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ABSTRACT

Wideband Direction of Arrival Estimation Techniques

for a Class of Arbitrary Array Geometries

Mahmud Reza Dehghani

Array signal processing is an established field with a number of available advanced
powerful technologies for detecting and locating signals that arrive at a set of sensors in the
presence of noise. The focus of this thesis is on development of direction of arrival (DOA)
estimation techniques for both narrowband and wideband signal sources. For narrowband
signals, the multiple signal classification (MUSIC) and weighted subspace fitting (WSF)
algorithms based on subspace decomposition techniques are considered. These subspace
methods are subsequently extended to the more challenging and interesting wideband
signals by incorporating advanced algorithms such as incoherent signal subspace method
(ISM) and coherent signal subspace method (CSM). Extension of the WSF algorithm to
a framework based on CSM is also investigated.

To simplify the analysis and theoretical derivation of DOA estimation algorithms, the
elements of a sensor array are often arranged in very regular structured geometries such as
linear, circular and rectangular arrays. However, many useful array processing techniques
that are developed in the literature for these geometries have not been extended to other
important class of array geometries. This thesis focuses on extension and generalization
of some commonly popular array processing techniques to specific array geometries desig-
nated as diagonal, triangular and squared cross shaped arrays. Performance comparisons
for both narrowband and wideband techniques using these geometries are carried out.
Based on extensive simulation results, it was determined that both node topology and
the aperture length play key roles in the performance capabilities of the proposed tech-
niques. Parameters and factors affecting the performance of both the narrowband and
wideband techniques are investigated in some details. The performance capabilities of the
MUSIC and WSF DOA estimators for the narrowband and wideband cases are evaluated
and compared and it is observed that the WSF algorithm as compared th) the MUSIC
algorithm produced an excellent performance in most of the situations considered in this

thesis.
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Chapter 1

Introduction

1.1 Preamble

Array signal processing, a mature and specialized branch of signal processing, has a wide
range of different applications such as radar, sonar, communications, geophysical and as-
trophysical exploration, biomedical signal processing and acoustics. However, the objec-
tives are often the same i.e., the extraction of desired parameters from noisy observations.
In other words, array signal processing focuses on extracting as much data as possible
from a noisy environment using an array of sensors. These sensors are located at different
spatial points in space to measure a propagating electromagnetic, acoustic, or seismic sig-
nal. In fact, an array of sensors is used for s;‘ampling the received signals in a space-time
field by extracting their spatial and temporal characteristics. From a statistical point of
view, a source can be categorized as having either a deterministic or a random signal. By
a deterministic source we mean a known signal with some unknown parameters such as
amplitude and delay. Some applications such as radar, active sonar, and communications
where the transmitted signal is known to the receiver are the examples of deterministic
sources. In many applications, the received signal is unknown or is affected through the

transmission environment whose impulse response is either unknown or it changes with
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time and space so that the signal is random. In the case of random signals, the probabil-
ity distribution function (PDF) provides the information used in extracting the desired
parameters.

The goals of array signal processing may be categorized as field characterization, source
tracking and signal enhancement. Source tracking is used to track the instantaneous
positions of the soruces as they move in space. Signal enhancement involves improving
the signal to noise ratio (SNR) at the array output beyond that of a single sensor. This can
be performed by steering a beam towards the direction of source and/or inserting nulls
in the beampattern in the direction of noise and interference. A conventional method
of beam steering is to place delay elements at the output of the sensors and compute a
weighted sum of the delayed outputs. With a proper selection of the delays, the signals
arriving from a specific direction will appear with the same phase at the output of the
delay elements. This is termed beamforming. If a source is located in the direction of the
beam, the signal power at the array output can be increased by the square magnitude
of the number of sensors. For an uncorrelated intersensor noise, the noise power at the
beamformer output increases linearly with the number of sensors. Thus, the SNR can
be increased by using a conventional beamformer. Estimation of the spatial properties of
the sources (their velocity, range, azimuth, elevation, direction of movement and so on) is
performed by field characterization. The first step to characterize the field is to determine
the number of emitting sources. This step is called detection. The detection is followed
by an estimation step which involves the estimation of the signal location in space. If the
sources are located in the far field of the array sensors, the arriving wavefronts are planar

and only azimuth and elevation need to be estimated. In addition, if it is assumed that
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the sources and the sensors are in the same plane then the direction of arrival (DOA) is
the only spatial parameter of the sources to be obtained. In this thesis we will focus on
estimation of DOA.

Array processing techniques can be used for both active and passive situations. In the
case of active sensing such as in radar and sonar applications, a known signal of finite
duration is generated and which is then propagated through the space and will be reflected
by some target back to the source origin. The transmitted signal is usually modified in
amplitude and phase by the target characteristics, which could be changing with time
and the target position in space. In the passive case the signals received at the array are
generated by the target, such as propeller or engine noise from submarines.

The original application of the array processing technology was primarily motivated
by the military’s need during World War 1I to locate enemy aircraft and ships using radar
and sonar [1]. The techniques developed during that time were proved successfully. After
the war, the success of array processing for radar and sonar led researchers to develop
new and improved algofithms to study other applications such as medical imaging, image
processing, and structural monitoring in seismology. We now consider some application

areas in which the sensor arrays play an important role. These areas are [2]:

Radar
Radar is the area in which antenna arrays were first used. Most radar systems are
active, and the antenna array is used for both transmission and reception of sig-
nals. Radar systems have application in both military and non-military situations.
The ballistic missile detection problem is a military application while the air traffic

control system is an example of non-military application.



Radio Astronomy
Antenna arrays are also used in the radio astronomy area where unlike radar systems,
radio astronomy systems are passive and are used to detect celestial objects and
estimate their characteristics. These systems usually employ arrays with very long
baselines, extending from tens of kilometers to thousands of kilometers. Some of
the aspects that should be considered in radio astronomy are the rotation of the
earth during the signal processing period, different propagation characteristics at

different array elements and synchronization over long distances.

Sonar
Sonar systems can be active or passive. The theory of active sonars has much in
common with radars. The main difference between sonar and radar is that the sonar
deals with acoustic energy into the water while the radar systems deals with elec-
tromagnetic energy in the atmosphere. Passive sonars listen to incoming acoustic
energy from a target and use it to estimate the desired parameters. In addition,
signals from a target can undergo reflection, creating multiple returns that are de-
layed and amplitude weighted replicas of the direct signal to the array. The main

application in sonar systems is the detection and tracking of submarines.

Communications
Antenna arrays are widely used in communication systems. The communication sig-
nals may arrive at the receiving array as a single plane wave or multiple plane waves
due to the multipath phenomenon. Moreover, the receiver noise, the interference
and jamming signals may include communication signals. Several satellite systems

use phased arrays in either the earth terminal or space segment in tracking and data
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relay satellite. Wireless cellular systems also use different types of multiple access
techniques such as time division multiple access (TDMA), code division multiple

access (CDMA) and global system for mobile communications (GSM).

Direction Finding
Sensor arrays are also used to solve the direction finding problem. The main goal
here is to locate the source of the received signal. Direction of arrival (DOA) estima-
tion is central to the sensor array processing problem, and much of the recent work

in array processing has focused on methods for high resolution DOA estimation.

Seismology
There exists two main fields of seismology in which array processing have an impor-
tant role. The first area of seismology is the detection and estimation of underground
nuclear explosions. Indeed, in seismology, the layers of the earth are examined by
sending sound signals into the earth. The sound is reflected from different layers
that can be used to detect the underground nuclear explosions. The second field
is the exploration seismology that is one of the most important applications of the
array processing at the present time. The goal of the exploration seismology is to
construct an image of the subsurface in which the structure and physical properties

can be specified and described.

Tomography
Tomography is the cross-sectional imaging of objects from transmitted or reflected
data. The object is first illuminated from a number of different directions and the

data are then collected at a receiving array. The cross-sectional image may then
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be reconstructed from this data. Medical diagnosis and treatment are examples of

successful applications of tomography.

The theory of array signal processing can be applied to both narrowband and wideband
signals. The signal is said to be narrowband if the ratio of the highest frequency to the
lowest frequency is usually very close to unity. In other word, for narrowband signals
the amplitude and phase of the source signal vary slowly relative to the propagation time
across the array. Narrowband signals have a well-defined nominal wavelength, and time
delay can be estimated by a simple phase shift. An array of antennas monitoring the air
_traffic around an airport is a good example of narrowband situation. Each airplane sends
a narrowband signal that is received by the antenna array. Location of the airplanes can
then be estimated by using narrowband array processing techniques. Another example
of marrowband array processing may be found in communication systems. A moving
transmitter in mobile communications emits narrowband signals. The receiver consists
of an array of antennas. The array receives the original signal from the source and
its reflections from the other surrounding objects. Once the location of the source is
estimated, the antenna array can steer a beam towards the direction of the source to
reduce the effects of the reflected signals.

On the other hand, for wideband signals the frequency bandwidth is relatively large
compared to the center frequency. For instance, the movement of cars, trucks, wheeled
vehicles and personnel can generate wideband signals since the ratio of highest to lowest
frequency is relatively quite large. For wideband signals, there is no specific characteristic
wavelength and the time delays must be obtained by utilizing Fourier transform or by

interpolation of the signals. An example of wideband array processing is passive sonar
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systems. A passive sonar may be composed of a number of hydrophones that listen to
the underwater sound. A ship is located within the detection range of the passive sonar
through the sound of the propeller caused by the ship. The propeller sound in this case
is a wideband source.

An important issue in array processing problem is the array geometry, i.e., the config-
uration and the physical locations of the sensors. In fact, the total length of the array and
the array spacing determine how the array geometry affects the signal processing problem.
Uniform linear arrays, uniform circular arrays, rectangular arrays and triangular arrays
are among the most common array geometries. In general, the spatial arrangement of
the array sensors is arbitrary and the methods that are proposed in this thesis will be
applicable to general array geometries. An extension of array processing techniques to the
cross shaped array geometry will be considered in this thesis to demonstrate and illustrate

the effects of using various types of array geometries.

1.2 Contributions

While the majority of research efforts in array sigﬁal processing have so far been devoted to
uniform linear arrays (ULA), some attempts have also been made to other array geometries
such as uniform circular arrays (UCA), uniform rectangular arrays and others. There
are distinct advantages for these extension attempts. For example, the most obvious
advantage of using the UCAs in comparison to ULAs is the UCAs ability to provide
a full azimuth coverage, which is the result of their two-dimensional array structure.
Furthermore, when called for, UCAs can provide a 180° coverage in elevation and while

one UCA is able to provide the full azimuth coverage, at least three separate ULAs are
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required for the same task in which each ULA array covers a 120° sector. Therefore, the
use of UCAs can lead to a reduction in hardware requirements. In comparison to other
array geometries, ULAs also suffer from decreasing effective array aperture as the look
direction changes while for other configurations with a reasonable number of sensors the
effective array aperture is almost constant over any look direction in the azimuth. Despite
these advantages, many useful array processing techniques that were derived for ULAs
have not been extended to other array geometries. This thesis focuses on extension of
a number of most commonly used array processing techniques to other array geometries
such as cross shaped array configuration.

Toward these end, in this thesis we have investigated a number of specific array ge-

ometries and have made the following contributions:

e Extension of the narrowband ULA array processing techniques to diagonal, trian-

gular and square cross shaped array geometries.

o Extension of the wideband ULA array processing techniques to diagonal, triangular

and square cross shaped array geometries.

e Development of the weighted subspace fitting (WSF) algorithm as opposed to the
multiple signal classification (MUSIC) method in wideband coherent signal subspace
(CSM) technique for improving the performance of DOA estimation technique for

wideband sources through reduction of the bias and the resolution SNR threshold.

e Comparative study of the performance capabilities of various geometries as applied

to both narrowband and wideband DOA estimation problem.



1.3 Thesis Outline

The thesis is divided into six chapters. The present chapter is intended as a general intro-
duction to the knowledge required to appreciate the subsequent chapters and to help put
the work conducted here in perspective. In Chapter 2, the fundamentals of narrowband
and wideband array signal processing techniques are provided. For narrowband signals,
a number of methods such as multiple signal classification (MUSIC) [3] and weighted
subspace fitting (WSF) [4] based on subspace decomposition techniques are considered.
These subspace methods are subsequently extended to the more challenging wideband
algorithms such as incoherent signal subspace method (ISM) [5] and coherent signal sub-
space method (CSM) [6]. Chapter 3 devotes to the introduction of an array geometry that
consists of several nodes in which each node is a 5-element half-wavelength spaced cross
shaped subarray. This array geometry can be configured in the form of linear, diagonal,
triangular and square cross shaped arrays. Numerical examples and simulation results
for both narrowband and wideband techniques using MUSIC and CSM algorithms using
these array geometries are presented. In Chapter 4, the numerical examples and computer
simulations using WSF and CSM algorithms for both narrowband and wideband signals
are presented. Specifically the use of WSF algorithm in place of the MUSIC method in
the CSM as a wideband technique is developed in this chapter. Performance comparison
of narrowband and wideband techniques in terms of achievable and specifications and
requirements using the above mentioned algorithms are addressed in Chapter 5. Finally,

the conclusions and future research directions are presented in Chapter 6.



Chapter 2

Narrowband and Wideband
Methods for DOA Estimation

2.1 Introduction

Statistical techniques for array signal processing have a variety of applications such as
‘radar, radio astronomy, communications, sonar, seismology, and direction finding. Inter-
estingly, in most applications the objectives of the techniques are the same, namely, the
extraction of desired parameters from the noisy observations measured by the sensors.
Array signal processing focuses on signals transmitted by the propagating waves. An
array of sensors spatially distributed at known locations is used to measure a propagating
acoustic, seismic, or electromagnetic wavefield. One of the main goals of array signal
processing is to use sensors outputs to characterize the field by detecting the number of
sources and finding their locations. In certain applications, array processing techniques
are used to track the instantaneous locations of the sources as they move in space. Array
signal processing can be applied to both narrowband and wideband signals. A signal is
said to be narrowband if the amplitude and phase of the source signal vary slowly relative

to the propagation time across the array. In other words, for narrowband signals the ratio

10
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of the highest frequency to the lowest frequency is usually very close to unity. Narrow-
band signals have a well-defined nominal wavelength, and time delay can be estimated by
a simple phase shift. On the other hand, for wideband signals the frequency bandwidth
is relatively large compared to the center frequency. For instance, the movement of a
car, truck, wheeled vehicle and a personnel can generate wideband signals since the ratio
of the highest to the lowest frequency is quite large. For wideband signals, there is no
characteristic wavelength and time delays must be obtained by Fourier transform or by

interpolation of the signal.

In this chapter, the fundamentals of narrowband and wideband array signal process-
ing are provided. For narrowband signals, certain commonly utilized methods based on
subspace decomposition are considered. The multiple signal classification (MUSIC) [3]
and the weighted subspace fitting (WSF) [4] algorithms both originate from the concept
of signal and noise subspaces that are defined by the eigenvectors of the sample covari-
ance matrix. The MUSIC algorithm calculates a spatial pseudo spectrum from the noise
subspace, and determines the DOAs from the dominant peaks in the spectrum. In spite
of the MUSIC ability for resolving not closely spaced sources, this method fails to locate
coherent sources. To overcome this drawback, WSF method has been developed which
has capability of resolving too closely spaced sources in the presence of coherent signals.

These subspace methods can also be extended to the more challenging wideband sig-
nals. In the so-called incoherent signal subspace method (ISM) [5], wideband signals are
decomposed into a set of non-overlapping narrowband components, and then narrowband
algorithms are applied to estimate the DOAs. The corresponding initial results are then

averaged to yield the final DOA solution. The ISM algorithm cannot effectively process
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coherent signals, and it is difficult to synthesize wideband signals at low SNRs. An alter-
native to the ISM approach is the coherent signal subspace method (CSM) [6], where the
covariance matrices are estimated at several frequency bins, aligned by proper transforma-
tion matrices, and finally averaged. In other words, CSM maps the signal subspaces of the
narrowband components of the wideband signals onto a single signal subspace by focusing
and then estimating the subspace spectrum at the focusing frequency. Compared to the
ISM scheme, CSM algorithm significantly extends the detection and resolution thresholds,
and also improves the bias and accuracy performance at low SNRs and is further able to
cope with coherent sources in multipath scenarios [6]. An alternative focusing approach
has also been developed in [7] and [8], but it suffers from the asymptotic bias of the peaks
in the spatial spectrum. This bias increases with the bandwidth of the sources and the
deviation of the focusing points from the true DOAs.

The organization of the present chapter is as follows. Section 2.2 introduces the nar-
rowband techniques for DOA estimation. In section 2.2.1, the narrowband data model
is presented followed by a brief exposition of the different array geometries and the in-
troduction to the array manifold. Definitions for non-coherent, partially coherent and
coherent sources are also included in this section. Section 2.2.2 introduces the subspace
decomposition based methods for DOA estimation followed by description for the signal
and noise subspaces. Section 2.2.3 presents the derivation of the MUSIC algorithm. In
the next three subsections (2.2.4, 2.2.5 and 2.2.6), the WSF estimator is derived followed
by brief exposition of associated optimization techniques and implementation issues of

this algorithm.
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Section 2.3 is devoted to the introduction to the wideband techniques for DOA esti-
mation. Data model for wideband signals are derived in section 2.3.1. Section 3.4 will
consider the coherent signal subspace method. The derivation for the diagonal focusing
matrices and unitary focusing matrices are also addressed in this section. Finally, in sec-
tion 2.3.3, the selection of the optimum focusing frequency for the CSM scheme will be

considered.

2.2 DOA Estimation Techniques for Narrowband Sig-

nals

In the field of array signal processing, a variety of techniques are available for solving the
detection and estimation problems for narrowband signals. Detection is a terminology
used to characterize the procedure that determines the number of signals arriving at the
array. Estimation is the process of estimating and determining the spatial parameters of
the signals such as their DOAs (Direction of Arrivals). Methods that are used for de-
tection and estimation may be categorized as beamforming and subspace decomposition
techniques. The beamforming techniques have an easier implementation and are widely
used in practice. The resolution of these methods is lower than the subspace decom-
position methods. Classical beamforming techniques were the first attempts to localize
signal sources using antenna arrays. By forming a weighted sum of the sensor outputs,
signals from certain directions are coherently added while the noise and signals from the
other directions are incoherently added . Beamforming techniques have been extensively

studied in many books and literature, see for example [9]-{14].
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In the presence of multiple closely spaced sources beamforming techniques cannot
provide consistent parameter estimates because of the spectral leakage from the closely
sources. The accuracy of the estimates is not constrained by the amount of data, but
rather by the array geometry and sensor responses, which limit the resolution capabilities
of these methods. Subspace decomposition based methods for estimating multiple not
closely spaced sources are known from the literature that can be used to overcome the
poor resolving power of the classical beamformer. Most of the subspace decomposition
based methods decompose the observed covariance matrix into two orthogonal subspaces,
commonly referred to as the signal and noise subspaces, and subsequently estimate the
DOAs from one of these subspaces. These methods are known to have high resolution
capabilities and generally are to yield accurate estimates.

One of the popular subspace decomposition techniques is the multiple signal classifica-
tion (MUSIC) algorithm [3]. MUSIC was the first algorithm that showed the advantages
of using a subspace approach. This algorithm calculates a spatial pseudo spectrum from
the noise subspace, and determines the DOAs from the dominant peaks in the spectrum.
The performance improvement of the MUSIC algorithm when compared to the classical
beamformer is highly significant. Estimates of arbitrary accuracy can be achieved using
this method if the size of data are sufficiently large and/or the SNR is adequately high,
and the data model is sufficiently accurate. Therefore, MUSIC scheme can lead to sta-
tistically consistent estimates contrary to the classical beamformers. In spite of MUSIC’s
ability to resolve sources, this method fails to produce peaks associated with true DOAs
subject to small samples and at low SNRs, specially, in the presence of closely spaced

sources and coherent sources.
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In the case of coherent sources, the orthogonal property of signal and noise subspaces
is violated and the MUSIC algorithm fails to provide consistent estimates [15]. For these
reasons, parametric subspace decomposition methods have been developed for their rel-
atively excellent performance results yielding consistent estimates for coherent sources
under certain conditions. An optimal parametric subspace based technique known as
weighted subspace fitting (WSF) [4] is considered and analyzed in some details subse-
quently. As shown in the following sections the WSF algorithm has generally excellent

performance capabilities in the presence of coherent sources.

2.2.1 Narrowband Data Model

In the general direction of arrival (DOA) estimation problem, the array under considera-

tion is taken to have m identical sensors located at the coordinates

[y 2] for 1<I<m (2.2.1)

in a 3-dimensional space in which no restrictions are placed on the sensor geometry.
However, throughout this thesis we will assume that the incident wavefield arises from a
distant source, so that the incident signals have planar wave fronts. It is further assumed
that the transmission of this so called far field wave is conducted in the x-y plane and
also the array of sensors are in the same plane as the sources. Finally it is assumed that
the noise samples are uncorrelated with the signals. These assumptions are arguably not
restrictive and are made to simplify the formulation. The results that are derived bellow
can easily be extended to other cases.

The incident wavefields induce signals on the sensors that are denoted by x; (), x2(t),

.., Xm(t). The relationship among members of this signal set is found to provide the
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basis for solving the DOA estimation problem. These signals can be represented by the

m x 1 array output vector
x(t) = [x1(t) xa(t) ... xm(@®)]F (2.2.2)

where T denotes the transpose of a vector. The output vector provides a spatial sample
of the wave field environment and the knowledge of its time behavior is to be used in
estimating the number of signals and DOA. To obtain the general mathematical model,
we first analyze the case of a single incident wave field and then this model is generalized
to the case of multiple wave fields. For a single incident wave field in the noise free case

the sensor signals are time-shifted versions of one another. That is, we have
i(t) = [él(t - 7'1(91)) él(t - 7'2((91)) N gl(t - Tm(gl))]T (223)

where §;(t) is the source signal, 6, is the azimuth angle and 7; is the time delay associated
with the [th sensor signal. The time delay is the time required for the signal to travel
from the source to the sensor. Therefore, it is equal to the distances between the source
and [th sensor divided by the velocity of wave propagation (i.e. c).

For far field wave this time delay is defined by
1
(01) = —(z;cos6; +ysinby) for 1 < <m. (2.2.4)
c

In order to estimate the DOA it is a standard practice in the literature to convert the
output signal to the base band. This base band signal is obtained by first multiplying
the output vector by e’“<* and then by low pass filtering it (w. is the center frequency).
In addition, if the amplitude and phase of the source signal vary slowly relative to the

propagation time across the array, then the signal is said to be narrowband. In other
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words, for narrowband signals, the time delay can be approximated by a pure phase delay
of the reference signal, and this phase delay depends only on the spacing between the
sensors, the angle of arrival of the plane wave, and the frequency of the propagating wave.

Thus for the narrowband signal case the approximation s;(t — 7,(61)) = s; (t)e~72en(61)

is an accurate representation and therefore the output vector may be given by

x(t) = [sa(t)e™en ) gy (t)e e BT (2.2.5)
or equivalently
x(t) = s1(t)a(f1, we) (2.2.6)
where
a(fy,w,) = [e7dwen@) - gmrwerm(@UT (2.2.7)

is defined as the steering vector of ’an array and s;(¢) is the response of the low pass filter
to the source signal §;(¢). The steering vector of an array is also called the frequency
response of the array for a given DOA. In general, for an array of m sensors, the steering
vector is a column vector with m components represented by a(#,w), where 6 and w are
the DOA and the processing frequency, respectively. The steering vector is a function of
the array geometry. Figure 2.1 shows three different types of array geometries known as
the uniform linear array (ULA), the uniform circular array (UCA) and the cross shaped
array (CSA).

The methods that we will propose in this thesis are potentially applicable to general
array geometry. However, the uniform linear array and the uniform circular array will be
considered specifically in this chapter for studying different DOA estimation techniques.
The extension of these methods to the cross shaped array geometry will be considered in

the following chapter to demonstrate the advantages of utilizing this array geometry.
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Figure 2.1: Three different types of array geometries (a) Uniform Linear Array, (b) Uni-
form Circular Array, and (c¢) Cross Shaped Array composed of two nodes

Figure 2.2 depicts a planar wave with DOA 6 impinging on the ULA with m elements.
If the phase reference point is taken as the origin of the coordinates, the received signal

at point A is equal to

Asin6
c

s(t — ) (2.2.8)

therefore the steering vector of a uniform linear array with the phase reference taken at
the first sensor is given by

Asing -wcmzllllﬂ T

a(f) =[1 e " ... e’ (2.2.9)

where A is the distance between two consecutive sensors and ¢ is the wave velocity. The

steering vector of a uniform linear array can also be written as
a(f) =[1 e dXAsnd R m-DAsngT (2.2.10)

where ) is the wavelength. Vectors with this special structure are commonly referred to
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Figure 2.2: An ULA with m elements exposed to a planar wavefront with DOA 4

as the Vandermonde vectors.

We are now in a position to extend the model to the case of multiple incident wave
fields. In this case, there are d wave fields incident on the array. The superposition
principle indicates that the output vector would be a linear combination of the separate
effects of the individual wave fields. Therefore, the data model in the presence of sensor

noise, n(t), takes the form
d
x(t) = > _si(t)a(fk) + n(t) (2.2.11)
k=1

where s(t) and 6y are the source signal and the DOA of the kth incident wave field.

In the matrix form, the model is expressed as
x(t) = A(6)s(t) + n(t) (2.2.12)

where s(t) is the d x 1 source signal vector and A(6) is the m x d steering matrix whose

columns are the steering vectors associated with the multiple incident sources, i.e.

A9) = [a(f) a(fz) ... a(ba)] : (2.2.13)
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0
Figure 2.3: Array Manifold
It should be noted that the vector
a(f) = [21(6x) 22(6r) ... am(B)]" for 1<k <d (2.2.14)

contains the sensor output to a single wave front from the direction 6. Thus the array
manifold is defined as the set of all array steering vectors over the parameter range of

interest i.e.

A={a(6) | 6, € O} (2.2.15)

In other words, as shown in Fig.2.3, the steering vector traces a one-dimensional space as

the angle 0 varies over the parameter range of interest [16].

Covariance Matrix

Let the array output x(¢) be observed at N time instants, {¢1, ¢2, ..., ty}. Each vector

observation is called a snapshot of the array output and the data matrix is the collection
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of the array snapshots
XN = [X(tl) X(tg) PN X(tN)] = A(H)SN + NN (2216)

where the matrices Sy and Ny are defined analogously to Xx. In order to detect the
number of sources and estimate the associated DOAs, it is convenient to use the second
order statistics of the array output. The following assumptions regarding the statistical
properties of the data are further imposed. The signal, s(t), and the noise, n(t) are

independent, zero mean, complex, Gaussian random processes with second order moments

S = B{s(t)s" (1)} = Jim % is(t)sH(t) (2.2.17)
R, = E{n(t)nf(t)} = 0’1 (2.2.18)
E{s(t)sT{t)} =0 (2.2.19)
E{n(t)n’ ()} =0 (2.2.20)

where H denotes complex conjugate transpose, S is the d x d unknown source covariance
matrix, R, is the m x m noise covariance matrix and I is the m x m identity matrix.

If the source covariance matrix S is diagonal and nonsingular, the multiple sources are
said to be non-coherent. On the other hand, if this matrix is non-diagonal but singular
then a subset of the sources are said to be coherent. Similarly, a non-diagonal and
nonsingular source covariance matrix indicates that the multiple sources are partially
coherent [17]. As seen from (2.2.18) the noise is assumed to be temporally white i.e. it
has a flat spectrum over the frequency band of interest. It is further assumed that the
noise is independent from sensor to sensor, i.e., spatially white (generalization to non-

white noise is done by pre-whitening [18]). The noise power is assumed to be identical
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2 is unknown. If the spatial whiteness condition is not

in all sensors, and its value, o
met, the covariance matrix of the noise must be known, e.g. from measurements with no
signals present.
Under the above assumptions, the array output is complex Gaussian with zero mean
and the covariance matrix, R, takes the following form
R = E{x(t)x?(t)}

N

. 1
= lim N Z x(t)x(t)

N—o0
t=1

= A(0)SAH(H) + 1 (2.2.21)

It is assumed that the array manifold is known and any d steering vectors, a(fy) for k =
1,2,...,d with distinct f;s, are linearly independent, i.e. for any collection of d distinct
0 € O, the matrix [a(6;) a(fy) ... a(fy)] has full rank. It is further assumed that the
manifold vectors are continuously differentiable with respect to the parameters such as
DOA 6. An array satisfying these assumptions is said to be unambiguous. Due to the
Vandermonde structure of a() for ULA | it is clear that the ULA is unambiguous if the
).

With the above stated preliminaries, the sensor array problem is defined as the detec-

parameter set is © = (—§7

B

tion of the number of sources d and the associated DOAs estimation using the observations
X and a model for the steering matrix A(¢). In this thesis, multiple signal classification
(MUSIC) [3] and weighted subspace fitting (WSF) [4] algorithms are used to estimate the

DOAs where it is assumed that the number of sources is known.
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2.2.2 Subspace Decomposition Based Methods

The subspace decomposition methods rely on the decomposition of the observed covari-
ance matrix into two orthogonal spaces, referred to as the signal and noise subspaces. If
the sources are non-coherent, then the source covariance matrix, S, has full rank. How-
ever, in many applications signal sources may be coherent which results in rank deficiency
of S. Assume the source covariance matrix has rank d’. Therefore the covariance matrix
R takes the form

R = A(#)SAH(6) + o™1 (2.2.22)

it is possible to show that any vector in the null space of the matrix ASA is an eigenvec-
tor of R corresponding to eigenvalue o2 [3],[19]. As mentioned before, to allow for unique
DOA, the steering matrix, A(), is assumed to be full rank. Thus, the matrix ASAH has
rank d' and o? is the smallest eigenvalue of R with multiplicity m — d’.

Let A1, Ag, ..., A be the eigenvalues of covariance matrix arranged in non-increasing
order, and ey, es, . .., e, denote the associated eigenvectors. Then the spectral decompo-

sition of the covariance matrix is given by

R = §m: neef = E,AEY + E,AEX (2.2.23)
=1
where
As = diag[Ai, Ae, .., Adr] (2.2.24)
A, =01 (2.2.25)
E,=le; e ... ey] (2.2.26)

En = [ed/+1 €egryo ... em] (2227)
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where A; is a diagonal matrix that contains the largest eigenvalues of the covariance
matrix and these so called signal eigenvalues are supposed to be distinct. The signal
subspace is defined as the subspace spanned by the eigenvectors of the covariance matrix
associated with these dominant eigenvalues. Thus, the range space of E; is the signal
subspace and the range space of E,,, the orthogonal complement of the signal subspace,
is defined as the noise subspace.

The orthogonality property implies that the d’-dimensional range space of E; is con-
tained in the d-dimensional range space of A(f) and if the source covariance matrix is
full rank (non-coherent sources), then these subspaces are equal because in this case they
have the same dimension i.e. d = d. Therefore, based on these facts, the contribution of
the signal to the covariance matrix is merely along the signal eigenvalues. A number of
algorithms are available in the literature for solving the DOA estimation problem. How-
ever, for our purposes in this thesis, we only consider the multiple signal classification
(MUSIC) [3] and the weighted subspace fitting (WSF) [4] which are the two most popular

approaches.

2.2.3 Multiple Signal Classification (MUSIC) Method

One of the most popular techniques of the subspace decomposition is the multiple signal
classification (MUSIC) [3] method. MUSIC was the first algorithm that showed the
advantages of using a subspace based approach. The basic idea behind this algorithm
is that the span of the steering matrix is the same as the span of the signal eigenvectors,
E,, of the covariance matrix. In other words, by finding the intersections between array

manifold and signal subspace, one may estimate the DOAs. In practice, the covariance
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matrix R is unknown and only the sample covariance matrix, R, can be estimated by

averaging N independent snapshots, i.e.,
1 &
5 _ Hypyy & H
R=— ;x(t)x (t) = —=XyXE (2.2.28)
and then R, is decomposed to separate estimated signal and noise subspaces according to
R =E,AEf + E A EY (2.2.29)

where E;, is the estimated signal subspace matrix and E,,, is the estimated noise subspace
matrix.
As mentioned before, it can be shown that the noise eigenvectors are orthogonal to

the space spanned by the columns of the steering matrix [19]. So we have

Efa@) =0, 6¢€{6:,0s...,04} (2.2.30)

~

Thus, if the Euclidean distance from a(#) to E, is
D? = a()"E,Efa(6) (2.2.31)

then, estimation of DOAs can be determined by finding peaks in 517. In other words, the
MUSIC algorithm uses the fact that the reciprocal of the distance between the estimated
noise subspace and the true noise subspace results in sharp peaks in the vicinity of the

DOAs. Using this property, the MUSIC spatial spectrum is given by

Pu(0) = . . (2.2.32)

The expression (2.2.32) shows that the MUSIC algorithm is asymptotically unbiased since
R is measured asymptotically. This results in asymptotic measurement of E,. It should

be noted that a(f) is independent of the observed data. In spite of the fact that MUSIC is
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a statistically consistent estimator in the presence of non-coherent sources, one generally
requires a sufficiently large data set having high SNR. Furthermore, it has the ability to
resolve not closely spaced sources, but as it will be shown in the numerical examples
subsequently this method yields large estimation errors in the case of closely spaced
sources, low SNR and coherent sources.

If the sources are coherent, the orthogonal property is generally invalid and the MUSIC
algorithm is inefficient. To overcome this inefficiency, in the next section, the parametric
subspace decomposition methods will be introduced. The so called subspace fitting meth-
ods (SSF) [16] have been developed for their relatively excellent performance capabilities
to yield consistent estimates for the coherent sources. By choosing a proper weighting
matrix an optimal parametric subspace based technique known as the weighted subspace

fitting (WSF) methods [4] will be discussed in some more details.

2.2.4 Weighted Subspace Fitting (WSF) Method

As discussed in the previous section, the MUSIC algorithm generally suffers from a large
finite sample bias in the presence of coherent sources resulting in resolution problems.
This drawback is inherent due to the one-dimensional search of the parameter space. In
order to reduce the sensitivity of the MUSIC estimator to cope with coherent sources,
a few techniques such as multi-dimensional MUSIC (MD-MUSIC) {3], [20] and spatial
smoothing [21] have been developed. The MD-MUSIC algorithm, however, leads one to a
computationally expensive search process and the spatial smoothing method cannot cope
with general array geometries. Thus these methods have not received much attention due

to computational complexity and restrictions in the array structure.
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This section attempts to introduce the weighted subspace method that has the ca-
pability to resolve the too closely spaced sources in the presence of coherent signals for
general array geometries. This method fits the subspace spanned by A(6) to the measure-
ments X in a least squares sense. In other words, the subspace fitting estimate selects
A so that this subspace is as close to the data as possible. In the following the subspace
fitting formulation of the sensor array problem is analyzed and the weighted subspace
fitting technique is discussed.

It was shown earlier that the eigen-decomposition of the covariance matrix can be

expressed as

R = A(0)SAH(0) + 0T = E,AEY + E A EY (2.2.33)

It is clear that E, is orthogonal to ASA¥  which implies that the matrices A and E,
span the same range space whenever S is full rank. In the case of coherent sources, S has
rank deficiency and so the matrix E; spans the d’-dimensional (with d' as the rank of S)
subspace of A(6). It can be shown that by substituting I = E,;E¥ + E,E¥ in (2.2.33) we

have

ASA? 4+ ’E,Ef = E,AEY (2.2.34)

multiplying the two sides by E; yields
E,=A0)T (2.2.35)
where, T is the d x d’ matrix of full rank and takes the form
T = SAZE,(A, — ¢1)7! , (2.2.36)

In practice an estimate of E; is available and there may be no exact solution for 6
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such that

E,=AW0)T (2.2.37)

Therefore, an estimation criterion is utilized to find the best least squares fit of the two
subspaces, or equivalently, minimizing the distance between E, and A(#)T. This may be
achieved by solving the following optimization problem, which is linear in T and nonlinear
in 6

2

B, — AT

0,1 = argmin’ (2.2.38)

4,T F

where ||.||  is the Frobenius norm and arg min denotes the minimizing the argument of the
proceeding expression. The above equation can be used to define the class of subspace
fitting methods (SSF) [16]. It is possible to show that the subspace fitting problem is
separable in A and T [33], therefore, by solving for T i.e., T = A'E,, and substituting

back in (2.2.38), § can be written as
§ = arg min V(6) (2.2.39)

where the cost function V(8) is defined as

Vo) = ‘ES—A(O)AT(G)ESZF
= a-raeng,|
= tr{P5(E,EH} (2.2.40)

where At = (A#A)~'A# is the pseudo-inverse for A of full rank, P, = AAT denotes
the projection matrix and Py =1 — Py.

To minimize the distance between B, and AT, it is sufficient to introduce a weighting
matrix for the signal subspace matrix that results in the so-called weighted subspace fitting

(WSF) algorithm whenever the optimum weighting matrix that maximizes the accuracy
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is used [4]. Thus, multiplying the signal subspace matrix by a specific weighting matrix

W, the estimator 0 takes the form
f = arg moin V() = arg Irgn tr{P+(0)E,WEH} (2.2.41)

As shown in [16], the optimum weighting matrix that yields the lowest asymptotic esti-

mation error variance is defined as
W = (A, — 621)2A;! (2.2.42)

where 62 is any consistent estimate of the noise variance, e.g., the average of the m — d'

smallest eigenvalues of the measured covariance matrix.

2.2.5 Evaluating the WSF Estimator

In order to compute the WSF estimator, the cost function V(#) must be minimized as a
multi-dimensional nonlinear optimization problem. In the array signal processing litera-
ture, many optimization techniques have been suggested e.g., the alternating projection
method [22], global search techniques [23], [24], expected maximization methods [25], [26],
iterative quadratic maximum likelihood [27], as well as different Newton type techniques
[4], [20], [28]-[30]. In this section, the modified variable projection technique [31], [32]
which is a modification of the Gauss-Newton technique [33] is considered.

As shown in the previous section, the cost function for the WSF method takes the

form

V(8) = tr{PL(O)E,WEH} (2.2.43)

where

0 = arg mein V(9) (2.2.44)
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is to be calculated. For this purpose, the damped Newton technique [34], [35] which is an
efficient optimization technique may be used. Specifically by choosing an initial estimate

6y, this method iteratively computes the DOA estimate as
Op1 = O — e HLV (2.2.45)

where 0 is the DOA estimate at iteration k, H denotes the Hessian matrix (matrix of
second derivatives) of the cost function, V’ is the gradient (vector of first derivatives) and
1k is the step length. In order to converge to a local minimum, the step length should
generally be chosen to be less than one so that the cost function can be decreased suf-
ficiently. To obtain convergence to a global minimum, the algorithm must be initialized
appropriately. For example, if the cost function, V'(6), possesses several minima, the iter-
ations must be initialized sufficiently close to the global minimum or a number of random
initializations should be performed in order to prevent convergence to local solutions.

The Newton’s method approximates the cost function locally around a stationary point
by a quadratic function. The Hessian approximation method can be seen as a modification
of the gradient direction, to take into account the curvature of the approximation. The
Newton’s method has some drawbacks when applied to the above problems. First, while
the negative gradient is a descent direction for the cost function, the Newton’s direction
(H7'V’) can be guaranteed to be a descent direction only if H is positive definite. This
may not be the case when one is located far from the minimum, where V’(8) cannot, in
general, be well approximated by a quadratic function. Hence, there may exists no value
of juy that causes a decrease in the cost function. Second, the evaluation of the exact
Hessian matrix for the WSF criteria is computationally cumbersome.

A standard technique for overcoming the above difficulties is to use a less complex
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approximation of the Hessian matrix, which is also guaranteed to be positive semi-definite.

These techniques use the asymptotic (for large N) form of the Hessian matrices. This

method is often referred to as the modified variable projection technique (MVP) [31], [32].

It is closely related to the Gauss-Newton technique for nonlinear least squares problems.

The algorithm was applied to the array processing problem by Viberg et al. [4], and our

discussion below follows closely that reference.

Introduce a vector r by stacking the columns of Pz M,
r = vec(P£(6)M)
where M = E,W2 represents the data. Using (2.2.46) in (2.2.43) gives
V() = I’

the first derivative (i.e., gradient) of V' with respect to §; is

ov. or g\ _ I
50, = 2§R{(aei) r} =2R{r;r}

where R denotes the real part and

o O 9Py(6)
NS5 T as, M

and the derivative of the projection matrix is [16],[33]:

1
%I‘Z_A = —%% = "PiAiAT - (PﬁAz‘AT)H
where
a O0A
Ai = 00,

Using (2.2.50) in (2.2.48) gives

V'(0) = —2R{diag(ATMM”P3D)}

(2.2.46)

(2.2.47)

(2.2.48)

(2.2.49)

(2.2.50)

(2.2.51)

(2.2.52)
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where diag(A) is a column vector formed from the diagonal elements of A and

da(f,)  0Oa(fa)
a6, T 964

} (2.2.53)

The next step is to derive the Hessian matrix. This is done by differentiating (2.2.48)
with respect to 6;, thus we have

oV

et Hy 4 pH
36:90, 2R{r{r; +r;r} (2.2.54)

The Gaussian modification of the Newton’s technique assumes that the so called residual,

the term in (2.2.54), is small and approximates the Hessian matrix by
H = 2R{r"r,} (2.2.55)

Ignoring the second derivative guarantees that (2.2.45) is a descent method since H
is positive semi-definite. The resulting Gauss-Newton based algorithm is the variable
projection scheme of Golub and Pereyra [33]. Using (2.2.46) in (2.2.50) and noting that

PL(AHE = AP =0, yields
rifr; = tr{{(ANTAIPLAAT + PLA AT AN AP MM} (2.2.56)

Kaufman [31] modified the Gauss-Newton technique by ignoring the second term in

(2.2.56) which leads to
H,; = 2R{tr[(AHTAFPL A, ATMMY ]} (2.2.57)
and in the matrix notation form
H = 2R{(DPLD) & (ATMMF (AHT)T} (2.2.58)

where © is the Hadamard product. Therefore, the algorithm may be specified according

to (2.2.45), (2.2.52), and (2.2.58). In order to guarantee convergence to a local minimum,
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the step length, p, should be chosen appropriately. As discussed before, for Newton’s
techniques this parameter should be selected to be less than unity and one should take

ix = 1* as the smallest integer 7 > 0 that results in sufficient decrease in the cost function.

2.2.6 WSF Implementation and Practical Aspects

In this section, a detailed implementation of the modified variable projection (MVP)
method [31], [32] for the WSF algorithm is provided. A number of problems exist as
related to practical implementation of this method. For example, the array manifold
must be accurately calibrated to obtain reliable estimates of the DOAs. Also, to obtain
the gradient and the Hessian, the cost function must be at least twice differentiable with
respect to 6. Moreover, the updates must be properly initialized in order to guarantee
convergence to the global minimum.

Consequently, a suboptimal estimator such as MUSIC can be used to find an initial
estimates of the DOAs. This algorithm can be applied to general array geometries, but as
mentioned previously, MUSIC can not cope with coherent sources. A promising algorithm,
that can be used to initialize the modified Gauss-Newton based technique is the alternating
projection (AP) algorithm. The main idea of the AP algorithm, which was applied to the
array processing problem by Ziskind and Wax [22], is to replace the multi-dimensional
optimization problem by a sequence of one-dimensional optimization problems. The AP
algorithm can be applied to the general array geometry case as well as to the coherent
sources. Although, this algorithm converges globally to a local minimum, the convergence

can be very slow if the Hessian matrix is ill-conditioned.

In order to implement the WSF estimator, an iteration of the MVP algorithm involves
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the evaluation of the current values of the cost function V, the gradient V', the approx-
imate Hessian H, and the Newton’s direction (search direction) i.e. s = —H™'V’. Each
iteration in the algorithm requires the calculation of P and A'. This can be done by

QR decomposition of A using Householder transformations {36]:

R,
A=QR= [Q: Q) [ 0 ] (2.2.59)
thus
AT =R;'QF (2.2.60)
and
P} = Q.Qf (2.2.61)

Finally, the cost function V', the gradient V' and the approximate Hessian H take the

form
V = tr{ @0} (2.2.62)
V' = —2R{diag(T¥®)} (2.2.63)
H = 2R{(®7®) 0 (TTH)T} (2.2.64)

where the intermediate variables are defined as
& =QID (2.2.65)

¥ =M"Q, (2.2.66)

I' = R'Q¥M (2.2.67)
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2.3 DOA Estimation Techniques for wideband Sig-

nals

Array processing techniques can also be used to locate wideband sources. As mentioned
before, for wideband signals the frequency bandwidth is relatively large compared to
the center frequency. In comparison to narrowband signals, wideband signals are more
complicated since a large amount of data is required and more computational effort is
demanded to solve the same problem. While the time delays of narrowband signals
can be approximated by their respective phase delays, wideband signals require more
signal processing prior to using existing methods for solving the detection and estimation
problems.

For wideband signals, most of the techniques used to solve the detection and estimation
problems convert the data model from the time domain to the frequency domain. Such a
conversion is motivated by two reasons. First, the data model in the frequency domain is
structurally identical to the narrowbaﬁd situation in the time domain, and second that all
the successful techniques originally developed for narrowband models can then be reused
in the set of frequency bins to solve the problem for the wideband signals.

The advantages of the signal subspace approaches for narrowband sources makes it
a logical candidate for use in DOA estimation of wideband sources. On the other hand,
the methods that were originally developed for narrowband sources, cannot be directly
applied to wideband signals. There are a number of different approaches to wideband
array processing. Wax et al. [5] has divided the wideband frequency into non-overlapping

narrowband intervals, and then narrowband signal subspace processing was performed
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on each band. An averaging procedure was then applied to combine the individual nar-
rowband frequency results in to a single DOA estimation. Su and Morf [37] developed a
different method for which frequency domain division is not explicitly used. They devel-
oped a generalization of the one-dimensional signal subspace approach. In this method,
the correlation function matrix is first estimated and then transformed into the frequency
domain for applying narrowband signal subspace processing to each transformation point
or any point interpolated in the frequency domain.

The above so-called incoherent signal subspace methods (ISM) have some drawbacks.
First, these methods are computationally demanding since they involve an eigen-decomposition
of the spectral density matrix at each frequency band being analyzed. Second, at low SNR
the threshold effect prevents the final combination from being effective [38]. Moreover
ISM can not effectively process coherent signals even if the SNR is infinitely high and the
observation time is infinitely long.

Wang and Kaveh [6] recognized that the main difficulty in developing coherent signal
subspace processing for wideband sources is due to the fact that the signal subspace at
one frequency is different from that of another frequency. The basic idea of the coher-
ent signal-subspace method (CSM) which was introduced by Wang and Kaveh [6] is to
construct a single signal subspace by using a transformation matrix which translates the
signal subspaces for all the frequency bands into a common one. This approach improves
the DOA estimation by condensing the energy of the narrowband signals in a predefined
subspace. Indeed, CSM involves the use of focusing matrices for the purpose of coher-
ent signal subspace processing for DOA estimation of wideband signals. These focusing

matrices are used for the alignment of the signal subspaces of narrowband components



37
within the bandwidth of the signals, followed by the averaging of narrowband data covari-
ance matrices into a single covariance matrix, thus achieving a substantial reduction in
data processing. Subsequently, any signal subspace direction finding procedure, such as
MUSIC, can be applied to this averaged covariance matrix to obtain the DOA estimates.

One of the most challenging issues in the coherent signal-subspace methods is to choose
the best focusing frequency to decrease the estimation bias. In the past, the focusing
frequency has been chosen to be the center frequency of the spectrum of the signals. If
the spectrum of the signal is not symmetric around the center frequency, or the sampling
in the frequency domain is not uniform, this choice is not optimal. In [39], Valaee and
Kabal have introduced an optimal method for focusing subspace selection in the CSM
algorithm. The approach is based on minimizing a subspace fitting error. The subspace
fitting error is defined as the Euclidean distance between the focusing steering matrix and
the transformed steering matrix at each frequency bin. They have shown that by using
the proposed method for focusing subspace selection in the CSM algorithm, the bias of the
DOA estimates is minimized and the resolution threshold SNR is reduced. Furthermore,
Hung and Kaveh [40] proved that the best performance is obtained if the mapping of the

subspaces is done through a unitary transformation.

2.3.1 Wideband Data Model

A uniform linear array composed of m equally spaced sensors is assumed to be in far field
of d wideband sources so that a planewave approximation is valid. It is further assumed
that the array of sensors are in the same plane as the wideband sources. The wideband

sources are bandlimited to a common frequency band with a certain bandwidth. Moreover,
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the signals of the sources can be non-coherent, and partially or fully coherent. To obtain
the general mathematical model of the data, the case of a single incident wavefield will
be analyzed and subsequently the obtained model is generalized to the case of multiple
wavefields.

For a single incident wavefield in the noise free case, the signal received at the mth

sSensor is

% (t) = s(t — 11(61)) cos(we(t — 1(61)) + ¢) for 1 <I<m (2.3.1)

where s(t) is the baseband source signal, w, is the center frequency, ¢; is the azimuth
angle, 7; is the time delay associated with the [¢h sensor signal and ¢ is the phase angle.
Since signal processing operations are best done at baseband frequencies, it is a standard
practice in the literature to convert sensor signals by frequency down-shifting. This con-
version is achieved by multiplying the received signals by the sinusoidal signals cos(w.t)
and sin(wcAt) and then lowpass filtering these products. The bandwidth of the lowpass
filter has to be at least equal to the bandwidth of the source signal s(t). Therefore,
the outputs are given by the in-phase component s(t — 7;(6;)) cos(w.7;(01) + ¢) and the
quadrature component s(t — 7;(61)) sin(w,7(61) + ¢) for 1 <1 < m, and in the complex
form

x,(t) = s(t — 7(61))e? @) for 1< <m (2.3.2)

in which the real and imaginary parts are the in-phase and quadrature components,
respectively.
As mentioned before, the wideband data model in the frequency domain is structurally

identical to the narrowband situation in the time domain. Thus, by taking the Fourier
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transform of these time domain signals, we have
X (w) = S(w)eiteImwen®) for 1 <1< m (2.3.3)

where S(w) denotes the Fourier transform of the source signal s(t).

Let us now extend the model to the case of multiple incident wavefields. In this case,
there are d wavefields incident on the array. The superposition principle indicates that
the mth array sensor signal is defined by the linear combination of the separate effects
of the individual wavefields. Therefore the data model in the presence of environmental

noise takes the form

Si(w)elPre I wmwan) L Ny(w) for 1 <1< m (2.3.4)

M=

Xl (w) =
k==1

where Si(w) denotes the Fourier transform of the kth source signal sg(t), 71(6k) is the
delay of the kth source signal associated with the mth sensor and N;(w) denotes the noise
of mih sensor. It is assumed that the noise samples are uncorrelated with the signals.

In the matrix form, the model is defined by
x(w) = Aw, 8)s(w) + n(w) (2.3.5)

where x(w) is the m x 1 spectral array output vector, A(w, #) denotes the m x d steering

matrix, s(w) is the d x 1 spectral source vector and n(w) denotes the m x 1 noise vector

so that
x(w) = [Xi(w) X2() ... Xm(W)]" (2.3.6)
s(w) = [S1 (W) Sy(w)e™® ... Sy(w)e®]” (2.3.7)
A(w,0) = [ay(w,01) as(w,0:) ... ag(w,64)] (2.3.8)

n(w) = [Ny(w) Na(w) ... Np(w)]* (2.3.9)
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and

ap(w,0y) = [e @ wamG) - gmalwmwdmOIT for 1<k <d (2.3.10)

where the lower bold face and upper bold face are used to designate the vector and matrix
quantities, respectively. It is assumed that the number of sensors m is larger than the
number of sources d and that the rank of A(w,) is equal to d for any frequency and
angles of arrival.

The direction of arrival problem is concerned with using the noise corrupted sensor
signals (2.3.5) to determine the time delays and then using the results to estimate the
DOAs. Hence, for solving the direction of arrival problem, one may use the second-
order statistics of the spectral array output vector. As in the narrowband situation, it
is assumed that the source signals and additive noises are zero mean complex gaussian
random processes which are pairwise uncorrelated. With these assumptions in mind, the

spectral density matrix P,(w) of the spectral array output is defined as
P.(v) = B{x(w)x"(w)} (2.3.11)

It can be shown that this spectral density matrix is equal to the Fourier transform of the
covariance matrix i.e. Ry(7) = E{x(t + 7)x(t)} where x(t) denotes the m x 1 snapshot
vector whose components are given in expression (2.3.2). Using expression (2.3.5) in

(2.3.11), the spectral density matrix takes the form

Pi(w) = AW)E{s(w)s”(w)}A"(w) + E{n(w)n"(w)}

= A(W)P(w)A¥ (W) + o (W)P,(w) (2.3.12)

The d x d source spectral density matrix P;(w) that defines the second order statistical
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relationship between the d source signals taken as pairs at frequency w, is given by
P,(w) = E{s(w)s?(w)} (2.3.13)

It should be noted that if the source spectral density matrix Pg(w) is diagonal, then the
d source signals are said to be pairwise non-coherent. Moreover, a subset of the source
signals are coherent if this matrix is non-diagonal and singular. Similarly, a non-diagonal
and non-singular source spectral density matrix indicates that the multiple source signals
are partially coherent [17]. Finally, the m x m noise spectral density matrix P,(w) is
assumed to be known (e.g from measurements with no signals present) except for the

spectral level o%(w).

In practical applications, the spectral density matrix P,(w) is unknown and only a set

of sampled array sensor outputs are given
x(T), x(2T), ..., xy(nT) for 1 <1 <m (2.3.14)

where T denotes the sampling period and n is the number of samples. With these samples
being taken over a time interval of T seconds, the sampling period is determined as 1" =
To/n. In order to estimate the spectral density matrix, 1et these samples be partitioned
into @ equal subintervals each consisting of N = n/Q samples so that

x{(nT) = x(nT + (g — 1)NT)

(2.3.15)

for 1<!I<m and 1<¢<Q
where the superscript ¢ denotes the gth subinterval. By taking the N point discrete Fourier
transform of these sequences (2.3.15) we have

X{(wj) = DFT[x{(n)]

(2.3.16)
for 0<j<N-1and 1<¢<Q
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where w; denotes the jth narrowband frequency that takes on the discrete values 211{,-]— for
0<j<N-1L
Now, let x4(w;) denotes the m x 1 Fourier coefficient vector computed at frequency

w; of the gth subinterval, i.e.
xg(w;) = [X{(w;) X&(w;) -« X4 (wy)]" for 1<q¢<Q (2.3.17)

It can be shown [41] that for sufficiently large subinterval duration (i.e. AT = %) the
decomposed components x,(w;) are uncorrelated. In other words, if the correlation time of
the signal is sufficiently smaller than the length of a snapshot, the Fourier transformed data,
at different frequency bins are approximately uncorrelated and the maximum likelihood

estimation of its covariance matrix R, (w;) for the jth frequency w; is expressed as

Re(w;) = E{x(w;)x(w;) Q qu w;)x (2.3.18)

To reduce the computational cost when using the signal eigen-decomposition method
for estimating the DOAs, it is rational that only those frequencies w; be used for which
the SNR ratios are sufficiently large. Therefore, if {wy, wa, ..., wy} designate the set of
frequencies contained in the set {w; = 2% for 0 < j < N — 1} for which the SNR are

N

deemed suitably large, then we have
R, (w;) ~ qu wi)xH(w;) for 1<j<J (2.3.19)

where J is the number of frequency bins to be considered and w; is within the bandwidth.

2.3.2 Coherent Signal Subspace Method (CSM)

In order to have a significant improvement in the DOA estimation performance, it is

possible to combine the signal subspaces and direction information at all frequencies for
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which the SNRs are sufficiently large. Suppose the steering matrices A(w;) for 1 < j < J
have been separately determined. Since the steering matrix is a function of the frequency
and consequently the range spaces of these steering matrices are generally not the same
for different frequencies, the signal subspace at one frequency bin is different from that
of another frequency, and we cannot simply take their average to obtain an improved
DOA estimation. Wang and Kaveh [6] proposed the coherent signal subspace method
(CSM) whose objective is to transform the signal subspaces of the narrowband components
within the common bandwidth of the signals followed by an averaging of these aligned
signal subspaces. In other words, the CSM algorithm transforms the steering matrices
at different frequencies to a common frequency wy (focusing frequency) using focusing
matrices T;. The following result presented in [6] conveys the basic concepts of the CSM
algorithm for a general array geometry.

Theorem 2.3.1. Under the condition that each steering matriz A(w;), for 1 < j < J

has rank d, there exist m x m nonsingular matrices T{(w;) for 1 < j < J such that
T(w;)A(w;) = A(wo) for 1 <5< J (2.3.20)
Proof. See [6]. O

Note that the focusing matrices T(w;) for 1 < j < J are non-unique. Assume the
steering matrices A(w;)’s are transformed by the focusing matrices T(w;)’s to the vicinity
of the focusing steering matrix A(wy). Thé transformed steering matrices form a cluster
around A(wp). It is quite clear that the closer the transformed matrices are, the better
the performance is. In an ideal case all the transformed location matrices superimpose on
A(wp). This case is called the perfect focusing. In perfect focusing, the column vectors

of the steering matrices A(w;)’s are transformed to the corresponding column vectors of
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A (wp). This is also seen from the characteristics of the Frobenius norm, that is, the square
of the Frobenius norm of a matrix is equal to sum of the square of the Euclidean norm of
the column vectors. Thus, using different focusing matrices leads to different performance
capabilities. In the following, we will consider two classes of focusing matrices known as

diagonal and unitary focusing matrices.

Diagonal Focusing Matrix

In the array signal processing literature, several classes of focusing matrices have been
suggested e.g., the diagonal focusing matrices [6], the unitary focusing matrices [40], signal
subspace transformation [42], array manifold interpolation [43)], the unitary constrained
array manifold focusing [44], minimum integral square error [45],[46], among others. How-
ever, here we will only consider the diagonal focusing matrices and later the unitary focus-
ing matrices. It is clear that construction of T(w;) requires a knowledge of the unknown
DOAs. Therefore, the first step in estimating T(wj) is to perform an initial estimate of
the angles. Using a classical beamforming gives an estimate of the angles of arrival which
can be used in (2.3.20). Suppose all the true angles of arrival are within the neighborhood

of preliminary angle 6. Then the diagonal focusing matrices T(w;) can be estimated as [6]

a1(w0.0) .
ai(w?,eg) 0 0 0
a2 (wo,00)
. 0 ag(wj,eo)
T(w))=1] o0 0o - 0 0 (2.3.21)
: am—1{wo,80)
am_i(w?,é'z) 0
am (wo,00)
L 0 o 0 0 am(ugﬂg)-

where a;(w;, 0p) is the {th element of the steering vector a(wj,fo). In the case of uniform

linear array we have
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- -

1 0 0 ... 0
0 e—j%(wo—wj)AsiHOQ
TULA(WJ‘) = (0 0 0 0
. - e—j%(wo—wj)(m—&)A sin fg 0
0 - 0 0 e~J 2 (wo—w;)(m—1)Asinbo

(2.3.22)
where A is the spacing between adjacent sensors and ¢ is the velocity of wave propa-
gation. Furthermore, focusing matrices T(w;) for a uniform circular array of m sensors

takes the form

[ ¢ —(wo—w;)m1 (80) 0 0 e 0 ]
0 e~ J{wo—w;)T2(fo)
Tucalw;) = 0 0 0 0
eI (wo—w;)m1(fo) 0
0 e 0 0 e~ J{wo—w;)T(fo)
(2.3.23)
where
1 2n(l - 1) 2n(l —1)

T1(6p) = E(cos(—m—)cos 8o + sin( )sinfy) for 1 <I<m (2.3.24)

Let us now consider the effects of the focusing operation. Using the focusing matrices
T(wj), the observation vectors at different frequency bins are transformed into the focusing
subspace. In particular, the random vector x(w;) is transformed to the random vector

y{(w;) such that

-~

¥(w;) = T(wj)x(w;) for 1< bj <J (2.3.25)

These transformed observation vectors are used to construct the transformed covariance
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matrices

Q
R, (w5) = B{y(w;)y" (w;)} = %}quwj)yf () for 1<j<J  (2326)

q=1
An average of these aligned covariance matrices over the frequency bins gives a universal

focused covariance matrix R that can be used for DOA estimation and takes the form

R= Z w; E{y(w;)y™ (W)} (2.3.27)

where w; is a normalized weight selected to be proportional to the SNR of the jth fre-

quency band. Using (2.3.12), (2.3.20) and (2.3.25) in (2.3.27) gives

~

J
R o= ) wT(w)E{x(w;)x"(w;)}T (w;)

7j=1
= A(wo)R,A (wp) + 2R, (2.3.28)
where
J
R, =) wP.(w) (2.3.29)
i=1
and
~ J ~ ~
Rn =) wiT(w;)Pa(wy) T (w)) (2.3.30)
j=1

Unitary Focusing Matrix

The focusing transformation improves the efficiency of the estimation by condensing the
energy of sub-bands in the focusing signal subspace. In spite of this, it is seen that the
focusing removes the whiteness of the noise and this in turn causes to changes to the
SNR. The focusing loss is defined as the ratio of the array SNR after and before focusing.

Using this concept, Hung and Kaveh [40] have shown that the focusing is lossless if the
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focusing matrices are unitary. They have proposed the following transformation matrices

which are obtained by the constrained minimization problem

{‘I(lin) |A(wo) — T(wj)A(wi)l|p for 1 <5< J - (2.3.31)

@Wj
such that

T(w;) " T(w;) =1

where ||.|| 7, the Frobenius matrix norm that is defined as

I1B|l, = [Zb ] [tr(BYB)] (2.3.32)

In fact, this transformation involves the rotation of the jth narrowband signal sub-
space, span {A(w;)}, to make it as close as possible in the Forbenius norm sense to the
focusing signal subspace, span {A(wp)}, without changing the noise covariance matrix.

In order to find the solution to (2.3.31), we have the following theorem [40].

Theorem 2.3.2. Given the two matrices A(wp) and A(w;), a solution to (2.3.31) is given

by
T(w;) = V(w;)U(w;)" (2.3.33)

where the columns of U(w;) and V(w;) are the left and right singular vectors of A (w;)A(wo)?

respectively.

Proof. See [40] and [47] O

2.3.3 Selection of the Focusing Frequency

As mentioned before, Hung and Kaveh [40] proved that the best performance is obtained
if the mapping of the subspaces is done through a unitary transformation. However, they

did not discuss how to choose the best focusing subspace. A simple selection for the
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focusing frequency is the center frequency of the spectrum of the signals. But, if the
spectrum of the signal is not symmetric around the center frequency, or the sampling
in the frequency domain is not uniform, this choice is not optimal. Thus, one of the
most challenging issues in the coherent signal-subspace method is the choice of the best
focusing frequency to decrease the estimation bias. Valaee and Kabal [39], have introduced
an optimal method for focusing subspace selection in the CSM algorithm.

The approach is based on minimizing a subspace fitting error. The subspace fitting
error is defined as the Euclidean distance between the focusing steering matrix and the
transformed steering matrix at each frequency bin. In other words, the criterion for
focusing frequency selection is based on the error involved in the transformation of the
signal subspaces, and the minimization of this criterion gives the focusing frequency. They
have shown that by using the proposed method for focusing subspace selection in the CSM
algorithm the resolution threshold of SNR is reduced and the bias of the DOA estimate

is minimized. Specifically, they have chosen a focusing frequency which is selected by

J

min min > " wi [[A(wo) — T(w) Alwy)ll7 (2.3.34)
7 J:1

st. T(w) T (w;) =1
A(wo) € A(9)

where A(6) is the set of all steering matrices for given DOA 6 and w; is a weighting

factor proportional to the SNR at the jth frequency bin with ijl w; = 1. Using (2.3.33),
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the subspace fitting error is given by

J
Z w; 1A (wo) = T(w;) A w7
J

S W, [ DA + A — 2R{er(A(w0) Alwy) "T(w5)™))
=1

= 2Jmd— QZZWJak (wo) A(w;)¥) (2.3.35)

J=1 k=1

s,

where o4 (A(wo)A(w;)?) for k = 1, ..., d are the singular values of the matrix A{wp)A(w;)¥

arranged in non-increasing order. In above, the following equality has been used

IAlG = Z lagl7 = md (2.3.36)

which is true for an arbitrary array manifold.
From (2.3.35) it is seen that the minimization problem (2.3.34) is equivalent to the

following maximization

max Z Z wiok(A(wo) A (w;)7) (2.3.37)

j=1 k=1
s.t. A(wo) € A(0)

Direct maximization of (2.3.37) is complicated and the computational complexity in-
creases with the number of frequency samples. Valaee and Kabal [39] used a suboptimal
method which is based on maximizing an upper bound to (2.3.37). They have shown that
in the vicinity of the maximum point the bound is tight. The tightness of the bound at
the maximum point indicates that the method performs very close to the optimal case.
The following lemma [39], establishes a lower bound on the norm of the difference of two

matrices.

Lemma 2.3.3. IfE and F are two m x n matrices with ordered singular values o1(E) >
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> 0,(E) >0 and 01(F) = - - - > 04(F) > 0, where ¢ = min{m,n}, then

q

IE-F|i} > > [04E) — oi(F) (2.3.38)

3=1

Proof. See [47). O

Using (2.3.38) to (2.3.35) gives

J d J d
ZZWJ A(wp)A(wj)T) < ZZWIU’“ (wo))o(A(w;) ) (2.3.39)

j=1 k=1 F=1 k=1

The proposed method is based on maximization of the right hand side of (2.3.39) i.e.

H}U%XZZWJUIC (wo))o (A(w;)) (2.3.40)

J=1 k=1
s.t. A(wp) € A(f)
In order to perform this maximization, the singular values of the focusing steering matrix
A(wg) are determined and then using the known structure of the steering matrix the
focusing frequency wy is found. Thus, the maximization problem (2.3.40) can be written

nrg;xz pek(A(wo)) (2.3.41)

s.t. A(wo) € A(6)

where py. is defined as
J
i = ijak(A(wj)) (2.3.42)
This is a one variable maximization problem that can be solved by searching for the

best wp in the interval of interest. It is seen that the computational complexity for the

maximization in (2.3.41) is independent of the number of frequency samples.
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2.4 Conclusion

In this chapter, the fundamental issues and problems relating to both the narrowband
and the wideband array signal processing techniques were provided. The narrowband data
model was presented followed by a brief exposition of the different array geometries and
the introduction to the array manifold. Definitions for non-coherent, partially coherent
and coherent sources were also included. The multiple signal classification (MUSIC) and
the weighted subspace fitting (WSF) direction of arrival (DOA) estimation techniques
characterized by the eigen-decomposition of the sample covariance matrix were studied.
Data model for the challenging wideband signals were derived. The incoherent signal
subspace method (ISM) and the coherent signal subspace method (CSM) were considered.
The derivation for the diagonal focusing matrices and unitary focusing matrices were also
performed in this chapter. Finally, the selection of the optimum focusing frequency for

the CSM scheme was considered.



Chapter 3

Development of Wideband Methods
to Specific Geometries of Sensors
using the MUSIC Algorithm

3.1 Introduction

While the majority of research efforts in array processing have so far been given to uniform
linear arrays (ULAs), attempts have been made to apply and extend the results to other
array geometries such as uniform circular array, uniform rectangular array and so on.
There are distinct advantages for pursuing these attempts. For example, the most obvious
advantage in the use of UCAs in comparison to ULAs is the UCAs ability to provide
a full azimuth coverage, which is the result of their two-dimensional array structure.
Furthermore, when called for, UCAs can provide a 180° coverage in the elevation. On
the other hand, while one UCA is able to provide the full azimuth coverage, at least
three separate ULAs are required for the same task in which each array covers a 120°
sector. Therefore, the use of UCAs can lead to a reduction in hardware requirements. In
comparison to other array geometries, ULAs also suffer from decreasing effective array
aperture as the look direction changes while for the UCAs with a reasonable number

of sensors, the effective array aperture is almost constant over any look direction in the
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azimuth. Despite these advantages, many useful array processing techniques that were
derived for ULAs have not been extended to other array geometries.

In this chapter, we will first consider an array geometry that consists of several nodes
in which each node is a 5-element half-wavelength spaced cross shaped subarray. Then,
numerical examples and simulation results using these array geometries for both the nar-

rowband and wideband signals using MUSIC and CSM algorithms will be presented.

3.2 Cross Shaped Array Geometry

In this section, we consider four types of array geometries that are of interest. Fig.
3.2 shows these array geometries known as linear cross shaped array (LCSA), diago-
nal cross shaped array (DCSA), triangular cross shaped array (TCSA) and square cross
shaped array (SCSA) where the space between two elements in each node is equal to half-
wavelength and the distance between two vicinal nodes can change with a multiplication
of half-wavelength. It should be noted that in the case of linear geometries the distance
between two nodes is defined as the distance between the most left hand sensor and the
most right hand sensor. In the case of diagonal geometries, this distance is defined as
the nearest distance between two upper and two lower sensors diagonally. In computer
simulations, we will find that both the node topology and the aperture are important i.e.,
the performance capabilities of the techniques used in array processing will be modified
by variation of these parameters.

Assume that the location of the sensors in the zy-plane are

= {.’El g ... :L’m} (321)

1 Y2 .. Um

To find the array steering matrix for an arbitrary array geometry, equation (2.2.13) can
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Source

Sensor
r=1[x, yl

: >

X

Figure 3.1: Two dimensional array geometry (r is the location of sensors and L is the
wave vector).

be substituted by

a(f) = e MO for 1<k <d (3.2.2)
where
2 T
L(Ox) = _)\7_r [cosﬂk sinGk] for 1<k<d (3.2.3)

is defined as the wave vector and 6, is the direction of the kth signal propagation, defined
counter clockwise relative to the z-axis (Fig. 3.1).

In order to develop and implement the MUSIC algorithm (refer to equation (2.2.32))
using the array geometries presented above, the steering matrices for these array geome-

tries are derived below.

Linear Cross Shaped Array Geometry

In the following, the array steering matrix for a linear cross shaped array (LCSA) consists
of two nodes (Fig. 3.2.a with two nodes i.e. m = 10) with the distance between the nodes

equal to half-wavelength will be derived. For this purpose, assume that the location of
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(@ (®)
© (@

Figure 3.2: Four different types of array geometries using the cross shaped nodes a) Linear
Cross Shaped Geometry composed of four nodes, b) Diagonal Cross Shaped Geometry,
c) Triangular Cross Shaped Geometry, and d) Squared Cross Shaped Geometry. The
space between the two elements in each node is equal to half-wavelength and the distance
between the two vicinal nodes can change with a multiplication of half-wavelength.

the sensors in the xy-plane are

0121 13454 4
r=A x (3.2.4)
000110001 —I

Substituting this matrix in the equation (3.2.2) and using the equations (3.2.3) and

(2.2.13) the array steering matrix (if the number of sources is equal to d) takes the form

0 0 ... 0
e«jz—’;\A— cos 61 e—j%écosﬁz L. €_j¥ cos by
e—j2—",\é2c0391 e—j%m:os@z .. e—-j2’:\‘\‘2c0s9d
e_j&;é(cos 61-+sinb1) e—j%(COS O2+sinf2) . e—jg’;‘—A-(cos B4+sinfy)
‘ e—j-zl)\é(cosel«-—sinal) e—j¥(cos Oy—sinfz) . e—ﬂ’-;-é(cosed—sm 64)
Arcsa(f) = e—-j?l‘XéScosm e—-j%&:osez ... e—jz’%3cos0d (3.2.5)
e——j%élcosﬂl e—j?—}éélcost .. e—j¥4cosgd
e—j?”TA500501 e—j-z—’—:\—A—Scosez . e—j%SCOSGd
e—jzlrx—A-(400501+sin 61) e—j%(ilcos&g-}—sin g2) ... e—j%@cos 04+sin 64)
e—jg-’—;\—é(élcosel —sinf1) e—j%(ﬁlcoseg—sin 92) ... e~ '%(4cosed~sin0d)
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Diagonal Cross Shaped Array Geometry

Assume that the location of the sensors for the diagonal cross shaped array consists of
two nodes (Fig. 3.2.b with m = 10) with the distance between the nodes equal to v/2A
in the xy-plane are

01 2 1
r=Ax
0001

1 23 433

3.2.6
-1 22 231 ( )

Therefore, the array steering matrix for the diagonal cross shaped array (DCSA)

geometry takes the form

0 0 0
e«j%cosal e—j%cosez e_jgl,\é cos by
e—j%Qcosel e—jg’;—AZCOSHQ e—jg—’—'xé2cosed

e—jQ—’;‘é(cosHl-%—s’m ) e—j%(cos O2-+sin 82) e—j%(cos«%-f‘sin 84)

e—jQ—’;é-(cosOl —sinf;) 6—]‘%(;05 02 —sinfs) e—jg’;\—é‘(cosGd—sin 94)
Apcsa(f) = o2 (2c0501+25in01)  ,—j 252 (2 0502+ 25in 03) 3252 (2 cos 042 sin )
eﬁj%(?’ cos01+2sin6;) e—jgvg\—wA—(3coseg+2sin92) e—jg-’&é(P)cos 04+2sinby)
e~j2L)‘A-(4c0591+2sin91) e—j%(4cos@z+23in92) e—jz’ié(4cosed+25in0d)
e—jz’;—é(s cos01+3sin ;) e~j2L)\A~(3cost92+35in92) e—j¥(3cosl9d+3 sin 64)

€_j¥(3 cos f1+sin 1) e—jz’;—A(JS cos f2+sinfz) e—j&’ié(?) cos 84+sinfq)

(3.2.7)

Triangular Cross Shaped Array Geometry

Similar to the two previous geometries suppose that the location of the sensors for the
triangular cross shaped array (Fig. 3.2.c with m = 15) with the distance among the nodes

equal to five-wavelength in the zy-plane is given by

178 9 8
-1 0 0 0 1

8 01211
-1 777 8 6

0121
0001

r=A X (3.2.8)
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Thus, the array steering matrix for the triangular cross shaped array (TCSA) geometry

(if the number of sources is equal to d) can be presented by

Arcsa(d) =

0

eI j2T8 (o3 0

e—j?"TAQcosGl

e d 2—’5—A—(cos 61+sin6,)

[

€

e

€

€

—§ 252 (cos 61 ~sin 01)

e—j—z—}A—7cos91

e —j&Le Z"A o2 8costh

e—j?"TAQ cos &y
—j&’}-\-—A— (8 cos By +sin )
—]— (8c0391 —sin 01)
e——jz’§A—7sin [
—jg—’&é (cos@1+7sinby)

—j£= Z"A (2cos81+7sinby)

e—j%(cos 01 +8sinby)

[

-3 —2-’—'/\~A~(cos 01 -+6sin 6y )

[

0

e—j&'xA— cos 0o

e—jz’i—A—2cos()2

-7 % (cos §2+sin 02)

e~J 2—’;—A— (cos B2 —sin 82)

€

(=4

e

e

e

603M7c0592

e—jz—’;\—é—Scoseg
e—jz’;—A—Qcoseg

—jgl)\é(S cos O2+sin62)
—j%(Scos 02 —sin 62)

e—jg’—;-‘é7sin92

~j¥ (cos 83+7sin 63)

E—JM@ cos 2-+7sin83)

—jg-’r;\é (cos B2 +8sin b2)

—7 252 (cos 02 +6 5in 62)

Square Cross Shaped Array Geometry

Finally, the array steering matrix for the square cross shaped array (SCSA) geometry

(Fig. 3.2.d with m =

takes the form

0

e—]2—"é' cos g

e—jgﬁ\——A—2cosGd

e—j % (cos84+sinby)

e~ 3 —2—}‘3 (cosBg—sinby)

e—sz)‘AJcosGd

e—g M8<:osed
e*j%f)cos()d

—j<E2 2"A 8 cos By+sin Oy
e

e J A(SCos Bq~sinfy)

e—]M’/sin 84

6~j¥(cos 04+7sinby)

e —jE= Q"A (2cos84+7sinby)

e~ J 24',\—4‘ (cos8,+8siné,)

eI 2L>\A- (cos04+6sin6y)

(3.2.9)

20) with the distance among the nodes equal to half-wavelength



Ascsa(f) =

e

e

€

e

L

e

[

e

e

0

6_j¥ costh

e—j%2cost91

e——j &’Xé- (cosf1+sinfy)

eJ % (cos@1—sin6y)

e—j%?;cosol
e—jzi)‘A—4cos01

e—jzl)\é-‘ScosBl

—j%@cos 01+sin6,)

—J———(400591 —sin 01)
e—i %5 3sin 0,

-7 %(cos 01+3sin6y)

~j%(2cos€1+3sin 01)

—3 2—’;\é(cos 01-+4sin6y)

e ] )‘ (cos91+2sm91)

—jgo"xé—(3 cosf;+3sinby)
~j%(4cos@1+3 sin 61)

—J-—(5cos(91+331n 01)

e—j2—’f\é(4cose1+4sin€1)

—j 258 (40501 +25in 6;)

€

e

€

e

e

e .7

€

0

e—] 218 0650,

e~ J 2—’/'\—A—2cos¢92

e—j—z—’;—A— (cos f2+sin 62)

e-—j g’—;\—A— (cosf2—sinb2)

e-—j%(ﬁcosez

e—j %4 cos 82

e—j—z—’—:\A500502
—j 228 (4 cos O3 +sin 03)
—§ 228 (4 cos Pz ~sin 62)

e—jz’;\—ABSinﬁz
—5228 (cos 02+ 3 sin 62)
—j 224 (2 cos B3+3 sin fa)
_]'%(cos 02-+45in62)

2"A {cos02+25sinb3)

—~j¥(3c0592+3sin 02)

e—j%(licos@g—l—ﬁisin 02)

€

€

[

—jz—’f\—A(500502+351n92)
._j2.7:\£‘_(4 cos fz+4sin 67)

—j¥(4c0502+2sin 82)

e

e

e

e

€

€

€

€

(&

[

e~J j2n /\A (cos §4-+sinby)
e—jzlr)TA—(cos 04~sinfy)

e—]z—"—éi&cosed

e—] 2—"—é4cos9d

eI MS cosfy

3§28 (4.cos Oy+sin 03)
-j%(él cos Bg—sinfy)

e—jg"TA3sin 04
~5 228 (cos 04+35in 8,)
—jEna Z"A (2cos03+3sinby)
—j % (cos84+45in 04)
—j Z.’!).\é (cosf4+2sin6,)
—j % (3cosfg+3sinby)
_j¥(4 cosfg+3sinby)
_]‘%(5 cos84+3sinby)

—jz—’:\lk~(40059d+4sin9d)

-7 27—/'\—A—(Ai cos84+2sin8,)

(3.2.10)

3.3 Numerical Examples and Simulation Results for
Narrowband Sources

In this section a number of numerical examples are presented to demonstrated the perfor-

mance of MUSIC algorithm using the array geometries presented above. In the simulation,

100 independent Monte Carlo runs are performed for each example and for each trial, the

array output is observed for N = 100 independent snapshots. The array of sensors com-

posed of two, three or four nodes is exposed to three coherent, non-coherent and partially
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coherent narrowband planar wavefronts arriving from 20, 25 and 30 degrees. The additive
noise is independent zero mean Gaussian and the SNR is defined relative to each source.
Moreover, beamforming technique is used on the simulated data to form the three initial

azimuth angle estimates used by the MUSIC algorithm.

3.3.1 Performance Capabilities of the MUSIC Algorithm

In the first experiment, the performance capabilities of the MUSIC algorithm in the pres-
ence of coherent, non-coherent and partially coherent sources are studied. Two cross
shaped arrays composed of m = 10 elements (5 elements for each node) with one half-
wavelength element spacing is used and the array of sensors are exposed to the three
narrowband planar wavefronts arriving from 20, 25 and 30 degrees where each narrow-
band signal is the sum of a set of cosine signals with random amplitude and the same
center frequency f, = 1700H z. The results of the simulations for 100 independent trials
are presented in Table 3.1. In order to obtain the probability of resolution, 100 indepen-
dent trials are performed and the number of times that the method resolved the three
DOAs is counted. It can be seen that the MUSIC algorithm could resolve 3 non-coherent
and partially coherent sources while it failed to resolve coherent signals. In other words,
for non-coherent and partially coherent signals, the MUSIC algorithm has a good perfor-
mance but for the coherent signals the efficiency is very low even in higher SNR values.
The pseudo spectrum of the MUSIC estimator in the presence of non-coherent, partially
coherent and coherent signals is depicted in Fig 3.3.

To study the performance capabilities of the MUSIC algorithm in response to changing

the number of sensors using different geometries in the presence of partially coherent
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Probability of Resolution

S 3 non-coherent sources 3 partially coherent sources 2 coherent and 3 coherent sources
N (source covariance matrix (source covariance matrix 1 non-coherent sources | (source covariance matrix
R is diagonal) is non-diagonal and (source covariance is singular)
(dB) non-singular) matrix is singular)

0 0.00 0.00 could not could not

5 0.00 0.00 resolve resolve

10 0.73 0.00 sources sources

15 0.95 0.65 even for even for
20 1.00 1.00 higher values higher values
25 1.00 1.00 of SNR of SNR

Table 3.1: Performance capabilities of the MUSIC algorithm in the presence of the coher-
ent, non-coherent and partially coherent sources.

signals a second experiment is performed. The number of snapshots is N = 100, whereas
the location of sources are 20, 25 and 30 degrees and the number of sensors are varied
from m = 10 to m = 20. The geometry of array sensors is shown in Fig. 3.2 where the
distance among the nodes is chosen to be half-wavelength. The results of the simulations
for 100 independent trials are depicted in Fig. 3.4. It is observed that by increasing
the number of sensors, the probability of resolution is improved for all the geometries.
However, for m = 10 the linear cross shaped geometry has a lower resolving threshold
than the diagonal cross shaped geometry while for m = 15 and m = 20 the triangular
and square geometries have a better resolving threshold than the linear case. To show
the effects of increasing the distance between the nodes, the experiments are repeated
where the distance among the nodes is selected to be 10 half-wavelength. Fig. 3.5 depicts
that the resolving threshold is significantly improved by increasing the distance among
the nodes in different geometries. Again, for the triangular and square geometries the
estimator has a lower resolving threshold than the linear case while for m = 10 the linear
cross shaped geometry has a better resolving threshold than the diagonal cross shaped

geometry. It is also seen that the resolving threshold for the case with m = 10, using 10
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Figure 3.3: The pseudo spectrum of the MUSIC estimator using linear cross shaped
geometry composed of two nodes in the presence of (a) Three non-coherent sources, (b)
Three partially coherent sources, (¢) Two coherent sources and one non-coherent source
and (d) Three coherent sources. SNR = 30dB, N = 100, m = 10, DOA = [20 25 30]
with the distance between the nodes is equal to one half-wavelength.

half-wavelength distance between two nodes, is lower than the case of m = 20 but with
half-wavelength distance among the nodes.

The third example in this section is designed to demonstrate and illustrate the capa-
bility of the MUSIC estimator in resolving the closely spaced sources. For this example
the three source signals are partially coherent and for each simulation their locations are
chosen according to Table 3.2. The geometry of array sensors is the linear cross shaped
where the number of sensors are varied from m = 10 to m = 20 with the distance be-

tween the two nodes is chosen to be 10 half-wavelength. The number of snapshots and
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Figure 3.4: Probability of resolution (Prob. in above figures) versus the SNR for (a)
m = 10, (b) m = 15 and (¢) m = 20. The distance among the nodes is equal to one
half-wavelength.

the distance among the nodes are 100 and 10 half-wavelength, respectively. The simula-
tion results show that the resolution capability of this estimator improves by increasing
the angle among the sources which is intuitively expected. Indeed, the threshold SNR is
higher for locating the closely spaced sources. As seen in Fig. 3.6, the SNR threshold is
decreased by increasing the number of sensors form m = 10 to m = 20.

The last and the most important experiment in this section is performed to show the
effects of changing the distance between two nodes in the array sensors for resolving the
sources using the MUSIC algorithm. In this example the number of snapshots is taken
as IV = 100 and the location of the sources are at 20, 25 and 30 degrees. The simulation

results show that by increasing the distance between two nodes from A to 10A, the
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Figure 3.5: Probability of resolution (Prob. in above figures) versus the SNR for (a)
m = 10, (b) m = 15 and (¢) m = 20. The distance among the nodes is equal to 10
half-wavelength.

capability of the DOA estimator improves for resolving the sources, i.e. by increasing the
distance between two nodes the SNR. threshold is decreased (Fig. 3.7a). These results are
confirmed by those obtained in Fig. 3.7b where the probability of resolution is improved
by increasing the distance between two nodes. However,b this improvement is achieved
only for a few decades of A (almost 50A) and after that the capability of resolving the
sources have again decreased.

To confirm the above results, another simulation scenario is designed. For this pur-
pose, the norm of bias vector is measured versus the distance between the two nodes.
As depicted in Fig. 3.8, the estimation error is decreased from A to 40A and has re-

mained unchanged up to 65A and beyond this is then increased, so that the MUSIC
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Angle between | Location of sources (deg)

sources (deg) 01 0, 8
1 20 21 22
2 20 22 24
3 20 23 26
4 20 24 28
) 20 25 30
6 20 26 32
7 20 27 34
8 20 28 36
9 20 29 38
10 20 30 40

Table 3.2: The location of sources in Section 3.3.1.

DOA algorithm is not able to resolve the sources.

3.4 Coherent Signal Subspace Method using Cross
Shaped Array Geometry

The main objective of thé coherent signal subspace method (CSM) is to transform the
signal subspaces of the narrowband components within the common bandwidth of the
signals followed by an averaging of these aligned signal subspaces. In other words, the
CSM algorithm transforms the steering matrices at different frequencies to a common
frequency wp (focusing frequency) using focusing matrices T;. As discussed in Chapter
2, theorem 2.3.1 conveys the basic concepts of the CSM algorithm for a general array
geometry. It is clear that construction of T(w;) requires a knowledge of the unknown
DOAs. Therefore, the first step in estimating T{(w;) is to perform an initial estimate of
the DOA angles. Using a classical beamforming gives an estimate of the angles of arrival
which can be used in estimating T(wj). Suppose all the true angles of arrival are within
the neighborhood of the preliminary angle 6y. Then the diagonal focusing matrices T(w;)

for m = 10 sensors can be estimated as



65

49 T T T T T T T T

smae Linear Cross Shaped Array m =10
+ = Triangle Cross Shaped Amay m =15
»++ Square Cross Shaped Array m =20

35 1

Source Separation (deg)

Figure 3.6: The minimum SNR required for the source separation using the MUSIC
estimator. The locations of the sources are shown in Table 3.2 and the number of sensors
are m = 10, m = 15 and m = 20.

mway 00 0
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T(ws)=1| 0 0o . 0 0 (3.4.1)
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T ag(w;,00) 0
a1o{wo,fo)
0 0 0 e

where a;(w;,0p) for 1 <1 < 10 is the Ith element of the steering vector a(wj,fo). In
the case of linear cross shaped array (LCSA) consisting of two nodes (Fig. 3.2.a with two
nodes i.e. m = 10) with the distance between the nodes equal to half-wavelength (refer

to (3.2.4) and (3.2.5)) the diagonal focusing matrices take the form
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(b) Probability of resolution versus the distance between the two nodes (m = 10, N = 100,
DOA = [20 25 30], SNR = 10dB ).
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(3.4.2)

where
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Figure 3.8: The norm of the bias vector versus distance between two nodes for the MUSIC
algorithm (m = 10, N = 100, SNR = 20dB, DOA = [20 25 30}).

71(6p) =0 72(6p) = @XA— cos 6

3(60) = ﬁr/\é—? cos by 74(00) = @(cos 8o + sin b)
75(0o) = &T/—\—Z}—(COS By — sinbp) 16(00) = 2—7;%3 cos b

77(6p) = —2—}[}—4 cos by 18(00) = 2%%5 cos by

' 27A 2rA
To(bo) = ~E)\—(4 cos g + sin bp) 710(6o) = —%—(4 cos By — sin )

Furthermore, focusing matrices T(w;) for the square cross shaped array (SCSA) geom-
etry (Fig. 3.2.d with m = 20) with the distance among the nodes equal to half-wavelength

take the form
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-e_j (wo—w;)T1(f0) 0 0 0
0 e—J(wo—w;)T2(Bo)
Tscsalws) = 0 0 0 0
: : e~ J{wo—w;)m9(fo) 0
0 0 0 e—J(wo—w;)T20(60)
(3.4.3)
where
2rA
71(60) =0 72(00) = —%— cos by

A
73(6p) = 2—7;—2 cos By

2rA
74(0) = 7rT(cos o + sin By)

2rA 27 A

75(0y) = —Z\—(cos By — sin byp) 76(6p) = WTS cos fy
27 A 27 A

77(60) = WT4 cos Gy 73(00) = WTS cos By

2 A
A
2\

7’11(90) == TB sin 90

T9(Gp) = (4 cos By + sin bp)

2r A
A

115(60) = —Z—Z;é(cos 6o + 2sin bp)

T13(6) = (2cos By + 3sinby)

21 A
T17(00) = 7rT(4 cos Oy -+ 3sin by)

2w A
T19(60) = —7;\——(4 cos By + 4sin )

2n A
T10(00) = 7TT(ZJE cos By — sinfy)

T12(00) = —2—7;—\é(cos o + 3sinby)
2nA
7’14(90) = 7TT‘(COS Oy + 4sin 90)

27 A
T16(00) = 7TT(ZS cos 0 + 3sin by)

2 A
A\

2r A
TQ()(@Q) = jj\*——(‘l COS 9() + 2s8in 90)

T18(th) = (5cos by + 3sin by)

It should be noted that extraction of focusing matrices using the diagonal cross shaped
array and the triangular cross shaped array is straightforward. In the next section, a
number of numerical examples and simulation results using the four different types of

array geometries for the wideband signals using MUSIC and CSM algorithms will be
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presented.

3.5 Numerical Examples and Simulation Results for
Wideband Sources

In the following, a number of numerical examples are presented to demonstrated the per-
formance capabilities‘ of the CSM algorithm using the above discussed array geometries
(in conjunction with using MUSIC algorithm as a narrowband estimator). In the simula-
tions, 100 independent Monte Carlo runs are performed for each example. Two bandpass
coherent sources incident on an array of sensors composed of two, three or four nodes
are considered. Two incident plane waves are taken to have bearing angles at 45 and 50
degrees (unless otherwise explicitly stated) where each wideband signal is the sum of a set
of cosine signals with random amplitude, the same center frequency f. = 100H z and the
same bandwidth BW = 40H z. The array noise n(t) is taken as a complex valued additive
bandpass (the same passband as the signals) white Gaussian process whose components
are statistically independent of the source signals. The array signal model (2.3.2) is then
employed to generate data to be used in forming the array covariance matrix (2.3.19).
The sensor signals are observed over a T' = 48sec time interval. These signals are then
sampled at the rate of 80 samples/sec to give a total of L = 3840 samples for each ar-
ray sensor. To approximate the underlying array covariance matrix, each data length is
decomposed into @) = 60 non-overlapping segments each consisting of 64 samples, i.e.,
each segment has AT = % = 0.8sec. Using the relationship (2.3.19), an estimate of the
array covariance matrix is made with J = 33 equal frequency intervals spaced across the

passband. Therefore, the data (signal plus noise) consists of 60 snapshots for each of the
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33 narrowband frequency components.

3.5.1 Focusing Frequency Selection using the CSM Algorithm

As mentioned in Section 2.3.3, minimizing the subspace fitting error is an appropriate
criterion for the focusing frequency selection i.e., minimizing the Euclidean distance be-
tween the focusing steering matrix and the transformed steering matrix at each frequency
bin gives the optimum focusing frequency. Furthermore, by using this focusing frequency
the bias of the estimator is minimized and the resolution threshold of SNR is reduced.
Therefore, in our simulation results we first attempt to find the optimum focusing fre-
quency and also to study the bias of the CSM algorithm using this optimum frequency.
Fig. 3.9a shows the norm of the bias vector versus the focusing frequency for two coherent
wideband sources arriving at a linear cross shaped array composed of two nodes with 10
half-wavelength distance between the nodes. It is seen that the bias is minimized between
90 and 95 Hz, while the center frequency for this example is 100 Hz. It should be noted
that the most accurate assignment of the focusing frequency is not obtained since the
search test was done with frequency steps equal to 5Hz. ‘In order to assign the optimum
focusing frequency, the singular value maximization criteria is used. Indeed for this pur-
pose, the singular values of the focusing steering matrix A(wp) are determined and then
using the known structure of the steering matrix the focusing frequency wp was found
(refer to equations (2.3.39), (2.3.40) and (2.3.41)). Fig. 3.9b depicts the singular value
maximization criteria versus the focusing frequency. Using this criteria, the optimum

focusing frequency was obtained to be equal to 93.75 Hz.
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Figure 3.9: Focusing frequency selection a) The norm of the bias vector versus the focusing
frequency for two coherent wideband sources arriving at a linear cross shaped array, b)
Singular value maximization criteria versus the focusing frequency (m = 10, SNR =
10dB, DOA = [45 50] with distance between the two nodes = 104).

3.5.2 Performance Capabilities of the CSM Algorithm

To study the performance capabilities of the CSM algorithm in response to changing the
number of sensors using different geometries in the presence of wideband coherent sources
this experiment is performed. The location of sources are 45 and 50 degrees and the
number of sensors are varied from m = 10 to m = 20. The geometry of array sensors is
shown in Fig. 3.2 where the distance among the nodes is chosen to be half-wavelength. The
results of the simulation for 100 independent trials are depicted in Fig. 3.10. It is observed
that by increasing the number of sensors, the probability of resolution has improved for

all the geometries. As seen in Fig. 3.10, for all the cases the linear cross shaped geometry
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has the lowest resolving threshold as compared to the diagonal, triangular and square
cross shaped geometries. To demonstrate the effects of increasing the distance among the
nodes, the experiment is repeated where the distance among the nodes is selected to be 10
half-wavelength. Fig. 3.11 shows that the resolving threshold is significantly improved by
increasing the distance among the nodes in different geometries. Again, for m = 10 and
m = 15, the linear cross shaped geometry has the lowest resolving threshold as compared
to the diagonal and triangular cross shaped geometries while for m = 20 the square cross
shaped geometry had a better resolving threshold than the linear case. It is also seen that
the resolving threshold for the case of m = 10 using 10 half-wavelength distance between
two nodes is equal to the case of m = 20 but using half-wavelength distance among the
nodes.

The above experiment has shown that a larger array aperture results in a lower re-
solving threshold and yields more accurate DOA estimates with more robust resolution of
closely spaced sources but resulting in some ambiguous estimates of the DOAs. Fig. 3.12
shows this ambiguity for different array geometries. As depicted in this figure the ambi-
guity for the triangular and square cross shaped geometries is less than the linear case

while the resolving threshold for linear case is much better than the two other geometries.

The second example is designed to demonstrate the capability of the CSM algorithm
in resolving the closely spaced sources and also to illustrate the effects of increasing the
number of nodes in the array geometry. For this example the two source signals are
coherent and for each simulation their locations are chosen according to Table 3.3. The

geometry of array sensors is the linear cross shaped where the number of sensors are
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Figure 3.10: Resolution probability (Prob. in above figures) of the CSM algorithm (using
the MUSIC algorithm as a narrowband estimator) versus the SNR for (a) m = 10, (b)
m = 15 and (c) m = 20. The distance among the nodes is equal to one half-wavelength.

varied from m = 10 to m = 20 with the distance between the two nodes is chosen to be 10
half-wavelength. The simulation results show that the resolution capability of the DOA
estimator is improved by increasing the angle among the sources which is intuitively
expected. Indeed, the threshold SNR is higher for locating the closely spaced sources.
Furthermore, as depicted in Fig. 3.13, the SNR threshold is decreased by increasing the
number of nodes in the array geometry from 2 cross shaped nodes to 4 cross shaped nodes.

The third example in this section is conducted to study the capability of the CSM
algorithm in resolving the coherent wideband sources by changing the number of nodes in
the array sensors and the signal to noise ratios. Table 3.4 shows the minimum number of

sensors that are required to resolve 2, 3 and 5 coherent wideband sources for a fixed value



74

I T T T T T

Prob.
08F m=10

Distance between Nodes = 10A

0.6

(@

04 -

02t " == Linear Cross Shaped Array

e’ + = Diagonal Cross Shaped Array
1 1

4 6 8 10
SNR(dB)

N T T T

Prob.
08 m=15
Distance between Nodes = 104
061
(v
04}
02| = Linear Cross Shaped Array  ~
+ w Triangle Cross Shaped Array
1 1

4 6 8
SNR(dB)

Prob.
08F m=20 =
Distance between Nodes = 10A

061

(©)

02t wws Linear Cross Shaped Amray

+ = Square Cross Shaped Amay
1 L

-10 -8 -6 2 4 6 10

8
SNR(dB)

Figure 3.11: Resolution probability (Prob. in above figures) of the CSM algorithm (using
the MUSIC algorithm as a narrowband estimator) versus the SNR for (a) m = 10, (b)
m = 15 and (c) m = 20. The distance among the nodes is equal to 10 half-wavelength.

of SNR = 10dB with the distance among the nodes being equal to 10A. The minimum
values of SNR required for resolving 2, 3, 4 and 5 coherent wideband sources using linear
cross shaped array composed of 10 sensors with 10 half-wavelength spacing between two
nodes are shown in Table 3.5.

To demonstrate the performance of the CSM algorithm in response to increasing the
distance between the two nodes in the array sensors the next experiment is designed. As
seen in the first example of the present section a larger array aperture causes a lower re-
solving threshold and produces more accurate DOA estimates and more robust resolution
of closely spaced sources but it also results in ambiguous estimates of the DOA’s. Fig.

3.14 to Fig. 3.18 show this ambiguity for a linear cross shaped array composed of two
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Angle between | Location of sources (deg)

sources (deg) 6, 9,
1 45 46
2 45 47
3 45 48
4 45 49
5 45 50
6 45 51
7 45 52
8 45 53
9 45 54
10 45 55

Table 3.3: The location of sources in Section 3.5.2.

The minimum number | The number of sources
of sensors required that the CSM algorithm
resolved
1 node (5 sensors) 2
2 nodes (10 sensors) 3
3 nodes (15 sensors) 5

Table 3.4: The minimum numbers of sensors required to resolve coherent wideband sources
in Section 3.5.2.(SNR = 10dB with the distance among the nodes = 10A).

The minimum values | The number of sources
of SNR(dB) required | that the CSM algorithm
resolved
5 2
12 3
17 4
24 5

Table 3.5: The minimum value of SNRs required to resolve coherent wideband sources in
Section 3.5.2.(m = 10 with the distance between two nodes = 10A).
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Figure 3.12: The pseudo spectrum of the MUSIC estimator in the presence of two wide-
band coherent sources showing the ambiguous estimates for (a) Linear cross shaped array
m = 15, (b) Triangular cross shaped array m = 15, (c¢) Linear cross shaped array m = 20
and (d) Square cross shaped array m = 20 with SNR = 10dB, DOA = [45 50] with

distance among the nodes = 10A.

nodes where the distance between the nodes is changed from 5 to 60 half-wavelength with
the step size equal to 5 half-wavelength and the SNR is varied from 0 to 20dB with the
step size equal to 5dB. As depicted in these figures this ambiguity is increased for larger
array aperture while the resolving threshold is decreased. It should be noted that after
60A the estimation errors have increased so that the algorithm is not able to resolve the

sources even for high SNR values.
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Figure 3.13: The minimum SNR required for the source separation in the CSM algorithm
using MUSIC algorithm as a narrowband estimator. The locations of the sources are
shown in Table 3.3 and the number of sensors are m = 10, m = 15 and m = 20.

3.5.3 Performance Comparison of the CSM Algorithm using the
Diagonal and the Unitary Focusing Transformation Matri-

ces

In this section, the performance capabilities of the CSM algorithm using the diagonal
focusing transformation matrix and the unitary focusing transformation matrix is com-
pared. As mentioned in Chapter 2, the CSM algorithm has the best performance if the
mapping of the subspaces is performed through a unitary transformation. In fact, using
the unitary focusing transformation matrix to align the steering matrices causes one to

minimize the bias of the DOA estimates. Fig. 3.19a depicts the pseudo spectrum of the
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Figure 3.14: The pseudo spectrum of the MUSIC estimator in the presence of two wide-
band coherent sources showing the ambiguous estimates using the linear cross shaped
array m = 10, SNR = 0dB, DOA = [45 50] and the distance between the two nodes is
changed from 5 to 60 half-wavelength with the step size equal to 5A.

MUSIC estimator for the CSM using both diagonal and unitary matrices. As can be seen
from this figure, both methods have some deviations form the true DOAs. To study this
error, the norm of the bias vector as a function of SNR for both the diagonal and the
unitary focusing transformation matrices is calculated and the results are shown in Fig.
3.19b. As can be observed from this figure the estimator error using the unitary focusing
transformation matrix is lower than that of the diagonal case. Unfortunately, in spite of
the fact that the CSM is very e;ﬁ"ective in wideband signal processing, it suffers from an
asymptotic bias of the peaks as a result of the errors in estimated focusing subspaces.

The bias increases with the bandwidth of the sources and the deviation of the focusing
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Figure 3.15: The pseudo spectrum of the MUSIC estimator in the presence of two wide-
band coherent sources showing the ambiguous estimates using the linear cross shaped
array m = 10, SNR = 5dB, DOA = [45 50] and the distance between the two nodes is
changed from 5 to 60 half-wavelength with the step size equal to 5A.

subspaces from the true subspaces. In this experiment the location of sources are 45 and
50 degrees and the geometry of array sensors is the linear cross shaped with m = 10 where

the distance between the two nodes is chosen to be 10 half-wavelength.

3.6 Conclusion

Four different types of array geometries denoted as linear cross shaped array, diagonal cross
shaped array, triangular cross shaped array and square cross shaped array are considered.
As can be seen from the computer simulations both the node topology and the aperture

are important parameters and the performance capabilities of both the narrowband and
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Figure 3.16: The pseudo spectrum of the MUSIC estimator in the presence of two wide-
band coherent sources showing the ambiguous estimates using the linear cross shaped
array m = 10, SNR = 10dB, DOA = [45 50] and the distance between the two nodes is
changed from 5 to 60 half-wavelength with the step size equal to 5A.

the wideband techniques are affected by adjusting these parameters. It is observed that
by increasing the number of sensors and the distance among the nodes the probability of
resolution is improved for all the geometries and it is also seen that the bias of estimator
is decreased by increasing the above two mentioned parameters. Although a larger array
aperture does result in a lower resolving threshold and produces more accurate DOA
estimates but it also results in ambiguous estimates of the DOAs. As seen this ambiguity
for the triangular and square cross shaped geometries is less than the linear case while
the resolving threshold for the linear case is much better than the two other geometries.

The subspace fitting error criterion is used in the CSM algorithm for selection of the
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Figure 3.17: The pseudo spectrum of the MUSIC estimator in the presence of two wide-
band coherent sources showing the ambiguous estimates using the linear cross shaped
array m = 10, SNR = 15dB, DOA = [45 50] and the distance between the two nodes is
changed from 5 to 60 half-wavelength with the step size equal to 5A.

optimum focusing frequency. Using this optimum focusing frequency, it is observed that
the bias of the estimator is minimized and the resolution threshold of the SNR is also
reduced. Finally, the performance of the CSM algorithm using the diagonal focusing
transformation matrix and the unitary focusing transformation matrix is considered. It
can be observed that the DOA estimator error using the unitary focusing transformation

matrix is lower than the one for the diagonal case.
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band coherent sources showing the ambiguous estimates using the linear cross shaped
array m = 10, SNR = 20dB, DOA = [45 50| and the distance between the two nodes is
changed from 5 to 60 half-wavelength with the step size equal to 5A.
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mation matrices in the presence of two wideband coherent sources a) The pseudo spectrum
of the MUSIC estimator, b) The norm of bias vector versus SNR (m = 10, SNR = 10dB,
DOA = [45 50] with the distance between two nodes = 10A).



Chapter 4

Development of Wideband Methods
to Specific Geometries of Sensors
using the WSF Algorithm

4.1 Introduction

As discussed in chapter 2, in spite of the MUSIC ability to resolve relatively closely spaced
sources, this algorithm fails to produce peaks associated>with true DOASs in small samples
and at low SNRs, specially, in the presence of coherent sources. In the case of coherent
sources, the orthogonal property of signal and noise subspaces is violated and the MUSIC
algorithm fails to provide consistent estimates. In other words, the MUSIC algorithm
usually suffers from a large finite sample bias in the presence of coherent sources which
results in resolution problems. For these reasons, the weighted subspace fitting (WSF)
method that was discussed in Chapter 2 for its relatively perfect performance is utilized to
yield consistent estimates for the coherent sources. As we will see in the following sections
the WSF algorithm has an excellent performance capabilities in the presence of coherent
sources. This chapter attempts to show the ability of the WSF estimation algorithm in
resolving closely spaced sources in the presence of coherent signals for both narrowband

and wideband sources using the array geometries discussed in Chapter 3 (Fig. 3.2).

84
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4.2 Coherent Signal Subspace Method using WSF al-
gorithm

In this section, we will develop the narrowband WSF algorithm to the framework of
the coherent signal subspace method discussed in Chapter 2 using cross shaped array
geometry discussed previously.

Consider a linear cross shaped array consisting of two nodes (Fig. 3.2.a with two nodes
i.e. m = 10) with the distance between the nodes equal to half-wavelength receiving d
wideband sources. The locations of the sensors in the xy-plane are defined according to
equation (3.2.4). The wideband sources are bandlimited to a common frequency band
with a certain bandwidth. The array noise n(t) is taken as a zero mean complex gaussian
random process (the same passband as the signals) whose components are statistically
independent of the source signals. Moreover, the signals of the sources can be non-
coherent, and partially or fully coherent. As demonstrated in Chapter 2 the general

wideband model is defined by
x(w) = A(w, 8)s(w) + n(w) (4.2.1)

where x(w) is the m x 1 spectral array output vector, A(w,f) denotes the m x d steering

matrix, s(w) is the d x 1 spectral source vector and n(w) denotes the m x 1 noise vector

so that
x(w) = X (w) Xe(w) ... Xm(w)]F (4.2.2)
s(w) = [Si(w)e?® Sy(w)e?® ... Sy(w)el®|” (4.2.3)
n(w) = [Ni(w) Na(w) ... N(w)]" (4.2.4)

and (refer to section 3.2)



86

0 0
e (w—we) 358 cos 0y e~ (w—we) 258 cosby
e—j(w—wc)2§A200301 e—j(w—wc)z’;AZcosOd
e—j(w—wc) z’f\A (cos 61 +sin 1) e—j(w—wc) 2’;\‘\ (cos Bg+sin 0y)

2’;‘A (cos 61 —sin 6y) e—j(w——wc)z’;\A (cos83—sinfy)

e’j(w_wc)

Aw,0) = (4.2.5)

2’;A 3cosfy

e—j(w——wc) 27;\A‘(icos@l e—-j(w—wc)

e—j(w-—wc) Q’RA 4cosby e—j(w—wc) 2’;‘Aéltcos 64

e—j(w—wc) 27;\A5cos()1 e—j(w—wc)z’gAScosed

eilw—we) 252

e~ {w=wc) 214 (4 cos 61+sin 01 ) (4 cos 8g+sin 84)

e—«j(w—wc) 2’;\‘3 (4cos6,—sin 61) e—j(w—-wc) 2’;‘/‘\‘

(4 cos 0g—sin Gg)

where the lower bold face and upper bold face are used to designate the vector and matrix
quantities, respectively. It is assumed that the number of sensors m is larger than the
number of sources d and that the rank of A(w,#) is equal .to d for any frequency and angle
of arrival.
Using the results of section 2.3.1 the covariance matrix can be estimated by
R Q

1 .
R, (w;) = ) qu(wj)xf(wj) for 1<j<J

g=1

(4.2.6)

where J is the number of frequency bins to be considered, @ is the number of subinterval,
and w; is the frequency within the bandwidth. The coherent signal subspace algorithm
transforms the observation vector at different frequency bins into the focusing subspace

through the focusing matrices Tycga(w;) which is defined by (refer to equation (3.4.2))

[ o—3(wo—ws)71(80) 0 0 0 1
0 eI {wo—w;)2(0o)
TLCSA(wj) = 0 0 0 0
e J{wo—w;)Te (o) 0
0 0 0 e~ i{wo~w;)T10(bo)

(4.2.7)



87

where
71(6p) =0 72(6p) = 2—7;\—4— cos by
73(6) = 2—7;—4—2 cos By 74(6) = ?—7;—A(cos Bo + sin 6p)
75(6p) = -2—7;}—(005 Gy — sinby) 76(0p) = ?—7;?—3 cos 8y
77(00) = g%A—‘l cos by 73(6p) = @5 cos by
To(6o) = @(4 cos Oy + sin Gp) 710(60) = —2—1;—A—(4 cos By — sin fp)

Using these focusing matrices gives the universal focused covariance matrix R (see equa-

tions (2.3.25) - (2.3.30))

~

J
R o= > w;T(w;) E{x(w;)x" (w;)} T (wy)

i=1
= A wo)ﬁsAH(wo) + O’,QLRn (4.2.8)
where
R J
R, =) wiP.(w) (4.2.9)
i=1
and
-~ J ~
R, = wT(w;)Pu(w;) T (w)) (4.2.10)
j=1

Subsequently, the narrowband weighted subspace fitting algorithm discussed in Chapter

2 can be applied to this focused covariance matrix to obtain the DOA estimates.

4.3 Numerical Examples and Simulation Results for
Narrowband Sources

In this section a number of numerical examples are presented to investigate the perfor-

mance of the WSF algorithm using the various array geometries discussed previously.
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Again, in the computer simulations 100 independent Monte Carlo runs are performed for
each example and for each trial the array output is observed for N = 100 independent
snapshots. The array of sensors are composed of two, three or four nodes that are exposed
to three coherent, non-coherent and partially coherent narrowband planar wavefronts ar-
riving from 20, 25 and 30 degrees where each narrowband signal is the sum of a set of
cosine signals with random amplitude and the same center frequency f. = 1700Hz. The
additive noise is independent zero mean Gaussian and the SNR is defined relative to each
source. Moreover, the alternating projection (AP) algorithm was used on the simulated

data to form the three initial azimuth angle estimates.

4.3.1 Performance Capabilities of the WSF Algorithm

In the first example, the performance capabilities of the WSF algorithm in the presence
of coherent, non-coherent and partially coherent sources are studied. Two cross shaped
arrays composed of m = 10 elements (5 elements for each node) with one half-wavelength
element spacing is used and the array of sensors are exposed to the three narrowband
planar wavefronts arriving from 20, 25 and 30 degrees. The results of the simulations for
100 independent trials are presented in Table 4.1. In order to obtain the probability of
resolution, 100 independent trials are performed and the number of times that the method
resolved the three DOAs is counted. It can be seen that the WSF algorithm could resolve
coherent, non-coherent and partially coherent sources and has a good performance for all
the cases.

In the second experiment we study the performance capabilities of the WSF algorithm

as a function of the changes in the number of sensors for different geometries and in the
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Probability of Resolution

S 3 non-coherent sources 3 partially coherent sources 2 coherent and 3 coherent sources
N (source covariance matrix (source covariance matrix 1 non-coherent sources | (source covariance matrix
R is diagonal) is non-diagonal and (source covariance is singular)
(dB) non-singular) matrix is singular)

0 0.00 0.00 0.00 0.00

5 0.55 0.25 0.10 0.00

10 1.00 1.00 0.42 0.00

15 1.00 1.00 1.00 0.25

20 1.00 1.00 1.00 0.65

25 1.00 1.00 1.00 1.00

Table 4.1: Performance capabilities of the WSF algorithm in the presence of the coherent,
non-coherent and partially coherent sources.

presence of partially coherent signals. The number of snapshots is taken as V = 100 and
the location of the sources are at 20, 25 and 30 degrees with the number of sensors varied
from m = 10 to m = 20. The geometries of array sensors consider are shown in Fig.
3.2 where the distance among the nodes is chosen to be half-wavelength. The results of
the simulations for 100 independent trials are depicted in Fig. 4.1. It is observed that
by increasing the number of sensors the probability of resolution has improved for all the
geometries. However, the linear cross shaped and the diagonal cross shaped geometries
for m = 10 and the linear cross shaped and the square cross shaped geometries for m = 20
have almost the same resolving threshold while for m = 15 the triangular cross shaped has
a better resolving threshold than the linear geometry. To show the effects of increasing
the distance among the nodes, we repeat this experiment where the distance among the
nodes is selected to be 10 half-wavelength. Fig. 4.2 shows that the resolving threshold
is significantly improved by increasing the distance among the nodes for the different
geometries. In this scenario, for m = 15 and the triangular geometry the DOA estimator
has a lower resolving threshold than the linear case while for m = 10 and m = 20 the

linear geometry has a better resolving threshold than the diagonal and the square cross
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Figure 4.1: Probability of resolution (Prob. in above figures) versus the SNR for (a)
m = 10, (b) m = 15 and (¢) m = 20. The distance among the nodes is equal to one
half-wavelength.

shaped geometries. It is also seen that the resolving threshold for the case of m = 10,
using 10 half-wavelength distance between two nodes, is lower than the case of m = 20
with half-wavelength distance among the nodes.

To demonstrate the capability of the WSF algorithm in resolving the closely spaced
sources the third experiment is conducted. For this example the three source signals are
partially coherent and for each simulation their locations are chosen according to Table
3.2. Two cross shaped arrays composed of m = 10 elements (5 elements for each node)
is used and the array of sensors are exposed to the three narrowband planar wavefronts
arriving from 20, 25 and 30 degrees. The number of snapshots and the distance between

the two nodes are 100 and 10 half-wavelength, respectively. The simulation results show
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Figure 4.2: Probability of resolution (Prob. in above figures) versus the SNR for (a)
m = 10, (b) m = 15 and (¢) m = 20. The distance among the nodes is equal to 10
half-wavelength.

that the resolution capability of the DOA estimator improves by increasing the angle
among the sources which is what one intuitively expects. Indeed, the threshold SNR is
higher for locating the closely spaced sources. As seen in Fig. 4.3, the SNR threshold is
decreased by increasing the angle among the sources.

In the last example in the present section the effects of changing the distance between
the two nodes for resolving the sources using the WSF algorithm are illustrated. In this
experiment the number of snapshots is taken as N = 100 and the location of the sources
are at 20, 25 and 30 degrees. The simulation results show that by increasing the distance
between the two nodes from A to 10A, the capability of estimator is improved for resolving

the sources, i.e. by increasing the distance between the two nodes the SNR threshold has



92

30 T T T T T T T T

20 ~

0 1 1 1 1 ] 1 1
1 2 3 4 5 6 7 8 9 10
Source Separation (deg)

Figure 4.3: The minimum SNR required for the source separation using the WSF esti-
mator. The location of the sources are shown in Table 3.2 and the number of sensors are
m = 10.
decreased (refer to Fig. 4.4a). These results are confirmed by those obtained in Fig. 4.4b
where the probability of resolution has improved by increasing the distance between the
two nodes. However, this improvement is achieved only for a few decades of A (almost
30A) and beyond this point the capability of the DOA estimator in resolving the sources
has again decreased.

To confirm these results another set of simulation results are performed. For this
purpose, the norm of the bias vector is measured versus the distance between the two
nodes. As depicted in Fig. 4.5, the estimation errors decrease from A to 25A, remain

unchanged up to 30A and subsequently increase so that the DOA estimator is not able

in resolving the sources beyond this point.
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Figure 4.4: (a) Probability of resolution (Prob. in above figures) versus the SNR. The
distance between the two nodes is equal to one half-wavelength and 10 half-wavelength.
(b) Probability of resolution versus the distance between the two nodes (m = 10, N = 100,

DOA = [20 25 30}, SNR = 104B).

4.4 Numerical Examples and Simulation Results for
Wideband Sources

In the following section a number of numerical examples are presented to show the per-
formance capabilities of the CSM algorithm for the array geometries discussed previously
(and utilizing the WSF algorithm as a narrowband estimator). In the simulations con-
ducted 100 independent Monte Carlo runs are performed for each example. Two bandpass
coherent sources incident on an array of sensors composed of two, three or four nodes are
considered. Two incident plane waves are taken to have bearing angles at 45 and 50 de-

grees (unless otherwise explicitly stated) where each wideband signal is the sum of a set
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Figure 4.5: The norm of the bias vector versus the distance between the two nodes for
the WSF estimator (m = 10, N = 100, SNR = 20dB, DOA = [20 25 30]).

of cosine signals with random amplitude, the same center frequency f. = 1004z and the
same bandwidth BW = 40H z. The array noise n(t) is taken as a complex valued additive
bandpass (the same passband as the signals) white Gaussian process whose components
are statistically independent of the source signals. The array signal model (2.3.2) is then
employed to generate data to be used in forming the array covariance matrix (2.3.19).
The sensor signals are observed over a 1" = 48sec interval. These signals are then sampled
at the rate of 80 samples/sec to give a total of L = 3840 samples for each array sensor.
To approximate the underlying array covariance matrix, each data length is decomposed
into @ = 60 non-overlapping segments each consii'sting of 64 samples, i.e., each segment

AT = L = 0.8sec. Using the relationship (2.3.19), an estimate of the array covariance

Lol
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matrix is made with J = 33 equal frequency intervals spaced across the passband. There-
fore, the data (signal plus noise) consists of 60 snapshots for each of the 33 narrowband

frequency components.

4.4.1 Performance Capabilities of the CSM Algorithm

This experiment is conducted to study the performance of the CSM algorithm (using
the WSF algorithm as a narrowband estimator) in response to changes in the number
of sensors using different geometries and in the presence of wideband coherent sources.
The location of soﬁrces are 45 and 50 degrees and the number of sensors are varied from
m = 10 to m = 20. The geometries of the array sensors are shown in Fig. 3.2 where the
distance among the nodes is chosen to be half-wavelength. The results of the simulations
for 100 independent trials are depicted in Fig. 4.6. It is observed that by increasing the
number of sensors, the probability of resolution improves for all the geometries. As seen
in Fig. 4.6, for all cases the linear cross shaped geometry has a lower resolving threshold
than the diagonal, triangular and square cross shaped geometries.

To show the effects of increasing the distance among the nodes, the above experiment is
repeated where the distance between the two nodes is selected to be 10 half-wavelength.
Fig. 4.7 shows that the resolving threshold is significantly improved by increasing the
distance among the nodes for different geometries. Again, for all the cases the linear cross
shaped geometry has a better resolving threshold than the diagonal, triangular and square
cross shaped geometries. It is also seen that the resolving threshold for the case of m = 10
with 10 half-wavelength distance between the two nodes, is almost equal to the case of

m = 20 with half-wavelength distance among the nodes. This example demonstrates
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Figure 4.6: Resolution probability (Prob. in above figures) of the CSM algorithm (using
the WSF algorithm as a narrowband estimator) versus the SNR for (a) m = 10, (b)
m = 15 and (¢) m = 20. The distance among the nodes is equal to one half-wavelength.

that a larger array aperture causes a lower resolving threshold and produces a more
accurate DOA estimate but can result in a more challenging' initialization step for the
search methods. Therefore, necessitating the use of the the alternating projection (AP)
algorithm for more than one time. It is also seen that the number of initial conditions
leading to the global minimum is also reduced by increasing the number of sensors m
(refer to Fig. 4.8).

To demonstrate the capability of the CSM method (using the WSF algorithm as
a narrowband estimator) in resolving the closely spaced sources the experiment below
is carried out. The simulation results show that the resolution capability of the DOA

estimator improves by increasing the angle among the sources which is what one would
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the WSF algorithm as a narrowband estimator) versus the SNR for (a) m = 10, (b)
m = 15 and (c¢) m = 20. The distance among the nodes is equal to 10 half-wavelength.

intuitively expect. Indeed, the threshold SNR is higher for locating the closely spaced
sources as shown in Fig. 4.9. For this example the two source signals are coherent and
for each simulation their locations are chosen according to Table 3.3. The geometry of
array sensors is the linear cross shaped with m = 10 where the distance between the two

nodes is chosen to be 10 half-wavelength.
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Figure 4.8: Initial conditions that lead to the global minimum using WSF algorithm for

10), (b) Diagonal cross shaped array (DCSA

10), (c) Triangular cross shaped array (TCSA m = 15), and d) Square cross shaped

array (SCSA m = 20). The distance among the nodes is equal to one half-wavelength.

(a) Linear cross shaped array (LCSA m

m

4.4.2 Performance Comparison of the CSM Algorithm using the

Diagonal and the Unitary Focusing Transformation Matri-

ces

The last example in this chapter is performed to compare the performance capabilities

of the CSM algorithm using the diagonal focusing transformation matrix and the unitary

focusing transformation matrix. As mentioned in Chapter 2, for the CSM algorithm

the best performance is obtained if the mapping of the subspaces is performed through

a unitary transformation. In fact, using the unitary focusing transformation matrix to
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Figure 4.9: The minimum SNR required for the source separation in the CSM algorithm
using the WSF algorithm as a narrowband estimator. The location of the sources are
shown in Table 3.3.

align the steering matrices results in minimizing the bias of the DOA estimates. In this
experiment the location of sources are 45 and 50 degrees and the geometry of array
sensors is the linear cross shaped with m = 10 where the distance between the two nodes
is chosen to be 10 half-wavelength. Fig. 4.10 depicts the norm of bias vector as a function
of SNR for both the diagonal and the unitary focusing transformation matrices. As can
be observed from this figure the estimator error using the unitary focusing transformation
matrix is lower than the diagonal case. Unfortunately, in spite of the fact that the CSM is
very effective in wideband signal processing, it suffers from an asymptotic bias as a result
of errors in estimated focusing subspaces. The bias increases with the bandwidth of the

sources and the deviation of the focusing subspaces from the true subspaces.
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Figure 4.10: Performance of CSM algorithm using diagonal and unitary focusing transfor-
mation matrices in the presence of two wideband coherent sources (m = 10, SNR = 10dB,
DOA = [45 50], Distance between nodes = 10A).

4.5 Conclusion

The performance capabilities of the WSF estimator using the four types of array geome-
tries are investigated in this chapter for both the narrowband and the wideband sources.
The main interest in the simulation results is to study the performance of the estimator
by changing the node topology and the aperture of the array geometry. Similar to the
MUSIC estimator, it is observed that by increasing the number of sensors and the dis-
tance among the nodes, the probability of resolution improves and the bias of estimator

decreases for all types of geometries. Although, a larger array aperture yields a lower
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resolving threshold and produces a more accurate DOA estimate but it can also result in
more difficulty with the initialization stage of the search methods for the WSF estimator.
Therefore, the alternating projection (AP) algorithm has to be utilized for more than one
time and in some situations the global convergence can not still be guaranteed. It should
be noted that the iterations required in the AP algorithm increase the computational cost
of the DOA estimation schemes. Finally, the performance capabilities of the CSM algo-
rithm using both the diagonal focusing transformation matrix and the unitary focusing
transformation matrix is compared. It is concluded that the estimator error using the

unitary focusing transformation matrix is lower than that of the diagonal case.



Chapter 5

Performance Comparison of
Wideband Techniques using the
MUSIC and the WSF DOA

Estimators

5.1 Introduction

Thus far in the thesis the MUSIC and the WSF estimators were discussed and using
the introduced array geometries a number of numerical simulation examples showed the
advantages and disadvantages of each estimator separately. This chapter attempts to
compare the capabilities of the WSF and the MUSIC estimators in resolving closely spaced
sources in the presence of coherent signals for both the narrowband and the wideband
sources using various array geometries. As demonstrated subsequently the WSF algorithm
has excellent performance in most of the situations as compared to the MUSIC algorithm
but, as seen in the following examples, using a larger array aperture causes more difficulty
in selecting the initialization parameters of the search methods for the WSF estimator
so that AP algorithm has to be performed more than once and this iterative process
increases the computational cost, and in some situations the global convergence can not

still be guaranteed.

102
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5.2 Comparison of the Results for Narrowband Case
using the MUSIC and the WSF Estimators

In this section a number of numerical examples are presented to compare the performance
of the MUSIC and the WSF algorithms using the previously introduced array geometries.
In the simulation results 100 independent Monte Carlo runs are performed for each ex-
ample and for each trial the array output is observed for V = 100 independent snapshots.
The array of sensors are composed of two, three or four nodes and are exposed to three co-
herent, non-coherent and partially coherent narrowband planar wavefronts arriving from
20, 25 and 30 degrees where each narrowband signal is the sum of a set of cosine sig-
nals with random amplitude and the same center frequency f. = 1700Hz. The additive
noise is independent zero mean Gaussian and the SNR is defined relative to each source.
Moreover, the beamforming technique (for the MUSIC algorithm) and the alternating
projection (AP) algorithm (for the WSF algorithm) are used on the simulated data to
form the three initial azimuth angle estimates.

In the first experiment the performance of the MUSIC and the WSF algorithms in
the presence of coherent, non-coherent and partially coherent sources is compared. The
results of the simulations for 100 independent trials are represented in Table 5.1. In order
to find probability of resolution 100 independent trials are performed and the number of
times that the method resolved the three DOAs is counted. It can be seen that the WSF
estimator could resolve 3 sources even in the presence of completely coherent signals while
the MUSIC estimator fails to resolve coherent sources. In other words, for non-coherent
and partially coherent signals, the MUSIC algorithm has a good performance but for the

coherent signals the efficiency is very low even in high SNR values. It should be noted
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Probability of Resolution

S 3 non-coherent sources 3 partially coherent sources 2 coherent and 3 coherent sources

N {source covariance matrix (source covariance matrix 1 non-coherent sources {source covariance matrix
R is diagonal) is non-diagonal and (source covariance is singular)
(dB) non-singular) matrix is singular)

MUSIC | WSF | MUSIC | WSF | MUSIC WSF | MUSIC WSF
0 0.00 0.00 0.00 0.00 could not 0.00 could not 0.00
5 0.00 0.55 0.00 0.25 cesolve 0.10 resolve 0.00
10 0.73 1.00 0.00 1.00 sources 0.42 sources 0.00
15 0.95 1.00 0.65 1.00 even for 1.00 even for 0.25

20 1.00 1.00 1.00 1.00 higher values 1.00 higher values 0.65

25 1.00 1.00 1.00 1.00 of SNR 1.00 of SNR 1.00

Table 5.1: Performance comparison of the MUSIC and the WSF estimators in the presence
of the coherent, non-coherent and partially coherent sources.

that in this example two cross shaped arrays composed of m = 10 elements (5 elements
for each node) with one half-wavelength element spacing is used and the array of sensors
is exposed to the three narrowband planar wavefronts arriving from 20, 25 and 30 degrees.

The second experiment is conducted to compare the performance capabilities of the
MUSIC and the WSF estimators as a result of changing the number of sensors for different
geometries and in the presence of partially coherent signals. The number of snapshots
is N = 100 and the location of sources are 20, 25 and 30 degrees with the number of
sensors varied from m = 10 to m = 20. The geometries of the array sensors are shown in
Fig. 3.2 where the distance between the nodes is chosen to be 10 half-wavelength. The
results of the simulations for 100 independent trials are depicted in Fig. 5.1. It can be
observed that by increasing the number of sensors, the probability of resolution improves
for both estimators and all the geometries. However, for all the cases the WSF estimator
has a lower resolving threshold. It is also seen that the resolving threshold for the case
of m = 15 using the WSF estimator is lower than the case of m = 20 with the MUSIC

estimator.
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Figure 5.1: Probability of resolution (Prob. in above figures) versus the SNR for the
MUSIC and the WSF estimators (a) m = 10, (b) m = 15 and (c¢) m = 20. The distance
between nodes is equal to 10 half-wavelength.

To demonstrate the capabilities of the two estimators in resolving the closely spaced
sources this example is designed. The simulation results show that the resolution capabil-
ities of the estimators improve by increasing the angle among the sources which is what
one intuitively expect. Indeed, the threshold SNR is higher for locating the closely spaced
éources. As seen in Fig. 5.2, the SNR threshold for the WSF estimator is lower than
that of the MUSIC estimator. For this experiment the three source signals are partially
coherent and for each simulation their locations are chosen according to Table 3.2. Two
cross shaped arrays composed of m = 10 elements (5 elements for each node) is used and
the array of sensors are exposed to the three narrowband planar wavefronts arriving from

20, 25 and 30 degrees. The number of snapshots and the distance between the two nodes
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Source Separation (deg)

Figure 5.2: The minimum SNR required for the source separation using the MUSIC and
the WSF estimators. The location of the sources are shown in Table 3.2 and the number
of sensors are m = 10.

‘are 100 and 10 half-wavelength, respectively.

The last experiment in this section is performed to show the effects of changing the
distance between the two nodes in the array sensors for resolving the sources for the
MUSIC and the WSF estimators. In this example the number of snapshots is taken as
N = 100 and the location of the sources are at 20, 25 and 30 degrees. The simulation
results show that by increasing the distance between the two nodes from A to 10A, the
capability of both estimators improves for resolving the sources, i.e. by increasing the
distance between the two nodes the SNR threshold decreases (refer to Fig. 5.3a and Fig.
5.3b). These results are confirmed by those obtained in Fig. 5.3c where the probability
of resolution improves by increasing the distance between the two nodes. However, this

improvement can be sustained for only a few decades of A (almost 50A for the MUSIC
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estimator and 30A for the WSF estimator) and beyond that the capability of resolving the
sources again decreases. Overall, the performance of the WSF estimator is again better
than that of the MUSIC estimator.

To confirm the above results, another simulation result is conducted. For this purpose,
the norm of the bias vector is measured versus the distance between the two nodes. As
depicted in Fig. 5.4, the estimation errors for the WSF decrease from A to 25A, remain
unchanged up to 30A and then increase, so that the estimator is not able to resolve
the sources. Similar results are obtained for the MUSIC estimator where the range of
performance is longer than that of the WSF. Decreasing the estimation errors starts from

A to 40A, remains constant up to 65A and then again increases beyond this point.

5.3 Comparison of Results for the CSM Method us-
ing the MUSIC and the WSF estimators in Wide-
band Case

In the following simulation results a number of numerical examples are presented to com-
pare the performance of the MUSIC and the WSF algorithms as narrowband estimators
used in the CSM algorithm for the various array geometries considered previously. The
scenario used here is similar to that defined in section 3.5.

The first example is carried out to compare the performance of the CSM algorithm
(using the MUSIC and the WSF algorithms as narrowband estimators) in response to
changing the number of sensors for different geometries in the presence of wideband co-
herent sources. The location of sources are 45 and 50 degrees and the number of sensors
are varied from m = 10 to m = 20. The geometries of the array sensors are shown in

Fig. 3.2 where the distance among the nodes is chosen to be 10 half-wavelength. The
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Figure 5.3: Probability of resolution (Prob. in above figures) versus the SNR for (a)
Distance between the two nodes = A, (b) Distance between the two nodes = 10A (c)
Probability of resolution versus the distance between the two nodes ( m = 10, N = 100,
DOA = [20 25 30], SNR = 10dB).

results of the simulations for 100 independent trials are depicted in Fig. 5.5 where the
geometry of sensors is selected to be linear composed of 2, 3 and 4 nodes. It is observed
that by increasing the number of sensors, the probability of resolution improves for all
the geometries. As seen in this figure, for all the cases the WSF algorithm has a lower
resolving threshold. To show the effects of changing the geometries of the sensors, this
experiment is repeated by using diagonal cross shaped geometry (m = 10), triangular
cross shaped geometry (m = 15) and square cross shaped geometry (m = 20). Again, as
seen in Fig. 5.6, the WSF estimator has a better resolving threshold as compared to the
MUSIC algorithm and the probability of resolution improves by increasing the number of

sensors for all the geometries. It should be noted that the difference in resolving threshold
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Figure 5.4: The norm of the bias vector versus the distance between the two nodes for
the MUSIC and the WSF estimator (m = 10, N = 100, SNR = 20dB, DOA = [20 25

30)).
= 20) than the square geometry. It

is more significant in the case of linear geometry (m

is also seen that the resolving threshold for the case of m = 15 (linear geometry) using
the WSF estimator is lower than the case of m = 20 with the MUSIC estimator.

This experiment does demonstrate that a larger array aperture yields a lower resolv-
ing threshold and produces a more accurate DOA estimates but it could also result in
ambiguous estimates of the DOAs (refer to Fig. 3.12) for the MUSIC algorithm and more
difficulty with the initialization step of the search methods for the WSF estimator.

The second experiment is performed to compare the capabilities of the MUSIC and
the WSF algorithms as narrowband estimators used in the CSM scheme for resolving the
closely spaced sources. The simulation results show that the resolution capabilities of

both estimators improve by increasing the angles among the sources which is what one
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Figure 5.5: Resolution probability (Prob. in above figures) of the CSM algorithm (using
the MUSIC and the WSF algorithms as narrowband estimators) versus the SNR for (a)
m = 10, (b) m = 15 and (c¢) m = 20. The geometry of sensors is the linear cross shaped
and the distance among the nodes is equal to 10 half-wavelength.

would intuitively expect. Indeed, the threshold SNR is higher for locating the closely
spaced sources. Furthermore, as depicted in Fig. 5.7, the SNR threshold of the WSF for
locating the sources is lower than that of the MUSIC algorithm. For this example the two
source signals are coherent and for each simulation their locations are chosen according
to Table 3.3. The geometry of array sensors is the linear cross shaped with m = 10 where
the distance between the two cross shaped nodes is 10 half-wavelength.

The last experiment is conducted to compare the performance capabilities of using
the diagonal focusing transformation matrix and the unitary focusing transformation
matrix in the CSM algorithm (using the MUSIC and the WSF algorithms as narrowband

estimators). As indicated in Chapter 2, for the CSM algorithm the best performance is
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Figure 5.6: Resolution probability (Prob. in above figures) of the CSM algorithm (using
the MUSIC and the WSF algorithms as narrowband estimators) versus the SNR for (a)
Diagonal geometry, m = 10, (b) Triangular geometry, m = 15 and (c) Square geometry,
m = 20. The distance among the nodes is equal to 10 half-wavelength.

achieved if the mapping of the subspaces is performed through a unitary transformation.
In fact, using the unitary focusing transformation matrix to align the steering matrices
can ensure minimization of the DOA estimate bias. To investigate this error, the norm of
the bias vector as a function of the SNR for both the diagonal and the unitary focusing
transformation matrices and for both the MUSIC and the WSF estimators are calculated
and the results are shown in Fig. 5.8. As can be observed from this figure the estimator
error using the unitary focusing transformation matrix is lower than that of the diagonal
case and also in both cases the WSF estimator has a lower bias than that of the MUSIC

algorithm.
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Figure 5.7: The minimum SNR required for the source separation in the CSM algorithm
using the MUSIC and the WSF algorithms as narrowband estimators. The location of
the sources are shown in Table 3.3 and the distance between the two cross shaped nodes
is 10 half-wavelength.

5.4 Conclusion

The performance of the MUSIC and WSF estimators for both the narrowband and wide-
band sources using the four types of array geometries are compared. The main goal
of this chapter was to compare the performance capabilities of the DOA estimators by
changing the number of sensors, the node topology and the aperture of array geometry.
As observed, the WSF algorithm had an excellent performance in most of the scenarios
considered as compared to the MUSIC algorithm. It was concluded that the WSF esti-
mator could resolve sources even in the presence of completely coherent signals while the

MUSIC estimator fails to resolve coherent sources.
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It was also observed that by increasing the number of sensors and the distance among
the nodes the probability of resolution has improved and the estimator bias decreases
for both estimators and all the geometries. However, for all the cases considered the
WSF estimator had a lower resolving threshold and a lower error. The simulation results
demonstrated that in some situations the resolving threshold for the WSF estimator with
fewer number of nodes was lower than the MUSIC estimator with more number of nodes.
It should be noted that the improvement in resolving the threshold and the bias of esti-

mators (as a result of increasing the distance among the nodes) extended only for a few
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decades of A such that the MUSIC estimator had a wider range of performance as com-
pared to the WSF estimator. Although, the simulation results showed that a larger array
aperture results in a lower resolving threshold and produces more accurate DOA estimates
but it could also lead to the ambiguity in the DOA estimates for the MUSIC algorithm
and more difficulty with initialization stage of the search methods for the WSF estimator.
The resolution capabilities of both estimators were compared and it was observed that
this criterion improved by increasing the angle among the sources. Indeed, the threshold
SNR was higher for locating the closely spaced sources and as demonstrated the SNR
threshold for the WSF estimator was lower than that of the MUSIC estimator. Finally,
the performance results of the CSM algorithm using the diagonal focusing transformation
matrix and the unitary focusing transformation matrix were considered. As was shown
the estimator error using the unitary focusing transformation matrix was lower thén that
" of the diagonal case, and also iﬁ both cases the WSF estimator had a lower bias than that

of the MUSIC algorithm.



Chapter 6

Conclusion and Future Research
Directions

6.1 Summary and Conclusion

In this thesis the fundamentals issues and problems for both the narrowband and the
wideband array signal processing techniques were considered. For the narrowband case,
the multiple signal classification (MUSIC) and the weighted subspace fitting (WSF') char-
acterized by the eigen-decomposition of the covariance matrix were studied. For the
challenging wideband scenario the incoherent signal subspace method (ISM) and the co-
herent signal subspace method (CSM) were considered. Extensions of the narrowband
and the wideband methods to various specific sensor geometries known as linear, diag-
onal, triangular and square cross shaped array geometries were performed in Chapters
3 and 4. Use of the WSF algorithm in place of the MUSIC method in the CSM as a
wideband technique was also investigated in Chapter 4. Finally, performance comparison
of the narrowband and the wideband techniques using these algorithms were carried out
in Chapter 5.

Four different types of array geometries as stated above, namely linear cross shaped

array, diagonal cross shaped array, triangular cross shaped array and square cross shaped
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array were considered. As demonstrated in the computer simulations provided both the
node topology and the aperture are important factors and the performance capabilities
of both the narrowband and the wideband techniques are affected by changes in these
parameters. The performance results of the MUSIC and the WSF estimators for both
the narrowband and the wideband situations were compared and it was observed that the
WSF algorithm has an excellent performance in most of the situations when compared
to the MUSIC algorithm. As observed the WSF estimator could resolve sources even in
the presence of completely coherent signals while the MUSIC estimator fails to resolve
coherent sources.

It was also seen that by increasing the number of sensors and the distance among the
nodes the performances achieved by both estimators have improved by reducing the bias
and the resolution SNR thresholds for all the geometries. However, for all the cases the
WSF estimator has a lower resolving threshold and a lower estimation error. According
to the simulation results obtained in some situations the resolving threshold for the WSF
estimator using fewer umber of nodes was lower than that of the MUSIC estimator with
more number of nodes. As simulation results show the improvements in resolving the
threshold and estimator bias (as a result of increasing the distance among the nodes) were
sustained only for a few decades of A such that the MUSIC estimator had a wider range
of performance as compared to the WSF estimator. Moreover, the resolution capability of
both estimators was compared and as demonstrated this criterion improved by increasing
the angle among the sources. In fact, the threshold SNR was higher for locating the closely
spaced sources, and as shown, the SNR threshold for the WSF estimator was lower than

that of the MUSIC estimator.
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Although, the simulation results show that a larger array aperture can lead to lower
resolving threshold and produces more accurate DOA estimates, it also results in ambigu-
ous estimates of the DOAs for the MUSIC estimator and more difficulty in initialization
of the search methods for the WSF estimator, whereas the AP algorithm needs to be
performed more than once.

The subspace fitting error criterion was used in the CSM algorithm for selection of
the optimum focusing frequency. Using this optimum focusing frequency it was observed
that the bias of the estimator and the resolution threshold of the SNR were reduced.

Finally, the performance capabilities of the CSM algorithm using the diagonal fo-
cusing transformation matrix and the unitary focusing transformation matrix was also
considered. As demonstrated the estimator error of estimator using the unitary focusing
transformation matrix was lower than that of the diagonal case and also in both cases the

WSF estimator had a lower bias than that of the MUSIC algorithm.

6.2 Suggestions for Future Work

Throughout this thesis, we assumed that the sources are in the far field i.e. the incident
wavefield arises from a distant source so that the incident signals have planar wave fronts.
Indeed, an isotropic point source (uniform propagation in all direction) gives rise to a
spherical traveling wave whose amplitude is inversely proportional to the distance to the
source so that all points lying on the surface of a sphere of same radius will then share a
common phase. This indicates that the distance between the sources and the sensor arrays
determines whether the sphericity of the wave should be taken into account. Therefore,

an extension of the work in this thesis is to investigate the near field wave case where the
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conditions imply that the radius of propagation is not sufficiently large compared to the
physical size of the array and the assumption of planar wave with constant phase is no
longer valid.

In array processing (and consequently in this thesis) it is frequently assumed that the
source signals are generated by point sources. This is a modeling constraint that is not
always satisfied in reality. In the literature, distributed sources are treated as a combina-
tion of a large number of closely spaced point sources. This point source approximation of
the distributed source can lead to erroneous results. Thus, much future work is warranted
on finding an appropriate model for distributed sources.

Recent developments in integrated circuit technology and MEMS have allowed the
construction of low cost small sensor nodes where advanced signal processing tasks and
functions can enable one to form complex network of wireless sensor networks. Sensor
network applications are widespread with uses varying from geographical monitoring to
military operations. Therefore, the scope of developing a general sensor network for
arbitrary array geometries for various DOA estimation techniques with reusable arbitrary
nodes in array processing is of critical importance for future research. Application of
the considered array geometries in this thesis to sensor networks is warranted and much
future work on processing of wideband signals for detection, localization and tracking of

these sources are of significant interest.
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