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Abstract

Existence, Approximation and Properties of Absolutely Continuous

Invariant Measures for Random Maps

Md Shafiqul Islam, Ph.D.

Concordia University, 2004

A random map is a discrete-time dynamical system where one of a number of transfor-
mations is selected randomly and applied in each iteration of the process. In this thesis
we study existence, approximation and properties of absolutely continuous invariant
measures (acim) for random maps and obtain several new results. We generalize a
result of Straube, which provides a necessary and sufficient condition for existence of
an acim of a nonsingular map, to random maps. We approximate absolutely continu-
ous invariant measures for Markov switching position dependent random maps using
Ulam’s method. For certain random maps, we prove the existence of ergodic infinite

acims. Finally, we prove that the invariant density of an acim for random maps is
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strictly positive on its support.
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Introduction

The fundamental problem in the ergodic theory of dynamical systems is to describe
the asymptotic behavior of trajectories defined by a dynamical system. In general,
the long time behavior of trajectories of a chaotic dynamical system is unpredictable.
Therefore, it is natural to describe the behavior of the system as a whole by statistical
means. In this approach, one attempts to describe the dynamics by proving the ex-
istence of an invariant mecasure and determining its ergodic properties. In particular,
the existence of invariant measures which are absolutely continuous with respect to
Lebesgue measure is very important from a physical point of view, because computer
simulations of orbits of the system reveal only invariant measures which are absolutely
continuous with respect to Lebesgue measure [15]. The Birkhoff Ergodic Theorem
[12] states that if 7 : (X,B,p) — (X, B, u) is ergodic and u—invariant and E is a
measurable subset of X then the orbit of almost every point of X occurs in the set
E with asymptotic frequency pu(E). The Birkhoff Ergodic Theorem establishes the
dynamical importance of an invariant measure, but it says nothing about the exis-

tence of invariant measures. Thus, the existence of absolutely continuous invariant



measures is one of the most important problem in the ergodic theory of dynamical
systems.

In 1940, Ulam and von Neumann found examples of transformations having ab-
solutely continuous invariant invariant measure (acim). In 1957, Rényi [31] defined
a class of transformations that have an acim. Rényi’s key idea of using distortion
estimates has been used in the more general proofs of Adler and Flatto [1]. In 1973,
Lasota and Yorke [26] proved a general sufficient condition for the existence of an
absolutely continuous invariant measure for piecewise expanding C? transformations.
Their result was an important generalization of Renyi’s [31] result using the theory
of bounded variation and their cssential observation was that, for piecewise expand-
ing transformations, the Perron-Frobenius operator is a contraction. Since then the
bounded variation techniques has been generalized in a number of directions [22].

Ulam and von Neuman [38] suggested the study of more general dynamical sys-
tems, namely random dynamical systems. Random dynamical systems provide a
useful framework for modeling and analyzing various physical, social, and economic
phenomena (7, 33]. A random dynamical system of special interest is a random map
where the process switches from one map to another according to fixed probabilities
[30] or, more generally, position dependent probabilities [2, 3, 4, 5, 13, 14]. The ex-
istence and properties of invariant measures for random maps reflect their long time
behavior and play an important role in understanding their chaotic nature. Such

dynamical systems have recently found application in the study of fractals [6], in



modelling interference effects in quantum mechanics [7], in computing metric entropy
[34], and in forecasting the financial markets [2]. In 1984 Pelikan [30] proved sufficient
condition for existence of acim for random maps with constant probabilities. Morita
[28] proved a spectral decomposition theorem. Géra and Boyarsky [13] proved suffi-
cient conditions for the existence of acim for random maps with position dependent
probabilities. Bahsoun and Géra [4, 5] proved sufficient average expanding conditions
for the existence of acim for position dependent random maps in one and higher di-
mensions, weakly convex and concave position dependent random maps. Recently,
Froyland [10] , Bahsoun, Géra and Boyarsky [2] proved the sufficient condition for
the existence of Markov switching random map with constant switching matrix and
position dependent switching matrix respectively.

The Frobenius-Perron operator P, is the main tool for proving the existence of
acim of a transformation 7. It is well known that f is the density of an acim u under
a transformation 7 if and only if P.f = f. Once the existence result is established,
the next question is: can we actually find the invariant measure. Unfortunately, the
operator P, is an infinite dimensional operator and it is difficult to solve the func-
tional equation P, f = f except in some simple cases. However, we can approximate
the fixed point of the Frobenius-Perron operator P, by the fixed point of a matrix
operator. Approximation of invariant measures was suggested by Ulam [37]. For a
single transformation, Li [25] first proved convergence of Ulam’s approximation. In

[10] Froyland extended Ulam’s method for a single transformation to random maps



with constant probabilities [25]. Géra and Boyarsky in [13] proved the convergence
of Ulam’s approximation for position dependent random maps. For Markov switch-
ing random maps Froyland [10] considered the constant stochastic irreducible matrix
W and proved the existence and convergence of Ulam’s approximation of invariant
measures.

Since absolutely continuous invariant measures (acim) for a dynamical system
describes the long time behavior of trajectories of the system, it is also important to
study the properties of acim. There are results on properties of the acim for single
transformations[12]. Now the question is: do analogous results hold for random maps.

In this thesis first we prove the necessary and sufficient conditions for the existence
of absolutely continuous invariant measures (acim) for certain classes of random maps.
Then we approximate acim for a class of random maps. Then we study random maps
with ergodic infinite acims. Finally, we study properties of acim for random maps.

In Chapter 1, notations, definitions, results from ergodic theory, random maps
theory, Frobenius-Perron operators are presented. In Chapter 2, we prove necessary
and sufficient condition for the existence of invariant measure for random maps. This
new result is a generalization of Straube’s Theorem [35]. In Chapter 3, we introduce
Markov switching position dependent random maps. We prove the sufficient condi-
tion for the existence of an acim of Markov switching random maps using bounded
variation method and we approximate the invariant measure using the method of

Ulam. In Chapter 4, we study random maps with ergodic infinite acims. In Chapter



5, we prove that the invariant density of certain class of random maps is strictly
positive on its support.

Now we present an example of a Markov switching position dependent random
map T = {71, T2; p1, p2; W}, that satisfies the sufficient condition for existence of acim

in Theorem 3.1 in chapter 3. 71,7, are maps on I = [0, 1] defined by

(
4z, OSJJSi,
4z — 1, %<x§%,
n1(z) = ¢ (1)
4 -2, ;<z<i
dr -3, 3<z<1

and
(
Sz ,0<z <
n@ =9 85-8 log<? (2)
8 16 2
32— 7§ ,§<$S1.

\

and W ia a stochastic switching matrix defined by

1,1 9 1
2+ 1% 10 2

[4EE N
W=

and p;, p; are initial probabilities. By Theorem 3.1 the random 7" has an absolutely



Figure 1: The graph of 7.

Figure 2: The graph of 7.

continuous invariant measure. In Chapter 3 we describe a method of approximation
fixed point of the Frobenius-Perron operator of T by fixed point of a matrix operator

and obtain piecewise constant densities for 7.



Chapter 1

Preliminaries

1.1 Ergodic theory of dynamical systems

1.1.1 Definitions and notations

Let (X, B, 1) be a normalized measure space where X is a set, B is a o-algebra of
subsets of X and p is a measure such that u(X) = 1. Let I be an interval of the
real line R. Throughout this thesis we denote by V;(-) the standard one dimensional
variation of a function on [0, 1] and BV (I) the space of functions of bounded variations
on I equipped with the norm | - ||[gv= Vi(:)+ || - ||1, where || - ||; denotes the norm
on LY(I,B,p). A transformation 7 : X — X is nonsingular if for any A € B with
u(A) = 0, we have u(771(A)) = 0. Let v be another measure on the measure space
(X, B, p). The measure p is absolutely continuous with respect to v if for any A € B

with v(A) = 0, we have y(A) = 0. A measurable transformation 7 : X — X preserves



measure g or the measure y is T-invariant if u(r71(A)) = u(A) for all A € B. In this
case the quadraple (X, B, u,7) is called a dynamical system. A measure-preserving
transformation 7 : (X,B,u) — (X,B,u) is ergodic if for any B € B such that
77!B = B, we have u(B) = 0 or u(X \ B) = 0. For ¢ € X, the nth iteration of z is

defined by

A basic result of ergodic theory is the Birkhoff Ergodic Theorem.

Theorem 1.1 Birkhoff’s Ergodic Theorem [12]: If u is an invariant measure
under 7 : (X,B,)) — (X,B,\) and f € LYX,B,)), then there exists a function
f* € LYX,B,)) such that for p—almost all x € X the limit of the time averages

%22;3 (Tk(x)) exists and

Y fEt@) = (1.1)
pu— almost everywhere. Moreover, if T is ergodic and pu(X) = 1, then f* is constant

poa.e. and f* = [, fdp.

In particular, for any E € B

n—1

1

=3 X6 (@) = u(B) (1:2)
k=0

p#— almost everywhere and thus the orbit of almost every point of X occurs in the

set Ir with asymptotic frequency u(E).

The following three theorems will be useful later.

8



Theorem 1.2 [Helly’s Selection Principle[12]] Let B be a family of functions
such that f € B=> /i,y [ < a and |f(2)| £ B, for any x € [a,b]. Then there exists

a sequence { fn} C B such that f, — f* Vz € [a,b] and f* € BV|[a,b].

Theorem 1.3 [Mazur’s Theorem[12]] Let X be a Banach space with A C X
relatively compact. Then ©6(A) is compact where co(A) is the convex hull of A and

To(A) denotes its closure with respect to the metric topology.

Theorem 1.4 [Kakutani-Yoshida [12]] Let T : X — X be a bounded linear oper-
ator from a Banach sapce X into itself. Assume that there exists M > 0 such that

| T" ||£ M, n =1,2,--- . Furthermore, if for any f € A C X, the sequence {f,},
where f, = ;IZZZ:1 Tk f, contains a sub-sequence {f,, } which converges weakly in X,

then for any f € A, LY 0 T*f — f* € X (norm convergence) and T(f*) = f*.

Recall that a set A C X of a Banach space X is called relatively compact if every

infinite subset of A contains a sequence that convergences to a point of X.

1.1.2  Frobenius-Perron operator: A tool for proving the
existence of an absolutely continuous invariant measure

Consider the measure space ([a, b], B, A). Let M([a,b]) denote the space of measures

on ([a,b],B). Let 7 : ([a,b],B,)) — (|a,b],B,)\) be a piecewise monotonic non-

singular transformation on the partition P of [a,b] : P = {I1, 5,... ,In}and 1, = 7|J..

Let 12 be a measure absolutely continuous with respect to A. The transformation 7



induces an operator O on M([a, b]) defined by

O(u)(4) = p(r7(A)).

Since 7 is nonsingular O(u) << A. If p has a density f with respect to A, then O(u)

has a density P.f. Thus

OWA) = [ Pupar=utr ) = [ jar

~1(4)
Clearly, P, : L'([a,b],B,)\) — L*([a,b], B, \) is a linear operator. This operator has

the following representation [12] :

N -1 T
P = Y LS (o), (1.9

where Ti‘l,i =1,2,..., N are inverse branches of 7 on I;.

The Frobenius-Perron operator P, has the following properties [12] :
1. Linearity: P, : L! — L! is a linear operator;
2. Positivity: If f € L! and f > 0, then P.f > 0;

3. Contractivity: P, : L' — L! is a contraction, i.e., | P.f |1<|| f |1 for any

f € L'. Moreover, P, : L' — L' is continuous with respect to norm topology;
4. P, preserves integrals, i.e., f[a’b] fdx = f[a,b] P, fdX;

5. If 71,79 : X — X are non-singular transformations, then P o, f = P, o P, f.

In particular, Pnf = PP f ;

10



Theorem 1.5 [12] Let 7 : ([a,b], B, ) — ([a,b], B, \) be a non-singular transforma-
tion.Then P, has a fixed point f* if and only if the measure p = f* - )\ defined by

n(A) = [, f*dX is T—invariant.

The measure p in the above theorem is absolutely continuous with respect to .
The Frobenius-Perron operator is one of the main tools for proving the existence of
absolutely continuous invariant measures. One of the advantages of studying P, is
that P; is a linear operator and we can apply the powerful tools of functional analysis.
Lasota and Yorke [26] proved the following important result for the existence of an
acim for a single transformation using bounded variation methods and Frobenius-

Perron operator:

Theorem 1.6 [Lasota-Yorke] Let 7 : [0,1] — [0,1] be a piecewise C? transforma-
tion such that inf[7'| > 1. Then for any f € L'[0,1] the sequence 1377 | P*f is
convergent in norm to f* € L'[0,1]. The limit function has the following properties:
(0) fzo=f 20

(@) [, frdr= [ fd.

(t43) Prf* = f* and consequently du* = f*d) is invariant under .

(iv) f* € BV[0,1]. Moreover there exists c independent to the choice of initial f such

that

V[0,1] f el fl-

The operator P, is an infinite dimensional operator and it is difficult to find a
solution of the equation P, f = f except in some simple cases, for example, Markov

11



cases. As we have mentioned before, approximation of invariant measures was sug-
gested by Ulam [37]. In one dimension Li [25] first proved convergence of Ulam’s

approximation. The following is a brief description of his method:

Let 7: I =[0,1] — I be a piecewise C*? transformation with inf,ep q|7'(z)| > 2.
Let P™ = {I;,I,,...,1,} be a partition of [0, 1] into subintervals of equal length
and let M, be the matrix of transition probabilities between the elements of P for

themapr:71—1

M, = ()\(L—rj\&:)l(j—]))) 1Sig<n

Let LW = {f € BV(I): f = X, fixr. = (f1, f2,...,f™)}. Define an operator

Q™ : BV(I) — L™ by

n

Q‘”’(f)zZn(/Iifd)\) X1 = (n/hfd/\,n I2fd/\,... ,n/lnfd)\).

i=1
Let f = (fi,far---, fa) € L™, Let P, be the Frobenius-Perron operator of 7 and

P L™ — L™ be a finite approximation of P, defined by
P f = (My)'f,
where where A* denotes the transpose of A. Li [25] proved the following results:
1. For fe Ly, Q™ f — fin Ly as n — oo;
2. For f € L(”),Pf(n)f =QMP,f;

3. For f € L,ViQM™ f < Vif:

12



4. For fe LW PM™f — P fin L; as n — oo;

1.2 Random dynamical systems

1.2.1  Skew product

Let (X,U,0,v) be a dynamical system and let (Y, B, 7., fi,)wex be a family of dy-
namical systems such that the functions 7,,(z) are U x B measurable. A skew product

of o and {7, }wex is a transformation S: X x Y — X x Y defined by
S{w,z) = (0(w), 1u(z)),

weX,zey.

1.2.2 Random maps with constant probabilities

Random maps with constant probabilitics are an important special case of skew prod-
ucts. Let (X,B,)) be a measure space and Q = {1,2,3,...,K}0b2-} = () =
{wiy + wi € {1,2,3,...,K}}. Let 7 : X — X,k = 1,2,...,K be nonsingu-
lar piecewise one-to-one transformations and py, ps, ... ,px be constant probabilities
such that Zfil pi = 1. The topology on € is the product of the discrete topol-
ogy on {1,2,3,...,n} and the Borel probability measure p, on 2 is defined as
pp ({w 1 wo =to,w1 =141,... ,Wn =1in}) = PiPiy ---Di,- Let a : Q@ —  be the left

shift. Now consider the skew product §: Q x X — Q x X defined by

S(w,z) = (0(w), 7w (2)) ,w € Uz € X.

13



A random map

T = {7-177-27" - TK P11, D2, - - 7pK}’

with constant probabilities p1,ps, ... ,px is defined as follows: for any z € X, T'(z) =
() with probability p; and for any non-negative integer N, TV (z) = 74, © Tgy_, ©

N

... 07, () with probability IT;L

1Pk; - TV (z) can be viewed as the second component
of the SV of a skew product S. It can be easily shown that a measure p is T—

invariant if and only if the the measure p, x p is S—invariant. Pelikan[30] proved

that a T'—invariant measure y satisfies the following condition:

K
w(E) = prulry (E)), (1.4)
k=1

for any measurable set E € B. Let f be the density of u. Then du = f - dX. Let

A x B be a measurable subset of  x X. Then

(o x 1) (S™H(A x B))

2 pitp( A7 (B))
o dX
;pu( )/Ti_l(B))f
= w4 | Parix
= M,(A)Z 2 /B P, fdX.

I

Thus, the density on the second component is ). p; Py, f. Hence the Perron-Frobenius
operator Pr for the random map T is given by Prf = ), p;Py, f. The properties of
Pr resemble the properties of the traditional Perron-Frobenius operator. For random

14



maps with constant probabilities where the component maps are Lasota-Yorke maps

[26], Pelikan {30] proved the following sufficient condition for the existence of an acim:

for all z € [0, 1].

1.2.3 Random maps with position dependent probabilities

Let (X, B, ) be a measure space, where ) is an underlying measure. Let 7 : X —
X, k=1,2,..., K, be piecewise one-to-one non-singular transformations on a com-
mon partition P of X : P = {1, L,,...,I,} and 7; = 7|p,t = 1,2,...,¢,k =

1,2,..., K. We define the transition function for the random map

T={n,72 ., ;1(z), p2(T), ... ,PK(2)}

as follows:

K

P(z, A) = Y pe()xa(me(x)), (1.5)

k=1

where A is any measurable set and {px(z)}£; is a sct of position dependent proba-
bilities, i.e., Zlepk(:c) =1, pr(z) > 0, for any z € X. We define T'(z) = 7(z) with
probability py(z) and for any non-negative integer N, TV (z) = 74, 0Tkpy_, 0. . .07, ()

with probability

Pion (Tky 1 © -+ 0 Ty ())Phpy_y, (Tky_p © -+ - © Ty (X)) -+ - Pk, ().

The transition function P induces an operator P, on measures on (X, B) defined by

15



Pu(4) = [P Adu)
= Z/Pk )X (Te(x))dp(z)
.
- Yy /T;}(A)pkm)du(w).

k=1 i=1
If u has density f with respect to A, the P,y also has a density which we denote by

Prf. By a change of variables, we obtain

g 1
/A Prf(e)dA(z) = ; / ) )

q
) 1
Pr(Tie ) f (1) ——dA (),
Z/(A) Kk k sz(Tkl)

1
where J ; is the Jacobian of 7, ; with respect to A. Since this holds for any measurable

set A, we obtain an almost everywhere equality:

K q K
(Pr)(a) = Y0 Y mm) e =@ = S Pulmef)(@),  (16)
k=1

T
kz -1
k=1 k=1 Jk,z Tk )

where P, is the Perron-Frobenius operator corresponding to the transformation 7y.
We call Pr the Perron-Fronenius operator of the random map T. As before the prop-
erties of Pr resemble the properties of the traditional Perron-Frobenius operator. For
random maps T = {7, 7,... ,7%; p1(z), p2(x),... ,pr(z)} where 7, : X — X, k =
1,2,..., K, with |7f| > a > 1 for all k, are piecewise one-to-one non-singular trans-

formations, Géra and Boyarsky [13] proved the following sufficient condition for the

16



existence of an acim

K-y suppi()
(8]

<1

For piecewise monotonic transformations, Bahsoun and Géra [5] proved a weaker

sufficient condition for the existence of an acim: for all z € X,

1.2.4  Markov switching position dependent random maps

Let X = ([a,b],B,)) be a measure space where A is Lebesgue measure on [a, b).
Let o : X — X,k = 1,2,..., K, be piecewise one-to-one continuous non-singular
transformations on a common partition P of [a,b] : P = {J1,Js,... ,J} and 7¢; =
Teldi, © = 1,2,...,q, k = 1,2,...,K. A Markov switching position dependent
random map 7" is a Markov process which is defined as follows: at time n = 1, we select
a transformation 7, randomly according to initial probabilities px,k = 1,2,..., K.
The probability of switching from transformation 7 to transformation 7; is given
by Wy, the (k,1)** element of a position dependent stochastic matrix W = W (z).
Therefore, if we choose 7k, at time n = 1 when we are at position z, the Markov

process at time N is given by
TN(x) = Thy 0 Thy_, O ... 0T, (T)
with probability

WkN_1,kN(TkN—1 0...0Tg (Z‘)) ’ WkN—2,kN—1(TkN—2 0...0Tg (:C)) s Wkl,kz(x)'

17



We assume that the probabilities Wy, () are defined on the same partition P. Let
Q=1{1,2,...,K}. We define the transition function of the Markov process on £ x X

as follows:

P((k, z), {1} x A) = Wi(z)xa(m(x)),

where A is any measurable set and x4 denotes the characteristic function of the set
A. The random map T is the projection of the process we defined on the space X.

The transition function P induces an operator P, on measures p on 2 X X as follows:

Il

Pou({l} x 4) / P((k2), 1) x Adu(k, 2

= Wie(2)xa(me(z))dp(k, ).
axX

Let v be a measure on 2 x X such that v({s} x A) = A(A). If u has density f with

respect to v, f(s,z) = Zk L Je(T) X eyxx (8, 2), where Zszl Jx fe(z) = 1, then P,p

also has a density which we denote by Prf. By a change of variables, we obtain

K
/{Z}XAPTf(s,x)du(s,x) = ;/XWk,l($)XA(Tk(.Z‘))fk(q;)d)\(x)

K
= ; /r,;l(A) Wi () fi(z)dA(z). (1.7)

Using the definition of P, the Frobenius-Perron operator associated with transfor-

mation 74 [12] and 1.7, we obtain

A

[ f@ixe) =Y [ PaWes)@ire), (18)
k=1
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where Prf(s,z) = Zfil ﬁx{l}xx(s,x). Since (1.8) is true for any A € B, we obtain

an a.e. equality

K
fil@) =" P (Wi fi) (@) (1.9)

Thus, the density f*(s,z) = Y5, [ (@)xquyxx (s, x) is T—invariant if

fr@) =) P, (W) (@). (1.10)

forl=1,2,..., K. If we denote

wz=/fl*(x)dA(a:), 1=1,2,...,K,
X

then integrating (1.10) with respect to ), we obtain

fi (=)
wp = Zwk/ Wkl md)\((l)) (111)

Note that, in the special case when Wy ’s are constant, (1.11) reduces to w; =
Zszl wi Wi, 1.e., to the case when (wq,ws, ... ,wk) is a left invariant eigenvector of
the matrix W.

As before, denote by V(-) the standard one dimensional variation of a function,
and BV ([a, b]) the space of functions of bounded variations on [a, b] equiped with the
norm || . |lpy= V(-)+ || - |l1, where || - ||1 denotes the norm on L!([a,b],B, ). Let
BV = HkK=1 BV denote the K —fold product of the space BV of functions of bounded
variation and we define a norm on BV as I f1, fo, - fr l5p= Eiil Il fx lBv. We

also define L! norm on BV - I fi, foy-oo s fx 1= Z,Ile I fx |li. We define an
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operator ]3; :BV —» BV by
. K K K
Pr(fi fay - s f) = <Z Pr (Wi fe), Y Pr,(Wiafi), ... ,ZPT,C(Wk,ka)> :
k=1 pa

1 k=1

(1.12)

It (f7,f3,... , fx) is fixed point of Py, we call

an invariant density of the Markov switching position dependent random map 7T'. For

more details about Pr see [2].
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Chapter 2

On the Existence of Absolutely
Continuous Invariant Measures for
Random Maps : A Generalization

of Straube’s Theorem

2.1 Introduction

It is well known that if a map 7 : I — I, I = [0, 1], is piecewise expanding then it
possesses an absolutely continuous invariant measure (acim) [12]. This result can be
generalized to random maps where the condition of piecewise expanding is replaced

by an average expanding condition where the weighting coefficients are the probabil-
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ities of switching [30, 13, 14, 5]. Such results have been generalized in [10, 2]. There
are a number of interesting examples which do not fall into the average expanding

condition for which the conditions of this chapter may present a possible approach.

Consider the following simple random maps on I :

n(z) = g o(z) =

with constant probabilities p; and pp. 71 has an attracting fixed point at 0 while 7,
has an attracting fixed point at 1. Thus, neither 7y nor 7, has an acim. Applying
the constant L' function 1 on the Perron-Frobenius operator of the random map
T = {tauy,72;p1,p2} it can be shown that T has Lebesgue measure as its unique
acim. This shows that a random map does not necessarily inherit the properties of

the underlying maps.

0.5
0.4

0.3

Figure 2.1: The graph of 1.
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Figure 2.2: The graph of 7.

Consider now an expanding map 73 on [ and the logistic map 74 on I. Both maps
have an acim, but the average expanding sufficiency condition for existence of an acim
for the random map based on 73 and 74 fails since 74 has regions of arbitrarily small

slope.

0.6

0.4

Figure 2.3: The graph of 73.
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Figure 2.4: The graph of 7.

Hence, in general, we cannot conclude that even such a simple random map ad-

mits an acim.

The foregoing suggests the need for results that can establish existence of an acim
directly for random maps. To this end we generalize a theorem of Straube [35], which
provides a necessary and sufficient condition for existence of an acim of a nonsingular
map, to random maps. We consider both random maps with constant probabilities

and random maps with position dependent probabilities.

In Section 2 we present the notation and summarize results we shall need in the

sequel. In Section 3 we prove the main result.
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2.2 Preliminaries

We now recall some definitions and results from [35, 36] which will be used to prove

our main results in Section 3.

Definition 2.1 A set function ¢ : B — R is a finitely additive measure if
(i) —o0 < $(E) < 00, for all E € B;

(1) $(0) = 0;

(114) sup gep|¢(E)| < oo

(iv) (Ey U Ep) = ¢(Er) + ¢(En), for all Ey, Es € B such that Ey N E, = .

Definition 2.2 A finitely additive positive measure p is a purely additive measure if

every countably additive measure such that v > 0, v < pu is identically zero.

Theorem 2.1 [36] Let ¢ be a finitely additive (positive) measure. Then ¢ has a
unique representation ¢ = @, + ¢,, where ¢, is countably additive (¢, > 0) and ¢, is

purely additive (¢, > 0).

Lemma 2.1 [36] If p is a finitely additive positive measure on B, then . is the

greatest measure among countably additive measures v with 0 < v < pu.

Theorem 2.2 [36] Let ¢ be a finitely additive positive measure on a o—algebra B
and v be a countably additive positive measure on B. Then there exists a decreasing

sequence {Ep}n>1 of elements of B such that lim, e v(E,) = 0 and ¢(E,) = #(X).
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Theorem 2.3 [35] Let (X, B,\) be a measure space with normalized measure ),
[+ X — X be a nonsingular transformation. Then the following conditions are
equivalent:

(1) there ezists an f—invariant normalized measure p which is absolutely continuous
with respect to \;

(ii) there exists 6 > 0, and a,0 < a < 1 such that

ME)< 6= sup AMf™E)) < o,E€B. (2.1)

2.3 Existence of absolutely continuous invariant

measures

In this section we prove necessary and sufficient conditions for existence of an ab-
solutely continuous invariant measure for random maps. For notational convenience,
we consider K = 2; that is, we consider only two transformations 77, 7,. The proof for
a larger number of maps is analogous. We consider first random maps with constant

probabilities, then random maps with position dependent probabilities.

Theorem 2.4 Let (X,B,)) be a measure space with normalized measure A and T; :
X — X, i = 1,2 be nonsingular transformations. Consider the random map T =
{71, 72; 1, P2} with constant probabilities py,pa. Then, there exists a normalized ab-
solutely continuous (w.r.t. A\) T—invariant measure p if and only if there exists § > 0
and 0 < a < 1 such that for any measurable set E and any positive integer k, \(E) < &
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implies

piA (77 (B)) +p2) (15 1(EB)) < o

P (773(E)) + pipa) (177171 (E)) + pupe (1777 H(E)) + A (1372(B)) < o

Z DirDiy - - - Dig A (T;Ti;l . .Ti:l(E)) < a. (2.2)

(1,82,43,-. ik)

To prove this theorem, we first prove the following two lemmas:

Lemma 2.2 Let (X, B, ) be a probability measure space and u be absolutely contin-
uous with respect to A, p = f- A, for f an LY(X, B, \) function. Then there exists a

constant M > 0 and a measurable set Ay such that u(Ag) < % and f < M on X\ Ay.
Proof. Consider the following sets :
By={zeX:n<flz)<n+1}, n=0,1,.... (2.3)

Clearly, {B,} are disjoint measurable sets and X = UX B, and 1 = u(X) =
> meo W(By). Thus, there exists an M > 0 such that Yo7, u(B;) < . Let
Ay =U2 By Thenon X \UX By, f(z) <M. m

For any measure ¢, any integer &k, and any measurable set E, define

AME) = > pupi..pid (i, TUE)). (2.4)

(31,482,83,... ,8k)

It can be easily shown that A and A¥ are normalized measures and A* are measures
Yy k k k

absolutely continuous with respect to A}.
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Lemma 2.3 Let M be the constant from the previous lemma and § be such that

Méb+ 1—10 < %. Then, for anyn > 1, and any measurable set A, we have AM(A) < § =

AL(A) <

L
i
Proof. Let M and Ag be as in the previous lemma. We have

AR(A) = Z PirDiy - - - Din b (TZTITZ»;I .. .TiZI(A))

(31,2583, in)

- Z DiyPig - - - Din b (Tizlrigl .. .TZ-:I(A) N Ao)

(1,12,3 - 4in)

+ ) PPy P (T A) N (X Ag))

(i11i27i3y"'1i’n)

= 10
(i1!i2vi3x--~vin) (":11":21":31~-~yin)
< 2 + MAMA) < L ms<t
- 10 n 10 4’
]
Proof of Theorem 2.4:
Suppose

wE) = ZW(TII(E)), Ee€B, y(X)=1, p<< X

1
Z PubPiy - -Pingy T Z PirPia - - Pin MA (7]

We want to prove that there exist § > 0, 0 < o < 1, such that for any E € B and for

any positive integer &

ME) <= AMNE) <a.

28
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Suppose not. Then, for any o, 0 < a < 1, there exists E € B and there exists a

positive integer ng such that
A
ME)<d= A, (E) > q,

where I € B.

(2.6)

Choose ¢ > 0 such that MJ + 11—0 < i where M is the constant of Lemma 2.3. Let

ng be the index corresponding to ¢ in 2.6. Then by Lemma 2.3, we have for A € B

AMA) <d=p(A) <

)

|

Ay (A) <6 = A2 (A) <

|

Let a=1-— g. Then,
M (X\E)=1-A)(E)<1-1+4=4.
By our choice of 4, we get

1
AL (X\E) < T

Since p is invariant, we have

WX\ E) = A (X\ B) < 1
Thus,

1

1= u(X) = u(B) + WX\ B) <  + 1,

a contradiction.
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Conversely, suppose that there exists § > 0 and 0 < a < 1 such that for any

measurable set F' and any positive integer k, A(E) < ¢ implies

P H(E) +p2) (131(B)) < o

PN (7A(E)) + pipo) (3117 H(E)) + piped (77175 H(E)) + p3A (1572(E)) < o

Z DirDis - - - Dig A (7’517'2-;1 .. .’Tizl(E)) < a.

(41,82,83,.. ,ik)

We want to show that there exists a measure p such that pu(E) = Zle pip (7 H(E)),
EeB p(X)=1and p << \.

Consider the measures A, defined by
1 n-1
Mn(E) =~ > ANE), E€B. (2.8)
k=0

It can be shown that, for all n, A, are normalized measures. Moreover, if A(E) = 0,
then
M(E) = ME)+p (7(E)) +pa) (57 (B))

+PIA (r7%(B)) + pupo (157177 H(E)) + pape (17757 (B)) + paA (13 (E))

+.. 4+ Z PiDis - - - Din A (7771 1 H(E))

(41,12,13,... ,in)
= 0,

by non-singularity of 7, and 75. Hence A\, << A. We imbed ), in the dual space
Loo(A)* of Loo(A) in the following way:

gn(f) = /deAn,f € Lo(N).
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For every n,

6] = | /X il < 11fllen /X e = 1111

Hence, for each n, ||gn|| < 1. Thus, the A, can be thought of as elements of the unit
ball of Le(A)*. This unit ball is weak*— compact by Alaoglu’s Theorem [9]. Let v
be a cluster point in the weak*— topology of L (A)* of the sequence {A,}n>1.

Define a set function x4 on B by

w(E) = vixe) (2.9)

We claim that p is finitely additive, bounded, and that it vanishes on sets of A—

measure zero: p(0) = v(xp) = v(0) = 0, since v is a linear functional. For any E € B,

/‘L(E) - V(XE) = lim g, (XE) = lim d/\ns = lim A, (E)

S$— X0 E §—CC

ng—1

1
= lim — ) AE)>0
§—00 g ; k( )— ’
since A} is a measure. Thus,

0 < pu(E) < u(X) = lim A\, (X)=1.

§—00

Now,

m
UL E) = lim A (UZ B = lim Y ), ()
S—00 $§—00 =1

i Lim An, (E;) = i u(E;).
=1 i=1

Let M(E) = 0. Then p(E) = lim,_,o0 A, (E) = 0, because A,, << X. Hence, u is
finitely additive, bounded, and it vanishes on sets of A— measure zero.
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u is T—invariant:

ng—1

W(E) = lim A (B) = lim — 30 M)
$ k=0
- Tim ni[AO(E) +ANE) ...+ A (B)]
= SILI& ;L—[)\(E) + oA (17 H(E)) +p2) (15 H(E))]

+ ...+ Z PirDig -+ Pipyy 1 A (Tz{ln;l . 'Ti;:_l(E))]’

(41,82,83500 sing—1)

On the other hand,

Zpl THE)) = pup (7 H(E)) + paps (75 1(B))

Using definition of A} we get,
1 ns—1 1 ns~1
=py Jim — SO A (TH(E)) +pe Jim = YA (R H(E))
® k=0

s 2o

Spliting the sum we get,

= lim l[pl{k (71 (E)) + prA (7-1—2(E)) + DA (72‘17—1—1(E)) + ...

s—o0o N
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By rearranging we get

+ Z PirDig - - - Din, 4 A (7'2-:17'1.;1 .. Ti;sl_l(Tl_l(E)))}

(i1,42,i3,- ing—1)

+ p{ A HE)) + pid (7 Y(E)) + ) (13 2(E)) + ...

Y PP A (L (BN

(11,2,13,.- ying—1)

= lim n—l-[pl)\(TfI(E)) + PIX (TTH(E)) + pipa (73 T HE)) + ..

8§+0Q

+m Z PiDiy + - Dip,_y A <’rz-:17'i;1 .. .Ti;sl‘l(Tfl(E)))

(41,82,483500+ 4ing —1)

+p2) (17 1(E)) + papi A (7775 H(E)) + p3A (72(E)) + ..

+ po Z PirPiy - - - Din, 1 A (7’1:17'1-;1 .. .Ti:j_l(’r{l(E)))].

(41,82,835.+ ying—1)

Clearly,

u(B) = 3 pus (77 ()

Thus, we have shown that y is a finitely additive T'—invariant measure. By Theorem

2.1, p has a unique representation

B = et fp,

where (1. is countably additive and p. > 0 and g, is purely additive and p, > 0. We
claim that p. # 0. Suppose p. = 0. Then by Theorem 2.2, there exists a decreasing
sequence {F,}n>1 of elements of BB such that lim, ., A(E,) = 0 and u(E,) = u(X) =
1. Thus, there exists an integer ng such that for all n > ng, A(E,) < ¢ and, as a

consequence of our hypothesis, we have for all k,

AME,) < o
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Hence,
Me(En) <o k=1,2,3,... .
Thus, 4(Ep) = limy 00 gn, (En) < a < 1, & contradiction. Now,
ME) = pip (1 (E)) + po (13 1 (E))
= pu{e (7 (B)) + p (7 (B))} + p2{pse (7 (B)) + pp (757 (E))}
= {pipe (7 H(E)) + papc (731 (E))} + {p1ptp (77 H(E)) + oty (75 (E)) }.

Clearly m : B — R, defined by

m(E) = pute(ri () + papie(r5 ' (E)),

is a countably additive measure, and m < u. Thus, by Lemma 2.1, we have m < .

and hence
E ' pe(E) = m(E) = pe(E) — {pipte (71 (E)) + papse (5(E)) }

is a positive measure. But this measure has total mass zero. Hence, it is a zero mea-
sure. Thus, p. is T— invariant. Because p vanishes on sets of A~ measure zero and
0 < pe < i, we have . << A. Finally, v(E) = ff%% is a normalized, T— invariant

and absolutely continuous with respect to A.

We now state the analogous result for position dependent random maps.

Theorem 2.5 Let (X,B,)\) be a measure space with normalized measure A and
7 X — X, i = 1,2 be nonsingular transformations. Consider the random map
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T = {11, 72;p1,p2} with position dependent probabilities py,py. Then there exists a
normalized absolutely continuous ( w.r.t. A\) T—invariant measure p if and only if
there exists 6 > 0 and 0 < a < 1 such that for any measurable set E and any positive

integer k, N(E) < d implies

/ pr(z)d) + / pa(x)dA <
T YE) 7, Y(E)

1

[ m@nm@ns [ p@nme)
7 “(E)

5 b H(E)

+ /T_sz_l(E) p2(2)p1(72(z))dA +/ p2(2)p2(72(2))dN < o

1 Tz_Z(E)

Z / Pi (x>pi2 (Til (.Z‘)) - Pig (TilTi2 e 'Tik_1(x))d/\ <a.

-1_-1 -1
(i1i2,83,0.0 i) * 71 Tig T (

Proof. The proof is analogous to the proof of Theorem 2.4. m
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Chapter 3

Approximation of Invariant
Measures for Markov Switching

Position Dependent Random Maps

3.1 Introduction

Approximation of invariant measures for dynamical systems was suggested by Ulam
[37]. For a single transformation, Li [25] first proved convergence of Ulam’s approx-
imation. In [10] Froyland extended Ulam’s method for a single transformation to
random maps with constant probabilities [30]. Géra and Boyarsky in [13] proved
the convergence of Ulam’s approximation for position dependent random maps. The

existence of absolutely continuous invariant measure for Markov switching position
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dependent random maps was proved by Bahsoun, Géra and Boyarsky [2] using spec-
tral properties of the Frobenius-Perron operator. In this chapter we present a bounded
variation proof for the existence of acims and we describe Ulam’s method of approxi-
mating the acims for Markov switching position dependent random maps. In Section
2 we present the proof of existence of acims. In Section 3 we prove the main result,
the convergence of Ulams’s approximation. In Section 4 we describe the error bounds
for approximation of invariant densities. In Section 5 we present a numerical example.

Let ([a, b], B, \) be a measure space and 74 : X — X,k = 1,2, ..., K, be piecewise
one-to-one monotonic non-singular transformations on a common partition P of {a, b :
P={h,Ja....Jg}and s =ne|J;, 1=1,2,...,¢, k=1,2,... , K. Let Whea K
by K position dependent stochastic matrix whose elements are piecewise continuous
on the same partition P. Now consider the Markov switching position dependent
random map T = {n,7,...,7k; P1,P2 ... ,Pk; W}. In Chapter 2 we defined the

Frobenius-Perron operator I/D; and invariant density as follows. ]/3; :BV — BV by

K K K
Pr(fi fos- s fi) = (Z Pro(Weafi)s > Pre Wiz i)y, D P,k(Wk,ka)> ,
k=

k=1 1 k=1

(3.1)

where BV = Hszl BV denote the k—fold product of the space BV of functions of

bounded variation. If (f, f5,..., fi) is fixed point of ﬁ\p, we call

an invariant density of the Markov switching position dependent random map 7". A
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norm on BV as | (f1, fo, - s f&) lgp= Ek I fx llsv. We also define L! norm on

BV || (fi, far- o fx) =0 | fillr -

3.2 Existence of acim using bounded variation

Definition 3.1 We say that 7 : [a,b] — [a,b] is a Lasota- Yorke map if T is piecewise
monotone and C? and 7 is non-singular, i.e., T is nonsingular and there ezists a

partition of [a,b],a = xy < 1 < ... < T, = b such that for eachi = 0,1,... ,n —

. . 2 .
T(zi,2i01) 1S monotonic and can be extended to a C* function on [z;, T;11].

Lemma 3.1 Let 7 be a Lasota-Yorke map on I = [0,1] and Wy, be piecewise of

class C', fork=1,2,... ,K andl =1,2,... ,K,. Let

al:m]?x(sup Wiz )) l=12,...,K.

= (@)l

Then,

Vi(Prf) <GzZV1fk+BlZ”fk“1, (3.2)

k=1

where, hy(x) = Wi (@) ,0 = min; A(J;) and B, = 2(max; sup,, hi(z))+(maxy sup, | b (z)]).
Tri(@) s z k

Proof. Since fj is Riemann integrable, for arbitrary ¢ > 0, we can find a number
8 such that for any J; € P and any partition finer than : J; = Uﬁ;l[sp_l, sp] with

|sp — Sp—1] < 8, we have

Zm%lmp%n</MW+e (3.3)

p=1
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Let 0 = zp < z; < ... £ z, = 1 be such a fine partition of [ = [0,1]. Define

Gri = Tt Let hy(z) = 7o We have,

K
Vi(Pri) Z Pr, W fx) - (3.4)

We estimate Vi P, (Wi, fx) :

ZI (Wi fi) (25) = Pr, (Wi fi) (25-1)|

~

q

= DO Pl (@) Fiel D)) X (27) = D P (B (25-0)) Fi (D (@5-1) ) Xm0y (25-1))
j i i=1

< Z Z\hk(@c,i(Scj))fk(QSk,i(iEj))Xu(Ji)(fcj) — hyo(Dr,i(25-1)) Fe(Dri(25-1)) Xy (5-1))]

(3.5)
We divide the sum on the right hand side into three parts:
(I) the summands for which X7, (7,)(%;) = X)) (Tj-1) = 1;
(IT) the summands for which x-,(s,)(z;) = 1 and X, ;) (zj-1) = 0;
(IIT) the summands for which xr,(s,)(x;) = 0 and x.(s,)(z;-1) = 1.

First, we will estimate (I).

Z Z [P (D6 (%5)) i (Dr,i(25)) = P (@i (@5-1)) fie(Dii(-1))]

< Z Z | fe (i ()) [P (Dr,i(25)) — P(Bii(m5-1))]]
+ Z D 1w bra (m-1)) e D)) — Fi(Pali—1))]]

1
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T

< supli (@)l D2 3 Uildeilws))deiles) = duilos- ]I+ (sup hi(a Zvak

i=1 j=1
q
< sup]h’ )| Z </ | frldA(z) + 6) sup hi(z Z Vy, fe, using (3.3)
< supl (o) / TN (2) + (sup hi () Vi f + alsuple(a) )
T I z z
We now consider (II) and (IIT) together. Notice that x,,(s,)(z;) = 1 and xr ) (zj-1) =
0 occurs only if z; € 7(J;) and ;-1 € 7i(J;), i.e., if z; and z;_; are on opposite sides

of an end point of 7(J;), we can have at most one pair z;,z;_1 like this and another

pair z; € 7(J;) and z;—1 € 7(J;). Thus,

Z(|hk(¢k,i(xj))fk(fl’k,i(xj))| + | (B,i(zg7-1)) fie (Bra(T7-1))])
< sup hi(x Z(\fk Gk (25)] + | fie(Bn,i(j-1))])- (3.6)

i=1

Since s; = ¢ri(z;) and 7, = @x;(x;7—1) are both points in J;, we can write

)

> (U fulsa)] + 1 filrs)] Z2|fk )| + 1fu(vi) = Fie(rs)| + | filve) = fi(si))),

i=1 i=1

where v; € J; is such that | fe(vi)| < 5755

f] | fe|dA(z). Thus,

sup hi () Z(Ifk(¢k,i($j))| + | i@ (25-1))])

i=1

< Suphk(I)Z<V1fk+ /lfk|d)\ )
¥ i=1
< swplhu@)Viefi + 2 [15100)

Therefore,

2
VP, (Wiafr) < 2suplhe(2)| Vi fi + (¢

3 (Slip hi)

+(sup|hy (@)D fillx + 9(sup hie(z))e.
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Thus,

] =

~ 2
VI{Prfi <) (2 mfxsupmk(x)WIfk + (g(maxsup hy)

a
il

+(max sup| A (2)]))|| fellx + a(sup hi(z))e).

Since € is arbitrarily small this proves the lemma. =

Theorem 3.1 Let 7 be Lasota- Yorke maps and let Wy, be piecewise of class C*, for

k,1=12,... K, and

!

o) = max (sup QWk’l(x)> ,1=12,... K,
k e |Th(2)]

and Zfil oy < 1. Then the operator ﬁT s quasi-compact and admits o fized point
n E‘\/, i.e., the Markov switching random map T admits an absolutely continuous

movariant measure.

Proof. The space BV is a Banach space with norm |57 = Ef:l |- llsv. First,

if f=(f1,f2,-..,fk) with fi >0, then we have

IPesl = 3UEes) ul—z/z (Wiafi)d

*
_ Z/Z% (Wiafi)dr = Z/ZPR f)dx = flh.
k=

For a general f it is easy to show that |[Prf||; < ||f|1. For f € BV, by the above

=

41



lemma, we obtain

K K
| Prf gy = Z I (Prf)i | sv= ZVI(ﬁTf)l+ I Prf I

PTf )+ || Prf |

< (Z m) s (ij I Ji ||1) St

=1 k=1

K
< z||f||3v+(Bz+1—Zaz> If 1
1=1 1=1

A
x T Mx

= T

Thus, by Ionescu-Tulcea and Marinescu Theorem [12], ﬁT is quasi-compact on BV

and admits a fixed point f in BV. m
Example 3.2

Consider the Markov switching position dependent random map T = {ry, 79; p1, p2; W},

where 7, 7, are maps on I = [0, 1] defined by

)
4z, 0<z<i
dr -1, t<z<y
4z — 2, %<x§%
4z -3, 3<z<1

and
p
8 1
3T aOS-’ESE,
2(z) = %x—g ,%<m§%, (3.8)
8 16 2
\gl‘-g ,§<$<1



and W ia a stochastic switching matrix defined by

1 1 9 1
3+t 10 3%

—_

wine

and py, py are initial probabilities. It is easy to show that a; =

1

0.8

0.4

Figure 3.1: The graph of 7.
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and o = 2%. Hence



Figure 3.2: The graph of 5.

the Markov switching random map T = {71, 72} with switching matrix W satisfies

the condition of Theorem 3.1 and T has an acim.

3.3 Approximation of invariant measure for Markov

switching position dependent random maps

In this section we consider Markov switching position dependent random maps T with
position dependent switching matrix W and describe a method of approximating
the fixed point of the operator 13; by the fixed points of a matrix operators. Let

e 2 [0,1} = [0,1],k = 1,2,..., K, be Lasota-Yorke maps on a common partition P
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of [0,1]: P ={J1,Js,...,J,} and

Wl,l (l‘) Wl‘g(x) Cen WLK(?L‘)
ngl(.’E) Wgyg(.’b) . WZ,K(ZE)
W =
WK,l(.’E) WK’Q(QT) SN WK,K(CL‘)
be a switching matrix piecewise continuous on the same partition {Jy,Js, ..., Jx}

of I = [0,1], satisfying the condition of Theorem 3.1. Hence, the Markov switching
random map T = {7, 7y,... , 7k} map has an acim . We want to approximate the
invariant density f of p for the random map T. Let P™ = {I,,I,,...,I,} be a

partition of [0,1] into subintervals of equal length and let M, (k) be the matrix of

transition probabilities between the elements of P™ for the map 7,k = 1,2, ..., K:
ML N I
Mn(k'): ( ( mTlc (J))) )
)‘(Ii) 1<i,j<n

Let LW = {f € BV(I) : f = S fixe, = (f, f2,..., f1)}. Define an operator
Q™ : BV(I) — L™ by

Q(")(f):2n</1.fd/\) X1 = (n 1 fd\,n i fd/\,...,n/I fdA).

i=1
Let P;, be the Frobenius-Perron operator of 7, and PT(") - LW — L™ be 3 finite

approximation of P, defined by
PR = (Ma(k)) .

Li [25] proved the following results:
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1. For f€ Ly, Q™ f — fin L, as n — oo;

2. For f € L™ P =QMp, f;

3. For f € BV(I),ViQWf < Vi f;

4. For f € L1,PT(:)f — P fin Ly asn — oo;

Let L™ = H;I;l L™ and define 6(;) . BV — L by
QW(f1, far- -5 f) = (@™(A), Q™ (f2), ., Q™ (£a)).
We define an operator P%") L™ — L™ by
K
Mo (B)Q™ (Wie1) fx, > Mo (B)Q™ (Wie2) frey - -

1 k=1

M (k)Q™ (Wi k) fi)- (3.9)

M=

POy forevs i) =

M= 7

kol
1l

1

For a fixed n, let

fk = (fk%,naflina"' 7f]2n)7 k= L2,...,K,

and

QM (Wit) = Wi Wi - WL, kl=1,2,... K.
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Then, forany 1 <i<n, 31, Wiin= PN n [ Wigd = 1 and hence

E};)(fl,fz,---,fK (ZM R)Q® (Wi, f’“’ZM QW Wea)fes -

k=1
K

: Mn(k)Q(")(Wk,K)fk>

k=1

= ( Mn(k) [Wk},l,nfli,n7 Wk?,l,nf/?,n’ c ’Wl;’:fl,nflztn] ) (310)

1> 1

M‘n(k) [chl,2,nfli,n’ sz,2,'n,flg,n’ e let?,nfl?,n] ’

1

M*ir

Mn(k) [Wk},K,an%,m WI?,2,nflz,n7 e WI?,K,an:n] )

ey

o
1l

1

Lemma 3.2 For f € .lf(;), we have Pq(«")f = Cj(?)ls;f

Proof. Let f = (fi,f2,...,fk) € E("), where f, = (f,%n,f,fn, fin)s k=

1,2,..., K. Then,

K
QM Prf = Q) (Zm (Q™ (W) fe), ancf M (Wia) fe) fes - - - 27’ Q") ka)fk)f>
k=1

k=1 k=1

I
N

K K
Q™ " P, (Q™(Win)f) Q<">Z7> QM (Wia)fi), ., Q™Y P (Q<">(Wk,f<)fk)>

k=1 k=1 k=1

1 k=1 k=1

=( QM (P, Q™ (Wi) fi) ZQ(”) Pr Q™ (W) fi) , ZQ(" (P.Q" ><WkK)fk))

(MPYQ™ (Wit) fir Y (MPYQ™ (Wi2) fi), Z(M" Q<n>(wkz)fk))
k=1

k=1
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Using properties of @™and @("), we can prove the following lemmas.

Lemma 3.3 For f € E‘\/, @(”)fconverges to f in BV.
Lemma 3.4 For f € m, ﬁ}")fconverges to ]STf in BV.

Proof. By Lemma 3.2, for f € W we have pj(j‘)f = é(?)ﬁ;f By Lemma 3.3 we
have Q/(\")I/J?r f converges to 13; fom

Now we prove a theorem which will be useful later.

Theorem 3.3 Let 74, be of class C? and Wy be of class C1, for k = 1,2 satisfying

the conditions of Theorem [3.1], i.e.,

2W,
oy = max(sup——M), [=12,...,K.
ke (o)

and Z{il oy < 1. Then for any positive integer n, P}n) has a fized point f, in L.

Proof.
ViI(PPf) = Vi@ Prf),
<Vi(Prf)
K K
Sa ) Vifi+ B Y | fi I,
k=1 k=1
where o = 1fna,)(k(sup:E 2&&;57)), hk(:l,‘) = %, 0= mini )\(Ii) and

By = 2(max; sup, h(x)) + (maxe sup, | (@)]).
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Now,

| P& F g I (P& f) v

FMw N

Vi(PE )k | P

K
< Z PTf i+l P(n)f IRt

3o (zv,fk)+z(aznfknl)+nfn1
=1 k=1 =1 =
K K

<3 a ,nfum<BZ+1—zal>-nfnl.
=1 =1

——

Thus, by the Ionescu-Tulcea and Marinescu Theorem [12], P}n) is quasi-compact on
LW and admits a fixed point f, in L. m

This theorem can be also proved using simple matrix theorem. It can be shown
that the operator ];7@ can be represented by the following (K x n) by (K X n)

stochastic matrix

M(1)diagQ®(Wy1)]  Ma(1)diaglQ®(Wya) ... Ma(1)diaglQ®™ (Wy)]
o _ | MadinglQV(Wor)] M (2)diaglQV(Wag)] ... My(2)dinglQ (W)
| Mn(K)diaglQ® (Wi1)]  Ma(K)diaglQ®™ (Wk2)] ... Ma(K)diag[Q®™ (W)

Since 1 is a left eigenvalue of any stochastic matix [8, 29], the matrix S, has 1 as a
left eigenvalue. Let

Sn = (Sn,l, Sn,2a e asn,K)
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be a left eigenvector of S, associated with the eigenvalue 1 and

snyk:(slk, nk,..,nk Zsk—l k=12,...,K

Define the approximating invariant density
- ZkKﬂ Shk
dy = —_— " 3.11
Theorem 3.4 Suppose that the Markov switching random map T satisfies the hy-
pothesis of Theorem 3.1 and the operator Pr has a unique invariant density d. Then

| d —dy, |li— 0 as n — 0, for the approzimate density d,, in (3.9).

Proof. Let f = (fu1, fa2,.-- fak) € L™ be a fixed point of ﬁq(ﬂ"). Then

II?!%}I(( VI(‘P( f) = 122)1({ ‘/I(@(n)ﬁT (fn,lv fn,27 e 7fn,K))l
_ (n)
121&)}({‘/1(@ (Pr (fats frzs -+ s fuk)))i
lgll%)l((‘/I(PT (fn 1, fn?a e ,fn,K))l

max alZVIfnk + max Bzz | fog - (3.12)

1<l<K

Thus the sequence {V; (P} f):)}n>1 is uniformly bounded . So by Helly’s theorem, the
set C = {(fa1s fa2,- - fak);n =1,2,-- -} is sequentially compact in [];_, L'. Let

{(fnji1s frj2, -+, fny i) Y1 be any subsequence of C' and assume that
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{(Fasots Frpze = Fay i)} i1 converges o (fi, far... , f) as § — oo. Then

” (flvaa"' 7fK)_j5T(f17f2a"' )fK)Hl

IA

1 (Frs fr e s i) = (Fgits Frgo  fgui)ln
FFgsts Fagzs =+ s Fagie) = QO Pr(fusn, fayn s Fupi)li
+ QU Pr(fayns fayr s fuyt) = QP Pr(f, for -+, fr)
+HIQ" Pr(fy, for++» i) = Pr(fu for - fi) .

Note that
@(nj)ﬁT(fnj,l, fajor s fy k) = ﬁ;j(fnj,l, frj200 0y oy k)
and (fn;,15 fn;2: 7, fo; k) 1s a fixed point of }3}” Thus
I (fsts Frpz s Fgie) = QU Pr(fugts fazas -+ s frpic)|l1 = 0.
Moreover,

Q) Pr(fu, 1, fayzr+ + fryit) = @D Pr(fats frzs- - » Fard)lh

S 'l@(nj)ﬁT||ll|(fnj,1, .fn,-,?a Tt >fnj,K) - (fn,l)fn,Qa e afn,K)”l

and

an (ﬁTh) — ﬁTh

Hence Pr(fi, f2,-- -, fx) = (fis for - i)
Therefore, any convergent subsequence of C' converges to a fixed point of 1/3;1 By

assumption, ID; has a unique fixed point, that is, ||d — dy|li = 0asn —oco. m
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Now, we restrict our attention to the space BV 0o =1 f € BV : [ fi =0 for all
k=1,2,... K} C BV. In this situation we have | fu h< Vifu,k=1,2,... K
[18]. Moreover, the operator Pr is a contraction on BV 0. We have the following

lemma.

Lemma 3.5 Let f = (fi, fa,..., fx) € BV,. Then

R 1 K K
I (Prf) < 5 (Zal + B+ 1) I fllz - (3.13)

=1 =1

Proof.

K
1 Prflizy = > (Prfhillsv
=1

K
= D _ViBrf)t || Prf |

=1

e (zv,fk) +zBl (z I nl) SISl
- Zal I f g0 + (Z&H—Zw) Ik
Z(xl | fllzp + (2314—1—2011) Zévl(fl)

K

= D/l +; (ZBzH—Zaz) I fllzv

IA

IA

=1 =1

_ %(ZWZB )nfufv.
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3.4 Error bound for density of Markov switching

position dependent random map

In this section we restrict our attention to the space é‘\/o = {f € BV : [fi=0
for all K = 1,2,...,K} C BV. Let d = S d,, where Pr(dy,dy,... ,dx) =
(di,dy, ... ,dk) is the unique invariant density of the invariant measure p for a Markov
switching position dependent random map 7', and for a fixed n let d,, be the approx-
imate invariant density of T. In this scction we want to find a bound for ||d — d,||;.
The measure p can be decomposed as y = Zle Pk, Where (p1, fia, ... , px) is fixed

by the operator

K K K
(1, b2, - i) <Z . Wiadpg, Y _ Wiadp, - .. ,Z/_l Wk,Kdﬂk> :
k=1""k k=1"YT"k k=1"Tk
Let ]T/[\n(k) be the matrix of transition probabilities between the elements of P™ for
the map 7, with respect to measure g, k= 1,2,..., K:
= LNt '(I;
Mn(k) — (:u’k( Tk ( ])))
willi) 1<ij<n

Now, consider the following (K x n) by (K X n) matrix

My(1)diag[Q®(W11)]  Ma(1)diaglQ™(W1a)] ...  Ma(1)diag[Q®™ (Wi )]
6 _ M, (2)diaglQ™ (Wa,)]  Mo(2)diag[QM™ (Wap)] ... Mq(2)diaglQ®™ (Wa)]
| Mo (K)diag[Q® (Wic1)] Mo (K)diag[Q® (Wica)] .. Mo(K)diaglQ® (Wic)
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Let 5, = (8n,1,5n2,--- ,3n,k) be a left eigenvector of S’n associated with eigenvalue 1

and 8np = (84,82 40,80 ) S 84, =1,k=1,2,..., K. It can be shown that

§n,k = (§:L,ka‘§$z,kv cee »§Z,k) = (Nk(fl),#k(lz), cee ,,uk(fn))-

Lemma 3.6 Forf, € L(n)a “fn”m < nf fallBv and|| fullsv < 3| fallm, where | fallBy =

V() + fally and | fallm = 331 £l

Proof. |fullm = XiLilfal = n(TiLilfil3) = nlfallh < nV(fa) +nllfull =

n|| fullsv. Notice that V(f,) < 2|| fullm- Thus,

”anBV = V(fn) + ”anI < 2”fn“m + %”fn”m < 2||fn”m + “fn”m = 3||fn||m'

K .
Define [[snflm = 3 key Doici 50l

Lemma 3.7 For fu = (fu1, fag,- - fak) € IO, | fallm < nllfullzp and | fullgy <

3| fallm-

Proof. [[falln = S, I fukllm < n 30, Wnillsv < nllfullz- On the other

hand, | fullgy = Sici 1fasllay <30 [ fnklim = 3l fallm. =

Theorem 3.5 ||d—d,|; < %Zle Lip(dy) +infocser (2 + 155) ([I_‘M] + 1) _

~logy
1}.
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Proof. |d —dnlli < ||[d — @™ (@)1 + Q™ (d) — dnl|;. First we find a bound for

ld — Q™ (d)||;.
K K K
ld= QM@ = 11D de = Q™ di)li <> llde — Q™ (di)|lx
k=1 k=1 k=1
K K n
d ) (d dA) dy — did\|d\
<3 (- @via0r) <355 1 n [ s
K n K n 1 1
SZ (Z (supdk—lnfdk> < (Zﬁlﬂp(dk)%>
Kk =1 1 k=1 i=1
= ) Lip(dy) 5~

El

=1

where Lip(dy) is the maximum Lipschitz constant calculated over each of the Lipschitz
pieces of dj separately.

Now, we want to bound ||Q®™ (d) — d,|; :
n n K .
109 = = 1355 [ 4= 3 (k) v
=1 Yl i
n K
= 13n (Z ) im0 <zsnk) i
=1 k i=1

n

= ZIZ ;,k—sz,knszzwa,k-s;,u

i=1 k=1 i=1 k=1
K n

= ZZ'EM = Skl = 2 = snllm,
k=1 i=1

where |||, denotes the L' vector norm. Now the stochastic matrix S, has a unique

left eigenvector and we have by [32],

l|8n = Snllm < ”‘gn ~ Spllmll (Txn — Sa + Snoo)_l ”ma

where each row of §,% is the unique left eigenvector of S,,.
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Now, we want to bound ||S, — Sp|lm :

(B — N _ 3 _ mEn () ME)
Wi () = My () Mo ()11 pi(13) A(IiﬂTEI(Ij))I

f]inr*l(zj)dk AL

= l
/\(L N Ty I(IJ)) fli dk
supy -1 dk
< . -tk
< Mo ()L - — 5|
<———’ fdy| < —=*"|supdy — inf
~ infy, di llsnlirfldk g | < infy, dx lblzlip S i
< Mnsii(k)

1

Lip(dyk).—

- iIlf[ dk lp( k) 2n
where Lip(dy) is as before.

Now,

1M () = M (K| = max > My ii(k) = My i5(k)]

1<i<n
j=1
"\ Myi(k) . 1 Lip(dy) 1
< — Y Lip(dy).— .
_lrgiaﬁ)f‘tjzl inf;dk 1p( k) 211 1nf1dk 211

K
180 = Sallm = 1211935(2 || Mn(k)diagQ" (W] — My (k)diag[Q™ (Wici][|m
- 1r<r}caé)§( <1<'L<n Zl( i (k)diag Qn(wkl]) - (M"’ij(k)diag[Qn(Wk’l])ijI)
K
< n 3 (e [ i) o s - 000

K
Llp(dk) 1
< _— .
< B2 ((jse / W) e 5

Now,

| Tien = S+ S2)  lm < 14 Y YISV = 5.

N=1
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Define LMo = {(fa1, frzs- - > fai) € LV : 0 fi =0 forall k=1,2,...,K}.

S’N__Soo A N A _ . ~
ISV — s, = sup M = S nollm _ o 1S (Fro = Si o) |
Fro€Lin, || fr0llm Fuociil, I Foollom
1(Fao = S fu)l
_”SN|L(n ln sup 7 e n,0)||m
fro€Lln), ”fn,()”m

Q" Pr]" fuolim
<2S | =2 sup UL Inal

fn,oeﬂ)o ”f'n,O”m
B INE 1
<2 sup i< Ilf’T]uIn,O”BV
Fro€Lln), MRAY

< 6n||Prigy, I3y < 607",

where v = 1 <Zfi1 o+ K B+ 1) . Using Lemma 6.11 and Lemma 6.15 of {10],

we get,
| (T = Sn+ S2) " lm < 14> NISY = S|
N 1
=1+ Z ISy = SLm + Z 157 = Sellm
N=mp
< mimal — (94 B\ _
1+Z2+N¥mﬁ (2+1_ﬂ)mn 1
. B log(6n/8)
< _
‘ogﬁlf<1<2+1—ﬂ) ([ —logy 1) -1
Thus,

ld = dally < lld = Q™ (d)ll1 + 1Q(d) — dullx < Zsz (di).5-

k=1

oo ) (] )
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3.5 Numerical example

In this section we present a numerical example. We use Maple (version 9.5) to find

the invariant density of the acim for a Markov switching position dependent random

map.
Example 3.6

Consider the Markov switching position dependent random map T = {1, 72; p1, p2; W},

where 7,7 : [0,1] — [0, 1] are defined by

71(z) = 62° — 92% + 8z (mod 1),

z? + 3z ,0<z < 32 +1V13,
_3
2(z) = ﬁﬂ , R+ VI3 <},
4r -3 i<z
\

and the position dependent switching matrix W,

W1,1 (27) W1,2($)
W =

W2,1 (CE) W2‘2 (.’E)

is defined by



0.4

2 ,0<z <y,
leg(.’lﬁ) =
8 ,1<z<1
\
(
5 ,0<z< 4,
WQJ(.’E) = 4
2 ,3<z<1
\
(
5 ,0<z<i,
Wzyg(l‘) = 4
8 ,31<z<1
\
1
0.2 0.4 0.6 0.8

Figure 3.3: The graph of 7.
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0.2 0.4 0.6 0.8 1

Figure 3.4: The graph of 7.

Notice that inf|7{(z)| = 3.5 and inf,|7}(z)| = m = 2.236014146. We have,
for z € [0,3), 01 + ap = 45714 + 44723 = .90437 < 1 and for z € [}, 1], a1 + 0y =
71556 + .17889 = .89445 < 1. Thus, by Theorem 3.1, the random map T has an
acim. Now we want to approximate the invariant density of the acim using our
method described in Section 3.3. We have a Maple program (Maple 9.5) that gives,

for any positive integer n, the transition matrices

M\n(k) B <W+(T£)(-{’;)—))15i,j§n,k —h

and the 2 X n by 2 X n stochastic matrix
M, (1)diag[Q®) (Wy)] - M(1)diaglQ® (W1 2)]

gn = 5
M,(2)diag[Q®™ (Wa,)] M (2)diag[Q™ (Wo,)]
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and finally the left eigenvector of the matrix 3; Here is a typical example for n = 8 :

- -

12726 13199 13711 .14266 .14867 .15518 .15712 0
17840 .18752 .19728 .20792 .05368 0 00520 .17000
.10656 0 0 0 16536 23088 .24272 .25448
— 15880 .27464 .28144 .28512 0 0 0 0

0 0 0 0 28512 28144 27464 .15880
25448 .24272 23088 .16536 0 0 0 .10656
.17000 .00520 0 05368 .20792 .19728 .18752 .17840

0 15712 .15520 .14864 .14264 .13712 .13200 .12728

32883 .32028 31241 .03848 0 0 0 0

0 0 0 26648 29816 .29176 .14360 0
44720 .13040 0 0 0 0 14216 .28008

0 31688 .44720 .23592 0 0 0 0

0 0 0 21128 .44720 .34152 0 0

0 0 0 0 0 10568 44720 .44712
25000 .25000 .25000 .25000 0 0 0 0

0 0 0 0 25000 .25000 .25000 .25000

Solving z - S, = = we get,

x = [1.1698,1.2088, 1.2280, 1.3348, .41270, .41454, .41760, .42095, .64043,

65901, .66676, .76380, 1.6495,1.6587, 1.6701, 1.6844|
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and hence the approximate normalized density

dn = [.90544,.93413, .94738,1.0493, 1.0309, 1.0364, 1.0439, 1.0525].

For n = 16,

d, = [.89878,.90659, .91053,.91503, .94037, .98519, .98728, 1.1539,

1.0198, 1.0257,1.0296, 1.0325, 1.0373, 1.0491, 1.0526, 1.0560].

For n = 32,

d, = [.89625,.90175,.90429,.90745, .90950, .91370, .91559, .91859,

92179, .95654, .98114, .98259, .99025, .99300, 1.1465, 1.1661,

1.0189,1.0201, 1.0220, 1.0233, 1.0255, 1.0286, 1.0351, 1.0348

1.0383, 1.0405, 1.0456, 1.0478, 1.0506, 1.0525, 1.0566, 1.0565].

For n = 64,

)

d, = [.89415,.89704, .89923,.90345, .90524, .90860, .90712, .90985,

91032, .91079, .91305, .91524, .91688, .91813, .91844, .92024,

92227, .92469, .94149, .96039, .96891, .98172, .98906, .98813,

98891, .99078, .99344, .99414, 1.1225,1.1633, 1.1666, 1.1657,

1.0123,1.0182,1.0173, 1.0208, 1.0226, 1.0253, 1.0238, 1.0258,

1.0241,1.0280, 1.0272,1.0302, 1.0332, 1.0340, 1.0329, 1.0337,

1.0366,1.0428,1.0389, 1.0422, 1.0440, 1.0471, 1.0449, 1.0472,

1.0494,1.0532, 1.0515, 1.0523, 1.0544, 1.0584, 1.0557, 1.0585].
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In the graph of the previous page, the red graph is the approximate density corre-
sponding to partition points 8, the green graph is the approximate density correspond-
ing to partition points 16 and the blue one is the approximate density corresponding
to partition points 64.

Now we plot errors to see the convergence rate of our method. In the x direction we
consider number of partition points n and in the y direction we consider the difference

of the L! norm with partition points 7 and L' norm with partition points 2n.

0.02]

0.0175¢

0.015¢

0.0125¢

10 15 20 25 30
0.0075¢

0.005}

Figure 3.5: The graph of errors versus number of partitions.
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Chapter 4

Random Maps with an Ergodic
Infinite Absolutely Continuous

Invariant Measures

4.1 Introduction

Piecewise expanding is established as a sufficient condition for the existence of a fi-
nite absolutely continuous invariant measures (acim) for a one dimensional map by
Lasota-Yorke in [26]. In [26] there is an interesting counter example, namely, if the
map fails to be expanding at even one point (it has slope 1 at a fixed point), then

there is no finite acim. The only acim is infinite, with a singularity at the fixed point.
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In this chapter we consider the question of whether analogous behavior occurs for
more general dynamical systems, namely random maps. We consider random maps
constructed from maps which admit finite acim, but which do not have finite acim

themselves.

In Section 4.2 we present three random maps, and prove the existence of an
infinite acim for each of them. In Section 4.3, we show that with position dependent

probabilities a random map of Section 4.2 admits a finite acim.

4.2 A random map which admits an infinite acim

Consider the random map T = {7, 73;p1,p2}, where 71,7 : [0,1] — [0,1] (see Fig.

4.1 and 4.2) are defined by

1
1+82  fro<az<l

$+2lz-3 ,fori<z<l

2z — 3| , for0<z <
To(z) = (4.2)

1, z-1 1
3+ , for 5 <z <1

It is easy to see that each of these maps admits a finite acim.
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Figure 4.2: The graph of

4.2.1 Existence of an infinite acim

Theorem 4.1 The random map T = {r1,72;3,1} admits an ergodic infinite ab-
solutely continuous invariant measure and it has no finite absolutely continuous in-

variant measure.
Proof. Consider the infinite Markov partition: P = {I, ,El), I ,EQ)}E"ZQ, where

Y S =], k=2,3,4,... (43)
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and

1
2
1P =1~ g1

The Perron-Frobenius operators of 7; and 7, can be represented as matrices:

-00. 0
00 ...0
00..0
Mi=1{9 o %
00 :
00..0
00 ...0

Do

[

68
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[T

N | et

1
E], k:2,3,4,...

N

(4.4)

(4.5)



1334 0000
30000 000 O
03000 000 0
003100 000 O
M, = (4.6)
00400 ..000 0
00040 ..000 O
00004..000 0

Now, let us consider p; = py = An invariant density f of the random map

1
3

T ={m, m; %, %} satisfies the following Perron-Frobenius equation:

1
f= E{fMl + fM,}. (4.7)
Let
’_1111 0040 |
2 2 2 32
1000 000 4
0100 000 0
M=M+M,=
0040 1411
0 0 0 4 $ 00 0
0000 020 0
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Then (4.7) reduces to

2f = fM. (4.8)
If the value of the invariant density f on [ ,gi) is constant acg) and we assume that

a:,(cl) = x,(c2) = x4, for all k = 2,3,..., then the density f can be represented as an

infinite vector (x5, z3,...) and equation (4.8) can be written as:
2(.132,1}3,...):(.Tg,.l’?;;,...)]\/{. (49)

From equation (4.9), we get:
T3 = 3T2;
T4 = 11z3; (4.10)
z; =4%,_1 —8x;_3 — x93, 1 =205,6,....

From the above system we get

$3:3'$2, I4:11'.’L‘2, 1L'5:35'$2, I6:115-.’112, 5177:371'.'1,‘2,

Now, we will find a general solution of the system (4.10) of discrete diffrence equations.
Consider the homogeneous equation z; = 4x;,_; — 8z;_3. Let z; = Azy. Then the

characteristic equation of this homogenious equation is
A -4 +8=0

and the roots are A = 2, A = 1 + /5, X = 1 — /5. Thus, the general solution of the

system (4.10) is

z; = c12'y + co(1 + V5)'zg + c3(l — \/5)%2 +k,
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where cj, ¢, c3 and k are constants. By substituting back into (4.10), we obtain
k = —%2. Moreover, using the initial conditions z5 = 3529, 26 = 11524, 27 = 371z,
we obtain ¢; = —.0000000004632812506, c; = .1000000001, c3 = .1000000009. Hence,

the solution of (4.10) is
T3 = 3 Ty;
Ty = 11- T,

Ty = a4 - Ig, 1:—_—5,6,....

where

a; = —0.0000000004632812506 - 2°  + 0.1000000001 - (1 + /5)i

+ 0.1000000009 - (1 — v/5)* — 1.

Now,

Note that 1 + +/5 > 3. Thus, the above serics diverges, because for large ¢,
a; =~ const. - (1 + \/5)2 This means that the random map has an infinite acim
m = f - A. The measure m is supported on the whole interval [0, 1].

Now, we prove that the measure m is ergodic. It is enough to show that the matrix
M is irreducible [11]. The transition graph of matrix M is shown in Fig 4.3. It is

easy to see that the graph is strongly connected, i.e., every state communicates with
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Figure 4.3: The transition graph of the matrix M.

every other. Thus, the matrix M is irreducible and the measure is ergodic. Since m
is supported on all of [0,1], there is no other acim. In particular, this random map
does not admit a finite acim. m

Now we consider the same map but more general probabilities.

Theorem 4.2 For any probability p, the random map T = {71, 72;p, 1 —p} admits an
ergodic infinite absolutely continuous invariant measure and it has no finite absolutely

conltinuous tnvariant measure.

Proof. Let the invariant density of the random map T = {7, 79;p,1 — p} be

f= [.’132,.’E3,.T4,... y Y2, Y3, Y4y - :]'

Then,

f=@f) - Mi+((1-p)f) M. (4.11)
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From equation (4.11), we get:

1+p
I3 = T2;
l—p
2 2(1
Ty = ( ( +p§—1)$2;
1-p\(1-p)
x; = Zi-1 8.%—3 — T2, 1= 57 6, )
1 —
(4.12)
2-p
Ys = Y23
p
(2(2-p) )
Y= —3— —1]yn
< (p)?
2 .
Yi = ~Yi—1 _8-731'—3 — Y, 1= 5a67"' .
p
Let us make the following change of variables:
Ui = Ti-1,V = Yim1, 5 = Ui—1, b = V31,1 = 5,6,... .
Then (4.12) reduces to
T = Ti—1 — 8ti—1 — T;
1—
2
Yi = —Yi-1 — 88i-1 — Ya;
p
U = Tioq;
L (4.13)
Vi = Yi-15
Si = Ui-13
ti = Vi—1.
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From equation (4.11), we get:

I3 =

T4 =

z;

Yz =

Ya =

1 E:D (?9—2[))3 - 1) -

]__.
2—p
P

Y2,

2 .
Y; :;yi—l _8xi—3—y27 7‘:5>6>"' .

Let us make the following change of variables:

U = Tim1, U = Yi-1, 85 = Ui—1, L = V21,1 = 3,6,. ..

Then (4.12) reduces to

T = Ti—1 — 8ti-1 — Ta;

1—

2
Yi = =Yi—1 — 8851 — Y5
p

Ui = Ti—1,
Vi = Yi-1;
8i = Ui-1,
ti = Vi-1.

73

Ti-1 — 8Yi-3 — Ta, 1=25,6,...;
p

(4.12)

(4.13)
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Let Xi - (mivyivuiavi, Si,ti) ) A = andb = (11727927070, 07 0) .

Then, the system (4.24) reduces to
Xi=AX;_1+0. (4.14)
In general, a system of the form
Zin=BZ;+C;, i=0,1,2,...,
has the following form of solution [§]:

Z;=B'Zy+Y B7FC;, i=0,1,2,....
k=0

Note that one of the eigenvalues of the matrix A in the system (4.14) is exactly 2.

Thus,

> )y 0 (k) 1 1 1 1
szi )‘(Ii ) = $2-§§+$3-5§+x4-?+x5-§...

=2 k=1,2
1 1 1 1
+ y2-§5+y3-§+y4-?+y5-§...
= 00.
This means that the random map has an infinite acim m = f-A. The same argument
as in the proof of Theorem 4.1 proves the ergodicity of m.
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4.2.2  Another random map

Now we consider a random map T = {7y, 7o; p1,p2}, where 11,7 : [0,1] — [0,1] (see

Fig. 4.4 and 4.5) are defined by

(z-3) 1.
1+ , for 0 <z < 353

mi(z) = (4.15)
T42z-3 [ fori<z<l

The slopes of 7 and 7, are different than the slopes of the maps we have considered in

the previous example. We show that this random map also admits an infinite acim.

() = (4.16)

Figure 4.4: The graph of 7
Theorem 4.3 The random map T = {71,7'2;%,%} admits an ergodic infinite ab-
solutely continuous invariant measure and it has no finite absolutely continuous in-
variant measure.
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Figurc 4.5: The graph of m

Proof. Consider the infinitc Markov partition: P = {I ,51), I ,9)},3‘;2 where

1 1 1 1
(1) _ _
LV =[5~ g~ geh F=234,.. (4.17)
and
@) 1 1 :
[k :[I—F,1—2—k], k:2,3,4,... (418)
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and

The Perron-Frobenius operators of 7; and 75 can be represented by the matrices:

M,

M,

I

[ Ll

N—=

0

[T

M=

0

N[t

N

(NI

[T

020000

D= D=

i o=
D=

N

N

[T

N =

77

(4.19)

(4.20)



Now, let us consider p; = py = % An invariant density f of the random map

T = {m, m; %, %} satisfies the following Frobenius-Perron equation:

1
f=5UM+ fMo}. (4.21)
Let
1 1 1 1
35 5 3 0200
3 000 002 0
03 00 000 O
M:M1+M2:
1
0200 .. 311} 4
0020 3 00 0
0000 020 0
Then (4.21) reduces to
2f = fM. (4.22)

If the value of the invariant density f on I ,Ei) is constant x,(f) and we assume that

xg) = mff) = xi, for all k£ = 2,3,..., then the density f can be represented as an
infinite vector (z2,s,...) and equation (4.22) can be written as:
2(1}2,.’113,...):(1‘2,.’1,'3,...)]\/[. (423)
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From equation (4.23), we get:

x3 = 3T3;
(4.24)
Z; 241'1‘_1 —4"131‘,2 — Zo, ?,:4,6, .
From the above system we get
Iy = 3- Zo,
$42(2‘3+1)'l‘2:7'$2,
s =(2-7+1) 29 =15 19,
(4.25)

$62(2~15+1)'I2:31'I2,

$7=(2'31+1)'.’1?2=63-$2,

In general, z; = (2 constant in z;_; + 1) - zo.

Now,

- (k) y ( 700 1 1 1 1

_ 1,3, 7,15 31 63 ]
) 9 92 T3 T g gy |

Note that each of the terms of the above series is bigger or equal to 1. Thus, the above
series diverges. This means that the random map has an infinite acim m = f- X. The
measure m is supported on the whole interval [0, 1]. The proof of ergodicity of m is
similar to that in the previous example.

]
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4.3 A Position dependent random map with finite
acim

In this section we show that using the maps in equation 4.1 and equation 4.2 we can
construct a random map with position dependent probabilities which admits a finite
acim. Consider the position dependent random map T = {71, 72; p1(z), p2(z)}, where
T1, T2 are the same as in the previous section and the position dependent probabilities

p1(x), p2(z) are as follows:

.
1 1
9 70§$<§a
m(z) =
8 1
\§ aESxSI
(
8 1
3 ,OSIL‘<§,
pa(z) =
11
W 3L <l

We will show that:

e~ |7 ()]
For z € [0, %), we have
2
Z pe(z) _ % 'g _ 8
7 =7 + 2 ==-x<1
—n)l ¢ 2 9
For = € [3,1], we have
2
pe(z) _ g % _8
Z 7 ==+ T== <1
—n)l 2 3 9

Hence, T' admits a finite acim.
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Chapter 5

Invariant Densities of Random
Maps have Lower Bounds on their

Support

5.1 Introduction

For a single transformation, much is known about the densities of absolutely contin-
uous invariant measures (acim). For example it is known that the densities inherit
smoothness properites from the map itself (Halfant[17]), that the supports consists
of a finite union of intervals and that the densities are bounded below on their sup-
ports (Keller [23] and Kowalski [24]). In this chapter we generalize to random maps

results of Keller [23] and Kowalski [24], which prove that the density of an absolutely
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continuous invariant measure (acim) is strictly positi\}e on the support of the acim of

a nonsingular map.

In Section 5.2 we present the notation and summarize results we shall need in the

sequel. In Section 5.3 we prove the main result.

5.2 Preliminaries

Let (X, B, A) be a measure space, where ) is an underlying measure and 7, : X — X,
k= 1,2,...,K are nonsingular transformations. A random map T with constant

probabilities is defined as

T= {7-1772>--' yTKyP1, P2y - - 7pK}7

where {p1,p2, ... ,px} is a set of constant probabilities. For any z € X, T(z) = 7¢(z)
with probability p. and, for any non-negative integer N, T (z) = 74, 0 T4y , ©...0
Tk, (x) with probability T} py.. A measure p is T—invariant if and only if it satisfies

the following condition [30):

K
w(E) =Y pen(r N (E)), (5.1)

for any E € B.
We now recall some definitions and results which will be needed to prove the main

results in Section 3.
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Definition 5.1 Let7: (X,B,A) — (X, B, \) be a non-singular transformation and u
an acim with respect to Lebesque measure A possessing density function f. We define

the support of p as follows:

supp(p) = supp(f) = {z € X : f(z) > 0}

Definition 5.2 A function f: R — R is said to be a lower semicontinuous function

if and only if f(y) < liminf,_,, f(z) for any y € R.

Theorem 5.1 [12] If f is lower semi continuous on I = [a,b] C R, then it is bounded

below and assumes its minimum value. For any c € R, the set {z : f(x) > c} is open.

Lemma 5.1 [12] If f is of bounded variation on I, then it can be redefined on a

countable set to become a lower semicontinuous function.

Let 75(!) denote the class of transformations 7 : I — I that satisfy the following
conditions:
(i) 7 is piecewise monotonic, i.e., there exists a partition P = {I; = [a;_1,a;],1 =

1,2,...,q} of I such that r; = 7|I; is C', and
ITi(z)] > >0, (5.2)

for any ¢ and for all z € (a;_1, a;);
(i) g(z) = m is a function of bounded variation, where 7/(z) is the appropriate
one-sided derivative at the end points of P.
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We say that 7 € T1(I) if 7 € T5(I) and & > 1 in condition (5.2), i.e., T is piecewise

expanding.

Theorem 5.2 [23, 24] Let 7 € Ti(I) and f be a T~invariant density which can be

assumed to be lower semicontinuous. Then there exists a constant 3 > 0 such that

f|supp(f) > p.

Theorem 5.3 [?, 30/ Let T = {m,7,... ,Tk;P1,P2,--- ,PK} be a random map,
where Ty € To(I), with the common partition P = {J,Jo, ..., J;}, k=1,2,... K.

If, for all z € [0, 1], the following Pelikan’s condition

K
> B <y <, (5.3)
— (o)

is satisfied, then for all f € L' = L1([0,1], ) :

(1) The limat

n-1
1 .
. 2 P _ ist . 1,
nlggon ;21 r(f) = f" exists in L
(@) Pr(f*) =/

(i) Vio(f*) £ C - || fll1, for some constant C > 0, which is independent of f € L!.

5.3 Support of invariant density of random maps

In this section we prove that the invariant density of an acim of the random map
T = {n,7,... ,Tk;P1,P2--- DK}, T1,T2,--- ,Tk € T, is strictly positive on its
support. For notational convenience, we consider K = 2, that is, we consider only
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two transformations 7y, 7. The proofs for larger number of maps are analogous. We
consider random maps with constant probabilities.

Let Q denote the set of endpoints of intervals of partition P except the point 0
and 1.

The main result of this note applies to random maps, where each component map
is in 77(I), but the first two lemmas are proved under more the general assumptions

of Theorem 5.3:

Lemma 5.2 Let the random map T = {71, 72; p1, p2} satisfy the assumptions of The-

orem 5.8. In particular,

Py p2|§7<1, (5.4)

[ri(@)] - |7a(2)

for allz € I\ Q. Then, for any interval J disjoint with Q, at least one of the images

11(J), T9(J} is longer than J.

Proof. First, let us note that if v is the normalized Lebesgue measure on J, then
1= (/ 1du) (/\AT ) /|T )ldo(x) /I )
J T

or

1 1
fJ |7"(z)|dv(z) < /J IT’($)|dV(x)’ (5.6)

or

1
. 5.7
5@l = / N 57)

85



Integrating (5.4) over J, we obtain

1 1
pl/de$+p2/lmde7'A(J)’ (5.8)

and, using (5.7), we obtain

PA) | pA)
M) T Am) =T

Thus, at least one of the numbers A(1y(J)), A(2(J)) is larger than A\(J). m

Lemma 5.3 Let T = {71, 72;p1,p2} be a random map on [0, 1] satisfying the condi-
tions of Theorem 5.3. Then, the support of the invariant density of T contains an

interval which is not disjoint with Q.

Proof. Let supp(f) = {z € [0,1] : f(z) > 0}. The density function f of the acim p
is a function of bounded variation by Theorem 5.3 and thus, by Lemma 5.1, f can
be redefined on a countable sct to become a lower semicontinuous function f and
f = f ae.. Thus supp(f) = supp(f) = {z : f > 0} is an open set by Theorem 5.1.
Thus, supp(f) = U2, I;, where I;’s are intervals separated by sets of positive measure.
Without loss of generality, let us assume that A(l;) > A(l;41) for i = 1,2,.... We
will prove that @ NIy # 0. Suppose @ N I; = @. Then I is contained in one of the
subintervals, J,, of the partition P and 71(I;) and 72(l;) are both open intervals.

Since f is an invariant density of the random map T, we have,

f(z) :P1'2| '((T1 ((z)))”Xn(I) ) +pa- Z lf ] z)lxn(z)( ).

=1 171
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Let z € 7y(I;). It is clear that at least one element of {r{}(z)} is in I; and since
I, C supp(f) we have f(z) > 0. Thus, 71(];) is a subset of supp(f). Similarly, 7o(1;)
is a subset of supp(f). By Lemma 5.2, at least one of the intervals 71([1), 72([1) has
larger length than the length of I;. This is a contradiction because supp(f) does not

contain an interval of length greater than A(/;). This proves that QNI #0. m

Corollary 5.1 The number of different ergodic acim for the random map T satisfying
the assumptions of Theorem 5.8 is at most equal to the cardinality of the partition P

Mminus one.
We now assume that 7,75 € 7T;.

Theorem 5.4 Let T = {7, 7y;p1,p2} be a random map on [0,1], where 71,7 € T;
and have a common partition P = {Jy, Ja, ... , J;}. Then the support of the invariant

density f of T, supp(f), is a finite union of open intervals almost everywhere.

Proof. Again we can assume that supp(f) = UL, I;, where [;’s are intervals
separated by sets of positive measure. Let D = {j > 1 : I; contains a discontinuity
of 71 or 75 or both}. By Lemma 5.3, D is not empty. Also, D is a finite set. If j € D,
then 7;(1;),7 = 1,2, is a finite union of intervals. Let J be the shortest interval of the

family
{Li}jepU{I: I is a connected component of 7(I;),i = 1,2,j € D}.
Let F = {i > 1: A(L;) > A(J)}, where i is not necessarily in D and let

S = Uierl; C Uil; = supp(f).
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S is a finite union of open separated intervals since it is a family of disjoint intervals
with length > A(J) >0 . Forany j € D,I; C S.
We will prove that 7,(S) C S, 4 = 1,2. Let I, C S. If &k ¢ D, then 7,(I}) is

contained in an interval Iy, 7 = 1,2 and

M) > ML) = | |7(x)|d) > ir[%)fl]|'ri'(a:)| “Ay), 1=1,2.
z€(0,

J I

Since infgepoqy|7i ()| > 1 for i = 1,2, we have
ML) > AT > A().

Thus, by the definition of S, we get Iy, € S, ¢ = 1,2 and hence 7;(Iy) C Iy, € S,
i=1,2. If k£ € D, then by the definition of S, 7,(Iy) C 5, i = 1,2. Thus, (S) C S,
i=1,2.

Now we will prove that supp(f) C S. Suppose not. Let I be the largest interval

of supp(f) \ S. Thus, s ¢ D and
NA(L) = [ 1@ > i (7)) AL) > AL, i = 1,2
I, z€|l,

Then 7;(1;) € S,4=1,2. Thus, I, C 771(S),i=1,2. But I, ¢ S,s0 I, C 7,7 *(S)\ S,
1 =1,2. Let p = f- X be the T-invariant absolutely continuous measure. We will

show that u(r;71(S)\ S) = 0,4 = 1,2. Since 7;(S) C S, 4 = 1,2, we have

SCrHr(8) CcrliS),i=1,2.
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Thus,

0= pu(S) = p(S) = [prp(r7*S) + paps(75 ' 8)] = [p11(S) + p2us(S)]
= pilu(r7'S) = w(S)] + palu(5S) — u(S)] (59)
=piu(r 'S\ 8) + pap(r3 'S\ 5).
Thus, both p(r7 1S\ S) = 0 and p(r51S\ S) = 0if py, po > 0. Thus, u(I,) = 0, which

contradicts the fact that I, C supp(f). =

Lemma 5.4 Let T = {71, 73; p1, p2} be a random map on [0,1], where 1,7, € 71 and
have a common partition P = {J1, Ja,...,J;}. Let f be the invariant density of an
acim p of the random map T and S = supp(f) = {z : f(z) > 0}. Then

(t) (S \ {ag,a1,...,04}) C S, i=1,2;

(it) A(S\ (S \ {ao,a1,... ,a4})) =0, 1 =1,2;

where {ag,a1,... a4} are the endpoints of the intervals in the partition P.

Proof. We assume that f is lower semicontinuous. If it is not, we modify it on at
most a countable set. By Theorem 5.4, S = U_,I;. Let ¢ € S\ {ao,a1,...,a,}. Then
z € Intly, for some k € {1,2,...,7} and there exists an € > 0 such that B(z,¢) C I
and f(y) > $f(z) > 0 for all y € B(z,¢) since f is lower semi-continuous. We may
assume that 7|1, = 1,2 is increasing and that f(r;(z)) = limy_ )+ f(¥), ¢ = 1,2.

Now, for any ¢ > 0, 7;([z,z + ¢)) = [n(z),(z) + &), i=1,2and § — 0 as § — 0.
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Then, for ¢ = 1,2, we have

/ fdr = ulrll,z+6)) 2 wlzz+4)
[7:(2),7i (2)+4")
1
= [ iz e+ )
[z,z+8) 2
1 1
> ~flz)—— (I~ : ).
> @) @), (@) + )
Since f is lower semicontinuous,
f(r(z) = lim L / fdx
: 5’—»0/\([7'1‘(.’E),7'i($)+(5,)) [riz),7e (z)+6")
1 1
> = PR ) — .
> 2f(x)max|rg\>0” 1,2

Hence, 7;(z) € S, 1 = 1,2, and part (i) is proved.
Part (ii) is proved using reasoning similar to the end of Theorem 5.4 (equation

(5.9)). =

Theorem 5.5 Let T = {71, 72;p1,p2} be a random map on [0,1], where 71,79 € T}
and have a common partition P = {J1,Js,... ,J;}. Let f be the invariant density of
an acim p of the random map T and let S = suppf = {z : f(z) > 0}. Then there

exists a constant a > 0 such that f|; > a.

Proof. Since S = {z : f(z) > 0} is a finite union of open intervals, S =
Ul_,I;, we can assume they are separated by intervals of positive measure. Then

S = S\{ao, ai, ... ,a,} is also a finite union of intervals: S = Uiy Ji. Let F = {L;}

i=1
and C = {J;}5_,. For any Ji € C, 75|y, j = 1,2 is of class C". Therefore, there exist

I; € F, j = 1,2 such that 7;(Jy) C I, j = 1,2.

j?
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Let (c,d) be any interval in F or C. We associate with its endpoints two classes

of standard intervals:
ne={(c;c+¢€):e¢>0} and ng = {(d — ¢,d) : € > 0}.

The points c and d are referred to as the endpoints of the classes 7. and 7, respectively.

Let
K = {ne,na : ¢, d are endpoints of intervals of F and C}.

We now define a relation — between elements of K. For i, € K : 1 — 7/ if and
only if 7;(U) € 7' for at least one of j = 1,2 and for sufficiently small U € 1. The
relation has the following two properties:

(1)  If n is associated with an end point of I; € F, then there exists at least one
n such that 1 — 7n’. To prove this, let us fix an I; and 7' associated with one of its
endpoints. We claim that for cach Ji, € C, either 7;(Ji) C I, j = 1,2 or 7 (J)NI; = 0,
J = 1,2. To show this, let us note that since 7;(Jx), j = 1,2 is contained in S = Ul_, [;

and {/;} are separated, 7;(Ji), j = 1,2 is contained in one of I;,, j = 1, 2. Now, since

there must exists a Jy with 7;(Ji) € 7/, j = 1,2 and this implies (1).
(2) If ¢’ is an endpoint of I; such that limy — o f(z) = 0,7 is associated with

d,n+— 7', and c is an endpoint of 7, then for any U € n,



To prove this let us suppose that limg — ¢f(z) = a > 0, for some U € 7. By the
zelU

definition of the relation +, for at least one of j = 1,2, say j =1, if n = {(¢,c + ¢)},

then we have 7i(c,c+¢) = (¢, c + €’), for € small enough. Then,

| | ] (e 4 )
- —_— t e ] _—
Ty DYy /(c,,c%/)f‘ bt = (e, e o)

zel (5.10)

. p((c,c+€)) P
> lim p; - =
= 0P ax [ - M(ec 1 €))  max|r]

a >0,

which is a contradiction.

We make the following obscrvations:
(3)  In the setting of (2) above, ¢ ¢ S. Therefore, ¢ is an end point of an interval
L e F.

Now we define

[(z) = 0}.

Ko = {n : n is associated with an endpoint ¢ of an I; € F and limg — ¢
€l

.

From (2) and (3) we obtain:
(4) Ifn € Ky and n — 7/, then 5 € K.
We note that by (1) and (4), for each 7’ € Ky there exists at least one n € Ky
such that n— 7.
Now let n € Ky. For any n > 1, any 7’ such that ' — 7 in n-steps also belongs to
1, -1

Ko. Choose U € 1 to be sufficiently small. Then, all the preimages 7; "o 7.

. o o]
In-1 o

7,0 o (1,1 (U)), ji € {1,2}, touch an endpoint of some 7’ in Ko. If M is the number
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of elements in Ky and a = min{inf,¢;|7{ ()|, inf,e/|m5 ()|}, then

pU) = D Piabjus - -Piup(rytort ol o (D))

(jnwjn—lv"‘ vjl)

< supf D> PpPies - PaANT ot oot (U)))

(jnvjn—lqm le)

< Supf : Z PinPjn_1 -+ Pj1 Ma_TL)‘(U)'

(jnvjn—lv”- 1j1)

Thus, ¢(U) = 0 which implies that AM(U) = 0 since U C S. This contradicts the fact

that U € 7 is an open, nonempty interval. Hence, Ko = @ and limg — ¢ f(z) > 0
zeU

for each of finitely many endpoints of intervals I; € F. On the other hand, since f

is lower semicontinuous, it assumes its infimum on any closed interval. Hence, there

exists @ > 0 such that f(z) > aforallz € S. =
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Appendix

In Chapter 2 we presented an example of Markov switching position dependent ran-
dom map and we obtained piecewise constant density function . In this section we
present Maple codes [27] for density calculations. This program is also available upon

request.

> restart;

> Digits:=5:

> taul:=x->6%x"3-9*%x"2+8%*x:

> vl:=fsolve(taul(x)=1,x,0..1);
> tau2:=x->taul(x)-1:

> v2:=fsolve(tau2(x)=1,x,0..1);
> taud:=x->taul (x)-2:

> v3:=fsolve(tau3(x)=1,x,0..1);
> taud:=x->taul (x)-3:

> v4:=fsolve(taud(x)=1,x,0..1);
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taub:=x->taul (x)-4:
v5:=fsolve(taus(x)=1,x,0..1);
f:=x->piecewise(x>=0 and x<vli,
taul (x),x>=vl and x<v2,tau2(x),x>=v2

and x<v3, tauld(x),x>=v3 and x<v4,taud(x),taub(x));
plot(f(x),x=0..1, discont=true);
taull:=x->3%x +x72:
vil:=evalf ((-3/2+1/2*sqrt(13)));
tau22:=x->1/(9/4-1/2*sqrt (13) ) *(x-3/4) +1:
v22:=3/4;
tau33:=x->4*x-3:
v33:=1;
wll:=x->piecewise(x>=0 and x<1/2,.8,.2):
wi2:=x->piecewise(x>=0 and x<1/2,.2,.8):
w21:=x->piecewise(x>=0 and x<1/2,.5,.2):
w22:=x->piecewise(x>=0 and x<1/2,.5,.8):
g:=x->piecewise(x>=0 and
x<(=3/2+1/2*sqrt(13)), 3*x +x°2, x>=(-3/2+1/2*sqrt(13))and
x<3/4,1/(9/4-1/2*%sqrt(13) ) *(x-3/4)+1,4*x-3) ;
plot(g(x),x=0..1, discont=true);

a:=0:
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> h:=(b-a)/n:

> for i from 0 to n do
> y[i] :=a+ixh:

> od:

> p:=y:

> z1[0] :=y[0]:

> 22[0] :=v1:

> 23[0] :=v2:

> z4[0] :=v3:

> z5[0] :=v4:

> z11[0] :=y[0]:

> z22[0] :=v11:

> 2z33[0] :=v22:

> z44[0] :=v33:

> z55[0] :=v44:

> z66[0] :=v55:

> pi=y:

> B:=array(l..n,1..n):

> for 1 from 1 to n do
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> for j from 1 to n do

> if y[i]<v1ll and y[i-11>=0 then

>

\"4

\'4

>

z11[j] :=fsolve(taull (x)=p[jl,x,0..1):
if z11[jl<=y[i] and z11[jI>=y[i-1] and
z11[j-1]>=y[i-1] and z11[j-1]<=y[i] then
contrl:=(z11[j]-z11[j-11):
elif 2z11[j-1]<=y[i] and
z11[j-11>=y[i-1]and z11[j]>y[i] then
contrl:=(y[i]l-z11[j-11):
elif z11[jl<=y[i] and
z11[j]>=y[i-1]and z11[j-1]1<y[i-1] then
contrl:=(z11[jl-y[i-11):

else

contrl:=0: fi:

Bli,j]:=contrl/(1/n):

elif y[i]<v22 and y[i-1]>=v1l then

z22[j] :=fsolve(tau22(x)=p[j]l,x,0..1):

if 222[§)<=y[i] and z22[j]>=y[i-1] and
z22[j-1]1>=y[i-1] and z22[j-1]1<=y[i] then
contr2:=(222[j]-z22[j-11);

elif z22[j-1]<=y[i] and
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>

222[j-11>=y[i-1]land z22[j]>y[i] then
contr2:=(y[i]-z22[j-11);
elif z22[j]l<=y[i] and z22[j]>=y[i-1]
and z22[j-1]<y[i-1] then
contr2:=(z22(j1-y[i-11);

contr2:=0;

fi;

> B[i,j]:=contr2/(1/n);

>

\4

elif y[il<=1 and y[i-1]>=v22 then

z33[j] :=fsolve(tau3d3(x)=p[j]l,x,0..1):
if z33[j]1<=y[i] and 233[j1>=y[i-1] and
233[j-11>=y[i-1] and 233[j-11<=y[i] then
contr3:=(z33[j]-233(j-1]);
elif 2z33[j-1]<=y[i] and z33[j-11>=y[i-1]
and z33[j]>y[i] then
contr3:=(y[i]-z33[j-1]);
elif z33[jl<=y[i] and
z33[j]>=y[i-1]and 233[j-1]<y[i-1] then
contr3:=(z33[j]-y[i-1]1);
else

contr3:=0;

98



> fi;

> B[i,jl:=contr3/(1/n):

> else

> z11[j] :=fsolve(taull(x)=p(j],x,0..1):

> if z11[jl<=y[i] and z11[jl>=y[i-1] and

> z11[j-11>=y[i-1] and z11[j-1]<=y[i] then

> contrl:=(z11(j]-z11[j-11):

> elif z11[j-1]<=y[i] and

> z11[j-1]>=y[i-1]and z11([j]>y[i] then
> contri:=(y[i]l-z11[j-1]):

> elif z11[jl<=y[i] and z11[j1>=y[i-1]and
> z11[j-1]<y[i-1] then

> contrl:=(z11[jl-y[i-11):

> else

> contrl:=0:

> fi:

> contrll:=contrl:

> 2z22[j] :=fsolve(tau22(x)=p[jl,x,0..1):

> if z22[jl<=y[i] and z22[jl>=y[i-1] and

> z22[j-1]>=y[i-1] and z22[j-1]<=y[i] then
> contr2:=(z22[j]-2z22(j-11);
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> elif z22[j-1]<=y[i] and

> z22[j-11>=y[i-1]and z22{j]l>y[i] then

> contr2:=(y[i]-z22[j-1]1);

> elif z22[jl<=y[i] and

> z22(j]1>=y[i-1]and z22[j-1]1<y[i-1] then
> contr2:=(z22[j]-y[i-1]);

> else

> contr2:=0;

> fi;

> contr22:=contr2:

> 2z33[j]:=fsolve(taud3(x)=p[j],x,0..1):

> if z33[jl<=y[i] and z33[jl>=y[i-1] and

> z33[j-11>=y[i-1] and 2z33[j-1]<=y[i] then
> contr3:=(233(j]-2z33[j-11);

> elif z33[j-1]<=y[i] and 233[j-11>=y[i-1]and
> z33[j1>y[i] then

> contr3:=(y[i]-z33[j-1]);

> elif z33[jl<=y[i] and 233[jl>=y[i-1]and
> z33[j-1]<y[i-1] then

> contr3:=(z33[jl-y[i-1]1);

> else
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contr3:=0;
fi;
contr33:=contr3: B[i,j]:=(contril+contr22+contr33)/(1/n):
fi:
od:
od:
t:=array(l..n):

for i from 1 to n do

su:=0:

for j from 1 to n do
su:=su+B[i,j]:

od:

t[i] :=su:

od:

print(t);

A:=array(l..n,1..n):

for 1 from 1 to n do

for j from 1 to n do

if y[iJ<vl and y[i-1]>=0 then

z1[j] :=fsolve(taul (x)=p[j],x,0..1):
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if z1[jl<=y[i] and z1[j1>=y[i-1] and
z1[j-1]>=y[i-1] and z1[j-1]<=y[i] then
contl:=(z1[j1-z1[j-11):
elif z1[j-1]<=y[i] and z1[j-1]>=y[i-1]and
z1[j1>y[i] then
contl:=(y[i]l-z1[j-11):
elif z1[jl<=y[i] and z1[j]>=y[i-1]and
z1[j-11<y[i-1] then
contl:=(z1[j]-y[i-11):
else
cont1:=0:
fi:
Ali,3] :=cont1/(1/n):
elif y[il<v2 and y[i-1]>=v1 then
z2[j] :=fsolve(tau2(x)=p[j],x,0..1):
if z2[jl<=y[i] and z2[j]1>=y[i-1] and
z2[j-11>=y[i-1] and z2[j-1]<=y[i] then
cont2:=(z2[j]l-z2[j-11);
elif z2[j-1]<=y[i] and
z2[j-11>=y[i-1]and z2[j1>y[i] then

cont2:=(y[1]-z2[j-11);
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> elif z2[jl<=y[i] and z2[j]>=y[i-1]and

> z2[j-1]<y[i-1] then
> cont2:=(z2[j]-y[i-11);
> else

> cont2:=0;

> fi;

> A[i,j]:=cont2/(1/n);

> elif y[il<v3 and y[i-1]>=v2 then

> z3[j] :=fsolve(taud(x)=p[jl,x,0..1):

> if 2z3[jl<=y[i] and z3([jl>=y[i-1] and

> z3[j-1]>=y[i-1] and z3[j-1]<=y[i] then
> cont3:=(23[j]-23[j-11);

> elif z3[j-1]<=y[i] and z3[j-1]>=y[i-1]and
> z3[j]>y[i]l then

> cont3:=(y[i]-z3[j-11);

> elif z3[jl<=y[i] and z3[j]l>=y[i-1]and
> z3[j-1]1<y[i-1] then

> cont3:=(z3[j1-y[i-11);

> else

> cont3:=0;

> fi;

103



> Ali,jl:=cont3/(1/n):

> elif y[il<v4 and y[i-1]>=v3 then

> z4[j] :=fsolve(taud (x)=p(jl,x,0..1):

> if z4[jl<=y[i] and z4[jl>=y[i-1] and

> z4[j-11>=y[i-1] and z4[j-1]<=y[i] then
> contd:=(z4[j]-z4[j-1]);

> elif z4[j-1]<=y[i] and z4[j-1]1>=y[i-1]and
> z4[j]>y[i] then

> cont4:=(y[i]l-z4[j-11);

> elif z4[jl<=y[i] and z4[jl>=y[i-1]and
> z4[j-1]<y[i-1] then

> contéd:=(z4[jl-y[i-11);

> else

> cont4:=0;

> fi;

> A[i,j]:=cont4/(1/n):

v

elif yl[i]l<vb and y[i-1]1>= v4 then

> z5[j] :=fsolve(taub(x)=p[jl,x,0..1):

> if z5[j)l<=y[i] and z5[jl>=y[i-1] and

> 25[j-11>=y[i-1] and 25[j-1]<=y[i] then
> cont5:=(z5[j]-25(j-11);
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elif z5[j-1]<=y[i] and z5[j-1]>=y[i-1]and
z5[j1>y[i] then
cont5:=(y[1]-z5[j-11);
elif z5[j]<=y[i] and z5[j]>=y[i-1]and
z5[j-1]<y[i-1] then
contb:=(z5[j]-y[i-1]);
else
contb:=0;
fi;
Ali,j]:=cont5/(1/n):
else
z1[j]:=fsolve(taul (x)=p[j],x,0..1):
if z1[jl<=y[i] and z1[j]>=y[i-1] and
z1[j-11>=y[i-1] and z1[j-1]<=y[i] then
contl:=(z1[jl-z1[j-11):
elif z1[j-1]<=y[i] and
z1[j-1]>=y[i-1land z1[j]>y[i] then
contl:=(y[i]-z1[j-11):
elif z1[jl<=y[i] and z1[jl>=y[i-1]and
z1[j-1]<y[i-1] then

contl:=(z1(j]-y[i-11):
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else

contl:=0:

contll:=contl:
z2[j] :=fsolve(tau2(x)=p(jl,x,0..1):
if z2[jl<=y[i] and z2[jl>=y[i-1] and
z2[§-11>=y[i-1] and z2[j-1]1<=y[i] then
cont2:=(z2[j]-22[j-1]1);
elif z2[j-1]<=y[i] and
z2[j-11>=y[i-1]and 2z2[j1>y[i] then
cont2:=(y[i]-2z2[j-11);
elif z2[j1<=y[i] and z2[j]1>=y[i-1]and
z2[j-1]<y[i-1] then
cont2:=(z2[j]l-y[i-11);
else
cont2:=0;
fi;
cont22:=cont?2:
z3[j] :=fsolve(taud(x)=p[j]l,x,0..1):

if z3([jl<=y[i] and z3[jl>=y[i-1] and
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> z3[j-11>=y[i-1] and 2z3[j-11<=y[i] then

> cont3:=(z3[j]-z3[j-1]);

> elif z3[j-1]<=y[i] and z3[j-1]>=y[i-1]and
> 23[j1>y[i] then

> cont3:=(y[i]-z3[j-11);

> elif z3[jl<=y[i] and z3[jl>=y[i-1]and

> z3[j~1]<y[i-1] then

> cont3:=(z3[jl-y[i-11);

> else

> cont3:=0;

> # print(cont3);

> fi;

> cont33:=cont3:

> z4[j]:=fsolve(taud(x)=p[jl,x,0..1):

> if z4[jl<=y[i] and 24[jl>=y[i-1] and

> z4[j-11>=y[i-1] and z4[j-1]1<=y[i] then

> contd:=(z4[j1-z4[j-1]);

> elif z4([j-11<=y[i] and z4[j-1]>=y[i-1]land

> z4[jl>y[i] then
> contd:=(y[il-z4[j-11);

> elif z4[jl<=y[i] and z4[j]l>=y[i-1]land
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>

>

v

\'4

\

z4[j-1]<y[i-1] then
cont4:=(z4[j]-yli-11);
else
contd:=0;
fi;
cont44:=conté4:
z5[j] :=fsolve(taub(x)=p[j]l,x,0..1):
if z5[jl<=y[i] and 2z5([j]>=y[i-1] and
z6[j-1]1>=y[i-1] and z5[j~1]<=y[i] then
cont5:=(z5[j]-25[(j-11);
elif z5[j-1]<=y[i] and
z5[j-1]>=y[i-1]and 2z5[jI>y[i] then
cont5:=(y[i]-z5[j-11);
elif z5[jl<=y[i] and z5[j]>=y[i-1]and
z5[j-1]<y[i-1] then
cont5:=(z5[j]1-y[i-11);
else
cont5:=0;
fi;
contbb:=contbh:

Ali,j]:=(contil+cont22+cont33+contdd+cont55)/(1/n):
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fi:

od:

od:

print(4):
tt:=array(l..n):

for 1 from 1 to n do
suu:=0:

for j from 1 to n do

suu:=suu+A[i,j]:

od:
tt[i] :=suu:
od:
print(tt);

ottt sk sk o 3k Kok oK o o o K sk ok o SR KK R A K Kk ook
for i from 1 to n do

intwl11{i] ;=n*int (w11 (x) ,x=(i-1)*h..(h*i)):
od:
for i from 1 to n do

intw12[i] ;=n*int (w12(x) ,x=(i-1)*h..(h*i)):
od:

for i from 1 to n do
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intw21[i] :=n*int (w21 (x),x=(i-1)*h. . (h*i)):
od:
for i from 1 to n do

intw22[i] :=n*int (w22(x) ,x=(i-1)*h. . (h*i)):
od:
for i from 1 to 4 do

s[i] :=intwil[il+intwl12[i]:
od:
C:= array(1l..n,1..n):
for i from 1 to n do

for j from 1 to n do

if abs(i-j)=0 then

Cli,jl:=intwl1[i];

else
Cli,j]:=0;
fi:
od;
od;
print(C):

Di:= array(l..n,1..n):

for i from 1 to n do
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> for j from 1 to n do

> if abs(i-j)=0 then

> D1[i,j]:=intwl12[i]:
> else

> D1[i,j]:=0:

> fi:

> od;

> od;

> print(D1):

> E:= array(1..n,1..n):

> for i from 1 to n do

> for j from 1 to n do

> if abs(i-j)=0 then

> E[i,j]:=intw21[i]:
> else

> E[i,j]l:=0:

> fi:

>  od:

> od:

> F:= array(1..n,1..n):

> for 1 from 1 to n do
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for j from 1 to n do
if abs(i-j)=0 then
F(i,j]:=intw22[i]:
else
F[i,j]:=0:
fi:

od;
od;
with(linalg):
S11:=multiply(A,C):
S12:=multiply(4,D1):
S21:=multiply(B,E):
S22:=multiply(B,F):
S:=blockmatrix (2,2, [$11,512,521,822]);
ttt:=array(l..2*n):
for 1 from 1 to 2*n do
suuu:=0:
for j from 1 to 2*n do

suuu:=suuu+S{i, jl:
od:

ttt[i] :=suuu:
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od:
print(ttt);
with(linalg):
S := transpose(S):
H:= array(l..2+%n,1..2*n):
for i from 1 to 2*n do

for j from 1 to 2*n do

if abs(i-j)=0 then
H[i,j]:=1:
else
H[i,j]:=0:
fi:

od:
od:
T:= array(1l..2xn+1,1..2%n):
Ti:=evalm(S-H):
for i from 1 to 2*n do
for j from 1 to 2*n do

T[i,3]:=T1(i,j]:

od:

od:
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>

for j from 1 to 2*n do
T[2*n+1,j]:=1:
od:
print(T):

b := array(l..2*n+1):

for i from 1 to 2*n do
b(i] :=0:

od:

b[2*n+1] :=2%n:
print(b):
sol:=array(1..2*n):
sol:=evalf (leastsqrs(T, b));
summ:=0:

for i from 1 to 2*n do
summ: =summ+sol [i] :

od:

print (summ) :
density:=array(l..n):

for i from 1 to n do

density[i] :=n*(sol[il+sol[n+i]):

od:
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print(density):

1]
o

summm :
for i from 1 to 2*n do

summm: =summm+density [i] :

od:

summm: =1/n*summm :

for i from 1 to n do
density[i]:= density[i]/summm:
od:

print(density):

u2:=vector([.94663, 1.0534]);

ud:=vector([.91665, .98045, 1.0431, 1.0597]);
u6:=vector([.91692, .93533, 1.0199, 1.0325,
1.0389, 1.0563]);

u8:=vector([.90513, .93438, .94763, 1.0498,
1.0308, 1.0362, 1.0438, 1.0525]);
ul0:=vector([.89651, .91135, .94740, .96240,
1.0785, 1.0236, 1.0318, 1.0422, 1.0488, 1.0567]);

ul2:=vector([.89700, .90396, .92004, .96100, .96921,
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1.1037, 1.0245, 1.0322, 1.0375, 1.0425, 1.0522, 1.0563]);
ul6:=vector([.89997, .90666, .91107, .91457, .93972,
.98422, .98753, 1.1537, 1.0203, 1.0262, 1.0297, 1.0324,

1.0374, 1.0487, 1.0528, 1.0545]);
u32:=vector([.89550, .90166, .90441, .90841, .90991,
.91270, .91505, .91780, .92270, .95750, .98034, .98209,

.98950, .99195, 1.1449, 1.1645, 1.0171, 1.0194, 1.0209,

1.0223, 1.02568, 1.0283, 1.0353, 1.0368, 1.0393, 1.0402,

1.0466, 1.0487, 1.0513, 1.0527, 1.0593, 1.0583]);
ub4:=vector([.89508, .89766, .89906, .90195, .90727,
.90688, .90852, .91063, .91125, .91195, .91375, .91438,

.91508, .91617, .91852, .91969, .91797, .92148, .94016,

.96266, .97086, .98438, .98875, .98914, .99070, .99297,

.99234, .99172, 1.1263, 1.1678, 1.1691, 1.1711, 1.0171,

1.0207, 1.0175, 1.0202, 1.0205, 1.0228, 1.0199, 1.0239,

1.02561, 1.0259, 1.0223, 1.0288, 1.0326, 1.0351, 1.0333,

1.0341, 1.0376, 1.0422, 1.0398, 1.0402, 1.0409, 1.0467,
1.0420, 1.0473, 1.0484, 1.0519, 1.0514, 1.0543, 1.0547,
1.0583, 1.0562, 1.0585]);
ul28:=vector([.88614, .89122, .89169, .89493, .89833,

.89848, .90005, .90548, .91641, .S0223, .90708, .90801,
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> .90704, .90962, .90817, .90813, .91219, .91134, .91122,
> .91184, .91641, .91016, .91044, .91497, .91423, .91348,
> .90887, .91606, .91762, .92102, .92243, .92544, .91801,
> .91782, .92258, .92239, .93504, .93778, .94356, .96274,
> .97082, .98453, .98996, .99398, .99227, .99121, .99348,
> .99320, .99418, .99633, .99539, .99844, .99570, .99352,

> .99922, .99844, 1.0931, 1.1702, 1.1839, 1.1878, 1.1801,

A\

1.1822, 1.1854, 1.1864, 1.0348, 1.0328, 1.0300, 1.0330,
> 1.0248, 1.0214, 1.0133, 1.0151, 1.0119, 1.0132, 1.0143,
> 1.0221, 1.0175, 1.0197, 1.0219, 1.0182, 1.0189, 1.0203,
> 1.0227, 1.0297, 1.0202, 1.0233, 1.0229, 1.0231, 1.0311,

> 1.0314, 1.0265, 1.0334, 1.0237, 1.0262, 1.0282, 1.0301,

v

1.0304, 1.0352, 1.0311, 1.0406, 1.0385, 1.0343, 1.0338,

v

1.0368, 1.0375, 1.0365, 1.0386, 1.0454, 1.0424, 1.0399,

\%

1.0606, 1.0650, 1.0572, 1.0513, 1.0519, 1.0517, 1.0474,

v

1.0478, 1.0496, 1.0533, 1.0471, 1.0500, 1.0529, 1.0572,

v

1.0518, 1.0519, 1.0538, 1.04991);

> u:=u4:v:=u8:summ{0] :=0:for i from 1 to 4 do
> summ[i] :=summ[i-1]+abs(uli]-v[2*i-1])+abs(uli]~-v[2*i]):

> od:
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summ [4]/8;

u:=u8:v:=ul6:summ[0] :=0:for i from 1 to 8 do

summ[i] :=summ[i-1]+abs(u[i]-v[2*i-1])+abs(u[i]-v[2*i]):
od:

summ [8] /16;

u:=ul6:v:=u32:summ[0] :=0:for i from 1 to 16 do

summ [i] :=summ[i-1]+abs(uli]-v[2%i-1])+abs(uli]-v[2*i]):
od:

summ [16]/32;

u:=u32:v:=ub4:summ[0] :=0:for i from 1 to 32 do

summ [i] :=summ[i-1]+abs (uli]-v[2*i-1])+abs(uli]-v[2*i]):
od:

summ [32] /64;

u:=u64:v:=ul28:summ[0] :=0:for i from 1 to 64 do

summ{i] :=summ[i~1]+abs (u[i]-v[2*i-1])+abs(u[i]-v[2*i]):
od:

summ{64]/128;

plot([[4,.21715e-1],[8,.18718e-1], [16,.39488e-2], [32, .31073e-2]1);
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