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Abstract

State-Dependent Classical Potentials

Mario D’Amico, Ph.D.
Concordia University, 2005

Since the inception of quantum mechanics, the classical limit has been an area
of unease. Explanations proposed on this matter include the usage of Plank’s con-
stant, the decoherence parameter of the master’s equation, or the quantum potential
of Bohm’s theory. An equally obscure related topic is the mixing of classical and
quantum quantities in the dynamical equations.

In this thesis, the subject of classical-quantum mixing will be studied. A method
will be explored which will demonstrate one of several candidate methods whereby
mixing may be removed and replaced by fully quantum non-relativistic equations.
Through use of the quantum potential concept and the Feynman path integral, state-
dependent forms of the classical scalar and vector potentials will be derived by assum-
ing the existence of separate component wave functions for the particle and potential.
The specific wave component 1, attributed to the potential, will hold the effects of an
environment. The resulting equations are devoid of classical potentials and can there-
fore be considered as purely quantum - no mixing takes place. The standard classical
potentials emerge from the state-dependent equations by a condition which will be
referred to as state-dependence reduction (SDR). Through SDR, the semi-quantum
and purely quantum equations are qualitatively and quantitatively equivalent.

The new purely quantum equations will be used both to interpret gauge symmetry
and to clarify the reasoning behind the Aharonov-Bohm effect. It will be argued that
the freedom of gauge is related to the freedom to choose from many different and dis-

tinct environments which reproduce the same experimental outcome. Likewise, the
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AB-effect is understood through the environment from which the topological struc-
ture of the electromagnetic field is represented. Several aspects of the environment
responsible for the effective potentials will be calculated numerically for well-known
physical situations including one-dimensional scattering, two-dimensional double-slit
setup, two-dimensional Aharonov-Bohm effect, and the two-dimensional Dirac equa-
tion.

The proposal of using state-dependent potentials to replace the semi-quantum
equation represents a consistent generalization and unification of the quantum and

classical potentials, and may offer some experimental results yet untapped.
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Introduction

For over a decade, scientists and philosophers have laboured to understand quantum
theory. Like every new theory of physics, quantum theory has provided a new and
previously unknown domain of scientific discovery. But unlike other theories, it has
struggled to reveal the previous known domain (the classical world) as a limiting case.
The theory of special relativity, for example, requires the general laws of nature to be
co-variant with respect to Lorentz transformations[l]. The Galilean transformation
of classical mechanics is easily obtained from special relativity in the limit of small
relative velocities v < ¢, where c is the speed of light. With quantum theory, the
situation is not so simple.

The difficulty with quantum mechanics is that unlike special relativity, the notion
of measurement is not precisely defined. For example, the exact role of the observer
is not unanimously agreed upon. Is the observer simply a very complex quantum
system, or a unique as yet undiscovered world of consciousness? Is the universe
primarily quantum, with the classical world emerging from it, or does it require both
a quantum and a classical description, as proposed by Bohr|[2]?

A modern explanation to this question is provided by decoherence theory[3]. The
claim is that the world is primarily quantum and that the classical world is a complex

quantum system. The main feature of this theory is derived from the understanding



that the difference between classical and quantum behaviours is related to the notion
of interference. Unlike the quantum world, the classical world does not display in-
terference. From this basic concept, a decoherence parameter is defined. When the
decoherence vanishes, interference disappears and classical behaviour emerges.

Although decoherence theory provides a refined and very elaborate framework for
explaining the classical world from the quantum world, it relies on the introduction of
large scale environment systems to provide the decoherence or classicality mechanism.
But how is decoherence related to the correspondence principle? Particularly, how
can decoherence describe the use of classical potentials in Schrédinger’s equation?
Are these potentials, such as the Coulomb force between two electrons, to represent a
large decohering environment? How can the decoherence mechanism which relies on
the “spontaneous dynamical diagonalization of the density operator for a macroscopic
object” [3] provide a solution to phenomenological uses of potential wells and potential
barriers?

The current thesis deals with these issues by providing a candidate solution to the
problem of classical and quantum mixing in non-relativistic quantum mechanics. It
will be proposed that classical potentials which are generally believed to summarize
the effects of a secondary interacting system, can be better understood by substituting
it for an environment wave function. The new wave function represents the overall
influence of the secondary system on the quantized particle. Viewed this way, classical
potentials become state-dependent - a concept which closely resembles the quantum
potential of Bohm’s ontological view of quantum mechanics[4]. This thesis will provide
a simulation of a world without potentials - a world composed only of wave functions

and therefore a world of amplitudes.



Attempting such a problem appears challenging enough. However, the problem is
compounded by the many different points of view taken with respect to the interpreta-
tion of quantum mechanics. Providing a simulation of a world without potentials, will
therefore necessitate adopting one interpretation consistently. In addition, the specific
interpretation chosen must provide insight which is not gained by other interpreta-
tions. For this reason, Bohm ontological interpretation[5] will be used throughout the
thesis.

The main advantage of Bohm’s interpretation is that it provides a deterministic
picture of the inner workings of the quantum world. Take the standard double-
slit gedanken experiment for example. In the conventional approach, the interference
pattern produced at the scintillator screen by a stream of electrons aimed towards the
slit region is explained by giving the probability amplitude 1*1. The wave function is
a superposition (¢ = ¢+ ¢2) of separate wave functions for each slit. The probability
for a particle at the screen is given by P = |¢; + ¢»|2[6]. Since the total wave function
is a complex number, the probability will contain cross terms from both the real and
imaginary parts of ¢; and ¢,. The characteristic interference pattern emerges in this
way.

In Bohm’s deterministic interpretation, the wave function is treated as a force
field. The quantum force is given by —VQ, where Qy = —(h%/2m)V2R/R and
R = ¢*. The pattern at the scintillator screen is created by varying the initial
location of the electron as it leaves the electron gun. The problem is solved using
miE = —VV = VQ|z=z(), where z(t) is the trajectory of the particle from the source to
the screen. Solving this equation for a range of initial conditions results in a pattern

at the screen equal to the pattern formed by the conventional method.



Although Bohm’s approach resembles the method of classical mechanics, it does so
at the expense of introducing a very strange force field encapsulated by the quantum
potential. In attempting to describe this new force, David Bohm has appealed to the
notion of ‘active’ information. The specific mathematical quality of @, which gives
rise to active information is called ‘state-dependence’ and refers to the functional
dependence of @)y on the wave function .

The idea of active information is only one of several views of the quantum poten-
tial. An example of another view is that @ represents a substratum fluid force[2].
However, not all advocates of Bohm’s theory agree with the need for Q. Diirr,
Goldstein, and Zanghi[7] for example, propose that ‘Bohmian mechanics’, is better
formulated without reference to a quantum potential.

Despite the lack of consensus towards the precise meaning behind the quantum
potential, what is generally accepted is the usefulness of @y, as an aid in visualizing
the inner workings of quantum phenomenon. The quantum potential when viewed
graphically provides the landscape traveled by a particle throughout its journey. Sev-
eral striking visualizations of () have been provided by Dewdney and Hiley[8]. The
current thesis provides an additional, rather lengthy catalog of quantum potentials
for several well-known physical systems.

The quantum potential provides two additional important and related functions
which form the subject of the current thesis - namely, the classical limit and the
process of quantization. In the present work, the implications of mixing classical and
quantal quantities in non-relativistic quantum mechanics will be studied. Bohm'’s
theory is a strong candidate for addressing this problem since the quantum poten-

tial provides both the vehicle for determining the classical limit, and the means for



quantizing classical equations. Bohm’s theory holds that in the classical limit, Qy
tends to zero (Qy — 0). Furthermore, the published work on this subject[4][9][5][10]
seems to indicate a pattern in the way classical equations are modified through the
process of quantization. It appears that a classical equation such as the classical wave
equation V¢ = 0 or the Hamilton-Jacobi equation, is modified by the inclusion of a
quantum correction term - the quantum potential . This suggests that a resolution
to the question of the validity of mixing classical and quantal quantities in dynamical
equations is whether a quantum potential term has or has not been included in the
determination of the precise form of the scalar and vector potentials. By combining
this observation with the fact that quantum field theory does not contain the prob-
lem of mixing - it may be concluded that the answer rests mainly with the notion of
state-dependence.

The notion of state-dependence is at the heart of the quantum formalism. Every
physical quantity in quantum mechanics is identified through a hermitian operator -
the derived expectation values are thus state-dependent. How then, can the classical
scalar and vector potentials, which are not state-dependent quantities, be candi-
dates for physical status, whereas the physical reality of the quantum potential - a
state-dependent quantity - is all but dismissed? To be consistent with the quantum
formalism, it would appear that the quantum potential has more right to physical
status than the classical potentials present in the Schrodinger Hamiltonian.

The lack of state-dependence in the use of the classical potentials is a strong
contributor to several unresolved issues of current quantum theory. One problem is
that unlike the quantum potential, the classical potentials do not have a mechanism

for varying the degree of classicity - it is an all or nothing situation. But several of



today’s loosely resolved or completely unresolved issues have their origins in semi-
classical or non-relativistic quantum mechanics. The Aharonov-Bohm(AB) effect[11]
for example, is based on observations derived from the non-relativistic Schrodinger’s
equation where a mixing of classical and quantal concepts are present. Additionally,
the more general problem of the reality of gauge potentials[12] has at its core, the
problem of surplus structure[13]. Presently, there is no way to faithfully map a specific
vector potential to a physical situation[12]. By shedding light on the implications of
mixing, the AB-effect and other issues of gauge symmetry may be made clearer.

A relationship between the quantum potential @, and the classical potentials
(V, A) has already been pointed out on several occasions[4][5]. It has been noted that
(Q)y enters the modified classical equations the same way as the classical potential.
This is the very reason why @ has been called a quantum potential despite possessing
some unusual nonlocal properties and a stability towards amplitude amplification
(form-dependence). Beyond this, no further extrapolation of the relationship between
®@y and (V, A) has been explored. A simple example of the connection between Qu
and (V, A) may be given directly from Schrodinger’s equation. In situations where the
phase is constant, the time-dependent Schrédinger’s equation has a real component
given by —V(z) = Qy = —(A/2m)V2R/R where R = |1|. Under these circumstances,
the scalar and quantum potentials are equal in magnitude.

The idea that @y and V' are more closely related than admitted by Bohm'’s the-
ory offers the immediate advantage of uniting @, and V' in a consistent manner in
the Schrodinger’s equation and in the resulting modified Hamilton Jacobi equations
(MHJE). This is important because in the current Bohm theory, the potential V enters

in a dual fashion. It determines the form of the quantum field via the Schrédinger’s



equation, and it contributes to the particle trajectory through the MHJE. It is mys-
terious how an agent (V') which determines ¢ and the particle trajectory z(t) is not
affected by any of these, but at the same time has a twofold influence on the particle
mechanics. By replacing the classical potential with a state-dependent form, the dual
use of V' in Bohm’s ontological interpretation can be alleviated.

Finally, it must be noted that the method used to arrive at the results of this thesis
involves the Feynman path integral. The path integral method has the advantage that
any one system of a two system physical situation can be integrated or summarized
away. This allows for two interacting systems, to be treated as a single system in
the presence of an environment functional or kernel. The environment functional
encapsulates the effective interaction potential of the two systems. But since it is
essentially an amplitude, it must be viewed as a state-dependent quantity. In this
way, it resembles closely the quantum potential and shares a common feature - state-
dependence. The specific property of the Feynman path integral - its ability to
encapsulate features of a second interacting system without the need to deal directly
with its coordinates - was stated by Feynman[14] as being the main advantage of his

path integral method.



Chapter 1

Justification for State-Dependent
Classical Potentials

In this chapter, for the purpose of exploring a relationship between the quantum
and classical potentials, the essential features of Bohm’s quantum mechanics (BQM)
will be compared against standard quantum mechanics (SQM). Although the more
economical approach of Diirr, Goldstein, and Zanghi[7] is possible, here instead, the
quantum potential will be presented as a vital component of BQM - one which high-
lights the core of Bohm’s ontological theory of quantum mechanics. However, it will
be shown from inductive arguments, that the quantum potential reveals an unneces-
sary complication when compared to SQM. The complication supports the arguments
of Diirr, Goldstein, and Zanghi[7] but is here resolved differently. A resolution to the
apparent complication will be offered by both comparison to quantum field theory
(QFT) and by conjecture to the appropriate implications for BQM. The results of
the analysis is a hypothesis which proposes that classical potentials be replaced by
intermediate state-dependent potentials (SDP). But unlike the quantum potential,
state-dependence from these new potentials will come not from the particle wave

function, but from some unspecified environment wave function .. The function



e is responsible for providing the effective interaction between the particle and the
environment, both acting in the same configuration space. State-dependence not
only restores consistency in BQM, it also allows for a closer correspondence between

NRQM and QFT.

1.1 Comparative review of SQM and BQM

Standard quantum mechanics and Bohm’s quantum mechanics differ not only in their
formalism but also in the interpretation of their respective formalisms. A complete
comparative review would require a lengthy chapter covering topics such as conceptual
developments, the theory of measurement, the concept of probability and the role of
statistics[2]. However, for purposes of the present work, only three areas need be
mentioned including, the objects of the formalisms, the explanations given to the
classical limit, and the explanation of the methods of achieving quantized form for
the dynamical equations. The study is somewhat simplified by the fact that SQM
and BQM both depend on the same wave function 7. Furthermore, the predicted
experimental outcomes of the theories are the same.

Regarding the objects of the formalism, in SQM, a system of particles is completely
described by its wave function, evolving according to Schrodinger’s equation - which
may be symbolized as a single element set (¢). In BQM, a system of particles is
described by a set of two elements ¢ and 7;(¢) - the set (¢, r;) - where r;(t) is the
precise path of the i** particle. To remain consistent with the results of SQM, BQM
requires that along with the Schrodinger wave function, an additional equation exist

for the evolution of the particle paths. Diirr, Goldstein, and Zanghi[7] show that the
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simplest choice, ‘compatible with Galilean and time-reversal invariance’, is the form,

#(t) = 2 ImYiY

_ ViS(Tl, ...,TN)
m; Y - '

2mi

(T1y0s TN)

This is simply the equation for the current density (J = pv), where p is the probability
density. Unlike SQM however, the velocity in BQM is taken literally rather than
statistically. It appears, therefore, that the only addition to SQM to arrive at BQM
is the statement that particles have well-defined paths. The paths are guided by a
state-dependent velocity field (v = V.S/2m) where S = (/2¢) log(¢)/+*). Hence, the
first difference between SQM and BQM is the complement of the set (¢) in the set
(%, m3).

From a mathematical or axiomatic perspective, the set (v, ;) is sufficient for
describing BQM. As explained by Diirr, Goldstein, and Zanghi[7], no additional
reference to quantum potentials are necessary. This method has the advantage of
simplicity and economy of form. However, the more striking features of BQM are
illustrated by way of the quantum potential @Q,. This object of the BQM formalism
not only encapsulates the special features of the quantum world but also reveals the
classical limit and helps to clarify the effects of quantization on classical dynamical
equations. In SQM, the classical limit is the point at which # — 0. The process by
which the quantum world is entered, is through quantization where classical dynam-
ical variables become operators on a Hilbert space. In BQM, the classical limit is
approached as @), — 0. This suggests that the difference between classical and quan-
tized equations is the presence of @,. This result is precisely what was arrived at by
Bohm. There are several examples of this. The modified Hamilton-Jacobi equation

(MHJE) originally derived by de-Broglie[2] for a single particle is one such equation.
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The MHJE equation reads,

84S (VS)?
Y (Qm) +V(z) + Qy(R) =0 (1.1.1)
where
_ R* V?R(z,t)
Qu(R) = o R

and R(z,t) = |¢|. This equation emerges by a polar substitution of 1 for R(z, t)e!@1/h
in Schrodinger’s equation. The classical and modified Hamilton-Jacobi versions differ
by the presence of Q. Quantum field theoretic (QFT) versions of this equation also

exist. The equation of a quantized neutral, spin 0, massless field (¢(z, t)) is[10],

0Qy[¢(x),

t
Q¢ = 5¢( ) ]|¢-”3) =¢(z,t) (112)

where
Qulo.t] = -(1/2R) [ #FR/56"
Again, the classical wave equation O¢ = 0 is altered by the presence of Qy. Yet

another example is provided by Bohm[9] for the quantized equation of an electromag-

netic field using normal mode coordinates,

. 0
qk:,u

where

R
Qu[aku, t] =< > e )

kot 1, OQher s
and where gy, are the coordinates of the electromagnetic field associated with oscil-
lations of wave number, k, and polarization direction, u. Here again, the classical
limit is attained as @)y becomes 0. In summary, the two major differences between

SQM and BQM are the addition of well-defined particle trajectories in BQM and their
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<
o
saforyred \e
% m

saporaed

Observables Beables

Figure 1.1: The relationship among objects of the formalism in non-relativistic SQM
and BQM

respective views on quantization and the related classical limit. All other differences
may be taken as originating from these basic two.

The results of SQM and BQM can be illustrated graphically by an arrow diagram.
For NRQM, the diagram (fig. 1.1) depicts the relationship among objects of the
respective formalisms. The direction of the arrows show dependence of one object
on another. In the SQM diagram (left side of fig. 1.1), the functional form of v is
determined once the potential (V, A) is known. No further relationship exists among
objects. All other physical quantities are derived by mathematical operation against
the wave function. Obviously, to uniquely determine v, the appropriate boundary
conditions, Dirichlet or Neumann must be applied.

In the NRQM version of the BQM diagram (right side of fig. 1.1), the relation-

ships among objects is somewhat more involved. Like BQM, the quantum wave is
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determined by the potentials V, A, but due to the introduction of the particle path,
an additional relationship is forged. The particle trajectory is determined by both
the quantum wave ¢ via the quantum potential @, and the classical potentials V, A.
Furthermore, as indicated by the direction of the arrows, neither ¢ nor V, A are

affected by the particle path.

SQM BQM

(7‘1,...,7"]\[) (Tla"'a’rN)

b — H

2 &
g \& ™~ s
5 F
g % A g
> (V, A)
<
. \E

Observables Beables

Figure 1.2: The relationship among objects of the formalism in SQM and BQM for
quantum field theory

In the passage to QFT (fig. 1.2), very little difference is noticed other than the fact
that the potentials are now field operators, like the configuration space variables of
NRQM, and the co-dependency between particle and field coordinates. The diagrams
of figs. 1.1 and 1.2 bring to light the exact essential disparity between SQM and BQM.
The products of SQM are probabilities. The products of BQM are deterministic
equations for the input variables. Bell has coined the term beables[15] to describe the

products of BQM. This is in contrast to the observables of SQM.
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1.2 Dual Role of Classical Potentials in BQM

In the analysis of the previous section, it was explained that the chief differences
between SQM and BQM were in the assumptions regarding the physical outcomes
derived from the quantum wave. For SQM, it is the statistical expectation values, for
BQM it is the deterministic well-defined beables of Bell. The situation is somewhat
muddled in the non-relativistic case where the exact placement of the classical po-
tentials are vague - neither as system variables, nor as interaction components of the
Hamiltonian. This should seem quite surprising in light of the successes of NRQM.

As previously mentioned, in the QFT diagrams of fig. 1.2, there exists an almost
perfect symmetry between SQM and BQM. The NRQM diagrams of fig. 1.1 do not
demonstrate this symmetry. Notice that the classical potentials have a dual influence
on the particle trajectories. They both determine the form of ¢ (the quantum po-
tential Q) and participate in the particle dynamics through the modified force law
mi*(t) = —VQy — VV. The question this raises is - can the dependencies be modified
so as to alleviate this problem, but without affecting the results of SQM, which are
well established?

The first indicator towards resolving the unnecessary complication in BQM is that
the classical potentials V, A are neither system variables, nor Hamiltonian elements.
The fact that they appear in the Hamiltonian does not affirm their status. But
rather, it is for this reason that the complication occurs to begin with. To better
understand the specific role of V, A in NRQM, a theory is needed which allows for
a mechanism by which classical and quantized forms of the fields can be arrived at
by some mathematical method based on physical grounds, not by merely postulating

the requirement of a quantized field. For this reason, the Feynman path integral
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and environment functional (related to the Feynman-Vernon influence functional[16))
will be used (see chapter 2). The idea is that although the Feynman path integral
can be solved for an action involving classical potentials (for a single system), an
equivalent system can be arrived at by starting from a quantum field theoretic action
(for two interacting systems) and obtaining the classical potential through specific
mathematical techniques, such as those applied by Dente[17], which integrate away
the second system. In this case, the potentials may be seen not as objects of the
non-relativistic Hamiltonian, but as functions representing the effective influence of
an environment. It is in this respect that V| A are neither system variables nor
Hamiltonian elements. The proposal of this thesis is that V and A are a part of the

system wave function - a structure of the internal space.

1.3 Quantum Field Theory

In this section QFT will be looked at more closely. Two aspects of QFT relevant to
this thesis will be expanded - the beables of BQM, and the influence function method
of Feynman.

In Bohm’s theory, the quantized field has an ontological representation just like
the trajectories of non-relativistic BQM. The field strength is a beable and may
be calculated directly from the modified classical equations with appropriate initial
conditions, and having a precise form for the Quantum potential. Equations 1.1.2 and
1.1.3 are examples of deterministic quantized field equations of BQM. As beables, the
potential field and therefore the classical potential are the same physical field with
the exception of a quantum correction. The degree of classicity of the potential field

depends on how active the quantum potential is. When the state of the quantized
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system is such that @}y, — 0, such as in the case of coherent states|5] the potential field
is classical by all respects. But this does not imply that the wave function necessarily
vanishes - there may be several ways for the condition @, = 0 to be met. For example,
if @y is the sum of two parts of a total quantum potential (Qy = Q1+Q2), the system
will behave classically if ; = —@Q); - the wave function will generally not vanish.

The quantum potential provides a compelling picture of the classical limit and
process of quantization, but its reliance on the wave function means that it is victim
to the same mysteries as SQM. What would be more interesting is a method by
which different systems may be made to obey equivalent behaviors - behaviors which
may be described by some effective function or functional of an interacting system.
Such a method could be construed as indicating that the role of classical potentials
is to summarize a set of equivalent systems, each producing the same non-relativistic
experimental outcome. The gauge potentials, in this light, would represent not one
physical situation but a class of equivalent physical situations.

To demonstrate how different systems may produce equivalent behaviours, a sta-
tistical version of the Feynman environment functional{18], namely the Feynman-
Vernon theory influence functional method (IFM)[16] will be presented. The IFM
will be explored closer in the next chapter. Here, a brief review will be given. The
basic idea behind the IFM proceeds as follows: let us assume that we are interested
in the behaviour of a system whose coordinate is g, interacting with another system
whose coordinate is ). If we are concerned only with the system g and make no
measurements on the system ), then the IFM shows that it is possible to integrate
away all references to the variable ) and produce a functional whose path integral

depends on contributions from the g coordinates. Let S,[g(t)] be the action of the
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system g, Sg[Q(t)] the action of the system @, and S;[g(t), Q(t)] be that of the inter-
action between both systems. Now, the probability of transition from a state ¢ to x
will involve the Kernel J = K(gy, ty; qi,ti)K*(q}, tf;q;,t:). For the system of ¢ and Q

this forms a double-path integral given by,

J = / / exp(i[S;la()] — Sold (8)] + Sila(8), Q(E)] - Silg' (8), @' (8)] +
SalQ(t)] — Sl@ (t)])) Dq(t) DQ(t) Dq () DQ' (t).

If we are only concerned with measurements made to g, this equation can be written

in the form,
7= [ [ etsiner-sidenrig), ¢ 0)pg10g (¢

where T' is a functional which defines the amplitude for the @ system to travel be-
tween its end points @; and @y for any given path q. The total amplitude for any
specific path ¢ is then the product of a free-particle kernel and the functional 7. The
functional T is called the influence functional because it holds the influence of the
system @ (the environment) which is relevant to the system g(¢).

An interesting point about the influence functional is that if T can be approxi-
mated by the form expi [ [g(t) — ¢ (£)]V (t)dt, then the system g behaves as if acted
upon by a classical potential V. This form of the influence functional may result from
an infinite number of different systems Q. It explains without ambiguity, how the clas-
sical potentials of NRQM could come about. Moreover, since the influence functional
is essentially an amplitude, the influence of system @ on system g is state-dependent

in nature although effectively described by a classical potential.
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1.4 Gauge Symmetry and Aharonov-Bohm Effect

Physics has a long tradition of being the subject of interpretive inspection. Often,
it is the role of mathematicians or philosophers to provide an unbiased and fresh
look at issues pertaining to the interpretation of physical theories. Without a doubt,
from its discovery in 1959, the Aharonov-Bohm effect[11] has been the source of such
activities in areas including the meaning and reality of gauge potentials, localities,
observabilities, and the closed curve or holonomy interpretation[19]. The AB effect
presents a dilemma - how can a finite vector potential influence the wave function in
areas of vanishing magnetic flux[11]? This problem can be tackled by studying purely
mechanical aspects of the electromagnetic force or alternatively, by interpreting the
AB-effect as a manifestation of a geometrical aspect of local gauge symmetry.
However, in light of the previous discussion on the IFM, it is difficult to see
how any conclusions can be made regarding the interpretation of AB-effect without
a clear picture of the validity and limits of the appearance of classical elements in
Schrodinger’s equation. If the IFM is taken literally, the roles played by V, A in
the quantum equation become irrelevant, since they are merely averaged functions
containing the summarized effect of an interacting environment. The environment
has been factored out and very little interpretive value can be acquired. For example,
the observation that the phase picked up by the electron is independent of the path
taken towards the screen, but is dependent on the number of windings n of the magnet
field-producing coil, is of a secondary nature. The phase for n windings (e®"B%*) is
meaningful only in relation to the way in which the phase factor is mapped back to
the original influence functional. Additionally, the holonomy interpretation is devoid

of meaning unless this can be related back to some physically meaningful aspect of the
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sum of amplitudes of the environment system. Furthermore, the surplus structure of
gauge potentials[12][13] may just represent the infinite environments of the Feynman
environment functional. Further will be said on this matter in the final chapter, once

a form for a state-dependent version of the vector potential has been postulated.

1.5 State-Dependent Classical Potentials

Before suggesting candidate methods for deriving state-dependent forms of the clas-
sical potentials, some preliminary observations are in order.

To begin with, it is well known that the scalar potential can be used interchange-
ably as a boundary condition. The problem of a particle in a box may be treated
in two ways. We can solve the free Schrédinger’s equation and apply Dirichlet (or
Neumann) boundary conditions at the box walls as (L, t) = 0 for all ¢ and where L
is the width of the box. We could alternatively solve the equation for a particle and
a scalar potential where the potential is V(z) = oo for all |z| > L. The equations
are equivalent and yield similar results. This suggests, as expected, that V(z) holds
the environment boundary. A state-dependent version of the classical potentials must
somehow reflect this boundary property.

A second observation is that the equations of BQM - namely, the modified classical
equations are not specific to BQM. The essential statement of BQM is the existence of
well-defined particle trajectories (r;(¢)) or beables. It is always possible to formulate
SQM as two coupled real equations rather than one complex-valued partial differential
equation. If written as two coupled equations, a quantum potential would emerge
from SQM. This prescription is employed for example in the WKB approximation

where the quantum potential is dropped in the limit A — 0. Furthermore, the form
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of @y is apparent under certain physical situations where the phase of the wave
function is constant S(x,t) = C. In this situation, the potential becomes —V(z) =
—(R/2m)V2R/R. The classical and quantum potentials are equal in magnitude - the

condition which brings about this relationship is S — C.

1.5.1 Method of SDCP

In this section, three methods will be proposed for deriving state-dependent forms of
classical potentials (SDCP). Several assumptions shall be made. The special property
of the Feynman path integral - the influence or environment functional - will be taken
literally as indicating an equivalence-type principle between potentials and environ-
ments. As previously indicated, this will imply an infinite number of environments
for a specific potential. The environment functional concept will then be combined

with the inferred method of quantization according to BQM.

Method I:

Although not a part of the formalism of BQM, a review of the results of published
work on the subject reveals a pattern in the process of quantization. Equations (1.1.2)
and (1.1.3) are two such examples. The book by Holland[10] lists several additional
equations of the same type including the quantized classical Schrédinger’s equation.
These equations have embedded in them a direct method for obtaining SDPs. In
eq. (1.1.2) for example, the quantum potential is a functional of the amplitude of the
wave function R[¢(z),t]. If it was somehow possible to solve, or rather reverse the
equation in terms of ¢(z), then a relationship between the potential field ¢ and the

wave function (amplitude) R would follow. Under such conditions, the potential field
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could be expressed as a SDCP ¢, (R,t). The classical potential would be regained as
@y — 0, or more precisely as ¢, — ¢(z). As previously indicated, the condition of
classicity does not mean that the wave function vanishes. It may also imply a form

for Qy in which Q; = —Q); for a total quantum potential Qy = Q1 + Q.

Method II:
Consider a system g interacting with a system @). Suppose the system can be described

by an action

S(q,Q) = S4(q) + Si(q, Q) + So(Q).

The system () may describe an electromagnetic field and ¢ may stand for matter
coordinates[18]. The Feynman path integral for the amplitude for an event g0 18

obtained from the Kernel

K= [[exo {1500+ 50.0) + 50(@) | DaD@

Defining an environment functional according to

o = [ exp{ 315:(6:@) + 50(Q1} 0@

the Kernel will become

k= [ew{ 1501 D0

The environment functional T.[q] expresses “the modifying effect of the field on the
action of the particles”[18]. Therefore, a second method for obtaining a SDCP is to
derive an environment functional for a potential system. Then, using approximate

methods, cast the kernel into differential form. This equation would contain the
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particle wave function s and the environment wave function 1. The differential form
could then be compared with Schrédinger’s equation and an effective SDP derived.
Once again, notice that the environment functional T,[g] is essentially an ampli-
tude. It is the amplitude that the system @ follows along its path endpoints for
a fixed path ¢. Since it is possible in general to choose a different environment to

reproduce the same T¢[q|, the SDP will represent an infinite number of environments.

Method III:

The wave function 9 at (gi,t1) is related to 1 at (go,t2) by Huygens’ principle,

stant) = [ { [ e (F500)) a0 | vl e

If this equation can be approximated by an equation having the new form,
o s m )

V(g t1) = /_oo {/q exp (7&(‘1)) DQ} T (g2, t2)9 (g2, t2)dge,
then Schrodinger’s equation would immediately follow. This would require assump-
tions about the dynamics of the path of integration DQ and would result in a less
general physical domain for the system. The total wave function would be composed
of two distinct components v, = T,(q,t) and 1, = (g, t). Comparing the new equa-
tion with Schrédinger’s equation would yield state-dependent forms of the classical

potentials.



Chapter 2

Method of State-Dependent
Classical Potentials

For over two decades, an increasing am(;unt of attention has been paid to issues per-
taining to the investigation of transitions from quantum to classical behaviour. Due
to the successful realization of interference phenomenon in larger systems, it is today
understood that quantum behaviour is not limited to microscopic scales. H. Zurek
[20] points out a number of recent developments in mesoscopic quantum effects in-
cluding; a gravity-wave detector[21]; nonclassical squeezed states [22]; and quantum
states from superconducting currents of Josephson junctions [23][24][25]. The math-
ematical framework for dealing with mesoscopic quantum systems is in the form of
a diffusion coefficient D(t). This coefficient describes the rate at which off-diagonal
elements responsible for interference vanish - the rate of decoherence. Decoherence
is a spontaneous property of a quantum system in interaction with an environment.
The term environment usually refers to a system containing a large number of quan-
tum objects such as a spin or oscillator bath[20]. Hence, the environment can be
given properties such as temperature, and entropy. The higher the temperature, the

greater the rate of decoherence and hence the time for which a microscopic system

23
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loses its quantum behaviour through leakage into the environment.

This chapter will begin by describing the role played by the Feynman Kernel
in the description of a system ¢ coupled to an environment @. Understandably,
g is an environment to @ just as @ is to q. However, the term environment will
be ascribed to the system whose dynamics are being summarized either by some
form of approximation or by integrating away all specific reference to its coordinates.
Feynman’s path integral will be used to derive a wave function 1), whose existence
will provide information to Schrodinger’s equation about the environment, without
reference to an external potential function (Method III of sect. 1.5.1). The modified
Schrodinger’s equation is potential-free, but is effectively equal to that containing a
scalar or vector potential. The similarity between this method and methods which
use space-time substitutions to evaluate the path integral will be highlighted. Finally,
it will be shown that the resulting state-dependent potentials are in the form of a

quantum potential, thereby resolving the aforementioned BQM complication.

2.1 Influence Functional and the Environment Func-
tional

Richard Feynman’s famous paper[14] in which he unveiled what he called “a third
formulation of non-relativistic quantum theory” ends with a demonstration of what

he considered to be the main advantage of the path integral approach.

...The formulation is mathematically equivalent to the more usual for-
mulations. There are therefore, no fundamentally new results. However,

there is the pleasure in recognizing old things from a new point of view.
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Also, there are problems for which the new point of view offers a distinct
advantage. For example, if two systems A and B interact, the coordinates
of the systems, say B, may be eliminated from the equations describing

the motion of A.

The path integral approach therefore, provides a way for studying a quantum system
consisting of two subsystems (say ¢ and @) as though it were a single system ¢ -
the histories of any of the systems (say @) can be integrated out. The result is a
path integral for a single path Dq. The question therefore, is whether the single path
integral can be converted back into a differential form, namely a Schrodinger-like
equation. Methods to obtain differential forms for the path integral are well known
and have been solved for several mathematical structures[26][27].

In light of the previous information, it seems natural that the starting point for
developing a state-dependent potential would be to use the Feynman path integral
method. The integration resulting from the elimination of the @ variable results in a
state-dependent functional from which the dynamics of ¢ are derived.

The following convention will be used in the calculations. The quantum system
of interest will be labeled with the subscript s - its coordinate will be g and its action
will be Ss[g]. The systems will interact with the environment-baring system @, which
will be labeled with the subscript e. Its action will be given by S.[@]. The interaction
between system ¢ and @ will be labeled with the subscript ¢, the interaction action
will be S;[g,Q]. The combined system (g, Q) forms a closed system - no further
interactions take place. Furthermore, it will be assumed that the system action Ss[g]
is a free action - the emerging state-dependent potentials should not depend on any

other classical potential. The amplitude that the system will be found at point g; at
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time ¢;, given that it was at the point gy at time ¢y, is given by the path integral [18],

k)= [ exe (55.00) | ZlacoDato) (211)

The functional T¢[g(t)] will here be referred to as the environment functional. It is
the amplitude that the @ system will be found at Q; at time t, given that it was at
the point @); at time ¢; for a specific path ¢(¢). The functional dependence of T, on

q(t) is derived from,

o] = [ e (35401 + 500.01) | e 212)

The total system path integral of egs. (2.1.1) and (2.2.2) is derived from the usual

path integral for the combined system,

ko) = [ [ [oo (H(sia+ 501+ 510.9)) | PewDae. (219

As pointed out by Feynman, if ¢ is the coordinate of a non-relativistic particle and
T, evaluates to
i

T,lg(t)] = exp <7-i / q(t)V(t)),

then the problem simplifies to that of a quantized particle under the influence of
a scalar potential V(g,t). This is a trivial situation where the Hamiltonian H =
V2/2m + V(q) is regained.

In practical applications (statistical outcomes), the probability J = K(qy, ¢;) K*(qy, a;)
isrequired. The probability is calculated from the rule of combining amplitudes which

results in the double path integral,

J = / / exp (i[Ss[a(t)] — Si[q ()] + Sila(t), Q)] — Sild' (2), Q' ()] +
Se[Q(t)] — Se[Q (t)]])Dq(t)DQ(t)Dq’ (t)DQ'(¢).
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The environment action is here termed the reservoir instead, for analogy with ther-
modynamical systems. The reservoir allows for a direct calculation of transition prob-
abilities, and density matrices written in terms of the propagators. The transition
probability is

P = / Gr(a7)Om(d ) I (a5, 9 13 60 &) (@) 07 (¢' ) daidq i dgpdq

and the density matrix written in terms of the propagation is

p(gs,q s t) = /indqliJ(Qﬁqlf;Qi’q,i)p(Qﬁqlfa0)-
The form of J used to find information about g assumes an initial state for the
reservoir and sums (or traces) over all final states of the reservoir - a similar method

is applied to the environment system. The propagation J is similar to eq. (2.1.1) but

its statistical character necessitates a double path integral

J(a5,d 53 00d5) = / / exp (i[S;[q(t)] — Sslg (®))) Fla(t), ¢ (t)] Dq(t) Dq (t)

where the functional F - called the influence functional - is given by,
Fla)d @) = Y [ [ e (lS1a(0), Q@) - 51 0,90 +
f
Se[Q()] - S.[Q M) DR DQ (¢)-

Written this way, the general form of the influence functional stems from the matrix,

F =< K'(Q, 1]¢e(0)¢(0) K *[Q', 1] > . (2.1.4)
The statistical method outlined above is due to Feynman and Vernon[16] and serves
as the basis for a host of calculations where a simple quantum system is coupled to
a large bath of quantum objects[20]. The method is employed when techniques for
solving the path integral exist. Its strength lies in its ability to describe behaviour of

an environment without the need to know its exact details at every moment.
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2.2 Environment Wave Function 1),

In this section, method III of sect. 1.5.1 will be applied to arrive at a state-dependent
version of the classical scalar and vector potential. The basic idea is to assume that
the potentials used in Schrddinger’s equations depend upon an environment wave
function or kernel which somehow encapsulates the complexities of a second system.
It has been argued throughout this text that this is a natural part of Feynman’s path
integral method and even he claimed this to be a central strength of his method. The
problem with a two coordinate system (g, @) in interaction is that it does not admit

a solution to the integral for the sum of paths for a wave function,

/ K(q,Q.4,¢, Q' t)9s(d, t')dd (2.2.1)

where 1, is the wave function for the system s. In this equation, the resulting wave
function must depend on the specific path taken along @. Since this produces in
general, different contributions to the integral, only if somehow the paths q are equal
to or at least effectively equal for each path @, do we get a meaningful result in
the integral. One way to make this unambiguous is to specify an amplitude for the
different values of g(t). This may be for example, a distribution weighting for each
value of ¢. In any way, it is an amplitude and will be labeled as 1.(q,t) to express
that it is an amplitude resulting from some statistical functional of the environment

@ integrated for a fixed ¢. Under these assumptions, eq. (2.2.1) would become,

/ ) /q _qf {exp (%m(ss[q])> We(d, q,t)} Dq(t)¢s(q', t')dq - (2.2.2)

o

The exact details of how . is derived is unknown. Instead, taking advice from
method III of sect. 1.5.1, the usual prescription of evaluating the integral for a small

time increment At where difference Aq is g;—a¢ — g4, will be followed. The specific
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final form for the partial differential equation will not contain explicit reference to
potentials, only amplitude. The aim therefore, is to extract from the path integral
both the wave function of the particle 1; and the wave function of the environment /..
This can be accomplished by searching for ways by which the environment functional
may be cast in the same form as the wave function. That this is possible can be seen
by writing eq. (2.2.2) for an incremental time At

/oo exp (Zf'iAt(Aq) > exp {LV,A (2t q+ Aq) }ws(q + Ag,t)d(Dg)  (2.2.3)

x
where Ly 4 = £4-A—V/(q) is the electromagnetic Lagrangian. Inserting the expression
for Ly 4 and expanding around Agq = 0 yields,
/°° o [TMAL (A
- P Ton \ At
(JAN At

X exp [—-?V( ) — TA(IZAQmV Vig) + ]

(2.2.4)

X exp [—EAqlAl +

1
X |:¢s (Qa t) + A Vs + éAquQnamand)s + :I

where [, m = 1,2,3. This equation can be simplified with the following two observa-
tions. First, note that for the scalar potential, the only surviving member is the first
term. Hence, the terms within the exponent can be written as a function of ¢ and ¢.
For reasons which will appear obvious in the next steps, the function will be chosen

as a log function (AtV(q) = Ag = (ih)In1).). Here Ay is the fourth component of the
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vector potential. The equation becomes

[ (o)

X exp [ln pe(q, t)} (2.2.5)

X exp [—EA%AI + %AqlAqulAm + ]

1
X I:wS(q, t) + Avamws + é'Aquqnamanws + ...:I .

Next, note that all terms for 1), starting from the second onward will correspond
with the terms for vector potentials if the following substitution is made, A —
(ieh/c)VIntpe. Note however, that if the electric field is unrelated to the vector
potential - if it originates from an external source - then AtV (q) = (k) In), # A,.
In this case, since V is a function of ¢ + Ag in eq. (2.2.4) it can immediately be
combined with 1),. Otherwise the scalar potential would be constrained by the vector
V.. The substitution for the vector potential amounts to eliminating the magnetic
field. Situations where the magnetic field does not vanish will be looked at in sect.

2.3.3. The equation now reads,
o im 2
/oo exp (—2h 7z (89) )
X exp [ln Ye(g,t) + Agm Vi In 1, + %Aquqn(')mVn In . + ] (2.2.6)

1
X I}ps (q’ t) + AQme'ws + iAquqnaman’(,bs + :| .

The term in the exponential is simply the expansion of In,. Finally, the results of

method III are obtained

/ /q [GXP( S[Q])DQ(t))]¢e(q',t)1/)s(q',t)dq’. (2.2.7)
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The total transformation applied, amounts to making the following replacement

ihe ihe ) ' (2.2.8)

(A’ E140) = (_v In Ibe, —at In we

c c c
With this, we get back Schrodinger’s equation for a free particle, provided that the
integral of eq. (2.2.1) evaluates to 9'(g,t) = ¥ste. That this is true, can be shown by

a simple substitution into the free particle kernel of eq. (2.2.1),

Ye(q, t)1bs(g,t) = / Kpree(a,t; 4, t)0e(d, ¢ )0s(d, t')dg'. (2.2.9)

To better understand the implications of the above results, eq. (2.2.7) will be

re-expressed in its expanded form in terms of 1), and 1. The result is

V(000 | ~0ubla, 0 + Vg )+

at'l»be V2¢e v"/’e . v¢s) ] 2
(s T e | o

This equation resembles that obtained by time scaling methods of Duru and Kleinert|[28],

(2.2.10)

Kapoor(26], and others[29][30]. Using a point canonical transformation, which is a
form of a classical canonical transformation useful in a quantum framework, the po-
tential term is put into a solvable form. This results in a shifting of the classical
potential term to include some correction terms. For the case of a transformation

known as the ’scaling of time’[26] method, Schrodinger’s equation becomes,

Loy [ R 8 AV A%
i = (—m—qﬁv‘%[?‘ <7> D‘b (22.11)

where f is a function related to the coordinate transformation. This equation is ob-
tained by substituting for the Hamiltonian H(q,p) = {% + V{(q), an auxiliary Hamil-
tonian H'(q,p) = a(q) (f‘% +V(q) — E) where a(g) is a local scaling function. The

auxiliary Langrangian obtained from H’ is placed in a path integral with appropriate



32

transformation made to the path variables. Schrodinger’s equation is then derived in
the usual way.

The difference between eq.(2.2.10) and eq.(2.2.11) is that in the former, the trans-
formation is applied to the wave function (internal space), whereas in the latter, the

transformation is applied to the coordinates.

2.3 Potential-Free Schrodinger’s Equation

The previous section has shown that it is possible to eliminate the classical poten-
tial terms from Schrodinger’s equation and replace them with an environment wave
function 1).. The combined wave travels as a closed system and is consequently a free
system. For this reason, eq. (2.2.10) will be referred to as the closed Schrédinger’s
equation (CSE). Although the particular method outlined has effectively eliminated
the magnetic field, the vector potential still plays an active role in the dynamics.
Subsection 2.3.3 will suggest one way to reinstate magnetic effects.

The next step is to compare the CSE against Schrédinger’s equation in the pres-
ence of classical potential terms. Since the combined wave of the CSE (¢,1.) forms
a closed system, the total combined particle-environment system (g,Q) travels as

though free. The simple form of the equation is,

L O(Ysthe) A2
th——o—" = —%VQ(wszpe). (2.3.1)

To reproduce the behavior of standard quantum mechanical systems involving a par-
ticle and a potential, the CSE will be rewritten in a more familiar form. First, notice

that terms may be rearranged to obtain the new equation

LO0Y, K2 Ve ]? . Oe
it == [v+ 5. ] Ps + (—zh 5. )z/zs. (2.3.2)
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Next, by making the following substitutions, which will be referred to as state-

dependent vector potentials (SDVP),

Ay, = %(—(;—Vln Pe)
Gy, = 3L In g
Z;;C (2.3.3)
——cA% = (—c;at In1,)
ihe
—cG?/, = 8‘(—e—6tlnwe),
an equation involving state-dependent potentials is arrived at according to
., O, h? ie 2 0 ,
ih 5 = —% V - % A¢e ’(ﬂs + eAweiﬁs -+ {V¢e + ZWwe}ws, (234)
where
Gy A Gy A
{Vo + Wy} — {Qe + Qes + ‘”em LU ’”“'m ve +ier,,e}. (2.3.5)

The environment quantum potential and the coupling quantum potential are respec-

tively,
Qe =

K (V?R, 1
—% ( Re ) and Qes = EG'/’C . G,/,s. (236)
Although Vj, can be set to zero, this does not rule out the existence of terms Gy,

and Gz)e.

2.3.1 State-Dependent Scalar Potential V,,

Having arrived at Schrédinger’s equation with SDCPs, the equivalence between stan-
dard non-relativistic Schrodinger’s equation in the presence of an external scalar po-
tential and the CSE can be developed. There are two situations of interest - the

equation with a vector potential and the equation without. When a vector potential
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is present, the state-dependent scalar potential is given by eq. (2.3.5). The real and
complex components on the left hand side are equated to the real and complex com-
ponents of the right-hand side. The reduction of the state-dependent equations to

standard form is,

Z_G,,,e - Ay,

Gy, - Ay, +
m

Vo. o Vi) =R {Qe + Qes +1 + ieGS,e} (2.3.7)

and

'G"pe ’ A'l/’e . 0
i— zere} (2.3.8)

Gy, - Ay, +
m

Wt,be - W(w) = %{Q6+Qes+i

or simply V() = Qe+Qes and W(z) = (1/m)Gy, - Ay, +(1/m)Gy, - Ay, +eGY, . The
conditions by which the non-relativistic and CSE are equal will be referred to as state-
dependence reduction (SDR). If the imaginary component of the scalar potential is not
present, the resulting equation describes the time rate of change of the environment
amplitude according to

OR. Gy -A Gy - A
h t + ¢€ ¢6 + we 1/)8
R, m m

= 0. (2.3.9)

The asymmetry between 1, and 1, appears odd at first in light of the symmetrical
appearance of either component in the CSE. However, the symmetry is destroyed by
the SDR condition which requires the scalar potential reduce to a predefined function
of the particle coordinate.

When the vector potential is not present, the scalar potential will have to shoulder
the load taken by the SDVP A,, in eq. (2.3.4). For this purpose it is best to rewrite

eq. (2.3.1) without Ay, namely,

0, h2

. _ Voo .
ih % va Y + {V'(/)e + 2W¢e}1/13 (2.3.10)
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where
: L Oe B VR B2V Wfs}
Ve—l-zWe:{——zh —_—— = — . . 2.3.11
e T Ve 2m e m g Y (2:311)
Separating real and complex components gives the equations
_ [0S, (VS.)? VS.-VS, K VR, h*VR. VR,
Vw"_{at + 2m + m " 2m R. m R, R, [’ (2312)
or
Vd)ﬂ = {A"Obe + A¢62 + A"/"e : A'l.bs + Qe + Qes} (2.3.13)
and
OR. h VR, h VR, h VR, h
Wy, = {-—h R m R VS m R VSS_E R VS — 2mV Se},
(2.3.14)
or
A A A
Wy, = {G‘L ¢ G Bve | G Ay Goe Ay g Awe}' (2:3.15)
m m m

The terms which were managed by the SDVP A,, are now handled by the scalar
potentials. This implies that the vector potential is present even when the components
of A do not appear in the non-relativistic equation. This should not seem surprising
since the role of the vector potential has been assigned to the environment phase S,
- a term which is always present. If however, the phase S, is a constant of time and

space, then egs. (2.3.13) and (2.3.15) will reduce to eqgs. (2.3.7) and (2.3.8).

2.3.2 State-Dependent Vector Potential A,

It is tempting to describe the condition for the reduction of eq. (2.3.4) to an equivalent
non-relativistic Schrodinger’s equation in the presence of a vector potential, as simply

setting the SDVP (Gly,, Gy, ) to zero. However, as previously remarked, eq. (2.3.7)
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simply requires that V,, vanish. This does not mean that the SDVP G is zero.
The condition is instead that V(xz) = Q. + Qes — 0. Hence, for the case of a non-
vanishing vector potential, the environment potential will have the same magnitude as
the coupling potential but with opposite signs (Qe = —Qes). Although the potential
equations have been simplified somewhat, the rate of change of the environment is
complicated by an additional term

OR. Gy -A G, A
tte | Gy Ay, | Gy Ave _
R, m m

h

0. (2.3.16)

Furthermore, the vector potential requires that the condition (Ay,, AS) — (A(z), A?)
be met. But this is a trivial matter since this deals primarily with a vanishing
magnetic field. The usual substitution Ay, = A(x) = VS is exactly what has been

defined up front.

2.3.3 Non-vanishing environment magnetic field

This section will attempt to show that although the CSE amounts to an elimination of
the magnetic field, it is nonetheless possible to re-introduce finite magnetic effect. The
suggestion outlined here provides only one of many ways this may be accomplished.
It is expected however, that the CSE, which deals with a one-component complex
scalar wave function, is not in a framework to naturally deal with magnetic fields.
Method I of sect. 1.5.1 would be a more appropriate method for dealing with this
problem.

As previously mentioned, the curl of G, which is VX (iehi/c)VInt, = 0. This
is expected since the state-dependent vector potential involves the gradient of one

function. An obvious first attempt at restoring the magnetic field in G would be
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to use a three-component wave function (¥!,v2,v3). The idea would be to re-
place 1, with 92922, but this would not re-introduce finite magnetic effects, since
VX (ieh/c)V Inyplyp292 is still zero. This does however offer a clue, for regardless of
the functional form of the new SDP, the gauge invariant Dirac phase integral must
result for the wave function.

To better display how a three-component wave function might restore magnetic

effects, it is instructive to rewrite the line segment G,dg" in matrix form

G1 0 0 dql 81 In ’l,bg 82 In ’(,bé 83 In ’d)é dql
0 G2 0 dQQ = 61 In 'I,bz 62 In wz 63 In 'I,Dg dq2 . (2317)
0 0 Gy dgs Oilny? lny? H3lnyd dgs

The gauge invariant Dirac phase integral is reproduced since the matrix equation
is nothing but a long way of writing G - dg = V In(¢,¥2,42) - dg. But this form
has the advantage that it allows us to see how the various components of G' and 1/,
are related. What is observed is that the off-diagonal elements, which result in an
exact differential for v, are responsible for the vanishing magnetic field. Therefore, a
suggested method for restoring magnetic effects is to eliminate the off-diagonal terms.
The new wave function is still a gauge invariant quantity. To see this, take the integral

of the matrix equation,

G1 0 0 dq1 31 In ’Qb; 0 0 dq1
0 Gy 0 dgo | = 0  Slny? 0 dge (2.3.18)
0 0 G1 dQ3 0 0 83 In ’(bg dq3

The result is,
7
: / G - dg = n(@242) — Fay, 4z, ) (2.3.19)

or in exponential form,

exp {% / G -dq+ F} = (Yl22). (2.3.20)
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The function F' could then be eliminated by setting appropriate conditions on 1.

2.4 The Dirac equation and 1,

The state-dependent vector potential has so far been developed in the context of non-
relativistic quantum theory. The minimal substitution guarantees that the SDVP
for both vanishing and non-vanishing magnetic fields lead to consistent results for
other equations, including the Klein-Gordon equation and the Dirac equation. This

is easily demonstrated starting with the Dirac equation in the Dirac representation,
(i’y“@u — m)z/) =0. (2.4.1)

The ‘gamma’ matrices are related to ‘alpha’ and ‘beta’ matrices as (v°,v) = (8, fa)

which are derived from the Pauli matrices according to

(20 (1) e

In expanded form, the four components of the Dirac spinor generate four partial

differential Dirac equations given by,

2{30% + 014 — 10214 + 0393 | = mapy

i[am 1 Byt + 1055 — Doty | = mabs
] (2.4.3)

i{—aoibs — 019 — 1090y — 0391 | = mas

i[—ao?h — 011 + 102%1 + O3hg | = mafy.
For vanishing magnetic fields, the components of momentum are shifted from the

SDVP by the minimal substitution

321, = (60, 8) — Du —> (60 + 80 1n1/)e,6 —8In 'l/)e). (244)
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To see what effect this has on the spinor, take the first of the four equations above
and apply the substitution of D, for 0,

|0ty + 019y — 109104 + 53%} +
(2.4.5)

i |97 h100%e + V. PaO1Pe — i Pa02e + %_11#333%} = ma;.
Then, if both sides of eq. (2.4.5) are multiplied by 1), and repeated for the other
three equations, a new Dirac spinor is gained which is the old spinor multiplied by
Y. The new equation contains only state-dependent vector potentials, not quantum

potentials.

2.5 The total quantum potential along the particle
path z(t)

It is time to pause to review two major differences between the new emerging quan-
tum potentials Qe and Qs and the quantum potential of Bohm’s theory @y (Qs)-
First, unlike Bohm’s quantum potential, which appears only in the modified Hamil-
ton Jacobi equations, the environment potentials are part of Schrédinger’s equation.
They are therefore, essentially independent of the particle path, although their pres-
ence in the modified Hamilton-Jacobi equations does not prevent them from being
calculated for z(t) along a specific path of the particle. Also, although the total force
(Fr) along a specific path has not changed since Fr = —VQr = -VQ, — VV =
—VQs — VQ¢ — VQes, the precise definition of the classical limit has changed. The
original condition ¢); — 0 has become Q1 — V, where Qr is the total quantum po-

tential. The more general condition requires that Schrodinger’s equation and the CSE
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are equal. The complete reduction according to SDR, is (Vy, Ay) == (V, A), where
the set (V, Ay) contains the state-dependent potentials. Furthermore, the current
method has defined a new quantity not present in BQM - the state-dependent vec-
tor potential G. This quantity may be taken as more fundamental than Q. For
instance, )y may be derived from G, by Q; = V - G5 — G, - G;. Since G, involves
first-order differentiation, it naturally emerges from the Dirac equation (2.4.5) - the

quantum potential @, does not have a Dirac counterpart.



Chapter 3

Numerical Methods

The increase in computational power has stimulated numerous methods for solving
quantum mechanical systems. Not only have the methods increased in accuracy,
but the visualizations techniques have provided an intuitive and insightful window
into the world of the nano scale. As well, the methods go far beyond simple one-
dimensional non-relativistic mechanics to include three-dimensional Dirac equation
and the inclusion of magnetic effects. If the richness in algorithms were not enough,
today there are available packages such as the QuantumKernel of Bernd Thaller and
Manfried Liebmann which allow direct calculations and visualization within math
software such as Mathematica[31].

The aim of this chapter is to provide visualizations of various state-dependent
potentials including the vector and quantum potentials. Several general properties
of SDPs will be deduced. The first step is to derive the environment wave function.
Although the partial differential equation appears to pose no difficulty, it nonetheless
presents a situation for which a lack of information exists for applying boundary and
initial conditions. There is an infinite spectrum of possible environments to choose

from and very little information on how to select a preferred environment. Appeal

41
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will therefore be made to trial and refinement. The environment yielding the most
reasonable compromise between computational efficiency and visual appeal will be

selected.

3.1 Method of Suzuki and Raedt

Computations of this chapter are based on the framework of De Raedt[32] and
Suzuki[33], and the specific Mathematica implementation provided by Thaller[34]
and Liebmann[35]. The Mathematica implementation will be discussed in the next
section. The central objective in the numerical method is to search for solutions to
the time-dependent Schrédinger’s equation (TDSE) for which the norm of the wave
function is conserved perfectly at all times. This requirement is referred to in the
texts[32] as unconditional stability. To obtain unconditional stability in the TDSE, a
unitary approximation is made to the time-step operator U(7) = e=*"#. The specific
unitary approximation is obtained using the Trotter-Suzuki method of expressing the
exponential of a sum of two matrices as an infinite ordered product of the exponentials
of two individual matrices.

For a Hamiltonian consisting of two parts (free particle and potential energy), the
Trotter-Suzuki method expresses the exponential of the sum of the two matrices as

an infinite ordered product of the exponentials of the matrices:

4D = lim (PA/mezB/m)™ (3.1.1)

m—0o0
The index m is the order of the two Hamiltonian matrices (M x M). By expanding

both sides through a Taylor series, the error magnitude is found to be[33],

2
[|e=(A+B) _ geA/meaB/m| < 2_“;?”[ A, B ||l t1AI+1BID/m, (3.1.2)
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If A and B commute, then the right-hand side is zero.
The Trotter formula has been generalized to include more than two matrices in
the Hamiltonian. By setting x = —im7, where 7 is the time step, the generalized

Trotter-Suzuki formula is,

7.2

= II[4s, 4] || elelAl+IBID/m. (3.1.3)

1<i<j<n

||e—i1-(A,-+...+An) _ e—z"rAlme~i-rAn ” <

This formula is very useful not only in cases where more than three contributions
exist in the Hamiltonian, but also in situations where the Hamiltonian has been
decomposed into several contributions. The first-order approximation to eq. (3.1.3)
is,

U(r) = e7f41 | g7m4n, (3.1.4)
To see that U, is actually a unitary approximation to the time-step operator e~ ¥,

notice first that the hermitian conjugate of U is,
Ul(r) = ei4n . eim41, (3.1.5)

The product of terms is Uy (T)US(r) = I or Uy(r)~! = U}(r) from which it is seen
that U; is actually a unitary approximation.

To obtain higher-order approximations, several symmetrization techniques have
been developed[32] including a fractal symmetrization decomposition which is used
in the Mathematica implementation of the next section. As a brief demonstration of
the techniques, the example of Raedt[32] will be concisely outlined. Start with the
dimensionless form of the Hamiltonian for a non-relativistic particle experiencing an

external two-dimensional vector potential which reads,

H= —# { [% — 1A, (z, y)] + 8a_y2} + V(z,y). (3.1.6)
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The first step is to discretize the derivatives (first and second order) with respect to
the space coordinates z and y. The resulting difference equations to the fourth order

in the space mesh § = Az, Ay are,

1 .
RPTIEIE {[1 — 10( Ak + Az ) [Yrran(?)

+ [14+46(Ai—apk + Aik)|i—2k(t)
- 16[1 — 1:(5/2(141,]9 + Al+1,k)]1/]l+1,k(t) (317)
+ Yikt2 + Yre—2 — 16¥ k41 — 1691 -1(t)

+ [60 + 126% A7 + 48m%8°Vi k] x (t) + 0(55)}.

Hapy(2)

The indices k¥ and ! are the grid points for the space mesh ranging from k,! =
1,..., Lz 40 where L is the number of grid points in the specific direction.

The next step is to apply the product formula to difference equation 3.1.7. But at
this point, it is helpful to pause and reflect on whether a more optimized form exists
- a form more suited for computational purposes. One such method is to expand

in terms of a creation operator ¢'. By rewriting the wave function as,

() =53 el [0} (3.1.8)
=1 k=1
[(mr)) = e gt = 0)) (3.1.9)

the resulting first order unitary approximation is

9
Ui(r) = H e~ An (3.1.10)
n=1

where the Ap,s are expressed in terms of the creation and annihilation operators
c!,c. The remaining task is to translate these equations into a specific computer

implementation.
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3.1.1 Mathematica Mathlink Implementation

Specific implementations of the Raedt-Suzuki framework for solving the TDSE, the
Pauli equation, and the Dirac equation, have been supplied by Thaller[34] and Man-
fried Liebmann[35]. The paper by Manfried Liebmann includes specific algorithms for
one, two, and three-dimensional Schrodinger’s equation; two and three-dimensional
Pauli equation; and the two and three-dimensional Dirac equation. Liebmann has
also developed a Mathlink interface[31] using compiled C++ object for solving single-
particle systems within the Wolfram Mathematica software environment. In addition,
several helper functions are provided for the visualization of the output from the time
evolution of the wave function.

The remaining work of obtaining the various state-dependent potentials can pro-
ceed using standard Mathematica methods. Once the specific TDSE system has
been solved, the environment wave function can be derived in one of two ways. One
method is to solve the partial differential equation (2.3.7) numerically. Since the PDE
involves the wave function v, the amplitude will be interpolated first to produce an
‘interpolation function’ (Appendix A). A second method involves using the CSE with

appropriate boundary conditions.

3.2 Computation of the One-Dimensional Scatter-
ing Environment

Mlustrations of the SDVP and quantum potential for the single particle and environ-
ment will be produced for the common one-dimensional potential barrier and potential

well. To obtain the environment, eq. (2.3.7) must be solved. In one-dimension, the
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equation reads,

d’R, dR, B
Tz T 2—%Gs(x, t) —2V(z)Re(z) =0 (3.2.1)
where
1 dR,
s ) = 5 . . 2
Gs(z,t) R, dz (3.2.2)

Before solving the equation for R,, the space matrix is calculated for each time
increment by solving Schrédinger’s equation. The resulting space matrix for R, is
then converted into an ‘InterpolationFunction’ object in Mathematica, and assigned
as a function in the differential equation for R,. Several boundary conditions will be
tried until errors become minimal and the visualization of the environment quantum
potential displays reasonably.

Figures will be produced for the state-dependent potentials G, Gy, Q., Qs and
Qes- The time-development of the interaction between R, and R, will be plotted for

the potential barrier with an incident packet whose energy is half the barrier height.

3.3 Computation of the Two-Dimensional Aharonov-
Bohm Environment

The calculations for the AB-effect will be based on modifications of the Mathematica
notebooks provided by Thaller[34] and Liebmann[35]. A snapshot will be taken at the
seven hundredth iteration for a time step (dt) value of 0.002 (¢ = 700(0.002) = 1.4).
To demonstrate the characteristic AB shift, an infinitely long solenoid will be placed

at the center of the double-slit setup. The vector potential to be used is[35],

%(—xo,11), || <R
Ay = a(=o2 1), el (3.3.1)
a:zl-?-wg’ |$| >R
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Figure 3.1: Setup of the two-dimensional double-slit and AB-effect setup. An in-
finitely long shielded solenoid is placed at the slit center.

where R is the radius of the solenoid and « is the magnetic flux of the magnetic field

through the solenoid given by,
2ra = ® = BR?r. (3.3.2)

Several values of o will be used. The double-slit experiment corresponds to @ = 0. A
pattern shift to the right of the slit system is obtained for oo = .25 and to the left of
the slit system for o = .75. The effect of integral coil windings will be demonstrated
for a = 1. In all cases, the environment will be calculated by comparison with the
CSE. Figures will be produced for the state-dependent potentials G, G5, Q., Q5 and
Qes-
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3.4 Computation of the Two-Dimensional Dirac

Environment

Figure 3.2: Setup of the two-dimensional Dirac spinor and an infinitely long shielded
solenoid.

The calculations for the Dirac equation will also be based on modifications of the
Mathematica notebooks provided by Liebmann[35]. The evolution of a single-particle
and an environment wave will be calculated for a Dirac particle near a shielded vector
potential of eq. (3.3.1), located at 2 of the box length (fig. 3.2). Figures will be
produced for the wave function spinor components v; and %, for the environment
wave function 1., as well as for the state-dependent vector potentials Ge, Gs. The

environment will be calculated by comparison with the closed Dirac equation

(i’y“@u - m> Ysthe = 0 (3.4.1)
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where 1), is a two-dimensional Dirac spinor, and 1, is a complex scalar function.

3.5 Results of One-Dimensional Scattering

Figure 3.3[36] summarizes the results of computations of the one-dimensional scat-
tering. In the location of the barrier is placed a stationary wave packet. As time
progresses, the wave packet becomes irregular in regions of overlap with the envi-
ronment wave function. The inverse relationship between the particle wave function
¥s and the environment 1), causes several peaks and troughs to appear. Wherever a
peak occurs for one wave, a trough results in the opposite wave. It is further observed
that all variations of peaks and troughs occur in regions left of the right-side of the
barrier. This cut-off line presents a sort of turning point in the dynamics of the sys-
tem. Also observed is a split in the particle wave packet. The split is attributed to

the disturbance generated by the environment.
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Figure 3.3: Time development of the interaction of the single-particle wave function
Y5 (solid line) and the environment wave function 1. (long dashed line) for one-
dimensional particle and barrier system[36].
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3.5.1 Environment of the Potential Barrier

Figures 3.4, 3.5, and 3.6 show the different SDPs for the system of a particle incident
on a barrier. In the barrier region, the particle and environment SDPs behave very
differently. The particle SDPs, G, and @, display a series of sharp needle-like spikes
and holes, forming areas of strong repulsion and attraction. In front of the barrier,
the SDVP G, displays wide, flat, sail-type structures, whereas the SDP @, shows an
equal number of spikes in the place of sails. The situation is reversed for the SDVP
G. and the SDP (). - the G.’s display spikes and the Q.’s display sail structures at
the same locations. In the barrier region, both G and Q. display flat, tall, and wavy
walls. In general, an equal number of thin walls exist in both graphs.

As the energy of the incident wave packet is increased, two things happen. The
peaks and sails become shifted towards the back of the graphs. This is expected since
packets of higher energy are expected to arrive earlier at the barrier region than slower
ones. The number of spikes and thin walls in the barrier region decreases. These
results reflect the principle that more energetic packets have higher transmission
ratios than the less energetic packets. Finally, on close inspection, the potentials Q.
and Q., appear as nearly negative images of each other. This is expected by virtue

of their relationship in eq. (3.2.1).
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Figure 3.4: Left top to right bottom: State-dependent potentials G, G, Q,, Q.,
and G, for one-dimensional particle and barrier system. Energy of incident wave
packet is half barrier height.
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Figure 3.5: Left top to right bottom: State-dependent potentials G, G, Q,, Q.,
and G, for one-dimensional particle and barrier system. Energy of incident wave
packet is equal to barrier height.



o4

Figure 3.6: Left top to right bottom: State-dependent potentials G, Ge, Q,, Q.,
and G, for one-dimensional particle and barrier system. Energy of incident wave
packet is twice barrier height.
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3.5.2 Environment of the Potential Well

The figures for the potential well (figs. 3.7, 3.8, and 3.9) share similar properties as
those of the potential barrier. The same alternating spikes and sails are displayed in
regions front of the well. Similar effects are seen as the energy of the incident wave
packet is increased. However, in the well region, the results are radically different.
There instead, the well regions are characterized by several thin walls with increasing
height as time progresses. The same behaviour is seen for all SDPs. As the energy of
the incident wave packet increases, the number of walls decreases. Also, wall heights
increase less substantially than do the lower energy packets. Finally, it is observed
that the thickness of the walls increase for more energetic packets. These observations
reflect how for more energetic packets, the well is less effective than for less energetic

packets.
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Figure 3.7: Left top to right bottom: State-dependent potentials G, G, Q. Q.,

and Ge; for one-dimensional particle and well system. Energy of incident wave packet
is half well depth.
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Figure 3.8: Left top to right bottom: State-dependent potentials G, G, Q. Q.,
and G, for one-dimensional particle and well system. Energy of incident wave packet
is equal to well depth.
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Figure 3.9: Left top to right bottom: State-dependent potentials G, Ge, Q, ,Q.,
and G, for one-dimensional particle and well system. Energy of incident wave packet
is twice well depth.
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3.6 Results of the Two-Dimensional Interference

Figures 3.10 through 3.13 show SDPs G,, G, Qe, @, and Q. for a system of a gaussian
wave packet incident on a double-slit wall. The graphs show areas of a small region
behind the slit, near the scintillator screen. The probability amplitude R, shows the
expected interference pattern at the screen. The graphs are all symmetrical with
respect to the center line from the back where the packet leaves, to the front at the
scintillator location.

For a finite magnetic flux (fig. 3.11, @ = 0.25), the characteristic Aharonov-Bohm
shift is evident. The vector potential has shifted the pattern to the right of the
scintillator screen. The environment wave function, which represents the potential, is
not only shifted, but also diminished to the right. The SDPs G, and Q, are polarized
to the right, accompanied by an increase in potential strength to the left of the screen.

As the magnetic flux is further increased to o = 0.75 (fig. 3.12), the same shift
is evident, but in the reverse direction - to the left of the screen. The SDPs G, and
Q. are this time polarized towards the left, accompanied by an increase in potential
strength at the right of the screen. When the magnetic flux is brought to an integral
value a =1 (fig. 3.13), the AB-shift disappears and the SDPs behave accordingly.
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Figure 3.10: Left top to right bottom: Wave amplitudes R,, R., state-dependent
potentials G, Ge, Q,, and Q,, for two-dimensional particle and slit system at ¢ = 1.4.
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Figure 3.11: Left top to right bottom: Wave amplitudes R, R., state-dependent
potentials G, Ge, Q,, and Q, for two-dimensional Aharonov-Bohm setup at t = 1.4.
Magnetic flux o = 3.
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Figure 3.12: Left top to right bottom: Wave amplitudes R,, R., state-dependent
potentials G, Ge, Q,, and Q, for two-dimensional Aharonov-Bohm setup at t = 1.4.
Magnetic flux a = 3.
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Figure 3.13: Left top to right bottom: Wave amplitudes R;, R., state-dependent
potentials G, Ge, Q,, and Q, for two-dimensional Aharonov-Bohm setup at t = 1.4.
Magnetic flux a = 1.
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3.7 Results of the Two-Dimensional Dirac Envi-
ronment

The results of the Dirac computations, fig. 3.14, displays the circularly dispersing
two components of a two-dimensional Dirac spinor. As the spinor expands towards
the region where the shielded magnetic coil is placed, the spinor packet displays high
irregularities. The environment wave amplitude R, and the SDVP G., reflect these
fluctuations in the vicinity of the shielded coil. The irregularities dissipate further

away from the center of the vector potential.
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Figure 3.14: Left top to top bottom: Dirac wave amplitudes Ry;, Rz, the environment
amplitude R,. Right top to right bottom: Dirac state-dependent potentials Gy, G2
and the state-dependent environment potential G..
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3.8 Discussion of Results

The graphs displayed in this section underline two dominating factors in the rela-
tionship between the single particle and the environment. Since the initial conditions
for the CSE used in most of the calculations involves the use of a gaussian packet
equal to the initial condition for the single particle system, the initial environment
is just a constant value. As time progresses, the environment amplitude takes on
a more familiar oscillating structure. A trial of different initial conditions such as
those employed in D’Amico[36], reveals that the evolution of 1, quickly progresses
towards similar graphical forms as those studied here in the text. It must therefore
be concluded that the form of ¢, and the corresponding derived SDPs G, and Qe,
are dominated by the single particle wave function v,. More specifically, from a quick
scan of the graphs, it is obvious that the dominating component of the figures is the
state-dependent vector potential G,. All other SDPs take on some variation of this
potential. However, this is to be expected since 1, is determined by the classical
potentials, which are pre-defined functions in the calculations. The environment has
little choice but to take on a form which reflects this initial selection - a form which is
stored in the dynamics of ¥;. In a more general case - one where SDR, does not take
place - the environment will be less constrained and only variably affected by 1s.
To conclude, it is remembered that initial conditions chosen are based on a trial
and refinement process. Whether the environment graphs appear visually realistic or
not, they represent only one of an infinite set of environments, some of which may

present more visually stunning and intuitive displays.



Chapter 4

Interpretive Analysis

Symmetry principles are at the heart of modern physics. It is the reason why Ein-
stein’s theory of Relativity quickly became popular over the competing equally valid
ether theory of Lorenz[37]. Today, a specific symmetry principle - gauge symmetry
- has prompted a newly kindled and energetic debate. Like the numerous debates
on the interpretation of quantum mechanics of the early and mid years of the 19th
century[2], the reality and interpretation of gauge potentials proves to be the next
topic from which a crop of new ideas will emerge. The gauge debate can be summa-
rized by posing two questions: one, are gauge potentials real or simply express some
freedom to choose internal space coordinates of a wave function; two, if they are real,
how are we to understand the lack of correspondence between a particular potential

A, and a physical situation? Richard Healey[12] writes,

Different interference patterns corresponded to different 4-vector fields
A,...Interference phenomena provide evidence that there is more to elec-
tromagnetism than is represented by the field F,,, but there is nothing
in these phenomena or in the theory that accounts for them to single

out any particular A, as faithfully representing this additional physical
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structure...

In this chapter, some observations will be made towards interpreting the need and
usefulness of the environment wave function, the state-dependent classical potentials,
and the CSE. Some issues to be addressed include the question of whether 1, violates
current experimental data; a resolution to the BQM complication; the new version
of the BQM classical limit; a suggestion on how 1), can be used to explain how A,
may be made to faithfully represent additional physical structure; and the question
of quantum coexistence and the ether concept. The chapter will conclude with a

proposal on how Bohm's suggestion of extending quantum theory may be attained.

4.1 Experimental outcome and the environment
wave function 1,

Throughout the derivations of chapter 2, special attention has been paid to ensure
that the closed Schrodinger’s equation reproduces the same results as SQM, and
BQM. But upon further examination it is seen that the wave functions of SQM and
BQM (v,) differs from the total wave function of the CSE which is 9,1.. At first
sight, it appears that the addition of the extra environment wave function describes
a different physical situation which can easily be tested experimentally. For example,
s of SQM and BQM might describe a scattered wave packet, while 1,1, describes
a free wave packet. Obviously, these describe two very different physical situations.
There are two possibilities in resolving this problem. The first way deals strictly with

SQM, the second way appeals to BQM.
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One way to resolve the problem is to assume that 1), is not detectable in present-
day experimental setups. The product structure of the CSE ensures that when 1), is
very large, 1. will be very small. The two packets will not overlap on the average.
But this is not a satisfactory explanation. What specifically about 1, is it that makes
it undetectable? Why does 1; dominate the experimental outcomes?

Another way to resolve the question of experimental outcome is to argue that
SQM does not allow for a full description of quantum mechanics, and appeal to BQM
for the solution. To see if the use of the CSE represents a different physical situation,
the trajectory of the single-particle g4(t) needs to be looked at. This is relevant
because Bohm’s theory explains interference patterns as the statistical accumulation
of particle dots on a screen. Each particle leaves the electron gun with a slightly
different initial condition than the other electrons. The density of electrons on the
screen will produce a pattern equal to the probability density R, = Yips. If it can
be shown that gs(t) of the system (t;) equals gs(t) for the system (15, %) then the
interference pattern will be identical for both systems and the experimental outcome
of the two systems will be indistinguishable from each other.

To see that this is the case, the two particle equations of motion for system ()

and system (1),, ¥) need to be compared. For (¢,) the equation reads,

md:l?s = —V(V) = V(Q,). (4.1.1)
The equation for (1, 1) is,
d*gs
m—- = ~V(Qes) — V(Qe) = V(Qs). (4.1.2)

But the combined environment and interaction quantum potential is equal to the

scalar potential (V(Vy) = V(Qes) + V(Qe)). The trajectory of the particle s will be
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equal in both descriptions (v;) and (s, %e). This also holds true if a vector potential
is present. The resulting interference pattern will appear identical and experimental
outcomes will not differ. The trajectory concept of BQM has come to the defense of

the closed Schrédinger’s equation.

4.2 Resolution of the BQM Complication

SQM BQM

%Jﬁe <_H*_ (7'1,.-.,7”1\[) ¢s,¢e ‘—H‘—" (rlv'“)TN)

goo131ed
sapo1zred

Observables Beables

Figure 4.1: The relationship among objects of the formalism in non-relativistic SQM
and BQM using state-dependent classical potentials

It was pointed out in chapter 1, that the use of the predefined functions V, A to
represent classical potentials in quantum mechanics, created a rather distinct role for
V(z) from the quantum potential. It was mentioned that the dual role of V(z) was
a complication in BQM. The SDCP however, does not suffer from the same apparent
complication. Since V'(z) is replaced by @, = Qe + Qes, and since Q, is a part of the

total quantum potential, it has been placed on equal footing with the Qy (Q;). The
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new fig. 4.1 representing the relationship among objects of BQM and SQM shows
not only how the complication in BQM is resolved, but also shows that N RQM and
QFT share the same formalism with the exception of co-dependency (of particle and
potential field) at the level of observables or beables.

A result of the changes introduced by the environment wave function is that
the classical limit of BQM has changed from Qy = Qs — 0 to the new condition
(Vi, Ay) SPR (V, A), where the set (Vj, A,) contains the state-dependent potentials.
What this shows is that the classical limit is approached not as the quantum potential
vanishes, but rather as the total force becomes independent, or effectively independent
of the quantum state. This simple result should seem obvious, since the passage to
the classical world cannot be viewed as the elimination of quantum effects alone, but

rather as the introduction of classical effects.

4.3 Gauge Potentials and the AB-Effect

The paper of Eynck, Lyre, and von Rummell[19] summarizes the AB-effect by high-
lighting three rival interpretations termed the A, B, and C-interpretation. In the
A-interpretation, the gauge potential A, is taken as the basic entity. In the B-
interpretation, it is the magnetic field which is essential. And, in the C-interpretation,

the closed loop or holonomy integral (the Dirac phase factor)

exp (z]{ A- d:v)
c

is taken as the basic physical object. Each interpretation offers some advantages and
disadvantages. For example, the A and C -interpretation allow for local actions while

the B-interpretation describes nonlocal behaviours[19]. The literature[12] indicates
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a preference for the C-interpretation but not without some resistance. Healey[12]

mentions one such objection,

The objection is that holonomy properties cannot be nonseparable, since
it is metaphysically unacceptable to suppose that space-time regions have
global properties not determined by local properties at their constituent
points. No scientific theory may postulate such “free-floating” global
properties. If a gauge theory is to remain within the realm of science,
rather than postulating miracles, it must provide some underlying lo-
cal structure—novel gauge properties or objects—to provide the necessary

metaphysical support for holonomy properties.
The response to this question, cited by Healey is,

It seems to me that there is remarkably little to this metaphysical ob-
jection. It is reminiscent of Cartesian objections to Newtonian science.
The response is straightforward: Nonseparable holonomy properties are
no more “occult” or unscientific than Newtonian forces. In both cases,
empirical success of the theory that postulates the allegedly problematic
structures justifies belief in them, independently of whether or not fur-
ther theorizing will turn out to provide a more familiar grounding for
these structures.

Epistemological objections may seem more promising. The idea here is
that if the gauge theory is true, then there are striking facts that can sat-
isfactorily be explained only by postulation of local theoretical structure

that determines holonomy properties. Inference to the best explanation
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therefore warrants that such structure indeed underlies these global prop-

erties.

The debate therefore is not leveled at the worth, beauty, or simplicity of the holon-
omy interpretation but rather that no explanation is given to the underlying physical
structure resulting in holonomy properties. This is exactly the objection mentioned
by Healey to the A-interpretation. It is concluded therefore that much of the gauge
debate is the lack of clarity in the underlying structure, although the preferred holon-
omy does solve the problem of the surplus structure of the gauge potential. How then
is gauge to be understood in the CSE interpretation?

The physical object of the CSE is the environment wave function 1,. It is related
to the gauge potential by the equation,

. Vb
G, =ih——.
Ve

The functional dependence of 9, on G, can be obtained by an integration yielding,

e = % f{ G, dz*.

This integral exists in loop-space and is just the holonomy mentioned above. The
environment wave function can therefore be viewed as yet another interpretation of
gauge, say the E-interpretation. It combines all three interpretations, removes the
surplus structure arising with the gauge potential, and also provides an underlying
physical structure by introducing the environment. Unfortunately, like all quantum
potentials, it will necessarily describe nonlocal behaviours. The freedom to choose
a gauge potential is hence related to the freedom to choose an environment which
leaves 1), unchanged. As mentioned throughout this thesis, an infinity of different

environments may lead to the same results.
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4.4 Quantum Coexistence, the Ether, and Forces

State-dependent classical potentials and especially the CSE may be seen as a step
backward towards the ether concept of the 1900’s. When analyzing a free particle in
SQM, the picture is that of a free wave packet evolving in time. The space around it is
imagined to be empty. In BQM instead, the picture is that of a particle traveling under
the influence of a quantum potential derived from the free wave packet. Although the
particle is free classically, it is not free quantum mechanically - no classical potential
is present but a quantum potential is nonetheless finite throughout space. The CSE
takes this a step further. The total wave 159, is never completely free of any potential
- classical or quantum. If the free Schrédinger’s equation of SQM is compared with
the CSE, it is observed that there are several ways for both systems to be equal. The
environment wave function may simply be set to a constant C, throughout space for
all time. In this case 1, — Cv; (C' =1 from normalization), and both waves evolve
the same way through space and time. However, 1, = C is only one of many possible
choices acceptable by the CSE which creates an equivalent free system as in SQM. To
see this, the constraint on the environment must be obtained by expanding eq. (2.3.1)

as a free part and an interacting part,

O B, [ O KV RV,
ot Tom" V2= <m v Tom g Tm s )Y

This equation is equal to the free Schrodinger’s equation if the right-hand part van-

ih

(4.4.1)

ishes, or

O RV, RRVVR,
e Tm e, T m v

The environment must therefore obey a Schrodinger-like equation with the environ-

=0. (4.4.2)

ment coupled wave function dependent on the wave function of the single particle.
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This complicated coupling will only yield a free-Schrédinger particle if the environ-
ment responds appropriately according to eq. (4.4.2).

Viewed this way, the environment resembles the ether explanation provided by
Lorenz to explain the null results of the Michelson-Morley experiment[37]. Such an
approach is criticized for two reasons, first because it is seen as a ‘conspiracy’ theory
and second, because it has likewise increased the complexity of the description of
nature. By conspiracy is meant that nature works in such a way that a compensating
effect exists which is undetectable but which can be explained by simpler means. In
the case of Lorenz’s ether theory, the ether causes a nonmeasurable contraction of
length of the arms in the Michelson-Morley experiment. But since the contraction
cannot be measured, the ether cannot be discovered. Nature is therefore seen to
conspire and to present us with results which are better explained by simpler terms.
The special relativity theory provided another explanation but without the ether and
with an additional simplifying benefit of symmetry. In Zahar’s philosphical appraisal

of Einsteins’s contribution versus that of Lorenz, he writes[37],

The ether programme did not collapse but was superseded by a pro-

gramme of greater heuristic power.

It is therefore worth asking whether the CSE falls under the category of a conspiracy
theory, and whether it has violated the Occam’s razor by including yet another hidden
variable (or hidden wave v.) to the already hidden variables of BQM.

To address the first part of the question - conspiracy or not - the Feynman path
integral will be recalled. As seen from chapter 2, the environment wave function
originated from the Feynman path integral. The path integral was chosen because it

possessed the special property which Feynman described as the main advantage of the
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path integral approach. To recap, it will be remembered that a system ¢ interacting
with a second system @ can be written as a path integral without specific reference
to @ - the effects of @) are summarized in an environment functional 7,. The path
integral is,

Ko = | " e (35) | latonoacs (443)

This allows for the possibility that several distinct systems, say @1, @, ..., @ all have

the same environment functional 7,. For example, if T, can be expressed as

o] = e (3 [ aV (),

then the problem is equal to the solution of Schrédinger’s equation for a scalar poten-
tial V(g,t). But V may originate from an infinite set of possible environment func-
tionals including the simplest possible case, the Langrangian of a scalar potential.
This presents the same situation used to explain gauge symmetry and the AB-effect.
Hence, if the environment wave function admits a conspiracy theory, it must be seen
as originating from the Feynman path integral.

The second part of the question can be argued in different ways and is victim to
personal taste. On the one hand, a new quantity is introduced .. On the other hand
several quantities are removed, namely the classical potentials V and A. Whether
this constitutes agreement with or violation of Occam’s razor is not clear. Either
way, as mentioned in the previous answer, the concept of an environment wave func-
tion, or environment amplitude is already admitted by the Feynman path integral.
What is clear however, is that the CSE replaces the classical potentials which ap-
pear asymmetrically in Schrédinger’s equation with a product wave function 1,1,
which appears symmetrically. The CSE therefore introduces further symmetries not

admitted by SQM and Schrédinger’s equation.
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So then, how are forces to be interpreted according to the CSE. As seen from fig.
3.3, the usual picture of 1, bouncing off a potential wall is changed to a picture of the
coexistence of two waves. The law of coexistence between wave components 15 and
e is responsible for both barrier penetration and splitting of the particle self-wave
packet. As mentioned in D’Amico[36], “this is a radically different picture in which
the produces a disturbance, such as would occur in the presence of a wind or ether; it
does not create a barrier”.

Implications on forces, are that they are not the interaction of fields so much as
they are the coexistence of components of the quantum wave function - an internal
space. The usual way of dealing with forces is to include interactions terms obey-
ing the required symmetries into the Langrangian for the combined system. The
interaction is assumed beforehand. The CSE instead assumes a general form for
the system; the forces come into play as constraints or complex boundary conditions
which produce the same behaviour as would an assumed predefined form for the in-
teraction. The constraint is effectively caused by the form of the environment which
can take on infinite values for the same force. All forces are therefore fictitious and
mere appearances from the coexistence of separate wave functions of a product wave
function.

The difference between the two viewpoints is that in the former, a source is as-
sumed such as an electromagnetic field. However, in the latter, the wave function
is primary, whereas the presumed source field is an appearance or a specific aspect
of the amplitudes. The electromagnetic field for example, is secondary - the wave
function is primary. This resembles the geometric nature of general relativity. A

particle appears to travel a force-constraining path provided by the curvature derived
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from the mass density structure of the system. The gravitational force is an illusion
created by the curved geometric intervals. The notion of curved space is primary,

while the force is secondary.

4.5 Extension of SQM and BQM

It has been suggested by David Bohm(5] that a possible extension to the current
quantum theory can come in the form of a nonlinear addition to the Schrédinger’s
equation. The nonlinearity is introduced to serve the same purpose as in the Ghirardi,
Rimini, Weber([38] approach. For a large many-body systerﬂ, the overall wave function
would tend to collapse towards the particle positions. It is therefore worth asking
whether the CSE admits a similar type of extension. The answer is that the CSE
already has in it the beginnings of Bohm’s suggested extension. It is noted that the
SDR required to regain the results of SQM and BQM need not occur. In this case,
the CSE is a function of two unknowns 1, and 1.. The condition of SDR provides the
additional information necessary to make the CSE a well-posed problem. In situations
where the potentials are non-classical and non-relativistic, neither QFT nor SDR is
necessary. An additional equation would be needed to make the CSE a well-posed
problem. What would the second equation look like? From the point of view of SQM,
there is no indication of how to tackle such a program. From BQM however, the issue
sounds more promising since what is missing is information on how the environment
and particle interact. Clearly this depends on the positions of the particles within
the environment system. When a classical potential is introduced to represent the
environment, the particle paths are abstracted into the form of a classical potential

V(g). The second equation necessary to make the CSE solvable should therefore



contain particle paths. In this way, the suggestion of Bohm may be realized.
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Chapter 5

Conclusion

The current thesis has proposed that the classical potentials of non-relativistic quan-
tum mechanics be replaced by state-dependent quantum potentials in non-relativistic
quantum theory. Justification for the proposal has come by appeal to observations
derived from David Bohm’s ontological interpretation of quantum mechanics, quan-
tum field theory, and the Feynman path integral method. Through use of the notion
of a quantum potential and by taking literally concepts such as the environment
and influence functional of Feynman’s path integral method, a closed Schrédinger’s
equation was derived.

The method has served to highlight several imprecisions with non-relativistic
quantum theory - both for SQM and BQM. The picture of a free system - as one
in which only a single system ¢ is present - has shifted to one in which two systems
coexist in an apparently disconnected and independent fashion. The problematic dual
character ascribed to the classical potential of Bohm’s ontological theory has been
remedied by casting the potential in a form which has placed it on an equal foot-
ing with the quantum potential. Finally, the surplus structure of gauge potentials

has been explained as a mapping of a specific class of vector potentials to a set of
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environments which reproduce the same observable experimental outcomes.

The method however, has its limitations. The transformation applied to the Feyn-
man path integral has removed magnetic effects. This does not pose a problem since
the goal of the thesis has been to demonstrate the value of state-dependent poten-
tials - a program which can be sufficiently demonstrated with only a non-vanishing
vector potential. But a more rigorous approach could be developed by method I
of sect. 1.5.1. However, the lack of progress in an ontological theory of quantum
electrodynamics makes that program a limited one also.

At the heart of state-dependence has been the environment wave function .. In
some ways the introduction of 1. is an inescapable return to ether concept of the
19th century. But on a deeper level, it lays testimony to Bohm’s philosophy of order
and wholeness[39] - that an apparent disconnected order 1 is never separate from an

implicate order 1, from which it unfolds.

*kk
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Appendix A

Appendix - Mathematica
Notebooks

A.1 One-Dimensional Scattering

(*/- - \*)
(*| Portions based on Manfred Liebmann[35] and %)
(x| Berndt Thaller[34] [ %)
G \*)

<< QuantumMechanics‘QuantumKernel®;

(x/ -——- \*)
(x| Initialize values [%)
(A -- /%)

gmInitialize[qmSystem_,qmStrength_]1 := Module[{},

0ff [General: :"spelll"];
Progress["Initializing"];

reps = 8;

T =0;

totreps = 0;
borderleft = -35;
borderright = 35;

dx = 0.001;
dt = 0.001;
PO = 6.;

x0 = -7.;
k0 = p0/2;

qmPotential = gmSystem;
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quTitle = {"1D_Barrier", "1D_Well","1D_Barrier_Closed"};

qmEnergy = gmStrength;
qmDataDirectory =
StringJoin["T:\Data\\",

quTitle[[gmPotentialll, "-",
ToString [qmEnergyl];

0ff [CreateDirectory::"ioerr"];

CreateDirectory[qmDataDirectory];

SetDirectory[qmDataDirectory];

1;
(x/ - -\%)
(*| Display progress |*)
=\ /*)
Progress[str_] :=Module[{pstr=str},

sTime=SessionTime[] ;

Hours = Quotient[ sTime,3600];

rSeconds =Mod[sTime,3600];

Minutes = Quotient[rSeconds,60];

Seconds = Mod[rSeconds,60] ;

Print[pstr," ","Time=",Hours,":",Minutes,":",

Seconds," Memory=",MemoryInUse[]];

1;
(x/ \*)
(x| Define Potentials | %)
(\ -——= /%)

qmPotential[] := Modulel[{},

Off [General::"spelli"];
0ff [NDSolve: :"ndsz"];

Progress["Defining Potential"];

Vm = { 1, -1}; En = {1/2, 1/4, 1/8};

VO = En[[gmEnergyl] * p0~2 * Vm[[qmPotentiall];
Vix_] If[Abs(x] > 1, 0, VOI;

Hlx_] Exp [I*k0*x] ;

TblV = Table[V[x], {x, borderleft, borderright, dx}];

QfnV = QNewFunction[Re[TblV], Im[TblV]l];
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(e e e \*)
(x| Define initial wave packet | %)
e /%)

qmWavePacket[] := Module[{},

Progress("Defining Wave Packet"];

G[x_] (1/Pi)~(1/4) Exp[-(x - x0)"2/2];

GIx_] (1/Pi)~(1/4) Exp[-(x - x0)"2/21;

TblPsiS = Table[Module[{x = x1 - x0}, H[x]*G[x]],
{x1, borderleft,borderright, dx}];

QfnPsiS = QNewFunction[Re[TblPsiS], Im[TblPsiS]1];

Hs = QSchroedingeriD[QfnV, 1, dx];

1;

e \*)
(%] Store results to disk I %)
O\ /%)

StoreData[RRe_,RRs_,GGe_,GGs_,GGe_,QQs_,QQe_,QQes_,T_]
:= Module[{},

Progress["Storing Data"];"
gqmName = ToString[100000 +10000 * T];

Export [StringJoin["Rs", qmName,
".1st"],TblRRs,"Table"];

TblRRe = Table[RRe[x], {x, -20.0, 2.0, .1}];
Export [StringJoin["Re", qmName,
".1st"], TblRRe,"Table"];

TblGGs = Table[Evaluate[GGs[x]], {x, -10, 1.5, .0025}]1;
Export [StringJoin["Gs", qmName,
.1st "], TblGGs,"Table"];

TblGGe = Table[GGe, {x, -10, 1.5, .0025}];
Export[StringJoin["Ge", qmName,
".1st"], TblGGe, "Table"];

TblQQs = Table[QQs, {x, -10., 1.5, .0025}1;
Export [StringJoin["Qs", qmName,
".1st"],Tb1QQs, "Table"];
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TblQQe = Table[QQe, {x, -10., 1.5, .0025}]1;
Export[StringJoin["Qe", gmName,
".1st"], TblQQe,"Table"];

TblQQes = Table[QQes, {x, -10., 1.5, .0025}];
Export[StringJoin["Qes", qmName,
".1st"], TblQQes,"Table"];

TblQQt = Table[QQt, {x, -10., 1.5, .0025}];
Export [StringJoin["Qt", qmName,
".1st"], TblQQt,"Table"];

1;

(/ -- \%)
(*| Perform calculations [%)
i ———— /%)
Do[

Do[

quInitialize[m,n];
qmPotentiall];
qnWavePacket [] ;

Progress[StringJoin["Evaluating",
ToString[m],"~",ToString[n]];

Do(

totreps = totreps + reps;
T=T+ dt * reps;

QTimeEvolution[HS, QfnPsiS, dt, 6, reps];
TblPsiS = QGetArray([QfnPsiS];

TblRs = Abs([TblPsiS[[1]] + I TblPsiS[[2]11];

RRs = ListInterpolation[ TblRs, {{borderleft, borderright}},
InterpolationOrder ->6];

GGs[x_] := (RRs’[x]/RRs[x]);
QQs = -0.5%(RRs’’ [x]) /RRs[x]);

NSolution = NDSolvel[ { 0.5%Y’’[x] + GGs[x]*
Y’ [x] == -V[xI*Y[x], Y[1] == 1, Y’[1] == 1}, Y,
{x, borderleft,borderright}, MaxSteps ->Infinity];



RRe = Y /. First[NSolution];
GGe = RRe’[x]/RRe[x];

QQes = -GGs[x]*RRe’ [x]/RRe[x];
QQe = V[x] - QQes;

QQt = V[x] + QQs;

TblRRs = Table[RRs[x], {x, -20.0, 2.0, .1}];

StoreData[RRe,RRs,GGe,GGs,GGe,QQs,Q0e,QQes, T_];

,{800}1;
b {m’ 1 ’3}] ;
,{n,1,2}];
(x/ \*)
(x| Notebook End | %)

(*\ -- /%)
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A.2 Two-Dimensional Double-Slit

(x/---

(*| Portions based on Manfred Liebmann[35] and
(x| Berndt Thaller([34]

(#/mmmm e

<< QuantumMechanics‘QuantumKernel‘;

(x/

(*| Initialize values

($\- -
qminitialize[qmSystem_,qmStrength_] :=Module[{},

Off [General: :"spelli"];
0ff [CreateDirectory::"iocerr"];

T = 0;

totreps = 0;

reps = 50;

dt = 0.002;

dx = 0.02;

gmAlphas = {0, 1/4, 3/4, 1};

qmTitles = {"2D_Double_Slit", "2D_AB_Effect"};

qmAlpha = gmStrength;
qmTitle = gqmSystem;

qmWorkDirectory =

\%)
[*)
[*)
\*)

\*)
[*)

StringJoin["T:\Data\\", qmTitles[[qmTitle]], "-",

ToString[qmSystem] ,"\dx=", ToStringl[dx]];

CreateDirectory{qmWorkDirectory];
SetDirectory[gmWorkDirectory] ;

borderleft={-14.,-14.};
borderright={14.,14.};

dataleft = -4.;

dataright= 4.;

listleft = (dataleft - borderleft[[1]])/dx;

listright = -1 + ( borderright[[1]]+ dataright)/dx ;

plotleft=dataleft+dx/2;
plotright=dataright-dx/2;
gmPos={-1.,-1.};
qmMomentum={6.,6.};

Alpha = qmAlphas[[qmAlpha]];
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(x/ \*)
(*| Define Potentials [ %)
(x\ /*)

qmPotential []:=Module[{},
If [gmTitle==2,

philx1_,x2_] := ArcTan[x2/x1]-Pi;

fnAl = Compilel[{x,y},-Alpha*y/(x"2+y~2)]1;

fnA2 = Compile[{x,y},Alpha*x/(x"~2+y~2)];

tblAl = Table[fnAl([x,y],{y,borderleft[[2]]+dx/2,
borderright [[2]]-dx/2,dx},
{x,borderleft[[1]]+dx/2,borderright[[1]]—dx/2,dx}];

tblA2 = Table[fnA2[x,y]l,{y,borderleft[[2]]+dx/2,
borderright [[2]]-dx/2,dx},
{x,borderleft[[1]]+dx/2,borderright[[1]]—dx/2,dx}];

vector = QNewFunction[tblA1,tblA2];

scalar = None;

Remove [tblA1,tblA2];

philx1_,x2_] := 0;
vector = None;
scalar = None;

1;
1;
(x/ \%)
(*| Define initial wave packet | %)
(\ /%)

qmWavePacket [] :=Module[{},
0ff [General::"spelli"];
gauss[x_,t_,a_,x0_,p0_] :=
Sqrt[1/(1+I t a)]x*
Exp[-((a/2) (x-x0)"2-I p0 (x-x0)+
It p072/2)/(1+I t a)];
t0=-0.5;

wave[x0_,y0_,kx_,ky_,a_]:=
Compile@e{{x,y},
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Simplify[(a/Pi)~(1/2) gauss[x,t0,a,x0,kx]
gauss[y,t0,a,y0,kyl*
Exp[I*Alpha*phil[x,y]]1};

f=vave[qmPos [[1]1],qmPos[[2]],qmMomentum[[1]],qmMomentum[{2]],.5];

psiO=Table[f [x,y],{x,borderleft [[1]]+dx/2,
borderright[[1]]-dx/2,dx},
{y.borderleft[[2]]+dx/2,
borderright [[2]]-dx/2,dx}];

1;

(x/ \*)
(x| Store results to disk [ %)
O\ -- /%)

StoreData[RRe_,RRs_,GGe_,GGs_,GGe_,QQs_,QQe_,QQes_,T_]:=
Module[{},

Off [General: :"spelll”];
quName = ToString[100000 +10000 * T];

Progress{["Storing Rs"];

TblRRs = Table[RRs[x,y],{x,plotleft,plotright,.01},
{y.,plotleft,plotright,.01}];

Export [StringJoin["Rs",qmName,
".1st"],TblRRs, "Table"];

Progress["Storing Re"];

TblRRe = Table[RRel[x,y],{x,plotleft,plotright,.01},
{y,plotleft,plotright,.01}];

Export [StringJoin["Re",qmName,
".1st"],TblRRe, "Table"];

Progress["Storing Gs"];

TblGGs = Table[Evaluate[GGs[x,y]],{x,plotleft,plotright,.01},
{y,plotleft,plotright,.01}];

Export [StringJoin["Gs",qmName,
".1st"],TblGGs, "Table"];

Progress["Storing Ge"];

TblGGe = Table[Evaluate[GGe[x,y]],{x,plotleft,plotright,.01},
{y,plotleft,plotright,.01}];

Export [StringJoin["Ge",qmName,
".1st"],TblGGe, "Table"];
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Progress["Storing Qs"];

TblQQs = Table[Evaluate[QQs[x,yl],{x,plotleft,plotright,.01},
{y,plotleft,plotright,.01}];

Export [StringJoin["Qs",qmName,
".1lst"],TblQQs, "Table"];

Progress["Storing Qe"];

TblQQe = Table[Evaluate[QQe[x,y]],{x,plotleft,plotright,.01},
{y,plotleft,plotright,.01}];

Export [StringJoin["Qe",quName,
".1st"],TblQQe, "Table"];

Progress["Storing Qes"];

TblQQes = Table[Evaluate[QQes[x,y]],{x,plotleft,plotright,.01},
{y,plotleft,plotright,.01}];

Export [StringJoin["Qes",qmName,
".1st"],TblQQes, "Table"];

1;

(/- \%)
(x| Remove invalid data from array [ %)
(\- /%)

CleanArray (] :=Module[{},

1;

(x/
(x|
(+\

aDim = Dimensions[arrRR];
xDim = aDim[[1]];
yDim = aDim[[2]];

Progress["Cleaning Array "];

For[i=1,i<=xDim,i++,
For[j=1,j<=yDim, j++,
If[ arrRR[[i,j}]=="ComplexInfinity",
arrRR[[i,j11=0

1;
1;
1;
\*)
Generate state-dependent potentials [%)
/%)

StateDependentPotentials[] := Module[{},

Progress[ "Importing Rs "];
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arrRR = Import["Rs.lst", "Table"];

Progress["Interpolating Rs"];
RRs = ListInterpolation[arrRR, {{plotleft, plotright},
{plotleft,plotright}},InterpolationOrder -> 6];

Progress["Importing Re "];
arrRR = Import["Rc.lst","Table"]/arrRR;

Progress["Interpolating Rs"];
RRe=ListInterpolation[arrRR,{{plotleft,plotright},
{plotleft,plotright}},InterpolationOrder—>6];

Progress[ "State-dependent potentials "];
GGs[x_,y_]:=-(D[RRs,x] +D[RRs,y])/RRs[x,yl;
GGe[x_,y_]:=-(D[ RRe,x] +D{ RRe,y1)/RRe[x,y];
Qs[x_,y_]:= -0.5(D[RRs,{x,2}]) + DIRRs,{y,2}]/RRs[x,y];
QQelx_,y_]:= -0.5(D[RRe,x]) +D[RRe,{y,2}1) /RRe[x,y];
QQes[x_,y_1:= ~(D[RRs,x] *D[RRe,x] + D[
RRs,yl*D[RRe,y])/(RRs[x,y]*RRe[x,y]);

StoreData[RRe,RRs,GGe,GGs,GGe,QQs,QQe,QQes,T];

1;

(+/- )
(x| Display progress | %)
e\ -/%)

Progress[str_] :=Module[{pstr=str},

sTime=SessionTime[];

Hours = Quotient[ sTime,3600];
rSeconds =Mod[sTime,3600] ;
Minutes = Quotient[rSeconds,60];
Seconds = Mod[rSeconds,60];

Print [pstr," ","Time=",Hours,":" ,Minutes,":",
Seconds,” Memory=",MemoryInUse([]];

1;

(x/ \*)
(%] Perform calculations | %)
S /%)

0ff [General::"spelli"];
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Dol

qmInitialize [qmSystem] ;
quParameters[] ;
qmPotentiall];
qmBoundary (] ;
quWavePacket [];

Progress["Beginning calculations"];

Dol
If[m == 1,
Ha = QSchroedinger2D[scalar, vector,
domObj, 1., 1., dx ]1;
psil = QNewFunction[4. Re[psiO}, 4. Im[psi0]];
Ha = QSchroedinger2D[None, None,
None, 1., 1., dx 1;
psil = QNewFunction[4. Re[psiO], 4. Im[psi0Q]];
1;
Do[

totreps = totreps + reps;
T = totreps * dt;

QTimeEvolution[Ha, psiI, dt, 6, reps ];

If[m == 1,
psi2 = QGetArray([psiI);
arrRR = Take[

Abs[psi2[[1]] + I psi2[[211],
{listleft, listright},
{listleft,listright}];

Clear[psi2];
Export[StringJoin["Rs", ToString[totreps],

".1st"],arrRR, "Table"];

Clear[arrRR];

3

psi2 = QGetArray[psil];
arrRR = Take[

Abs[psi2[[1]] + I psi2[[2]1],
{listleft, listright},
{listleft,listright}];

Clear{psi2];
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Export [StringJoin["Rc", ToString[totreps],
".1st"],arrRR, "Table"]l;

Clear[arrRR];

1;

, 1n, 1, 14}
1;

If [qmSystem > 1, QDisposeFunction[vector]];

If[m == 1, QDisposeFunction[domObj]];

QDisposeFunction[psiI]; QDisposeQOperator[Ha] ;
, Am, 1, 131

StateDependentPotentials[];

,{qmSystem, 1, 4}];

(x/ - \*)
(*| Notebook End [%)
R\ === - /%)




A.3 Two-Dimensional Dirac

(x/ \*)
(*| Portions based on Manfred Liebmann[35] and | %)
G+ | Berndt Thaller[34] | %)
(x/ \*)

<< QuantumMechanics‘QuantumKernel‘;

(x/ -\#)
(*| Initialize values | %)
G\ /%)

gmInitialize[] := Module[{},

0ff [General::"spelli"];
Progress["Initialize"];

h = 1/127;
Alpha = 1/4;
ni = 1/h + 1;
n2 = 1/h + 1;
200;

= 256;

= 10;

= 200;

=1;

dt = 1.h;

® T p Wo
|

reps = 8;
totreps

0;

qmTitle = "2D_Dirac";

qmDataDirectory = StringJoin["T:\Data\\", qmTitle];
Off [CreateDirectory::"ioerr"];
CreateDirectory[qmDataDirectory] ;
SetDirectory[qmDataDirectory] ;

1;

(x/ \*)
(*| Display progress [ %)
(\ - /%)

Progress[str_] :=Module [{pstr=str},

sTime=SessionTime[];
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Hours = Quotient[ sTime,3600];
rSeconds =Mod[sTime,3600] ;
Minutes = Quotient[rSeconds,60];
Seconds = Mod[rSeconds,60];

Print[pstr,” ","Time=" ,Hours,":" ,Minutes,":",
Seconds," Memory=",MemoryInUse[]];

1;

(+/ \%)
(x| Define Potentials | %)
R\ /%)

qmVectorPotential[] := Module[{},

1;

(x/
(*]
O\

Progress["Vector Potential"];

Vector2D[h_, Alpha_] :=
Compile @@ {{y, x},
With[{x1 = x h, x2 = y h},
I Alpha / ((x1 - 2/3) - I(x2 - 2/3))1};

TblAi = Array[Vector2D[h, Alphal, {n2, ni}, 0];

QfnAe = QNewFunction[Re[TblAi], Im[TblAi], Re[0 TblAill;
\*)
Define initial wave packets [%)
=/*)

qmWavePacket[] := Module[{},

Progress["Wave Packet"];

Gauss2D[h_, a_, b_] :=
Compile @@ {{y, x},
With[{x1 = x h, x2 = y h},
axExp[-b((x1 - 1/2)°2 + (x2 - 1/2)"2)/211};

Gauss2DC[h_, a_, b_, e_, Alpha_] :=
Compile @@ {{y, x},
With[{x1 = x h, x2 = y h},
a*Exp[-b((x1 - 1/2)"2 + (x2 - 1/2)"2)/2]Exp[
I e Alpha Argl(x1 - 2/3) + I(x2 - 2/3)111};

Psii§ = Array[Gauss2D[h, a, b(*, e, Alphax)],
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{n2, ni1}, 0];
PsiiC = Array[Gauss2DC[h, a, b, e, Alphal,
{n2, ni1}, 01;

PsiA = QNewFunction[Re[PsiiS], Im[ PsiiS],
Re[PsiiS], Im[ PsiiS]];

PsiF = QNewFunction[Re[PsiiC], Im[ PsiiC],
Re[PsiiC], Im{ PsiiCl];

I;

(x/ \*)
(*| Set domain of shielded coil | %)
R\ )

qmBoundary[] := Module[{},
Progress["Domain"] ;

Domain2D[h_] :=
Compile @@ {{x, y},
With[{x1 = x h, x2 = y h},
If[(x1 - 2/3)"2 + (x2 - 2/3)"2 <= 1/32°2, -1, 111%};

TblDom = Array[Domain2D[h], {n2, ni}, 0I;

QfnDom = QNewFunction[TblDom] ;
1;
(*x/ \*)
(x| Define Two-Dimensional Dirac Hamiltonians [*)
=\ ~/%*)

gmHamiltonian[] := Module([{},
Progress({"Hamiltonian"];

scalar = None; vector = QfnAe; domain = QfnDom;

mass = 1.; charge = 1.; units = 1.h;

Ha = QDirac2D[scalar, vector, domain, mass, charge, units];
Hf = QDirac2D[None, None, None, mass, charge, units];

1;

(x/ -- \%)
(x| Store results to disk [%)
(x\

=/%)



StoreData[RRel_,RRe2_,RRs1_,RRs2_,GGe_,GGs1_,GGs2_]:=

Module{{},
gmName = ToString[100000 +10000 * T];

Export [StringJoin["Rei-",qmName,".lst"],
RRel, "Table"];

Export [StringJoin["Re2-",qmName,".lst"],
RRe2, "Table"];

Export [StringJoin["Rs1",qmName,".1lst"],
Abs[psiAl], "Table"];

Export [StringJoin["Rs2",qmName,".lst"],
Abs[psiA2], "Table"];

Export [StringJoin["Gel\",qmName,".lst"],
Table[Evaluate[GGe[x, yll,
{x, n1/5, 4ni1/5, 1},
{y, n1/5, 4n1/5,1}]1,
"Table"] ;

Export [StringJoin["Gs1",qmName,".lst"],
Table[Evaluate[GGsi[x, yl],
{x, n1/5, 4ni/5, 1},
{y, n1/5, 4n1/5,1}1,
"Table"] ;

Export [StringJoin["Gs2",qmName,".1lst"],
Table[Evaluate[GGs2[x, y]],
{x, n1/5, 4n1/5, 1},
{y, n1/5, 4n1/5,1}],
"Table"] ;

1;

(*/ —
(x| Perform calculations

(x\ -

gmInitialize[];
gmVectorPotentiall[];
qmWavePacket [] ;
guBoundary([];
qmHamiltonian[];

Do([

\*)
[%)
/*)
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psiA = QGetArray([PsiAl;
psiAl = psiA[[1]] + I psiA[[2]];
psiA2 = psiA[[3]] + I psiA[[4]];

gAl = ListDensityPlot[Abs[psiAl], PlotRange -> All,

psiF = QGetArray[PsiF];
psiFl = psiF[[1]] + I psiF[[2]];

psiF2 = psiF[{3]] + I psiF[[4]];
RRel = 50 * Abs[psiF1/psiAi];

RRe2 = 50 * Abs[psiF2/psiA2];

Psis = ListInterpolation[Abs[psiAil],

InterpolationOrder -> 6];

Ps2s = ListInterpolation[Abs[psiA2],
InterpolationOrder -> 6];

PsiE = ListInterpolation[Abs{RRe2],
InterpolationOrder -> 6];

GGsifx_, y_.] := -(D[Psis, x] + D[Psis, yl)/Psis[x, yl;
GGs2[x_, y_] := -(D[ Ps2s, x] + D[Ps2s, yl)/Ps2s(x, yl;
GGe[x_, y_] := -(D[PsiE, x] + D[PsiE, yl)/PsiE[x, yI;

QTimeEvolution[Ha, PsiA, dt, 6, reps];
QTimeEvolution{Hf, PsiF, dt, 6, reps];

totreps = totreps + reps;
T = dt * totreps;

StoreData[RRei,RRe2,Abs[psiA1],Abs[psiA2],
GGe,GGs1,GGs2,T] ;

»{m, 1, 2}];
’{n,i’s}];
(/=== m oo \x)
(x| Notebook End [%)
(\ -—— /%)
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A.4 Generation of Figures

(/- \%)
(*| Initialize values [ %)
(\ S

gmTitle = {"1D_Barrier", "iD_Well", "1D_Barrier_Closed",
"2D_Double_S1it","2D_AB_Effect", "2D_Dirac"};

qmF119381 = {"Gei", "GSi", "Qel", "QSI", "Qesi", "Qti"};

quFilesS2 = {"Rsi", "Rel", "Gel", "Gs1", "Qel", "Qsi",
"QQS].", "Qti"};

quFilesS3 = {"Rs1", "Rs2", "Re2", "Gs1", "Gs2", "Gel"};

qmRangeS1 = {{-10, 50}, {-10, 50}, {-10, 50}, {-10, 50},
{-10, 50}, {-10,50}};

qmRangeS2 = {{0, .5}, {0, 2}, {-10, 20}, {-10, 20},
{-100, 250}, {-50,50}, {-50, 250}, {-10, 50}};

qumRangeS3 = {{0, 8}, {0, 8}, {-10, 150}, {-1, 1.5},
{-1, 1.5}, {-2, 2}};

aguViewPoints = {{2, 2, 2}, {-2, 2, 2}, {2, -2, 2},
{-2, -2, 2}};

gmPathFigures = "T:\Figures\\";

qmPathData = "T:\Data\\";

qmWidth = 72 *7.0;

gmHeight = gmWidth/2;

gqmCreateS1 = 1;
qmCreateS2 = 1;

qmCreateS3 = 1;

(x/ - - \*)
(*| Module for One-Dimensional Scattering Graphs [%)
(*\ -= /%)

CreateFigureS1i[idx_] := Modulel[{},

Dol

$EPSDisplay [pl_]
Module[ {file =
StringJoin[qmFilesSi[[idx]] , "-",
ToString[qmViews],
" JPg"]
Display[file, pl, "JPEG",
ImageResolution -> 600,
ImageSize -> 144]; pl] ;



ListP1lot3D[Tbl[[Range[40, 750111,
ImageSize -> {qmWidth, gqmHeight},
DisplayFunction -> $EPSDisplay,

Mesh -> False, Axes -> None,

Ticks -> None,

ViewPoint -> gmViewPoints[[qmViews]],
PlotRange ~> gmRangeSi[[idx]]];

;{qmViews, 1, 4}]1;
1;

(x/

(x| Module for Two-Dimensional Two-Slit Plots Graphs

G\ s

\*)
[*)

CreateFigureS2[idx_] := Module[{},
On[SurfaceGraphics: : "gmat"];
Dol

$EPSDisplay [pl_]
Module[ {file
StringJoin[gmFilesS2[[idx]] , "-",
ToString[qmViews], ".jpg"l},
Display[file, pl, "JPEG",
ImageResolution -> 600,
ImageSize -> 144];
pl] ;

Plot3D[RR[x, y], {x, 2, 599}, {y, 2, 199},
PlotPoints -> 800,
ImageSize -> {quWidth, qmHeight},
DisplayFunction -> $EPSDisplay,
Mesh -> False, Axes -> None,
Ticks -> None,
ViewPoint -> gmViewPoints[[qmViews]],
PlotRange -> qmRangeS2[[idx]]];

;{amViews, 1, 4}];
1;

(x/

(*| Module for Two-Dimensional Dirac Graphs

(\

CreateFigureS3[idx_] := Modulel[{},

/%)

\*)
[*)
/%)
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On[SurfaceGraphics: :"gmat"];
Dol

$EPSDisplay([pl_] :=
Module[ {file =
StringJoin[qmFilesS3[[idx]] , "-",
ToString [qmViews],".jpg"1},
Display[file, pl, "JPEG",
ImageResolution -> 600,
ImageSize -> 144]; pl] ;

xi = Dimensions([Tbl][[1]];
yi = Dimensions[Tbl] [[2]];

Plot3D[RR[x, y], {x, 1, xi}, {y, 1, yi},
PlotPoints -> 800,
ImageSize -> {gmWidth, qmHeight},
DisplayFunction -> $EPSDisplay,
Mesh -> False, Axes -> None, Ticks -> None,
ViewPoint -> gmViewPoints[[qmViews]],
PlotRange -> qmRangeS3[[idx]]];

,{qmViews, 1, 4}];

1;

(x/ \*)
(*| Import One-Dimensional Scattering Data [*)
O\ /%)

ProcessDataS1[] := Module[{},

SetDirectory[qmDataDirectory] ;
gmData = FileNames[StringJoin[qmFilesS1[[qmGraph]],

"k, 1st"]];
NumFile = Dimensions[qmData];
Inc = 0;
Tbl = {};

If[ NumFile[[1]] == 0,
Progress["No Files!"];

While[Inc < NumFile[[1]], Inc++;
AppendTo [Tbl,
Import [qmData[[Inc]], "List"] J;
1;
CreateDirectory[gmGraphDirectory] ;
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SetDirectory[qmGraphDirectory] ;

CreateFigureS1 [qmGraph] ;

Clear[Tbl];
1;
1;
(x/ \*)
(*| Import Two-Slit Data | %)
%\ -= /%)

ProcessDataS2[] := Module[{},

SetDirectory[qmDataDirectory] ;
gmData = FileNames[StringJoin[qmFilesS2[[qmGraph]],

"*.1St"]] ;
NumFile = Dimensions[qmData];
Inc = 0;
Tbl = {};

If[ NumFile[[1]] == O,
Progress["No Files!"];

Tbl = Import[qmData[[1]], "Table"]
CleanDatal[];
CreateDirectory[qmGraphDirectory] ;
SetDirectory[qmGraphDirectory] ;
CreateFigureS2[qmGraph] ;

Clear[Tbl];
1;
1;
(x/ - \*)
(*| Import Dirac Data %)
G\ ~/%)

ProcessDataS3[] := Module[{},

SetDirectory[qmDataDirectory] ;
qmData = FileNames[StringJoin[qmFilesS3[[qmGraph]],

"*.lst"]];

NumFile = Dimensions[gmData];
Inc = 0;

Tbl = {};

If[ NumFile[[1]] == O,
Progress["No Files!"];

H



1;

(x/

Tbl = Import{qmDatal[1]], "Table"] ;

CleanDataS3[];
CreateDirectory[qmGraphDirectory] ;
SetDirectory[qmGraphDirectory] ;
CreateFigureS3[qmGraph] ;
Clear[Tbl];
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(x| Remove Unwanted Data from Two-Slit Array

(F\=--

CleanDataS2[] := Module[{},

1;

(*/
(x]
(*\

aDim = Dimensions[Tbl];

xDim = aDim[[1]];

yDim = aDim[[2]];

nTbl = Table[0, {i, 600}, {j, 400}];

For[i = 1, i <= xDim, i++,
For[j = 1, j <= yDim, j++,

If0 (A + j >=900) & (i + j <
1300) && (i - j >= -300)
k& (i - j < 300),

ni =i - j+ 301;
nj =i+ j - 900;

If [EvenQ(nj], nj = nj/2,
nj = (nj - 1)/2];

nTbl[[ni, nj + 1]] =
Tol([i, j11;

1;
1;

\*)
[*)
=/*)

RR = ListInterpolation[nTbl, InterpolationOrder -> 6];

Remove Unwanted Data from Dirac Data

\*)
| %)

/%)
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CleanDataS3[] := Module[{},

aDim = Dimensions[Tbl];

xDim = aDim[[1]];
yDim = aDim[[2]];
Progress["Cleaning Array ", xDim, " ", yDim];

For[i = 1, i <= xDim, i++,
For[j = 1, j <= yDim, j++,

If[ (Tbl[[i, j]] == "Indeterminate") ||
(Tbl[[i, j1] == "Infinity"),
Tol[[i, j1]1 = o;
1;
1;
1;
RR = ListInterpolation[Tbl, InterpolationOrder -> 6];
1;
(x/ === \*)
(x| Create All One-Dimensional Scattering Graphs [%)
(\ /%)

If [qmCreateS1 == 1,

0ff [CreateDirectory: : "ioerr"];

Dol
Dol

qmDataDirectory =
StringJoin[
qmPathData, qmTitle[[qmPotentialll,
"_",ToString[qmEnergyl];
qmGraphDirectory =
StringJoin[qmPathFigures,
quTitle[[qmPotential]], "_",
ToString [qmEnergy]] ;

Dol

EPSFileExists =
Dimensions{
FileNames[
StringJoin[gqmGraphDirectory, "\\",
qmFilesSi[[qmGraph]],
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"x.jpg"111[[1]1];

If [EPSFileExists == 1,
Progress["All Figures completed!"];

ProcessDataS1{];
1;

,{qmGraph, 1, 6}];
,{qmEnergy, 1, 3}1;
,{qmPotential, 1, 3}];

1;

o o \*)
(%] Create All Two-Slit Graphs 1)
(\ P
If [qmCreateS2 == 1,

0ff [CreateDirectory::"ioerr"];

Do[
Dol

qmDataDirectory =
StringJoin[qmPathData,
qmTitle[[qmPotentiall]l, "_",
ToString[qmEnergyl];

qmGraphDirectory =
StringJoin[qmPathFigures,
qmTitle[[qmPotentialll, "_",
ToString[qmEnergyl];

Dol

EPSFileExists =
Dimensions[
FileNames [
StringJoin[qmGraphDirectory, "\\",
qmFilesS2[[qmGraph]],
"*.jpg"]11] [[1]1];

If [EPSFileExists == 1,
Progress["All Figures completed!"];

ProcessDataS2[];
1;
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,{gmGraph, 1, 8}];
,{qmEnergy, 1, 4}];
,{amPotential, 4, 5}1;

(x/ \*)
(%] Create All Dirac Graphs J %)
(x\ -/%)
If [qmCreateS3 == 1,
0ff [CreateDirectory::"ioerr"];
Dol
qmDataDirectory =
StringJoin[qmPathData, qmTitle[[qmPotentialll];
qmGraphDirectory =
StringJoin[qmPathFigures, qmTitle[[qmPotentialll];
Do[
EPSFileExists =
Dimensions[
FileNames[

StringJoin[gqmGraphDirectory, "\\",

guFilesS3[[qmGraph]],"*.jpg"111[[11];
If [EPSFileExists == 1,

Progress["All Figures completed!"];

ProcessDataS3[];
1;

,{qmGraph, 1, 6}];
»{gqmPotential, 6, 6}];

1;

(*/ - \*)
(*| Notebook End {%)
(*\

-- /%)



