NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Tuning and Topology Optimization of
the Clock Distribution Network Under
Obstacle Constraints

Haydar Saaied

A Thesis
in
The Department
of
Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University
Montreal, Quebec, Canada

October 2004

© Haydar Saaied

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04058-0
Our file Notre référence
ISBN: 0-494-04058-0
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Tuning and Topology Optimization of the Clock Distribution Network Under Obstacle Con-
straints

Haydar Saaied, Ph.D.
Concordia University, 2004

Our research focuses on routing the Clock Distribution Network (CDN). The CDN consumes
an increasing portion of all resources in terms of wiring area, power, and design time. Differ-
ent approaches that have been proposed, such as Deferred-Merge Embedding algorithm
(DME) and Greedy-DME (GDME), require the re-calculation of the whole solution when
there is a change in the skew constraint or the location or the load capacitance of the clock
pins. Redesigning the CDN would be an extremely computation intensive process for a com-
plex system, and very painful with the increase in demand for shorter time to market. For this
reason, we have used an incremental routing scheme. The incremental routing or ECO (Engi-
neering Change Order) routing is a new field that has been introduced to meet the demand of
high performance and complex designs.

We propose a new method, called Adaptive Wire Adjustment (AWA), to minimize the skew of
a given CDN to any given bound by tuning its wire lengths in order to cope with minor modi-

fications in System on Chip (SoC) during the design process. The proposed algorithm outper-

forms DME and GDME for implementing ECO for large CDNs. Moreover, to speed up AWA’s

convergence, we propose the use of a Local Topology Modification (LTM) technique. Addi-

tionally, LTM helps to enhance the CDN’s quality in terms of total wire length and wire elon-

gations. We show that GDME relies heavily on wire elongations and offers a solution that

suffers from large Standard Deviation of the Path Lengths (SDPL) between clock pins and the

CDN’s root. To our knowledge, this thesis is one of the first of its kind that deals with minor

CDN’s modifications and local topology modification.

In addition to satisfying the timing requirements, the CDN has to be routed with minimum
wire length. Moreover, it is often the case that the interconnects of a net must not intersect with
some obstacles in the routing plane. We propose a simple model called Shortest Paths Polygon
(SPP) to describe the routing area of shortest paths between two points among obstacles. A
methodology is proposed to determine the SPP of two points using a gridless graph. The SPP
model facilitates a better routing of any multi-terminal net since it determines all shortest
paths. Consequently, using the SPP would provide a good correlation between detailed routing
and other design phases. This is important because it satisfies the system requirements and
supports ECO routing effectively. The SPP model is applied to three problems related to the
CDN routing: tuning the CDN under obstacle constraints, designing a ZSCDN under obstacle
constraints, and routing the CDN in two layers.

1ii

ACKNOWLEDGMENT

I have been very fortunate to have Dr. Dhamin Al-Khalili and Dr. Asim J. Al-Khalili as my
supervisors and it is hard to acknowledge them in few words. Dr. Dhamin was always there
with his knowledge, good advice and deep insight. His patience and compassion will always
be remembered. Dr. Asim made me love the field of VLSI. Ever since, I’ve been knocking on
his door, day and night, seeking his guidance and wisdom.

I wish to express my gratitude to Dr. B. Jaumard from University of Montreal , the optimiza-
tion centre, for her support and expert advice on optimization.

I am grateful to Dr. Mohamad Nekili for his support and encouragement. I benefited so much
from his insightful thoughts on high speed interconnect.

Many thanks to my wife, Mrs. Ibtihal Fadhil, for her kind support and encouragment.
I would like to reserve my deepest thanks for my first teachers: my parents, Mr. and Mrs. Al-

Taraihi, and my uncle, Dr. Taki Al-Taraihi. I am extremely indebted to them for their uncondi-
tional love, sincerity, and their tradition of encouraging me and my brothers to pursue science.

v

TABLE OF CONTENTS

Chapter 1: Introduction
1.1 System on Chip Design
1.1.1 Chip Interconnects
1.1.2 The Design Methodology
1.2 Clock Distribution Network
1.3. Overview of the Dissertation

Chapter 2: Clock Distribution Network
2.1 Introduction
2.2 Clock Skew
2.3 Preliminaries of The CDN Synthesis
2.3.1 Graphical Model of the CDN
2.3.2 Delay Model of The CDN
2.3.3 Power Dissipation of The CDN
2.3.4 Problem Definition
2.4 CDN Synthesis Using Geometric Approaches
2.4.1 H-Tree
2.4.2 Method of Means and Medians (MMM)
2.4.3 Geometric Matching Algorithm (GMA)
2.5 CDN Synthesis Using Elmore Delay Model
2.5.1 Tsay’s Method
2.5.2 Differed Merge Embedding (DME) Algorithm
2.5.3 Greedy Differed Merge Embedding (GDME) Algorithm
2.6 Shortcomings of Previous Approaches

Chapter 3 Tuning the Clock Distribution Network
3.1 Introduction
3.2 Clock Distribution Network Tuning by Adaptive Wire Adjustment
3.3 Convergence of AWA Algorithm
3.4 Implementation and Results
3.4.1 Comparing AWA’s Performance to DME and GDME
3.4.2 CDN’s Tuning Using AWA
3.5 Summary

Chapter 4: Local Topology Modification

~N W W N = =

10
10
14
14
15
16
17
17
18
19
20
21
21
23
26
27

29
29
30
36
42
44
49
54

56

4.1 Introduction

4.2 Quadratic Tree vs. Binary Tree

4.3 Local Topology Modification Using a Search Tree

4.4 Applying the LTM Method to AWA, DME and GDME Algorithms

4.5 Implementation and Results
4.5.1 Applying LTM to AWA, DME and GDME Algorithms
4.5.2 Impact of LTM on the Convergence of AWA Algorithm

4.6 Summary

Chapter 5: Tuning the Clock Distribution Network Under Obstacle Constraints
5.1 Introduction
5.2 Definitions
5.2.1 Manhattan Arc
5.2.2 The notations Y and Q
5.2.3 Problem Formulation
5.3 Shortest Paths Polygon
5.3.1 Polarity of a Convex Point of an Obstacle
5.3.2 SPP’s Vertices
5.4 SPP Determination
5.4.1 The interrelated Shortest paths
5.4.2 Boundary Arcs Determination
5.5 Balancing Segment Determination
5.6 Incorporating the SPP Methodology into AWA Algorithm
5.7 Implementation and Results
5.7.1 Building ZSCDN Using SPP-AWA
5.7.2 CDN Tuning Under Obstacle Constraints
5.8 Summary

Chapter 6: Incorporation of SPP Model for Special Cases

6.1 Introduction

6.2 Preliminary

6.3 Determination of a Link in the Visibility Graph
6.3.1 Link Determination Between a Point and an Arc
6.3.2 Link Determination Between Two Arcs

6.4 Applying the SPP Model to the DME Algorithm

6.5 Planar Clock Distribution Network

vi

56
58
62
66
69
69
72
74

76
76
79
79
80
81
82
86
88
90
92
92
97
100
102
103
104
106

110
110
112
115
115
120
122
124

6.5.1 The Inner Product Operation
6.5.2 The SPP Formation
6.5.3 Applying SPP to Planar CDN Determination
6.6 Results
6.6.1 Clock Distribution Network Under Obstacle Constraints
6.6.2 Planar Clock Distribution Network

Chapter 7: Conclusions and Future Work

7.1 Summary

7.2 Contributions

7.3 Suggestions for Future Work
7.3.1 Incorporation the LTM and SPP Concepts into Different Algorithms
7.3.2 Incremental Buffer Insertion into the CDN
7.3.3 Incremental Link Insertion into the CDN
7.3.4 Differential CDN
7.3.5 Applying RLC Delay Model to Proposed Approaches
7.3.6 Wire Length Estimation Under Obstacle Constraints
7.3.7 SPP Router
7.3.8 Incremental Place and route

References

Appendix A: Local Topology Modification Using Quadratic Optimization
Appendix B: Determination of the Arc Projection

vii

127
128
131
132
133
136

139
139
143
144

144
144
145
145
146
146
147

148
159
166

LIST OF FIGURES

Figure 1.1 Delay for interconnect versus feature size (courtesy ITRS 2003) [1]. 3
Figure 1.2 Design methodology as projected by ITRS 2003 for technology less than 4
65 nm.

Figure 2.1 Pair of sequentially adjacent registers 11
Figure 2.2 The permissible skew ranges of two registers 13
Figure 2.3 Global data path (A) A Parallel data path (B) A feedback data path 14
Figure 2.4 The topology tree of a CDN 15
Figure 2.5 The RC-Tree of the tree shown in Figure 2.4 16
Figure 2.6 The H-tree 18
Figure 2.7 The MMM algorithm 19
Figure 2.8 The GMA algorithm 20
Figure 2.9 The Determination of the edge lengths using Tsay approach 23
Figure 2.10 The wire elongation 23
Figure 2.11 Calculating the merging segment of w during the first phase when 0<x<1 25
Figure 2.12 Selecting the exact location of a node from its merging segment 26
Figure 3.1 Selecting the balancing node in a tree. 32

Figure 3.2 The leaf delay ranges of the sub-trees rooted at nodes #, v and w of Figure 32
3.1.

Figure 3.3 (a) Determination of BS,, and the new location of the balancing node, w’. 34
(b) The intersection of TR,, and TR, is a tilted rectangle when e,, +
e,>Rect,,

Figure 3.4 The AWA algorithm 35

Figure 3.5 For a set of 32 clock pins (a) the skew convergence of AWA algorithm (b) 42
the skew convergence of AWA algorithm when the BN’s edge is adjusted
theoretically as in Equation 3.10.

Figure 3.6 The AWA skew convergence for the benchmark r3. 45
Figure 3.7 Relation between AWA’s iteration and the total wire length for the bench- 45
mark 13.

Figure 3.8 Relation between the number of clock pins and the number of iterations 47
of AWA algorithm.

Figure 3.9 Relation between AWA'’s iteration and the number of altered leaves for 48
ZSCDNes of different benchmarks of clock pins.

Figure 3.10 Relation between AWA’s iteration and the number of shifted clock pins for 50
benchmarks r3, b5k and b10k.

viil

Figure 3.11 Relation between the total wire length and the number of shifted clock 51
pins for benchmark b5k.

Figure 3.12 Relation between the number of iteration and the shifting in the location of 52
ten clock pins in benchmarks r3, bSk and b10k.
Figure 3.13 Relation between the total wire length and the shifting in the clock pins for 52

the benchmark b5k

Figure 3.14 Relation between AWA’s iteration and the size of the deleted and inserted 54
IP. The size is given as percentage of the whole die area.

Figure 4.1 An example of minimizing the total wire length by modifying the topol- 59

ogy
Figure 4.2 The Quadratic tree. 59
Figure 4.3 The primary topologies of connecting a node to its four children. 60
Figure 4.4 The non primary topologies of connecting a node to its four children. 61

Figure 4.5 Avoiding wire elongation by modifying the topologies of the RST and/or 63

the clock signal flow (the drawing is not to scale).
Figure 4.6 The searching tree for the optimal topology. The labels refer to topologies 64

labeling in Figure 4.3.
Figure 4.7 The LTM procedure. 66
Figure 4.8 Applying LTM helps node to be swapped 65
Figure 4.9 The LTM-AWA algorithm. 67

Figure 4.10 Leaf delays plane of a tree of 16 leaves during the running of LTM-AWA 68
at: (a) the beginning (b) iteration 1 (c) iteration 9 (b) iteration 10.

Figure 4.11 The resulting ZSCDN for 64 clock pins by using (a) DME (b) LTM-DME. 70

Figure 4.12 The comparisons of different parameters for benchmark r3 when the LTM 72
is applied to different algorithms.

Figure 4.13 The skew convergence of LTM-AWA for the benchmark r3. 73

Figure 4.14 Relation between the number of clock pins and the number of iterations of 73
AWA and LTM-AWA.

Figure 4.15 The relation betweenL TM-AWA’s iteration and the total wire length for 73

benchmark r3.
Figure 5.1 The Manhattan arc 80
Figure 5.2 The potations W and ©. 81

Figure 5.3 An example of connecting two nodes (a) the connection topology (b) the 83
routing area of the connection without obstacle constraints (c) the routing
area of the connection with obstacle constraints.

ix

Figure 5.4

Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9

Figure 5.10
Figure 5.11

Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 6.1
Figure 6.2
Figure 6.3

Figure 6.4

Figure 6.5
Figure 6.6

Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15

Figure 6.16 The resulting ZSCDN for the benchmark r1 under 20 obstacle constraints.

The sign and slope of the corer 0 (a) @=-1 and =-1 (b) a=+1 and f=-1 85

(c) a=-1 and f=+1(d) a=+1 and f=+1

The Shortest Paths Polygon.

The graph representation.

The extension of the boundary arcs. (b) The visibility graph.
The overlapping between different parts of a merging segment.
Merging segment determination.

The Merging Segment Determination procedure

(a) The possible arcs of the merging segment have 1 slope. (b) The visi-
bility graph

Skew convergence and total wire length for r1 with 40 obstacles

Total wire length vs. number of obstacles for rl

Number of iterations and run time vs. number of obstacles for rl
Iterations and run time vs. number of shifted sinks for r5

Iterations and run time vs. the size of the shift of five sinks for r5.
Iterations and run time vs. the size of the shift of three obstacles for r5.
An example of a CDN tree

The four quarters of a point in the Manhattan plane.

The quarters of the head and tail of an arc, S (a) Sgpe =1 (b) Sqiope =-1-

The relationship between a Manhattan arc and a point (a) pTS (b) plS.
The projection of a point on an arc.

The projections of two arcs on each other when they are (a) parallel and
(b) perpendicular

The impact of an obstacle on connecting an arc S to a point p.
Different possible cases the relationship between an arc and a point.
Procedure of Link Determination between an arc and a point

The impact of an obstacle on connecting two arcs.

Procedure of Link Determination between two arcs, Sand T.

The Top-Down Procedure of the SPP-DME.

Modifying the SPP S and T

Other scenarios of modifying the SPP.

The procedure of merging segment determination without intersection
with other wires.

X

89
91
93
96
99

99
102

107
107
108
108
109
109
111
112
113

113

114
115

117
118
119
121
121
124
129
130
132

[o—

35

Figure 6.17 Total wire length vs. number of obstacles for rlusing Planar-DME 135
Figure 6.18 rup time vs. number of obstacles for the benchmark r1 using Planar-DME 135

Figure 6.19 The planar ZSCDN for the first 32 clock pins of the benchmark r1. 136
Figure 6.20 Total wire length vs. number of clock pins for different benchmark. 137
Figure 6.21 Total wire length vs. number of clock pins for the benchmark r1. 138

xi

LIST OF TABLES

Table 3.1
Table 3.2

Table 3.3
Table 3.4
Table 4.1

Table 4.2

Table 5.1
Table 5.2

Table 6.1
Table 6.2

Table 6.3

Parameters of the benchmarks that are used in the experiments 43

Different metrics of DME, AWA and GDME for different benchmarks. 46
Both DME and AWA are tested with two different initial topology; MMM
and GMA

Number of iterations required by AWA for different benchmarks 48
Number of clock pins per IP for benchmarks b5k and b10k. 53

Different metrics of LTM-AWA, LTM-DME and LTM-GDM for 71
different benchmarks.

Number of iterations required by AWA and LTM-AWA for different 74
benchmarks

Signs of the corners 87

Different metrics for different benchmarks using SPP-AWA. Each 104
benchmark is compounded with 40 obstacles

The look Up Table for the case Sg,,,=-1 and SAQ’(p) 119

Different metrics for different benchmarks using obstacle free DME and 136
SPP-DME with 40 obstacles.

Different metrics for different benchmarks using DME and Planar-SPP- 137
DME

xii

LIST OF ACRONYMS

AWA
BB
BSCDN

CDN
DME
GDME
GMA
LT™

LTM-AWA

LTM-DME

LTM-
GDME

MMM
SDPL

SPP
SPP-AWA
SPP-DME

ZSCDN

Adaptive Wire Adjustment
Balance Bipartition

Bounded Skew Clock Distribution Net-
work

clock distribution network
Differed Merge Embedding
Greedy DME

Geometric Matching Algorithm
local topology modification

International Technology Roadmap for
Semiconductor

Applying LTM approach to AWA algo-
rithm

Applying LTM approach to DME algo-
rithm

Applying LTM approach to GDME algo-
rithm

Method of Means and Median

standard deviation of the path lengths
between the root and the clock pins of a
CDN

shortest paths polygon
Applying SPP model to AWA algorithm
Applying SPP model to DME algorithm

Zero Skew Clock Distribution Network

Xiil

LIST OF SYMBOLS

o The first sign of a concave point of a poly-
gon

A Manbhattan arc set

B The second sign of a concave point of a
polygon

C capacitance of a subtree

co capacitance per unit length

Centre centre of delay range

D) Manhattan distance between two argu-
ments

e edge length

/ location of a node of a CDN in the Man-
hattan Plane

L Left poiter of a node of a CDN

m cost of the shortest path

Max The Maximum a leaf delay range

Min The Minimum a leaf delay range

ro resistance per unit length

R Right poiter of a node of a CDN

Range leaf delay range
SPP() Shortest Paths Polygo of two arguments

© An operation that determines the end
points of a Manhattan arc

Wire() The wire that connects two points or two
arcs

¥ An operation that determines the corners
of a Rectangle

Xiv

Chapter 1

Introduction

1.1 System on Chip Design

A System on a Chip (SoC) combines several homogenous or heterogeneous blocks,
which vary in complexities and specification, on a single chip in order to carry out
numerous integrated operations. The design of a SoC is challenging and can be very
complicated compared to the design of Application Specific Integrated Circuits (ASIC)
due to the scale of the problem. Accordingly, no single designer will be able to handle
this huge design task. To cope with such a challenging task, it is necessary to develop

more sophisticated design approaches.

One approach to design the SoC is to have a number of design teams that work concur-
rently in a common user-friendly design environment. This approach is manifested in
the growing trend among designers to import pre-designed macro functions, called Intel-
lectual Property (IP) blocks, from various providers [12]. According to International
Technology Roadmap for Semiconductor (ITRS), the complexity and the size of the SoC
will continue to drive designers to reuse IPs over the next decade [1]. These third party
IP blocks may cover up to 96% of the area of the chip [1]. However, the major chal-
lenges posed by the SoC design are system complexity, signal integrity and verification

of the implementation. Other two factors influencing the SoC design are the constant

demand for the reduction in the time to market and the power consumption. Therefore,
the SoC design imposes new challenges that need to be addressed by the designers and

EDA community.

1.1.1 Chip Interconnects

One of the major challenges of the SoC design that have surfaced is the role and perfor-
mance of the interconnects [2-8]. The role of the interconnects is to distribute data, con-
trol signals and system clock and its derivatives across the chip. It also feeds power and
ground to various circuits of the system. Due to the size and complexity of a SoC, differ-
ent metal layers are used to lay out the massive interconnects. It is projected that future
SoC will use some 14 metal layers by 2011 [1]. Local interconnects normally use lower
level metals, while global interconnects use high level layers. The latter include signals
between IPs, power busses and clock distribution networks [7]. The process of laying
out the interconnect is very complex; and furthermore, the signal propagation through

the interconnect is not linear [2].

The reduction in the feature size renders the device delay smaller. However, the delay of
the interconnect increases with the reduction in the feature size due to the increase in the
resistivity of the interconnect [2-4]. In addition, due to the impact of the parasitic capac-
itance, the delay increases exponentially with the length of the interconnect. Figure 1.1
shows a comparison between the impact of feature reduction of the interconnect and
gate delay [1]. Local interconnects are relatively unaffected by the shrinking in the tech-

nology. However, the delay of the signal is primarily influenced by the global intercon-

nects [1]. In fact, the global interconnect delay will continue to increase with the
technology scaling. As a result, one of the most challenging problems of the SoC is to

maintain the signal integrity at the targeted performance 2-8].

1.1.2 The Design Methodology

The SoC has to be designed according to a methodology that orchestrates the steps of the
design process in order to fulfill the system requirements [12 , 65]. Thus, the design
methodology holds the key answer to the challenges posed by the SoC design. Nowa-
days, different design tasks communicate with each other at different design steps mak-
ing the process tedious and complex [48]. Indeed, the designer has to go back and forth

between different design steps in order to meet the system requirements.

100 = e L
;."w-o-éate .delay w
-= |ocal

10 ' [] "% Global with repeaters
-x Global without repeaters

Relative delay

250 180 130 90 65 45
,, . . Featuresize (m) ,
Figure 1.1 Delay for interconnect versus feature size (courtesy ITRS 2003) [1].

In order to cope with the challenges of the SoC design, different design tasks need to

3

communicate with each other, operate concurrently and share data memory. Figure 1.2
shows, in general, the projected design methodology for feature size less than 65 nm
according to ITRS [1]. In addition, different design steps have to be executed incremen-
tally in the case where minor modification are required. Supporting different design
steps with efficient Engineering Change (EC) techniques, and executing these steps in

parallel would improve engineering productivity and reduce time to market.

Figure 1.2 Design methodology as projected by ITRS 2003 for technology less than 65

nm [1].

With the dominance of the interconnect role in determining SoC performance, the task
of routing becomes more important than the optimization of the devices [2-4]. Thus,
there is a definite need for efficient EC techniques that can handle any local modifica-
tion in the layout of interconnects of the SoC [48]. Kahng et. al. showed that the crucial
role of the interconnect promotes a need for interconnect tuning [49]. The rise in SoC

complexity and interconnect dominance team up to intensify a specific challenge to the

Clock Distribution Network (CDN)[5-24]. The challenge stems from the CDN’s crucial

role of integrating different IP cores into a single synchronous SoC.

1.2 Clock Distribution Network

High performance systems may contain hundreds of thousands of combinational logic
elements and tens of thousands of registers. All registers, memory elements and
dynamic circuits in a synchronous digital system are synchronized by a single clock sig-
nal or multiple clock signals. The function of the clock signal is to deliver a time refer-
ence so that the correct data propagates throughout the system. The clock signal is
normally delivered by a network of interconnects commonly known as a Clock Distribu-

tion Network (CDN) [5].

The clock signal is a performance bottleneck for any SoC because of its characteristics
that distinguish it from other signals in the system. One of the most important character-
istics.is that the clock signal must feed all registers around the system. Hence, the CDN
is largest net occupying a significant portion of the chip area. The increase in the size of
the CDN implies an increase in the power consumption of the CDN. This power is
almost dynamic power in nature due to the charge and discharge of the massive inter-
connection capacitance of the CDN. Furthermore, the CDN with its heavy fanout load
has to operate at the highest speed among all other signals. Thus, designing the CDN is a
critical step in the design process of a SoC. The approach of designing the CDN would
affect the arrival time of the clock signal to the corresponding registers; and conse-

quently, would impact the CDN’s quality.

The difference between arrival times of the clock signal is referred to as clock skew. The
skew effects on the system performance depend on the data propagation paths between
the registers. In general, the clock skew can either enhance or degrade the system perfor-
mance depending on the magnitude and polarity of the skew. The skew can harm the
system performance in terms of speed, power and reliability. Worst than that, if the skew

is not properly controlled, it might lead to a system failure.

The skew problem can be tackled by devising a CDN so that the skew is zero between
all registers. Such a CDN is called Zero Skew Clock Distribution Network (ZSCDN)
[39-43]. Other researchers focused on achieving a Bounded Skew CDN (BSCDN)
instead of ZSCDN due to the difficulties of achieving ZSCDN [44-47]. The skew impact
on system performance [25-28] motivated researches to explore various techniques of

clock scheduling with the objective of optimizing clock skew [29-33].

This thesis focuses on the performance of different CDN design approaches in light of
the new challenges of the SoC design process. The run time and the complexity of dif-
ferent CDN design approaches become a concern with the increase in the number of
sinks to be connected to the CDN. The new challenges that are imposed by the SoC
require different design approaches for the CDN. The main shortcoming of previous
approaches is that they are not incremental; and hence, the whole solution has to be re-
calculated whenever a design change is required. The main challenge is to have a CDN
design approach that can handle minor modifications in the system. Other shortcoming

of previous approaches is that the locations of the Steiner points of a CDN are deter-

mined regardless of the routabilty of the wires. Indeed, most of the CDN approaches
solve the skew problem by determining the required wire lengths between different
points of the CDN without considering the realization of such wire lengths. Further-
more, most of these approaches resort to wire elongation in order to achieve the skew
requirements. However, it is not always possible to route a wire with a specific length
due to the difficulties of the routing task. Also, it is often the case that vias are required
in order to avoid routing through obstacles and to route the wire in different layers.
Thus, it is necessary to consider the routability of each wire of the CDN during the

determination of the CDN in order to meet the timing requirements.

1.3. Overview of the Dissertation

This work provides one of the first studies of CDN redesign, called CDN tuning, which
focuses on incremental synthesis of the CDN in order to meet the timing constraints. A
novel algorithm, called Adaptive Wire Adjustment (AWA), is proposed here with a main
goal to enable a quick Engineering Change (EC) to the CDN [64]. A secondary goal is to
reduce the CDN wire length and number of wire elongations under to help with routing

and to minimize power consumption [60-63]. This thesis is organized as follows:

Chapter 2 covers background material related to the work presented in this thesis. The
chapter presents an overview of the skew problem; and different approaches that have
been used to solve it. The chapter further presents different algorithms that are used to

generate the initial topology.

Chapter 3 presents a new incremental algorithm, called Adaptive Wire Adjustment, in
order to manage small modifications in the CDN. It also details the proof of convergence
of the algorithm. The chapter further presents various figures of merit used to evaluate
AWA and other algorithms. The issue of small modifications are addressed by devising
different scenarios that are similar to the scenarios of small modifications in a SoC

design process.

Chapter 4 presents a method of Local Topology Modification (LTM) in order to enhance
the convergence of AWA algorithm. A new method to select the topology using a search
tree will be presented. The chapter further introduces figures of merit to demonstrate the

advantage of using the LTM method into AWA and other CDN synthesis algorithms.

Chapter 5 studies the shape of the routing area of an interconnect of a CDN under obsta-
cle constraints. An obstacle might be a pre-placed macro cell with blocked region or a
previously routed wire. The chapter presents a simple model, called Shortest Paths Poly-
gon (SPP), to describe all shortest paths between two points in the presence of obstacles.
The chapter also presents the incorporation of the SPP model into AWA algorithm in

order to tune the CDN under obstacle constraints.

Chapter 6 focuses on the obstacles that stand for previously routed wires. A method is
presented to determine the SPP of each wire of the CDN such that the wires do not inter-
sect with each other. Specifically, the CDN is routed in one and two layers. The chapter

presents a comparison between this method and other methods. It shows the advantage

of using the SPP model in terms of reducing the total wire length. Furthermore, the

impact of the planarity on the total wire length will be studied.

Finally, Chapter 7 concludes and summarizes the contributions provided in this work.

The chapter also discusses future research directions in designing CDNs.

Chapter 2
Clock Distribution Net-

work

2.1 Introduction

The clock skew problem is a direct result of the feature reduction; and it is the main
problem that has to be resolved by any CDN synthesis approach in order to meet the sys-
tem requirements. This chapter discusses this problem and different approaches that
address it. The following sections provide the background and the terminology of the
issues involved in this thesis. Throughout this thesis, a simple synchronous system is
considered using positive edge triggered flip flops under a single phase clocking

scheme.

The Clock Distribution Network (CDN) refers to the circuits and interconnections that
are used to deliver the clock signal to all registers and dynamic circuits in a synchronous

system.

2.2 Clock Skew

A typical scenario for a synchronous system is a data flow between two registers, i and j,

as shown in Figure 2.1. Such registers are called sequentially adjacent since there is a

10

combinational logic (or just an interconnection) that connects the output of i to the input
of j. If i and j are properly functioning, then the data latched by i must be captured by j
with the next latching clock edge. However, the delay of the interconnection of the CDN

results in different arrival times of the clock signal to the registers 7 and j, T; and T;
respectively. The difference between T; and T; is called the clock skew between i and j,
S(i,j); and it is given as:

S8G,j) = T, - T, 2.1

Note that S(i,j) can be positive or negative depending on whether the T;lags or leads T;.

Combinational logic

Inputdata | . - .| Output data
———| i ——>(Tpp(max)(L:d) TpD(min)(iJ J|—
? T; ? T

Figure 2.1 Pair of sequentially adjacent registers

On the other hand, data signal encounters a delay when it propagates from i to j. The

data propagation delay between two adjacent registers, Tpp(i,j), is due to the registers,

combinational logic and the interconnection; and it can be determined as follows:

Ton,i) = To@ + Te(i,) + Tindis) + T,6) (2.2)
Where:
Tq(i): the switching delay of register i

Tc(1,)): the propagation delay of the combinational logic between the registers i and j

11

T;,¢(i,]): the propagation delay of the interconnect between i and j

T,(): the required time for data to be stable in order to be latched by j

Note that there are minimum and maximum values for Tpp(ij), Tpp(min)(iJ) and
Tpp(max)(i:)) respectively, depending on the minimum and maximum values of different

delay components.

In order to latch the correct data by j, the clock skew and the data propagation delay

between i and j have to be controlled. In more details, two constraints must be satisfied:
1) the data that propagates from i should not reach j before the arrival of the clock signal
atj, T;. Otherwise, the data will propagate through i andj in the same clock cycle (dou-

ble clocking or race condition). Mathematically, the skew should satisfy the following

relationship:

S J) 2 TG) = Tppminyls) 23)
where Ty(j) is the hold time of register ;.
2) the data should not reach j with a delay greater than the time difference between the
next clock edge at j and the current clock edge at i. Otherwise, the data will not be

latched by at the following clock pulse (zero clocking). Mathematically, the skew

should satisfy the following relationship:

where Ty is the clock cycle time

12

The magnitude and polarity of S(i,j) and Tpp(i,j) affect the system performance. For

example, the later constraint determines the maximum clock frequency, f, as follows:

2 8(1,) + Tpp(max)(d>)

-

@2.5)

Based on the above discussion, Equations 2.3 and 2.4 define, respectively, the lower
(Smin(i)) and upper (S;ax(i,j)) bounds of the permissible range of S(i,j) as shown in

Figure 2.2.

Smin(i:f) Smax(ixf)
| 1
Race condition | Permissible Range | Clock period Limitations
- + L . '
Figure 2.2 The permissible clock skew range for two registers.

Two registers may be connected by more than one data path as shown in Figure 2.3,
where the system is modeled as a directed graph. Each vertex refers to a register; and
each edge refers to a combinational logic path (or just a wire) between two registers. In
addition, each edge has two weights that correspond to the maximum and minimum data
propagation delay between its two vertices. For example, the registers 1 and 3 shown in
Figure 2.3(a and b) are connected by two data paths; and each path has a different per-
missible skew range. Thus it is important to determine the permissible skew range prop-

erly in order to ensure that 3 latches the correct data.

13

(@) (b)

Figure 2.3 Global data path (a) A Parallel data path (b) A feedback data path

2.3 Preliminaries of The CDN Synthesis

2.3.1 Graphical Model of the CDN

Consider a set of registers R={1, 2,., n} to be connected by a CDN. Each register ie R, is

associated with a load capacitance, C;, and a location in the Manhattan plane /;. The set

R can be connected by different CDNs depending on the approach used to generate the
CDN. The objective of the early CDN design approaches was the minimization of the
total wire length. This is due to the fact that the interconnect delay was insignificant
compared to the device delay. As such, the CDN design problem is reduced to the prob-
lem of connecting a set of registers with minimum wire length, which is known as the
Steiner tree problem. Indeed, the CDN would have a tree topology since there is a
unique path from the clock source to each register (the topology here refers to the graph
that represents the connection between registers and the clock source). Furthermore, the
Steiner tree connects the set R through intermediate nodes, called Steiner points, so that

the total wire length is minimized.

The connection between the set R and the Steiner points can be depicted by a topology

tree T. The leaves of T correspond to the registers and the internal nodes in T correspond

14

to the Steiner point in the CDN as shown in Figure 2.4. Any node k, keT, is connected to

its parent by an edge e;. For any two nodes w and £, where w is the ancestor of £, there is

a unique path from w to k in T; which is denoted as Path(w,k).

clock source

w -
" - - y Steiner point
< -
_ " Registers
1 2 3 4 <~

Figure 2.4 The topology tree of a CDN

2.3.2 Delay Model of the CDN

The edge of node £, ¢4, in the CDN can be modeled as a n-type circuit with a resistor r;,
and two capacitors ¢/2, where r;, and cy, are the resistance and capacitance of e, respec-

tively. Consequently, the CDN can be modeled as an RC tree as shown in Figure 2.5.

Under the Elmore delay model, the arrival time of the clock signal to a node, £, is given

by [3]:

Delay(w,k) = %" fi(% * Ci)

i € Path(w, k) (2 6)

where: C; is the total capacitance of the sub-tree rooted at node i

w is the source of the clock signal.

15

[}

HH

3

HH—
H H

] o

e b e ot

1

Figure 2.5 The RC-Tree of the topology tree shown in Figure 2.4

: "

HH
o

l"— —

o
i

2.3.3 Power Dissipation of the CDN

Each transition of the clock signal changes the state of each node in the CDN. Conse-
quently, the primary component of the power dissipated by the CDN is the dynamic
power due to charging and discharging the capacitance load of the CDN. The dynamic
power dissipated by CDN depends on the capacitance of the CDN, swing voltage and

clock frequency as follows [24-29]:
P=C V3 @7

Where: (i, isthe CDN capacitance

Vpp is clock signal swing

Normally, the CDN consumes around 40% of the system power consumption [24-29].
Minimizing the power of the CDN can be achieved by minimizing the signal swing and/

or CDN capacitance. Minimizing the CDN capacitance requires the reduction of the

16

total wire length of the CDN. Thus, it is important to design the CDN with minimum

wire length in order to reduce the power dissipation.

2.3.4 Problem Definition

For a given set of registers R, where each register is associated with a location and a load
capacitance, let the skew constraint between every pair of registers be given by the set

S={SG./)=(Smin()Smax(@))}- The CDN design problem can be formulated as follows:

Find the CDN that satisfies the skew constraints S with minimum wire length.

The CDN synthesis requires the determination of the location and the edge length of
each node in the CDN. If there is no skew constraints, then the problem becomes a Rec-
tilinear Steiner Tree problem. This problem is NP-hard, and much work has been
devoted to designing good heuristics and approximation algorithms [3, 71, 73, 77]. Nev-
ertheless, such an assumption is not true, and the skew constraints must be carefully

determined and satisfied.

A close look into the relation 2.3, which determines S.,;,(ij), reveals that it is usually
Smin(14)<0 since Ty<Tpp. On the other hand, according to the relation 2.4, it is usually
true that S,,.(i,j)>0 since Tpp < Tk Thus, one may deduce that a zero skew CDN

(ZSCDN), or a bounded skew CDN (BSCDN), would satisfy the skew requirements.

2.4 CDN Synthesis Using Geometric Approaches
Early approaches of designing a ZSCDN are based on linear delay model. According to

17

this delay model, the clock signal down a path in the CDN is assumed to increase lin-
early with the length of the path. In general, there are three geometric approaches con-

sidered in this thesis: H-tree, method of means and median and geometric matching

algorithm.

2.4.1 H-Tree

Let the set of registers, R, to have a symmetric distribution such that the set R can be
divided into two symmetric sets recursively and alternatively by vertical and horizontal
lines until each set has one register only. Then, it is possible to connect the set R using
recursive H-shapes; and the resulting CDN is called H-tree as shown in Figure 2.6. The
clock source is connected to the center of the first H structure; and the four corners of
each H-structure provide inputs to the next level of the H tree, and so on. The final desti-

nation points of the H-tree are used to drive the local registers.

Figure 2.6 The H-tree

The H-tree increases the path lengths from the center of the first H to all registers so that
all paths become equal. That is, the H-tree method trades of the total wire length for zero

skew. In addition, the H-tree requires that the registers to have a symmetric distribution.

18

Also, all registers must have equal capacitance load in order to achieve a zero skew

between all registers.

2.4.2 Method of Means and Medians (MMM)

At each iteration, The method sorts a set of registers R according to their x-coordinates
(or y-coordinates). Then the method finds the median of the x-coordinate (or y-coordi-
nate) of all elements of R; and groups the elements into two sub-sets based on whether
each element is located to the left or right of the median. This process continues recur-
sively for each sub-set from a previous iteration with alternation between the x and y

coordinates until each sub-set has two registers at most as shown in Figure 2.7.

(a) :(b)
©

Figure 2.7 The MMM algorithm

19

2.4.3 Geometric Matching Algorithm (GMA)

This algorithm constructs the CDN by matching the closest nodes iteratively in a bottom
up manner. In the first iteration, the algorithm finds the pair of registers that are closest
to each other in a given set of registers R. The pair of registers are replaced by a node in
R; where this node becomes the parent of the pair of registers. At each iteration, the
algorithm reduces the number of nodes in R by one as shown in figure 2.8. The algo-
rithm stops when R is reduced to one node that stands for the root of the CDN. Due to
the process of selecting the two nodes that are closest to each other, the GMA algorithm
takes longer time to reach its solution as compared to the MMM. However, the GMA

produces a better CDN in terms of total wire length.

(c) (d)
Figure 2.8 The GMA algorithm

20

2.5 CDN Synthesis Using Elmore Delay Model

Various CDN synthesis algorithms were developed based on Elmore delay model to
generate relatively accurate solutions [3]. Some of these approaches require an initial
connection topology of the CDN. Such a topology can be generated using the MMM or
GMA approaches; and it is traditionally a tree since there is a single path from the root to

each leaf.

2.5.1 Tsay’s Method

Tsay proposed a method that produces a ZSCDN based on Elmore delay model [39]. It
requires the topology tree of the CDN to be defined initially. Then, the method deter-
mines the edge lengths of the tree such that the clock signal arrives to all leaves, regis-
ters, at the same time. Specifically, the Steiner points of the tree are selected iteratively
in a bottom-up manner; and the two child edge lengths of the selected Steiner node are
determined. Assume that during the progression, Steiner point w is reached, where u and
v are the children of w as shown in Figure 2.9. This implies that the method has deter-
mined the edges of the sub-tree rooted at # (and v) such that the clock delays from u (and

v) to all its leaves are equal. Let #,, and #,, be the clock delays from u and v to their leaves

respectively. In order to achieve a zero skew between all the leaves that are connected to

w, the edge lengths of u and v, e, and e, respectively, have to satisfy the following equa-

tion:

c,.C c,C
euro(uTO +C)+t, = evro(-vz—" +C,)+t,
2.8)

21

where rj and ¢, are the resistance and capacitance per unit length of wire respectively

Let the rectilinear distance between u and v be D. Also, let x be a factor, 0<x<1/, that

denotes the partitioning of D between e, and e, such that:

e, = xD e, = (1-x)D 2.9)

Then, Equation 2.8 can be written as follows:

xDc B (1-x)Dc,
xDr(5 +CH+t, = (- X)Dro(T +C)+t,
(2.10)
Solving Equation 2.10 for x yields:
Dc,
(tv - tu) + rOD(—z— + Cv)
¥ TID(cD+C,+C,) @.11)

If the resulting x is 0<x<1, then it is possible to balance the two subtrees by a wire of
length D; and e, and e, are determined according to Equation 2.9. However, if x<0 (or
x21) then a wire of length D cannot balance the skew between the two subtrees. The
case x<0 implies that 7, >> ¢,; and hence, the node w must coincide on node ». That is

e,,=0; and e, can be calculated from Equation 2.8 as follows:

2
o JroC)2 + 2rgeo(ty 1)~ 1oC,

v ICo (2.12)

22

Similar equation can be derived for the case x>/. The cases x<0 and x>1 imply that
e,>D and e >D respectively. Consequently, there would be a wire elongation as shown
in Figure 2.10. Such a wire elongation results in an increase in the chip area and power

consumption; and in addition, it is cumbersome for the CDN routing.

e > sub-tree of u
ru r—— - - - — — B
ey=x*D ’ LAVAY : ty {
/
| | I |
v c/2 /2 | C, |
X A = = L= .
\
=(1-x)D "
&%) -~ > sub-tree of v
rv r—— - - - — — 1
WA—— |
I ty l
S | I
" [ey2 c/2 | C I
1 1 l Y |

Figure 2.9 The determination of the edge lengths using Tsay approach

wire elongation

. y

u, w

Figure 2.10 The wire elongation

2.5.2 Differed Merge Embedding (DME) Algorithm

The Tsay method determines the edge lengths of the tree such that the skew become zero

23

between all registers. However, this method does not consider all locations of the Steiner
points in the routing plane. For example, node w shown in Figure 2.9 can be located in

different locations for a given e, and e, Considering all possible locations of each

Steiner node would help to minimize the total wire length of the CDN. This shortcoming
was addressed by the Differed Merge Embedding (DME) algorithm [40-42]. The DME
algorithm uses the Tsay method, which is based on Elmore delay model, in order to
determine the edge lengths. In addition, it determines all possible locations of each
Steiner point in the Manhattan plane, which will be called the merging segment. The
merging segment of a node is a Manhattan arc whose slope is +1 as shown in Figure
2.11. The DME reaches its solution in two phases: a bottom-up phase and top-down

phase as will be described next.

The first phase determines the merging segment of each Steiner node in bottom-up man-
nar. Assume that the algorithm has reached the Steiner node w whose child nodes are u
and v as shown in Figure 2.9. The edge lengths e, and e, are determined using Tsay
method. Then the merging segment of w, ms(w), is determined such that ms(u) and ms(v)
can be connected with the edge lengths e, and e,. Note that the points that have equal
distances form a Manbhattan arc constitute a Tilted Rectangle, TR, as shown in Figure
2.11. The Manhattan arc of a TR is called the core of the TR; and the distance between

the core and the border of the TR is called the radius of the TR.

Let TR, be the TR of node u such that the core is ms(u) and the radius is ¢, as shown in

24

figure 2.11. Similarly, let TR, be the TR of node v. Then, ms(w) would be the intersec-

tion of TR, and TR,;:
ms(w)=TRR,NTRR, 2.13
ms(w)
ms(u)

Figure 2.11 Calculating the merging segment of w during the first phase when 0<x<1

The output of the first phase of the DME is a tree of merging segments that will be used
as input for the second phase. The second phase selects the exact location of each inter-
nal node from its merging segment in a top-down manner. Assume that the procedure

has reached node u, where the location of its parent w, /,, has already been decided.
Then, /,, is determined by constructing a TR,, whose core is /,, and radius is e, as shown

in Figure 2.12. Since the ms(w) is constructed from the intersection of tilted regions of

25

its children, a portion of ms(u) will lay in TR,, which can be denoted as ms(u)NTR,,

The final location of u is a point that belongs to ms(u)NTR,, [41].

ms{u)

Possible location of

Figure 2.12 Selecting the exact location of a node from its merging segment

The DME algorithm also requires an initial topology. The type of the initial topology has
a significant impact on the total wire length of the resulting ZSCDN. In general, using a
topology obtained by GMA would yield less total wire length. Since, the initial topology
is generated without considering the capacitance load of the CDN, the total wire length
of the synthesized tree can be minimized further by generating the topology and the

ZSCDN simultaneously as will be described next.

2.5.3 Greedy Differed Merge Embedding (GDME) Algorithm

The Greedy DME is the best known ZSCDN design approach in terms of total wire
length [42]. This algorithm generates a ZSCDN in two phases. The first phase deter-
mines, in a greedy bottom-up manner, the edge lengths, the merging segments and the
topology. The edge lengths are determined using Tsay method; and the merging seg-
ments are determined using the DME algorithm. The edge length and the merging seg-

26

ment of a Steiner node are determined by defining the child nodes of the Steiner node as

will be described next.

Consider a set of registers, R. Each register stands for a node in the CDN, where each
node is associated with a merging segment of zero length. Let the set of nodes be Q,
where Q=R at the beginning of the algorithm. At each iteration, the GDME algorithm
finds the pair of nearest neighbors in Q. Let these two nodes be u and v. That is, the dis-
tance between ms(u) and ms(v) is the minimum. The two selected nodes, u and v, will be
replaced by a new node, w, in Q. In the final solution, the node w becomes the parent of
u and v. The merging segment of w, ms(w), is determined from ms(u) and ms(v) as

described in Section 2.5.2.

The bottleneck of GDME is the selection of the pair of nodes at each iteration. The com-

plexity of GDME is O(nz) {42]. The computation time of GDME can be reduced by
finding several nearest neighbor pairs simultaneously; and the complexity is enhanced to
O(n log n). This can be achieved using an efficient implementation of the nearest neigh-

bor computation based on the Delauny triangulation[43].

2.6 Shortcomings of Previous Approaches

The main shortcoming of the previous CDN synthesis approaches is that they are not
incremental. As a result, the solution has to be re-calculated whenever a modification is

required. Such a modification is expected often in the course of designing a SoC. Also,

27

to improve system performance, some level of tuning the synthesized CDN is required.
Therefore, the need for incremental algorithms to tune the network or to implement

Engineering Changes (ECs) in CDN is critical in the SoC design cycle.

In addition, previous approaches satisfy the time requirements by determining the loca-
tion of each Steiner node of the CDN in the Manhattan plane. However, these
approaches cannot guarantee the routablity of the wires that connect the registers
through the Steiner nodes to the source of the clock tree. In fact, routing the DME or
GDME solutions result in many intersections between the wires. The intersections might
be resolved by using vias or lengthening the wires, but the solution would not necessar-
ily meet the time budget. This problem becomes advent due to the increase in the diffi-
culties of the routing problem in complex systems. Thus, it is important to produce a

solution that solves both the timing and routing problems.

In this thesis, an incremental synthesis for small design modifications will be presented

first. Then, the issue of routability of the CDN in the presence of obstacles will be dis-

cussed later.

28

Chapter 3

Tuning the Clock Distribu-

tion Network

3.1 Introduction
Designing a Bounded Skew CDN (BSCDN) in a SoC has become increasingly challeng-

ing, as the clock network consumes an increasing portion of all resources in terms of
wiring area, power and design time. Furthermore, it is sometimes required to insert or
remove IPs or to perform localized modifications without affecting the performance of
the CDN. Hence, there is a need for implementing the EC by tuning the BSCDN instead

of redesigning it.

The approaches that are presented in Chapter 2 produce Zero Skew CDN (ZSCDN)
based on Elmore delay model. These approaches control the skew by using Tsay’s
approach, which may resort to wire elongation [40-47]. Such a wire elongation com-
pounds the complexity and increases the power consumption of the CDN. Furthermore,
a change in the locations or the load capacitance of clock pins would require a recalcula-

tion of the whole CDN solution as in Deferred Merging Embedded (DME) algorithm

29

[40-42]. This will be an extremely computation intensive process for a complex system.
In fact, it is often that IPs are inserted or removed, which changes the CDN’s topology
and the loading and placement of the clock pins [48]. Such changes may affect the entire
CDN and may require a redesign of the clock network. However, in complex system, it
is only practical to implement these minor modifications through an incremental algo-
rithm to tune the CDN. This specific process has received little attention in the literature.
Elboim et. al. [54] have reported that the repetitive redesign of the CDN can be elimi-
nated by inserting programmable delay circuits in the CDN in order to tune the clock
delay. Indeed, these delay circuits enable a quick integration of the IPs into SoC by ‘
avoiding the redesign of the CDN itself. However, the same goal can be achieved by
enabling a quick redesign of the CDN and thus avoiding the penalty of introducing extra
circuitry, which may result in an increased area and power dissipation. This work pro-
vides one of the first studies of redesigning CDN, called CDN tuning, using the physical
information of the CDN so that it better meets the timing constraints. A novel algorithm,
called Adaptive Wire Adjustment (AWA), is proposed with a main goal to enable a
quick EC to the CDN [55, 64]. A secondary goal is to reduce the CDN wire length and

number of wire elongation to help with routing and to minimize power consumption.

3.2 Clock Distribution Network Tuning by Adaptive

Wire Adjustment
The Adaptive Wire Adjustment (AWA) algorithm [55] takes a CDN as an input in the

form of a linked tree data structure and checks for the maximum skew in the tree then

minimizes it by adjusting the wires of the tree. Whenever a skew exists between two

30

leaves, the paths to these two leaves must be adjusted so that the skew becomes smaller.
To adjust these two paths, the algorithm finds the node that can be shifted, by adjusting
its child edges, so that the skew is minimized. Such a node, called the Balancing Node,
BN, is the first ancestor of the same two leaves. For example, consider the CDN shown
in Figure 3.1. In order to minimize the skew between leaves / and 3, their BN, w, is

shifted by adjusting its child edges e, and e, If the leaf] suffers higher delay than leaf 3,
then w must be shifted by A towards node » and away from node v. Thus, the edge e,

decreases and edge e,, increases in the following manner:

U -) = +
¢y euA R ¢y evA

G.1)

where, e’, and e’, are the new values of e, and e,.

In order to determine the edge adjustment, A, the delay from node w to its leaves have to
be considered. In fact, the leaf delays of the subtrees rooted at # and v span ranges in the
time domain as shown in Figure 3.2. Note that the leaf delays of a sub-tree are calculated
from the root of the sub-tree. Consequently, in order to minimize the skew between the
two sub-trees, the ranges of # and v must be shifted in opposite directions. Let us define
the leaf delay range of a sub-tree rooted at node «, Range,, be the maximum and the
minimum delays in that range calculated from the node « as follows:

Range, =Max .- Min (3.2)
where Max,=Maximum{Delay(a.,B)}

Min, =Minimum{Delay(a.,[3)}

for every leaf Besubtree rooted at o

31

In general, the balancing node can be defined as the node that has the maximum range
and belongs to the lowest level in the tree. Let the center of the range of a node o, Cen-

tre,, be the average of maximum and minimum delays of that range as follows:

Maxa+Minu
2

Centreu =

(3.3)

balancing node
w_e,=e, A
v)
1 2 3 4
Figure 3.1 Selecting the balancing node in a tree
before the | Range, |
adjustment { : Range, |
[Range,
Range’
after the | ' ', * l
adjustment I Range, |
| Range, |
o s .
Leaf delay

Figure 3.2 The leaf delay ranges of the sub-trees rooted at nodes », v and w of Figure 3.1

Using the range centre as a time reference, the skew between a pair of internal nodes, u

and v, is defined as:

32

S(u,v) = [euro(e“zco + Cu) + Centreu:l - [evro(e"zco + Cv) + Ccntrcv] (3.4

Equation 3.4 can be used to determine a BN’s edge adjustment, A, so that the skew

between the BN’s children, # and v, becomes zero by substituting e, and e, by e’, and e’,,

respectively in Equation-6 and equating it to zero as follows:

(e, —A)c (e, + A)c
[(eu—A)rO(L > 04 C“) + Centreu:' - ‘:(ev + A)ro(A 04 Cv) + Centrev} =0 (3.5)
rnC
A~ %)(ei - 33) + (Ccntreu - Centrev) + ro(euCu - evCV)
ro(cgley +e,) +C +C)) 3.6)

The value of A refers to the required adjustments for the child edges of the BN, e, and e,,

in order to minimize the skew.

Adjusting e, and e, by A would shift the BN along a Balancing Segment, BS, which
represents all possible locations of the BN. The BS of u and v, BS,,,, can be determined
from the intersection of two tilted rectangles, TR, and TR,, whose centers are nodes u
and v and whose radii are e’, and e’, respectively as shown in Figure 3.3(a). Note that
this is true only when

e’,te',=duv) 3.7

where d(u,v) is the distance between the locations of u and v.

33

If e’, + e’,> d(u,v), then the intersection of TR, and TR, is a TR as shown in Figure
3.3(b). For such a case, it might be possible to shorten both e’, and e, while minimizing

the skew between u and v. But, this is not always the case. Specifically, if there is a need

for wire elongation, then e’, + e’,> d(u,v). For such cases, one of the edges, e’, or e’,,

would be zero; and the BN coincides on the nodes whose edge is zero.

For the general case, the final location of the BN, w, is determined by the intersection of

BS,,, and TR, whose centre is s and its radius is the BN edge e,, as shown in Figure
3.3(a). The BN’s edge, e,,, has not been considered yet, and its length would affect the

total wire length. In fact, the total wire length can be minimized by determining the BN’s

edge as the minimum length between the BS and the BN’s parent.

intersection of
TR, and TR,

(b)

Figure 3.3 (a) Determination of BS,,,, and the new location of the balancing node, w’. (b)

The intersection of TR, and TR,, is a tilted rectangle when e, + e,>Rect,,,

Adjusting the BN’s child edges, as described before, would minimize the maximum

34

skew between the leaves of the BN. As such, the BN’s range gets smaller as the child
ranges are shifted in opposite directions so that their centres coincide on each other as
shown in Figure 3.2. However, if the centres of the child ranges have already coincided,
then it is impossible to shorten the BN’s range by adjusting its child edges. Also, if the
BN’s range is equal to one of its child ranges, then shifting the child ranges would not
help to minimize the BN’s range. In such a case, the BN’s child that has the greater range
have to be selected as the balancing node. From the previous discussion, we can draw
the AWA algorithm to achieve a bounded skew for a given tree by minimizing the maxi-
mum skew in the tree iteratively. At each iteration, a BN is selected and its child edges
are adjusted according to Equations 4-8. The description of AWA algorithm is shown in

Figure 3.4.

Input: Initial CDN, as a linked tree T, for a set of clock pins R

Output: Bounded Skew CDN by B

while maximum skew >B:

Find the BN that has the maximum skew in T, and it belongs to the lowest level in T
Calculate the required adjustment, A, to balance the child nodes of the BN, u and v.
Construct TR, and TR, as following:

core(TR,) = location of u, radius(TR)=e’,
core(TR,) = location of v, radius(TR,)=e’,
Calculate the BS,,, as TR, N TR,
Locate BN at the closest point of BS,,,, to the parent of BN, s.

Find the maximum skew in T

Figure 3.4 The AWA algorithm

35

The AWA algorithm can narrow the skew in a given tree iteratively; and hence the whole
solution need not be recalculated when a smaller skew is required. In fact, the iterative
nature of the AWA differentiates it from other algorithms, such as Tsay’s approach or
DME algorithm. This feature of AWA is important when a minor modification in the
clock pins is required. Indeed, AWA can save the calculation time required for the gener-
ation of the CDN while managing a small modification during the design iterations of
the digital system [55]. However, minimizing the BN’s range at each iteration does not
necessarily lead immediately to a smaller skew in the tree, and this will impact the con-

vergence of AWA as will be described in the next section.

3.3 Convergence of AWA Algorithm
At each iteration of AWA, the child edges of the BN are adjusted so that the range of the

BN gets smaller. Unfortunately, such an adjustment affects the skew between the leaves
that belong to the BN and other leaves in the whole tree, which may result in an increase
in the skew in the tree. This section shows that selécting an ancestor node as a BN in
later iterations will ensure the minimization of the skew further; and AWA can achieve

the desired bound of skew ultimately.

As described in the previous section, the adjustment of the child edges of the BN mini-
mizes the range of the BN by shifting the child ranges in opposite direction. However,
the child ranges cannot be shifted in opposite direction if the centres of the child ranges
have already coincided, or if the BN’s range is equal to one of its child ranges. This can

be stated as follows:

36

Lemma 3.1: Let Range,, Range, and Range,, be the ranges of u, v and w respectively
such that Range,, >Range,, and Range,, > Range, where u and v are the children of w.
If Centre,, and Centre, are not coincided on each other, then shifting Range, and Ran-
ge, in opposite direction so that Centre, and Centre, get closer would result in

Range’, < Range,, where Range’,, is the range of w after the shiff.

Proof: Let D and D’ be the difference between Centre, and Centre, before and after
shifting the ranges respectively. Shifting Range, and Range, so that Centre,, and Cen-
tre, get closer implicitly gives D’<D. Thus, the case that Range’,>Range,, is impossi-
ble as it implies that D’>D. Furthermore, the case that D’<D and Range’,,= Range,,
would happen only if Range,, is equal to either Range, or Range,, which is contradic-

tory to the statement of the Lemma. Hence Range’, < Range,, must be true.

Indeed, the minimum range of a BN can be achieved only by shifting the ranges of the

BN’s children in opposite directions till their centres coincide as stated below:

Lemma 3.2: Let Range,, Range, and Range,, be the ranges of u, v and w respectively,
such that u and v are the children of w. If Centre, and Centre, coincide on each other,

then Range,,=Maximum(Range,,Range,).

Proof: Let Range,> Range, The case that Range,> Range, implies that either

Range, < Range, or Centre, and Centre, have not coincided on each other, which con-

37

tradicts the given statement. Also, it is impossible that Range, <Range, since u is the
child of w. Hence Range,=Range, must be true. A similar argument can be deduced

when Range,> Range,,.

Previous discussion is centered on getting the BN’s range smaller, which implies that the
minimization of the maximum skew between the BN’s leaves. Unfortunately, getting the
BN’s range smaller may result in a greater skew between the BN’s leaves and other
leaves in the tree as described before. However, minimizing the range of a node in a tree
will lead to the minimization of the range of the parent of that node in a later adjustment

as stated in the following two lemmas:

Lemma 3.3: Let Range,, be the range of w when its child ranges are Range, and Ran-
ge,, and they are coincided on each other. Also, let Range’,, be the range of w when its
child ranges are Range’, and Range’, and they are coincided on each other. If

Range’,<Range, and Range’ ,<Range, then Range’,<Range,,

Proof: Since the child ranges are coincided on each other, then, from Lemma 3.2,
Range, ,~Maximum(Range, .Range,) and Range’,~Maximum(Range’,,Range’,).

Thus, Range’,, <Range,, since Range’,<Range, and Range’,<Range,,

Lemma 3.4: Let u and v be the children of w, and the child edges of u and v are adjusted

separately such that Range’,<Range, and Range’,<Range, where Range’, and

38

Range’, are the ranges of u and v after the adjustments respectively. If the new range of
w, Range’,, increases due to the previous adjustments, then the node w can be selected
as the BN to adjust its child edges so that Range”,,<Range,, where Range”,, is the

range of w after adjusting child edges of w.

Proof: In this statement, there are three individual adjustments such that the adjustments
of nodes u and v lead to the adjustment of node w. Before any adjustment, and according
to Lemma 3.2, the minimum possible value of Range,, is Maximum(Range,,Range,)
which would happen when Range, and Range, are coincided on each other. If the last
adjustment, for node w, shifts the child ranges of w, Range’, and Range’,, till they coin-
cide on each other, then Range’,=Maximum(Range’,,Range’,) according to Lemma
3.2. Hence, according to Lemma 3.3, Range”,, will be less than the minimum possible
value of Range,, since Range’,<Range, and Range’,<Range, Selecting a BN and
adjusting its child edges would minimize the skew between the BN’s leaves. If such an
adjustment results in a larger skew in the tree, then selecting an ancestor node as a BN
will ensure.the minimization of the skew further. Note that the condition that the BN
belongs to the lowest level is intended to satisfy Lemma 3.1 as the BN’s range would not
equal to any of its child ranges. Further, the fact that BN’s range is greater than its child
ranges implies that the child centres are not coincided on each other. Also, note that
Lemma 3.4 implies that the maximum skew in the tree would bounce, and hence it
would slow down the convergence of the algorithm. However, the algorithm would con-

verge ultimately to the required bounded skew as stated in the following theorem:

39

Theorem 3.1: applying the AWA algorithm to any given tree of a CDN would ultimately

minimizes the maximum skew to any bound.

Proof: The algorithm, at each iteration, selects a BN that has the maximum skew in the
tree. According to Lemma 3.1 and Lemma 3.2, adjusting the BN’s child edges would
minimize the maximum skew in the subtree rooted at the BN. If the adjustment results in
a larger skew in the whole tree, then at a later iteration, an ancestor of that BN will be
selected as the BN and the new maximum skew will get smaller according to Lemma
3.4. Getting a larger skew would stop when the BN is the root of the tree according to
Lemma 3.1. This can be visualized as the BN bounces between different levels of the

tree.

An increase in a tree skew, that may evolve from adjusting BN’s child edges, can be
determined from the shifting in the BN’s range. In fact, the BN’s range is shifted due to
the alteration in the clock delay along the path of the BN,. which may evolve from
adjusting the BN’s child edges and/or the BN’s edge. Adjusting BN’s child edges would
shift the BN’s centres by F, as shown in Figure 3.2, and it can be calculated for a BN w
as:

F,, = Centre,, - [e'“ro(e “;0 - Cu) + Centreu] (3.8)

Adjusting BN’s child edges so that >0 leads to the reduction of the clock delay from
the source to the BN’s leaves. On the other hand, the clock delay would be increased if

F<0.

40

The alteration of the BN’s edge is a consequence of relocating the BN, and that will
affect the clock delay from the source to the BN’s leaves, and as a result, it will affect the
BN’s range. For a BN w, an adjustment to its edge by 4e,, will lead to shifting Centre,,
by:

(3.9)

Ae_c
G, = Aewro(> 2+ cw)

In fact, the shifting in the BN’s range due to the shifting in the BN’s child edges, F, can

be compensated theoretically by adjusting the BN’s edge so that:

G, =-F (3.10)

w w

Such an adjustment for the BN’s edge will prevent any bouncing in the skew, and AWA
would converge smoothly. Figure 3.5(a) shows an example of the convergence of AWA
algorithm as it was described previously, and Figure 3.5(b) shows the convergence of
AWA when the BN’s edge is adjusted so that Equation 3.10 is satisfied. It is obvious that
such an adjustment helps to speed up the convergence. However, it is not always possi-
ble to adjust the BN’s edge to any value since it is constrained by the geometric locations
of the BN’s parent and its children. Further, satisfying Equation 3.10 may elongate the
BN’s edge, and that means to trade off the wire length for the computation time. The
spikes shown in Figure 3.5(a) are due to the bouncing in the maximum skew, which
results from the bouncing of the BN between levels of the CDN’s tree T. The maximum
skew in T can be a result of any combination of two leaves, where N leaves have N(N-

1)/2 combinations. As a tree of N leaves has log,N levels, the BN may bounce log,N

times for each maximum skew in T. Thus, the order of AWA is NzlogzN, which is not

linear. The increase in the frequency and quantity of spikes delays the convergence. In

41

the next section a new method is used to get faster convergence.

g S i g
2 i E 2 —— Maximum skew b=

— Maximum skew o o) g
% Edge adjustment § z Edge adjustment g
g 2 €]
£] E g
d & 3 \)
2 = T EE 2 ot et S oI T T T FB

0] 10 20 30 | 40 0 10 20 30 . 40
iteration iteration
(a) ®)

Figure 3.5 For a set of 32 clock pins (a) the skew convergence of AWA algorithm (b) the
skew convergence of AWA algorithm when the BN’s edge is adjusted theoretically as in

Equation 3.10.

3.4 Implementation and Results
The AWA, DME and GDME algorithms were implemented using C++ on a SUN Ultra

10 machine in the Unix environment. Various benchmarks were tested for various sce-
narios, to provide assessment of different metrics such as wire length, clock latency,
wire elongation, run time and the standard deviation of the distance between clock pins
and the CDN’s root. The benchmarks consist of two sets i) five benchmarks r1-r5 from
[39] (downloaded from [56]); and two benchmarks were generated randomly based on
0.18 um technology [57]. The die size is assumed to be 4cmx4cm, and the parameters of
these two sets; number of clock pins, load capacitance of a clock pin, unit length wire
resistance and unit length wire capacitance are described by Table 3.1. Each benchmark
is a netlist that provides the location and capacitance of the clock pin of a specific digital

system.

42

For each benchmark, the initial topology is generated by both MMM and GMA algo-
rithms. Each node in the tree is represented by a tuple of the following 9 parameters:

i: tag number of the node

x,y: coordinate of node i in the Manhattan plane respectively

e,s: edge and detour length that connect node i to its parent

c: the capacitance of the subtree connected to node i

Lr: pointers to the left and right children of node i respectively

Range, Centre: range and centre of node i as described by Equation 3.2 and Equation

3.3 respectively

In order to investigate the initial topology impact on the final solution, the AWA and
DME algorithms were applied for initial topologies obtained by MMM and GMA algo-
rithms, and they are labeled as MMM-AWA, GMA-AWA, MMM-DME and GMA-

DME respectively.

Table 3.1. Parameters of the benchmarks that are used in the experiments

benchmark rt r2 r3 r4 r5 b5k | b10k
number of clock pins 267 | 598 | 862 {1903 3101 | 5000 [10000
capacitance of a clock pin 30 fF - 80 fF 234 fF
unit length wire resistance 0.003 Q 0.076 Q
unit length wire capacitance 0.02 fF 0.118 fF

43

The results are presented in two subsections. Initially, AWA performance is compared to
other algorithms, then the performance of AWA is investigated in terms of CDN’s tun-

ing.

3.4.1 Comparing AWA’s performance to DME and GDME
The initial tree of each benchmark was used as an input for the AWA algorithm. AWA
relocates the internal nodes iteratively and reduces the skew till it achieves the bounded
specification B. If B is set to zero, then AWA will end up with a ZSCDN. Figure 3.6
shows the skew convergence of AWA for the benchmark r3, where the initial topology
was generated by MMM. It is obvious that the number of required iterations decreases
as the required skew bound, B, increases. The spikes are resulting from the bouncing of
the BN between levels of T. Note that the previous bounded skew algorithm given in
[45] requires the recomputation of the whole solution whenever a change in the CDN
requirements is made. Further, the reduction of skew comes at the expense of extra wire
length. On the other hand, for AWA, the total wire length is reduced while the skew is
being minimized incrementally as shown in Figure 3.7. Additionally, and in order to
show the impact of the initial topology, two initial topologies were used; one is obtained
by MMM and the other by GMA as shown in Figure 3.8. It is obvious that the GMA
topology renders less wire length. Table 3.2 provides comparisons of total wire length,
clock latency, number of wire elongations and run time for different benchmarks tested

by different algorithms.

44

1

i

0.8 - U N"M \
T 06 | w‘\
PO
&; 0.4
0.2
0.0 f i ¥ 1
1 10 100 1000 10000

iteration

Figure 3.6 The AWA skew convergence for the benchmark r3.

0.5 --- MMM-AWA
. | --- GMA-AW
2, 048
%
= 046 |
= 044 - T
q) » H—».-‘r‘
-H LY
5 ™
g 042
Q
& 040
T T T 1
1 10 100 1000 10000
iterations

Figure 3.7 Relation between AWA’s iteration and the total wire length for the benchmark

r3.

45

Table 3.2.Different metrics of DME, AWA and GDME for different benchmarks. Both

DME and AWA are tested with two different initial topology; MMM and GMA.

benchmark r1 r2 r3 r4 rs
number of clock pins 267 598 862 1903 | 3101
MMM-DME | 1.73 | 3.61 | 469 | 9 | 13.75
Total wire ["GMA-DME | 159 | 3.31 | 434 | 91 | 13.69
(Xze(’)‘egt:nit GDME | 147 | 3.05 | 4.05 | 7.28 | 12.89
lengthy |MMM-AWA| 1737|350 | 468 | 9 | 1386
GMA-AWA | 157 | 332 | 435 | 92 | 137
MMM-DME | 2 19 36 41 179
Number of FGMA-DME | 11 38 | 49 | 98 | 183
W“eﬁzll‘l’:ga' GDME 20 | 37 | 67 | 115 | 726
MMM-AWA | 2 20 | 36 | 42 | 453

GMA-AWA | 11 38 | 48 | 96 | 571
MMM-DME | 2 55 | 7.95 |22.31 | 36.18
Clocklatency F'GMA-DME | 2 41 | 587 | 14.38 | 43.47
(psec) GDME 16 | 44 | 461 | 1154 | 35.38
MMM-AWA [2 46 | 7.66 | 22.48 | 4062
GMAAWA | 15 | 44 | 667 | 18.56 | 38.59
MMM-DME | 0.01 1 1 1 1
runtime |"GMA-DME [0.01 1 1 1 1
(sec) GDME 22 | 120 | 721 | 7432 | 33081
MMM-AWA [2 4 16 | 39 | 27

GMA-AWA 3 4 16 42 27

Figure 3.8 and Table 3.3 show the relationship between the number of leaves for differ-
ent random sets and the number of required iteration to reach ZS. It is obvious that the
relationship is not linear, however, the main advantage of AWA is its iterative approach
of minimizing the skew whereas a small modification in the input data would not require
the recalculation of the whole solution as in DME. This feature is important when size of

T is very large. To show this advantage, different random ZSCDNs of size N=1024,

46

4096 and 8192 were tested by altering leaf locations then tested with AWA. The
bounded skew was set to zero, B=0, in order to compare number of the iterations to the
DME required iterations (DME is a linear zero skew algorithm). As one would expect,
the number of iterations increases as the number of altered leaves increases. Figure 3.9
shows the relationship between the number of iterations and number of altered leaves for
the mentioned sets. The number of iterations for each number of altered leaves is the
average of numbers of the iterations, where each number of iterations corresponds to
altering different leaves but of the same number of leaves. The alteration in the leaf loca-
tions was 6.25% of the whole Manhattan plane. The benefit of AWA is elevated as the
size of the tree increases. For example, when the number of leaves N=1024, and number
of altered leaves is 9, the AWA’s iteration is 1693 while using DME requires 1024 itera-
tions only. However, when the number of leaves is N=8192, and number of altered

leaves is 9, the AWA’s iteration is 2410 while using DME requires 8192 iterations.

Table 3.3 Number of iterations required by AWA for different benchmarks

Benchmark
Algorithm rl 2 3 4 r5
MMM-AWA 4356 17410 28838 85963 162549
GMA-AWA 4995 17572 28348 99554 183772

47

-eoxoor MMM-AWA —a— GMA-AWA

10 -
o
o]
2
g .
S 44
S
2 .
g 2
=
0 T T T 1
0 500 1500 2000

0
number of clock pins

Figure 3.8 Relation between the number of clock pins and the number of iterations of
AWA algorithm.

8 - —m—————— tmmm———— dommm——— —_——————— pm—————— o dmn—=- _ﬂ{

- DME algorithm AWA algorithm .
-+- N=8192 —+ N=8192

6.1 . ¢ - N=4096 <+ N=4096 .
-o - N=1024 - N=1024

} 4

4 =" I st G- T F-—mm— B duieteleded G- B2ttt =4

number of iteration (1 03)

number of altered leaves

Figure 3.9 Relation between AWA’s iteration and the number of altered leaves for

ZSCDN:s of different benchmarks of clock pins.

48

3.4.2 CDN’s Tuning using AWA

The main advantage of AWA is to handle minor modifications. Three experiments were
set to study the performance of AWA in scenarios similar to minor modifications
required in a design cycle. The three experiments are designed to study the sensitivity of
AWA to the number of the shifted clock pins, the shifting size in the clock pins and to
removing and inserting an IP block. Note that the previous algorithms require the recal-
culation of the whole solution when there is a minor modification. The benefit of AWA
is more prominent as the number of clock pins increases. Different ZSCDNSs of bench-
marks r3, b5k and b10k were generated, and then tested for different scenarios. For each
benchmark, two ZSCDNs were generated by using MMM and GMA for initial topology,

and then the DME algorithm is applied.

Experiment 1: AWA’s Sensitivity to the Number of Shifted Clock Pins

Whenever a number of clock pins are shifted, the CDN does not hold the zero skew sta-
tus anymore, and AWA is applied to minimize the skew. Figure 3.10 shows the relation-
ship between the number of iterations and number of shifted clock pins when AWA is
applied to different sets. In this experiment, the shifted clock pins, n, are selected from
dispersed locations in the presumable die of the ZSCDN (the die area is divided into 16
equal size squares, and the n nodes are selected from different squares). Further, in order
to have a realistic estimation of AWA performance, the experiment was repeated ten
times with different sets of n nodes. The number of iterations for each number of shifted
clock pins shown in Figure 3.10 is the average number of iterations required by different

tests, where each test is repeated for the two ZSCDNs of each benchmark. The shifting

49

in the clock pins locations was set to 1% of the whole Manhattan plane. It is obvious that
AWA tends to have more iterations when the number of shifted clock pins is greater. The
shifting in the clock pins results in an increase in the total wire length of the final solu-
tion as shown in Figure 3.11. This increase can be attributed to the topology that has not
been modified to capture the change in the clock pins location.

——-MMM-AWA for b5 —a— MMM-AWA for b10k —e— MMM-AWA for r3

300 -

200 ~

100 -

number of iterations

3 8 13

number of shifted clock pins

Figure 3.10 Relation between AWA’s number of iterations and the number of shifted

clock pins for benchmarks r3, b5k and b10k.

22W

21 4

20 -+

Total wire length (x106)

19 T T T T 1
0 2 4 6 8 10

number of shifted clock pins

Figure 3.11 Relation between the total wire length and the number of shifted clock pins

for benchmark b5k, -

Experiment 2: AWA’s Sensitivity to the Size of the Shifting in the Clock Pins

In this experiment, the shifting in the clock pins is varied for a fixed number of clock
pins. The two ZSCDNs of the benchmarks r3, bSk and b10k were tested by shifting the
locations of ten clock pins by different amounts. Figure 3.12 shows the relationship
between the amount of shifting in the clock pins’ locations and the required iterations to
achieve ZS for the benchmarks. By comparing Figure 3.10 to Figure 3.12, one can
notice that the number of iterations is less sensitive to the shifting value than to the num-
ber of shifted clock pins. This means that the increase in the number of shifted clock
pins results in an increase in the bouncing of the BN between different levels of the
CDN as described in section I'V. Similar to the previous experiment, the shifting in the

clock pins results in an increase in the total wire length as shown in Figure 3.13.

51

—— MMM-AWA for b5k —— MMM-AWA for b10k —— MMM-AWA for r3

number of iterations

20 I T I 1
0 10 20 30 40

shifting in the clock pins locations as a percentage of the Manhattan plane

Figure 3.12 Relation between the number of iteration and the shifting in the location of

ten clock pins in benchmarks r3, b5k and b10k.

26

24

20

Total wire length (x1 06)
S
1

18 T T S
10 20 30
shifting in the clock pins Jocations as a percentage of the Manhattag plane

Figure 3.13 Relation between the total wire length and the shifting in the clock pins for
the benchmark b5k.

52

Experiment 3: AWA’s Sensitivity to Removing and Inserting an IP
The IP block is assumed to be a rectangular whose size is varied between 0.5% to 20%

of the whole die area, and it is assumed to be located at the centre of the die. At first, all

the clock pins located inside the IP area are deleted, then a similar number of clock pins
are inserted randomly in the area of the IP. Table 3.4 shows the size and the number of
clock pins of each IP for the benchmarks bkS and b10k. The new clock pins stand for the
inserted IP, and whenever a new clock pin is inserted, it is connected to the closest clock
pin in the CDN. Figure 3.14 shows the relationship between the size of the IP for b5k
and the number of required iterations to achieve ZSCDN using AWA algorithm. As one
may expect, the number of iterations increases with the size of the IP. Indeed, the
increase in the number of iterations is a function of the number of the clock pins in the IP
rather than the size of the IP itself. However, these nodes are neighbors to each other,
and hence such a minor modification requires less number of iterations than the minor
modifications described in Sections 8.3.1 and 8.3.2 where the nodes are scattered all
around the die. For example, the change in the locations of 6 nodes in the benchmark
b5k requires 273 iterations by AWA when these nodes are distributed all around the die,
however the change in 21 nodes in the same benchmark requires 45 iterations by the

same algorithm when the nodes are neighbors to each other.

Table 3.4 Number of clock pins per IP for benchmarks b5k and b10k.

Ipslze oftheIPasa | number of clock pins
ercentage of the die B3k bI0k
area
0.5 21 38
> 107 382
10 493 975
15 668 1318
20 845 1683

53

—6—MMM-AWA forb5k —a—MMM-AW A- forb10k

25
S |
S
~ 20
(7,3
o]
S
N
s 15
8
;.a i
- 10
[0
E
= 5 7

0_] i T 1

5 10 15 20
size of the IP as a percentage of the Manhattan plane

Figure 3.14 Relation between AWA's iteration and the size of the deleted and inserted IP.

The size is given as percentage of the whole die area.

3.5 Summary

The topic of minor modifications of the CDN is an important concept in complex syn-
chronous systems; and hence, there is a need for an algorithm to cope with these modifi-
cations in the CDN. The AWA algorithm was proposed to handle such scenarios.
Whenever there is a skew between any two clock pins, AWA algorithm can reduce the
skew to any required bound, and ultimately to zero, though zero skew is an over con-
straint sometimes. Simulations performed on CDNs have shown that using AWA algo-
rithm can:

(i) reduce the bounded skew requirement further without recalculating the whole solu-

tion.

54

(i1) achieve ZS for a given initial CDN.

(iii) achieve ZS for a modified ZSCDN at less computation compare to linear methods

The AWA algorithm, similar to DME, requires an initial topology to reach to its solution.
Such a topology has an impact on the quality of the CDN as well as on the convergence
of AWA algorithm. In the next chapter, a new method of local topology modification
will be proposed in order to speed up the convergence of AWA algorithm, as well as to

improve the quality of the CDN.

55

Chapter 4

Local Topology Modifica-

tion

4.1 Introduction

This chapter focuses on the topology impact on the performance of AWA as well as on
previously developed algorithms, DME and GDME, in terms of the total wire length,
wire elongations and standard deviation of the path lengths, SDPL, between the root and
the clock pins. These algorithms require an initial topology, which can be generated by
MMM, GMA or Balanced Bipartition (BB) algorithms. Lillis et. al. proposed to search
for the topology by searching for a good permutation of the sinks in order to minimize

the total wire length and to satisfy the time constraints[59].

Researchers have tested different combinations of the DME with different topology gen-
eration algorithms [3, 58]. For example, the combination of GMA and DME offers a
solution with less wire length than that one obtained from MMM and DME combina-
tion. However, using a fixed initial topology may result in an unnecessary increase in

wire length. On the other hand, GDME does not require an initial topology; and it gener-

56

ates the topology that leads to less wire length. However, GDME may connect the clock
pins to different levels of the topology; and hence, the CDN is compounded intensively
by wire elongations. In fact, the same problem incurs with DME depending on the initial
topology. For example, the GMA may connect the sinks to any level in the tree while

MMM keeps all the sinks in the lowest level of the tree.

Another consequence of connecting the clock pins to different levels of the topology, as
in GDME and GMA, is that some clock pins are close to the CDN’s root while others are
distant from the root; and consequently, the CDN’ SDPL would be large. A large SDPL
implies an inaccuracy in the timing of the clock signal due to the resistive shielding
effect, in which Elmore model overestimates the delay for the sinks that have shorter
connection to the source. Another implication of a large SDPL is the vulnerability of the
CDN to temperature and process variations, where a longer path would be more suscep-

tible to these variation than a shorter path.

In this chapter, the CDN is treated as a quadratic data structure instead of binary in order
to have more flexibility of locating the steiner nodes, and so, the total wire length can be
minimized further [60]. A novel method, called Local Topology Modification (LTM), is
proposed to optimize the topology using a search tree or a quadratic optimization tech-

nique [62].

57

4.2 Quadratic Tree vs. Binary Tree
The DME and AWA algorithms are based on the binary data structure. Considered a

simple binary tree of four leaves (1, 2, 3 and 4) as shown in Figure 4.1(a). According to
this topology, a ZSCDN can be generated as shown in Figure 4.1(b) where node 1 is
connected to node 2 and node 3 is connected to node 4. The tree topology governs the
pairing between child nodes, and hence, it may result in an unnecessary increase in the
total wire length. For example, by using the topology shown in figure 4.1(c), another
ZSCDN with less wire length can be generated for the same leaves as shown in Figure
4.1(d). However, the topology of the latter CDN is different from the topology of the
first CDN. Hence, in order to avoid unnecessary increase in the total wire length due to
the tree topology, the pairing between nodes needs to be more flexible. Some flexibility
can be gained by using a quadratic data structure instead of a binary structure as will be

described next.

Quadratic tree means that each internal node has four children. For example, in Figure
4.2, node s is connected to four children (1, 2, 3 and 4). The grouping between the four
child nodes is not decided by the tree topology; and hence, the topology imposes no con-
straints on connecting each internal node to its children. Comparing a binary tree to a
quadratic one, the first method connects w to its children (1, 2, 3 and 4) through two
Steiner nodes (u# and v) which are explicit in the tree. On the other hand, the quadratic
tree may introduce up to two additional Steiner nodes in order to connect a node to its
four children as shown in Figure 4.2. The additional Steiner nodes are not defined by the

topology tree, which means that there is a flexibility in connecting a node to its four chil-

58

dren. This flexibility in choosing between two topologies can be exploited by adapting
the DME, GDME and AWA algorithms for local topology modification in order to

enhance the quality of the CDN [64].

()

Figure 4.1 An example of minimizing the total wire length by modifying the topology

Figure 4.2 The Quadratic tree.

Figure 4.3 lists 15 possible topologies of connecting a node to its four children; and
these topologies will be called the primary topologies. There are other topologies as
shown in Figure 4.4, which will be called non-primary topologies. The non primary
topologies can be derived from the primary topologies. For example, the topology of

Figure 4.4(a) implies that the four children are connected directly, without Steiner

59

points, to a single node. This topology can be derived from any topology shown in Fig-
ure 4.3 when the steiner points coincide on node w. Similarly, the topology shown in
Figure 4.4(b) can be derived from one of the topologies shown in Figure 4.3(a4, b4 or

c4). Thus, only primary topologies will be considered since the non primary topologies

can be derived from the primary topologies.

2] [3] [4f [2] [1]

(ad) (b4) (c4)
Group A Group B Group C

Figure 4.3 The primary topologies of connecting a node to its four children.

60

(@ (b) (©)
(d) (e)

Figure 4.4 The non primary topologies of connecting a node to its four children.

The primary topologies shown in Figure 4.3(a0, b0 and c0) imply that two nodes are bal-
anced with the other two nodes. Thus, these topologies are used most often since the
load difference between child nodes is small. Indeed, these three topologies emulate the
binary topology in terms of connecting the source node to two Steiner nodes and each
Steiner node is connected to a pair of child nodes. On the other hand, the rest of the pri-
mary topologies shown in Figure 4.3 imply that one child node is balanced with the
other three child nodes. This indicates a large load difference between the child nodes.
Such cases are less frequent than the cases of balancing two nodes with the other two
nodes. The choice between the primary topologies is decided based on which one ren-
ders less wire length. Two methods are developed to search for the near optimal topol-
ogy. The first method is based on a search tree and the other method is based a branch

and bound method.

61

4.3 Local Topology Modification Using a Search Tree

The problem of connecting a set of nodes in a Manhattan plane with minimum wire
length is a Rectilinear Steiner Tree (RST) problem [3]. There are many heuristic
approaches that produce the RST for a set of points, particularly, the RST that connects
the points as terminals, which is called full RST [13]. In the case of four node example,
a full RST would connect two nodes by a backbone and the other two nodes are con-
nected by segments incident alternately to the backbone. For example, in Figure 4.5(a),
nodes 1 and 3 are connected by a backbone, and nodes 2 and 4 are connected by seg-
ments incident to the backbone. In other words, the RST of Figure 4.5(a) pairs between
nodes 1 and 2 and between nodes 3 and 4, where such RST has a topology as shown in
Figure 4.3(a0). Note the difference between the topology of the clock signal flow and
the RST’s topology, because they are not necessarily the same. For example, Figure
4.5(b) represents a case in which wire elongation is introduced between nodes # and w,
where node w coincides on node v, in order to achieve zero skew. Such a wire elongation
can be avoided by using different topology for the clock signal flow as shown in Figure
4.5(c). The RST’s topology of both CDNs shown in Figure 4.5(b and c) is Figure
4.3(a0), however, the topologies of the clock signal flow are Figure 4.3(a0 and a4)

respectively.

In general, a full RST of four nodes may have one of the three topologies shown in Fig-
ure 4.3(a0, b0 or c0) based on pairing between the nodes. On the other hand, the clock
signal flow can be any topology shown in Figure 4.3. For each RST’s topology, the

clock signal flow may follow one of five possible topologies. Thus, the topologies of the

62

clock signal flow can be grouped in three groups, Group A, Group B and Group C, as
shown in Figure 4.3. These groups are classified based on the topology of the RST that
is required for each group. Specifically, when RST’s topology is Figure 4.3(a0), Figure
4.3(b0) or Figure 4.3(c0), the clock signal flow may follow the topologies of Group A,

Group B or Group C respectively.

1,=(12076,9058), C;=0.31
13=(14016,8172), C3=0.23
v a 1,=(12358,8124), C,=0.06

1,=(12759,10393),C,=0.23

©

Figure 4.5 Avoiding wire elongation by modifying the topologies of the RST and/or the
clock signal flow (the drawing is not to scale).

Based on this observation, wire length can be minimized by searching for the different
topologies of RST. Then further minimization can be achieved by investigating different
topologies for clock signal flow. The selected RST’s topology, say Figure 4.3(a0), will
be considered for the clock signal flow, as well as the other four clock signal flow topol-
ogies that correspond to the same RST topology. In the previous example of Figure

4.5(b), the first solution, based on Figure 4.3(a0), results in e,=0 and e;<e,, where node

63

w coincides with node v. This means that node 4 needs to be connected directly to w
according to Figure 4.3(a4). Modifying the topology between a node and its four chil-
dren is referred to as Local Topology Modification, LTM, which takes into consideration
the children capacitance. In this example, modifying the topology of the clock signal
flow reduces the total wire length from 5569 to 5274 units. The search for the topology
of RST and clock signal flow is summarized in the searching tree shown in Figure 4.6.
The description of LTM. procedure is given in Figure 4.7. In the LTM procedure, it is
assumed that node w has four children, and a similar procedure can be written when
node w has three children. For each selected topology, the merging segments are deter-

mined in bottom-manner as described in Section 2.7.2.

start

Topology selection
of RST a0 0 0

Topology selection { /

a0 |pl |p2 @3 |p4 | b0 |bl |b2 [b3 b4 | 0 je1 |kl [e3 |[k4

of clock signal flow

Group A Group B Group C

Figure 4.6. The searching tree for the optimal topology. The labels refer to topologies

labeling in Figure 4.3.

64

Input: Any node, w, its two child nodes, # and v, and their children, 1,2, 3 and 4, that

are connected to » and v. (Each child node, 1, 2, 3 and 4, has a merging segment)

Output: The merging segments of u, vand w

Procedure: Local Topology Modification

For each RST topology of Figure 4.6(a0, b0, c0):

For each node u, v and w: calculate the merging segment in a bottom-up manner
according to the specified topology.

Select: the topology that has the minimum wire length, let it be x0

For each topology of Figure 4.6 (x1, x2, x3, x4):

For each node u, v and w: calculate the merging segment in a bottom-up manner
according to the specified topology.

Select: the topology that has the minimum wire length

Adapt: the left and right links of nodes w, u and v according to the selected topology.

Figure 4.7 The LTM procedure.

Besides modifying the topology locally by LTM between a node and its four children,
LTM allows nodes to be swapped in the tree. For example, assume that LTM procedure
has been called for nodes z and w as shown in Figure 4.8, where the merging segments
of x,y, z, u, v and w have been calculated. Then, calling LTM at node s will modify the
topology that connects nodes x, 3, 4 and v. As such, node 4 can be swapped with nodes y

(or x) if still it cannot be balanced with nodes 1, 2 and 3 only.

Figure 4.8 Swapping the nodes in the tree when LTM is applied.

65

4.4 Applying the LTM Method to AWA, DME and
GDME Algorithms

In order to use the LTM concept with AWA algorithm, the procedure of balancing two
nodes becomes a procedure of balancing four nodes. Whenever, a node is selected as
BN, the local topology is selected as described in the LTM procedure. Assume that the
balancing node is node w in Figure 4.3(a0) where its children are /, 2, 3 and 4. The
selected topology requires two Steiner nodes (will be referred as # and v), and hence,

three balancing segments have to be calculated: BS,, BS,, and BS, in a bottom-up man-
ner according to the selected topology. The balancing segment BS,, is calculated from
the intersection of two tilted rectangles, TR, and TR,, whose centers are nodes / and 2
and whose radii are e’; and e’ respectively, where e’; and e, are calculated as in Equa-
tion 3.1 and Equation 3.5. In a similar manner, BS, and BS,, can be calculated. Note that
BS,, must be calculated after the calculation of BS,, and BS, where the centres of TR,
and TR, are the segments BS, and BS, respectively. Then, nodes w, u and v can be

located exactly at their balance segments in top-down manner according to the selected

topology. Indeed, node w can be located at the closest point of BS,, to the parent of w.

On the other hand, locations of nodes u# and v can be determined from the intersections

of BS,, and BS, with the tilted rectangles whose centres are the parents of » and v, and

whose radii are e’, and e’, respectively.

Finally, an algorithm can be drawn to achieve bounded skew for a given tree by mini-

mizing the maximum skew in the tree iteratively. At each iteration, a BN is selected; a

66

topology of connecting BN to its children is selected where the edge lengths and node
locations are determined as described earlier. The description of LTM-AWA is given in

Figure 4.9.

Input: Initial CDN for a set of clock pins R in form of a tree T

Output: CDN with a skew bounded by B

while Maximum skew > B:
Find the BN, that has the maximum skew in T (let s be the BN and its children are 1,

2, 3 and 4; and the two Steiner nodes u and v.

Call the LTM procedure

Locate w at the closest point of BS,, to its parent and calculate e,,

for node B= u or v in top-down manner according to the selected topology
Let p be the parent of B
Construct TRy, whose centre in node p and its radius is eg

locate B at the intersection of BSgand T. R,

Calculate the Maximum skew in T

Figure 4.9 The LTM-AWA algorithm.

It is obvious that selecting a BN and balancing its four children means the division of the
leaf delay plane of that BN into four quarters and balancing them. Figure 4.10 shows the
leaf delay plane of a tree of 16 leaves before running the LTM-AWA. It also shows the
delays after the first iteration of LTM-AWA and after the last two iterations where the
plane becomes flat. Note that LTM-AWA requires 10 iterations only to achieve ZSCDN,

while AWA requires 79 iterations for the same set of clock pins.

67

N N
i 27}

leaf delay (nsec)

. 1A ey
R
SIS,
KIS
S5
(s

-
o

. e
R+ !

[y}
(5}

leaf delay (nsec)

Figure 4.10 Leaf delays plane of a tree of 16 leaves during the running of LTM-AWA at:
(a) the beginning (b) iteration 1 (c) iteration 9 (d) iteration 10.

To apply LTM to DME and GDME, the procedure of merging segment calculation in the

bottom-up phase of DME and GDME is replaced with LTM procedure, and so they will

68

be called LTM-DME and LTM-GDME respectively. Applying LTM method will
increase the calculation time, but it does not affect the order of both algorithms. Also

note that using LTM allows nodes to be swapped in the tree.

4.5 Implementation and Results
The LTM procedure was implemented using C++ language and applied to AWA, DME

and GDME algorithms on a SUN Ultra 10 machine under Unix environment. For LTM-
DME and LTM-AWA the initial binary topology was generated using MMM and GMA

algorithms [36,37].

4.5.1 Applying LTM to AWA, DME and GDME Algorithms
The main advantage of using LTM is the topology flexibility that helps minimizing the
total wire length and wire elongation. Figure 4.11 shows the resulting ZSCDNs of DME
and LTM-DME for a set of 64 clock pins distributed randomly on 0.5cm x 0.5cm silicon
device. Note the difference between the two resulting CDNs where the one that results
from LTM-DME has both H and flipped-H connections while the other one has H-con-
nection only. The resulting total wire length of applying DME and LTM-DME are 6.6cm

and 5.8 cm respectively.

Next, the benchmarks that were described in Section 3.4 are tested by LTM-AWA,
LTM-DME and LTM-GDME to provide assessment of different metrics such as wire
length, clock latency and wire elongations, run time and the standard deviation of the

distance between clock pins and the CDN’s root. Table 4.1 provides comparison of total

69

wire length, clock latency, number of wire elongations, SDPL and run time when LTM
is applied to different algorithms and tested for different benchmarks. Figure 4.12 shows
the impact of applying LTM approach by comparing the metrics obtained for the bench-
mark r3. From Table 4.1 and Figure 4.12, it is obvious that using LTM always leads to a
reduction in the total wire length. The minimum wire length can be achieved by using
LTM-GDME, but with only 7.7% increase in run time as compared to GDME. One can
notice that using GMA’s topology with either LTM-DME or LTM-AWA results in a

CDN whose total wire length is close to the one obtained by GDME.

(@) (b)

Figure 4.11 The resulting ZSCDN for 64 clock pins by using (a) DME (b) LTM-DME.

From Figure 4.12, one may notice that applying LTM would most likely reduce the
clock latency, but this is not always the case. One of the drawbacks of GDME is its high
SDPL as well as the wire elongations are most prominent. By applying LTM to GDME,
the SDPL and the number of wire elongations are reduced effectively, but with a slight

increase in the running time as shown in Figure 4.12. The reduction in the number of

70

wire elongations is a potential benefit of applying LTM approach that will ease the bur-
den of the CDN’s layout. In general, from Table 4.1 it can be seen that by using LTM
with DME the total wire length is reduced by 7.83%, and by using LTM with GDME the

total wire length is reduced by 9.77%.

Table 4.1 Different metrics of LTM-AWA, LTM-DME and LTM-GDME for different

benchmarks.

benchmark r1 r2 r3 r4 5
MMM-LTM-DME | 1.53 | 3.25 | 4.18 | 8.04 | 12.53
Total wire ["GMA-LTM-DME | 146 | 2.904 | 39 | 8.05 | 11.98
(Xf(‘)‘agﬁ‘nit LTM-GDME | 141 | 272 | 3.44 | 6.85 | 10.83
lengthy | MMM-CTM-AWA | 1.54 | 3.19 | 4.16 | 8.13 | 12.59
GMALTM-AWA | 14 | 289 | 38 | 7.81 | 11.67

MMM-LTM-DME | 6 20 | 24 | 57 | 152

Nl}mb? of "GMA-LTM-DME | 4 15 | 20 | 41 | 64
WIre cion-

gations LTM-GDME 5 19 | 27 | 39 | 108

MMM-LTM-AWA | 5 19 | 32 | 51 | 129

GMA-LTM-AWA 2 12 18 35 67
MMM-LTM-DME | 1.69 | 5.07 | 6.93 | 20.07 | 35.6
Clock GMA-LTM-DME | 156 | 3.84 | 629 | 11.98 | 32.92

l(a;‘;‘:;y LTM-GDME 174 | 356 | 460 | 14.64 | 30.08
MMM-LTM-AWA | 1.71 | 3.27 | 6.59 | 19.09 | 37
GMA-LTM-AWA | 1.36 | 457 | 658 | 17.67 | 31.7
MMM-LTM-DME | 5577 | 4474 | 3420 | 3797 | 3996
GMA-LTM-DME | 9235 | 8216 | 7332 | 18412 | 12512

SDPL LTM-GDME | 5951 | 10365 | 8558 | 8785 | 7209
MMM-LTM-AWA | 5208 | 10008 | 2746 | 5912 | 4428
GMA-LTM-AWA | 4821 | 12268 | 11002 | 11149 | 9386
MMM-LTM-DME | 1 1 3 6 6

run time [~ GMA-LTM-DME 1 1 3 7 7

(sec) LTM-GDME 23 | 122 | 772 | 8084 | 38659

MMM-LTM-AWA 5 10 29 74 95
GMA-LTM-AWA 6 10 29 77 93

%

100 W]]
80 - % w []
60 - B reduction in the total wire length
40 | B reduction in the number of wire elongation
B reduction in SDPL
20 1 J O increase in the run time
0 -
220 -

MMM- MMM- GMA- GMA- GDME
DME AWA DME AWA

Figure 4.12 The comparisons of different parameters for benchmark r3 when the LTM is

applied to different algorithms.

4.5.2 Impact of LTM on the Convergence of AWA Algorithm
Figure 4.13 shows the convergence of LTM-AWA for the benchmark r3. It is apparent
that LTM-AWA requires less number of iterations than AWA as shown by Table 4.2. The
main reason for such a reduction is that LTM-AWA balances four nodes at each itera-
tion. Figure 4.14 shows the relationship between the number of clock pins for different
benchmarks and the number of required iteration to reach ZS by using both AWA and
LTM-AWA. Note that the reduction in the iterations does not necessary lead to a reduc-
tion in the run time since the run time depends on the number of iterations as well as on
the time of each iteration. Similar to AWA, LTM-AWA minimizes the skew and the total
wire length iteratively, and hence, getting smaller skew does not come at the price of an
increase in the total wire length. Figure 4.15 shows the relationship between the total
wire length and the iteration for the benchmark r3 using two initial topologies: one

obtained by MMM and the other by GMA.

72

1 -
0.8
g 06
£
B 04 y
e
02 7
0.0 - T T
1 10 100 1000

iteration

Figure 4.13 The skew convergence of LTM-AWA for benchmark r3.

---x--- MMM-AWA ---4+-- MMM-LTM-AWA
—aA— GMA-AWA ———GMA-LTM-AWA

—
(=4
J

«®
1

|

[=)}

oS

1

&\

number of iterations (10%)

0 500 1000 1500 2000
number of clock pins

Figure 4.14 Relation of number of clock pins and number of iterations of AWA and
LTM-AWA.

\
£ 18 %, = MMM-LTM-AWA
< 17 - - -GMA-LTM-AWA
E" 1.67h \
[
E 1'5_\ Aty Yt
£ —
= 144 il N
8
= 1? T T

0 500 1000

iteration

Figure 4.15 The relation of LTM-AWA’s iteration and total wire length for benchmark
r3.

73

Table 4.2 Number of iterations required by AWA and LTM-AWA for different bench-

marks.
benchmark rl 2 3 r4 s
MMM-AWA 4356 | 17410 | 28838 | 85963 | 162549
Algorithm "NV T TMAAWA | 842 | 2773 | 4304 | 12997 | 24713
Reduction (%) 80.67| 84.1| 85.1| 84.88(84.8
GMA-AWA 4995 | 17572 | 28348 | 99554 | 183772
Algorithm GMA-LTM-AWA | 871 | 2963 | 4105 | 13439 | 20684
Reduction (%) 82.56| 83.14| 85.52| 86.5| 88.74

4.6 Summary

In this chapter, a method of Local Topology Modification (LTM) is proposed in order to
reduce the total wire length of the CDN. Such a reduction implies less power consump-
tion. The reduction in total wire length is attributed to the topology flexibility that is
offered by using LTM, however it comes at the cost of increase in the run time. Also, the
experiments showed that GDME relies heavily on wire elongations, as well as it offers a
solution that suffers from high SDPL. A high SDPL implies that the skew determination
of the CDN is inaccurate, as well as the CDN is vulnerable to environment and process
variations. By using LTM with GDME, SDPL and wire elongations can be reduced
effectively. The concept of LTM can be considered for other versions of DME algo-
rithm, such as the bounded skew DME and planar DME [44,80]. It may be also consid-
ered for different approaches that handle the presence of obstacles or when buffer

insertion is required.

Previous algorithms, including the AWA algorithm, deal with the determination of the
edge lengths of the CDN in order to meet the timing requirements. However, such wire

74

lengths are not necessarily realizable due to the difficulties of the routing step. Thus, it is
important to consider the routability of the wires during the determination of the CDN.
One major problem with routing a wire is the presence of obstacle in the routing plane as

will be described in the next chapter.

75

Chapter 5

Tuning the Clock Distribu-
tion Network Under Obsta-

cle Constraints

S.1 Introduction
The DME, AWA or GDME algorithms produce a CDN by determining the merging seg-

ments of the Steiner point in the tree. A merging segment stands for all possible loca-
tions of a Steiner node in the routing plane. The determination of a merging segment is
accomplished with the assumption that the Steiner node can be located any where in the
routing plane. Unfortunately, the routing plane may suffer from the presence of block-
ages, called obstacles, with which wires must not intersect. An obstacle might be a pre-
placed macro cell with blocked region or a previously routed wire. The obstacle inter-
fere with the determination of the merging segments and with the routing of the wire of
the CDN. The problem of routing a wire between two terminals under obstacle con-
straints is well addressed in the literature, where a shortest path can be determined to

route such a wire. However, the obstacles affect the routing of the CDN, or any multi-

76

terminal net. In conclusion, the obstacles have to be considered when a Steiner node is
embedded in the routing plane so that the system performance is optimized in terms of

total wire length or the system frequency to name few.

In general, the problem of finding the shortest path has received considerable attention
due to the wide variety of its applications, such as in robotics motion, VLSI ciesign or
geographical information systems to name few [71-78]. Different algorithms have been
proposed to find the shortest path that may connect two points among rectilinear obsta-
cles [71-78]. The solution is given as a set of vertical and horizontal segments. Indeed,
such a solution is a specific routing for a specific shortest path. However, the shortest
path is not unique, neither the routing of each shortest path. Different shortest paths, and
their different routings, have different qualities, such as the number of turns or the sepa-
ration from other paths or obstacles, although they have a minimum wire length. Thus, it
is important to find the set of all solutions instead of finding a single solution. Having a
simple representation of all shortest paths would help the designer to choose the appro-

priate path in response to other limitations.

In [70], a method is proposed to determine the merging region of a Steiner node in a
routing plane under obstacle constraints. The procedure was incorporated into the first
phase of DME to synthesize a BSCT. However, the limitation of such a procedure is that
it considers only parts of the merging region of each Steiner node. The procedure is
based on simple determination of the shortest paths; and whenever a shortest path is

found, a part of the merging region is immediately determined. In fact, only five possible

77

parts of the merging region are explored at most. Consequently, some possible locations
of the Steiner node are neglected, which would limit the capability of DME to reduce the
total wire length further. In [69], the obstacle is treated by devising a set of rules to go
around it. These rules are applied for a planar CT. However, the obstacles are not consid-
ered during the CT calculation. This implies that the impact of the obstacles on the total

wire length has been neglected.

In addition to the limitations of the approaches in [69] and [70] in minimizing the total
wire length, these approaches require the re-calculation of the whole solution when there
is a change in the obstacles constraints, the skew constraint or the location or the load
capacitance of the clock pins. However, it is often true that, during design iterations, IPs
are inserted or removed. Consequently, the CDN’s topology and the loading and place-
ment of the clock pins are changed; and thus, the CDN has to be redesigned. This will be
an extremely computation intensive process for a complex system. In view of the fact
that the design convergence has become increasingly critical with the pressure for
shorter time to market [12], what is required is an incremental algorithm to perform
minor modification and to tune the CDN as opposed to redesigning it [49-54]. The AWA
algorithm, as described in Chapter 3, enables a quick Engineering Change, EC, to the
CDN without considering the obstacle constraints. In this chapter, a new methodology is
proposed to determine the merging segment under obstacle constraints. Then the method

is incorporated into AWA algorithm in order to tune the CDN under obstacle constraints.

This chapter focuses on the shape of the routing area of an interconnect that connects

78

two points. A simple and compact model is proposed, called Shortest Paths Polygon
(SPP) to describe all shortest paths between two points in the presence of obstacles. This
model, which is based on gridless graph, facilitates a better routing of any multi-terminal
net. The SPP model is applied to the problem of tuning the CDN under obstacle con-
straints. A new method is proposed, based on the SPP model, and incorporated into
AWA algorithm. Nevertheless, the method is general and applicable to other CDN algo-
rithms as will be described in Chapter 6, as well as to other multi-terminal nets. The
results show the capability of the proposed method in handling engineering changes effi-

ciently.

5.2 Definitions
5.2.1 Manhattan Arc

A point, p, in a Manhattan plane is defined by its x and y coordinates (Py.py)- A Manhat-

tan arc (hereafter referred to as arc), U, is a set of points that lie on a segment whose

slope, Ugjope, is 1 as shown in Figure 5.1. An arc, U, can be defined by its two end
points that will be referred to as head and tail, U" and U respectively, such that:
U<, (5.1)

where Uhy and U, are the y-coordinates of Uand U respectively.

In addition, an arc has a specific displacement on the y-axis or x-axis. The displacement
on the y-axis will be referred to as Ugg,. Note that the case Uhy=U'y (or U"=U")

implies that U is a single point; and Uy, and U, Would become undefined.

79

(@) (b)
Figure 5.1 The Manhattan arc

5.2.2 The notations ¥ and ®

Two points, say s and ¢, define a rectangle R(s,?) such that s and # are, respectively, either
the bottom-left and top-right corners or the bottom-right and top-left corners of R(s,?) as
shown in Figure 5.2. For a given rectangle R(s,?), which is abbreviated to R, two nota-

tions, ¥ and O, are defined as follows:

Definition 5.1: The notation ¥(R), or ¥(s,?), refers to the other two corner points of R.

One corner, W*(R), is located at (s,, t,); and the other corner, ¥ (R), is located at (t,sy).

Definition 5.2: The notation ©(R,1), or ©(s,1,7), refers to the two points on the border of
R, which are located at a distance t from 5. One point, ®*(R,1), is above or on the diag-

onal of R that passes through s and ¢. The other point, ® (R,7), is below or on the same

diagonal.

Figure 5.2 shows the points ¥*(R), ¥ (R), ®'(R,7) and ® (R, 1) for the rectangle R(s,z).
For the sake of simplicity, if a rectangle is defined by the end points of an arc U, s and ¢,
then the notation ‘¥(s,t) is abbreviated to W (U). The notation d(_) denotes the (Manhat-

tan) distance between two arguments: two points, a point and an arc or two arcs.

80

¥*(R) '“_54'(1},‘{) """"" d e @Vﬂf’ ¥*(R)
T R(s) R(s,0) :
R O M R SO X ./ B »
O (R1) Y (R)
() (b)

Figure 5.2. The notations ¥ and ©

5.2.3 Problem Formulation

The problem of routing a two-terminal net with obstacle constraints is well addressed in
the literature. This chapter addresses the problem of routing a multi-terminal net with
obstacles in the routing plane. Given a set of obstacles and a set of sinks, where each
sink is associated with a location and a load capacitance, the problem can be formulated
as follows: tune the wires of a given CDN so that the skew between any pair of sinks is
less than a specified bound where each Steiner node in the CDN is associated with a
location in the Manhattan plane, a load capacitance and a signal delay from this node to
its leaves. Tuning a CDN means adjustment of wire lengths and relocation of the Steiner
nodes of the CDN, while minimizing the skew, so that no wire or Steiner point lies in

any obstacle.

All obstacles are assumed to be of a rectangular shape and the wire can run around the

edge of the obstacle. The AWA algorithm was proposed to tune the CDN without obsta-

81

cle constraints. In this chapter, AWA algorithm will be extended to tune the CDN under
obstacle constraints. At first, the concept of Shortest Paths Polygon will be introduced

next.

5.3 Shortest Paths Polygon

Let nodes s and ¢ be the children of node u in the CDN as shown in Figure 5.3(a). Also,
let the wire that connects s and ¢ with minimum wire length in the Manhattan plane be
Wire(s,t) as shown in Figure 5.3(b). If there is no obstacle constraints, then the length of
Wire(s,t) is D(s,t). Such a wire can be routed in different layouts in the routing rectangle.
On the other hand, if R(s,) intersects with obstacles as shown in Figure 5.3(c), then nei-
ther the routing area of Wire(s,t) is R(s,f), nor the length of Wire(s,t) is D(s,t). In such a
case, the length of Wire(s,t) can be determined using different shortest path algorithms,
such as the maze, line search or graphical algorithms [71-77]. Any of these algorithms
produces a solution that stands for a possible layout of Wire(s,t). However, there is no
algorithm that determines all solutions. Indeed, the problem of determining all solutions
means the determination of the routing area of Wire(s,t), which has not been addressed
in the literature. For example, the routing area of Wire(s,?) shown in Figure 5.3(c) is the
polygon s,a,b,c,t,def,ghs. Thus, this polygon represents a complete solution for all
shortest paths between s and ¢, and it will be called the Shortest Paths Polygon of s and ¢,
SPP(s,t). Such a complete solution would have a great advantage for the routing phase
of the system design process. For example, a detail router that has all solutions for
Wire(s,t) can pick the optimum layout of Wire(s,?) in response to different design rules.

Also, the router can modify the layout of Wire(s,¢) without going back to a previous

82

design stage. Nevertheless, it is important to have a simple representation of the SPP in
order to incorporate it into current routing algorithms without a significant increase in

the computation time or the memory usage.

O*(s,1,ey)

Wire(s,t)

M[—---_----
0Q
.
=

Figure 5.3 An example of connecting two nodes (a) the connection topology (b) the
routing area of the connection without obstacle constraints (c) the routing area of the

connection with obstacle constraints.

Definition 5.3: The Shortest Paths Polygon of two nodes, s and ¢, SPP(s,?), is the small-

est polygon that includes all possible shortest paths between s and ¢ without intersecting

with any obstacle.

83

The SPP of two points has some interesting properties that will help in developing a con-
cise representation and simple determination of the SPP. Let node u be the parent of the

pair of nodes s and ¢ in the CT; and e, and ¢, be the edge lengths of s and respectively as

shown in Figure 5.4(a). Accordingly, node u can be any tapping point on Wire(s,t) such

that D(s,u)=e; and D(t,u)=e, as shown in Figure 5.3(b). Indeed, there would be different

possible locations for # in the Manhattan plane since there are different layouts for
Wire(s,t). The set of all possible locations of # constitutes the merging segment of u, U,
which is a Manhattan arc [41-43]. If there is no obstacle constraints, then Wire(s,t) can
be routed in R(s,2); and consequently, U is located inside R(s,¢) as shown in Figure 5.3(b)
(see Appendix B for the details). However, if R(s,2) intersects with an obstacle, as shown
in Figure 5.3(c), then Wire(s,t) can be routed in SPP(s,t); and U is located inside

SPP(s,1).

Consider the case of a single obstacle intersecting with R(s,#) as shown in Figure 5.4.
Accordingly, SPP(s,t) is the polygon s,ab.c, t,d,s. Depending on e, and e, there are dif-
ferent possible arcs for U, which are shown as solid and dotted arcs in Figure 5.4. These

possible arcs of U are grouped according to the following:

Definition 5.4: A set of arcs, ¢, includes all arcs that have the same slope; and the end

points of all arcs lie on the border of a single rectangle R (referred to as the rectangle of

).

84

- O*(s,t,D(s,b))
e

.

04

O~ (s,t,D(s,b))
(@) (b)

O*(s,t,D(s,8)) ; .
L S
E. ',"'zlv:'o
:
cl

Q@ereomanuaunpancenae
- - . -

O (s,t,D(s,b))
© (@)

Figure 5.4 The signs of the corner b (a) a=p=-1 (b)a=-1 and f=+1 (c)a=p=-+1

(d)a=+1 and f=-1.

The sets of the solid and dotted arcs are labeled as %, and &, respectively as shown in
Figure 5.4. The end points of the arcs of &%, lie on the border of R(s,e). Similarly, the end
points of the arcs of ##, lie on the border of R(f#). That is R(s,e) and R(f?) are the rectan-

gles of #&, and &, respectively. The arc that has the minimum displacement in &%, is the

85

point s, and the arc that has the maximum displacement in &%, is B as shown in Figure
5.4. Similarly, the arcs that have the minimum and maximum displacement in &%, are B

and ¢ respectively. The arcs that have the minimum and maximum displacement in arc
set, 5 will be referred to as the head (52" and tail (5%) of & respectively. One may

notice that 5%, and &%, are separated by B, where 5%, =5¢",=B.

Definition 5.5: The boundary arc between two arc sets is the head of one arc set and the

tail of the other.

Corollary 5.1: The rectangle of an arc set does not intersect with any obstacles.
Proof: If there is an obstacle O intersects with the set’s rectangle, R, then O would elim-
inate portions of some arcs. As such, the end points of these arcs do not lie on the border

of R, which is a contradictory to the definition of the arc set.

5.3.1 Polarity of a Convex Point of an Obstacle

A SPP or an obstacle is defined by a set of points; where each point is either a concave
or convex point. A convex point of an obstacle would be a concave point of an SPP, and
vice versa. Without losing generality, we assume that all obstacles have rectangular
shapes or combinations of rectangular shapes. A rectangle can be defined by its four cor-
ners which are convex points. A corner of a rectangle can be top-left, top-right, bottom-
right or bottom-left corner. For example, consider the point b shown in Figure 5.4 which
is a concave point in the SPP and a convex point of the obstacle. In addition, the point b

is an end point of the boundary arc B. Indeed, the arc that is originated at a concave point

86

of a SPP would be a boundary arc between two arc sets in the same SPP. Such a bound-
ary arc has a slope of *1 as shown in Figure 5.4. Thus, every convex point of an obsta-
cle, p, is assigned a sign, ¢, that stands for the slope of the boundary arc, which is
originated at p. For example, in the case that the obstacle is a rectangle, « is positive if p

is a bottom-left or top-right corner; and negative otherwise.

One end point of each boundary arc is a concave point of the SPP, while the other end

point can be determined from s, ¢ and other concave points of the SPP. For the case

shown in Figure 5.4(a), the other end point of B is ® (s, #, D(s,b)). The sign of the oper-
ation ® can be deduced from the fact that a shortest path passes each boundary arc by
moving around a convex point of an obstacle where the boundary arc is originated. In
general, the sign of the operation @ is used as another sign, £, for each convex point p of
an obstacle such that £ is positive if p is the top-left or top-right corner of the obstacle,

and negative otherwise as shown in Figure 5.4. In conclusion, each convex point, p, of

an obstacle has two signs, p“’ﬂ, as described in Table 5.1.

Table. 5.1 Signs of a corner of an obstacle

corner a B
bottom-right - -
bottom-left + -
top-left - +
top-right + +

87

5.3.2 SPP’s Vertices

It is important to have a simple model of the SPP in order to incorporate it effectively
into current routing algorithms. Consider the case of two obstacles intersecting with
R(s,1) as shown in Figure 5.5(a), where SPP(s,1)=5,a,04 b, t, c, 04, ds. The possible arcs of
the parent node, U, are grouped into three sets: #&, &%, and &%,. These arc sets are sepa-
rated by two boundary arcs, B, and Bg, as shown in Figure 5.5(a). The convex points a,
b, ¢ and d of SPP(s,t) can be determined from s, f and the concave points of SPP(s,2) as
follows:

a=V(s5,0p), b= (040), =Y (05,1 , d&=¥ (5,09

Thus, it is possible to represent SPP(s,t) by its source, destination and concave points

only as will be described next.

Each boundary arc of a SPP is originated at a concave point of the SPP. In addition, the
wire that connects s and ¢, Wire(s,t), passes through these boundary arcs in a certain
sequence. Thus, the concave points of a SPP can be ordered according to the order of

passing through their boundary arcs by Wire(s,t). For example, the SPPs shown in Figure
5.5(2) and (b) are s,05,05 ¢ and s,0}",0%,0+" 07t respectively. One may notice that two
sequential concave points of a SPP have to have the same « sign unless there is a detour

around an obstacle. For example, SPP(s,¢) shown in Figure 5.5(b) detours around the

corners o; and os. Accordingly, o; and o5 appear in sequence in SPP(s,t) though their
signs are different. For such a case, the boundary arcs that are originated at these two
points, B; and Bj, have zero lengths since there is a detour around these two points. Also,
the arcs of the set between these two boundary arcs, ##, have zero length. Otherwise, if

88

there is no detour around an obstacle, then the sequence of the points of the SPP have the
same « sign (their boundary arcs have the same slope). Consequently, such points are

ordered according to the displacement of their boundary arcs. For example, the points os,
07 and o4 of SPP(s,t) shown in Figure 5.5(b) are listed in a descending order by the dis-
placement of Bs, B; and B,. In general, the concave points of a SPP have the following

properties:

Property 1: two sequential points in a SPP have the same « sign unless there is a detour

around an obstacle.

Property 2: sequential points are listed in descending or ascending order by the dis-

placement of their boundary arcs.

In conclusion, the SPP can be modeled by its source, destination and the concave points,
where each concave point has two signs « and . All other convex points of the SPP can

be determined from the set of points that represent the SPP.

Figure 5.5 The Shortest Paths Polygon.

89

For a SPP whose set of points are py,p;,..p,, the cost of a wire that connects p, to p,, ,

Wire(pg,p,), is given as:

m(po: pn) = z d(Bk» Bk +])
k=0,n-1

(5.3)

where: B; is the boundary arc that is originated at point p; of the SPP.

5.4 SPP Determination

The SPP of two points, s and ¢, can be determined using a visibility graph, G, whose ver-
tices are s, t and the obstacle corners. Pair of vertices in G are connected by an edge if
they correspond to a pair of points whose rectangle does not crossover any obstacle. Fig-
ure 5.6 shows the visibility graphs of the cases shown in Figure 5.5. In order to simplify
the graph, two vertices are connected only if they have the same slope, except if the two
vertices belong to the same obstacle. This is due to the fact that two sequential points in

SPP have to have the same « sign unless if there is a detour around an obstacle.

A greedy approach can be used to find shortest paths between s and ¢ in the graph G,

where there can be more than one shortest path. Such an approach would find the short-

est paths in order O(n?), where n is the number of obstacles. However, some paths are
redundant, and can be neglected according to the following observations:

Observation 1: A path py,..,p,,.;,p, becomes redundant if one of the points py,..,p,,._, is

connected to p,, in G

90

Observation 2: A path p,,...p,, ;,p, becomes redundant if it has two sequential points, p;
and p;. ;, that have different slopes and belong to one obstacle such that the later obsta-

cle does not intersect with the rectangles R(p;_;,p;+ ;) or R(®;,p;+2)-

The first observation helps in preventing an unnecessary point from appearing in the
shortest paths. For example, the path s,0;,05040, (Figure 5.5(b) and Figure 5.6(b))
becomes redundant since o5 is connected to 0, The second observation helps in prevent-
ing an unnecessary detour from appearing in the shortest path. For example, the path
5,05,0¢ (Figure 5.5(a) and Figure 5.6(a)) becomes redundant since the rectangles R(s,0¢)
does not intersect with the obstacle whose corners are 05,0407 and og. Neglecting the
redundant paths, coupled with reducing the number of edges in G, would speed up the
procedure of finding the shortest paths. In order to use the set of points of a non-redun-

dant path as a set of points of the SPP, the interrelation between shortest paths need to be

investigated at first.

Figure 5.6. The graph representation.

91

5.4.1 The Interrelated Shortest Paths
Unfortunately, a non-redundant shortest path does not necessarily trace all points of the

SPP were shortest path would be routed. For example the path s5,0;,05,04¢ does not trace
o7 as shown in Figure 5.5(b). Similarly, the path s,0;,05,07,¢ does not trace o, . However,
a wire connecting s and ¢ according to the two paths would pass the boundary arcs By
and By, since the two paths are routed in the same SPP. Hence, in order to determine the

set of the points of the SPP, the two paths have to be merged into one path. Conse-
quently, the points of the new path are ordered by the displacement of their boundary
arcs. For example, the interrelated paths shown in Figure 5.5(b) are merged into

5,01,05,07,0 41, Which represent the SPP of s and .
1:95,07,04 Y

Definition 5: let py...p;,...p;...pp a0d qg...qp-..q}..4,, be two shortest paths in the visi-
bility graph G, such that p;,..,p; and p;..,p, are similar to g,..,q; and g..,q,, respectively.
The two paths are interrelated if the boundary arcs of p;..,p; and gy,..,g; have the same

slope and if they can be ordered in one path according to corollary 5.1.

5.4.2 Boundary Arcs Determination

In order to determine the merging segment, it is necessary to determine first the end
points of the boundary arcs. As described in Section 5.4, one end point of a boundary arc
is a corner of an obstacle. The other end point of the boundary arc would be located on

the border of the SPP. For example, consider the case shown in Figure 5.7, where R(s,)=

5,0,,04t. The end point of B are o5 and ©*(0,!,m(0504). This implies that, the immedi-

92

ate left and right neighbors of the origin o, 0, and ¢ respectively, are used to determine
the other end point of Bs. However, determining a boundary arc from the immediate

neighbors of its origin may result in eliminating a portion of that arc. For example,

determination the other end point of B, from s and o4 implies that the other end point lies
on the border of R(x;,04), where x;=¥%(5,0,). But, B, can be extended further into the
rectangle R(x,), where x,=F*(x,,1), since this rectangle does not intersect with any

obstacles. In fact, the other end point of B, is @*(s,t,m(s,09).

Figure 5.7 The extension of the boundary arcs.

In general, for a boundary arc B, which originates at p, the other end point of B can be
determined by applying the operation ® to two points: one point from the left neighbors

of p, pywhich will be referred to as the left associate of p ; and one point from the right

neighbors of p, p,, which will be referred to as the right associate of p.

93

Definition 5.6: The left and right associates, p;and p, respectively, of a boundary arc B,
whose origin is p, are points from the left and right neighbors of p in the SPP that deter-
mine the other end point of B as follows:

B"=p and B'=0P(p,p,m@p;p)) if a=+1

Bf=p and B'=0P(pp,m(p;p)) oW

where o and 3 are the signs of p

For the example shown in Figure 5.7, the left associate of o5 becomes the point s instead
of 0, because both 0, and o4 have the same B sign. Similarly, the right associate of o,
becomes the point ¢ instead of o4 because both 0, and o4 have the same B sign. Accord-

ingly, the right associate of B, becomes #; and the end points of B, are o, and
©7(s,1,d(5,09). In the same manner, the left associate of B; becomes point s; and the end

points of By, are ogand ®7(s,7,d(s,09)). In general, when there are more than three points in

the shortest path, the left and right associates of a boundary arc have to move respec-

tively towards the source and destination of the shortest path as follows:

Lemma 5.1: For the SPP py,...p,, let p;, 0<i<n, be the origin of a boundary arc B; Also,
let o and B be the signs of p;. The right associate of p; traces the points to the right of p;
to become as p, , r>i, such that p, is the first point whose P sign is different from the
sign of p;. Similarly, the left associate of p;, moves towards the source p, and becomes

Py, I<i, such that p; is the first point whose B sign is different from the B sign of p;.

94

Proof: According to the Lemma, the right associate of p;, p, has to trace the points of
SPP to the right of p;. Let k be the index of tracing the points to the right of p;. Also, let
y; be defined as follows:

1=YP@;.1p)

where Bisthe B sign of p;.

At each iteration k, let ; be defined as follows:

VPP 1Pk t)

where B is the B sign of p;.

At first iteration, &=1 and p,=p;,;, where r=i+k. Accordingly, B; can be extended into
the rectangle R(%;,p,). If the B sign of p, is different from the B sign of p;, then the rect-
angle R(¥,,p,+ ;) intersects with the obstacle of p,. Thus, B; cannot be extended into the
rectangle R(y,,p,+); and the right associate of p; is p,- On the other hand, if the B signs
of p, and p; are the same, then the rectangle R(y,,p,.;) must not intersect with any
obstacle; and B; can be extended into this rectangle. Consequently, k=2; and p,=p; ,.
The index k can be increased as long as the B sign of p; and p;, are the same; till i+k=n
(n is the index of the last point in the SPP). Similarly, the left associate of p; traces the

points to the left of p; till the B sign of p;_; is different from the P sign of p; or i-k=0.

95

For the cases discussed previously, there was a single shortest path. But, for the general
case, there might be more than one shortest path as shown in Figure 5.8, where there are

two shortest paths: 5,0,,f and s,0,,t. The obstacle O may break down the merging seg-

ment B into two parts; therefore, by considering one shortest path, one part of B would be
neglected. In the case shown in Figure 5.8, the possible arcs of different parts of B can

be located into four arc sets 7€, 7%, #&; and €. The shortest path s5,0,,f provides only
the part of B that is located in &% or). On the other hand, the shortest path 5,0, pro-
vides the part of Bthat is located in &; or #&. The two parts that are produced by the two
shortest paths may overlap on each other. For example, if e;<m(s,0;), then the two parts
are located in ##; and #&, and they overlap with each other. But, this is not always the
case. For example, if m(s,0;)<e,<m(s,0,4), then the obstacle O breaks down the merging

segment into two non-overlapped parts, where each part can be obtained from one of the
shortest paths. In general, all the shortest paths have to be explored in order to calculate

all possible parts of a merging segment.

. .
B A I

Figure 5.8. The overlapping between different parts of a merging segment.

96

5.5 Balancing Segment Determination

In Section 2.5.2, the merging segment of node u, B,,, is determined from its child arcs By
and B, by constructing tilted rectangles without considering the obstacle constraints. A
simpler method is presented in Appendix A to determine the merging segment without
obstacle constraints by using the notations ¥ and ®. However, due to the obstacle con-

straints, the merging segment has to be determined differently. Let the child segments

be the points s and £; and they have to be merged by the merging segment B,,, where
SPP(s,1)= 5,07,02,03,0 4t as shown in Figure 5.9.. Thus, there are four boundary arcs, B;,
B,, B3 and B, that separate five arc set. Assume that the merging segment B,, belongs to
the arc set #%,, which is located between B, and B;. That is, the head and tail of &, are
the arcs B, and Bj respectively. Note that B, merges the two points s and #; and the wire
length from s and ¢ to B,, are e, and e, respectively as shown in Figure 5.9. By using the
edge lengths of s and ¢, e; and e, respectively, the arc set of a merging segment can be

decided as follows.

Lemma 5.2: For a SPP p,,...p,,, the merging segment, B, belongs to the arc set #%, whose
head and tail are 5, and &), if:

e m(po,c;?'k) and e,> m(&,p,,) 54
Proof: The wire lengths from the source, p, and the destination, p,, to the merging seg-

ment B are e, and e, respectively. Also, according to the given SPP, the shortest wire
length from pj to the head of 58, is m(py, &2,); and the shortest wire length from Py to the

97

tail of 5% is m(p,,%;). Thus, if the points py and p,, are to be connected with minimum

wire length; and eg> m(pypy) and e,> m(py 1.p,), then B es#; must be true.

For the case shown in Figure 5.9, B, &%, since B, is located between B,, which is the

head of &, and Bj, which is the tail of 5. Consequently, the end points of B, are
located on the border of the rectangle R(¥ ™ (B,), V' (B,). In general, to determine a
merging segment B, from a SPP, p,,...p,, such that B, %, the head and tail of B, Buh
and B, respectively, are calculated as follows:

B =0 (¥ (¥ Y, D

Bl= O (Y (FHDY' (Y.] (5.5 A)
where [1s defined as follows:

I=ey - m(py oy + ALY () (5.6 A)

With the assumption that m(po,a??'k)s m(pg,7%;) as shown in Figure 5.9. On the other
hand, if m(p,#8,)< m(pe,52y), then B, and B,/ are calculated as follows:
B, = & (¥ (), Y (Y. D

Bl= O V') Y (.) (5.5B)
where [is defined as follows:

I, - m(po)+ ALY () (5.6 B)

98

Figure 5.9 shows the determination of the head and tail of the merging segment B,, ©~

(¥ (B,), ¥ (By), I) and ©'(¥"(B,),¥'(By), I) respectively. Note that the Equation 5.5.A and

the Equation 5.6.A are used to determine B, since m(s,B,)< m(s,B3).

O (¥ (B, ¥'(B3), I) \.

0;

04

Y7(B,y) 07
s|\» 2 < O (Y (B)\Y'(By),)

Figure 5.9 Merging segment determination

Based on the Lemmas and Corollaries presented in previous sections, a procedure can be

drawn to determine the merging segment of two points as described in Figure 5.10.

Input: locations, load capacitances and time delays of child nodes s and #, and a set of
obstacles.

Output: merging segment B of the parent node and its time delay and capacitance
Construct the visibility graph for s and 7 and the set of obstacles

Find the shortest paths in the visibility graph
Merge interrelated paths according to Corollary 5.1
For each shortest path
Find the arc set, #&, of B according to Lemma 5.1.

Determine B according to Equation 5.5

Eliminate the overlapping between different parts of the merging segment

Figure 5.10 The Merging Segment Determination procedure.

99

Theorem: the procedure Merging Segment Determination can find all possible locations
of connecting a node to its children with minimum wire length.

Proof: Two child nodes can be connected with minimum wire length if the wire follows
a shortest path among the obstacles. By constructing a visibility graph for the child
nodes and the obstacles, all shortest paths between the child nodes can be found. For
each shortest path, all possible locations of the parent node, merging segment, can be
determined according to Equation 5.5. Thus, the determination of all shortest paths gives

all possible locations of the parent node.

5.6 Incorporating the SPP methodology into AWA algo-

rithm

In the previous discussion, every node in the visibility graph is assumed to correspond to
a point in the routing plane. The link between a pair of nodes is established whenever the
rectangle of the two points, that correspond to the pair of nodes, does not intersect with
any obstacle as described in Section 5.3. The procedure shown in Figure 5.10 deter-
mines the merging segment of a node based on the SPP of the child nodes, s and ¢, with
the assumption that s and ¢ correspond to single points. Thus, the proposed method can
be incorporated into AWA algorithm, which will be called SPP-AWA, since the child
nodes of the balancing node are single points. At each iteration, the procedure is called
to determine the merging segment of the balancing node, which is the parent node in the
procedure. Then the final location of the balancing node is selected to be the closest
point of the resulting merging segment to its parent. According to this procedure, the

visibility graph is built at each iteration for the children of the balancing node, s and ¢,

100

and all obstacles. However, the merging segment, B, is mostly located inside R(s,#); and
only the obstacles that intersect with R(s,#) would intersect with B. Thus, only the obsta-
cles that intersect with R(s,?) are considered during the visibility graph building in the
procedure so that the visibility graph becomes smaller and the shortest path is found
faster. But, it is necessary to check if the resulting B intersects with other obstacles that
do not intersect with R(s,?). If there is an intersection, then the procedure has to be called
again with consideration of the obstacles that intersect with the resulting merging seg-

ment in the first call.

Note that the slope of arc sets of a SPP can be £1. But the slope of two sets that are sep-
arated by a boundary arc would be either the same or the arcs of one set are of zero
length. For example, a wire connecting s and ¢, as shown in Figure 5.11(a), would be
routed in SPP(s,1)=5,0;,08,07,04,t, Which is the result of merging the paths s,0;,07,04,t
and 5,04,07,04:t, as shown in Figure 5.11(b). Accordingly, there are four boundary arcs
that separate the possible locations of the merging segment into five arc sets: #&;, 7%,
3, 7% and o&;. The slope of 7, 7%, and &%; is +1; while the slope of &% is -1. Thus, the

arcs of the set &, including its boundary arcs Bgand B, have zero length.

101

(a) (b)

Figure 5.11 (a) The possible arcs of the merging segment have *1 slope. (b) The visibil-

ity graph.

5.7 Implementation and Results

The procedure Merging Segment Determination was implemented using C++ language
on a SUN Ultra 10 machine in Unix environment. Different experiments are performed
in order to show the capability of the proposed approach to handle obstacles and to min-
imize total wire length simultaneously. To provide assessments of different metrics, the
experiments were performed using the same five benchmarks, r1-r5, presented in Sec-
tion 3.4. Different number of obstacles of different sizes were added randomly to each
benchmark so that there is no intersection between any two obstacles as well as no sink
is located within an obstacle. The size of different obstacles were set randomly between
5% and 20% of the die area. The obstacles were located randomly in the die area such
that the obstacles do not cross each other and no clock pin is located inside an obstacle.
A modified version of Mean and Median Method (MMM) [3]was used in order to gener-

ate the initial topology.

102

5.7.1 Building ZSCDN Using SPP-AWA

Different benchmarks were used as inputs to the SPP-AWA in order to study the impact
of the obstacles on the convergence and the total wire length. Figure 5.12 shows the
skew convergence of SPP-AWA to achieve ZSCDN for r1 when there are 40 rectangular
shape obstacles as described previously in the die area. Investigating the large spikes in
the skew convergence turned out that these spikes ensue when the shortest path is
lengthened by detouring around obstacles. Note that the previous approaches in [69 and
70] require the recomputation of the whole solution whenever a change in the CDN is
made. Furthermore, for the approach in [70], the reduction of skew comes at the expense
of extra wire length. On the other hand, SPP-AWA reduces the total wire length and the
skew simultaneously as shown in Figure 5.12. Similar to the approach in [70], the total
wire length somehow increases linearly with the increase in the number of obstacles as
shown in Figure 5.13. Table 5.2 provides comparisons of total wire length, number of
wire elongations, number of iteration and run time for various benchmarks. By compar-
ing Table 5.2 to Table 3.2, one may notice that 40 obstacles result in only 5% increase in
the total wire length, where by using the approach in [70], the same number of obstacles
result in 12% increase. The capability of SPP-AWA to reduce the obstacle impact on the
total wire length is attributed to the determination of all possible locations of the merg-
ing segment of a Steiner node. This was achieved by using the SPP modeling of the rout-

ing area of each wire in the CDN.

Also, from Table 5.2, one may notice that the increase in the number of obstacles does

not necessarily result in an increase in the number of iterations. However, the run time

103

increases somehow linearly with the increase in the number of obstacles as shown in
Figure 5.14. This is due to the fact that the size of the visibility graph increases linearly
with the increase in the number of obstacles, and searching the visibility graph for the
shortest paths accounts for the increase in the run time though the number of iterations is
less. Note that SPP-AWA searches for the shortest paths locally as described in Section

5.5.

Table 5.2 Different metrics for different benchmarks using SPP-AWA. Each benchmark

is compounded with 40 obstacles.

benchmark r1 r2 r3 r4 r5
Total wire length (cm) 17.1 36.1 47.2 93.5 139.5
Number of wire elonga- 233 530 794 1767 2925
tions
number of iterations 4653 17478 27603 83892 201232
run time (sec) 5 18 32 80 244

5.7.2 CDN Tuning Under Obstacle Constraints

The main advantage of SPP-AWA is to handle minor modifications. Three experiments
were carried out to study the sensitivity of the proposed approach to the number of
shifted sinks, the size of the shifting of the sinks and shifting in the obstacle location.
Note that other approaches require the recalculation of the whole solution when there is

a minor modification. These experiments will be described next.

104

Experiment 1: Sensitivity to the Number of Shifted Clock Pins

Figure 5.15 shows the relationship between the number of shifted sinks and the required
number of iteration to achieve zero skew. Note that in order to have a realistic estimation
of the sensitivity of SPP-AWA to the increase in the number of shifted sinks, the experi-
ment is repeated four times for each number of shifted sinks. The size of the shifting was
set to 5% of the routing area. Further, the sinks were shifted in different directions to

avoid placing a sink in an obstacle.

Experiment 2: Sensitivity to the Size of the Shifting in the Clock Pins

Figure 5.16 shows the relationship between the size of a shift of a fixed number of sinks
(was set to five) and the required number of iterations to achieve zero skew. In order to
have a realistic estimation of this sensitivity measure, the experiment is repeated four
times for each size of shift, where the shift of the sink are varied between 5% to 30% of

the routing area.

Experiment 3: Sensitivity to the Size of the Shifting in the Obstacles

The purpose of this experiment is to investigate the impact of the shift of a routing obsta-
cle on the ZSCDN. Three obstacles were selected randomly and shifted by different
amount so that no obstacle intersects with each other. If a shifted obstacle overlaps a
sink or a Steiner node, the sink or the Steiner node would be moved to a location outside
the obstacle. Such a modification would impact the skew between different sinks. Figure
5.17 shows the relationship between the shifting in the obstacles and the required num-

ber of iteration to achieve ZSCDN.

105

5.8 Summary

In this chapter, a new method was proposed to determine all possible locations of a
merging segment with obstacle constraints. The method is based on building a visibility
graph to find the shortest paths around obstacles. Two new concepts were introduced:
the boundary Manhattan arc and the interrelated shortest paths. The method was incor-
porated into the adaptive wire adjustment algorithm, SPP-AWA, to build A BSCDN by
minimizing the skew incrementally. The results show the capability of SPP-AWA to
design a BSCDN for any given skew bound. Additionally, SPP-AWA enables a quick
engineering change (EC) to the BSCDN. The method can be incorporated into other
CDN routing algorithms, as well as it can be used to route any multi-terminal nets with

obstacle constraints.

In this chapter, the SPP-AWA is used to build the CDN from the start. However, the
SPP-AWA, similar to AWA, would outperform other algorithms in the course of minor
modifications of the CDN. Thus, it is required to synthesize the CDN at first using other
algorithms. This can be achieved by incorporating the SPP model into the DME algo-
rithm as will be described in the next chapter. In addition, the next chapter will also
address the use of the SPP model to synthesize the CDN with other constraints, such as a

limited number of routing planes.

106

19.4

£
192 2
%\ 19.0 g‘)
g 188
3 5
v 18.6 =
8

184

iteration (10%)

Figure 5.12 Skew convergence and total wire length for r1 with 40 obstacles

E o ;
e -
=1t}

5 182 -
& T
5 174
o]

§ 4

16.6 . .

0 10 20 30 40
number of obstacles

Figure. 5.13 Total wire length vs. number of obstacles for rl

107

_ number of iterations

N 5 R run time _12
£ 49
g
Q
w 4.8
o
ié 4.7
]
4.6
0 10 20 30 40
number of obstacles

run time (sec)

Figure 5.14 Number of iterations and run time vs. number of obstacles for rl

_ number of iterations

" 1 oeeene- run time -
o
.2 i
8 430
L
.q: —
@]
2 230 A
: _

30

0 10 20 30
number of shifted sinks

Figure 5.15 Iterations and run time vs. number of shifted sinks for r5

108

run time (sec)

_ number of iterations

Qe run time —
g 250 L L os
'§ 200 7 R
Q -+ Q
ZO150 e ¢ : 2
o) Ses T 02 Qé
g 100 T g
T 0.1
o 50 4
0 - T 0
0 10 20 30
size of the shift in the sinks

as percentage of the die area

Figure 5.16 Iterations and run time vs. the size of the shift of five sinks for r5.

—_— number of iterations

g 20) ------ run time o 1.6

é 15 - - 1.2 g
o 1.0 7 0.8 =
: g
L0

g 0.5 N i 0.4

&

O T T T T 0

size of the shift in the obstacles

as percentage of the die area

Figure 5.17 Iterations and run time vs. the size of the shift of three obstacles for r5.

109

Chapter 6

Incorporation of SPP

Model for Special Cases

6.1 Introduction

In general, previous shortest path algorithms, such as the maze, line search or graphical
algorithms, determine a single shortest path between source and destination points, s and
t respectively. Such a solution dictates the layout of the wire that connects s and ¢,
Wire(s,t). However, the shortcomings of these algorithms is that not all possible solu-
tions are determined. Indeed, the determination of all solutions means the determination
of the routing area of Wire(s,t). If there is no obstacle constraint, then the routing area of
Wire(s,t) is the rectangle R(s,¢). On the other hand, if there are obstacle constraints, then
SPP(s,t) is the routing area of Wire(s,t). The problem of determining the routing area of
two points, instead of the shortest path, has not been addressed in the literature. It is
obvious that the determination of the routing area would help the router to produce a
better layout solution in terms of total wire length or other performance criteria. In this
chapter, the SPP model is applied to solve two CDN routing problems: producing a

ZSCDN under obstacle constraints and a planar ZSCDN.

110

Chapter 2 described the synthesis of a ZSCDN using DME algorithm, which does not
consider the obstacle constraints. The obstacle constraints were introduced in Chapter 5
by incorporating the SPP model into the AWA algorithm. However, AWA algorithm is
geared towards implementing an Engineering Change (EC) into the CDN. In this chap-
ter, the SPP model will be incorporated into the DME algorithm, which will be called
SPP-DME, to design a ZSCDN under obstacle constraints. This is achieved by deter-
mining the SPP between two arcs instead of two points. Also, in this chapter, a new
approach is proposed, based on the SPP concept, to route the CDN such that all wires of

the CDN do not cross each other.

Consider the determination of the merging segment of node u, U, whose child nodes are
s and # as shown in Figure 6.1. In Chapter 5, a procedure was proposed to determine U
by determining the SPP of its child nodes, SPP(s,¢), by constructing a visibility graph G.
The links of G are determined with the assumption that the child nodes s and ¢ are repre-
sented by points. However, s and ¢ can be Manhattan arcs. Thus, the links of G and

SPP(s,t) have to be determined differently.

Figure 6.1. An example of a CDN tree

111

6.2 Preliminary

A point p, whose x and y coordinates are p, and p, respectively as shown in Figure 6.2,
divides the Manhattan plane into four quarters as follows:

or-{a: 92pc, 32p)

0'0y{q: 9:<Px» 920}

O @r-{g: 9:Px - 5Py}

CO-{q: 4:2px, 9, <1} (6.1)

') ()
- £ >
Qp))
\j

Figure 6.2. The four quarters of a point in the Manhattan plane.

If a point is the head or tail of an arc, say S"or &, then specific quarters of S and S, are

of particular interest as shown in Figure 6.3. Specifically, the indices of the quarters of

S” and & will be omitted as follows:

o’Sh if Sstope = +1

M=
os”) | o oW (6.2.2)
'Qo(g) iszlope =+l

0(8Y)= o) ow (6.2.b)

112

(a) (b)

Figure 6.3. The quarters of the head and tail of an arc, S (a) Sgjgpe =1 (b) S 1.

lope —~

A single point, p, is located above or below an arc, S (p1S or pl.S), if the line that passes

through p is in parallel with S has a displacement greater or less than Sy, respectively

(the displacement of an arc is defined in Section 5.2). Figure 6.4(a and b) show two

cases where pTS or pi'S.
p
o]
S S
p
0
@ (b)

Figure 6.4. The relationship between a Manhattan arc and a point (a) pTS (b) piS.

The wire that connects a point, p, to an arc, S, with minimum length, Wire(p,S), may not
be able to connect any point from S to p. Indeed, only a portion of S can be connected

by Wire(p,S). This portion will be called the projection, which is defined as follows:

113

Definition 6.1(a) The projection of a point, p, on an arc, S, denoted as Projection(p,S);
is a set of points of S such that:

Projection(p,S)={q<S: D(g, S) = D(p,S)} (6.3)

For example, Projection(p,S) is shown as a solid thick segment in Figure 6.5. Note that

the resulting projection can become a single point (see Appendix B for details).

Projection(p,S) 3

....................

Figure 6.5. The projection of a point on an arc.

An arc, S, is said to be above another arc, 7, ST7, if and only if:
3 peSplT (6.4.2)
Similarly, we say that S is below T (SY7) if and only if:

I peSpIT (6.4.b)

Additionally, two arcs would be either in parallel or perpendicular (S//T or SLT), if
Sstope=Tstope OF Sstope* Tsiope TeSPectively, as shown in Figure 6.6(a and b). Note that,
when S//T, the case STT necessitates that 745 and vice versa. But, when S17, the case

STT does not necessitate that 71.S.

114

For two arcs, S and 7, Wire(S,T) may connect a portion of S with a portion of 7. The por-
tion of 7 that can be connected by Wire(S,T) will be called the projection of S on T; and

it is defined as follows:

Definition 6.1(b) The projection of an arc, S, on another arc, 7, denoted as Projec-

tion(S,7); is a set of points of S such that:

Prajection(S,T)={ peT: D(p, S) = D(S,T)} (6.5)

Figure 6.6 shows examples of Projection(S,T) and Projection(T,S) (see Appending B for

details).
Projection(S,T) 2 .
S Projection(S, T,
NN T ¥ eeton ‘ .) ,
yl """"""""" \T TP SRR A v
Projection(T,S) Projection(T.S)

(@) (b)

Figure 6.6. The projections of two arcs on each other when they are (a) parallel and (b)
perpendicular.

6.3 Determination of a link in the Visibility Graph

6.3.1 Link Determination Between a Point and an Arc
Consider connecting an arc, S, to a point, p, such that Sy, ,.=-1 and Sc@%(p) as shown in
Figure 6.7. Thus, p3S and Projection(p,S)=S; and consequently, Wire(p,S) would pass

through the rectangle R(p, ¥"(S)). Let the edges of R be labeled with index 0, 1, 2 and 3

115

as shown in Figure 6.7. An obstacle O intersecting with R may cross over one or more
edges of R, where oy, 0}, 0, and o3 are the bottom-left, top-left, top-right and bottom-
right corners of O respectively. The intersection between R and O can be expressed as a
binary number, N, that consists of four bits (N=n3n,n,;n,); a bit for each edge of R. The
value of the bit »; represents the intersection between O and the edge i of R such that
n;=true if O intersects with that edge. The impact of O on the link between p and U can
be determined by the value of N, which will be called the intersection number. Note that
some values of N implies impossible intersection between R and O. For example, the
case N=1xx1 implies that O is crossing over p, which is impossible. Also, it is impossi-
ble to have an intersection that results in N=x111 or N=111x since such intersections
imply that O crosses over S. Accordingly, only ten values of N will be considered in

order to determine the link between p and S. The rules of determining the link and the

projection of p on S, where Sy,,.~-1 and ScQo(p), can be summarized in a Look Up

Table (LUT), as shown Table 6.1.

In general, the impact of an obstacle on the link between a point and an arc depends on

the relationship between the point and the arc. Specifically, the arc may belong to one of
the four quarters of the point as shown in Figure 6.8. For the cases SCQI (p) and

S—Q*(p), as shown in Figure 6.8(b and d), it is assumed that Ssiope=t1. And, if Sgjop.=-1,

lope

then Projection(p,S) would be a single point; where the link between S and p can be

determined as described before. Similarly, S, is assumed to be -1 for the cases

SCQO(p) and ScQz(p) shown in Figure 6.8(c and d). In order to determine the link

116

between S and p, a rectangle R is constructed by p and either ¥*(S) or ¥(S) for each

case, where the edges of R are labeled as shown in Figure 6.8.

Figure 6.7. The impact of an obstacle on connecting an arc S to a point p.

For the case shown in Figure 6.8(a), Sgjop.=-1 and Sc0’(p), the link can be determined
using the LUT shown in Table 6.1. Similarly, three LUTs can be generated for the cases

S=o!), ScQz(p) and SCQ3(p), where the edges of R and the corners of O can be
labeled as shown in Figure 6.8. A procedure can be used to determine the link between a

point and an arc as described in Figure 6.9.

117

(2)

(b) (c) (d)

Figure 6.8. Different possible cases the relationship between an arc and a point.

Initially, the above procedure determines the rectangle R for S and p and selects a LUT
based on the relationship between S and p as shown in Figure 6.8. Then, for each obsta-
cle O intersecting with R, the Projection(p,S) is updated according to the selected LUT.
The link between S and p is established if Projection(p,S) is non empty such that the
rectangle formed by Projection(p,S) and p does not intersect with any obstacle. Note that
the link between an arc and a corner from obstacle in the visibility graph would hold

extra information in reference to the projection of that corner on the arc.

Recall that having a link between two nodes, s and ¢, in the visibility graph implies that
Wire(s,t) does not cross over any obstacle. At first, the projections of the arcs of the two

nodes on each other, Projection(S,T) and Projection(T,S), are determine. With the
assumption that ST7, Wire(s,#) would not cross over any obstacle if the rectangle R(¥"

(1), ¥*(S)) does not intersect with any obstacle. Alternately, if O intersects with R, then

Projection(S,T) and Projection(T,S) have to be re-determined.

118

Input: an arc S, a point p and a set of obstacles

Output: the link between S and p and Projection(p,S)

Determine Projection(p,S) as described in Appendix B.

For each obstacle O intersecting with R

if Projection(p,S)#¢ Then establish a link between S and p

Construct a rectangle R from p and Projection(p,S) as shown in Figure 6.8.
Select the LUT

if Projection(p,S)+¢ Then Update Projection(p,S) according to LUT

Figure 6.9. Procedure of Link Determination between an arc and a point

Table 6.1. The look Up Table for the case Sg,,~-1 and S<0’(p)

impact of an obstacle O on the link between a point p and an
N Jarc$S
No impact on the link if 0°Ts
There is a link, but Projection(p,S)"=r:res, rx=01 X if Se Q! (o))
There is a link, but Projection(p,S)'=r:res§, ry=03y if e Q3 (03)
0 (Projection(p,S)=¢ O.W.
No impact on the link if 0°TS
123 Projection(p,S)=¢ if S'e QI (01)
There is a link, but Projection(p,S)h= rire§, rx=01 X O.W.
No impact on the link if 0°TS
4,8, Projection(p,S)=¢ if "¢ O*(0°)
12 [There is a link, but Projection(p,S)'= r:reS, ry=o3y o.w.
5,10 |Projection(p,S)=¢
O.W. [No Impact on the Link

119

6.3.2 Link Determination Between Two Arcs

For the case that the two arcs, S and T, are perpendicular, Sgq,:#T10pe> then Projec-
tion(S,T) and/or Projection(T,S) will be a point (see Appendix B for the details). As
such, the link can be determined as described in Section 6.3.1, where one of the four

LUTs has to be selected. On the other hand, if Sgjo,e=T0pe as shown in Figure 6.10, then

other LUTs have to be used as will be described next.

Consider two arcs, S and 7, such that ST7 and Sstope=Tstope=-1, Where the edges of R(Y"

(1), (S)) are labeled as shown in Figure 6.10(a). If an obstacle, O, whose corners are
labeled as shown in Figure 6.10(a), intersects with R, then the intersection can be
expressed by a binary number, N, of four bits, where each bit corresponds to the inter-
section between O and an edge from R as described in Section 6.3.1. Some values of N
imply impossible intersection between O and R. For example, N=x111 or 111x implies
that O crosses over T; and N= 1x11 or 11x1 implies that O crosses over S. Thus, only
eleven values of N will be considered. Two LUTs, similar to LUT shown in Table 6.1,

can be deduced for the two cases shown in Figure 6.10.

120

Figure 6.10. The impact of an obstacle on connecting two arcs.

Based on the previous discussion, a procedure can be drawn to determine the link

between two arcs as described in Figure 6.11.

Input: two arcs, S and T, and a set of obstacles

Output: the link between S and T, Projection(S,T) and Projection(T,S).

Determine Projection(S,T) and Projection(T,S) as described in Appendix B

Construct a rectangle R from Projection(S,T) and Projection(T,S) as shown in Fig-
ure 6.10.

Select the LUT
For each obstacle O intersecting with R
if Projection(S,T)#¢ or Projection(T,S)#¢
Then Update Projection(S,T) and Projection(T,S) according to the LUT
if Projection(S, T)=¢ and Projection(T,S)#d Then establish a link between S and T

Figure 6.11. Procedure of Link Determination between two arcs, S and T.

121

6.4 Applying the SPP Model to the DME Algorithm

The procedure of Merging Segment Determination, which is shown in Figure 5.10, was
applied to the AWA algorithm in order to tune the clock tree under obstacle constraints
[79]. However, AWA algorithm is geared towards implementing an Engineering Change
(EC) into the CDN. In this section, the proposed method is applied to the DME algo-
rithm, which will be called SPP-DME, in order to design a ZSCDN under obstacle con-

straints.

The original version of DME produces a ZSCDN in two phases. In the first phase, the
merging segment of each Steiner node in the CDN is determined in a bottom-up manner.
In the second phase, the exact location of each Steiner node is determined in a top-down
manner. In order to incorporate the proposed method into DME algorithm, the merging
segment has to be determined differently due to the obstacle constraints. For example,
consider the node u and its children s and ¢ as shown in Figure 6.1. The merging seg-
ments of u, U, can be determined from SPP(s,t) by applying the procedure Merging Seg-
ment Determination as described in Chapter 5. This is achieved by constructing a
visibility graph, G, with the assumption that all nodes, including s and ¢#, correspond to
points in the routing plane. Specifically, the link between a pair of nodes in G is estab-
lished whenever the rectangle of their corresponding pair of points does not intersect
with any obstacle. However, s and ¢ correspond to merging segments which are not nec-
essarily single points in the routing plane. Thus, the step of constructing G in the Merg-
ing Segment Determination procedure needs more investigation as will be described

next.

122

Let the arcs of the nodes s and ¢ be S and T respectively. The obstacles may break down
S and/or T into several arcs. Thus, s or # may correspond to arcs in the Manhattan plane.
Each arc of s, or £, has to be represented as a node in G. Henceforth, G becomes a multi-
source and multi-destination graph. In addition, the links between the corners of the
obstacles and the arcs of s or ¢ have to be established as described in Section 6.2.1; while

the links between the arcs of s and ¢ have to be established as described in Section 6.2.2.

Constructing the visibility graph is the first step in the procedure of Merging Segment
Determination. The rest of the steps of the procedure, as described in Figure 5.10, can be
applied without modification in order to determine the merging segment of a node from
the merging segments of its child nodes. The incorporation of the proposed procedure
into the DME algorithm is achieved by replacing the merging segment procedure of the
first phase of DME with the proposed procedure. The merging segments that have been
calculated in the first phase of DME algorithm are used to locate the exact location of
each internal node in the tree in the top down phase of DME algorithm. Also, the infor-
mation of the SPP of each pair in the tree has to be preserved too in order to use them in

the second phase as described in Figure 6.12

123

Input: Tree of merging segments, the edge length of each node (except the root) and
the SPP between every pair of nodes in the tree.
Output: location of every Steiner point in the tree.

For each node u in T in top down manner
If u is the root
Locate u at any location of any part of U
Else
Let py and p,, be the children of u, where SPP(py,p,)=py....p,, Such that Ue
Locate py:
If k =0 Then let g=u Else let g=p,;
Construct a tilted rectangle, R, such that the centre of R is q and the radius of
Risey
Locate p at the intersection of R and the arc of py
Locate p,,:
If k <n-1 Then let q=p,,; Else let q=u
Construct a tilted rectangle, R, such that the centre of R is q and the radius of
Rise,
Locate p,, at the intersection of R and the arc of p,,

Figure 6.12 The Top-Down Procedure of the SPP-DME.

6.5 Planar Clock Distribution Network

The CDN that can be routed without any via is called a planar CDN since it can be
routed in one plane. It is obvious that vias are undesirable since they complicate the
routing process. In addition, the vias affect the reliability of the CDN in terms of
introducing extra resistance as well as they render the CDN more vulnerable to the
process variation. Authors of [78] proposed an algorithm, called Max-Min algorithm,
that results in a planar CDN in order to avoid vias as well as to make the CDN more
tolerant to the process variations. The Max-Min algorithm does not need an initial

topology; and it starts with the source of the clock signal as the initial CDN. At each

124

iteration, Max-Min algorithm selects an unconnected register and connects it to the
CDN. In order to select an unconnected register, the algorithm determines where every
unconnected register can be connected to the CDN so that the delay from the source to
that register is equal to the delay from the source to the connected registers. The
connection point to the CDN is called balance point, and it is obvious that there are
many balance points for each unconnected register. Hence, for each unconnected
register, the algorithm considers only the balance point that has the minimum distance
from that register. Then, the algorithm selects the unconnected register whose minimum
distance is the maximum one among other unconnected registers. The selected register
is connected to the CDN at the balance point that has minimum distance from that
register. This algorithm results in a CDN that has x-shape, which is undesirable. In fact,
if the registers are symmetrically distributed, the CDN will be X-tree and the planarity
is achieved by increasing the total wire length. The Max-Min algorithm, similar to
MMM and GMA, uses a linear path length delay model in order to produce a ZSCDN
[78]. Thus, the solution in not a true ZSCDN since the path length delay model is

inaccurate.

Khang and Tsao proposed a version of DME that generates a planar CDN called
Planar-DME [80]. This approach determines the solution in one phase by determining
the merging segments during the top-down phase. Let a node, w, be the root of a sub-
tree that contains a set of registers W. The diameter of W, Diameter(W), is defined as

the maximum distance between any two registers in W. The merging segment of w is

125

determined from the intersection of TRRs such that each TRR is centered at a register
in W and the radius of each TRR is Diameter(W)/2. In order to construct a planar
CDN, at each iteration, the set of registers W that are connected to w, is divided into

two sets such that the future routing will not interfere with the existing routing.

Recently, another planar CDN, called cutting-line embedding routing algorithm [81].
The algorithm starts with partitioning the registers set R recursively in similar manner
as MMM. The registers are connected to each other by edges that are allowed on the
boundaries of the partitions only. It is obvious that such restriction results in an increase

in the total wire length.

Previous approaches achieve the planarity through high routing cost. Indeed, the planar-
ity is achieved by determining the topology such that the wires of the CDN can be routed
without intersection. Thus, the core difference between these approaches is for the topol-
ogy generation. For example, the Planar DME produce an H-tree like CDN, whereas
Max-Min produces a X-tree like CDN. The topology impact on the total wire length was
detailed in Chapter 4. Thus, one may deduce that the increase in the total wire length is

due to the topology that is used by each of these algorithms.
In addition to the increase in the total wire length, previous approaches determine the

location of each Steiner node of the CDN in the Manhattan plane. Then, these

approaches use different rules to determine the layout of each wire such that the wires do

126

not intersect with each other. However, each wire can be routed differently in a specific
routing area, where the routing area can be represented by the SPP model. In fact, the
SPP determination of each wire, instead of a specific layout of the wire, would provide
the router with a flexibility that can be used to optimize different design parameters,
such as the total wire length. Also, note that, nowadays, there is no need to limit the
CDN in one routing plane. Indeed, there is a need to develop new approaches that can

determine the routing of the CDN in more than one plane

In the next section, the SPP model will be applied to develop the first method that can
achieve the planarity for any given topology. The planarity is achieved by treating the
previous routed wires as obstacles. That 1s, the SPP of each wire are treated as obstacles.
Such approach requires the reformation of the SPPs of previously routed wires in order
to avoid an increase in the total wire length. In addition, the proposed approach distrib-
utes the wires of the CDN between two layers with the objective of minimizing the total
wire length. At first, a new operation will be presented to describe the interaction

between two SPPs.

6.5.1 The Inner Product Operation

The procedure Merging Segment Determination shown in Figure 5.10 describes the
determination of a merging segment, U, from the SPP of its children, SPP(s,¢). That is, U
is located inside SPP(s,2). Let U be the SPP where U is located, i.e. T]=SPP(S, t). For any

pair of SPPs, say S and 3‘, the inner product is defined as follows:

127

Definition 6.2: The inner product of the SPPs Sand T (§j’), is the overlapped area

between § and T

By using the inner product operation, two SPPs are said to be orthogonal if their inner
product is zero. Also, by using the inner product operation, each SPP, say E, is associ-

ated with a real number, denoted by ||§| and called the norm of g, which is given as:

1] = (5,92)

6.5.2 The SPP Formation

Consider the case shown in Figure 6.13(a) where a merging segment U has to be deter-
mined from its child segments S and 7. At first, the SPP that connects S and 7, E, has to
be determined. Let S and T be the SPPs of connecting S and 7 to their children respec-
tively. Connecting S to 7 by a wire means that a single point from S is connected to a
single point from 7. Consequently, S and T have to be modified, where concave points

are inserted properly into the border of S and T as shown in Figure 6.13(b).

Selecting single points from S and T affects dramatically the norms of :S-', T and U. Fur-
thermore, the norm of U impacts the length of U, where a large value of ||ﬁ| implies
(most likely) an increase in the length of U. Consequently, U can be connected with less
wire length to its parent later on. Additionally, inserting points into S and T lead to min-
imizing ||§|| and H-]-]|. Consequently, there will be less space of maneuvering for the

designer to route Wire(S,T). Note that the points of S and T are inserted into S and T such

128

that Wire(S,T) does not validate the design rule of the minimum distance between wires

as shown in Figure 6.13(b).

R~

5 |

@ (b)

.

Figure 6.13 Modifying the SPP Sand T

In order to simplify the determination of ﬁ, let U be connected only to the end points of

its child segments S and 7. Hence, U can be one of four SPPs that result from the differ-
ent combinations of the end points of S and T: SPP(S". T, SPP(S".TY), SPP(S' T") and

SPP(S', T). In order to minimize the total wire length, only the SPPs that result in mini-

mum length for Wire(S, T) will be considered. For the case shown in Figure 6.13, the SPP

that connect the ' to 7" has the minimum cost. If there are more than one SPP that have
the minimum cost, then the SPP that has the maximum norm is selected in order to min-

imize the total wire length later on.

Even though the points that are selected from the child segments S and 7'lie on the bor-
der of S and -1-', the SPP of their parent, TJ, may overlap with S and T. For example,
(?/,7')>0 for the case shown in Figure 6.14(a). However, it is important to keep E, Tand
U orthogonal so that ||?f|| is maximized. If the inner product of U with its child SPP, say

7', is not zero, then a point is inserted into T so that (—17,7')= 0. Such a point would be the

129

vertex of U that is located inside the polygon of T as shown in Figure 6.14(a). As such,
another point is inserted into T as shown in Figure 6.14(b). Although this is true, insert-
ing a point into T may eliminate the source or destination point of T as shown in F igure
6.14(c). Such elimination must not be allowed since the wire that is supposed to be
routed inside T cannot connect the source and destination points of T Insucha case, the
graph of determining the shortest path would have two sources (head and tail of S) and
two destinations (head and tail of S); and the child SPPs, S and ?‘, are treated as obsta-
cles as shown in Figure 6.14(d). In conclusion, if the inner product of U and one of its
child SPPs, say 7, is not zero, then the vertex of U that is located inside the polygon of
T would be added to T given that the source or destination point of T are not eliminated

from i‘

S

\\\\\\\\\\

\\\\\\\\\\\

C)

Figure 6.14 Other scenarios of modifying the SPP.

130

6.5.3 Applying SPP to Planar CDN Determination

The SPP can be used to route the CDN in one or more planes. Each wire of the CDN is
routed by dedicating a non-uniform routing cell for it, i.e. SPP. Whenever the SPP of a
wire is to be determined, the SPPs of previously routed wires are treated as obstacles.

The wires of the CDN can be determined in a bottom-up manner as follows.

For each Steiner node, u, in the CDN the child segments, S and 7, are reduced to points,
sand ¢, as described in Section 6.5.2. The SPP of u, U can be determined by finding the
shortest paths in the graph that corresponds to §, T and any other SPP intersecting with

R(s,t). Then the merging segment of u, B,, can be determined. The procedure of deter-

mining the merging segment is described in Figure 6.15.

Note that if a part of the resulting merging segment is located outside R(s,2), then that
part has ‘to be checked for intersection with all obstacles that do not intersect with R(s,).
The proposed procedure can be incorporated into existing algorithms that route the
clock tree. In this section, the proposed procedures incorporated into the DME algo-
rithm, and will be called Planar-SPP-DME. This is achieved by replacing the merging
segment procedure of the first phase of DME with the proposed procedure. Since the
proposed procedure determines the exact location of the child nodes of each Steiner
point, there would not be a need for the second phase of DME. Furthermore, the levels
of the clock tree are divided equally into higher and lower levels. The Planar-SPP-DME
selects the Steiner node in a bottom-up manner from the lower levels, then from the

higher levels. The Steiner points of the lower levels are routed in the first plane. Then,

131

the Steiner nodes of the higher levels are routed in the second plane without considering

the SPPs of Steiner nodes of the lower levels.

6.6 Results

Different procedures are implemented using C++ language on a SUN Ultra 10 machine
in Unix environment. The experiments were performed using the same five benchmarks,
rl1-r5, presented in Section 3.4. The initial topology of the CDN is generated using Mean
and Median Method [3]. Two sets of experiments are set in order to study the synthesis
of a CDN under obstacle constraints by applying SPP-DME, and the synthesis of a pla-

nar CDN by applying Planar-SPP-DME.

inputs: S, T, S, T and a set SPPs

output: U and U

Select points s and t from S and T respectively
Modify S and T as described in Section 6.4.2

Find the SPPs that intersect with R(s,t)

Construct the graph G
Find the non redundant shortest paths in G
Merge interrelated paths
Select U from the shortest paths such that:
m(s,t) is minimum , |l5|| is maximum

Determine U in Eaccording toEq. 5.4

Figure 6.15. The procedure of merging segment determination without intersection with
other wires.

132

6.6.1 Clock Distribution Network Under Obstacle Constraints

The SPP-DME algorithms generates a ZSCDN under obstacle constraints as described
in Section 6.4. The algorithm is evaluated in an attempt to show the capability of the
proposed approach to handle the obstacles and to minimize total wire length simulta-
neously. Different number of obstacles of various sizes were added randomly to each
benchmark so that there is no intersection between any two obstacles as well as no sink
is located within an obstacle. The size of different obstacles were set between 5% and
20% of the die area. A modified version of Mean and Median Method (MMM) [3] was

used in order to generate the initial topology.

The benchmarks were used as inputs to the SPP-DME algorithm in order to study the
impact of the obstacles on the run time and the total wire length. Figure 6.16 shows an
example of the resulting CDN for the benchmark r1 when the routing plane is com-
pounded with 20 obstacles. In order to provide a comparison between the proposed
approach and the approach presented in [70], all benchmarks are compounded with 40
obstacles. Table 6.2 provides a comparison between DME and SPP-DME for different
benchmarks. The metrics considered in this comparison are total wire length and run
time. From Table 6.2, one may notice that the obstacles account for an increase of only
around 5% in the total wire length for 40 obstacles when the SPP-DME is used to pro-
duce a ZSCDN. Alternately, the approach presented in [70] results in an increase of
around 12% in the total wire length for the same number of obstacles. For both
approaches, the total wire length increases due to the obstacle constraints. Indeed, the

increase in the number of the obstacles renders the shortest paths longer, and as a result,

133

the total wire length increases as shown in Figure 6.17. Nevertheless, the proposed
approach has the advantage of reducing the impact of the obstacles on the total wire
length. This is due to the fact that all possible locations are considered for each merging
segment. Consequently, the SPP-DME results in a less increase in the total wire length
as compared to the approach that was presented in [70]. More importantly, in [70], the
number of partitions of the merging region were limited to five due to the complexity of
their approach. On the other hand, our study of the properties of the SPP model and the
visibility graph helps to reduce the number of edges in the graph and to eliminate the
redundant paths as described in Section 5.4. Consequently, the proposed approach
reduces the computation dramatically as compared to the run time given in [70]. For
example, for a set of 555 clock pins and 40 obstacles, the procedure proposed in [70]
could take up to 7 hours to reach the final solution. But, the proposed approach takes 1.6
sec to find the solution for 598 clock pins and 40 obstacles (the experiments of this work
were carried out on SUN Ultra 10 and the experiments of [70] were carried out on SUN
Sparc 5). The significant reduction in the run time is due to the reduction in the number
of links in the visibility graph based on the SPP properties. Figure 6.18 shows the rela-
tionship between the run time and the number of obstacles for the benchmark r1. One
may notice that the total wire length somehow increases linearly with the increase in the
number of obstacles. The increase in the number of obstacles render the visibility graph

bigger, and as a result, the run time increases.

134

Figure 6.16 The resulting ZSCDN for the benchmark r1 under 20 obstacle constraints.

19.0 1

18.2

17.4 1

16.6

total wire length (cm)

10 20 30 40
number of obstacles

Figure 6.17 Total wire length vs. number of obstacles for rlusing SPP-DME

. \/
A /_\Jﬁ

10 20 30 40
number of obstacles

Figure 6.18 Run time vs. number of obstacles for the benchmark r1 using SPP-DME

run time (sec)

135

Table 6.2. Different metrics for different benchmarks using obstacle free DME and SPP-

DME with 40 obstacles.

benchmark r1 r2 r3 r4 r5
algorithm | DME S'KAF;:_' DME gi’;_:' DME g';n';' DME EEAFE DME g';ré
Total wire 16.9 | 182 | 36.1 | 383 | 469 [49.7 | 90 | 935] 137.5 | 1406
length (cm)

run time (sec) § 0.1 1 0.1 16 | 02 [22 | 06 | 48 1.7 6.3

6.6.2 Planar Clock Distribution Network Results

The initial topology of the CDN is generated using the MMM approach [3]. Figure 6.19

shows the resulting planar ZSCDN for the first 32 clock pins of r1. Table 6.3 provides

comparisons of total wire length and run time for different benchmarks. For comparison,

the DME algorithm is tested on the same benchmarks. By using Planar-SPP-DME, the

planarity results in an increase in the total wire length of only around 6% as shown in

Figure 6.20.

Figure 6.19. The planar ZSCDN for the first 32 clock pins of the benchmark rl.

—

'I 1

1

I

]

L

|

136

Table 6.3. Different metrics for different benchmarks using DME and Planar-SPP-DME.

benchmark r1 r2 r3
Planar-SPP- Planar-SPP- Planar-SPP-
algorithm DME DME DME DME DME DME
Total wire length (Cm) | 16.9 17.7 36.1 38 46.9 50.2
run time (sec) 0.1 3.5 0.7 8.9 0.2 15.5

In order to study the impact of the planarity on the total wire length, different number of
clock pins from r1 were routed in one plane using SPP-DME as shown in Figure 6.21.
The results show that the total wire length increases exponentially after a certain number
of clock pins. Such a number, which is called the planarity threshold, is around 150;
and it depends on the geometric distribution of the clock pins and the topology of the
CDN. The planarity threshold can be used to estimate the wire load of the CDN, or any

multi-terminal net.

— DME
- SPP-DME

T ¥ T T 1

400 600 800 1000
number of clock pins

total wire length (cm)
c3B8888

o
8

Figure 6.20. Total wire length vs. number of clock pins for different benchmark.

137

total wire length (cm)
o35 3838883

o

100 200 300
number of clock pins

Figure 6.21. Total wire length vs. number of clock pins for the benchmark r1.

138

Chapter 7
Conclusions and Future

Work

7.1 Summary

The motivation for this research is to resolve some of the problems arising from the
rapid reduction in the feature size and the growth in the size and complexity of SoCs.
One such a problem is the interconnect dominance in determining the system perfor-
mance. The rise in SoC complexity and interconnect dominance team up to intensify a
specific challenge to the CDN design. The challenge stems from the CDN’s crucial role
in influencing the functional integrity and performance of SoCs. This thesis focused on
the problem of routing the CDN since the CDN consumes an increasing portion of all

resources in terms of wiring area, power and design time.

Considrable attention was dedicated to the problem of Engineering Change (EC) tech-
niques. A new algorithm is developed, called Adaptive Wire Adjustment (AWA), to han-
dle minor modifications of the CDN. Theoretical analysis and experimental results
showed that whenever there is a skew between any two clock pins, AWA algorithm can

reduce the skew to any required bound, and ultimately to zero, though zero skew is an

139

over constraint sometimes. The simulations performed on CDNs have shown that using
AWA algorithm can reduce the bounded skew requirement further without recalculating
the whole solution. In addition, different experiments showed that AWA has outper-

formed other algorithms for similar scenarios of minor modifications.

A new method of local topology modification was proposed in order to improve the con-
vergence of AWA algorithm; and to have a topology flexibility that resulted in minimiz-
ing the total wire length. The reduction in the total wire length implied a reduction in the
power consumed by the CDN. Also, the experiments showed that previous well known
algorithms relied intensively on wire elongations, and they offered a solution that suffers
from high Standard Deviation between Path Lengths (SDPL). A high SDPL implied vul-
nerability of the CDN to temperature and process variation and the fidelity of the CDN
in terms of satisfying the skew requirements. By using Local Topology Modification
with previous algorithms, wire elongations and SDPL were reduced effectively. Reduc-

ing the number of wire elongations would be an important advantage for layout tools.

The presence of obstacles in the routing plane of the CDN was studied in detail. In gen-
eral, terminals and Steiner points of a CDN have to be interconnected by vertical and
horizontal wires (Rectilinear Steiner Tree), which must not intersect with some obstacles
in the routing plane. Routing a multi-terminal net under obstacle constraints is NP-hard;
and all existing algorithms would find the detailed routing of an interconnect of a net by
finding the shortest path for the interconnect. However, there are different shortest paths

that have different attributes, such as the number of turns or the separation from other

140

paths or obstacles. Henceforth, it is important to have a routing cell that includes all
solutions so that the designer can choose the appropriate path in response to pre-defined
constraints. A new model, called Shortest Paths Polygon (SPP), was proposed to
describe all shortest paths between two points in the presence of obstacles. This model,
which is based on gridless graph, facilitates a better routing of any multi-terminal nets
since it determines all shortest paths. The SPP model is incorporated into AWA algo-
rithm in order to tune the CDN under obstacle constraints. The SPP model facilitates the
determination of all possible locations of a Steiner node of the CDN under obstacle con-

straints.

To test the effectiveness of the SPP model, it was incorporated into other CDN synthesis
algorithms. At first, the SPP model was incorporated into DME algorithm to produce a
ZSCDN under obstacle constraints. This is achieved by developing procedures to deter-
mine the links of the visibility graph that is required to determine the SPP of each wire in
the CDN. A comparison is held between the proposed approach of producing ZSCDN
under obstacle constraints and other approaches. The main advantage of the proposed
approach is the determination of all shortest paths; and consequently, the total wire
length can be minimized further as compared to other approaches. This advantage does
not increase the computation time since the SPP model requires the minimum memory
requirements to represent the routing area of a wire. In addition, by considering the char-
acteristics of the SPP model, the edges of the visibility graph is reduced effectively.
Consequently, the time of determining the SPP in the visibility graph is reduced effec-

tively.

141

Finally, the problem of limiting the number of planes that are used to route the CDN was
discussed. Usually, the CDN is routed in the upper metal layers; and it is important to
have an algorithm that can route the CDN within a specific number of layers. Most of
the CDN synthesis approaches do not consider this practical issue at all due to its diffi-
culties. In fact, there are two algorithms that resolve this problem by routing the CDN in
one plane; and thus, such a CDN is called planar. Indeed, these algorithms generated
their own topology in order to reach to the final solution. Consequently, there is an
increase in the total wire length due to the topology of the planar CDN. However, such
an increase in the total wire length can be avoided by using different topologies, as was
described in Chapter 4. In addition, it is not practical to rout the CDN in one plane due to
the increase in the size of the CDN of modern SoCs. Thus, there is a need to have an
algorithm that can route the CDN in a specific number of layers instead of just one layer.
In Chapter 6, the first approach that can route the CDN in a specific number of layers
was developed. This is achieved by incorporating the SPP model into DME algorithm
such that the routed wires of the CDN are treated as obstacles at any instant. The
approach is tested by routing the CDN in one and/or two layers. The proposed approach
achieved less total wire length as compared to other algorithms since the SPP model
considers all shortest paths between two points. In addition, it was found that the total
wire length of the CDN increases exponentially after a specific number of clock pins.
Such a number called the planarity number, depends on the geometric distribution of the

CDN and the topology of the CDN.

142

7.2 Contributions

The major contributions of this thesis include the followings:

» Development of AWA, a new algorithm that implements an ECO for the CDN.

* Formulation of the topology variation impact on the qualities of the CDN, such as
the total wire length, clock latency, number of wire elongations and number of
intersections between the wire of the CDN.

* Introduction of a new performance parameter called the Standard Division of Path
Length (SDPL) of CDN to reflect the quality of the CDN topology.

* Introduction of the quadratic tree and the concept of Local Topology Modification
(LTM). The LTM approach improves the convergence of AWA algorithm and
the quality of the CDNSs.

* Development of a search tree to determine the near optimum local topology modi-
fication.

* Development of a new routing model, called Shortest Paths Polygon, to represent
all shortest paths between two Steiner nodes of a CDN.

* Defining the characteristics of the SPP model. A procedure is developed to deter-
mine the SPP model in the visibility graph.

* Incorporation of the SPP model into the AWA algorithms in order to tune the CDN
under obstacle constraints

* Incorporation of the SPP model into the DME algorithm in order to produce a
ZSCDN under obstacle constraints

* Application of the SPP model to rout the CDN in a specific number of planes.

143

* Defining a new parameter, called the planarity number, that can be used to describe

the impact of the planarity on the total wire length of a CDN.

7.3 Suggestions for Future Works

7.3.1 Incorporation of the LTM and SPP concepts into different algorithms

In this thesis, the LTM and SPP concepts were proposed. The LTM technique was tested
with AWA, DME and GDME algorithms. The SPP model was tested with AWA and
DME algorithms; to produce a planar CDN. Nevertheless, the SPP model can be incor-
porated into other CDN synthesis algorithms. In addition, both concepts, the LTM and
SPP, can be incorporated into different CDN synthesis algorithms, such as AWA, DME

and GDME algorithms in order to improve the qualities of the CDN solution.

7.3.2 Incremental buffer insertion into the CDN

The AWA algorithm was proposed to tune the CDN by adjusting the wires of the CDN
without considering buffer insertion into the CDN. Similar approach can be used to tune
the CDN by inserting buffers into the CDN incrementally. The buffer have to be inserted
in order to minimize the power consumption of the CDN and to minimize the clock sig-
nal latency from the clock source to the clock sinks [90-91]. Inserting the buffers incre-
mentally has the advantage of improving the CDN quality when there is a need to

modify the CDN during the system design process.

7.3.3 Incremental link insertion into the CDN

144

The variation in the clock skew presents a great challenge for the CDN due to the pro-
cess variation, power/ground noise and temperature variations [83-87]. The clock varia-
tion is very harmful to the system performance and functional integrity. In addition, it is
very difficult to control and estimate the skew variation. One approach of resolving this
problem is to design a non-tree CDN. However, such a CDN consumes excessive
amount of wire length. Instead, links can be inserted into a tree CDN. The only known
scheme of inserting the links into the CDN is based on inserting the links intensively
and systematically into a tree CDN [83]. Instead, the links can be inserted incrementally

into the CDN with the objective of minimizing the skew variations.

7.3.4 Differential CDN

Another approach of reducing the power/ground noise impact on the quality of the clock
signal is to use a differential signaling instead of the traditional single ended clock sig-
naling. This approach requires the routing of two interconnects between every pair of
Steiner nodes of the CDN. In addition, differential buffers have to inserted in order to

minimize the power consumed by the CDN and the clock signal latency.

7.3.5 Applying RLC delay model to the proposed approaches
Different approaches that have been discussed in this thesis are based on the Elmore

delay model. This model does not consider the inductance impact. Neglecting the induc-

145

tance impact would affects the quality of the CDN [88-89]. Thus, more accurate delay

model have to be considered in future works.

7.3.6 Wire length estimation under obstacle constraints

It is important to have an accurate estimation of the wire length of any multi-terminal net
in the system as early as possible during the design process of the system. Indeed, the
accuracy of the wire length estimation affects dramatically the quality of the placement
task [52]. However, the wire length can be determined only after the placement and rout-
ing phases. Thus, it is important to have an advance approach to estimate the wire length
of different nets in the system based on the number of the sinks of the net. In Chapter 6,
a new parameter, called Planarity number, was proposed; and it can be used to estimate
the total wire length based on the number of sinks, topology of the net and number of

layers that are used to rout the net.

7.3.7 SPP router

Due to the increase in the size and complexity of SoC, the run time and memory require-
ments for placement and routing is increasing rapidly. In addition, there is an increasing
number of objectives to be considered during the placement and detailed routing [65-
68]. For example, signal integrity and cross talk to name a few. Consequently, there is an
increase in the iterations between placement and detailed routing. In this regard, the
gridless routing approaches attract more attention since they require less memory requir-
ments. Consequently, these approaches can handle larger problem sizes with less run

time. Most of these approaches are based on tile base data structure. There are many

146

works that address the impact of the size and shape of the tile on the performance of the
router. One approach of improving the router performance is to use non-uniform tiles,
such as the L-shape tile. Instead, the SPP model can be used since it can represent com-
plex shapes with minimum memory requirements. In addition, the SPP model is devel-
oped specifically to capture the routing area of the wire, which usually connects two
points with minimum wire length. Thus, developing a router based on the SPP model
would have the advantage of minimizing the memory/time requirements. In addition, the
SPP model provides the flexibility for the detail router to chose the appropriate layout of

a wire in response to other design rule conditions.

7.3.8 Incremental place and route

The increase in the iterations between the placement and detailed routing requires that
both, the placer and router, have to be implemented using incremental algorithms [49].
The AWA algorithm is dedicated to perform incremental modification to the CDN. Nev-
ertheless, the AWA algorithm can be generalized to develop an incremental router that

works with an incremental placer.

147

References

[1] National Technology Roadmap for Semiconductors. Semiconductor Industry Asso-
ciation, San Jose, California, 2003.

[2] D. Sylvester and C. Hu, “Analytical Modeling and Characterization of Deep Submi-
cron Interconnect”, Proceedings of IEEE, special issue on interconnect, vol. 89(5), 2001,
pp. 634-664.

[3] J. Cong, L. He, C.Koh, and P. Madden, “Performance Optimization of VLSI Inter-
connect Layout”, VLSI Journal, INTEGRATION, Vol. 21, No. 8, 1996, pp. 1-94.

[4] C.-K. Cheng, J. Lillis, S. Lin and N. Chang, “Interconnect Analysis and Synthesis”,
Wiley-Interscience Publication, 2000.

[5] E. G Friedman, “Clock Distribution Networks in VLSI Circuits and Systems”, Pis-
cataway, New Jersey, IEEE Press, 1995.

[6] J.-P Schoellkopf, “Impact of Interconnect Performances on Circuit Design”, Pro-
ceedings of IEEE Intl. Interconnect Technology Conf., 1998, pp. 53 55.

[71 J. Cong, L. He, K. Khoo, C. Koh, and Z. Pan, “Interconnect Design for Deep Submi-
cron IC’s”, Proceedings of ACM/IEEE Intl. Conf. on Computer-Aided Design, 1997,
pp. 478 485.

[8] M. Zhao, R. V. Panda, S. S. Sapatnekar, T. Edwards, R. Chaudhry, and D. Blaauw,
“Hierarchical Analysis of Power Distribution Networks”, Proceedings of ACM/IEEE
Design Automation Conf., 2000, pp. 150 155.

[9]1 R. Escovar and R. Suaya, “Transmission Line Design of Clock Tree”, Proceedings

of ACM/IEEE Intl. Conf. on Computer-Aided Design, 2002, pp. 334 340.

148

[10] S. Hasson and C. Alpert, “Optimal Path Routing in Single-an and Multiple-Clock
Domain Systems”, IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 22, no. 11, 2003, pp. 1580-1588.

[11] X. Huang, P. Restle, T. Bucelot,Y. Cao and T.-J. King, “Optimization Approach for
Multigigahertz Clock Network Design”, IEEE Journal of Solid-State Circuits, Vol. 38,
No. 3, 2003, pp.457-463

[12] C. C.-P. Chen and E. Cheng, “Future SOC Design Challenges and Solutions”, Pro-
ceedings of the Intl. Symp. on Quality Electronic Design, 2002, pp. 534-537

[13] A. Kahng and G. Robins “On Optimal Interconnections for VLSI”, Kluwer Aca-
demic Publishers 1995

[14] H. B. Bakoglu, “Circuits, Interconnections and Packaging for VLSI”, Addison-
Wesley, Reading, MA, 1990.

[15] B. A. Gieseke, R. L. Allmon, D. W. Bailey, B. J. Benschneider, S. M. Britton, J. D.
Clouser, H. F. Fair II1, J. A. Farrell, M. K. Gowan, C. L. Houghton, J. B. Keller, T. H.
Lee, D. L. Leibholz, S. C. Lowell, M. D. Matson, R. J. Matthew, and V. Peng, “A 600
MHz Superscalar RISC Microprocessor with Out-of-Order Execution”, Proceedings of
IEEE Intl. Solid- State Circuits Conf., 1997, pp. 176 177.

[16] F. Ishihara, C. Klristain and K.-I. Agawa, “Clock Design of 300MHz 128-bit 2
Way Superscalar Microprocessor”, Proceedings of Asia and South Pacific Design Auto-
mation Conf., 2000, pp. 647 652.

[17] J. D. Warnock, J. M. Keaty, J. Petrovick, J. G Clabes, C. J. Kircher, B. L. Krauter,

P. J. Restle, B. A. Zoric, and C. J. Anderson, “The Circuit and Physical Design of the

149

POWER4 Microprocessor”, IBM Journal of Research and Development, Vol. 46, No. 1,
2002, pp. 27 51.

[18] G. Geannopoulos and X. Dai, “An Adaptive Digital Deskewing Circuit for Clock
Distribution Networks,” Proceedings of IEEE Intl. Solid-State Circuits Conf., 1998, pp.
400 401.

[19] Restle, P. McNamara, T. Webber, D. Camporese, P. Eng, K. Jenkins, K. Allen, D.
Rohn, J. Quaranta, M. Boerstler, D. Alpert, C. Carter, C. Bailey, R.N. Petrovick, J. Krau-
ter and B. McCredie, “A Clock Distribution Network for Microprocessors,” IEEE Jour-
nal Solid-State Circuits, Vol. 36, 2001, pp. 792 799.

{20] S. Tam and S. Rusu, “Clock Generation and Distribution for the First IA-64 Micro-
processor”’, IEEE Journal on Solid-State Circuits, Vol. 35, No. 11, 2000, pp. 1545 1552.
[21] J. Wood, T. C. Edwards, and S. Lipa, “Rotary Traveling-Wave Oscillator Arrays: a
New Clock Technology”, IEEE Journal on Solid-State Circuits, Vol. 36, No. 11, 2001,
pp. 1654 1665.

[22] E. Friedman, “Clock Distribution Network in Synchronous Digital Integrated Cir-
cuits”, Proceedings of IEEE special issue on interconnect, vol. 89(5), 2001, pp. 665-692.
[23] R. Escovar and R. Suaya, “Transmission Line Design of Clock Tree”, Proceedings
of ACM/IEEE Intl. Conf. on Computer-Aided Design, 2002, pp. 334 340.

[24] D. Duarte, V. Narayanan, and M. J. Irwin, “Impact of Technology Scaling in the
Clock System Power”, Proceedings of IEEE Symp. VLSI, Apr. 2002, pp. 52 57.

[25] F. HajAli Asgari and M. Sachdev, “A Low-Power Reduced Swing Global Clocking

Methodology”, IEEE Trans. on VLSI Systems, Vol. 12, No. 5, 2004, 538-545

150

[26] H. Kojima, S. Tanaka, and K. Sasaki, “Half-Swing Clocking Scheme for 75%
Power Saving in Clocking Circuitry”, IEEE Journal of Solid-State Circuits, vol. 30,
1995, pp. 432 435.

[27] J. Pangjun and S. Sapatnekar, “Low-Power Clock Distribution Using Multiple
Voltages and Reduced Swings,” IEEE Trans. VLSI Systems, vol. 10, No. 6, 2002, pp.
309 318.

[28] M. Donno, A. Ivaldi, L. Benini and E. Macii, “Clock-Tree Power Optimization
Based on RTL Clock-Gating”, Proceedings of the ACM/IEEE Design Automation
Conf., 2003, pp. 622 627.

[29] A. Farrahi, C. Chen, A. Srivastava, G. Tellez and M. Sarrafzadeh, “Activity-Driven
Clock Design”, IEEE Trans. on Computer-Aided design of Integrated Circuits

[30] M.-S. Jang, J.-H. Park, Y.-N. Yeon, J.-Y. Lee, K.-M. Choi and J.-T. Kong, “Clock
Network Analysis at the Pre-Layout Stage for Efficient Clock Tree Synthesis”, Proceed-
ings of IEEE ASIC/SOC Conf., 2002, pp. 363-367

[31] C.-W. Tsao and C.-K Koh, “UST/DME: A Clock Tree Router for General Skew
Constraints”, Proceedings of ACM/IEEE Intl. Conf. on Computer-Aided Design, 2000,
pp 400-405

[32] J. Xi and W. Dai, “Useful-Skew Clock Routing with Gate Sizing for Low Power
Design”, Proceedings of ACM/IEEE Design Automation Conf., 1996, pp.383 388.

[33] R. B. Deokar and S. S. Sapatnekar, “A Graph-Theoretic Approach to Clock Skew
Optimization”, Proceedings of the IEEE International Symp. on Circuits and Systems,

1994, pp. 1407 1410.

151

[34] 1. P. Fishburn, "Clock Skew Optimization”, IEEE Trans. on Computers, vol 39,
1990, pp. 945 951.

[35] S. Dhar, M. A. Franklin and D. F. Wann, “Reduction of Clock Delays in VLSI
Structures”, Proceedings of ACM/IEEE Intl. Conf. on Computer-Aided Design, 1984,
pp. 778-783.

[36] A. B. Kahng, J. Cong, and G. Robins, “High-Performance Clock Routing Based on
Recursive Geometric Matching”, Proceedings of ACM/IEEE Design Automation Conf.,
1991, pp. 322 327.

[37] J. Cong, A. B. Kahng and G. Robins, “Matching-Based Methods for High-Perfor-
mance Clock Routing”, IEEE Trans. on Computer-Aided Design, 12(8), 1993, pp. 1157-
1169.

[38] M. A. B. Jackson, A. Srinivasan and E. S. Kuh, “Clock Routing for High Perfor-
mance ICs”, Proceedings of the ACM/IEEE Design Automation Conf., 1990, pp. 573-
579.

[39] R. S. Tsay, “Exact Zero Skew”, Proceedings of ACM/IEEE Intl. Conf. on Com-
puter-Aided Design, 1991, pp. 336-339.

[40] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, K. Boese and A. Khan, “Zero Skew Clock Rout-
ing with Minimum Wire Length”, IEEE Trans. on Circuits and systems, Vol. 39, 1992,
pp. 799-814.

[41] K. D. Boese and A. B. Kahng, “Zero-Skew Clock Routing Trees With Minimum
Wirelength”, Proceedings of IEEE Intl. Conf. on ASIC, 1992, pp. 111 - 115.

[42] M. Edahiro, “Delay Minimization for Zero-Skew Routing”, Proceedings of ACM/

IEEE Intl. Conf. Computer-Aided Design, 1993, pp. 563 566.

152

[43] M. Edahiro, “An Efficient Zero-Skew Routing Algorithm”, Proceedings of the
ACM/IEEE Design Automation Conf., 1994 pp.375-380

[44] D. Huang, A. Kahng, and C.-W. Tsao, “On the Bounded-Skew Clock and Steiner
Routing Problems”, Proceedings of the ACM/IEEE Design Automation Conf., 1995,
pp-508 513.

{45] J. Cong, A. Kahng, C. Koh and C.-W. Tsao, “Bounded-Skew Clock and Steiner
Routing”, Trans. on Design Automation of Electric Systems, 1998, pp. 341-388.

[46] J. H. Huang, A. B. Kahng and C.-W. A. Tsao, “On the Bounded-Skew Clock and
Steiner Routing Problems”, Technical Report TR-940026, University of California LA,
Computer Science Dept., 1994.

[47] C.P. Chen, Y. W. Chang, and D. F. Wong, “Fast Performance-Driven Optimization
for Buffered Clock Trees Based on Lagrangian Relaxation”, Proceedings of ACM/IEEE
Design Automation Conf., 1996, pp. 405 408.

[48] O. Coudert, J. Cong, S. Malik and M. Sarrafzadeh, “Incremental CAD”, Proceed-
ings of ACM/IEEE Intl. Conf. on Computer-Aided Design, 2000, pp. 236-243.

[49] A. Kahng, S. Muddu and E. Sarto “Tuning Strategies for Global Interconnects in
High-Performance Deep-Submicron”, VLSI Design, vol. 10(1), 1999, pp. 21-34

[50] J. Cong, J. Fang and K.-Y. Khoo, “An Implicit Connection Graph Maze Routing
Algorithm for ECO Routing”, Proceedings of ACM/IEEE Intl. Conf. on Computer-
Aided Design, 1999, 163-167

[51] Y. Liu, X. Hong, Y. Cai and w. Wu, “CEP: A Clock-Driven ECO Placement Algo-
rithm for Standard-Cell Layout”, Proceedings of IEEE Intl. Conf. on, 2001, pp. 118-121.
[52] S. Zhang, w. Dai, “TEG: A New Post-Layout Optimization Method”, IEEE Trans.

on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 4, 2003, pp.
153

446 456.

[53] W. Choi and K. Bazargan, “Incremental Placement for Timing Optimization”, Pro-
ceedings of ACM/IEEE Intl. Conf. on Computer-Aided Design, 2003, pp. 463-466.

[54] Y. Elboim, A. Kolodny and R. Ginosar, “A Clock Tuning Circuit for System-on-
Chip”, IEEE Trans. on VLSI Systems, vol. 11, no. 4, 2003, pp. 616-626

[55] H. Saaied, D. Al-Khalili, A.J. Al-Khalili and M. Nekili, “Adaptive Wire Adjust-
ment for Bounded Skew Clock Distribution Network”, Proceedings of IEEE Asia and
South Pacific Design Automation Conf., 2003, pp. 243-248

[56] http://visicad.ucsd.edu/GSRC/bookshelf/Slots/BST/#IIIL

[57] The National Technology Roadmap for Semiconductors, Semiconductors Industry
Association 1997.

[58] Y. Liu, X. Hoing and Y. Cai, “TGSCO: An Algorithm for Topology Generation of
Clock Tree with Skew Constraint and Optimization”, Proceedings of IEEE Int. Conf. on
Communications, Circuits and Systems, 2002, pp. 1444-1448

[59] J. Lillis and P. Buch, “Table-Lookup Methods for Improved Performance Driven
Routing”, Proceedings of ACM/IEEE Design Automation Conf., 1998, pp. 368 373.
[60] H. Saaied, D. Al-Khalili, A. J. Al-khalili, M. Nekili, “Quadratic Deferred-Merge
Embedding Algorithm for Zero Skew Clock Distribution Network”, Proceedings of
ACM/IEEE Workshop on Timing Issues in the Specification and Synthesis of Digital
Systems (TAU), Monterey, California, 2002, pp. 119-125.

[61] H. Saaied, D. Al-Khalili, A. J. Al-khalili, M. Nekili, “Adaptive Wire Adjustment
for Bounded Skew Clock Distribution Network Using Quadratic Tree”, Proceedings of

the 14th International Conference on Microelectronics, Beirut, 2002, pp. 19-23.

154

[62] H. Saaied, D. Al-Khalili and A.J. Al-Khalili, “Area Minimization of Clock Distri-
bution Networks Using Local Topology Modification”, Proceedings of IEEE SoC Conf.,
Portland, Oregon, 2003 pp. 227-230.

[63] H. Saaied , D. Al-Khalili, A. J. I-Khalili, “Adaptive Wire Adjustment and Local
Topology Modification for Tuning Bounded Skew Clock Distribution Networks”, IEEE
Northeast Workshop on Circuits and Systems, Montreal, Quebec, 2003, pp. 193 -198.
[64] H. Saaied, D. Al-Khalili and A.J. Al-Khalili, “Simultaneous Adaptive Wire Adjust-
ment and Local Topology Modification for Tuning a Bounded Skew Clock Distribution
Network”, IEEE Transactions on CAD of Integrated Circuits and Systems (to appear).
[65] N. Shenoy and W. Nicholls, “An Efficient Routing Database”, Proceedings of the
ACM/IEEE Design Automation Conf., 2002, pp.590-595.

[66] S-P Lin and Y-W Chang “A Novel Framework for Multilevel Routing Considering
Routability and Performance”, Proceedings of ACM/IEEE Intl. Conf. on Computer-
Aided Design, 2002, pp. 44-50

[67] D. Marple, M. Smulders and H. Hegen, “Tailor: A Layout System Based on Trape-
zoidal Corner Stitching”, IEEE Trans. On Computer-Aided Design, Vol. 9, 1990, pages
66-90

[68] J. K. Ousterhout, “Corner Stitching: a Data Structuring Technique for VLSI Layout
Tools”, IEEE Trans. on Computer-Aided Design, Vol 3, No 1, 1984, pp. 87-100.

[69] W.Li, D. Zhou, H. Kim and X. Zeng, “Automatic Clock Tree Design with the IPs
in the System”, Proceedings of conf., 2001, pp. 387-390.

[70] A. Kahng and C.-W. Tsao, “More Practical Bounded-Skew Clock Routing”, Pro-

ceedings of the ACM/IEEE Design Automation Conf., 1997, pp.627-632.

155

[71] J. Liu, Y. Zhao, E. Shragowitz and G. Karypis, “A Polynomial Time Approxima-
tion Scheme for Rectilinear Steiner Minimum Tree Construction in the Presence of
Obstacles”, Proceedings of IEEE Intl. Conf. on Electronics, Circuits, and Systems,
2002, pp. 781-784

[72] S. Q. Zheng, J. S. Lim and S. S. Iyengar, “Finding Obstacle-Avoiding Shortest
Paths Using Implicit Connection Graphs”, IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 15, No. 1, 1996, pp. 103-125

[73] D. Lee, C. Yang, C. Wong and H. Kong, “Rectilinear Paths Among Rectilinear
Obstacles”, Discreet Applied Mathematics 70, 1996, pp. 185-215.

[74] Y. Wu, P. Widmayer, M. Schlag, C. Wong, “Rectilinear Shortest Paths and Mini-
mum Spanning Trees in the Presence of Rectilinear Obstacles”, IEEE Tran. on Comput-
ers, Vol 36, No. 3, 1987, p.321-331

[75] J. Jaja and S. Wu, “On Routing Two-Terminal Nets in the Presence of Obstacles”,
IEEE Trans. on Computer-Aided Design, vol. 8, no. 5, 1989, pp. 563- 570

[76] T. Ohtsuki, “Gridless Routers-New Wire Routing Algorithms Based on Computa-
tional Geometry”, Proceedings of Intl. Conf. of Circuits and Systems, 1985, pp. 802-
809.

[77] J. L. Ganley, “Computing Optimal Rectilinear Steiner Trees: A Survey and Experi-
mental Evaluation”, Discrete Applied Mathematics 89, 1999, pp. 161-171.

[78] Q. Zhu, and W. Dai, “Planar Clock Routing for High Performance Chip and Pack-

age Co-Design”, IEEE Trans. on VLSI Systems, Vol., 4, No. 2, 1996.

156

[79] H. Saaied, D. Al-Khalili and A.J. Al-Khalili, “Clock Tree Tuning using Shortest
Paths Polygon”, Proceedings of IEEE SoC Conference, Santa Clara, California, 2004,
pp. 59-62.

[80] A. Kahng and C.-W. Tsao, “Planar-DME: A Single-Layer Zero-Skew Clock Tree
Router”, IEEE Trans. Computer Aided Design, January 1996, pp.8-19.

[81] H. Kim and D. Zhou, “Efficient Implementation of a Planar Clock Routing with
the Treatment of Obstacles”, IEEE Trans. on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 19, no. 10, 2000, pp. 1220-1225.

[82] H. Kim and D. Zhou, “Automatic Clock Tree Design System for High-Speed VLSi
designs: A Planar Clock Routing with the Treatments of Obstacles”, Proceedings of
IEEE Intl. Symp. on Circuits and systems, Vol. 6, 1999, pp. 258-261.

[83] A. Rajaram, J. Hu and R. Mahapata, “Reducing Clock Skew Variability via Cross
Links”, Proceedings of the ACM/IEEE Design Automation Conf., 2004, pp.18-23.

[84] A. Ajami, M. Pedram and K. Banerjee, “Effects of Non-Uniform Substrate Tem-
perature on the Clock Signal Integrity in High Performance Designs”, Proceedings of
IEEE Custom Integrated Circuits Conference May 2001 (http://atrak.usc.edu/~aajami/
papers/CICCO1.pdf)

[85] D. Harris and S. Naffziger, “Statistical Clock Skew Modeling with Data Delay
Variations,” IEEE Trans. VLSI System, Vol. 9, 2001, pp. 888 898.

[86] Y. Liu, X. Hong, Y. Cai and X. Wei, “Reliable Buffered Clock Tree Routing Algo-
rithm with Process Variation Tolerance”, Proceedings of IEEE Intl. Conf., 2003, pp.

344-347

157

[87] D. Velenis, E. Friedman and M. Papaefthymiou, “A Clock Tree Topology Extrac-
tion Algorithm for Improving the Tolerance of Clock Distribution Networks to Delay
Uncertainty”, Proceedings of IEEE Intl. Symp. on Circuits and Systems, Vol IV, 2001,
pp. 422-425.

{88] X. Huang, Y. Cao, D. Sylvester, T.-J. King, and C. Hu, “Analytical Performance
Models for RLC Interconnects and Application to Clock Optimization,” Proceedings of
IEEE Intl. ASIC-SoC Conf., 2002, pp. 353 357.

[89] D. Lehther and s. Sapatnekar, “Moment-Based Techniques for RLC Clock Tree
Construction”, IEEE Trans. on Circuits and Systems, Analog and Digital Signal Pro-
cessing, vol. 45, no. 1, 1998, pp. 69-79

{90} J. Cong and L. He, “An Efficient Technique for Device and Interconnect Optimiza-
tion in Deep Submicron Designs” Proceedings of Intl. Symp. Physical Design, 1998,
pp. 45 51.

[91] J. Lillis, C. K. Cheng, and T. T. Y. Lin, “Optimal Wire Sizing and Buffer Insertion
for Low Power and a Generalized Delay Model”, Proceedings of ACM/IEEE Intl. Conf.

on Computer-Aided Design, 995, pp. 138 143.

158

Appendix A

Local Topology Modifica-
tion Using Quadratic Opti-

mization

The problem of finding the near optimum topology was solved using a search tree as
described in Section 4.3. In this appendix, an optimization approach will be used to find
the optimum topology under obstacle constraints. As described in Section 4.2, there are
15 primary topologies of connecting a node to its four children, which are listed in Fig-
ure 4.3. Any one of these topologies is built up of Steiner nodes that are distributed
between different levels, where these Steiner nodes connect the leaves to the root. In
order to find the optimum topology using an optimization approach, a mathematical
model is ought to group leaves between Steiner nodes, as well as to introduce Steiner
nodes at any level of the topology. The topologies shown in Figure 4.3(a0, b0 and c0)
have two levels similar to the topology shown in Figure A.1(a). On the other hand, the
rest of topologies shown in Figure 4.3 are similar to the topology shown in Figure A.1(b)

in terms that they have three levels. Counting leaf level as level 0, the topology of Figure

159

A.1(a) has three levels with two Steiner nodes in level 1, while the topology of Figure
A.1(b) has four levels with one Steiner node in level 1 and another Steiner node in level
2. Different topologies can be represented mathematically by a 4x4 binary matrix, A,
defined as follows:
Property 1: matrix A is symmetric.
Property 2: the diagonal elements are given as:

‘_= { if leaf'i is connected to a node in levels 1 or 2

'O.W. (A.1)

Property 3:The non diagonal elements are given as:
e {1 if leaves 1 and j are connected to a node in level 1
5 0 ow. (A2)

i#j
Property 4: the non diagonal elements satisfy the following constraint:

N 0
AZ%=L
Loy (A.3)

X1 X2

@ (b)

Figure A.1 Different topologies of connecting a node to its four children, where the

topology may consist of (a) two levels (b) three levels.

The first property forces the topology matrix to hold a correct topology representation.
The second and third properties connect each leaf to a Steiner node in level 1 or 2.

Finally, property 4 ensures that a leaf is connected to a single Steiner node. Since the

160

matrix is symmetric, the binary variables ;=a11a22a33a44a12a13a1 4323354234 Would con-
trol the topology. Let y;, y,, y3, and y, be the edges that connect leaves 1, 2, 3, and 4 to
their parents respectively, x; be the edge of a Steiner node in level 1 that may pair I with
2, 1 with 3, or 1 with 4, x, be the edge of a Steiner node in level 1 that may pair 2 with 3,
2 with 4, or 3 with 4, and x; be the edge of a Steiner node that may appear in level 3.

Note that for any given topology, there will be two Steiner nodes, and hence one of the

variables xj, x, or x3 will be nulled. Using the above notation, the total wire length can

be calculated as follows:

L =y ty,ty3tys+(ap vag vay)x) +(ay vay vag)x, +(a)) Aay Adgy Ady)Xs

(A.4)

Using Elmore model, the delay from w, as shown in Figure 4.1, to the sinks that are con-

nected to the node I can be described as follows:

| X X
Delay(w, 1)= royl(coi + Cl) + anroxl(co? +eoly; +y) +C +C2) + a13r0x1(co-i- +¢4(y, +y3) +Cy +C.
% C,+C — X3
+ a14r0x1(c05- +eg(y tyy) + M1 4]+ (agpy Aagg A a44)r0x3(c0—2- +(ap va3vadeex, +

(a3 V a4 v 234)¢0%y + 211 (€gY + Cy) + app(Coyz + C) + a33(Coys + C3) + BaalCo¥a + C4)) +thy

(A.5)

where ¢, is the required arrival time at leaf /.

Similar equations can be deduced for the nodes 2, 3 and 4. Time requirements of differ-

ent sinks can be satisfied by equating the delays of the four nodes, i.e:

Delay(w, 1) = Delay(w, 2) = Delay(w, 3) = Delay(w, 4) (A.6)

161

Using the above formulation, the process of synthesizing a routing net of four leaves can
be considered as a nonlinear optimization problem whose objective functions are Eq.
A.4 and Eq. A.5 with a non linear constraint given by Eq. A.6. Such an optimization
problem has ten binary variables, ;, to represent the topology, four variables for the

edges of the nodes /, 2, 3 and 4; §=y 1V2V3V4 and three variables for the edges of the
Steiner nodes; x=x 1%,x3. The boundaries of the variables can be deduced from the fact

that the edge lengths have to be positive and the topology matrix has to be binary. How-
ever, without considering the distances between the nodes /, 2, 3 and 4, the optimization
process may result in impractical edge lengths; ; and x. Hence, the geometric locations
of the nodes have to be brought into the scene. Considering four nodes would add six
distance constraints on the optimization problem. For example, the wire that connects a

pair of nodes, say / and 2, w;,, can be determined as follows:

(A7)

Wia = Y1ty t (a3 V)X, +(ay vay)x; +(a Aay)x;

which must exceed the Manhattan distance between the two nodes, d;,, i.e.:
(A.8)

wyp2d),

Similar constraints can be deduced for w;;, w;,, w,3, Wy, and wy,, which constitute

additional constraints on ; and ;, and limits the solution space. Further, these constraints

vary as the topology matrix varies during the optimization process.

In order to consider obstacle constraints, consider connecting four points; 1, 2, 3 and 4,
in a Manhattan plane as shown in Figure A.2. Let /, 2, 3 and 4, called the incident

points, be the closest points around the border of an obstacle, O, to points 1, 2, 3,and 4

162

respectively. Figure A.2 shows that the points 1, 2, 3 and 4 are connected by a net that
traverses the incident points in the order (2,3 ,4,1). But the net may traverse the inci-
dent points in other three orders; (1 ,2,3,4),(2,3,4,1),(3,4,1,2)or(4,1,2,3).
As such, there are four possibilities to avoid the obstacle. For each possible order of the
incident points, the connection wire between the first and last point in the pertaining

order isolates O from the other two points.

The obstacle affects the optimization problem by altering the constraints on the wire
lengths. Indeed, the constraints on the wire that connects points i and j, w;;, can be deter-
mined by d(i,i’), d(j,j’) and m(i’j’). The length of m(i’j’) depends on the order of tra-
versing the corners of O by wj;. For example, according to the routing shown in Figure
4.4,m(2,3)isequaltod(2,3), but m(2,1) is greater thand(2 ,1). Note that if m(i’,j’)

is equal to d(i’j), then O does not interfere with the routing of w;;, and wy; is not elon-

ija

.. can be determined as follows:

gated. In general, the constraint on w;;

Lemma I: The constraint on a wire w;; connecting two points, i to j, is:

iy
w.‘>{ d(ij) if m@i’j)= d@i’j’
= d(i,i’)+m(i’j’) +dGj’) o.w (A.9)
2
I’___'[__‘_‘”_’_‘_
| l | |
FT T T [
1 T [
b — g — — — — - — —]

Figure A.2. Connecting four nodes with the presence of an obstacle.

163

The Relation A.9 generalizes relation A.8 to determine the constraint on the wire length
under obstacle constraint. The wire lengths are optimized by generating the objective
function and the constraints, then a quadratic optimization package is called to deter-

mine the edges yy, ¥2, ¥3, ¥4, X1, Xp and x3. Figure A.3 shows the description of the opti-

mization procedure.

Whenever the topology, wire length and signal delay are to be optimized locally
between a node and its four children, the procedure LTM is called at first to determine
the topology without considering the obstacle impact. Then, the QO procedure is called
four times in accordance with different possible orders of the incident points. At each
time, the objective function is the same, but the constraints on wire lengths are different.
The search tree shown in Figure 4.3 can be used to minimize the total wire length or the
signal delay. If the total wire length is to be minimized, then at each stage of the search
tree, the branch that has less wire length is selected. On the other hand, if the objective is
to minimize the signal delay, then the branch that gives minimum signal delay is
selected. The QO procedure can be applied to any algorithm that synthesizes the signal’s
net.
Input: A node, w, its two child nodes, u and v, and their children, 1,2, 3 and 4, that are
connected to u and v by a specified topology and a specified order of the incident points.
Output: The edge lengths
Begin:

Determine the objective functin according to Eq. 4

Determine the constraints according to Eq. 6 and Eq. 9

Call the optimization package
Figure A.4 The Quadratic Optimization (QP) Procedure

164

Appendix B
Determination of the Arc

Projection

Here, a new method is proposed to determine the projection of an arc on another. Let S
and 7 be the arcs of nodes s and ¢ respectively; and let the distance between the two arcs
be D(S,T). The two arcs can be either parallel or perpendicular as shown in Figure 6.6,

where Projection(S,T) and Projection(T,S) are shown as solid thick segments.

Eq 6.2 can be used to determine the projection of an arc on another, say Projection(S,T),
as follows. Recall that Projection(S,T) is the set of points of T that can be connected with
minimum wire length to S. Thus, Projection(S,T) can be determined by the distance

between the two arcs, D(S,T); which depends on the relationship between S and T.

Projections of parallel arcs

The projection of S on 7, Projection(S,T) is a subset of T} and it can be determined as
follows:

Projection(S,T)=T (8" N O(S) if Tz Q(S™) and Tz Q(Sh
Projection(s, T)=Th if TcQ(SY)
Projection(S,T)=T" if TcO(S") (B.1.a)

where Q) refers to the complimentary of Q in the Manhattan plane.

165

Note that the case SNT#¢ is considered a trivial case where Projection(S,T)=SNT.
Reducing an arc (T) into its projection (Projection(S, T)) by another arc (S) implies that T
is being truncated by S. Thus, the end points of the resulting arc, Projection(S,T), can be

different from those of T. Indeed, the head and tail of Projection(S,T) can be determined

as follows:

Projection(s, Y)h=p.'pe Tand p,= th if TththST’x and STT
Projection(S,T)'=p:pe Tand py= Shy if ThySShysT’y and S4T
Projection(s, T)h=7h if The Q(Sh)

Projection(S,T)'=T O.W. (if T'e0(S"))
Projection(S,T)'=p:pe Tand p,= S if TthS‘xST’X and STT
Projection(S,T)'=p:pe T and py= S‘y if T*yss‘ysry and SVT
Projection(S,T)'=T if T'e2Q(S)

Projection(S,T)'=T" O.W. (if T"e 0(SY) (B.2.2)

Projections of perpendicular arcs
The projection of S on T, Projection(S,T), is also a subset of T; and it can be formulated

as follows:

Projection(S, T)=T(Q((S"YUO(SY) if TNO(S™)2d or TNO(S)=0
Projection(S,T)=T" if Te(O(SNNOS)) and TTS
Projection(S,T)=T" if Te@(SMNO(SY)) and TS (B.1.b)

The end points of Projection(S,T) are different from those of V; and they can be deter-

mined as follows:

Projection(S, T)’=p:peT, p=S", if 7% <$" <T', and STT
Projection(s, T)h=p:pe T, py=S’y if ThySS’yST’y and SYT
Projection(S,T)'=T" it Te{O(SMHUOSH} or T 1S
Projection(S,T)"=T" O.W.

166

