (55), (b) non-linear simulation by Eq. (56).

B. Two-cell vortex
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For the two-cell vortical disturbance, it is important to examine how the radial
velocity affects the sound generation and propagation in a non-uniform flow. The RMS of
acoustic pressure generated by deforming of the two-cell vortex in a flow about a 2-D

cylinder is shown in Fig. 4.8.

Tangential velocity only

— — — Radial velocity only
————— Radial velocity included
e Radial velocity reversgg
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Figure 4-8 The RMS of acoustic pressure distribution for the two-cell vortical

disturbances.

The consideration of radial velocity notably changes the angular distribution of
acoustic pressure. Although the radial velocity is still much smaller than the tangential
velocity, its contribution to acoustic pressure is not negligible for two-cell vortices. The

presence of radial velocity has not only strengthened the RMS acoustic pressure level, but
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has also changed the angular noise directivity. To confirm that the non-zero radial
velocity is the reason for the non-symmetry of acoustic pressure with respect to the
centerline, the radial velocity has been reversed. If the radial velocity direction is

reversed, then the non-symmetry around the centerline is also reversed (see Fig. 4.8).

To further investigate the effect of radial velocity on the non-symmetrical angular
distribution of the RMS pressure, the acoustic pressure isoline generated by reduced
two-cell vortical disturbances with (i) the initial tangential velocity only and (ii) the
initial radial velocity only, is presented in Figs 4.9 a, b, c, respectively. The generation of
sound by the two-cell vortex can be viewed as a combination of sound generation by
these two simplified vortices. In Fig. 4.9a, four alternating sign of pressure spots
(quardrupole) produced by the convected disturbance (i) are clearly seen. To produce the
sound wave, the pressure quardrupole is elongated and the pressure waves are generated.
In Figure 4.9b, the pressure wave generated by the convected disturbance (ii) is
symmetrical around the centerline, i.e., the acoustic pressure has the same sign on both
sides of the centerline. Finally, the two-cell vortex with both components of initial
velocity (iii) is considered. The most striking feature of the generated sound wave is the

non-symmetric distribution of the RMS of acoustic pressure with respect to the centerline

(see Fig. 4.9¢).

The linearized Eq. (55) have the same coefficients for all three cases considered in

Fig. 4.9 Therefore, the solution for the initial conditions (iii) is a sum of solutions
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obtained for initial conditions (i) and (ii). When two pressure disturbance solutions
originated from initial conditions (i) and (ii) are added, the total disturbance pressure

becomes non-symmetrical about the centerline.

To investigate the influence of the Mach number of a mean flow, the flow-fields of
a two-cell vortex in a mean flow, with M =0.1 and M =0.4 at the time ¢=1.5 are
presented in Fig. 4.11. The vortex is convected by the non-uniform mean flow and is
deformed by the mean flow. For M = 0.4, not only is the vortex center located closer to

the cylinder, but the vortex will also be more deformed along the spanwise direction.

To further investigate the influence of the Mach number of background mean flow
on the sound generation and propagation by deformation of the two-cell vortex, the
acoustic pressure has been computed for Mach numbers, M, from 0.1 to 0.4. For
higher Mach numbers, the mean flow becomes transonic, and the adopted mean flow
model becomes invalid. The reduced two-cell disturbances (i) and (ii), and the two-cell
initial vortex (iii), were submerged in the background flow with different Mach numbers.
The computational results are presented in Figs. 4.12a, b, ¢, respectively. If the reduced
two-cell vortex is considered, the sound level increases with the Mach number of the
mean flow. The maximum sound level is reached at an angle of 45° from the centerline
for the considered range of Mach numbers of the mean flow. No simple power law of the
dependence of the RMS of acoustic pressure with Mach number has been found. If the

initial two-cell vortex is considered, the Mach number of the background flow does not
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only change the amplitude of the RMS acoustic pressure, but also affects its angular
directivity. The sound profile of the RMS is substantially non-symmetrical (see Fig.
4.12¢). For all Mach numbers considered, the RMS has maximums at both lower and
upper half-planes with a substantial difference in the maximum amplitude. For M=0.1,
the lower half-plane maximum, is approximately 2.5 times larger than the upper
half-plane maximum. As the Mach number increases, the maximum RMS acoustic

pressure is shifted to the upper half-plane.

4.3.2 Zero-circulation vortex and non-zero-circulation vortex

The profile of flow in a vortex depends on the geometry of the upstream rigid body
(which shed vortices), the “age” of the vortex when it impinges into the downstream
surface, the initial vortex-to-its-core ratio et.. In this part, the effect of the vortex velocity
profile on the amplitude and directivity of sound wave generated by the distorting vortex
were studied. The Taylor’s vortex, which has localized core and zero total circulation and
the Vatistas’s vortex with non-zero total circulation are adopted as examples of two
different types of vortices. To make fair comparison, the radius corresponding to the
maximum tangential velocity and the maximum circulation of the two vortices were

made equal.

A. Comparatively weak vortex in non-uniform flow around cylinder

In real terms, the ratio of the vortex core size to the size of downstream rigid body
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may increase to the order of one-tenth when the vortex impinges perpendicular to the
chord of the blade. The vortex core and the size of rigid body may be similar. For
instance, the vortex shed by the main airfoil has a core size comparable to the airfoil
thickness (Bhagwat & Leishman, 2002). And its core size is also comparable to the

diameter of the flap’s leading edge.

First, a relatively weak vortex with circulationI” = 0.00005, and a core radius of

R_=0.04, was superimposed in the flow with M, =02 at location (—1.,0), i.e., at the

distance of one radius upstream of the cylinder surface.

In Fig. 4.13, the acoustic disturbance propagation at different times are presented.
Similar to Case A, the vortex is distorted, quadrupoles are produced, and the sound wave
propagates outward. From the beginning, the interaction between the vortex and the
cylinder show substantial differences for the Taylor and Vatistas models, For the Taylor
model, the pressure quadrupole is focused near the upstream centerline at an earlier time,
whereas at a later time the sound wave propagates upstream of the cylinder. For the
Vatistas vortex, the pressure disturbance is developed circumferentially around the
cylinder, and later the sound propagates upstream and downstream. This is indeed a result
of the initial imposition of image vortices, which create a non-trivial flowfield
downstream of the cylinder. Nevertheless, in reality, as a result of the interaction of a

slowly decaying vortex and bluff body such a flowfield must appear.

In Fig. 4.14, the radial acoustic pressure distributions are presented for the Taylor
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and Vatistas vortices. Where the angle to the negative x axis are taken equal to 35°
and 45°, corresponds to the area of maximum acoustic pressure. The sound wave for the
Taylor vortex has a shorter wavelength and develops faster than that for a Vatistas model.
For the Taylor vortex, acoustic pressure reaches its maximum at #=0.8, and then starts to
weaken. Sound waves generated by the Vatistas vortex have almost three times larger

acoustic pressure amplitudes than that of the Taylor model.

To investigate the influence of the mean flow speed, the RMS of acoustic pressure
was computed at various angular locations at » =5R,, . Results of the computations are
presented in Fig. 4.15. To test the effect of the initial proximity of a vortex to a cylinder

on sound generation, the RMS acoustic pressure is shown in Fig. 4.16, with the initial

position of the vortex at (-0.75,0).

When the Mach number of the mean flow increases, the vortex is more distorted,
and the generated sound wave becomes stronger. For the conditions in Figs 4.15 and 4.16.
the RMS of acoustic pressure radiated by the distorting Taylor vortex has two maxima: (i)
at @=30° from the negative x axis; and (i) #=110° to & =120°. The level of RMS
for closer location of vortex to the surface (Fig. 4.16a), is more than twice larger than that
for more distant location (Fig. 4.15a). This enhancement of acoustic pressure is fully
attributed to stronger vortex distorting in the latter case. There is no influence of
imaginary vortices even if the vortex is initially located at (- 0.75,0) because the Taylor

vortex fully decays at a distance of 0.15 from its origin.
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When the Vatistas vortex is located at(~1.,0), the first RMS pressure maximum is
substantially larger than the subsequent maxima corresponding to the larger values of a.
If the Vatistas vortex is initially located closer to the rigid cylinder surface, then the RMS
has two maxima with almost the same amplitude (Fig. 4.16b). When the Mach number of
mean flow increases, the second maximum pressure exceeds the first maximum pressure
as a result of higher distorting of the peripheral part of the vortex. The sound directivity
for the Vatistas vortex shifts with an increase of the Mach number. For the lower Mach
number, the upstream sound directivity corresponds to & =45°, while the second
maximum is located at @ =110°. Compared to the Taylor vortex, the level of RMS
pressure for the closer proximity of the vortex to the cylinder is only 25% larger than that

of a farther location.

In Fig. 4.17, the acoustic disturbance velocity distributions corresponding to the
Taylor model and Vatistas model, are presented for ¢=10.8. Location of stagnation points
of acoustic velocity for both vortices are consistent with the maximum sound directivity.
The disturbance velocity patterns are quite different for the Taylor and Vatistas vortices.
While two counter-rotating vortices appear on the opposite sides of the main Taylor

vortex, that is not the case for the Vatistas vortex.

B. Vortex comparable with the cylinder diameter

A relatively strong vortex of circulation I' =0.012 and the core radius R, =0.25
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was superimposed in the flow with M_ =0.2 at location (-1.0).

In Fig 4.18, simulation results are shown for M_ =0.2, and the initial vortex
Jocation (-1.,0) upstream of the cylinder. Compared to the small core vortices (see
Section 4.2.1), the generated pressure quadrupole is more spatially distributed in the
angular direction. For the Taylor vortex, the sound wave from the downstream surface of
the cylinder encircles the sound wave from the upstream surface. For the Vatistas vortex,
the four alternating sign spots are evenly distributed at the cylinder surface. As it was for
small core vortices, the RMS pressure is measured at r =5R_,, and the time period T
is equal to 3.5. For the Vatistas vortex, the RMS pressure shapes are similar to those
obtained in the previous section for the small core vortex with the maximum sound
directivity around & = 45°. For the Taylor vortex, the sound directivity is shifted from
@ =30° for the small core vortex to about @ =80° for the large vortex. Compared to
acoustic pressure for small core vortices, the sound pressure level for large Taylor and
Vatistas vortices are approximately at the same level. If the vortex core size is
comparable to the size of the rigid body downstream, the vortex distorting to lesser

degree depends on the velocity profile.
C. Acoustic radiation from vortex dipole

In this section, numerical results related to radiation of sound by a pair of distorting

counter-rotating small vortices in a flow around the cylinder are presented. Vortices have
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a small core (R, = 0.04," = 0.000053), and are initially located at (x, =—1.0,y, = 0.1)
upstream of the cylinder. For both vortices the pressure quadrupole is concentrated at the
centerline (Figs. 4.19, 20), where the same signs of quadrupoles merge. While sound
waves propagate upstream of the stagnation flow, the centerline wave is surrounded by
two waves of the sign of acoustic pressure, opposite to that of the centerline wave. For
the Taylor vortex the peripheral waves are located upstream, while for the Vatistas vortex
the peripheral waves are directed downstream, and are weakened by the mean flow. For
the Vatistas vortex, the maximum RMS occurs at the centerlines, whereas for the Taylor
vortex, the maximum RMS shifts from & =30° to 0=60° with an increase of the

Mach number.

4.3.3 Turbulent Vortex Model

The sound strength and sound directivity corresponding to the sound wave
generated by Vatistas’s vortex model, a representative of laminar vortex model and the
new turbulent vortex model were compared. To make a fair comparison, the vortex core

size and the maximum tangential velocity were made equal for the two models.

The RMS of acoustic pressure is presented in Fig. 4.22. It is clear that the sound
directivity for the sound wave generated by both models is 45° away from the
centerline. However, the sound strength for the turbulence model has increased by about

50% in comparison to the laminar vortex model. In other words, turbulence will not
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change the sound directivity but will enhance the sound strength.
4.3.4 Non-linearity analysis

For moderate and small vortex strengths, the second-order products of velocity
disturbances are often neglected, and linearized Euler equations are used to determine the
unknown disturbance variables. As the vortex circulation increases, the contribution to
the sound generation by non-linear terms becomes non-negligible, and should be
accounted for by a mathematical description. In this section, the effect of non-linear terms

on sound generation and propagation will be investigated.

The Vaitsas vortex, with a vortex core equal to 0.25 and a maximum circulation
corresponding to 0.15, are superimposed in the flow with M, = 0.2 at the axial
location (— 1 .,0). The sound generation and propagation simulated by the linearized Euler
equations, non-linearized Euler equations, and the contribution by the non-linear terms to
acoustic pressure, are presented in Fig. 4.23. Whereas the non-linear terms is a modest
contribution. Overall some important features of the acoustic field obtained by non-linear
simulations are different from those obtained by linear simulations. From the linear
simulation result, it can be clearly seen that the sound wave generated is absolutely
symmetrical around the centerline. There is an obvious zone of silence near the centerline,
which means that an observer standing in this area will not hear the noise. However, from

the non-linear simulation, the sound pressure is not only revealed to be asymmetrical to
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the centerline, but there is no zone of silence near the centerline. The non-symmetry of
sound wave is due to the sound contributed by the non-linear terms, and is strictly
symmetrical to the centerline not only in its amplitude but also in its sign. Therefore
when it is added to the sound produced by linear terms, the result turns to be

non-symmetrical.

Results of computations in terms of the acoustic pressure RMS are presented in Fig.
4.24. The sound directivity remains the same for linear and non-linear simulations and the
maximum amplitude of the RMS acoustic pressure computed by the non-linear
simulations is a modest 10 per cent higher than that obtained by the linear simulations,
which also holds true for the Taylor vortex. The non-linear effect near the centerline is
most prominent, so it could be that non-linear effects are important near the centerline in
the vicinity of stagnation points where u’ du'/dr becomes larger than U du'/dr,
where U is the local mean velocity. In a linearized model, u'du'/ dr is neglected in
comparison to U du'/dr . This may be not applicable near stagnation points and a

non-linear model may be needed.

To further investigate non-linear effects, the vortex core size is kept fixed, the
vortex Mach number (which is defined asT'/27R, , where I' is the maximum circulation
and R, is the vortex core) is changed in such a way that its ratio to the far-field uniform
Mach number o, becomes equal to one of the following values: 0.05, 0.1, 0.5, or 1.0. The

percentage of RMS pressure, obtained by the non-linear simulation and linear simulation,
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is presented in Fig. 4.25. When a=0.05, the percentage of RMS pressure is equal to zero
except around the centerline. This means that the sound pressure that is solved by the
non-linear Euler equations and linear Euler equations are practically the same. However,
as the ratio rises to 0.5, the percentage becomes significant, and the contribution by the
non-linear terms turns out to be non-negligible. Finally, when the ratio rises to 1.0, it is
clear that a non-linear simulation is needed for accurate prediction of the sound

generation and propagation.

4.4 Summary of Findings

The effect of the vortex velocity profile on the amplitude and directivity of sound
waves generated by the distorting vortex has been studied in this chapter. First, the
non-zero-circulation vortex family was investigated. It was found that the sound
directivity and intensity for all vortices was similar to each other for one-cell vortices. If
the radial velocity is taken into consideration for sound prediction, for a single-cell vortex
there would be no substantial changes to the acoustic waves. On the contrary, for the
two-cell vortex the presence of the radial velocity, which is still much smaller than the
tangential velocity, affected the intensity and directivity of the propagating sound wave.
The non-symmetrical directivity of sound with respect to the centerline was much more
prominent for the two-cell vortical disturbance than that for the one-cell vortical

disturbance.

Secondly, the Taylor vortex, with its localized core and zero total circulation and
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the gradually decaying Vatistas vortex with non-zero total circulation were adopted as
examples of two different types of vortices. To make the two vortices comparable, the
vortex core and maximum circulation were taken to be equal for the Taylor and Vatistas
vortices. Stagnation flow of the flow around the 2-D infinite cylinder was taken as the
prototype of real world non-uniform flows about a rigid body. All the vortices of two
representative core sizes were considered: (i) small-core vortex with R/R. =0.1, and (ii)

large-core vortex with R/R, =0.5.

For small vortex-core vortices, the strength of the sound wave radiated by Taylor
vortex was three times weaker than those radiated by Vatistas vortex if the cylinder is
non-rotating. For the large-core vortex, the sound wave strength generated by the Taylor
and Vatistas vortices was of the same level. The sound directivity was also quite different
for these two vortices. For the Vatistas vortex, the maximum sound directivity was around
@ = 45° to the centerline. This holds for a small-core and large-core vortex for flow
around a non-rotating cylinder. On the contrary, for the Taylor vortex the maximum
sound directivity increased from & =30° for a small core vortex to & =80° for a large

core vortex.

For the Vatistas vortex, the downstream propagating sound waves were observed
at an earlier time. Later, these waves were weakened since they propagated downstream,
and because the pressure quadrupole source was substantially weaker in the downstream

part of the flow. For the Taylor small-core vortex the amplitude of emanating sound
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wave increased substantially when the vortex was put closer to the rigid cylinder.

However, this was not the case for Vatistas vortex.

When vortex dipoles were convected by the non-uniform mean flow, the sound
wave pressure field tended to look more alike for the Vatistas and Taylor models than it
did for the monopole vortex. The mutual cancellation of outgoing sound waves made the
wave pattern similar. However, the maximum RMS pressure for the Vatistas vortex was
at the centerline, while for the Taylor vortex the maximum RMS pressure increased from

30° to 60° with increasing Mach number.

Finally, a non-linear analysis was investigated. The effect of non-linear terms to
the sound pressure was controlled by the vortex strength, which was introduced as the
ratio of the Mach number of vortex to the Mach number of far-field mean flow. The
non-linear effects increased with the growing strength of the vortex. When the vortex was
weak, the results obtained by the linearized and non-linearized Euler equations were
practically the same. However, as the vortex strength increased, the contribution of the
second-order non-linear terms became non-negligible. Several crucial features of the
acoustic field obtained by the non-linear simulations were shown to be different from
those obtained by linear simulations. While linear predictions have suggested a zone of
around the centerline, the non-linear simulation results reveal that the acoustic pressure is

far from zero on the centerline
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Figure 4-9 Unsteady pressure generated by the two-cell vortical disturbance: (a)

the vortex with initial tangential velocity only, (b) the initial two-cell disturbance with the

radial velocity component, (c) the full two-cell vortex.
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Notation is the same as in Fig. 4.15.
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Figure 4-21 The RMS of acoustic pressure for a small vortex dipole for a mean flow

with M_ =0.1,...,0.4: (a) the Taylor’s vortex, (b) the Vatistas’s vortex.
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Chapter V

Vortex Street Impingement on a
Non-Rotating Cylinder

Vortex-body interactions are important in the areas of flow-induced vibration and
sound generation. Among the several types of vortex body interactions, the case of a body
in the wake of another body is of fundamental importance. Examples include, tip vortices
shed by helicopter rotor blades and interacting with the following blade, rotor blades
passing through the wakes of stator blades in turbomachinery, tubes in the wakes of
upstream tubes in a heat exchanger bank, and a flap in a multi-element airfoil in the wake

of the main airfoil (Gursul & D. Rockwall, 1990).

To expand the previous research about noise generated by a single vortex-cylinder
interaction, the influence of a vortex street on a cylinder was investigated. The goal of the
study was to find out how vortices are deformed in the mean flow about the cylinder. The
differences between the sound generation by periodic vortices and a single vortex, what
differentiates the sound radiated by the Taylor vortex street from the sound radiated by
the Vatistas vortex (n=2) street, as well as how the sound directivity and strength

profile can be affected by the vortex street frequency, strength and size, were of prime
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concern. The frequency of vortex appearance in the street, the distance between vortices,

the vortex core size, the vortex strength, and the mean flow Mach number, were taken as

parameters in numerical simulations, and their effect on the sound amplitude and

directivity were evaluated.

5.1 Problem Setup

Figure 5.1 shows an overview of the vortex street-cylinder framework.
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Figure 5-1 Sch eme of vortex street and cylinder interaction.

The vortex velocity is periodicly added to the background mean flow with the

constant period T', and the vortices are convected by the mean flow about the 2-D

cylinder. The vortex velocity which is equal to 0.00014 is very small compared to the

background mean flow velocity (0.2). The vortices are periodicly superimposed on the

flow at the axial location (-1,£D), ie., at a distance of one radius upstream of the

cylinder surface where the local mean velocity is U = 0.75U, . The vortices convect with
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the mean flow, so the wavelength A_ of the undisturbed vortex street is determined by
A, =2TU_, where U, represents the free stream velocity. According to Cursul (1990),
in vortex dynamics research the vortex street flow-cylinder interactions can be classified
based on the length scale of the flow as represented by A, which is reflected by the
added vortex frequency in this study. The sound generation and propagation by the vortex
street-cylinder interaction was categorized into two groups based on the vortex street
frequency 1/7 in this investigation. One group of typical frequency at f=1/0.5=2,
represents the ‘low’-frequency vortex street; the other group of typical frequency at
f =1/0.05 =20, represents the ‘high-frequency’ vortex street. In the earlier case A, is
bigger than the distance between two neighboring vortex centers, while in the latter case

A is smaller than the distance between two neighboring vortex centers.

The time averaged root-mean-square (RMS) of acoustic pressure, which is a

standard indication of sound strength and sound directivity, is defined as:

Pms = | PO/ 6

Local-in-space averaged acoustic pressure is defined as:

P = If p2()ar /T (64)

Where p(t) is the instantaneous acoustic pressure and T is the time period of

integrationT =T, —7T,. To guarantee that the periodicity is established, the integration
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time was taken from 7, =5.0,t0 T, =10.0

In the investigation a non-zero averaged acoustic pressure was observed. Humans
respond to fluctuations of acoustic pressure (which may be named “clean” RMS of
acoustic pressure), as opposed to the elevated averaged value of RMS acoustic pressure.
To obtain the clean RMS of acoustic pressure, the average acoustic pressure is needed to

subtract from the local RMS acoustic pressure.
We have:
2 2
Pims = (P ave+P acous)
p2 =p% +2P,.P P2 65
rms — *ave + ave acous+ acous ( )

if Pave =0, Pacous = Pons (66)

T .
If P, # 0, due to the integration jr Pcousdt / T gives zero, so finally we have:

PGC()MS = V})rfm - Pazve (67)

In the following investigation P, instead of P, will be presented.

5.2 Boundary Conditions

The computational domain (see Fig. 4.2a) is the same as the one for the single

vortex impingement on cylinders discussed in Chapter 4. This study used the vortex
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image system (Duncan et al., 1970), in which an equal and oppositely spinning vortex
was put at the inverse point inside the cylinder and an equal vortex was placed at the
origin to satisfy the non-penetrating boundary condition (see Fig. 4.3). The vortex image
system was switched-on at any moment when the vortex was added. For the rest of the
time, the non-penetrating boundary condition is satisfied by dp /dn=0,dv[dn=0. The
artificial boundary condition, which was verified in chapter 4, was implemented in this

study.

5.3 Computational Results

The free-stream velocity, U, , if not specified otherwise, was kept equal to a
constant of value 0.2, i.e. the Mach number in the far-field was equal to 0.2 in this

investigation. Small vortices were considered with core size equal to 0.04, and a

circulation of 0.00005.

When the vortex is convected by the flow near the rigid surface of the cylinder, the
vortex is strongly distorted by the non-uniform stagnation flow (see Fig. 5.2). As a result
of its deformation, the pressure field becomes non-circular, producing four pressure spots
of alternating sign amplitude (quadrupole). As the vortex deformation continues, these
spots elongate and generate pressure waves (see Fig. 4.4). It is shown in Fig. 5.2, that the
embedded vortices are distorted in the streamwise direction in such a way that their shape
becomes elliptical, and the longer axis of the elliptical shape becomes parallel to the flow

centerline. This effect was also observed for a single vortex interaction with a cylinder.
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For the high-frequency case, the vortices are merged and the longer axes of the ellipse
become more inclined to the centerline. For the low-frequency case, the vortices keep
their independence and it is clear that each vortex is distorted. The extent of distortion is
decided by the vortex’s location in the mean flow. For the Taylor vortex street, two
counter rotating vortices were observed, but this was not the case for the Vatistas vortex

street.

First, the single small vortex street of alternating signs was investigated. This is the
limit case of a two-row vortex street when the distance between the rows tends to zero. In
Fig. 5.3 the acoustic pressure isolines, generated by the vortex street at frequency 1/0.05
and 1/0.5, are presented at time z=10.0. Silence zones near the centerline were
observed for all cases. Strong sound pressure propagating downstream was found for the
Taylor vortex street; this was not found for its single vortex case. It is interesting to note
that, although there are ten times more vortices involved in sound generation by a
high-frequency vortex street at 1/0.05 compared with a vortex street at frequency 1/0.5
per the same time interval, the amplitude of sound wave radiated by the two different
frequency vortex streets did not show such a large difference. For the Vatistas vortex
street, the pressure amplitude corresponding to the high-frequency street is only about
two times larger than the one corresponding to the low-frequency street. For the Taylor

vortex street, the pressure amplitude is only one and a half times larger.

The P,,sand P, distribution are presented as a function of angle & from the

acous
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centerline in Fig. 5.4. It was observed in this case that the B is very close to P, ,..;
that is, the pressure build-up is small to negligible. The modest asymmetry of sound
profile with respect to the centerline was observed because of the time delay of the
opposite-spinning vortex couples for both vortex streets. The acoustic pressure profile
generated by the low-frequency vortex street (frequency = 2), appears to be quite
different from that generated by the high-frequency vortex street (frequency = 20). For
the low-frequency Vatistas vortex street. the RMS of acoustic pressure has two clear
pikes, and the sound directivity forms an angle of 45° to the centerline. For the high
frequency Vatistas vortex street, the sound profile becomes strongly non-monotonic with
angle 0, although there is still obvious maximum amplitude at about 10° with the

centerline. For the low-frequency Taylor vortex street, the sound profile turned out to be

non-monotonic and had a larger zone of silence near the centerline.

The effect that the vortex street distance D have on sound generation and
propagation was investigated by setting the distances equal to 0, 0.05, 0.1, 0.15 and 0.3,
respectively. The value of P, are presented as a function of the angle 8 in Fig. 5.5
For the Vatistas vortex street, as the distance between the rows of vortices increases, the
asymmetry appears to be more noticeable (see Figs. 6a,b). The sound pressure on the
upper half of the cylinder is larger than the sound pressure on the lower half of the
cylinder (note that the maximum amplitude of acoustic RMS increases slightly with the

distance). Nevertheless, the sound wave profile quantitatively looks the same for all
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different distances at the same vortex street frequency. The sound directivity is almost
invariant with the vortex street distance. In other words, there is no difference for the
cylinder-vortex interaction mechanism and the sound wave produced by Vatistas vortex
row at different distances. However, for the low-frequency Taylor vortex street, it appears
that when the vortex street distance was increased to 0.05 from zero, a non-silence zone
near the centerline was observed. The change of the vortex street distance did not bring
about a large change in sound amplitude, although the sound directivity was shifted. It is
justified to say that the vortex row distance is one of the key coefficients for the
cylinder-Taylor vortex interaction mechanism, as well as the sound pressure generation

and propagation.

The generated sound wave and its directivity are closely related to the deformation
of vortices and their angular position. The vortex street flowfield is shown for D=0.1 and
D=0.3 in Figs. 5.6 and 5.7. It is worth noting that at the time moment t=10.0, vortices
were found in the downstream. This indicates that after the vortex impingement on the
cylinder, the vortex doesn’t disappear, but rather it moves down the stream (this was also
observed by Cursul (1991)). The flowfields of the Vaitistas vortex street and the Taylor
vortex street turn out to display some very prominent differences. For the Vatistas vortex
street, the original round vortical disturbance turns out to be a multi-cell vortex at
low-frequency. Whereas the high-frequency vortex street forms a couple of one-cell

deformed vortices from the merger of the oncoming vortices. Also, the vortices are more
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widely distributed and the axis of the ellipse is more inclined to the centerline, at vortex
street distance D =0.3, compared to the case of vortex street distance D =0.1.
(Compare Figs. 5.6¢,d with Figs. 5.6 a,b). In general, for the Vatistas vortex street, the
vortices will be more deformed in cases of a larger distance between the vortices. For the
Taylor vortex street, counter-rotating vortices were found near the front centerline for all
cases. It is interesting to see that the two counter rotating vortices in the back cylinder
appear outside the original vortex street, at a high frequency street whereas the
counter-rotating vortices appear inside the original vortex street, at a low frequency street.
Furthermore at low frequency the Taylor vortex street with a distance of D = 0.3, counter
rotating vortices appear in between the original vortices when they move to up or down
cylinders. For the Taylor vortex street with a high frequency street, there will be more
deformation in cases with a larger distance between the vortices. However, for a low
frequency street, the vortices will be less deformed and the axis of the ellipse will be less

inclined to the centerline in cases of larger distances between the vortices.

In the following investigation the vortex street with distance D = 0.1, was taken as
a representative case. In Fig. 5.8, P, 1S presented with respect to angle 6 at
different vortex street frequencies. For both the Vatistas vortex street and the Taylor
vortex street, the sound pressure amplitude is observed to increase with frequency (see

Fig. 5.8). This is because for each time unit more vortices are embedded in the mean flow

and impinge into the cylinder surface.
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For a low-frequency Vatistas vortex street, a distinct maximum sound directivity
was observed. However, the sound directivity is different for each frequency and changes
from 30° to 40° when the frequency varies from 1/1.00 to 1/0.5. For the high
frequency Vatistas vortex street, the amplitude change with the frequency is quite
moderate and the sound profile becomes non-monotonic. As the frequency rises, the
sound profile becomes more non-monotonic. For the vortex street at high frequency, there

is a well-defined maximum sound directivity at around 10° with the centerline (see Fig.

5.8a).

Silence zones are observed near the centerline for the low-frequency Taylor vortex
street compared with the Vatistas vortex street, the sound pressure amplitude is almost ten
times smaller (even though they are for the same vortex core size and vortex strength).
Moreover, a prominent sound level in the back centerline of the cylinder is observed for
the low frequency Taylor vortex street, as well the higher the frequency is, the higher the
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