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Abstract

Assertion-Based Verification of Look Aside Interface

Asif Igbal Ahmed

This research addresses assertion-based verification to verify Look Aside Interface (LA-1
Standard). The Look Aside interface is intended for devices located adjacent to a network
processing device (NPE) that off load certain tasks from the network processor. This
verification is performed in several steps. First, we added assertions within the control
logic of the RTL block and then we added assertions between interfaces of RTL blocks
by following the Look Aside interface design specification. We developed the simulation
environment in Verilog and relevant testcases derived from the specification, in order to
perform simulation and observe the assertion messages for possible firings. Each firing
pinpoints an error in the RTL. For the assertion monitors the Accellera Open Verification
Library (OVL) was used. Finally, we transformed the same assertions into Sugar 2.0
properties and performed the model checking of our Verilog RTL model using Rulebase,

from IBM corp.
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Chapter 1: Introduction

1.1: Motivation and Goal

As the modern designs past one-million and move towards system-on-chip (SoC)
of 10 million gates, the SoC development teams require state-of-the art tools and
methodology to verify these devices. Most of the case studies have shown that functional

verification consumes more than 50 percent of the design-cycle time (Fig. 1.1) [1].

Sdb Verfication Dominates Design

- Synthesis
st = - - Tirnilng Anaiysis
Ermudation Structural Equivalence Checking
_— - DFY
T
- Behavioral Modeting B
- ABIC-Levst Simulation Design

- Mwlti-chip Simulation - High-Level Design
- RTL Ceding

Simulation - Biock-Lavel Verification

Verification is two-thirds of our design sycle. Coding isa small
fraction of that. and reusing code makes verification more difficait.
design reuse doesn’t make serse withou! verification reuse.”

lan Silburt, Mortel, DesignCon98

Figure 1.1: Verification Dominates Design
With functional verification involving such a dominant portion of the chip
development process, SoC teams look for any opportunity for leverage. Some of the best
leverage comes from the designers who wrote the RTL code that must be verified.
Designers can no longer pass their code “over the wall” to the Verification team; they
need to be involved in the verification process in order to ensure that the SoC works as
intended. Therefore, the process of SoC verification is becoming a necessity for large,

complex chip projects. This process encompasses a broad range of concepts, including



verification friendly RTL coding standards for the designers, cross-participation in design
and Verification plan reviews, and clean, consistent interfaces at multiple levels of design
abstraction. Perhaps the greatest leverage is obtained when the designers specify
assertions i.e. properties of the design, in order to capture the specific design’s intent,
communicate the intent to team members, and aid the verification process. The primary
usage of assertions addresses the RTL designer’s assumptions (property specification of
the design) and thus checks for errors in RTL code.

Therefore, property specification, in terms of assertions, is the key ingredient of
this revolutionary SoC verification process, whose end result is an improved and re-

usable verification process, through an intelligent test bench, as shown in Fig. 1.2 [2].
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Figure 1.2: Intelligent Test Bench
The key components of an assertion-based verification platform are the following:
1. Verifiable testplans (Verification Plan) through safety property specification.
2. Reactive coverage driven testbenches based on property specification (assertions and
functional coverage).

3. Exhaustive formal verification techniques (i.e. model checking, property checking).



Our research provides some essential background on assertions and their value as
part of SoC verification, and discusses different methods for assertion and property
specification. There are many different techniques, languages and libraries that design
(and verification) engineers can use for assertions, each with its own merits. This work
summarizes the key requirements for assertion specification and assesses how well the
various techniques i.e. model checking, meet these requirements. Finally, the motivation
behind our approach was to investigate the important role of assertion-based verification

and model-checking techniques in the context of a SoC verification flow.
1.2: Background and Related Work

The design specification considered for our thesis is called Look-Aside Interface
(LA-1 standard) [3], which is provided by the Network Processing Forum. Currently, the
LA -1 interface is an open standard which has been developed and endorsed by multiple
memory and network device vendors, and so is expected to achieve high adoption rates
over a range of compatible network products. The main aspect of our work is to illustrate
the application of Open Verification Library (OVL) [17] for assertion-based verification
and the role of Sugar 2.0 for model checking using RuleBase [12].

As related work to ours, we cite the approach proposed by A.Habibi e al. [4]. In
that work the authors proposed a technique (Fig. 1.3) to design and verify the Look-Aside
Interface (LA-1). Their design flow includes several refinements starting from an
informal UML specification until getting to an RTL modeled in Verilog. Afterwards, they
integrated the verification of the LA Interface in the design flow by considering two

intermediate levels: (1) Abstract State Machines (ASM) [20]; and (2) SystemC [21]



assertions. The first one serves the verification by model checking of a set of PSL

properties, while the second includes a set of assertions to be verified by simulation.
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Figure 1.3: Hierarchical Design Verification Methodology for LA-1 Interface

Another related approach was proposed by Kanna et al. [5] to implement a PCI
bus as a Verilog monitor and to verify its properties using SMV [6]. In [5], the bus was
implemented in Verilog with all the properties (assertions) embedded as part of the RTL
code. Our approach based on OVL enabled us to differentiate between the properties
(assertions) and the RTL code, as the assertion monitors used in our RTL model were
localized in a separate area of the code.

Pankaj et al. [7] also described a methodology for verifying system-on-chip
designs. Their methodology was comprised of three major tasks. First, they verified, the

standard bus interconnecting IP Cores in the system. The next task was to verify the glue



logic, which connects the IP Cores to the buses. Finally, using the verified bus protocols

and the IP core designs, the complete IP-Core based system was verified (Fig 1.4).
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Figure 1.4: A typical IP-Core Based System

To illustrate their methodology, they verified the PCI Local Bus, a widely used
bus protocol in system-on-chip designs. The methodology involved various modeling
(not the actual RTL implementation) of the PCI Bus and verification technique. The
strategy described by the authors lacked the practice of defining assertions which makes
it impossible to re use previously well tested properties. That means the effort of writing
a similar specification is duplicated from project to project, and from company to
company. The consequences are huge when standard protocols, such as PCI and PCI-X,
are to be verified. It is clear that a capability to develop libraries of assertions can provide
time-savings for many designers. Some examples are:

¢ Standard protocols



o Core designs that are the basis for derivative systems

e Commonly used assertions for design elements

Intellectual property (IP) vendors that ship pre-built designs can supply built-in
assertions, thereby alleviating the quality concerns of customers. An assertion language
verification IP has well defined and tested ready-to-use assertions for designers.
Therefore, the burning question of today’s SoC Verification truly depends on the
assertion writing and property defining skills of a RTL designer. With this view in mind
the rest of the sections in this chapter elaborates the idea of assertion-based verification

. and afterwards introduces different techniques of formal verification.
1.3: Scope of the Thesis

In this thesis work, we illustrate assertion-based verification methodology for the
formal verification of the Look-Aside design interface specification using OVL [17] and
PSL/Sugar 2.0 [8]. The highlight of our work is to present the novel idea of Assertion-
Based Verification in order to carry out a verification process of standard design
interfaces currently used in the industry. The rest of this thesis is organized as follows:
Chapter 2 provides a brief introduction to Accellera’s Open Verification Library (OVL)
and its related assertion monitors then it illustrates, Model Checking using PSL/Sugar
and the general features of Rulebase. Chapter 3 gives a brief overview of the Standard
Bus Protocols. Chapter 4 explains the main features of Look-Aside interface (LA-1
Standard). Chapter 5 discusses the verification plan. Chapter 6 & 7 elaborates the

verification results. Finally, chapter 8 concludes this report.



Chapter 2: STATE-OF-THE-ART
2.1: Simulation Based Verification

With the introduction of hardware description languages (Verilog or VHDL), it
became common to describe both the Device Under Test (DUT) and the test environment
in VHDL or Verilog. This process of Design Verification is known as Simulation-Based
Verification. In a Simulation-Based Verification, the test environment has the following
features:

e The testbench consisted of HDL procedures that provided stimulus data to the DUT
or read data from it.

e The tests (testcases), which called the testbench procedures in sequence to apply
selected input stimuli (random or directed) to the DUT and check the results, were
directed towards specific features of the design.

All these features depict Black-Box Verification technique. Currently, the verification

practice in the industry is driving more towards white-box verification technique. In this

context the key role is played by Assertion-Based Verification. In the following sections
enlighten the reader about Assertion-Based Verification and then introduces the usage of

OVL Assertion Monitors.

2.1.1: Assertion-Based Verification

The main goal of our research is to apply assertion-based verification, in order to
verify Look Aside Interface protocol. Assertion monitors are instances of modules whose
purpose is to verify that certain conditions hold true in the RTL. An assertion monitor is
composed of an event, a message, and a severity. Event is a property that is being verified

by a monitor. An event can be classified as a safety (invariant) property. A safety



property is a property that must be valid at all times i.e. a testcase for a certain scenario.

Message is the string that will be displayed in case of an assertion failure. Severity

represents whether the error captured by the monitor is a major or a minor problem.

Severe errors can be used to halt simulation. We briefly enumerate some of these

benefits here [22].

e Halts simulation (if desired) on assertion errors to prevent wasted simulation cycles

e Simplifies debugging by localizing the problem to a specific area of code

e Increases test stimuli observability, which enhances pseudo-random or directed test
vector generation strategies

e Provides a mechanism for grading test stimuli functional coverage (e.g., event
monitoring coverage)

e Enables the use of formal and semi-formal verification techniques (e.g., provides
verification targets and defines constraints for formal assertion checkers)

e Provides a means for capturing and validating design environment assumptions and
constraints and relating it to the design specification.

In general, assertions document the RTL designer’s assumptions on the design inputs and

design’s intended behavior on the design outputs. This means that there is still the

fundamental need of a test bench, but the verification environment (test bench) no longer

depends on the input stimulus, generated to propagate all effects resulting from the bug to

an output port. Traditional approach to verify a design is to implement the design using

HDL and simulate it using an environment, i.e. testbench. Simulation is a black-box

method which treats design as a black box and mainly relies on input and expected output

behavior. This approach is not suitable for designs of higher complexity. When an



expected output does not occur, the cause of error is difficult to trace. There might be
some errors which are hard to detect due to incomplete specification especially regarding
the corner case behavior of the system. Therefore, the verification process is improved
with a better controllability and observability of the design during the procedure through
white-box verification based on assertion monitors. In this verification approach we
directly check the corner case behavior and detect the error at its source rather than at
output. This white box approach uses the designer's knowledge of the system, i.e.
assertions in order to specify the assertion which describes the legal and illegal behavior

in the design as shown in Fig. 2.1 [1].

Verification Performed with Environment Verification Performed with Environment and Assertion

C

Black-Box Verification White-Box Verificati

Figure 2.1: Black-Box vs. White-Box Verification

In shorts, assertion monitors document the RTL designer’s assumptions on the
design inputs and design’s intended behavior on the design outputs. Suppose, a the
Traffic Light Controller RTL block (written in verilog) needs an assertion monitor in
order to perform as a watchdog so that both sides of the road crossing never go green at
the same time. This monitor will use clk, reset_n and the test_expr as inputs and will
check that the test_expr is never equal to 1. The clk is the clock signal provided by the
test bench and the reset_n signal is used as an enable signal which initiates the

monitoring of assertions. The fest_expr is the property or the assertion of the design



extracted by the designer. For example: The property, “The traffic light on both sides of
the crossing should never be green at the same time” is implemented by using the
assert_never monitor : assert_never both_lights_are_green (clk, reset_n,
(major_rd_light=="GREEN && minor_rd_light =="GREEN)); The test_expr in this
case is (major_rd_light=="GREEN && minor_rd_light=="GREEN).

Assertion monitors are written in either Verilog or VHDL or Standard Property
Specific Language (PSL) [6]. In order to accommodate the need for assertion monitor
there is some amount of additional glue logic added to the RTL code. Synopsys off/on
comment based pragmas (synopsys translate_off / synopsys translate_on) should be used
to ensure that the glue logic is not synthesized. For our verification, we selected
assert_always, assert_never and assert_next which are used as most general assertion
monitors in the industry. These assertion monitors are employed whenever the user wants
to verify an invariant property [4]. The semantic definition for assert_always is similar to
the definition for assert_never. However, the assert_never monitor checks that test_expr
is never equal to 1 while the assert_always monitor checks that the test_expr is always
equal to 1 [2].

2.1.2: OVL Monitor Methodology for Design Verification

The Accellera Open Verification Library (OVL) [17] provides designers,
integrators and verification engineers with a single, vendor-independent interface for
design verification using simulation, semi-formal and formal verification techniques. By
providing a single well-defined interface, the Open Verification Library (OVL) can
bridge the gap between the different verification techniques, enabling a seamless flow

between simulation and formal tools. For the first time, user-defined properties of a
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design can be specified in a straight forward, standard way, so that they can be written
once and used by multiple verification tools in the design flow. The OVL is composed of
a set of assertion monitor modules that verify specific properties of an HDL design.
These modules are bundled together in a library, enabling designers to instantiate these
monitors during simulation. The initial version of the OVL was written using standard
Verilog HDL syntax. Currently, a VHDL version of the Library is also available. Both
versions of the OVL may be freely downloaded and modified or extended by the user

community (http://www.accellera.org). All approved extensions will become part of the

standard release.

The main advantages of using OVL monitors are:
e OVL monitors are assertion checkers, which can test internal points of the design,
thus increasing observability of the design (white-box approach).
e OVL monitors simplify the detection and diagnosis of bugs by constraining the
occurrence of a bug to the monitor being checked.
e OVL monitors allow designers to use the same design property specification for both
simulation and formal verification (in form of properties or events).
It is difficult to setup all the specified operations based on input and output alone.
The verification process is improved with a better controllability and observability of the
design during the procedure through white-box verification. In this approach we directly
check the corner case behavior and detect the error at its source rather than at output. The
white box approach uses the designer's knowledge of the system to specify the assertion
which describes the legal and illegal behavior in the design. Formal verification is one

such traditional white-box approach. In formal verification we describe design using
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mathematical techniques to specify and prove the specifications of the design. Detailed
knowledge of the behavior of the design is required for the valid assertions that should to
be proved. The formal verification methodology explores all possible behavior of the
design to find the circumstances under which the assertion is violated. The difficulty with
this approach is to write the set of assertions that completely represents the behavior of
the design. Therefore it is used as an added necessity and not replacement to the
simulation procedure.

By instantiating a module for the assertion checker, the verification process is
able to isolate assertion implementation details from the function of the design. We can
create assertion libraries optimized for specific verification processes within the flow.
Static assertions are used for specific event or undesirable condition, i.e., they try to
capture an undesirable event. The temporal assertions can be viewed as an event-
triggered window, bounding the assertion. Assertion check for invariant property
(condition or expression should be true between the occurrence of two events) and
assertion check for liveliness property (condition or expression should be true at least
once between occurrence of two events) come under temporal assertions. Assertions also
check the safety properties.

2.1.3: OVL Assertion Monitors usage and definition

The following are the brief descriptions of the assertion monitors that are
currently available in the assertion monitor library and are being used for the purpose of
our research. They can be used by including the library in the design and instantiating
them. Each assertion has the parameters severity, options and msg. severity describes the

level of severity of the error based on which the tool decided whether to end the
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simulation. options are used to describe the characteristics of the assertion monitor to the
EDA tools. Currently the only options=0 is supported which describes the assertion
monitor as a constraint to the formal verification tools. msg is used to describe the

message which should be displayed when the assertion fires.

> assert_always

Syntax: [17]

assert_always [#(severity_level, options, msg)] inst_name (clk, reset_n, test_expr);
Where

e severity_level - severity of the failure - default O

e Options - Vendor options - default 0

e msg - Error message that should be given out when assertion fires

¢ inst_name - Name of the instance

e clk - Triggering or clocking event that monitors the assertion

e reset_n - reset signal, unless global RESET signal is set

e test_expr - Expression being verified at the specified edge of clk

Overview: assert_always assertion continuously monitors the test_expr at every
positive edge of the triggering event or clock clk. This assertion will fire whenever
test_expr evaluates to FALSE.

Usage: assert_always can be used in verification of a property that should always hold

TRUE at clock boundaries or at specified edge of clock. Fig. 2.1 shows the Control Flow

graph of assert_always monitor.
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Figure 2.2: Control Flow Chart of assert_always monitor
The associated FSM chart for the assert_always monitor is shown in Fig. 2.2. In
the FSM chart SO is the initial state where the test_expr is being checked if the reset_n is
active high. If the test_expr is not true then FSM transits to S1 and the OVL

assert_always monitor flags an error which is captured by the verilog simulator.
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Figure 2.3: FSM Chart of assert_always monitor
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The OVL monitor assert_always is written in verilog and has a synchronous
process which is described below [17]. Note, that the process governs the error checking
process which is described by the Control Flow Graph and the respective FSM.

always @(posedge clk) begin
“ifdef ASSERT_GLOBAL_RESET // defined if needed
if CASSERT_GLOBAL_RESET != 1'b0) begin
“else
if (reset_n !=0) begin // active low reset local to the monitor itself
“endif |
if (test_expr != 1'bl) begin // test_expr under investigation
ovl_error(""); /lovl error call
end
end

end

> assert_never

Syntax: [17]

assert_never [#(severity_level, options, msg)] inst_name(clk, reset_n, test_expr);
Where

e severity_level - Severity of the failure - default 0

e options - Vendor Options - default O

e msg - Error message that should be given out when assertion fires

e clk - Triggering or clocking event that monitors the assertion

e reset_n - reset signal, unless global RESET signal is set

test_expr - The expression that is monitored at every specified clock pulse

Overview: assert_never assertion monitor continuously checks the fest_expr at every
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positive edge of the sampling event and triggering event or clock clk. The assertion
monitor checks that test_expr is always false. The assertion fires when the test_expr
evaluates to true.

Usage: assert_never assertion monitor should be used to verify a property that should

never hold TRUE at clock boundaries. Fig. 2.4 shows the Control Flow graph of

assert_never monitor.
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Figure 2.4: Control Flow Chart of assert_never monitor
The associated FSM chart is shown in Fig. 2.5. In the FSM chart SO is the initial state
where the test_expr is being checked if the reset_n is active high. If the test_expr is true
then FSM transits to S1 and the OVL assert_always monitor flags an error which is

captured by the standard verilog simulator.
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Figure 2.5: FSM Chart of assert_never monitor

The source code of assert_never monitor depicts the error checking scenario.

always @(posedge clk) begin
“ifdef ASSERT_GLOBAL_RESET
if CASSERT_GLOBAL_RESET !=1'b0) begin
“else

if (reset_n != 1'b0) begin // active low reset

“endif
if (test_expr !=1'b0) begin // checking of test_expr
ovl_error(""); // ovl error function call
end // test_expr
end

end // always

> assert_next
Syntax [17]:

assert_next [#(severity_level, num_cks, check_overlapping, only_if, options, msg)]

inst_name (clk, reset_n, start_event, test_expr);

17



Where

e severity_level - Severity of the failure - default 0

e num_cks - The number of clock cycles after start_event when test_expr
should evaluate to true

e check_overlapping - When true overlapping of sequences is allowed, i.e. another
start_eizent is accepted before test_expr occurs

e only_if - When true, test_expr can evaluate to true only when start_event is true
num_cks before it occurs

e options - Vendor Options - default O

¢ msg - Error message that should be given out when assertion fires

e clk - Triggering or clocking event that monitors the assertion

e reset_n - reset signal, unless global RESET signal is set

e start_event - The event that starts the monitoring of test_expr

e test_expr - The expression that is monitored at every specified clock pulse

Overview:

assert_next assertion continuously monitors the relationship between two events. It

checks that whenever start_event evaluates to true, test_expr evaluates to true exactly

after num_cks clock cycles.

Usage:

The assert_next assertion should be used to ensure proper sequence of events. Fig. 2.6

shows the Control Flow graph of assert_next monitor.
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Figure 2.6: Control Flow Chart of assert_next monitor
The associated FSM chart is shown in Fig. 2.7. In the FSM chart SO is the initial
state where the start_event is being checked if the reset_n is active high. If the start_event
is true then FSM transits from SO to S1, where the test_expr is being validated, after the
exact number of clock cycles. If the test_expr is false then S1 transits to S2 and an error

flag is being raised.
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Figure 2.7: FSM Chart of assert_next monitor
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The verilog source code of assert_next monitor illustrates the above validation scenario:

always @(posedge clk) begin
“ifdef ASSERT_GLOBAL_RESET
if CASSERT_GLOBAL_RESET != 1'b0) begin
“else
if (reset_n !=0) begin // active low reset
“endif
monitor <= (monitor_1 | start_event);
if ((check_overlapping == 0) && (monitor_1 !=0) && start_event) begin
ovl_error("illegal overlapping condition detected");
end
else if (only_if == 1) begin
if ('monitor[num_cks-1] && test_expr) begin

ovl_error("test_expr without start_event");

end
end
else begin
if (monitor[num_cks-1] && !test_expr) begin
ovl_error("start_event without test_expr");
end
end

end else begin
monitor <= 0;
end

end // always

2.1.4: OVL Based Verification Techniques
Assertion monitors address design verification concerns. In general there are

certain guidelines to follow in order to make decisions about placement for the OVL
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assertion monitors in the RTL code of the Designers. The guidelines are listed as
follows:
e Combine assertion monitors to increase the coverage of the design (for example, in
interface circuits and corner cases).
e Include assertion monitors when a module has an external interface. In this case,
assumptions on the correct input and output behavior should be guarded and verified.
e Include assertion monitors when interfacing with third party modules, since the
designer may not be familiar with the module description (as in the case of IP cores),
or may not completely understand the module. In these cases, guarding the module
with assertion monitors may prevent incorrect use of the module.
Usually there is a specific assertion monitor suited to cover a potential problem.
In other cases, even though a specific assertion monitor may not exist, a combination of
two or three assertion monitors can provide the desired coverage. The number of actual
assertions that must be added to a specific design may vary from a few to hundreds,
depending on the complexity of the design and the complexity of the properties that must
be checked. Writing assertion monitors for a given design requires careful analysis and
planning for maximum efficiency. While writing too few assertions may not increase the
coverage on a design, writing too many assertions may increase verification time,
sometimes without increasing the coverage. In most cases, however, the runtime penalty
incurred by adding assertion monitors is relatively small. The following example depicts
the usage of assert_always monitor in a counter RTL code.

module counter_0_to_9(reset_n,clk);

input reset_n, clk;

reg [3:0] count;
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always @(posedge clk) begin

if (reset_n == 0) count = 1’b0; // Should be if (reset_n == 0 || count >=9)

else count = count + 1;
end // always
assert_always #(0, 0, "error: count not within 0 and 9") valid_count (cIk, reset_n, (count
>= 4’b0000) && (count <= 4’b1001)); // Instantiation of assert_always monitor
endmodule

Now, in order for the assertion monitor to fire the test_expr has to be false which
means the value of count can never be less than numeric 0 and greater than numeric 9. In

order to stimulate the above RTL we created the following testbench:

“define ASSERT_ON 1'bl
“define ASSERT_OVL_VERILOG 1bl
“define ASSERT_INIT_MSG 1'bl

“define dumpon 1
“timescale 1ns/Ins // Setting up the timescale

module counter_tb ();

reg reset_n;
reg clk;
initial
begin
clk =0;
reset_n =0;

#50 reset_ n=1;

“ifdef dumpon
$dumpfile("dump.ved");
$dumpvars;
“endif
#1000000 $finish;
end
always #10 clk = ~clk; // Clock being generated
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counter_0_to_9 cnt(reset_n, clk); // Instantiate the counter module
endmodule

After simulating the file using ves 7.0.1 we receive the following VCS SIMULATION
REPORT where the assert_always monitor initiated an OVL_ERROR:

Parsing design file ‘counter_new_tb.v'
Parsing design file 'counter_new.Vv'
Parsing design file 'assert_always.vlib'
Parsing included file 'ovl_task.h'.
Back to file 'assert_always.vlib'.

Top Level Modules:

counter_tb

TimeScaleis 1 ns/ 1 ns
1 of 3 unique modules to generate
Chronologic VCS simulator copyright 1991-2003, Compiler version 7.0.1;
OVL_NOTE: ASSERT_ALWAYS initialized @ counter_tb.cnt.valid_count.
ovl_init_msg Severity: 0, Message: error: count not within 0 and 9
OVL_ERROR: ASSERT_ALWAYS: error: count not within 0 and 9:: severity O : time
250 : counter_tb.cnt.valid_count.ovl_error  $finish at simulation time 1000050
VCS Simulation Report Time: 1000050 ns

Afterwards, to analyze the error report we open the waveform viewer in order to
monitor the error (Fig.2.8). The error count changed its value from O to 1 at 250 ns,

which is the snapshot of the time where the test_expr went low and the assertion failed.
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Figure 2.8: Error Investigation Based on OVL Error

Though OVL error was able to pin-point the error, the stimulus generated from
the environment was directed in order to pinpoint the error in the RTL model. In case of
an existence of an unknown bug, the directed stimulus generation won’t be able to find
the design error. In order to confront this particular issue, the Model Checking
Technology using PSL/Sugar comes fully into play. Model checking scheme generates
all possible stimulus patterns in order to verify all legal and illegal sequences of the
inputs and therefore, increases performance of an intelligent testbench. In the following
sections (2.3), of this chapter we will discuss Model Checking techniques using Property

Specification Language (PSL) which is also known as Sugar 2.0.
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2.2: Formal-Verification

Formal verification is the process of checking whether a design satisfies it
specifications (properties). We are concerned with the formal verification of designs that
may be specified hierarchically; this is also consistent with how a human designer
operates. Formal Verification is a powerful technology which is gaining acceptance and
is likely to serve as a fundamental verification methodology for future design-verification
flow. Fig. 2.9 displays a typical hierarchical design and verification flow currently used
in the industry [9]. The starting step is the concept, which is actually, the design
specification of a given SoC design. Formal Verification Techniques have three main
categories, namely, Theorem Proving, Equivalence Checking and Model Checking.

Later sections of this chapter will provide brief overviews of all the techniques
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Figure 2.9: Flow of hierarchical design and verification
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2.2.1: Theorem Proving

Theorem proving is the most advanced formal verification technique, in which a
specification and its implementation are usually, expressed as first-order or higher-order
logic formula. The mutual relationship between the specification and its implementation,
equivalence or implication, is regarded as a theorem to be proven within the proof system
using a set of axioms and inference rules. It is far more involved than both equivalence
checking and model checking and requires changes in the basic design flow. Theorem
proving requires that the design be represented using a “formal” specification language.
Present-day hardware description languages such as VHDL and Verilog are unsuitable
for this purpose, as they have no formal semantics. At each level of abstraction in the
design flow, a theorem prover is used to ensure that the design corresponds to the original
design specification. Some of the widely used theorem prover in the hardware
verification community are HOL (Higher-Order Logic) [13], PVS (Prototype Verification
System) [14], Nqthm (a Boyer7 Moore theorem prover) [15], ACL2 (Industrial strength
version of the Boyer-Moore theorem prover) [16].
2.2.2: Equivalence Checking

Equivalence checking is the most widely used of the three formal verification
techniques. This method uses a mathematical approach to verify equivalence of a
reference and a revised design. In this form of verification, the tool performs an
exhaustive check on the two designs to ensure that the designs behave identically under

all possible conditions (Fig. 2.10) [10].
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Figure 2.10: Equivalence Checking in Formal Verification

One of the limitations of Equivalence Checking is that it assumes that the
reference design is correct. If there are any errors in the reference design, they will not
be detected in the revised design. Therefore, it is crucial that the reference design is
functionally correct. In modern days, Equivalence Checking is used in conjunction with
Static Timing Analysis. Formality from Synopsys, Conformal LEC from Cadence are the
two notable tools widely used in the industry for Formal Verification i.e. Equivalence
Checking.
2.2.3: Model Checking

Model Checkers compare a design to an existing set of logical properties of a
design’s behavior as shown in Fig. 2.11[10]. These properties are a direct representation
of the specifications of the design. The use of model checkers is more involved than
equivalence checking. This is because the properties are needed to be generated by the
user (RTL designer). Properties about the system are expressed as formulas in temporal
logic of which the state transition system is to be a ““a model". The main advantage of
model checking over simulation is that it frees the designer from the need to generate test

vectors.
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Model checking checks the properties specified for every possible input sequence.
However, most chips are not designed to accept every possible input sequence, so if a
given property fails for an illegal input sequence, it is of no interest. Thus, we need a way
in which to specify all the legal input sequences to the formal verification tool. We can
do this by specifying a model of the expected environment. This model describes the
legal input sequences to the design under test.

One of the practical problems of model checking is known as “the size problem”.
Because of the size problem, complete model checking runs can verify designs that have
a few hundred state variables (latches or flip-flops). This is not enough to be useful in
real hardware designs. A number of tools have been developed, to perform model
checking, the three well-known among them are SMV (Symbolic Model Verifier) [6],
VIS (Verification Interacting with Synthesis) [11] and RuleBase Model Checker [12].
2.2.4: Temporal Logic Formulas

One of the practical challenges in order to adopt Model Checking in the

verification process is writing properties in terms of Temporal logic. Temporal logic
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formulas can be difficult to interpret, so that a designer may fail to understand what
property has been actually verified. Therefore it is important to be familiar with the most

common constructs of CTL used in practical hardware verification [11].

o AG {req ——w AF ack}
For all reachable states (AG), if req is asserted in the state, then always at some later
point (AF) we must reach a state where ack is asserted. AF is interpreted relative to
the initial states of the system. AF is interpreted relative to the state where req is
asserted. In other words, it is always the case that if the signal req is high, then
eventually ack will also be high.

e AG AF enabled
From every reachable state, for all paths starting at that state we must reach another
state where enabled is asserted. In other words, enabled must be asserted infinitely

often.

AG EF restart

From any reachable state, there must exist a path starting at that state that reaches a
state where restart is asserted. In other words, it must always be possible to reach the

restart state.

o EF(started AN~ |ready)

It is possible to get to a state where started holds, but ready does not hold.

29



o AG(send == A (send U receive))

It is always the case that if send occurs, then eventually receive is true, and until that

time, send must continue to be true.

o AG(inp = AX AX out)
Whenever inp goes high, out will go high within two clock cycles.

In short, once RTL implementation begins, formal technology, especially Model
Checking can be used to explore the design space around assertions within the
implementation. In short, process increases confidence in the final design’s ability to

function correctly when built.

2.2.5: PSL/Sugar Formal Specification Language

Ensuring that a design's implementation satisfies its specification is the bottom-
line of Model Checking technique. Key to the design and verification process is the vital
role of specification. The pivotal act of specification consists of creating a natural
language description of a set of design requirements. This form of specification is both
ambiguous and, in many cases, unverifiable due to the lack of a standard machine-
executable representation. Furthermore, in order to ensure that all functional aspects of
the specification have been adequately verified (that is, covered) is problematic. The
Accellera Property Specification Language (PSL) was developed to address these critical
shortcomings. It was first introduced by IBM and had an in house name as Sugar. Later,

Sugar was selected by the Formal Verification Technical Committee of the Accellera
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EDA Standard organization, as the basis for an IEEE standard property specific language
and adopted the name of PSL (Property Specific Language).

PSL 1.1/Sugar 2.0 gives the system/design architect standard means of specifying
design properties (used for Model Checking) using a concise syntax with clearly-defined
formal/regular semantics. Similarly, it enables the RTL design engineer to capture design
intent in a verifiable form, while enabling the RTL verification engineer to validate that
the implementation satisfies its specification through dynamic (that is,
simulation/functional verification) and static (that is, formal) verification means.
Furthermore, it provides a means to measure the quality of the verification process
through the creation of functional coverage models built on formally specified properties.
Plus, it provides a standard means for hardware designers and verification engineers to
rigorously document the design specification (machine-executable). Therefore, due to the
above stated advantages the specification language of Rule Base is chosen to be PSL
1.1/Suagr 2.0. It is used in order to formally describe properties to which the design under
verification must adhere. Sugar is an extension of the temporal logic LTL (Linear
Temporal Logic) which evolved from Computational Tree Logic (CTL). Particularly,
complex LTL specifications are difficult to read and write. Sugar semantics adds, on top
of CTL/LTL, a set of new operators that simplify formulation of complex properties and
add significant expressive power. These operators are called “syntactic sugar”. Figure
3.1 shows the evolvement abilities of Sugar including Syntactic Sugar and the Sugar

Extended Regular Expression.
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Figure 2.12: The evolving abilities of PSL/Sugar

As a result of this evolvement, properties written in Sugar can be divided into two

formalisms. These formalisms are discussed in the following;:

e The branching formalism, based mainly on CTL. Properties or Formulas of the
branching formalism reason about computation trees. Such structures are generated
by unfolding all the possible futures from a current state into an infinite tree.

e The linear formalism is based on Sugar Extended Regular Expressions (SEREs),
SEREs describe sequences of events. For example, the sequence where signal ready is
asserted 2 clock cycles after signal busy is described as: {[*], busy, true, ready}

Linear formulas link these sequences together using schemes and operators. For

example, {Serel} |=> {Sere2} means that the occurrence of Serel implicates that Sere2

should also occur. Besides, these regular expressions, other linear schemes such as

“always” and “never” are natural for a user accustomed to logic design.

Sugar 2.0 can express properties that cannot be easily evaluated in simulation,
although such properties can be addressed by formal verification methods [8]. In

particular, it can express properties that involve branching or parallel behavior, which
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tend to be more difficult to evaluate in simulation, where time advances monotonically
along a single path. The simple subset of Sugar is a subset that conforms to the notion of
monotonic advancement of time, left to right through the property, which in turn ensures
that properties within the subset can be simulated easily. The simple subset of Sugar

contains any PSL/Sugar FL property meeting all of the following conditions:

The operand of a negation operator is a Boolean.

e The operand of a never operator is a Boolean or a Sequence.

e The operand of an eventually! operator is a Boolean or a Sequence.

e The left-hand side operand of a logical and operator is a Boolean.

e The left-hand side operand of a logical or operator is a Boolean.

o The left-hand side operand of a logical implication (->) operator is a Boolean.
e Both operands of a logical iff (<->) operator are Boolean.

e The right-hand side operand of a non-overlapping until* operator is a Boolean.
¢ Both operands of an overlapping until* operator are Boolean.

e Both operands of a before* operator are Boolean.

All other operators not mentioned above are supported in the simple subset
without restriction. In particular, all of the next_event operators and all forms of suffix
implication are supported in the simple subset. The current version of Sugar 2.0 has
additional features, such as the ability to intermix it more freely with EDL (Environment
Description Language) and add modeling in HDL Languages (VHDL, Verilog). The
common goal for the hardware design industry is that PSL/Sugar will be used as a
standard for many stages of the future VLSI design. The stages include design

specification, functional verification (simulation), assertion-based verification and most
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notably formal verification. In the following sections, we address the usage of Sugar 2.0
with respect to RuleBase Model Checking Tool. Note, RuleBase was the pioneer tool
which used Sugar 2.0 in order to define the properties, which were used to perform model
checking.

2.2.6: Rulebase Model Checker — Main Features and Counter Example Generation

One of the practical problems of model checking is known as “the size problem”.
Because of the size problem, complete model checking runs can verify designs that have
a few hundred state variables (latches or flip-flops). This is not enough to be useful in
real hardware designs. The RuleBase formal verification tool solves the size problem by
renouncing the proof of truth that is possible with model checking on small designs. By
renouncing the proof of truth, RuleBase can verify designs that contain up to a few
thousand state variables. Although an answer of “true” to a specification is no longer a
firm indication that the design is correct, an answer of “false” with a counter-example is
an indication of a bug in the design (or specification or environment). This way,
RuleBase can be used to obtain much better verification than is possible using simulation
alone, even for designs that are too large for complete model checking.

One of the ways of dealing with the size problem is to reduce the design under
verification. Reduction is accomplished by analyzing the environment description
provided by the user as well as the specification to be checked, and eliminating any logic
that has no bearing on the specification under the environment. Using the techniques of
reduction in combination with renouncement of the proof of truth is known as over-
reduction. For instance, instead of describing the complete environment of the design

under test, the user may choose to describe a subset of that environment. RuleBase uses
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the environment to reduce the design to a size that is suitable for model checking. Then,
another subset of possible behaviors can be described. Thus, the user has complete
control over the reduction process. An answer of “true” for a specification under a
specific environment indicates that in this specific environment, the specification is true,
but it does not indicate anything about the truth or falsity of the specification under other
environments. Following is a list of RuleBase main features, which will be further
discussed and exercised with the case study done in context of our thesis.

e Sugar 2.0 specification Language

As described earlier, Sugar 2.0 is used to specify the properties of the given design.
¢ Environment Description Language (EDL)

RuleBase checks the properties specified for every possible input sequence.
However, most chips are not designed to accept every possible input sequence. Designers
often assume a correct behavior of the target environment and simplify the design by
ignoring illegal behaviors. RuleBase must be made aware of the environment’s legal
behavior, otherwise it might produce “false negatives”, which are counter-examples that
result from illegal input sequences. The way to specify environment behavior is to write
environment models, which are the logic that drives the inputs of the design to be
verified. Every input of the design must be assigned some behavior. Some inputs are
kept constant (e.g., configuration inputs), others remain completely free
(nondeterministic), while the control signals of interest are usually assigned detailed and
exact behavior. Environment models are written in the RuleBase Environment

Description Language (EDL), a dialect of the SMV language [6]. EDL is somewhat
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similar to common hardware description languages (HDLs), but it also supports non
determinism and multiple environments.

Environments are linked to the design and to other environments by signal names.
Signals produced by the environment will match and drive design signals that have the
same name even if they are internal to the design, which is a way to abstract by
overriding. Signals (both output and internal signals) produced by the design will match
and drive environment models that require these signals. In some translation paths, design
signals are converted to upper-case. Writing good environment models is an art. Good
environments should be small and simple, while allowing all and only the legal
behaviors. Environments should be small to avoid overloading the model-checker, and
simple in order to be easily written, read, and maintained. Good environment models
should not produce illegal behavior, or else false-negative results will be produced. On
the other hand, they should model all the legal behaviors because an unmodelled behavior
is a good place for bugs to hide. An attempt should be made to hide as much detail as
possible using abstraction techniques (as explained later in Chapter 4).

The following are the stages of environment modeling [12]:

a. We studied the block interfaces in detail and understood the behavior of every input
and every relevant output. This information can be gathered from standard bus protocols,
design documents, and communication with the designers.

b. We planned the hierarchical structure of the environment models, grouping related

signals and reusing components where possible.
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¢. Decided how to model each input. Some inputs are held constant, at least during the
initial stages of verification. Usually there is a set of interesting control inputs that need
detailed modeling. We have to design and implement logic to drive these signals.
d. Finally, we coded the environment logic in EDL.
e Model Checking Engines

Mostly BDD-based and SAT-Based model checking algorithms are used in
RuleBase. The main engine, which appears in the basic, classical version of RuleBase, is
the BDD-based SMV engine. In a BDD, every state variable has a distinct level, from 1
to n, where n is the number of state variables. The order in which the levels are allocated
to the state variables has a large impact on the size of the BDD. For example, a design
whose verification with a good BDD requires 30 MB of memory may require 300 MB or
more with a bad order. Therefore, it is important to find a good order. RuleBase can
perform BDD reordering during model checking. This is known as dynamic BDD
ordering. Because BDD ordering is extremely CPU-intensive, it is inactive by default.
User should turn it on for initial runs, and feed the resulting order back into RuleBase for
all consecutive runs.
¢ Counter-examples & witnesses

When a rule fails, the user needs some snapshot regarding the scenario. The
waveform display window displays an execution trace that is a counter example or a
witness to an assertion or a rule. The number bar at the top of the display counts the clock
cycles of the fastest clock. Signals that have a textual display (e.g., enumerated constant
values) only display a change in the signal value. If no value appears at time X, find the

current value by looking to the left for the value at the last time the signal changed.
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Figure 3.2 shows the counter example of an error found in our case study, which is
described in chapter 4. The property states that “On every path, always, if (!(
READ_SEL )) then On the next cycle, (edge_detect) XOR (edge_detect_retimed). The
property means always when the READ_SEL signal is active low then in the next clock
edge, the internal signals edge_detect and edge_detect_retimed cannot be of same logic
value. The error scenario is captured with the bold dot which is shown clearly in the

figure.

Figure 2.13: Counter Example generation of RuleBase
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Chapter 3: Introduction to Standard Bus Protocols

Hardware designs have reached a mammoth scale today, with over ten million
transistors integrated on a single chip. This breakthrough in technology has, in fact,
reached the point, where it is hard to design a complete system from scratch. Industry has
already started designing ASICs from a large repertoire of Intellectual Property
Components or IP Cores sold by many vendors. System-on-chip designs usually involve
the integration of heterogeneous IP cores on a standard bus. These IP cores may require
different protocols or have different timing requirements. Moreover, designers often do
not have complete knowledge of the implementation details of each component. For
example, vendors may want to protect their IP Cores by only providing interface
specifications which in process makes the validation of such designs is becoming more

and more challenging.

3.1: Role of Standard Bus Protocol Verification in SoC Design

A System-On-Chip (SoC) can be viewed as a collection of various IP cores, with
interconnecting buses running among them. Since the cores are obtained from different
vendors, there is a need for standard buses to connect them. We also envision some kind
of interface logic, which we call glue, to connect IP Cores to the standard buses. In some
cases IP bores are designed to be compliant to a standard bus protocol, i.e. PCI Interface,
Look-Aside Interface which can be connected directly to the bus without glue. Bridges
are used to extend such systems in a hierarchical fashion by connecting buses. IP Cores

are often pre-validated by the IP core vendors. This increases the confidence of system
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designer in third party IP Cores. The validation of IP Cores must be part of the IP Core
design itself. So the scenario of verifying SoC is dictated by the following issues,

e Pre-verified IP Cores with certain guarantees and confidence.

e A standard bus protocol

e [P Core specific glue to connect cores to the bus

Since the bus protocol is standard, it needs to be verified once and for all. One of the
major tasks in this process is the development of bus specific protocol models i.e. RTL
model for our case. These models should be general enough to incorporate all the
behaviors of the interesting verification-related bus transactions. Assertion and temporal
properties verified in this RTL development stage should be focused based on the

Verification plan which is extracted directly from the design specification.

3.2: Look-Aside Interface as standard bus protocol

Experience in industry with SoC designs shows that most of the bugs are found in
the bus protocol or the interface that connects the IP cores. To our knowledge, there is
still no agreement on a standard bus protocol for system-on-chip designs. However, our
thesis focuses on verifying system-on-chip designs having IP cores such as Network
Processor Unit (NPU) and Network Packet Search Engine (NPSE) and the standard
protocol used for this purpose is Look-Aside Interface (LA-1). A typical use for LA-1
Interface is shown in Fig. 3.1 [23]. It has the advantage of requiring comparatively few
pins while still achieving very high throughput through a combination of:

e High frequency (up to 250 MHz in the first version)
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e Double data rate transfers (data is sent and received on both edges of the input and

output clocks)
e Concurrency (read and write transfers occur simultaneously and independently)

e Source-synchronous clocking

NPU

LA-1 # NPSE

#ﬁémﬁ.’i Baguest ?

Status Generator].

Toea Besrch Tigouk

SRAM Interface

SRAM

Figure 3.1: Look-Aside Interface used between NPU and NPSE

The LA -1 data interface is logically 32 bits wide (or 36-bits wide including
parity), but physically only 16 bits wide, with each half of a 32-bit word being transferred
on successive positive and negative edges of the clock, thus keeping the pin-count
reasonable despite having separate read/write data buses. With a 24-bit address bus, the
LA -1 interface requires a total of about 70 signal pins. The implementation of LA -1 is
capable of maintaining an independent 32-bit transfer in each direction (read and write)
in every clock-cycle at up to 250 MHz, for an aggregate throughput of up to 2 GB/s. The
high frequency of operation is maintained by use of low-voltage (1.5V) High Speed

Transceiver Logic (HSTL) buffers, and source-synchronous clocking. The principle of
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source-synchronous clocking is to allow signal clocks to be deliberately skewed by signal
sources to compensate for output delays, and then transmitted along with the signals to
compensate for flight times, thus providing a reasonable data window for set-up and hold
times with respect to the active edge of the clock at the signal destination, even at very
high frequencies. Lastly, the LA-1 interface is an open standard which has been
developed and endorsed by multiple memory and network device vendors i.e. Cypress,
IDT, NEC, Samsung and so is expected to achieve high adoption rates over a range of
compatible network products. In the following sections of this chapter, we give some
brief overviews of the other standard bus protocols currently used in the Industry.
Chapter 4 of this thesis report will discuss the main features of Look-Aside Interface

(LA-1) standard in details.

3.3: PCI Local Bus Protocol

The PCI Local Bus [24, 25, and 26] is a high performance, synchronous bus
architecture that can transfer 32-bit or 64-bit data. Its primary goal is to establish an
industry standard and optimize for direct silicon (component) interconnection with
minimum glue logic required. It supports most processor designs and connects various
types of devices on a chip. Bridges are used to ¢xtend the PCI bus based systems. PCI
bus signals can be divided into the following categories according to their functionality.
Address and Data lines are multiplexed and can be either 32 bit or 64 bit wide, and they
also have a parity line for error correction. Command lines carry four bit commands at
the start of each transaction, identifying the transaction type. Interface Control lines are

used for handshaking between devices, device signaling, exclusive access and transaction
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termination. Arbitration lines are traditional request- and-grant type point-to-point lines
between each device and an arbiter. PCI bus also supports four Interrupt lines and IEEE
JTAG lines. Error indicator lines and system wide lines clock and reset are also

required.

3.4: PCI-X Bus Protocol

PCI-X is the latest implementation of PCI [24, 25, and 26]. It was adopted as
industrial standard ratified by the PCI-SIG. Using the same 64-bit architecture as the
current standard, PCI-X has tremendously increased the clock speed to 533 MHz,
allowing transfer speeds up to 4 GB/sec and it is backward compatible with standard PCI
cards.

Further-more, the PCI-X bus plays a vital role in today’s System-On-Chip (SoC)
designs involving various components connected using high-speed standard buses. The
introduction of the PCI-X technology has provided the necessary bandwidth and bus
performance needed to avoid the I/O bottleneck, thus achieving optimal system
performance. For instance, version 2.0 of PCI-X specifies a 64-bit connection running at
speeds of 66, 133, 266, or 533 MHz, resulting in a peak bandwidth of 533, 1066, 2133 or
4266 MB/s, respectively.

PCI-X provides backward compatibility by allowing devices to operate at
conventional PCI frequencies and modes. Moreover, PCI-X peripheral cards can operate
in a conventional PCI slot, although only at PCI rates and may require a 3.3 V

conventional PCI slot. Similarly, a PCI peripheral card with a 3.3 V or universal card
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edge connector can operate in a PCI-X slot; however the bus clock will remain at a
frequency acceptable to the PCI card.

Fig. 3.2[27] shows the general architecture of PCI-X with one Initiator (Master)
and Target (Slave). There is an arbiter that performs the bus arbitration among multiple
Initiators and Targets. Unlike the conventional PCI bus, the arbiter in PCI-X systems
monitors the bus in order to ensure good functioning of the bus. The general architecture
and the port operation overview for Look-Aside Interface i.e. our case study are

elaborated in Chapter 4.
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Figure 3.2: General Architecture of PCI-X
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Chapter 4: Functional Specification of Look-Aside
Interface (LA-1 Standard)

After evaluating several options, we adopted the Network Processor Forum’s
Look-Aside Interface (LA-1) standard to be the topic of our interest. This is a fast and
narrow, low voltage interface based on the QDR II (tm) SRAM interface standard.
Moreover, the LA -1 interface is an open standard which made it an ideal candidate for us
to implement the RTL model in house and then use it for our case study. In this chapter
we will first introduce the basic features of Look-Aside Interface (LA-1) standard and
then discuss the verification plan chalked out directly from the verification plan. Finally,
we will enlighten the readers about the verification methodology which was applied on

this interface.

As line rates in core networks increase from OC-48 to OC-192, core routers will
need to process hundreds of millions of packets per second. This creates the need for
packet processing elements, such as network processors, to offload tasks to look aside co-
processors to increase the system performance. The look-aside interface to coprocessors,
such as Network Search Engines (NSE) and Classifiers, then becomes a key choke point
in the packet processing architecture. To help curb this bottleneck, the Network
Processing Forum (www.npforum.org) released the standard look aside interface [3],
dubbed LA-1, that accelerates and standardizes the movement of packets between data

plane and co-processor solutions.
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Figure 4.1: System Level Diagrams

The work on the LA-1 specification, the Look Aside Interface to network-
processing elements (NPEs), started at the beginning of 2001 and became an approved
Network Processing Forum (NPF) specification in April 2004. Major work was done in
the Look Aside Task Group, Hardware Working Group of the NPF whose goal is to
define and deliver hardware interfaces for the components located adjacent to an NPE via
the Look Aside Interface.

The LA-1 interface specification is based on separate dual data rate (DDR) buses
for data inputs and data outputs. Using DDR interfaces, data is clocked on the rising and
falling edges of the clock signals. This effectively doubles the bandwidth of the interface
without increasing the clock speed or the bus width. Although modeled on an SRAM
interface, the LA-1 specification aims to accommodate other devices as well, such as
classifiers and encryption co-processors. Overall, the LA-1 interface operates at clock
speeds between 133 and 200MHz. The minimum performance specification for lookup
co-processors is four lookup operations at OC-48 or one lookup operation at OC-192.

The main goal of our research is to apply assertion-based verification, in order to verify
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Look Aside Interface (LA-1 Standard). Afterwards, we verified the same assertion

monitors in the form of model checking using PSL/Sugar 2.0.
4.1: LA-1 Interface Overview and Major Features

The LA-1 interface supports unidirectional 16-bit read and write interfaces. These
data inputs and outputs operate simultaneously, thus eliminating the need for high-speed
bus turnarounds (i.e. no dead cycles are present) as shown in Figure 4.2 [3]. Access to
each port is accomplished using a common 27-bit address bus. Addresses for reads and
writes are latched on rising edges of K and K# input clocks, respectively. Each address
location is associated with two 16-bit data words that burst (2-WORD) sequentially into

or out of the device.

Master Clocks ( K. K#)
Address 1263

Data Input [15:9]

Parity- Tnput (1)

i (Read Seb)
Wi (Write Kel)

Wi 1:0] (Byte Write Enable) |

1

Drata Qutput [15:6)

l’m’i’ty Crutput [1:0]

Figure 4.2: LA-1 Interface Major Bus Signals
The LA-1 interface major features include [3]:
e Concurrent read and write operation
e Unidirectional read and write interfaces

¢ Single address bus
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e 18 pin DDR data output path transfers 32 + 4 bits of even byte parity per read.
e 18 pin DDR data input path transfers 32 + 4 bits of even byte parity per write
e Byte write control for writes

4.2: Look Aside Interface Architecture

A single Look Aside Interface includes a master clock pair, address, control
pins, 16 bit Data in, 2 bit input parity pin, byte enable pins for write operations and 16 bit
Data out and 2 bit data for Output parity. The master clocks are ideally 180 degrees out of
phase with each other. The LA-1 interface ports follow a few simple rules:

o W#!' R# and BW# are always captured on the rising edge of K clock.
 For address and data are captured on the rising edges of K and K# clocks.

The data path for a single bank LA-1 Interface is shown in Figure 4.3 [18].
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Figure 4.3: Data path for a Single Bank LA-1 Interface

The LA-1 port depth expansion is done by adding a set of port enable inputs (1 bit each),

! # sign means the control input is active low. The control inputs W#, R#, BW# are all active low inputs.
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which are the most significant two bits of the Address bus and thus four single banks LA-
1 Interface can used. Programmability of two enable inputs (E1 and E2) i.e. most
significant two bits of the Address bus, would allow four banks of depth expansion to be
accomplished with no additional logic. By programming the enable inputs of four LA-1
ports in binary sequence (00, 01, 10, and 11) and driving the enable inputs with two
address outputs, four LA-1 ports can be made to look like one port with a larger address

space to the system (Fig. 4.4).
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Figure 4.4: Look-Aside Interface Four Bank Data Path
4.3: Look Aside Interface Port Operation Overview

The key objective of Single Bank LA-1 architecture is to clearly distinguish read
and write ports therefore, QDR architecture is designed to offer the best performance on
alternate read and write cycles. The 2-word burst QDR SRAM can indefinitely sustain
both a 2-word read and a 2-word write each clock cycle. Internally, the first half-clock
cycle is used to execute the read function, and the second half-clock cycle is used to

execute the write function. The address bus is shared for the read and writes data ports.
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The rising edge of a master clock signal "K" is used to register the read address. The
falling edge of this clock signal "K" (rising-edge of K#) is used to register the write
address.
4.3.1: Write Port Operation Overview

A write cycle is initiated by asserting WRITE_SEL (W#) low at rising edge of K
clock. The address of the Write cycle is provided at the following edge of K# clock
which 180 degrees out phase from clock K. BW# (Active-low byte-write inputs) are used
to enable or block write of a specific byte a write cycle initiated with W#. BWO# controls

D [0:7] and DP 0, while BW1# controls D [8:15] and DP 1 (Table 4.1) [3].

Byte Enable BW 1# BW 0#
Data Input pins D [15:8] DI7:0]
Parity Input pins DP 1 DP O
Byte O Byte 1
KT Bits [31:24] Bits [23:186]
Parity B C Parity Bit 1
Byte 2 Byte 3
K# T Bits [15:8] Bits [7:0]
Parity Bit 2 Parity Bit 3

Table 4.1 Control & Data pin names vs. 32 bit write data alignment
In the case of an SRAM, a read can immediately follow a write even if they are to
the same address. In the case of a coprocessor, there will be a minimum latency between
a write and a read to the same address that is dependent on the architecture of the
coprocessor. Latency bounds on this operation are out of scope of this specification.
Assumes a write cycle was initiated via W# low. BWO# and BW 1# are sampled at data in
times and can be altered for any portion of the burst write operation provided that input

setup and hold requirements are satisfied.
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Data In Sample Time | BW1# |BWO# | D[15:8] D[7:0]
DP[1] DP[0]
K 7 1 0 Data In Don’t Care
K# 1 0 1 Don’t Care | Data In

Table 4.2 Write sequence using Byte Write Enable (BW#)

Resulting Write Operations from Table 4.2 are shown in Table 4.3.These 32 bits

of data along with the 4 bits of parity is sent to the Memory with the respective address.

Byte 3
D [7:0], DP [0]

Byte 2
D [15:8], DP [1]

Byte 1
D [7:0], DP [0]

Byte 0

D [15:8], DP [1]
Written

Unchanged

Written Unchanged

Table 4.3 Resulting formation of 32 bits of data

4.3.2: Read Port Operation Overview
A read cycle is initiated by asserting R# low at K rising edge and the read address

is presented on A. Data is delivered after the next rising edge of K. (Table 4.4)

Data Output pins Q [15:8] Q [7:0] —I
Parity Qutput pins QP 1 QP O
Byte O Byte 1
KT Bits [31:24] Bits [23:16]
Parity Bit 0 Parity Bit 1
Byte 2 Byte 3
K#T Bits [15:8] Bits [7:0]
Parity Bit 2 Parity Bit 3

Table 4.4 Data output pin names vs. 32 bit read data alignment
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4.3.3: SRAM Port Operation Overview

The LA-1 interface uses an SRAM style memory mapped structure. Address pins,
as needed, are used to address logical registers on the device. The NPU uses register style
read and write operations to initiate co processor actions, retrieve results, and optionally
provide in band management. A memory mapped logical layer provides a flexible and
minimum weight interface for co processor applications. Therefore, co processor
architectures may provide differentiation and innovation because the logical layer does
not excessively limit the designer. One of the best advantages of SRAM? devices over
SDRAM devices are the ease of interfacing them in terms of control signals. For
example, there is no need for sending a refresh command to the memory device. The
usage of the address bus, in 2-word burst devices, the read address location is considered
on the rising edge of K clock and the write address location on the falling edge of K clock
as shown in Fig. 4.5. According to the figure, the address bus A runs in DDR mode
which is similar to Data Bus D which also runs in DDR mode. Moreover, the Data Clock
relationship is strictly followed for the Write and Read Port. Therefore, in Write Port,
Write Data must be center aligned in regard to K clock when sending the data. On the
contrary, Data are sent with a guaranteed interval delay with respect to K and K# clock

from the Read Port.

2 A 2-word burst QDR SRAM devices able to handle a 167 MHz clock in Virtex-II FPGAs (-5
speed grade) QDR SRAMs have read and write data buses, both operating in DDR mode. On the write bus,
the clock needs to be center aligned with the data. This physical placement is advantageous for the memory

device (Fig. 4.5)
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Figure 4.5: Simplified Timing Diagram for LA-1 Port Operation
In our RTL implementation of the Design, we assumed the echo C and C# clock
inputs are tied high and then according to the design specification the device reverts to K
and K# control of the outputs, allowing the device to function as a conventional pipelined
read device. In the later chapters of this thesis, we will discuss the Functional Coverage
and the related verification plan for the Look-Aside Interface. In addition, we will also

explore the implementation of the verification plan with respect to OVL and Sugar 2.0.
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Chapter 5: Functional Coverage and Verification Plan

Functional verification comprises a large portion of the resources required to
design and validate a complex system. Often, the validation must be comprehensive
without redundant effort. To minimize wasted effort, coverage is used as a guide for
directing verification resources by identifying tested and untested portions of the design.
Coverage is defined as the percentage of verification objectives that have been met. It is
used as a metric for evaluating the progress of a verification project in order to reduce the
number of simulation cycles spent in verifying a design. Broadly speaking, there are two
types of coverage metrics. Those that can be automatically extracted from the design
code, such as code coverage, and those that are user specified in order to tie the
verification environment to the design intent or functionality. This latter form is referred
to as Functional Coverage.

Functional coverage is a user-defined metric that measures how much of the
design specification, as enumerated by features in the verification plan, has been
exercised. It can be used to measure whether interesting scenarios, corner cases,
specification invariants, or other applicable design conditions—captured as features of
the test plan—have been observed, validated and tested.

The key aspects of functional coverage are:

e Itis user-specified (assertions), and is not automatically inferred from the design.

e Itis based on the design specification (i.e., its intent and designer’s valid assumption)
and is thus independent of the actual design code or its structure.

Since it is fully specified by the user, functional coverage requires more up front effort

i.e. assertion and property writing skills. Functional coverage also defines a more
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structured approach to verification. Although functional coverage can shorten the overall
verification effort and yield higher quality designs, the inadequate translation (informal
translation) of design specification can impede its adoption. Nowadays, Functional
coverage strategy is not only synonymous with simulation but also involves exhaustive
usage of simulations, assertions, verification plan and formal coverage in order to make
sure all aspects of the design under test meets the design specification document.

Therefore, Functional Coverage needs a reactive verification suite as shown in Fig. 5.1.
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Figure 5.1: Reactive Verification Suites for Functional Coverage

With the aid of a reactive verification suite, the typical scenarios of error cases,
corner cases and protocols are covered in the verification system. Functional coverage
also measures if all important combinations of input stimulus have been exercised at
different states of the design-under-test. This is achieved by applying Formal methods
(model checking) on the design under test. In addition, Functional coverage elevates the
discussion to specific transactions or bursts without overwhelming the verification
engineer with bit vectors and signal names i.e. flagging an OVL_ERROR points a

specific transaction error of the design. Therefore, the bulk of low-level details are hidden
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from the report reviewer. This level of abstraction enables natural translation from

verification plan items to coverage results.

Thus, functional coverage is very important because:

o Tt allows the verification engineer to focus on key areas of the design that need most
attention based on the verification plan. The verification plan of Look-Aside Interface
is described later in this chapter.

e Itexplains the verification engineer how much verification is enough.

e It improves the efficiency of test generation i.e. it includes assertions, model
checkers.

e It improves the quality of tests.

e It avoids repetitive generation of tests for the same set of combinations of input
stimulus.

One of the notable problems in conducting functional verification is that without
assertion or property specifications is that there is no easy way to know what checks are
being targeted or monitored. The tools cannot process the information produced from a
simulation run to determine specific checks that have been detected as failures, exercised
or re-exercised. In other words, without assertion specification and model checking, the
measurement of quality is not practical, and without this measurement, the entire design
verification process suffers from a lack of coherent information about its progress. To
economize the verification effort, Functional coverage methodology take the same
assertion specifications and model checking results to provide a detailed account of what
tests, checks, scenarios and data have been exercised. ~Without access to this

comprehensive functional coverage methodology, random test generation has to be
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manually adjusted for each simulation run. The input constraints and seeds are modified
so that more scenarios can be exercised to catch bugs. This process of manual trial and
error is inherently inefficient and incomplete. But, the availability of functional coverage
in terms of assertions and model checking during run-time can change this situation
remarkably. The error report obtained from VCS 7.0.1 helped us to drive the test benches
to make necessary adjustments as soon as an OVL ERROR is determined. On the other
hand, the error report from RuleBase helped us to pinpoint unknown bugs which were
dormant in the course of our VCS simulation with OVL. Therefore, the overall process
gave us an enriched functional coverage for the design, where functional verification and
formal verification both played its crucial part. Thus, for the implementation of an
intelligent testbench which was discussed in Chapter 1, the development of a reactive
testbench is the principal and vital step. With this view in mind, our primary aim was to
create an effective verification plan of Look-Aside Interface (LA-1 Standard). In the
following section of this chapter we will discuss the verification plan with respect to the

main features of Look-Aside Interface as described earlier.

5.1: Verification Plan for the Write Port

Write Port main features

Asserting the write-select W# (WRITE_SEL) input low at the master-clock

e CLK_K, rising edge initiates a write cycle.

e The following master-clock-bar CLK_K1, rising edge provides the address for the
write cycle. At the same cycle, you can expect data at the rising edge of the

master clock and master clock bar.
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e By using the byte-write control (BW#) signals, any input byte of D (Data In) may
be masked in any write sequence or the full input word may be passed through.

e Fig. 5.2 gives detailed timing diagram overview of the Write Port operation.
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Figure 5.2: Timing Diagram of the Write Port of LA-1 Interface

- Testcase 1 : WRITE_CYCLE_INIT’
This testcase checks the proper initialization of the Write Cycle, based on asserting
W# low at the rising edge of CLK_K and then verifying that at following edge of
CLK_K, that the internal signal WRITE_CYCLE_INIT_1 is logic high. The
sequence is described below:

— Assert W# (WRITE_SEL) Low

— At the rising edge of CLK_K verify that WRITE_CYCLE_INIT_1is ‘1’

— Note that WRITE_CYCLE_INIT _1 is an internal signal.

3 Each testcase is named with a unique name. The same names were used for defining assertion monitors
in OVL and property specification using Sugar 2.0. We strictly named all our assertions. This eased our

effort associated with debugging assertion condition failures, OVL ERROR in our case.
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+ Testcase 2 : WRITE_ADDRESS_SAMPLE
This testcase checks whether the proper Write Address was sampled in the Write
Port. If a Write Cycle is initiated at the rising edge of CLK_K then the address
sampled at the following rising edge of CLK_K1 is the Write Address. The sequence
is given below.
— Assert W# (WRITE_SEL) low at the rising edge CLK_K.
—  Store the address sampled at the following rising edge of CLK_K1
— Compare this address with WRITE_ADDR in the RTL.
» Testcase 3 : WRITE_DATA_PASSTHROUGH_MSW & LSW
This testcase checks that BW# controls writing of Data In[15:0]. When BW# = “00”
then if the Write Cycle is initiated then the sampled Data In[15:0] is written on the
rising edge of CLK_K and CLK_K1. The sequence is given below.
—  Assert BW# [1:0] to “00” (active low)
— Initialize the Write Cycle and at the rising edge of CLK_K , store the
Data_In [15:0] and the following rising Edge of CLK_KI1 store the
Data_In [15:0]
—  Verify that the stored data of CLK_K1 rising edge is equal to the LSW of
Memory Data and the stored data of CLK_K rising edge is equal to the
MSW of Memory Data sampled at the following CLK_K rising edge.
« Testcase 4 : WRITE_DATA_ALIGNMENT _1
This testcase checks that BW# controls writing of specific input byte of Data
In[15:0]. When BW# = “01” and Write Cycle is initiated then the LLSB of the Data

In[15:0] sampled on the rising edge CLK_K is equal to the Memory Data[23:16] and
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the LSB of the Data In sampled at the rising edge of CLK_K1 is equal to the Memory
Data[7:0]. The sequence is described below. Note that this scenario is checked with
two different assertion monitors.

Assert BW# [1:0] to “01”

_ Initialize the Write Cycle and at the rising edge of CLK_K and store the
Data In [15:0]
— At the following rising Edge of CLK_K1 store the Data_In [15:0]
—  Verify that the stored data of CLK_K1 rising edge is equal to the LSB of
Memory Data and the stored data of CLK_K rising edge is equal to the
Memory Data sampled at the following CLK_K rising edge.
« Testcase 5 : WRITE_DATA_ALIGNMENT_2
This testcase checks that BW# controls writing of specific input byte of Data
In[15:0]. When BW# = “10” and Write Cycle is initiated then the MSB of the Data
In[15:0] sampled on the rising edge CLK_K is equal to the Memory Data[31:24] and
the MSB of the Data In sampled at the rising edge of CLK_K1 is equal to the
Memory Data[15:8]. The sequence is described below. Note that this scenario is
checked with two different assertion monitors.
— Assert BW# [1:0] to “10”.
— Perform the second and third steps as described in the above test case.
—  Verify that the stored data of CLK_K1 rising edge is equal to the [15:8] of
Memory Data and the stored data of CLK_K rising edge is equal to the
[31:24] bits of Memory Data sampled at the following CLK_K rising

edge.
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- Testcase 6 : WRITE_DATA_NOP
This testcase checks that if BW# = “11” and a Write Cycle is initiated then Memory
Data retains its old value. The sequence is given below:

— Assert BW#to “11”

—  Verify that at posedge of CLK_K, Memory Data keeps the previous value.

( no change)

5.2: Verification Plan for the READ Port

¢ Read Port main features

e Asserting the read-select input R# (READ_SEL) low at the CLK_K rising edge
initiates a read cycle

e At the same rising edge of CLK_K, the address bus presents the read address
(READ_ADDR).

e Data is delivered after the next rising edge of the CLK_K.

e For an SRAM, a read operation can immediately follow a write operation even if

they are to the same address.
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Figure 5.3: Timing Diagram of the Read Port of LA-1 Interface
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+ Testcase 7: READ_CYCLE_INIT
This testcase checks the proper initialization of the Read Cycle, based on asserting R#
low at the rising edge of CLK_K and then verifying that at following edge of
CLK_K, that the internal signal READ_CYCLE_INIT_1 is logic high. The sequence
is described below:

— Assert R# Low at rising edge of CLK_K

—  Verify that the READ_CYCLE_INIT is ‘1’

— Note that READ_CYCLE_INIT_1 is an internal signal.
¢ Testcase 8 : READ_ADDRESS_SAMPLE
This testcase checks whether the proper Read Address was sampled in the Read Port.
If a Read Cycle is initiated at the rising edge of CLK_K then the address sampled at
the same rising edge of CLK_K is the Read Address. The sequence is given below.

—  Assert R# low at the rising edge CLK_K and store the address sampled at

this rising edge.

— Compare this address with READ_ADDR in the RTL.
+ Testcase 9: READ_DATA_ALIGNMENT_1
This testcase checks whether the proper Read Data was sent out after the next rising
edge of CLK_K after a Read cycle is initiated. The sequence is given below.

— Assert R# low at the rising edge CLK_K store the Data In to the Read

Port.
— Compare this Data In [15:0] with the Data Out after the next rising edge of

CLK_K
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+ Testcase 10 : READ_DATA_ALIGNMENT_2
This testcase checks whether the proper Read Data was sent out after the next rising
edge of CLK_K1 after a Read cycle is initiated. The sequence is given below.
—  Assert R# low at the rising edge CLK_K and store the Data In to the Read
Port.
— Compare this Data In [31:16] with the Data Out at the following rising

edge of CLK_K.

5.3: Verification Plan for the Memory Port

e Memory Port main features

e FEach loaded write command and write address (WRITE_ADDR) provides the
base address for a “2-beat” data transfer, so 32 data bits plus four even-byte parity
bits (36 bits in Total) are transferred for each address(27 bits) loaded to the
Memory.

e Memory is controlled by the master clock (CLK_K) only, as the Memory Data

width is twice of input data (Data_In) width.
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Figure 5.4: Timing Diagram of the Memory Port of LA-1 Interface
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+  Testcase 11 : MEMORY_VALID_ADDRESS_DATA
This testcase checks whether the Memory Address and Memory Data do not read X

value. The sequence is given below.

Initialize the memory in the testbench

Generate random address through the test bench.

Verify that the memory address do not read X value.
—  Verify that the memory data do not read X value.
» Testcase 12 : MEMORY_THROUGHPUT
This testcase checks if the Memory is properly writing and reading the data. Please
note that the Read Data from the Memory is send to the Read Port as input data. The

sequence is given below.

Initialize the memory in the testbench

— Generate random address and Input data through the test bench

—  Assert the Write Cycle and Store the Write address and Memory Data

— After 2 clock cycles of CLK_K) assert READ_SEL and make sure Read
Address is equal to Write Address.

—  Verify that the stored Memory Data is equal to the Data_In of the Read

Port.

5.4: Verification Pian for the Look-Aside Interface (TOP Level)

¢ Look-Aside Interface Top Level Main Features
e Data path of Look-Aside Interface consists of a Write Port, Memory and Read

Port (Fig 4.3). Thus it inherits all the feature of the Write Port, Read Port and the

Memory.
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Figure 5.5: Timing Diagram of the TOP Level of LA-1 Interface
« Testcase 13 : LA1_TOP_PASSTHROUGH
This testcase checks whether the Data Pass through mode (When BW# = “00”) works
properly in the Top Level of the RTL model. The sequence is given below.

Set BW# to “00”

— [Initialize the Write Cycle at the rising edge of CLK_K and store the Data In
[15:0]

— At the following rising Edge of CLK_K1 store the Data_In [15:0]

—  Verify that the stored data at rising edge of CLK_KI1 is equal to the Data Out
sampled at the 4th rising edge of CLK_K

~  Verify that the stored data at rising edge of CLK_K is equal to the Data Out

sampled at the Sth rising edge of CLK_K
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« Testcase 14 : LA1_TOP_WRITE_READ

This testcase checks whether in the Write and Read is being done correctly at the top
level. The sequence is given below.

— Set BW#to “00”

— Initialize the Write Cycle at the rising edge of CLK_K and store the Data In

[15:0]

— At the following rising Edge of CLK_K1 store the Data_In [15:0] and the

address.

— At the 4th rising edge of CLK_K read the stored address and verify that

Memory Data Out[15:0] is equal to stored data, stored at rising edge of
CLK_K1.

In Chapter 6 and 7, we will enlighten the reader about the usage of this
Verification plan which served as the basis of the intelligent testbench. We will also
elaborate a clear relationship between the Verification Plan and derivation of the OVL
Assertions and Model Checking properties using Property Specification Language

(PSL/Sugar2.0)
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Chapter 6: Applying OVL Assertion Monitors to LA-1
Interface Verification Plan

The usage of assertion monitors was illustrated clearly, with its application on the
verification plan. Hence, in the following sections, the OVL assertion monitors are used
in order to verify the testcases which were described in the verification plan earlier. For
our verification purpose we used assert_always,assert_never and assert_next monitor.
Please note that the assert_always and assert_never assertion continuously monitors the
test_expr at every positive edge of the triggering event or clock clk. On the other hand,
assert_next verifies the assertions based on a clock cycle relationship. In the following
section, we enlighten the use of some assertion monitors in context of the Verification
plan. The rest of the assertions are described in Appendix A. Appendix C gives
examples of the Write Port RTL model of the design along with the embedded assertion

monitors.
6.1: OVL Assertions for WRITE Port

+ Assertion 1:
assert_always #(0,0,"Write cycle should be initialized")
valid_write_cycle_init // inst_name of assert_always monitor
(CLK_K, // Clock CLK_K signal of the design
write_enable, / signal indicating complete initialization
(WRITE_CYCLE_INIT_1 == 1'bl)); // test_expr
This assertion is continuously exercising Testcase 1 for the Write Port (described earlier)

and validating the Write cycle initialization scenario.
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« Assertion 3:
assert_always #(0,0,"WRITE_DATA PASSTHROUGH LSW")
valid_data_out_passthrough_lsw
(CLK_K1, //Clock CLK_K1 signal of the design
WRITE_CYCLE_INIT_3, // signal indicating initialization
(DIN_NEGEDGE == DATA_WRITE_MEM_OUT[15:0])); //test_expr
This assertion is continuously exercising Testcase 3 (described earlier) and validating the
Pass-through Mode. WRITE_CYCLE_INIT_3 is the internal flag which is initializing the
Write Cycle and setting BW# to “00”. DIN_NEGEDGE is an internal register that is

storing the value of Data_In.
6.2: OVL Assertions for READ Port

« Assertion 8:
assert_always #(0,0 " Read Address is sampled at the rising edge of CLK_K"
valid_read_address
(CLK_K, //Clock CLK_K1 signal of the design
read_address_enable, // signal indicating initialization
(stored_address == READ_ADDR)); //test_expr
This assertion is continuously exercising Testcase 8 (described earlier) and validating the
correct sampling of the Read Address. read_address_enable is the internal flag which is
initializing the Read Cycle. Stored_address is an internal register that is storing the value
of address at the rising edge of CLK_K and when R# (READ_SEL), is asserted low.
+ Assertion 10:

assert_always #(0,0," At the rising edge of CLK_K Byte 0 and Byte 1 of the data
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coming from the memory and entering the read port will be equal to the Data out
from the read port*) |
valid_data_out_k (CLK_K, // Clock CLK_K signal of the design
READ_CYCLE_INIT_3, // signal indicating initialization
(stored_data_K[31:16] == DATA_OUT ); //test_expr
This assertion continuously exercisedTestcase 10 (described earlier) and validated the
correct sampling of the Data Out. READ_CYCLE_INIT_3 is the initialization flag.
Stored_data is an internal register that is storing the value of Data In to the Read Port at
the rising edge of CLK_K and DATA_OUT is value of the output data from the Read

Port sampled after the next rising edge.
6.3: OVL Assertions for Memory Port

+ Assertion 11:
assert_never #(1,0,"Data In to the memory cannot have X ")
invalid_data_memory_in (CLK_K, //Clock CLK_K signal of the design
invalid_check_enable, // signal indicating initialization
ADATA_WRITE_IN [35:0] === 1’bX); //test_expr
This assertion continuously exercises Testcase 11 and validates the input Data to the
memory. The assertion flags an error when it reads an X’ in the input data of the
memory. This assertion makes sure that the memory is properly initialized with a
memory initialization file (.mif) in the simulation environment. Note that in the VCS
simulation environment we have used a behavioral model of the SRAM. As the top level
of the RTL model uses all the low level modules, therefore, we just needed to instantiate

the top level in the our simulation environment, written in verilog and run our
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simulations using VCS 7.0.1 (Results are discussed in the following section). All the

assertion monitors were initialized by default when the Top Level RTL model was

simulated.

6.4: Verification Result and Error Analysis using OVL

The report file was generated using the ves7.01 with a timescale of 1ns/Ins.

OVL Datapath OVL OVL
ASSERTION Module ERROR Time stamp

Assertion 1 Write Port No -
Assertion 2 Write Port No -
Assertion 3 Write Port Yes 200 ns
Assertion 4 Write Port Yes 220 ns
Assertion 5 Write Port No -
Assertion 6 Write Port No -
Assertion 7 Write Port No -
Assertion 8 Write Port No -
Assertion 9 Write Port No -
Assertion 10 Read Port No -
Assertion 11 Read Port Yes 260 ns
Assertion 12 Memory Yes 120 ns
Assertion 13 Memory No -
Assertion 14 TOP Level No -
Assertion 15 TOP Level Yes 260ns

Table 6.1 OVL Assertion Verification Report




Based on the error report as shown in Table 6.1, we pinpointed the error, by
viewing the waveform dump of the RTL design. Viewing the error report, we can clearly
observe that although there was an environment (testbench) which generated directed and
random stimulus for each testcase scenario, all the assertions were initialized at the same
instant. Therefore, all the assertions are acting like a constant watchdog for the
functional verification process. By default, this gives us a better functional coverage for
verification. Fig. 11 shows the error at time 200 ns as reported by VCS. The reason for
the OVL error was pretty much clear. We can clearly see that in the pass-through mode
which means when BW# (Byte_Write_Enable) is “007, DATA_WRITE_MEM_OUT
[31:16] is not equal to the value of the Data_In [15:0] sample at the rising edge of

CLK_K. The flagging of the error right prompted us to investigate the RTL and fix the

bug.
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poseine =20 ©. s Jeons - f120ns jte0ns  [200ns [2400
g ok 1 - 1
% error_count *hpo0G0000 0000000 06000001
g resetn 0 |
@ testexpr % e
%y, DATA IN[I50] *h6600 ]
@90 DATA WRITE MEM OUTR50] ' hocooouoce 73625C4B0
. WRITE_SEL o
% BYTE_WRITE_ENABLE[1:0] ‘ho 0

Figure 6.1: Write Data Alignment Error for Pass through Mode
Another critical error, which was captured by OVL assertions, was the X detection
pattern. During the RTL development the engineer often leaves an unconnected input
port to a module, defines a new variable without an assignment, or neglects to drive a
signal within a testbench. The X detection pattern is useful for identifying and isolating

this class of problem. Also, an X detection pattern can flag the error of the problems
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typically encountered at the chip startup (that is, during the reset process). This may also
include some potential, hidden bugs which were not tested before. Fig. 4.12 shows the X
pattern detection in the memory during the startup phase of our RTL model. This
problem occurred as we did not create a memory initialization file in order to initialize

the memory used in our datapath.
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Figure 6.2: Memory ‘X’ pattern detection

IP (Intellectual Property) consumers often have little or no control over the coding
of the RTL they choose to reuse. Detecting X or Z values on block boundaries can
significantly reduce debug during system-level integration of multiple blocks or IP [19].
The remainder of this chapter discusses the counter part of OVL assertions, which is
model checking using RuleBase. We reused the same Verification plan from section 4.4
in order for our methodology to be applicable in the same level of abstraction as used by

OVL.
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Chapter 7: Model Checking of Look-Aside Interface
using Rulebase

RuleBase supports a wide variety of design styles and methodologies. While in many
cases the user are not required to make special adjustments to existing design
methodology, the following design guidelines will further describe the verification

process.
7.1: Modeling the Environment and reducing the size of data Model

¢ Reducing the Size of the Data Model

Sometimes testing the data consistency of all the vector’s 32 bits at once may not
work very well, especially in large models. One technique is to test a single bit instead of
the whole vector. So, instead of comparing DI(0..31) with DO(0..31), you can compare
DI(0) and DO(0), while setting all other DI input vector elements to a constant, for
example, of 0. The above vunit (property keyword used in RuleBase) can be simplified as
follows: vunit keeping 1bit { assert forall xx in boolean : G (IRST &
rose(BTOS_ACK) & DI(0)=xx -> next_event (rose(RTOB_ACK)) (DO(0)=xx) ) ; In
this property BTOS_ACK and RTOB_ACK are internal signals and RST is the reset
signal. In addition to, bitwise verification we have to constrain our data model according
to the control signals used in the datapath. This constrain definition should be modeled in
the environment. For example, the requirement of keeping the input data DI(0..31) stable
while the StoB_REQ is active is given in the following :

var DI(0..31) : boolean,;
assign next(DI(0..31)) :=

case
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1StoB_REQ : nondets(32),
else : DI(0..31);
esac;

The design specification for the Write operation also states that the address for the
Write cycle is provided at the following CLK falling edge provided that the WRITE_SEL
was asserted low at CLK rising edge. The above scenario was captured using following
EDL statements.
#ifdef CORRECT_ADDRESS -- Generating the correct address
VAR ADDR_IN(0..26) : boolean;
ASSIGN next (ADDR_IN (0..26)) :=
case -- WRITE_CYCLE_INIT_1 flags the next falling edge of CLK
WRITE_CYCLE_INIT_1: ADDR_IN (0..26);
else: nondets(27);
esac;
#endif
¢ Modeling Clocks
To use formal verification properly, it is essential to understand the way RuleBase
deals with clocks, and to choose the proper clock scheme. The environment assumes that
the clock signal is generated externally and drives the verified design through input clock
pins. The simplest case is a design that only has one clock, in which only one level or
edge of the clock is used in the design. In this case, the clock input should be held
constant at the value ‘1’:

define CLK := 1; -- CLK is the clock input pin.
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RuleBase understands it as the clock being active in every cycle. This works even
when some of the flip-flops are gated. The gated flip-flops will work only when the gate
is active. The next scheme has one clock, but both levels (and edges) are used in the
design. This form of clock definition served our purpose as the master clock(CLK_K)
and master clock bar(CLK_K1) used in Look-Aside Interface were 180 degree out of
phase. Therefore, we could define only one clock for RuleBase and use both edges for
our verification purpose as in this case, the clock can have alternate values 0 and 1, which
is shown below:

#ifdef CORRECT_CLK
-- Using the clock using both edge
VAR CLK: boolean ; -- Here CLK is a variable
ASSIGN init(CLK) :=0;
next(CLK) := ICLK;
#endif

The LA-1 interface specification is based on separate dual data rate (DDR) buses
for data inputs and data outputs. Using DDR interfaces, data is clocked on the rising and
falling edges of the clock signals. This effectively doubles the bandwidth of the interface
without increasing the clock speed or the bus width. Overall, the LA-1 interface operates
at clock speeds between 133 and 200MHz. In order to model dual data rate, the above
scheme of using the clock at both edge was applied successfully and the clock was

modeled in the Rulebase environment accordingly.
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7.2: Coverage Model Development for RuleBase

Though Model Checking using RuleBase addresses the stimulus coverage
problem of verification by simulation but it does not solve it completely. Firstly, there is
the burning question “Have we coded all the vunits?” Secondly, due to the size problem
(state explosion), behavioral partitioning (sub-modules) which adds the following
question to the coverage problem “Have we coded enough environments?”’

We discuss these two questions in this section. Before proceeding, we would like
to emphasize that despite the fact that the second coverage question sounds very similar
to the regression suite problem of simulation. While a complete solution in order to
address the coverage problems do not yet exist, our methodology regarding vunit and
environment writing will enlighten the readers about the implementation of the coverage
model of our design.

e Coverage Model

The methodology is based on an attempt to obtain block Input-Output relationship

coverage. This methodology is described in the following in two steps:

1) The First step is that the RTL Blocks (Top level and the internal blocks) will be fed
with every possible legal input sequence. Inputs are defined in the environments.

For example let us analyze the RuleBase Environment of the Write Port. The Interface

block diagram of the Write Port is shown in Figure 7.1.
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Figure 7.1: Write Port Block Diagram
Now, let us look at the switches defined in the environment in the form of #define
are invoked to generate correct Data (Data-In), Address and the Byte Write Enable (BW)
signal. Finally, as the Look-Aside Interface runs in Double Data Rate mode, therefore,
we have to define the correct form of clock. Note, that all the EDL implementation
details of these switches were discussed in the previous section.

#define CORRECT_ADDRESS

#define CORRECT_DATA

#define CORRECT_BYTE_WRITE

#define CORRECT_CLK -- Switch on the default clock both edges are active

The above switches invoked the fixed data model for the design.

#ifdef CORRECT _DATA -- switch used to invoke the constrain data model

-- The input data can change only when WRITE_SEL is active low at rising edge CLK
-- and in the falling edge of CLK when WRITE_CYCLE_INIT_1 is active high.

VAR DATA_IN (0..15) : boolean;

ASSIGN next (DATA_IN (0..15)):=

case -- Note WRITE_CYCLE_INIT_1 is an internal signal
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! WRITE_SEL | WRITE_CYCLE_INIT_1:DATA_IN (0..15);
else: nondets(16); -- WRITE_CYCLE_INIT_1 flags the next falling edge of CLK
esac;

#endif

The design specification for the Write operation also states that the address for the
Write cycle is provided at the following CLK falling edge provided that the WRITE_SEL
was asserted low at CLK rising edge. The above scenario was captured using following
EDL statements.
#ifdef CORRECT_ADDRESS -- Generating the correct address

VAR ADDR_IN(0..26) : boolean;

ASSIGN next (ADDR_IN (0..26)) :=

case -- WRITE_CYCLE_INIT_1 flags the next falling edge of CLK

WRITE_CYCLE_INIT_1: ADDR_IN (0..26);
else: nondets(27);

esac;
#endif
The default verification environment exercised all the possible sequence of
CORRECT_ADDRESS, CORRECT_DATA, CORRECT_BYTE_WRITE and
CORRECT_CILK (described earlier) along with the WRITE_SEL signal using EDL. The
design specification of Look-Aside Interface (LA-1 standard) was the main source of this

implementation and this process made sure that the WRITE PORT is being fed with

every possible legal input sequence.
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2) The second step states that for every output signal and selected internal signals, and
for every clock cycle:

e We have to determine the relationships of the signal to all other signals (inputs,
internal signals and outputs) and then write the vunits that check the preservation of
these relationships.

For example, the WRITE_SEL_0 which is an internal wiré and it gets the value of
the WRITE_SEL, when only the ENABLE pins choose the first bank in the Four Bank
Implementation of LA-1 Interface. This is implemented using tri-state buffers to block
boundaries of each bank. The following vunit checks this scenario:
vunit valid_write_cycle_init_0 { assert "Write cycle should be initialized"
always (ENABLE_PORT (0..1)= 0 & !'WRITE_SEL. & !'WRITE_SEL_0);}

RuleBase does not necessarily indicate that vunits that contain complex signals
find design errors more often, and it doesn’t mean that they cover all errors either. It is
the careful and methodical coverage of all signals that makes RuleBase effective. In the
following section, we elaborated some vunits written to serve our model checking
purpose. All the properties are enumerated in Appendix C.

7.3: Vunits used for RuleBase Model Checking

We underwent the same procedure as we did for OVL in order to write the vunits
of the RTL models. We coded the vunits for the sub-modules (internal blocks) and the
top level of a single bank Look-Aside Interface (LA-1 standard). Finally, all the rules
were applied on the top level of four-bank Look-Aside Interface. The properties in

RuleBase start with keyword vunit and are written in the file named as rules.
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7.3.1: Properties for the Write Port

> vunit valid_write_cycle_init { assert "Write cycle should be initialized"
always ((!WRITE_SEL) & rose(CLK) — next (WRITE_CYCLE_INIT_1)); }

This vunit is the same as Assertion 1. This vunit validates the write cycle initialization
scenario for the Write Port.
> vunit valid_data_out_passthrough_msw { assert forall xx(0..15) in boolean :
always ( BYTE_WRITE_ENABLE(0..1) = 0 & WRITE_CYCLE_INIT_1 &
DATA_IN(0..15)=xx(0..15) — next next next
(DATA_WRITE_MEM_OUT(16..31)=xx(0..15))); }
This vunit is exercising Assertion 3 and validating the Passthrough Mode. Note that for
model checking using Rulebase we are using one single clock named as CLK (CLK_K in
the RTL model, but RuleBase uses CLK as a default CLK name). As we are using both
edges of the CLK (CLK_K and CLK_K1), one “next” operator is half a clock cycle.
7.3.2: Properties for the Read Port
> vunit valid_read_address { assert “READ ADDRESS CHECK” forall xx(0..26)

in boolean : always ('IREAD_SEL & ADDR_IN(0..26) = xx(0..26) &
rose(CLK) — next(READ_ADDR(0..26) = xx(0..26))); }

This vunit is exercising Assertion 8 and validating the correct sampling of the Read
Address, when R# (READ_SEL), is asserted low at the rising edge of CLK (CLK_K)
> vunit valid_data_out_read_port_passthrough_msw_other {assert forall

xx(0..15) in boolean : always ( edge_detect & (DATA_IN(16..31) = xx(0..15))
— next next (DATA_OUT(0..15) = xx(0..15))); }

This vunit is exercising Assertion 10 and validating the correct sampling of the Data Out.

79



Note that though it is supposed to be linear mapping of the OVL assertions to the Sugar
2.0 vunits, but it is not the case. Due to the fact, that Sugar 2.0 is superior in terms of
addressing CTL properties efficiently than OVL, it is more expressive in terms of
defining invariant properties (static or temporal).

7.4: Model Checking Results and Counter Example

After performing, a rigorous exercise of coding vunits and environments we
achieve the following experimental results for all the properties of Single Bank and Four
Banks are listed in Table 4.5 and 4.6 respectively. The experiments were performed on

2X UltraSPARC-III+ machine with 2 900 Mhz processors and 4096M of RAM.

Property | Single Bank | CPU Time Memory No. of
(in sec.) (in MB) BDD’s

Property 1 Write Port 40 18 347
Property 2 | Write Port 680 52 707692
Property 3| Write Port 737 58 812785
Property 4 | Write Port 671 48 595673
Property 5 Write Port 659 45 593443
Property 6 | Write Port 761 57 802184

Property 7 Read Port 35 20 326

Property 8 Read Port 38 22 326
Property 9 Read Port 349 42 500131
Property 10 Read Port 878 69 852879

Table 7.1 Model Checking Results of the single Bank LA-1 Interface
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By observing Table 7.1, we can see that although RuleBase can check both
control logic and datapath, it is more effective for verifying control logic. Datapaths
usually have many memory elements, which may increase the size of the internal model
representation beyond the capacity of RuleBase. When verifying a design that includes
both control and datapath, the datapath is often replaced by an abstract model with fewer
memory elements. This abstraction is easier when there is a clear separation between
control and data in the design. This observation will be more justified when the four

banks of LA-1 was verified. The verification result is shown in Table 7.2.

Property Four Banks CPU Time Memory No. of BDD’s
(in sec.) (in MB)

Property 1 Write Port 42 27 128
Property 2 Write Port 40 25 125
Property 3 Read Port 39 25 129
Property 4 Read Port 35 28 123
Property 5 Write Port 134728 405 971608
Property 6 Read Port 131870 448 972330
Property 7 Write Port 136880 530 837708
Property 8 Read Port State Explosion

Table 7.2 Model Checking Results of the Four Banks L A-1 Interface

One notable issue regarding the verification using RuleBase, was manual over
riding of the internal signals in the environment. Therefore, one major bug in the Read
Port was camouflaged. The reason was one of the inter signal named “edge detect” was

manually defined in our environment in order to over ride its actual RTL definition. This
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caused an error in the Read Port, as the Data Out from the Read Port was being latched
out one clock cycle before it was supposed to be sent. Once this issue was solved,
RuleBase was able to pinpoint bugs efficiently than OVL.

Fig. 7.2 gives the counter example of the error found on the Read Port. The
property is checks the relationship between the Data In to the Read Port to the Data Out
from the Read Port, when the internal signal edge_detect is high. All the properties are

listed in Appendix B.

Figure 7.2: Read Port Error Captured By RuleBase
Unfortunately, the version of RuleBase available to us did not solve the state
explosion problem of our verification. Therefore, the following suggestions were made:
» The environment should be reduced until rules can reasonably run. We abstracted the
size of Data model in order to serve our purpose.
» The number of flip-flop and state variables should not be over several hundreds.
» The environment should be stabilized as a reduced version. Only after the reduced
environment version is assured to be correct and stable, we should expand it to further

modes and degrees of freedom.
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Chapter 8: Conclusion and Future Work

BDD-based symbolic model checking and equivalence checking have proven to
be successful formal verification techniques that can be applied to real industrial design.
However, since it requires the design to be described at the boolean level, they often fail
to verify a large-scale design because of the state space explosion problem caused by the
large datapath. On the other hand, Assertion-Based Verification can realize a seamless
relationship between Model Checking Techniques and Functional Verification. In this
thesis we clearly depicted the need for both Assertion Specification and Model-Checking
Techniques in the context of a System-On-Chip Verification Flow. The major
contributions of this work are listed below:

1. This thesis investigates the Assertion-Based verification of the Look-Aside Interface
(LA-1 standard) provided by the Network Processing Forum. We studied the
effectiveness of Open Verification Language (OVL) and Property Specification
Language (PSL) in verifying a large-scale industrial design interface i.e. Standard
Bus Protocol. The Verilog RTL model of the interface, which included Four Banks,
was developed by us. The design of Four Banks had 4820 Flip-Flops and 34247
equivalent gates.

2. We suggested an intelligent testcase coverage approach in order to verify large-scale
industrial designs. The method is totally based on Verification Plan derived from the
Functional Specification i.e. Design Specification. Our hierarchical approach
simplifies the maintenance of the testcase regression suite and the resulting

verification coverage problem into assertions/properties which can be handled on a
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modular basis in the RTL. This approach is applicable on a partially defined design or
an internal block (sub-module) instead of waiting for the entire design model.

3. Based on the design specification provided by Network Processing Forum, we also
modeled the specification which was in English text into a formal specification i.e.
PSL properties written in Sugar 2.0. From a RTL designer point of view this formal
specification enables the RTL model to be less pruned to functional error.

4. As the complexity of data operations increases, the default setting used by most
formal verification tools may not be sufficient to avoid state space explosion. We
applied data abstraction (to verify the Read Port) and environment modeling in
RuleBase to handle the complexity of state space in datapath orientated module. The
Rulebase engine used our RTL model composed with an EDL (Environment
Description Language) which is the target environment in which the design is
expected to run. The verification process had been carried out by assertion-based
verification as well as model checking.

The future work of this thesis suggests that a combined assertion-based and model
checking tool can improve the efficiency of SoC verification in an industrial setting. This
combined approach can be widely applicable in verifying a class of designs where the
control portion is composed of FSM-based and datapath orientated modules. Because our
experimental results showed that RuleBase is more efficient in verifying FSM-based
module (Control path) while OVL is more efficient in verifying designs with concrete
datapath. This combined tool will open the way to the development of a wide range of
new formal verification techniques which will leverage the usage of functional coverage

in the context of SoC Verification process.
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Assertion Based Verification along with Model Checking open the way to the
development of a wide range of SoC verification techniques. The goal of our
methodology is to develop an improved re-usable design verification process. To achieve
this objective, we need to implement and develop the intelligent testbench strategy and
thus enhance the performance and role of the formal verification techniques in a SoC

verification scenario.
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Appendix A: OVL Monitors for Look-Aside Interface

e OQOVL Assertions for WRITE Port

Assertion 1: assert_always #(0,0,"Write cycle should be initialized")
valid_write_cycle_init(CLK_K,write_enable,(WRITE_CYCLE_INIT_1 ==
I'b1));

Assertion 2: assert_always #(0,0,"WRITE_CYCLE_INIT_2 should be
high") valid_write_cycle
(CLK_K1,WRITE_CYCLE_INIT_1,(WRITE_CYCLE_INIT_2 == 1'b1));
Assertion 3: assert_always #(0,0,"WRITE_DATA PASSTHROUGH LSW")
valid_data_out_passthrough_lsw(CLK_K,WRITE_CYCLE_INIT_3,(DIN_
NEG-EDGE == DATA_WRITE_MEM_OUT[15:0]));

Assertion 4: assert_always #(0,0,"WRITE_DATA PASSTHROUGH
MSW")
valid_data_out_passthrough_msw(CLK_K,WRITE_CYCLE_INIT_3,(DIN
_POS-EDGE == DATA_WRITE_MEM_OUT[31:16]));

Assertion 5: assert_always #(0,0,"WRITE_DATA BYTE ALIGNMENT
LSB -> BW = 01") valid_data_out_alignment_Isb_1
(CLK_K,WRITE_CYCLE_INIT_3, (DIN_NEGE-DGE [7:0] ==
DATA_WRITE_MEM_OUT[7:01]));

Assertion 6: assert_always #(0,0,"WRITE_DATA BYTE ALIGNMENT
LSB -> BW =01") valid_data_out_alignment_Isb_2
(CLK_K,WRITE_CYCLE_INIT_3, (DIN_POSE-DGE[7:0] ==

DATA_WRITE_MEM_OUT([23:16]));
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= Assertion 7: assert_always #(0,0,"WRITE_DATA BYTE ALIGNMENT
LSB -> BW =10") valid_data_memory_out_msb_1
(CLK_K,WRITE_CYCLE_INIT_3, (DIN_NEGE-DGE[15:8] ==
DATA_WRITE_MEM_OUTI[15:8]));

» Assertion 8: assert_always #(0,0,"WRITE_DATA BYTE ALIGNMENT
LSB -> BW = 10") valid_data_memory_out_msb_2
(CLK_K,WRITE_CYCLE_INIT_3, (DIN_POSE-DGE[15:8] ==
DATA_WRITE_MEM_OUT([31:24]));

= Assertion 9: assert_next #(0,1,1,0,"Write cycle initialization is checked")
valid_write_cycle_next (CLK_K, rst_n, ~WRITE_SEL,
(WRITE_CYCLE_INIT_1 == 1'bl));

e OVL Assertions for READ Port

= Assertion 10: assert_always #(0,0 " Read Address is sampled at the rising
edge of CLK_K" valid_read_address (CLK_K, read_address_enable,
(stored_address == READ_ADDR));

»  Assertion 11: assert_always #(0,0," At the rising edge of CLK_K Byte 0 and
Byte 1 of the data coming from the memory and entering the read port will be
equal to the Data out from the read port“) valid_data_out_k (CLK_K,
READ_CYCLE_INIT_3, (stored_data_K[31:16] == DATA_OUT );

e OVL Assertions for Memory Port

»  Assertion 12: assert_never #(1,0,"Data In to the memory cannot have X ")

invalid_data_memory_in (CLK_K, invalid_check_enable,

ADATA_WRITE_IN [35:0] === 1'bX) ;
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Assertion 13: assert_never #(1,0,"Data Out from the memory cannot have
X") invalid_data_memory_out (CLK_K, invalid_check_output_enable,

"DATA_READ_OUT[35:0] === I’bX),
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Appendix B: Sugar Properties for RuleBase
¢ Properties for the Write Port
> vunit valid_write_cycle_init { assert "Write cycle should be initialized"
always ((!WRITE_SEL) & rose(CLK) — next (WRITE_CYCLE_INIT_1)); }
> vunit valid_write_address { assert forall xx(0..26) in boolean :
always (WRITE_CYCLE_INIT 2 & ADDR_IN(0..26) = xx(0..26) — next

(WRITE_ADDR(0..26) = xx(0..26))); }
- > vunit valid_data_out_passthrough_msw { assert forall xx(0..15) in boolean :
always ( BYTE_WRITE_ENABLE(0..1) =0 & WRITE_CYCLE_INIT_1 &
DATA_IN(0..15)=xx(0..15) — next next next
(DATA_WRITE_MEM_OUT(16..31)=xx(0..15))); }
> vunit valid_data_out_ms_byte { assert forall xx(0..7) in boolean :

always ( BYTE_WRITE_ENABLE(0..1) =1 & WRITE_CYCLE_INIT_1 &
DATA_IN(8..15)=xx(0..7) — next next next

(DATA_WRITE_MEM_OUT(24..31)=xx(0..7))); }
> vunit valid_data_out_ls_byte { assert forall xx(0..7) in boolean :

always ( BYTE_WRITE_ENABLE(0..1) =2 & WRITE_CYCLE_INIT_2 &
DATA_IN(0..7)=xx(0..7) —next(DATA_WRITE_MEM_OUT(0..7)=xx(0..7))); }

> vunit valid_data_out_passthrough_lsw { assert forall xx(0..15) in boolean :

always ( BYTE_WRITE_ENABLE(0..1) = 0 & WRITE_CYCLE_INIT_2 &
DATA_IN(0..15)=xx(0..15) —

next (DATA_WRITE_MEM_OUT(0..15)=xx(0..15))); }
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Properties for the Read Port

» vunit valid_read_sel_edge_detect {assert “Edge detect select of Read Port”
always (READ_SEL —!(edge_detect & edge_detect_retimed)); }

»> vunit valid_read_sel_edge_detect_xor {assert “edge_detect !=
edge_detect_retimed” always ((IREAD_SEL) — next(edge_detect *

edge_detect_retimed)); }

> vunit valid_read_address { assert “READ ADDRESS CHECK” forall xx(0..26)

in boolean : alwéys ('READ_SEL & ADDR_IN(0..26) = xx(0..26) &

rose(CLK) — next(READ_ADDR(0..26) = xx(0..26))); }

> vunit valid_data_out_read_port_passthrough_msw_other {assert forall

xx(0..15) in boolean : always ( edge_detect & (DATA_IN(16..31) = xx(0..15))

— next (DATA_OUT(0..15) = xx(0..15))); }

Properties for the Four Banks Look-Aside Interface (LA-1 standard)

» vunit valid_write_cycle_init_0 { assert "Write cycle should be initialized"
always (ENABLE_PORT (0..1)=0 & !WRITE_SEL & 'WRITE_SEL_0);}

» vunit valid_write_cycle_init_1 { assert "Write cycle should be initialized"
always (ENABLE_PORT (0..1)=1 & !'WRITE_SEL & !WRITE_SEL_1);}

> vunit valid_read_cycle_init_0 { assert "Read cycle should be initialized"
always (ENABLE_PORT (0..1) =0 & 'READ_SEL & !READ_SEL_0); }

> vunit valid_read_cycle_init_1 { assert "Read cycle should be initialized"
always (ENABLE_PORT (0..1)= 1 & 'READ_SEL & 'READ_SEL_1));}

> vunit valid_write_address { assert forall xx(0..26) in boolean :
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always ( WRITE_CYCLE_INIT_1 & ADDR_IN(0..26) = xx(0..26) — next

(WRITE_ADDR(0..26) = xx(0..26)));}
vunit valid_read_address { assert forall xx(0..26) in boolean :

always (ENABLE_PORT (0..1) =0 & 'READ_SEL_0 & ADDR_IN(0..26)
xx(0..26) — next (READ_ADDR(0..26) = xx(0..26)));}

vunit valid_data_out_passthrough_msw {assert “ Data Pass through”

always ( prev( prev( BYTE_WRITE_ENABLE(0..1))) =0 & prev
(prev(!WRITE_SEL_0)) — DATA_WRITE_MEM_OUT(20..35) = prev

(prev( DATA_IN(0..15)))); }
vunit valid_data_out_read_port_passthrough_msw { assert forall xx(0..15) in

boolean : always (ENABLE_PORT (0..1)= 0 & edge_detect &
(DATA_READ_OUT(16..31) = xx(0..15)) — next (DATA_OUT(0..15) =

xx(0..15))); }
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Appendix C: RTL Example with OVL

/=
// Author : Asif Ahmed

// This module implements the Write Port Operation of LA1 Interface

// Note that the data flow is in one direction From Write Port to Read Port
Y/}

“define ADDR_WIDTH 29 // Address Width

I ===

module LA1_INTERFACE_WRITE_PORT (
CLK_K, // input
CLK_K1,
WRITE_SEL,
ADDR_IN,
ENABLE_PORT,
BYTE_WRITE_ENABLE,
DATA_IN,
DATA_PARITY_IN,
WRITE_CYCLE_INIT_2,
WRITE_ADDR,
DATA_WRITE_MEM_OUT

/.
7

1/ Interface Declaration
[/==========================================

I
// Clock inputs for LA-1 interface. Rising Edge Active

// The rising of K is used to latch address and control i/p

// The rising edge of CLK_K and CLK_K1 are used to latch data
// CLK_K_1 is ideall 180 degree out of phase with K

It

input CLK_K;
input CLK_K1;

1 SERe SEe

//output

1/l Active Low read select input. Note that when Low this input
// causes the address input to be registered and a read cycle to
// be initiated.

/I Active Low write select input. Note that when Low this input
// causes the address input to be registered and a write cycle to
// be initiated.

input WRITE_SEL,; // W# in the spec

// Byte Address Pins. For host Devices

// 23 =< ADDR_WIDTH =< 29

// A[0] and A[1] are used as port enable E[1:0]

// Will be used in the top level of the whole interface
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/=

input [ADDR_WIDTH - 3:0]

l======mm===

ADDR_IN;

/I Active-Low Byte-write inputs. Used to enable or block
/! write of a specific byte a write cycle initiated with
/1 W#. BWO# controls D[7:0] and DP0, while BW 1# controls

// D[8:15] and DP1
I

input [1:0] BYTE_WRITE_ENABLE; // BW# in the spec

1/

/I Synchronous data inputs. This bus operates in
// response to WRITE_SELECT input

/! Synchronous Even Parity Inputs. Correct when XOR
/l of DATA_IN[7:0} = DATA_PARITY_IN [0] and XOR of

// DATA_IN[15:8] = DATA_PARITY_IN [1]
R R

input [15:0] DATA_IN;

input [1:0] DATA_PARITY_IN;

It

/I Synchronous data outputs. Output data is synchronized
/1 to respective CLK_C and CLK_C_1. This bus operates in

// response to READ_SELECT commands

/I Synchronous even parity outputs. Shall be stored and
// checked.Correct when XOR of DATA_OUT[7:0]= DATA_PARITY_OUT][0]
// and XOR of DATA_OUT[15:8]= DATA_PARITY_OUTI[1]

1/

output

the Memory Block

output [TADDR_WIDTH - 3:0]
output [35:0]

bits with the o/p

/!

WRITE_CYCLE_INIT_2; // Control Signal Needed for

WRITE_ADDR;
DATA_WRITE_MEM_OUT;

/! To the memory
/! included parity

// Required registers for output

" S

reg [35:0]
reg [[ADDR_WIDTH - 3:0]

It SEES

DATA_WRITE_MEM_OUT, DATA_WRITE_MEM_OUT_1,
WRITE_ADDR,WRITE_ADDR_K1;

reg WRITE_CYCLE_INIT_1;

reg WRITE_CYCLE_INIT_2;

[|m=mmmmmsmsmssmm = m s ==s === =======——=====

reg[15:0] DIN_POSEDGE,DIN_NEGEDGE;

reg[1:0] DIN_POSEDGE_PARITY,DIN_NEGEDGE_PARITY;

wire[35:0] D_WRITE_TEMP;

assign D_WRITE_TEMP = {DIN_POSEDGE_PARITY,DIN_NEGEDGE__ PARITY,DIN_P OSEDGE ,

DIN_NEGEDGE};

1/
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// Data Path Interpretation
1
// Definition of read and write cycle and generating the control
// logic for the internal circuitry

1

always @(posedge CLK_K)
begin
if(~WRITE_SEL)
begin
WRITE_CYCLE_INIT_1 <= 1'bl;
case(BYTE_WRITE_ENABLE)
2'b00 : begin
DIN_POSEDGE <= DATA_IN;
DIN_POSEDGE_PARITY[0] <= "DATA_IN[7:0];
DIN_POSEDGE_PARITY[1] <= "DATA_IN[15:8];
// Write D[15:0], and Parity

end
2'b01 : begin
DIN_POSEDGE <= {8'b0000_0000,DATA_IN[7:0]};
DIN_POSEDGE_PARITY[0] <= "DATA_IN[7:0];
DIN_POSEDGE_PARITY[1] <= DIN_POSEDGE_PARITY[1];
// Write D[7:0],DP{0]
end
2'b10  : begin
DIN_POSEDGE <= { DATA_IN[15:8],8'b0000_0000};
DIN_POSEDGE_PARITY[0] <= DIN_POSEDGE_PARITY[0];
DIN_POSEDGE_PARITY[1] <= "DATA_IN[15:8];
// Write D[15:8],DP[1]
end
211 : begin
DIN_POSEDGE <= 16'h0000; // NOP operation
DIN_POSEDGE_PARITY[0] <= 1'b0;
DIN_POSEDGE_PARITY[1] <= 1'b0;
end
endcase
end
else if WRITE_CYCLE_INIT_2 && WRITE_SEL) // Logic generated to set
/MWRITE_CYCLE_INIT_1 low
begin
WRITE_CYCLE_INIT_1 <= 1b0;
end

end

It ====
// Negedge operation of a Write Cycle. Note that the write address will be sampled
// at the negative edge of the CLK K or the positive edge of CLK_K1

/!

/!
always @(posedge CLK_K1)

begin
if (WRITE_CYCLE_INIT_1 == 1b1)
begin
case(BYTE_WRITE_ENABLE)
2'b00: begin
DIN_NEGEDGE <= DATA_IN;
DIN_NEGEDGE_PARITY[0] <= ADATA_IN[7:0];
DIN_NEGEDGE_PARITY[1] <= "DATA_IN[15:8];
// Write D[15:0], DP[1:0]
end
2'b01 : begin

DIN_NEGEDGE <= {8'b0000_0000,DATA_IN[7:0]};
DIN_NEGEDGE_PARITY[0] <= ADATA_IN[7:0];
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DIN_NEGEDGE_PARITY[1] <= DIN_NEGEDGE_PARITY[1];

// Write D[7:0],DP[0]
end
2'b10 : begin
DIN_NEGEDGE <= {DATA_IN[15:8],8'b0000_0000};
DIN_NEGEDGE_PARITY[0] <= DIN_NEGEDGE_PARITY[0];
DIN_NEGEDGE_PARITY[1] <= ADATA_INJ[15:8];
// Write D[15:8],DP[1]
end
2'bl1 : begin
DIN_NEGEDGE <= 16'h0000;
DIN_NEGEDGE_PARITY[0] <= 8'b0000_0000;
DIN_NEGEDGE_PARITY[1] <= 8'b0000_0000;
// NOP,
end
endcase
WRITE_ADDR_K1 <= ADDR_IN; // Noting the address into account
WRITE_CYCLE_INIT 2 <=1'b1;
end
else
begin
// DATA_WRITE_MEM_OUT_1 <= 32'h0000_0000;
WRITE_CYCLE_INIT_2 <= 1'b0;
end
end // always @(posedge CLK_K1)

Jfmmmmmm = e = e e e e e
I

It S

always @(posedge CLK_K)

begin
DATA_WRITE_MEM_OUT <= D_WRITE_TEMP; // Latching the 32 bit data at the negative edge
WRITE_ADDR <= WRITE_ADDR_K1;

end//  always @(posedge CLK_K)

I e
/!l Assertion Insertion for Control Signals Additional glue logic for Assertion
/!

// synopsys translate_off

wire write_select;
reg WRITE_CYCLE_INIT_3;
reg write_enable;
reg [15:0] stored_data,stored_data_1;
integer count;
initial
begin
stored_data = 16'h0;
end
1/ ====
assign data_count = (count == 4) ? DATA_IN : 16'h0;
assign write_select = ~WRITE_SEL,; // Will retime this signal once and use it as enable signal

97



assign wrte_cycle_init = WRITE_CYCLE_INIT_1;
assign enable = (count == 8) ? 1'b1: 1'b0;

/=

always @(posedge CLK_K) write_enable <= write_select;

" ===
/"
I

always @(CLK_K)
begin

count = count + 1;
end

1/ R R R R R R R T ————————.

always @(posedge CLK_K)

begin
WRITE_CYCLE_INIT_3 <= WRITE_CYCLE_INIT_1;
if (write_select)
begin
stored_data_1 <= DATA_IN;
end
end

1/

/] Assertion for the initiation of the Write Port

It ====

assert_always #(0,0,"Write cycle should be initialized")
valid_write_cycle_init(CLK_K,write_enable,(WRITE_CYCLE_INIT_1 == 1'b1));

assert_always #(0,0,"WRITE_CYCLE_INIT_2 should be high")
valid_write_cycle(CLK_K1,WRITE_CYCLE_INIT_1,(WRITE_CYCLE_INIT_2 == 1b1));

I

// Assertion Insertion for the relationship between Data In to the Write Port
// and Data output which is going to the memory
Jfm===mmmee e em s sz s sz

assert_always #(0,0,"WRITE_DATA PASSTHROUGH LSW")

valid_data_out_passthrough_lsw(CLK_K,WRITE_CYCLE_INIT_3,(DIN_NEGEDGE ==
DATA_WRITE_MEM_OUT(15:0]));

assert_always #(0,0,"WRITE_DATA PASSTHROUGH MSW")

valid_data_out_passthrough_msw(CLK_K,WRITE_CYCLE_INIT_3,(DIN_POSEDGE ==
DATA_WRITE_MEM_OUT[31:16)));

assert_always #(0,0,"WRITE_DATA BYTE ALIGNMENT LSB -> BW = 01")

valid_data_out_alignment_Isb_1(CLK_K,WRITE_CYCLE_INIT_3,(DIN_NEGEDGE[7:0] ==
DATA_WRITE_MEM_OUT[7:0]));

assert_always #(0,0,"WRITE_DATA BYTE ALIGNMENT LSB -> BW =01")
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valid_data out_alignment_lsb_2(CLK_K,WRITE_CYCLE_INIT_3,(DIN_POSEDGE[7:0] ==
DATA_WRITE_MEM_OUT[23:16]));
assert_always #(0,0,"WRITE_DATA BYTE ALIGNMENT LSB -> BW = 10")

valid_data_memory_out_msb_1(CLK_K,WRITE_CYCLE_INIT_3,(DIN_NEGEDGE[15:8] ==
DATA_WRITE_MEM_OUT[15:8]));

assert_always #(0,0,"WRITE_DATA BYTE ALIGNMENT LSB -> BW =

10")valid_data_memory_out_msb_2(CLK_K,WRITE_CYCLE_INIT_3,(DIN_POSEDGE[15:8] ==
DATA_WRITE_MEM_OUT([31:24]));

assert_next #(0,1,1,0,"Write cycle initialization is checked")
valid_write_cycle_next(CLK_K,rst_n,write_select,(WRITE_CYCLE_INIT_1 == 1'b1));

/! synopsys translate_on

endmodule
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