IMPLEMENTING VISUAL QUERIES
AND PRESENTATIONS WITH BLOBS

XUEDE CHEN

A THESIS
IN

THE DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE AT
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

DECEMBER 2004

© XUEDE CHEN, 2004

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04441-1
Our file Notre référence
ISBN: 0-494-04441-1
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mr. Xuede Chen

Entitled: Implementing Visual Queries and Presentations with Blobs

and submitted in partial fulfillment of the requirements for the degree of
Master of Computer Science

complies with the regulations of this University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

Chair

Examiner

Examiner

Supervisor

Approved by

Chair of Department or Graduate Program Director

2004

Dr. Nabil Esmail, Dean
Faculty of Engineering and Computer Science

ABSTRACT

Implementing Visual Queries and Presentations with Blobs

Xuede Chen

Diagrammatic Query Tool (DQT) is a visual data query and presentation interface
that helps better exploit and understand large, complex collections of data.

This thesis describes the design and implementation of the graphical user interface
of DQT with focus on blob support for query construction, blob support for result
visualization, automatic translation of query results into DOT format, and presentation of
query results with clarity.

The implementation of Blobs enables DQT to support the full representative
capability of hygraphs and the complete set of Graphlog. With Blob support, users can
generalize collections of relationships between one entity and one set of related entities,
which makes the construction of queries and visualization of query results more clear,
and therefore enables the users’ to recognize and discover interesting patterns more easily
and intuitively.

Graphviz is used to layout query results. Query results must be in the DOT format
for Graphviz to produce layouts. Automatic translation of query results into DOT-format
graphs has been implemented. This work makes DQT usable by users who do not have
knowledge of TGL and DOT.

Clarity of result layout and presentation has been achieved by assigning layout
properties at the schema level, providing a legend graph for the query result graph and

ranking objects in the result graphs.

it

Acknowledgements

Many thanks to my supervisor, Dr. Butler, for his great support and advice on the thesis

work, as well as his understanding during the past several years.

Special thanks to Ms. Yue Wang for her solid foundation work and for her wonderful

help during the thesis project.

Thanks to Dr. Grogono and Dr. Rilling for their valuable comments on the thesis that

help to improve its quality.

Thanks to Ms. Halina for her help and reminders that I have received during the years.

Thanks to the Graduate Program Directors and all the instructors and staff who have

taught and/or helped me during my studies at Concordia.

v

Table of Contents

List of Figures

1. Introductioncccccceiiiieiiiiiiiiiieiiiiiiiiiieiiiieieiiicaeireeetecaennes 1
1.1 Motivation
1.2 DQT Overview
1.3 DQT in the Know-It-All Framework
1.4 Intended Applications to Bioinfomatics
1.5 The Sate of DQT Developement

1.6 The Thesis Work

2. Backgroundccieeiiiiiiiiiiiiiiiiiiiiiiiiiiiintisieiititiiiissentensennns 11
2.1 GraphLog Language
2.2 Hy+ System
2.3 Other Systems for Diagrammatic Queries
2.4 Java Swing and Java 2D
2.5 TGL
2.6 Graphviz o

2.7 The University Database for Case Study

3. Supporting Blobs in Visual Queriescccicevvivirincniiniinicererienens 33
3.1 Visual Queries with and without Blobs
3.2 Defining Blobs with DQT
3.3 Defining New Relations and Queries with Blobs

3.4 Implementation

4. Visualizing Blobs in Query Resultsccccceiiiiieiiniiiiiiiieniaeiinnns 49
4.1 Cluster and Its Visualization in Graphviz
4.2 Visualizing Blobs using Graphviz

4.3 Implementation

5. Translating and Presenting Query Resultsccccovevinviiniiiinnnnes 57
5.1 Graphviz Java API
5.2 Presenting Query Results with Clarity

5.3 Automatic Translation of Query Results into DOT Graphs

6. CONCIUSIONS trvrrrreieiirereeeeessssecesesssssesscesescssessssssssnseanssescessss 72

References

Appendices

vi

List of Figures

Figure 1: DQT: Diagrammatic Query Tool for Graph databases 4
Figure 2: DQT as a User Interface in the Know-It-All Framework 6
Figuré 3: Hygraph for the NIH Class Hierarchycooiiin 13
Figure 4: Blob Representation of a Hygraphc.ooiiiiiiiiiiiiiiiiiin 13
Figure 5: Displaying the Class Hierarchy ..o 15
Figure 6: Defining and Showing all subclasses of Collection 16
Figure 7: Obtaining the Set of Subclasses of Collectioncooiiiiil 17
Figure 8: A Hy+ Screen for the NIH Scenarioccooceiiiiiiiiiiiiiiiiinininnnn., 18
Figure 9: Hy+ Architecture OVEIVIEWcoiiiiiiiiiiiiiiiiiiiniiniieieieaenenen 19
Figure 10: Overview of Data Visualization Systemscooeiiiiiiiiiiinnennenn.. 20
Figure 11: Swing Components Used in DQT ..., 24
Figure 12: TGL QUETry StruCtureco.viitiiiiiii i i cee e 25
Figure 13: TGL Result Structurecoooiviiiiiiiiiiiir i 26
Figure 14: Grammar of the DOT Languagecocoviiiiiiiiiiiiiiniiiiiiiiiann, 28
Figure 15: A Simple Graph in DOT Format and Its Layoutcoouiee 29
Figure 16: The University Database Schemacooviiiiiiiiii s 31
Figure 17: The System Scheme File shared with lower layer system 31
Figure 18: The University Database Instancecocoeiiiiiiiiiniininennnn., 32
Figure 19: Example Query and Results without Using Blobs 34
Figure 21: Blobs in TGL ..ot e 38
Figure 22: Process Diagram with Clusterscooeiiiiiiiiiniiiiiiiiiiieienen, 42

Vit

Figure 23: The Visual Blob Pattern ... e 43

Figure 24: Represent the Visual Blob Pattern in DOT ... 44
Figure 25: Visualization of ABIOb ..., 45
Figure 26: Generating Property Mapoccoviiiiiiniiiiiii e 49
Figure 27: Visualizing Query Result with Legendcoo 51

viii

1. Introduction

1.1 Motivation

Data query and presentation play a fundamental role in helping users solve complex,
information-intensive problems in scientific, engineering and business applications.
However, the database query languages, such as SQL, are difficult for non-database-
experts to use. Untrained users often find database query interfaces frustrating and even
trained database users frequently have difficulty analyzing the results of queries. Despite
about 30 years of research in this area, these problems still persist. Making databases
easier to use, and thereby more accessible, is an important issue today and will become
more important as database technology becomes faster, cheaper, and more powerful {1,
2].

Graphical visualization of data queries and presentations is more intuitive and more
effective for users who are domain-specific experts but not technical database experts.
Scientific visualization has been very successful in enhancing the ability of people to
understand quantitative multi-dimensional data sets [3, 4]. Graph drawings are one of the
best ways to present technical information and are particularly appropriate for showing
relations between objects. Research has recently been active in graph-based browsing and
querying of relationships of abstract, structured data [5, 6,7, 8,9, 10, 11, 12, 13, 14].

A visualization formalism based on graphs has been developed at the University of
Toronto, which includes the hygraph data model and the GraphLog query language [8, 9,
15]. Hygraphs are graphs augmented with blobs. In hygraphs, nodes represent entities

and are labeled by identifiers and attributes (encoded as first-order form); edges represent

relations and are labeled by path expressions on relationships that optionally carry
additional arguments (encoded as literals). A blob relates to a containing node with a set
of contained nodes; it replaces all the edges that would otherwise connect the container
node of the blob with each of the nodes contained in the blob. In short, a hygraph has
nodes that represent objects, and has both edges and blobs to represent relationships
among those objects. GraphLog is a graph query language using hygraphs as the
underlying data structure. GraphLLog supports aggregate operators (in particular, recursive
aggregation or transitive closure) and path expressions (similar to regular expressions).
Therefore it is more expressive than SQL. In GraphLog, there are two kinds of queries:
filter and define. Filter queries request a subset of the database facts to be retrieved;
define queries create new relationships from the existing data. The visualization
formalism was implemented as the Hy+ system [9]. Hy+ allows users to compose
graphical queries in GraphLog and view the query results in hygraphs. However, the Hy+
system has not been deployed in real applications although the underlying visualization
formalism is sound and powerful. One of the major reasons is that Hy+ is based on an old
Smalltalk environment.

A project has been established at Concordia University to design and implement a
practical diagrammatic query tool, called DQT [16]. The project has been motivated by
the evolution of technologies, the case study of the Know-It-All framework, and the
demand of real applications: (1) The art of design of graphical user interfaces (GUI) has
evolved much since Hy+ was implemented in early 1990’s. Java is becoming more and
more popular in the development of user interfaces. Java, as a pure object-oriented

programming language, offers the benefits of platform independence and look-and-feel

support, while absorbing the advantages of C++ constructs and the Smalltalk
environment [17]. We are interested to design and implement a Hy+-like system based on
GUI design principles and the Java platform. (2) The Know-IT-All project, which has
been underway at Concordia University since 1997, is investigating methodologies for
development, application, and evolution of frameworks. A concrete framework for
database management systems is being developed as a case study for the research on
methodologies. A diagrammatic query and visualization user interface is required for the
case study. (3) Bioinformatics is the driver for many of the discoveries from genomics.
Data management, access, and mining are at the heart of bioinformatics. In order to
enable scientist to more easily query and better visualize bioinformatics data, a
diagrammatic query and presentation tool is required by the research project on

bioinformatics at Concordia University.

1.2 DQT Overview

The Diagrammatic Query Tool (DQT) is a visualization and query tool for databases
based on the hygraph and GraphLog formalisms. It uses the hygraph data structure and
the GraphLog query language. The tool can help users better exploit and understand
large, complex collections of structural data. DQT GUI uses the TGL Translator to work
with the CORAL deductive engine and the underlying (relational, object-relational, or
object) database systems. The system architecture is shown as Figure 1.

DQT provides users with a graphical interface to allow users to open and view

schemas, to edit and submit Graphl.og queries, and to browse the results of queries. The

TGL Translator is responsible for translating the user queries in GraphLog into logic
programs acceptable to CORAL, and translating the results back to hygraph. The TGL
Translator provides services for DQT GUIL

CORAL is a deductive engine [18]. CORAL evaluates logic programs against the
underlying databases to deduce the facts that satisfy the conditions and rules defined by
the logic programs. The underlying databases for CORAL could be relational. In our
case, the underlying database platform is the MySQL database system.

The work in this thesis focuses on the design and implementation of the DQT GUI.

s
e aon.

queryResultxoml

i & tempQuery.xml
~mg gy *

=
Fa g

TGL Translator ‘ J

- e H
CORAL query resultg -k iw" COBRAL query

CORAL Client]

Socket (TCP/IP)

-
N
%
@

9"

CORAL Server

L

Default Workspace

Hagan 5 ‘;.'«E

oy Relations

5 IEEgEss.

RDB Workspace

T
et e
H :

: Relational tables

TR,

MySQIL,
Data Storage

Figure 1: DQT: Diagrammatic Query Tool for Graph databases [23]

1.3 DQT in the Know-It-All Framework

Know-It-All is an object-oriented framework for database management systems [16].
The Know-It-All framework has three sets of aims: (1) to research methodologies and
models for framework development, application, and evolution; (2) to develop a |
framework for database management systems, supporting a variety of data and
knowledge models, integration of different paradigms, and heterogeneous databases; (3)
to apply the Know-It-All framework to advanced applications for bioinformatics. For all
the three aims, graph databases and graph query languages are one of the most important
paradigms in the framework

DQT and GraphLog views will be integrated into the Know-It-All framework for
databases. DQT will be an important user interface to enable users to query databases in
GraphLog and browse the results of queries in the form of hygraphs. GraphLog and
hygraphs will be implemented as a VIEWDB subclass of relational, object, or object-
relational databases. CORAL is used as the deductive engine between DQT and the
underlying databases for the moment, but this will be de-coupled when the intended
hygraph databases and facilities are in place. Then DQT will evaluate queries in

GraphLog directly against the hygraph databases (see Figure 2).

Schema

=

Graphlog,

GraphLog View DB

Coral

Coral ViewDB - r————— optimize Coral

Relational Algebra

Relational Conceptual DB

schema

Relational Algebra

optimize use of
Relational Logical DB r————— indexes

v

Relational Physical DB

multidimensional
indexes

——
——

Figure 2: DQT as a User Interface in the Know-It-All Framework

1.4 Intended Applications to Bioinformatics

Data management, access and mining are at the heart of bioinformatics. Most data
access today in genomics is provided by point-and-click interfaces on icons for canned
queries, or by filling in forms for parameterized sets of canned queries, or by SQL-like
textual notations for more advanced or flexible querying. These are solutions tailored to

the underlying database technology, rather than solutions tailored to the scientists.

Untrained users often find database query interfaces frustrating and even trained database
users frequently have difficulty analyzing the results of queries. Diagrams are a more
intuitive way for scientists to pose queries to relational, object-relational, and object
databases. Diagrammatic queries are particularly appropriate for interactions as found in
databases for metabolic pathways, protein-protein interactions, and gene regulations.

In addition, while relational databases are the accepted standard within industry
[19], there has been considerable research into deductive databases and graph databases
to extend the capabilities of relational databases. Deductive databases allow a view,
called the intentional database, to be defined using logical rules, and allow logical
queries against the view. Since the rules allow recursive definitions, the resulting
expressive power of the query language is greater than ordinary relational databases.
Graph query languages are even more expressive, while having the very important
property of a visual representation.

DQT is a GraphLog-based diagrammatic query tool. It is intended to apply DQT to
bioinformatics. It allows for a broader range of queries, from very simple queries to the
very complex ones. It also presents the query results in graphs that are easier
comprehendible by the genetic scientists than SQL-like languages or form-based queries.

DQT will be an elegant tool for data mining in bioinformatics.

1.5 The State of DQT Development

The DQT project has been developed incrementally since initiated by Dr. Butler in

Spring 2001. The goal setting, requirements analysis, and architectural design have been

conducted [16], and a simple GUI prototype has been developed during Summer 2001
[20]. The development of the CORAL interface and GraphLog translation component,
which bridges the DQT GUI component and CORAL system, has been completed by
2003 [21, 22]. And a working version of DQT without Blob support or result translation
has been available and applied to visual queries of a graph database for genomics by
early this year [23]. So far, the DQT GUI allows an end user to import a database
schema, define new relations and construct queries by drawing graphs that conform to
Grapglog, but consist of nodes and edges only, no blobs. The GUI will capture the user’s
query along the new definitions if any in TGL format and route them to TGL Translator,
in turn, to CORAL, for evaluation. Then query results are manually translated into graphs
in the Graphviz DOT language so that the query results can be visualized by calling
Graphviz, and presented to the user as images.

The DQT GUI currently does not support blobs, which are the essential difference of
hygraphs from ordinary graphs and important parts of GraphLog. And DQT currently
does not provide automated translations of query results from TGL into Graphviz dot
graph — currently this must be done manually and limited to maximum three nodes in the
results. In addition, it is also desired to integrate Graphviz into DQT to make the query

and presentation process more streamlined, therefore friendlier to users.

1.6 The Thesis Work

The thesis is to enhance the functionality of DQT by providing blob support in query
construction and result presentation, implementing automated translation of query results

into Garphviz DOT graph, and streamlining the query and presentation process.

Blobs, as hygraphs’ extension to graphs, are generalizations of edges and can be
used to cluster related nodes together. A blob in a hygraph represents a relation between a
node, called the container node, and a set of other nodes, called the contained nodes. A
blob replaces all the edges that would otherwise connect the container node of the blob
with each of the nodes contained in the blob; that is, it modularizes the set of contained
nodes and their associations with the container node. Blobs can help reveal interesting
characteristics of data while avoiding distractions and irrelevancy, and provide
effectiveness and clarity in construction of graphical queries and visualization of query
results; therefore help the users discover interesting patterns more easily and intuitively.
Blob support in DQT is very important for the project on genomics. One of the major
tasks in this thesis is to provide blob support in DQT, including supporting users to
construct new relations and queries with blobs, capturing the user queries and translate
them into TGL, and formulizing query results with blobs and visualizing the results using
Graphviz. This work will enable DQT to have a full support for Hygraph and GraphLog
paradigm.

Graphviz has been chosen for layout of the query results. To make it work, DQT
must provide the functionality of automatically translating query results in TGL format
into the dot graph format, which is the format Graphviz takes as input. It is unlikely for
non-Graphviz and non-TGL experts to use DQT without this functionality. This thesis
will enhance DQT’s functionality and streamlines the query and presentation process
with automated translations and integration of Graphviz into DQT.

The thesis will summarize the background knowledge and context in Chapter 2,

present the design and implementation of constructing new relations and queries with

blob support in Chapter 3 and the approach of visualizing blobs with Graphiviz in
Chapter 4, and describe the automatic translation of query results for visualizations in

Chapter 5. The conclusions will be drawn in Chapter 6.

10

2. Background

DQT is a diagrammatic query tool based on GraphLog and hygraph. DQT captures
and translates user queries into TGL (Transferable Graphical Language), and visualize
the query results with Graphviz. Java Swing and Java 2D are used for the implementation

of DQT. In this chapter, we summarize the required background knowledge.

2.1 GraphLog and Hygraph

GraphLog is a graph query language based on hygraphs [8]. It was originally
developed in the Hy+ system at the University of Toronto and has shown many
advantages over other paradigms. The language is very suitable for querying and
visualizing structural data [15].

A hygraph is a hybrid between Harel’s higraph [24] and directed hypergraphs [25]
(and hence the name); it extends the notion of a graph by incorporating blobs in addition
to edges. In hygraphs, nodes represent entities and are labeled by identifiers and
attributes (encoded as first-order form); edges represent relations and are labeled by path
(regular) expressions on relationships that optionally carry additional arguments (encoded
as literal). A blob relates a containing node with a set of contained nodes; it replaces all
the edges that would otherwise connect the container node of the blob with each of the
nodes contained in the blob. Blobs are diagrammatically represented by a closed curve
that is associated with the container node and that encloses the contained nodes. Figure 3

is a hygraph for the NIH class hierarchy; Figure 4 shows a partial hygraph of the

11

hierarchy and its representation by blobs. In short, a hygraph has nodes that represent
objects, and has both edges and blobs to represent relationships among those objects. For
completeness, here is a formal definition of hygraphs [15].
Definition 1: A hygraph H is a septuple

(N,Ly,v,Lg,E, Lg,B)
where: N is a finite set of nodes; Ly is a set of node labels; v, the node labeling function,
is a function from N to Ly that associates with each node in N a label from Ly; Lg is a set
of edge labels; E c N XN x Lg is a finite set of labeled edges; Lg is a set of blob labels;
and B N x2" xLg is a finite set of labeled blobs.

A restriction is placed in the labeled blob relation B to ensure that there is only one
tuple (n, N, I) in B with the same values for the container node n and the blob label [(i.e.,
the container node and blob label values functionally determine the value of the set of
contained nodes N, so B can be considered as a function B: N xLg — 2y). [

GraphLog is a graph query language using hygraphs as the underlying data
structure. A GraphLog query is a finite set of hygraphs. There are two kinds of queries:
show and define. A show query requests a subset of the database facts to be retrieved; a
define query creates a new relationship from the existing data. Formally, GraphLog
define queries are hygraphs with no isolated nodes having the following properties:

(i) the nodes are labeled by terms,

(ii) each edge and blob is labeled by a literal (either an atom or a negated
atom) or by a closure literal, which is simply a literal s followed by the
positive closure operator, denoted s*, that can only appear between nodes

labeled by sequences of the same length, and

12

as{ NAMOLY

chasis! Exrention Tes
%h fass lFxmwxm eip) b o

6 THOnikin'y

o 42
heliss! Stoealn T
Tokass! Ok}
Tolass! RawdFror Th)
Tolass! FLISntRal}
Telual (N}
Tt
L Botass{ Catch')
fasst ExcapionietionTE Y

et A

i

wolagsl Liokedlisty
Felass{ Heap's

T okgal Stack')

(et ')

)

“eltalassd
e, Crclasst Bittiaaed)
e ohasst N}
“,, classt HRTMor)
g s, P v T S
;’i wetidass] SlackPros')

cmsse‘?is:as‘)

Diassl Lkl

class{ Sharedugie’}
Fohassf FOGL
ohased Date™

Tokagst ey
slarss{ Reciaigie)
| Drolass{Hange’y

lags] Fandan)

Letasas Hugex

el ihulasst Associnl}

elletagsC As o'

tssiostranmm withogsign)

=

"KeySerising

Figure 3: Hygraph for the NIH Class Hierarchy [15]

sasntios}

AN

%ﬁass{io&)

slass{isteam_withagsign} aiboings

subclags Chosssiostream)

Substags

sass{istream}

subclazs \5\

ﬁesubctass

Chpiassiicsteamy

[hratassiosraam_withassign)

classliostrasmy
Chetassiistrenny
S, subclass
{sunciass %.,\ﬁ
classiastreanm)
’\g “ubtlass sy
subclass & [zubclass
\\ \@cmﬂs{msm&am_wilhassagn}
class{ostream)
hﬁ\ Cheolassiiostream withassign)
subGlass
[stassiistream_ withassigr)
class{ostraam_withassign}

Figure 4: Blob Representation of a Hygraph [15]

13

(iii) there are one or more distinguished edges and blobs (drawn thicker),
which can only be labeled by positive non-closure literals.
In addition to the usual operators for positive and Kleene closure, optional (i.e., the
operator ? denoting zero or one occurrence), alternation, and concatenation, two new
ones are defined: inversion reverses the direction of the edge or blob labeled by the
regular expression, and negation negates the predicate defined by its argument.
GraphLog show queries are analogous to define queries, except that:
(i) nodes can also be distinguished (and they have a special unary predicate
associated with them, hence isolated nodes are allowed), and
(ii) non-negated path regular expressions can label distinguished edges and
blobs.

To summarize the syntax of GraphLog, a term is either a constant, a variable, an
anonymous variable (an underscore), or a function f applied to a number of terms. Nodes
are labeled by terms. Edge or blob labels are expressions generated by the following
grammar [15]

E —)E|E; E-E,-E;,—E; (E); E+; E*; E?;, S
where § is any literal of the form p(¢, ..., t,) and t;, 1 <i < n, are terms.

A simple GraphLog query that displays the class hierarchy is shown in Figure 5. The
pattern consists of a thick edge labelled subclass between two nodes labeled
class (C1l) and class(C2), enclosed in a box labeled showGraphLog. The
meaning of the show pattern is: match all facts of the form subclass (C1,C2) and

display them as edges. The symbols C1 and C2 starting with capital letters are used (in

14

.
showGranhlog

yersssica)

Figure 5: Displaying the Class Hierarchy [15]

the logic programming tradition) to denote variables. Consequently, all possible subclass
edges are displayed, producing the visualization of the NIH class hierarchy shown in

Figure 3.

An example of a define query is presented in the leftmost box in Figure 6. The
pattern consists of two nodes labeled class (C1l) and class (C2) and two edges
connecting them, labeled subclass+ and all subclass. Thickness is used to
distinguish edges, therefore the edge labeled all subclasses is known as a
distinguished edge. The meaning of the define query is: First, match the transitive closure
of the subclass relation, as indicated by the non-distinguished edge labeled subclass+
(where + is the closure operator). Second, for each pair of classes in the transitive closure
of the subclass relation create a new edge labeled all subclasses between them. An

all subclasses edge directly connects each class to all of its subclasses (both

15

direct and indirect). These newly defined edges are then considered to be part of the
current database. The show box to the right of Figure 7 is to display the

all subclasses edges just defined that originate at class (*Collection’).

& n
delinedraghlog shieapnlog

g N : Rlletassg Cotertinn)

Al sabwlzssey

s all_ssbolasses
sk

", Srehssis
Eretmssing

Figure 6: Defining and Showing all subclassesof Collection [15]

The show pattern in Figure 7 has a distinguished node (labeled class (C2)), but
the edge is not thicker. This illustrates how distinguished elements in show patterns are
used to identify which objects from the matched pattern should be displayed in the
answer, while leaving out the non-distinguished portions (in this case the remaining node
and edge). Consequently, the result is simply a list of classes.

GraphLog has higher expressive power than SQL; in particular, it can express, with
no need for recursion, queries that involve transitive closures or similar graph traversal
operations. The language is also capable of expressing first order aggregate queries as

well as path expressions [15].

16

» Crcinaseap')
showEraphibog

Crolass Koy SonCEn’
L clags¢ Cotlection”) Lot ctama{ CrroloradCn
£
% %class{“.ﬂrrﬂv(}b’}

= LI elnas{ Linkedlist}
%
%

* [rclass{ SoredGitn’}
%
P .
4 s Cipsgs I%(e ass{ Saq e’
* Croiass(Stacky
%
[asscczs L ctasst Dictionary)
Crcmss Bag’)

L cimas{ Arrayckar'

ﬁamutﬁtapﬁ Loy bosriersrt ol Trase, gl %tﬁaﬁ&{’ldm\ts@m
L class{ idnatbNct’)

Crotass{ Sot'y

Figure 7: Obtaining the Set of Subclasses of Collection [15]

2.2 Hy+ System

Hy+ allows users to compose graphical queries in GraphLog and view the query
results in hygraphs [9]. Figure 8 shows a screen shot of a Hy+ session. The top leftmost
window (labeled Hy+) is used to control the Hy+ environment and open other windows.
One of them is a Hy+ File List, from which the user can open different editors on the
contents of files. The window labeled File Editor shows six facts from the NIH database
mentioned above. The same facts are displayed in the bottom left window by a Hy+
browser that has extensive facilities for interactively editing hygraphs. Hy+ assigns colors
to edges based on the predicates in the edge labels and different icons to nodes based on
the functions labeling the nodes. The Hy+ Palette Editor and Hy+ Icon Editor windows in
the bottom right corner of the screen let the user select the colors corresponding to the

predicates from a palette and pick icons for the functors by grabbing an image from

17

anywhere in the screen. Color-coding relations and assigning different icons to nodes
based on the objects they represent, are capabilities that Hy+ makes directly available to
end users from customizing the hygraph visualizations to the semantics of the

application.

ares ARy gl

B o o e e

Figure 8: A Hy+ Screen for the NIH Scenario [15]

An overview of the Hy+ system architecture is given in the diagram in Figure 9. In
Hy+, visualizations are based on a graphical formalism that allows comprehensive
representations of databases, queries, and query answers to be interactively manipulated.
Hy+ accepts graph queries represented by GraphLog, translates them into logic programs
suitable for execution by one of the backend engines: the logic programming language
LDL and the deductive language CORAL, and presents the results in hygraph. Hy+ are

implemented by twelve categories of classes in Smalltalk.

18

Hygraph Editor

Textual Label Editor
Internal Layout Functor Icon Map
_>7External Layout Predicate Color Map

\ Visual Attribute

XL C++, Inetmap

\ Panorama

Parser

GXF Reader/Writer Query Translation
Facts Reader/Writer —> Answer Management / Coral
Backend Communication Z LDL, Prolog, Pat

_)~ J

Figure 9: Hy+ Architecture Overview [15]

Hy+ has implemented the hygraph and GraphLog visual formalism of structural
data and demonstrated its applications to large scale software engineering, network
management, and distributed and parallel debugging. Graphlog is more expressive than
SQL. However, the old Smalltalk environment might have limited further applications of

Hy+ system to other areas.

2.3 Other Systems for Diagrammatic Queries

Several other database languages or systems have also used graphs as their
underlying data structure and have aimed to provide a uniform approach to representing,

querying and, possibly, updating both schema and data [10, 11, 12, 13, 14]. An overview

19

of the systems, along with the Hy+ system, is presented in Figure 10. Among these
systems or languages, the Hyperlog language [14] and its hypernode model are more

comparable to Graphlog and hygraphs of Hy+ [8, 9].

System or Data User Query Result
Language Model Query Evaluation Presentation
GOOD Single flat directed graph Graphs Graphs Graphs
G-Log Single flat directed graph Graphs Rule-based Graphs
Gql Single flat directed graph Graphs Textual language Textual output
Hyperlog Hypernodes (nested graphs) Template set Rule-based Hypernode set
Hy+ or Hygraphs (augmented Hygraph Logic program Hygraphs
GraphLog graphs with blobs) patterns

Figure 10: Overview of Data Visualization Systems

GOOD, G-Log, and Gql regard a database as a single flat directed graph. Nested
graphs are not allowed in these languages. In GOOD [10], queries are graphs, which
match subgraphs of the database graph, and programs consist of sequences of patterns.
G-Log queries are also graphs, but the query evaluation is based on ordered rules [12].
Gql provides a graphical representation of queries, which are translated into a textual
database language for evaluation [11]. The output to a Gqgl query is the textual output of
the underlying textual query, rather than a set of graphs.

Hyperlog [14] allows nested graphs as hypernodes, while Hy+ uses blobs for that. In

Hyperlog, a query is a set of templates, which are translated into a set of literals of three

20

predicates, hypernode(-), node(-,-), and edge(-,-,-), and are to be matched against a
selected domain of the database. The result of the query is a set of hypernodes obtained
by applying each match for the query to its set of templates. A Hyperlog program is a set
of rules. The evaluation of program consists of repeatedly matching the bodies of its rules
against the current database state and updating this state with the information inferred
until no more new information is inferred.

Comparatively, GraphLog is a more powerful, intuitive diagrammatic query

language.

2.4 Java Swing and Java 2D

Java Swing is a graphical user interface component kit, part of the Java Foundation
Classes (JFC) integrated into Java 2 platform. Swing simplifies and streamlines the
development of applications by providing a complete set of user-interface elements
written entirely in the Java programming language [17].

One of the most important capabilities of the Swing toolkit is its pluggable look and
feel (PL&F) -- a feature that it lets developers choose the appearance and behavior (or the
look and feel) of the windowing components. Swing’s look and feel standards promote
flexibility and ease of use in cross-platform applications. The Swing toolkit provides a
default set of look-and-feels, which includes three basic looks: Cross Platform
(Java/Metal), CDE/Motif (Sun), and Windows (Win32). (A Mac L&F for Macintosh
systems is also available, as a separate download). With Swing’s PL&F capabilities,

developers can explicitly specify which look will be used, or get the actual class name

21

and make the application have the native look and feel for whatever platform the user
runs the program on. If a program does not specify a look and feel or the specified look
and feel is not available on the user’s computer system, Swing’s default behavior is to use
the Java (Metal) look and feel. Furthermore, Swing also allows developers to create their
own customized Swing components — or even complete sets of customize Swing
components — that can have any kind of appearance and behavior that the developer can
dream up.

Swing components are lightweight. Swing components do not use any platform-
specific implementation. Instead, Swing creates its components using pluggable look-
and-feel modules that are written from scratch and do not use any platform-specific code
at all. Consequently, Swing components use fewer system resources and produce smaller
and more efficient applications than their heavyweight AWT counterparts. Some of the
Swing components used by the DQT GUI are listed in Figure 11.

Java 2D extends the graphics and imaging classes defined by java.awt, with an
API (Application Programming Interface) for two-dimensional graphics, as part of JFC
and part of Java 2. The Java 2D API is a set of classes for advanced 2D graphics and
imaging, encompassing line art, text, and images in a single comprehensive model. The
Java 2D API provides

¢ A uniform rendering model for display devices and printers
e A wide range of geometric primitives, such as curves, rectangles, and ellipses and
a mechanism for rendering virtually any geometric shape

¢ Mechanisms for performing hit detection on shapes, text, and images

22

e A compositing model that provides control over how overlapping objects are
rendered

e Enhanced color support that facilitates color management, and

e Support for printing complex documents
in a flexible, full-featured framework for developing richer user interfaces, sophisticated
drawing programs and image editors. The Java 2D API also enables the creation of
advanced graphics libraries, such as CAD-CAM libraries and graphics or imaging special
effects libraries, as well as the creation of image and graphic file read/write filters.

When used in conjunction with the Java Media Framework and other Java Media
APIs, the Java 2D APIs can be used to create and display animations and other
multimedia presentations. The Java Animation and Java Media Framework APIs rely on
the Java 2D API for rendering support.

Java 2D is used in DQT for GraphLog drawing and editing.

23

Component

Description

UIManager

JFrame

JInternalFrame

JBorderLayout

JSplitPane

JScrollPane

JTabbedPane

JGridBagLayout

JMenuBar
JMenu
JMenultem
JToolBar
JButton
JT'ree
JTextField
JTextArea
JDialog
JCheckBox
JComponent
JDesktopPane
JLabel

JPanel

This class keeps track of the current look & feel and its defaults.

A window with a title bar, a border, a content pane, and an
optional menu bar.

Special-purpose container which looks like a frame and has
much the same API, but must appear within another window.

The default layout manager for JFrame, which arranges the
components into five areas: North, South, East, West and Center.

A container which is horizontally and vertically split.

A general-purpose container which provides scroll bars around
a large or growable component.

A container that contains multiple components but shows only
one at a time. The user can easily switch between components.

A layout manager that arranges components into rows and
columns, and allows that each component size varies and
components are added in any order.

A class for managing a menu bar.

A class for managing menus.

A class for managing menu items.

A holder of a group of components in a row or column.
An area that triggers an event when clicked.

A class that provides a tree view of hierarchical data.
A class that display information & handles user input.
A class for displaying and/or editing text.

A that.

Implementation of a check box that can be selected or deselected.

The base class for all Swing components except top-level containers.

A container for a multiple-document interface or a virtual desktop.
A display area for a short text string or an image, or both.

JPanel is a generic lightweight container

Figure 11: Swing Components Used in DQT

24

2.5 TGL and TGL Translator

TGL stands for Transferable Graphic Language [21]. TGL is an XML format that
defines the communication protocol between the DQT GUI layer and TGL Translator
layer. The GUI captures user queries in TGL Query Structure (see Figure 12). The TGL
Translator transforms a TGL-formatted query, which is received from the GUI layer, to a
CORAL query program and submit it to CORAL system for evaluation. The TGL
Translator is also responsible to transform the CORAL query result into TGL Result

Structure (Figure 13) and then pass the TGL-formatted result to the upper GUI layer.

<!ELEMENT graphlog((defineGraphlog+, showGraphlog*) |
(defineGraphlog*, showGraphlog+)) >
<!ELEMENT defineGraphlog(include*, distinguished-define, content)>
< !ELEMENT showGraphlog(include*, ID, distinguished-show, content)>
<!ELEMENT distinguished-define (node|edge|blob) >
<!ELEMENT distinguished-show ((node+,edge*,blob*) |
(node*, edge+,blob*) | (node*,edge*,blob+)) >
< !ELEMENT content (node*, edge*, blob*)>
< !ELEMENT node (ID, entity)s>
<!ELEMENT entity(name, field*)s
<!ELEMENT edge (ID, predicate, fromNodelD, toNodelD) >
<!ELEMENT blob (ID, predicate, outerNodelD, innerNodeID+) >
<!ELEMENT ID (#PCDATA) >
< !ELEMENT name (#PCDATA) >
<!ELEMENT field (#PCDATA) >
< !ELEMENT predicate (#PCDATA) >
< !ELEMENT fromNodeID (#PCDATA) >
< !ELEMENT toNodelD (#PCDATA) >
< !ELEMENT outerNodelD (#PCDATA) >
< !ELEMENT innerNodeID (#PCDATA) >
< !ELEMENT include (#PCDATA) >

Figure 12: TGL Query Structure [21]

25

< !ELEMENT showGraphlogReturn (result+) >
<!ATTLIST showGraphlogReturn ID CDATA>
<!ELEMENT result (node*, edge*, blob*)>
< !ELEMENT node(field+) >

<!ATTLIST node ID CDATA>

<!ELEMENT field (#PCDATA) >

<!ATTLIST field pos CDATA>

< !ELEMENT edge (fromNode, toNode) >
<!ATTLIST edge ID CDATA>

< ELEMENT fromNode (#PCDATA) >

<!ATTLIST fromNode ID CDATA>

<!ELEMENT toNode (#PCDATA) >

<!ATTLIST toNode ID CDATA>

< !'ELEMENT blob (outerNode, innerNode+) >
<!ATTLIST blob ID CDATA>

< !ELEMENT outerNode (#PCDATA) >
<!ATTLIST outerNode ID CDATA>

< !ELEMENT innerNode (#PCDATA) >
<!ATTLIST innerNode ID CDATA>

Figure 13: TGL Result Structure [21]

The complete details of TGL and TGL Translator can be found in [21].

2.6 Graphviz

Graphviz is an open source graph drawing and visualization software package [33].
Graphviz tools run stand-alone, but can also be extended to create interfaces to external

databases and systems. It has been applied to hundreds of projects.

The Graphviz package provides a set of graph visualization tools, along with related

user interfaces, stream filters and libraries. It comes with the following viewers:

26

e dotty - a vintage customizable Unix/X windows viewer that has subsequently

been ported to Microsoft Windows.
e tcldot - a TCL/TK scripting language extension for Graphviz

e WebDot. - a tcldot scripted WWW service for graphs in HTML documents. There

is also a simplified version written in perl.
o Grappa - a Java package for graphs with full Java graph data structures
e ZGRViewer - an SVG-based zooming graph viewer for large graphs.

e Mac OS X graphviz

One of the unifying themes of Graphviz is the DOT language for describing
attributed graphs and subgraphs. An abstract grammar for the DOT language is shown as
Figure 14. Terminals are shown in bold font and non-terminals in italics. Literal
characters are given in single quotes. Parentheses (and) indicate grouping when needed.
Square brackets [and] enclose optional items. Vertical bars | separate alternatives.

An id is any alphanumeric string not beginning with a digit, but possibly including
underscores, a number, any quoted string possibly containing escaped quotes, or an
HTML string (<...>). Note that in HTML strings, the content must be legal XML, so that
the special XML escape sequences for ", &, <, and > may be necessary in order to embed
these characters in attribute values or raw text. Both quoted strings and HTML strings are
scanned as a unit, so any embedded comments will be treated as part of the strings.

An edgeop is -> in directed graphs and -- in undirected graphs.

The language supports C++-style comments: /* */ and //.

27

graph : [strict] (digraph | graph) [id] ‘{’ stmt-list *}*

stmt-1ist : [stmt [’;’] [stmt-1ist]]
stmt : attr-stmt | node-stmt | edge-stmt | subgraph | id '=' id
attr-stmt : (graph | node | edge) attr-list

attr-list : '[* l[a-1ist] ']’ [attr-1list]
a-list : id [’'=" id] [’,’] [attr-1list]
node-stmt : node-id lattr-list]

node-id : id [port]

port : ‘:’ id [‘:’ compass pt 1 | ‘:’ compass pt
compass pt : {(n | ne | e | se | 8 | sw | w | nw)
edge-stmt : (node-id | subgraph) edgeRHS [attr-list]

edgeRHS : edgeop (node-id | subgraph) [edgeRHS]
subgraph : [subgraph [id]] ‘{’ stmt-list '}’ | subgraph id

Figure 14: Grammar of the DOT Language

Semicolons aid readability but are not required except in the rare case that a named
subgraph with no body immediate precedes an anonymous subgraph, because under
precedence rules this sequence is parsed as a subgraph with a heading and a body.

Complex attribute values may contain characters, such as commas and white space,
which are used in parsing the DOT language. To avoid getting a parsing error, such

values need to be enclosed in double quotes.

The DOT language supports many useful attributes for concrete diagrams, such as
options for colors, fonts, tabular node layouts, line styles, hyperlinks, and custom shapes.

Figure 15 shows a simple example graph in DOT file format and its layout output by dot.

28

digraph G {
size ="4,4"; _
main [shape=box]; /* this is a comment */
main -> parse [weight=8];
parse -> execute;
main -> init [style=dotted];
main -> cleanup;
execute -> { make string; printf}
init -> make string;
edge [color=red]; // so is this
main -> printf [style=bold,label="100 times"];
make string [label="make a\nstring"];
node [shape=box,style=filled,color=".7 .3 1.0"];
execute -> compare;

main \\\\\\\\\\A

100 times

Figure 15: A Simple Graph in DOT Format and Its Layout [34]

Graphviz has several graph layout programs in the families of hierarchical layouts of
trees and DAGS (directed acyclic graphs), and virtual physical (" spring model") layouts

of undirected graphs.

e dot - makes “hierarchical" or layered drawings of directed graphs. The layout
algorithm [35] aims edges in the same direction (top to bottom, or left to right)

and then attempts to avoid edge crossings and reduce edge length.

29

e neato - make “spring model" layouts. neato uses the Kamada-Kawai algorithm

[36], which is equivalent to statistical multi-dimensional scaling.

e twopi - radial layout.

e circo - circular layout. Suitable for certain diagrams of multiple cyclic structures.

The layout programs take descriptions of graphs in DOT language, and make diagrams in
several useful formats such as images and SVG for web pages, Postscript for inclusion in
PDF or other documents; or display in an interactive graph browser. It also supports

GXL, an XML dialect.

Our project will utilize the Graphviz dot language and layout programs to layout the

hygraph query results for visual presentations.

2.7 The University Database for Case Study

A university database is used for illustrations and examples in the thesis. The
database captures the entities and teaching/studying relationships in a condensed
university community. The database schema is shown in Figure 16. The relational
database schema is mapped to CORAL relations and the relational database instance is
mapped to CORAL ground facts. The corresponding CORAL relations are shown as

Figure 17 and the instance is shown in Figure 18.

30

StaffID
StudentID

StafflID . o
StudentID PK,FK1 ID

Street
District
City

PK,FK1 ID el
PK, Fk2 Course PK | No

PK,FK1 Course
PK assName

percent

PK, FK1 Course
PK,FK1 Course K code
PK,Fk2 [PreCourse [Title Nl FK2 | Dept PK,Fk2 | Course
—> Credit <

Figure 16: The University Database Schema

person(ID, Name) .

staff (ID, Salary) .

student (ID, GPA).

dept (No, Name) .

course (Code, Title, Credit).

address (AID, Street, District, City).
works_in(ID, Dept).

teaches (ID, Course).

majors_in (ID, Dept).
takes (ID, Course) .

run by (Course,Dept) .
prerequisites (Course, PreCourse) .
assessment (Course, assName, Percent) .
lives in(ID, AID).

first supervisor (StaffID, StudentID).
second supervisor (StaffID, StudentID).
resides (Dept, AID).

Figure 17: The System Scheme File shared with lower layer system

31

course (comp218,
course {comp248,
course {coené0,
course (comp651,
course (compé46,
course (eSL207,

address (addr001,
address (addr002,
address (addr003,
address (addr004,

"Fundamentals of C++ Programming", 3).
"Introduction to Programming",3}.

"Software Regular ",4).
"DB4", 4).

"Computer Networks and Protocols", 4).

"Maisonuvue Street",
"Hillhead Street",
"University Avenue",
"Lincoln Street", "Dowanhill",

person(cs0001,
person(cs0002,
person{ce0001,
person{css001,
person{cel005,
person (4881177,
person (3345167,

"Eric Atwood").
"Larry Nabil®).
"Tony Herry").
"Steve Losa") .
"Lisa Joey") .
"Steve

"Marry Sabin").

Johnson") .

person
person

3511786,
3788947,

"Hossa
"Anrew
"Jenny

Gosta") .
Lim).
Liaum").

(

(

person (4125785,
person(cs0003,

person(cs0004,

staff (cs0001,

staff(cs0002,

staff(ce0001,

staff (css001,

staff(cel1005,

staff (4125785,
staff(cs0003,

student
student
student
student
student
student

4881177
3345167
3511786
3788947
4125785
css001)

dept (cs,
dept (gm,
dept (artG,
dept (edu,
dept (eg,

"Art

works_in (cs0001
works_in(cs0002
works_in(ce0001
works_in(css001
works_in (cel005
(
(

works_in (4125785,

works_in(cs0003

teaches (cs0001,
teaches (cs0002,
teaches (ce0001,
teaches (css001,
teaches (cel005,
teaches (cs0003,
teaches (ce0001,

run_by (compé646,
run_by (comp218,
run_by (comp248,
run_by(eSL207,

"Linda Smith").
"Bob Campbell™) .

2500} .
1800) .
4801) .
3400) .
1685) .
3400) .
2300) .

).
).
).
).
).

"Computing Science").
"John molson business").

Gallery").

"Education") .
"Engineering") .

, cs).
, ¢s).
, eqg).
, Cs).
, eg).
gm) .
, cs).

comp676) .
comp218) .
coené0) .
comp646) .
coené6l) .
comp248) .
eSL207) .

cs) .
cs) .
cs) .

edu) .

"English as Second Language 207", 1).

"center ville",

"Montreal") .

"Hillhead", "Montreal").
"Kelvinside™, "Montreal").
"Glasgow") .

prerequisites (comp
prerequisites (comp
prerequisites (comp

majors_in(4881177,
majors_in(css001,

majors_in(3345167,
majors_in(3511786,
majors_in(3788947,
majors_in(4125785,

takes
takes
takes
takes

4881177,
4125785,
4881177,
4125785,
takes (4881177,
takes (4125785,
takes (3345167,
takes (3788947,

eSL
eSL

assessment (comp646
assessment (compé46
assessment (compé46
assessment (compé46
assessment (compé51l
assessment (compé51
assessment (compée51
assessment (coené60,
assessment (coené0,
assessment (coené0,
assessment (comp218
assessment (comp218
assessment(comp248
assessment (eSL207,
assessment (eSL207,
assessment (eSL207,
assessment (eSL207,
assessment (eSL207,

lives_in(c¢s0001, a
lives_in(cs0002, a
lives_in (4881177,
lives_in (4125785,
lives_in(3511786,

first_supervisor(c
first_supervisor (c
first_supervisor(c
first_supervisor(c

second_supervisor (
second_supervisor (
second_supervisor (

Figure 18: The University Database Instance

32

248, comp218}.
646, comp248) .
651, comp646) .

cs) .
cs).
gm) .
eg) .
edu) .
cs) .

comp646) .
comp218) .

207) .
207) .

comp248) .
comp248) .
comp248) .
comp248) .

, "mid-terml",
, "mid-term2",
, "assign",
, "final",
, "mid-term",
, "project™,
, "final",
"assl", 0.33)
"ass2", 0.34)
"final", 0.33
, "mid-term",
, "final", 0.5
, "final", 1).

0

)
0
)

"assl", 0.1).

"ass2", 0.1).
"ass3", 0.1).
"ass4", 0.1).

"final", 0.6).

ddro002) .
ddr003) .
addr001) .
addr004) .
addr002) .

50001,
50002,
50003,
50003,

cs0004,
css001,
cs0004,

0.25).
0.25).

0.25).
0.25).

.25) .

0.25) .
0.5).

5).

4881177) .
3511786) .
3788947) .
4125785) .

4125785) .
4881177} .
3788947) .

3. Supporting Blobs in Visual Queries

In this chapter, we compare visual queries with and without blobs, describe how to
define blobs, and how to define new relations and queries with blobs, as well as the

implementation of blob support in query constructions.
3.1 Visual Queries with and without Blobs

Blob is a new notion incorporated into graph by hygraph. A blob in a hygraph
represents a relation between a node, called the container node, and a set of other nodes,
called the contained nodes. A blob replaces all the edges that would otherwise connect
the container node of the blob with each of the nodes contained in the blob; it is
diagrammatically represented as a labeled rectangle block associated with the container
node that encloses the contained nodes.

In effect of visualization, a blob modularizes the set of contained nodes and their
associations with the container node. Blobs can help reveal interesting characteristics of
data while avoiding distractions and irrelevancy, and provide effectiveness and clarity in
construction of graphical queries and visualization of query results; therefore help the
users discover interesting patterns more easily and intuitively. Let’s see one example
query: “Return all the studen;s who take courses taught by Linda Smith.”

Without using blobs, the query can be expressed in Graphlog shown in Figure 19.

33

defineGraphlog showGraphlog

student(ID)
o student(ID) ®

student_by_staff
takes student_by_staff

is_a

[] []
teaches \
course(m. staff(ID) staff(ID) ®

person(ID, “Linda Smith™)

queryResults

student(3788947) student(3788947) student(3788947) student(3788947)
[[] ® ®

Student_by_jtaff Student_by_staff

Student_by_staff Student_by_staff

[J
staff(cs0003)

Figure 19: Example Query and Results without Using Blobs

It can be seen that for each student taught by Linda Smith, an edge appears with the

corresponding label. Imagine that how the look will be if Linda is teaching 100 students!

Using a blob can dramatically improve the picture.

Figure 20 shows the Graphlog that implement the same query and its corresponding

presentation with a blob. Much more clear and intuitive now!

34

defineGraphlog
o student(ID)
takes student_by_staff
showGraphlog
° person(ID, “Linda Smith”)
teaches . ®
course(Code\. staff(ID) 1s_a
o staff(ID)
teachingAll
defineGraphlog
o staff(ID) o student(ID)
A
teachingAll
student_by_staff
L]
student(ID)
queryResults
o staff(cs0003)
teachingAll
o student(3788947)
o student(3788947)
o student(3788947)
o student(3788947)

Figure 20: Example Query and Results with a Blob

35

3.2 Defining Blobs with DQT

A blob associates a container (or outer) node to a collection of contained (or inner)
nodes. To facilitate visually defining blob, we have considered two alternative designs,
including drag-and-drop and drawing-and-select.

Drag-and-Drop: The basic idea is to pre-define a blob template in the current graph
editor and ask users to drag objects from the schema tree and drop it into the blob
template. The major advantage of this approach is the potential of automatic population
of some of the object properties, like object names — note that users still need to manually
edit the object properties, like specifying what fields are involved in the definition or
query. The disadvantages are the requirements for the capability of distinguishing entities
from relationships in the schema tree to make the automatic property population work
and the complexity of its implementation.

Point-and-Select: The approach allows users to point and click on a node to specify
the container node, and then drag a rectangle to select the contained nodes. The
advantages of this approach are the consistency of the methods for defining nodes, edges
and blobs by point-and-click and drawing, and the artful joy of drawing. The major
disadvantage is that users have to manually edit the object names, but it does not affect
the usability much — users have to do that for nodes and edges any way.

The selected design is the Point-and-Select approach for its consistency with current
drawing without blob support and its independency on the schema tree, with considering

the complexity of implementation. The selected approach has been implemented in DQT.

36

To define a blob, a user need to select the Create a Node mode and draw all the
involved nodes first (A screenshot is shown as Appendix A). Optionally, the user can
then select Create an Edge mode to draw edges (Appendix B) - users can draw the edges
even after the blob gets drawn; then the user can select the Create a Blob mode to draw
the blob by the way of point-and-click on the target container node and dragging a
rectangle to cover all the node to be contained, see Appendix C. At any time after an
object has been drawn, the user can switch to the Select an Object mode to edit the
properties of objects; however, the user can also choose to edit the properties after all the
objects have been drawn, which eliminates the needs for switching between the working
modes. Importantly, the blob to be defined must be specified as Distinguished by
checking on the corresponding check box in the property dialog. Visually, the blob
rectangle will be drawn in bold to represent it as distinguished. Appendix D shows a

screenshot for the newly defined blob “teachingAll”

3.3 Defining New Relations and Queries with Blobs

With referencing existing definitions of blobs, a user can define new relations and
queries more easily. Referencing a blob, such as “teachingAll” defined above, is just like
referencing another kind of user-defined relations, such as “student_by_staff”. Users just
need to draw the blob with the user-defined blob name in the new relations or queries,
and then press the Define or Execute icon for submission.

Appendix E shows the Graphlog query that returns all students taught by Linda
Smith. To execute the query, users just need to push the execute icon. The DQT will

translate the Graphlog query into TGL (shown in Figure 21) for evaluation by the engines

37

at lower layers, and visualize the results,

-

receives the query results.

<graphlog>
<showGraphlog:>
<id>tempQueryResult</id>
<distinguished-show:>
<blob>

<id>BID0002</id>
<predicate>Blob_O</predicate>
<outerNodeID>NIDO000</ocuterNodeID>
<innerNodeID>NID0001l«/innerNodeID>

including using the defined blobs, when it

</blob> <graphlog>
</distinguished-show> <defineGraphlog>
<content> <distinguished-defines>
<node> <blob>
<id>NID0000</id> <id>BID0001</id>
<entitys> <predicates>teachingAll</predicate>
<names>staff</name> <outerNodeID>NID0000</ocuterNodeID:>
<field>ID</field> <innerNodeID>NID0001l</innerNodeID>
</entitys> </blob>
</node> </distinguished-define>
<node> <contents>
<1d>NID0001</id> <node>
<entitys> <1d>NID0000</id>
<name>student</name> <entity>
<field>ID</field> <name>staff</names>
</entity> <field>ID</field>
</node> </entity>
<node> </node>
<1d>NID0002</id> <node>
<entitys> <1d>NID0001l</id>
<names>person</names <entitys>
<field>ID</field> <name>student</name>
<field>"Linda Smith"</field> <field>ID</field>
</entity> </entity>
</node> </node>
<edge> <edge>

<id>EIDO_2</id>
<predicate>is_a</predicates>
<FromNodeID>NID0000<«/FromNodelID>
<ToNodeID>NID0002</ToNodeID>

<id>EID1_O</id>
<predicatesstudent by staff</predicates
<FromNodeID>NID0001</FromNodeID>
<ToNodeID>NID0O000</ToNodeID>

</edge> </edge>
</content> </content>
</showGraphlog> </defineGraphlogs>
</graphlog> </graphlog>

(a) tempQuery.xml

Figure 21:

(b) teachingAll.xml

Blobs in TGL

38

3.4 Implementation

A blob has one container node and one or more contained nodes, and generalize the
edges between the container node and the contained nodes, and may involve other edges
among the contained nodes and other nodes. To warrant the consistency of a graph and
efficiency of processing, blob support is implemented based on the Flyweight design
pattern. The Flyweight pattern describes how to share objects to allow their use at fine
granularities without prohibitive cost [33]. We treat a node as a flyweight; all the nodes,
captured as a NodeList, form a pool of flyweight objects, which are referenced by blobs.

The Blob class captures what is the container node, what are the contained nodes,
the enclosure rectangle, and other properties, such as if the blob is distinguished (see
Appendix F). The Blob class does not copy all the details of the nodes involved; instead,
it simply makes reference to the node Ids. And the Blob class does not memorize the
edges inside; instead, it uses the normal edge handling and does special checking during
the blob-related event handling. This can greatly reduce memory usage, simplify the
implementations, and, most importantly, avoid inconsistency in the event of changes.

Mouse events are handled for blob creations if the current mode is Create a Blob,
and for blob property editions if the current mode is Select an Object and a mouse
double-click has been done right on the blob rectangle. Both the creating a new blob and
the editing blob property events are initiated by a proper mouse-down event within the
GraphCanvas of the GraphEditor. The relevant pieces of code are listed as Appendix G.

A blob rectangle gesture is drawn during a mouse-drag event if a container node has
been set (see Appendix H). A blob rectangle keeps changing during mouse dragging

events until the mouse button is released. A mouseUp event occurs when the mouse

39

button is released. Then, the mouseUp handler (See Appendix I for details) will capture
all the information and insert a new blob into the blob holder, which is organized as a
Hashtable and is a part of the current Graph object.

Several attributes and methods have been incorporated into the Graph class and
GraphCanvas class so that they can adopt and take care of blobs.

The TGLGraph class has been augmented to translate Graphlog with blobs into TGL
a query structure and to compute the metadata for visualizing the query results. See
Appendix J for details. Methods also have been added into GraphEditor class so that it
can handle mode selection for Create a Blob when selected, generate TGL and populate
the definition of a blob into the schema tree when the Define button (icon) is pressed,
generate TGL queries and translate query results into the Graphviz dot language for

presentations (the details will be described in Chapter 4).

40

4. Visualizing Blobs in Query Results

A blob modularizes the set of contained nodes and their associations with the
container node and provides a flexible mechanism for clustering information. Using blobs
in visualization of query results can help reveal interesting characteristics of data while
avoiding distractions and irrelevancy; therefore help the users discover interesting
patterns more easily and intuitively.

In this chapter, we describe how to visualize blobs using Graphviz.

4.1 Cluster and Its Visualization in Graphviz

Graphviz provides graph layout generators (such as dot and neato), which can read
and layout the graphs expressed in the DOT language. DOT describes three kinds of
objects: graphs, nodes, and edges, with various attributes. The main (outermost) graph
can be a directed (digraph) or undirected graph. A graph can contain nested subgraphs; a

subgraph defines a subset of graph objects, such as nodes, edges, and nested subgraphs.

A cluster is a subgraph placed in its own distinct rectangle of the layout. A subgraph
is recognized as a cluster when its name has the prefix cluster. A cluster is laid out
separately, and then integrated as a unit into its parent graph, with a bounding rectangle
drawn about it. If the cluster has a label parameter, this label is displayed within the
rectangle. There can be clusters within clusters. Clusters at the same level are drawn in
non-overlapping rectangles. Figure 22 shows an example of cluster layouts and the

corresponding graph files in the DOT language.

41

digraph G {
subgraph cluster0 {
node [style=filled,color=white];

style=filled;
color=lightgrey;

a0 -> al -> a2 -> a3;

label = “process #1”;

wcess #2

subgraph cluster2 {
node [style=filled];
b0 ~> bl -> b2 -> b3;
label = “process #2”;

color=blue;

start -> ao;

start -> bo0;

al -> b3;
b2 -> a3;
a3 -> ao0;

a3 -> end;

b3 -> end;

start [shape=Mdiamond];

end [shape=Msquare] ;

Figure 22: Process Diagram with Clusters

Labels, font characteristics and the labelloc attribute can be set for a cluster as they
would be for the top-level graph, though cluster labels appear above the graph by default.
For clusters, the label is left-justified by default; if labeljust="r", the label is right-
justified. The color attribute specifies the color of the enclosing rectangle. In addition,
clusters may have style="filled", in which case the rectangle is filled with the color

specified by fillcolor before the cluster is drawn.

42

Graphviz’s cluster construct and its layout treatments provide a way to visualize

blobs in hygraph query results.

4.2 Visualizing Blobs using Graphviz

Blob instances may appear in the query result if any blobs have been referenced or

defined in the corresponding query.

To visualize blobs, we design the following representation, called Visual Blob
Pattern, that visualizes the blob’s container node as a normal Graphviz node and all
its contained nodes along with the edges between them as a Graphviz cluster labeled with

the blob label, and connect the container node to the cluster with a “dot-inv” arrow

(Figure 23).

BlobX

Subgraph consisting of the contained nodes
and the edges among the contained nodes.

Figure 23: The Visual Blob Pattern

43

The visual blob pattern is formulated in the DOT language as shown by Figure 24.
We add a special invisible node, called dummy inner node, into the blob cluster to enable
a connection between the container node and the cluster in the way of independent of any
real inner nodes, with ignoring any other edges between the container node and each of
the actual contained nodes. By setting compound=true, we can make the connection
clipped by the blob boundary rectangle to achieve the effect shown by Figure 23. By
setting tailport=s and headport=n, we make the connection between the container node to
the blob cluster always from top to bottom.

digraph G {

Compound=true; // to allow edges from/to a cluster

// other parts of the result graph

// Begin of Blob, named BlobX
subgraph cluster_ BlobX {
label="BlobX”;
style=filled;
fillcolor=lightgrey; // the £fill color will be set using metadata

// subgraph of the blob’s contained nodes and edges

}

theContainerNode -> theDummyInnerNode

[style=bold, arrowsize=2, arrowhead=inv, arrowtail=dot,
len=0.1, tailport=s, headport=n, lhead=cluster(];

// End of BlobX

// Other part of the query result graph

Figure 24: Represent the Visual Blob Pattern in DOT

44

Next, we show a query of the University database: “Return all the students who take
course run by the department of Computer Science as a blob with the department number

as the container node.” The result blob is shown in Figure 25.

cs students

Figure 25: Visualization of A Blob

4.3 Implementation

DQT receives the results of queries in TGL format. TGL is based on XML. DQT
parses query results using SAX, the Simple API for XML, to extract the necessary

information for presentations of the results. After the XML result file gets parsed, DQT

45

contructs any blobs from the result set into the visual blob pattern using DOT language.
Appendix K lists the section of code which constructs blob instances in DOT language

following the visual blob pattern..

46

5. Translating and Presenting Query Results

Originally, DQT supports graph queries consisting of only nodes and edges, and
parses XML-format query results consisting of only nodes and edges. It does not provide
automated translations of query results from TGL into Graphviz dot graph. Therefore, to
layout and visualize a query result, a person has to manually translate it into a DOT graph
before calling Graphviz for presentation of the result. DQT was far from usable by
application subject experts who lack expertise in Graphviz or DOT language.

As part of this thesis, we have implemented the automated translations of query
results from TGL into Graphviz dot graph in an integrated way, in addition to providing
blob support for visual queries and presentations.

This chapter is to describe the design and implementation of the automated

translations of query results.

5.1 Graphviz Java API

Graphviz Java API is not a part of Graphviz, but third-party free software under the
GNU Lesser General Public License. With the API, we can construct DOT graphs and

call Graphviz in Java by a more streamlined and better readable way.

In the method, visualizeResult (), for automatic translation of query results,

we have used the Graphviz Java API for better readability of the source code.

47

5.2 Presenting Query Results with Clarity

A query result may contain tens, hundreds, and even thousands of objects, such as
nodes, edges and blobs. Different objects should be presented in different visual effects
for distinguishing from each other, while the objects belonging to the same class, such as
the same entity, the same relationship or the same blob, should be visualized with some
kind of common effects for grouping the same kinds. The combinations of shapes and
colors are used for classifying node-like objects; the combinations of line styles and
colors are used for distinguishing and grouping edge instances; the blob names (or labels)
along with colors are used for visually identifying blob instances. The properties are
assigned at the schema object level based on the executed query and captured as a
property map, which consists of three vectors, dotNodeVector,
dotEdgeVector, and dotBlobVector. At this stage, the assignment is simply
based on the order of graph objects of each kind, and the predefined lists of node shapes,
node colors, edge styles, edge colors, and blob colors (Figure 26). When the number of
object classes exceeds the number of properties of some kind, the assignment starts over
from the beginning of the list again. Since the size of the lists of associated properties are
different, start-over should not occur with two lists at the same time, given that properties
are assigned at the schema object class level and the number of object classes in a query
is limited. The property map will be consulted when assigning properties to any instance
objects during the procedure of translating the query result and constructing the result

graph in DOT language.

48

// Xuede: generate DOT graph property maps for visualizations

//

private void generatePropertyMaps ()

{

String nodeShape[] = { "ellipse", "octagon", "hexagon", "house", "diamond",
"parallelogram", "trapezium", "doubleoctagon" };

String nodeColor[] = { "plum", "goldenrod", "coral", "lightpink", "orange",
"mediumpurple", "limegreen", "lightcyan", "lightblue",

"lightgray", "orchid", "tan" };

|
—~

String edgeStylel]
String edgeColor|[]

"solid", "dashed", "dotted", "bold" };
"black", "red", "blue", “green",

1]
—

"magenta", "brown", "cyans", "orange" };
String blobColor[] = { "cornsilk", "wheat", "lightyellow", "olivedrab",
"aguamarine", "springgreen", "lightskyblue", "beige"};

int i;

dotNodeVector = tglGraph_.getDOTNodeVector () ;
dotEdgeVector tglGraph_.getDOTEdgeVector () ;
dotBlobVector = tglGraph .getDOTBlobVector () ;

1]

System.out.println("NodeV.size() = " + dotNodeVector.size() +
"; EdgeV.size() = " + dotEdgeVector.size() +
", BlobV.size () " + dotBlobVector.size());

DOTNode dotNode;
for (i=0; i<dotNodeVector.size(); i++) {
dotNode = (DOTNode) dotNodeVector.elementAt(i);

dotNode.setShape (nodeShape[i%8]) ;
dotNode.setFillColor{ nodeColor[i%12]);

System.out.println("dotNode[" + i + "]: id=" + dotNode.getId() +
" Name=" + dotNode.getName ());

}

DOTEdge dotEdge;
for (i1=0; i<dotEdgeVector.size(); i++) {
dotEdge = (DOTEdge) dotEdgeVector.elementAt(i);

dotEdge.setStyle(edgeStylel[i%4]);
dotEdge.setColor(edgeColor[i%8]);

System.out.println("dotEdge[" + i + "]: id=" + dotEdge.getId() +
" Name=" + dotEdge.getName ());

}

DOTBlob dotBlob;

for (i=0; i<dotBlobVector.size(); i++) {
dotBlob = (DOTBlob) dotBlobVector.elementAt{ i };
dotBlob.setFillColor(blobColor[i%8]);

System.out.println("dotBlob[" + i + "]: id=" + dotBlob.getId() +
" Name=" + dotBlob.getName ());

Figure 26: Generating Property Map

49

With many objects in a graph, node and edge labels may make the graph unreadable.
To achieve clarity, we illustrate the node class names and edge labels along with their
source and destination classes in a legend graph, instead of displaying them for each
instance of the node classes and edges in the main result graph. Only those node classes
and edges that have instances in the result graph are shown in the legend graph The
legend graph and the result graph are presented side by side in a Java Swing split pane
(JSplitpane). The legend graph, in the left pane, shows only the entities and relationships
at the schema level, when the query result graph is shown at the instance level in the right
pane. An instance node in the query result graph is mapped to their schema entity,
visualized as a node with entity name inside in the legend graph, by the same shape and
color; an instance edge in the result graph is associated to its labeled relationship in the
legend graph by the same line style and color. An example is shown in Figure 27. The
example is based on an artificially made result file in TGL format for testing and showing
complex translation and layout.

Users can move the divider to enlarge one pane while reducing the other one; user
can totally hide the legend graph by reducing the legend pane to the minimum.

By this design, all the information for the query results are preserved and presented,
and the result graph are visualized with greater clarity.

The information for building a legend graph is captured during the translation of the
query results in TGL to the result graph in DOT. More details will be given in next

section.

50

All Dept Courses All Dept: Courses

sesaed by

Figure 27: Visualizing Query Result with Legend

5.3 Automating Translation of Query Results into DOT Graphs

DQT receives a query result set in TGL format — XML format. We must translate it
into a graph defined in the DOT language so that Graphviz can take it for layout
processing. In addition, various properties, including shapes, styles, and colors etc,
should be properly assigned to every graph objects (nodes, edges, and blobs) for better

effects of visualization.

51

The translation task is processed in two phases. The first phase is, simply by means
of the SAX XML Parser, to parse the TGL (XML) format result file into the internal
result structure consisting of three vectors nodevVec, edgeVec and blobVec,
which capture all the nodes, edges, and blobs respectively. These are attributes of the
internal TGLTranslator class. An object of TGLTranslator is created and its parseXML()
method is called by the visualizeResult() method in GraphEditor. See Note 1 in Appendix
L for the implementation.

The second phase of translation is to construct the query result graph and the legend
graph in DOT language, and call Graphviz for layout. Since blobs are subgraphs from
Graphviz’ layout point of view, blobs must be processed first to ensure that the nodes
contained by any blobs are placed into the right subgraphs. Then edges are processed.
Orphan nodes are processes at last.

Blob Processing: Using the DOT language and the Graphviz Java API, an instance
of the visual blob pattern is defined for each blob in the result set. For each blob instance,
a special subgraph, cluster, is opened with the properties from the property map; then all
the contained (or inner) nodes are placed within the cluster; a dummy inner node is added
before the cluster is closed after all the contained nodes have been processed. Then the
container node is added to the graph, but outside of the blob cluster, with the properties
from the property map, and the connection is added between the container node and the
cluster (the dummy inner node, actually) with the properties defined by the visual blob
pattern (See Note 2 in Appendix L). All the blob instances of the same blob class,
through their container nodes, are defined with the same rank, which give guidance to

Graphviz for layout (See Note 3 in Appendix L).

52

Edge Processing: Each edge instance, along with its nodes, is added to the dot
graph with the properties from the property map. (See Note 4 in Appendix L.)

Node Processing: All the node instances are then added to the dot graph with the
properties from the property map. (See Note 5 in Appendix L.)

After all the blobs, edges and nodes have been processed and added into the result
graph, Graphviz is called (see Note 6 in Appendix L) to make a layout for the
presentation of the result.

Legend Processing: During the procedure of processing blobs, edges and nodes, all
the information needed to build the legend graph has been collected. A separate DOT
graph for legend is built with the legend properties. A separate layout of the legend graph
is made by calling Graphviz again. The implementation is shown at the last section of

Appendix L (Note 7).

53

6 Conclusions

In this thesis, we have provided blob support in DQT. With this capability, DQT
users can define new blobs and include blobs in graph queries by drawing. With usage of
Blobs in graph queries, query results can include blobs. Using Blobs in query results
greatly increases the modularization and abstraction of the result graphs, which helps
reveal interesting characteristics of data while avoiding distractions and irrelevancy, and
provides effectiveness and clarity in construction of graphical queries and visualization of
query results; therefore helps the users discover interesting patterns more‘ easily and
intuitively. We have designed the visual blob pattern for visualizing blobs in query
results.

We have also implemented the automatic translation of TGL query results into DOT
graphs and automatic generation of layouts of the result graphs. With this enhancement,
DQT automatically constructs the result graphs in the DOT format and makes a layout by
calling Graphviz. This makes DQT practically usable by any users who are familiar with
the application domains.

Careful considerations and design measures have been taken to obtain best
presentations of query results. As described in Section 5.2, we use combinations of colors
and shapes to distinguish different kinds of nodes; combinations of colors and line styles
to identify different relationships, and different filling colors to highlight the difference of
blob categories. And instead of duplicating schema information and labels in the result
graphs, we separate the instance level graphs from their schema level, and present the

named entity class with names (each of which may have many nodes as its instances) and

54

relationships with labels (each of which may have many occurrences of edges in the
result graph) in the legend graph with mapping properties beside the result graph. With
this design, entity class names and edge labels are not necessary to appear in the result
graph presentation, which avoids blacking out the result graphs for large and complex
result sets.

There are still some future work for further enhancing DQT’s functionality and
usability. Currently, the blob support capability provided by the thesis work is limited to
only one blob that can be defined from a container node (there is no such a limitation
from the visualization side). This limitation can be removed by processing blob
rectangles in other directions — currently DQT process only draws a blob rectangle from
top-left to bottom-right. Another limitation is that nested blobs are not processed since
the underlying TGL specification does not support nested blobs, although users can draw
nested blobs. To support nested blobs, TGLTranslator must be enhanced with the
capability to parse queries with nested blobs and convert them into Coral programs. Also
it may be desired to support a more complicated case in which one node participates in
multiple blobs.

In addition, drawing graph queries by drag-and-drop (drag an object from the
schema tree and drop it into the graph editor) is of interests since it can reduce users’
work to draw or edit a graph and offer the potential of automating the naming of graph
objects. To implement this approach, the schema tree must be organized in the way that
clearly distinguishes node entities from edge relationships, and includes all the primary
keys and foreign keys to enable automatic labeling with lower requirements for users to

make corrections.

55

The DQT tool has not been tested for scalability with large result sets. And user
trials are needed to receive feedback for improvements.

During the project, several knowledge areas and methodologies have been
intensively studied to achieve an effective, elegant design. By doing the project, my
background and skills have been greatly enhanced in the areas of database systems and
query languages, framework and interface development, GUI design principles, object-
oriented design and Java programming. By participating in the active discussions and
presentations led by Dr. Butler, my knowledge has been broadened. What I have learned

will definitely help in the future.

56

References

[1] M. Stonebraker, R. Agrawal, U. Dayal, E. Neuhold, and A. Reuter. DBMS re-search
at a crossroads: The Vienna update. Proc. of the 19th International Conference on
Very Large Data Bases, pages 688-692, Dublin, Ireland, August 1993.

[2] Aiken, A.; Chen, J.; Lin, M.; Spalding, M.; Stonebraker, M.; Woodruff, A. The
Tioga-2 database visualization environment. Proceedings: Data Issues for Data
Visualization, IEEE Visualization '95 Workshop, Atlanta, GA, USA, 28 Oct. 1995).
Edited by: Wierse, A.; Grinstein, G.G.; Lang, U. Berlin, Germany: Springer-Verlag,
1996. p. 181-207.

[3] H. McCormick, T. A. DeFanti, and M.D. Brown, ‘“Visualization in Scientific

Computing”, SIGGRAPH Computer Graphics, vol. 21, no. 6, pp.30-42, Nov. 1987.

[4] C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz,
and A. Van Dam, “The Application Visualization System: A Computational
Environment for Scientific Visualization”, IEEE Computer Graphics and
Applications, vol. 9, no. 4, pp.30-42, July 1989.

[5] G. Butler, Database technology for pathways. In Workshop on Computation of
Biochemical Pathways and Genetic Networks, Logos Verlag, Berlin, 1999, ISBN 3-

89722-093-8, pp. 89-95.

[6] G. Butler, E. Bornberg-Bauer, G. Grahne, F. Kurfess, C. Lam, J. Paquet, I. Rojas, R.
Shinghal, L. Tao, A. Tsang. The BiolT projects: Internet, database and software
technology applied to bioinformatics, Proceedings of SSGRR’2000, Suola Superiore

G. Reiss Romoli SpA, Coppoto, Italy

57

[7]1 S. Card, G. Robertson, and J. Mackinlay, “The Information Visualizer, An
Information Workspace”, In Proceedings of the Conference on Computer Human
Interaction, pp.181-188, 1991

[8] M.P. Consens and A.O. Mendelzon, “Graphlog: A Visual Formalism for Real Life
Recursion”, Proc. ACM Symposium Principles of Database Systems, pp.511-516,
1993.

[9] M.P. Consens, F.Ch. Eigler, M.Z. Hasen, A.O. Mendelzon, E.G. Noik, A.G. Ryman,
and D. Vista, “Architecture and Applications of the Hy+ Visualization System”, IBM
Systems Journal, vol. 33, no. 3, pp.458-476, 1994.

[10] M. Gyssens, J. Paredaens, and D.V. Van Gucht, “A Graph-Oriented Object Model
for Database End-User Interfaces”, Proc. ACM SIGMOD Int’l Conf. Management of
Data, pp.24-33, 1990.

[11] A. Papantonakis and P.J.H. King, “Syntax and Semantics of Gql, A Graphical Query
Language”, J. Visual Language and Computing, vol.6, no.1, pp.3-36, 1995.

[12] J. Paredaens, P. Peelman, and L. Tanca, “G-Log: A Declarative Graphical Query
Language”, Proc. Second Int’l Conf. Deductive and Object-Oriented Databases
(DOOD), pp.108-128, 1991.

[13] A. Poulovassilis and C. Small, “A Functional Programming Approach to Deductive
Databases”, Proc. 17the Very Large Data Base Conf., pp.491-500, 1991.

[14] A. Poulovassilis and S.G. Hild, “Hyperlog: A Graph-Based System for Database
Browsing, Querying, and Update”, IEEE Transaction on Knowledge and Data

Engineering, vol. 13, no. 2, pp.316-333, March/April 2001.

58

[15] M.P. Consens, “Creating and Filtering Structural Data Visualizations using Higraph
Patterns”, Ph.D Thesis, University of Toronto, February 1994.

[16] Greg Butler, Ling Chen, Xuede Chen, A. Gaffar, Jinmiao Li, Lugang Xu. The
Know-It-All Project: A Case Study in Framework Development and Evolution,
Domain Oriented Systems Development: Perspectives and Practices. K. Itoh, S.
Kumagai, T. Hirota (eds), 101-118, Taylor & Francis, UK, 2002. ISBN:
0415304504.

{17] H.M. Deitel and P.J. Deitel, Java: How to Program, Prentice Hall, 1999,

[18] R. Ramakrishnan, D. Srivastava, S. Sudarshan, P. Seshadri, “The CORAL Deductive
System”, VLDB Journal, Vol.3, No.2, pp.161-210, 1994.

[19] A. Silberschatz, H.F. Korth, and S. Sudarshan, Database System Concepts, 4th
Edition, McGraw-Hill, 2001.

[20] Ling Chen, User Interface Design for a Diagrammatic Query Tool, Major Report,
Dept. of Computer Science, Concordia University, 2001.

[21] Ligian Zhou, Graphlog: its represntation in XML and Translation to CORAL,
Master’s Thesis, Dept. of Computer Science, Concordia University, 2003.

[22] Guang Wang. Linking CORAL to MySQL and PostgreSQL. Master’s Thesis, Dept.
of Computer Science, Concordia University, 2004.

[23] Greg Butler, Guang Wang, Yue Wang, Ligian Zhou, A Graph Database with Visual
Queries for Genomics, to appear in The Third Asia-Pacific Bioinformatics
Conference, Singapore, 17-21 Jan, 2005.

[24] D. Harel, “On Visual Formalisms”, Communications of the ACM, Vol.31, No.5,

pp.514-530, 1988.

59

[25] C. Berge, Graphs and Hypergraphs, North-Holland Publishing Company, 1973.

[26] D. Hix and H.R. Hartson, Developing User Interfaces: Ensuring Usability Through
Product and Process, New York, New York: John Wiley & Sons, Inc., 1983.

[27] B. Shneiderman, Designing the User Interface: Strategies for Effective Human-
Computer Interaction, 3™ Edition, Reading, MA: Addison-Wesley Publishing Co.,
1997.

[28] J. Erlandson and J. Holm, “Intelligent Help Systems”, Information and Software
Technology, Vol.29, No.3, pp.115-121, 1987.

[29] M.M. Gardinar and B. Christie, editors, Applying Cognitive Psychology to User-
Interface Design, John Wiley, Chichester, 1987.

[30] D. J. Mayhew, Principles and Guidelines in Software User Interface Design,
Englewood Cliffs, NJ: Prentice Hall, 1992.

[31] R.L. Solso, and H.H. Johnson, An Introduction to Experimental Design in
Psychology: A Case Approach, 4th Edition, New York, NY:Harper & Row, 1989.

[32] E.Gamma, R. Helm, R. Johnson, Design Patterns, Addison Wesley, 1995.

[33] E. Gansner, E. Koutsofios, S. North, Drawing graphs with dot,

http:/www.graphviz.org/Documentation.php, 2002.

[34] A list of applications of Graphviz, hitp://www.graphviz.org/Resources.php

[35] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-Phong Vo.,

A Technique for Drawing Directed Graphs. IEEE Trans. Sofware Eng., 19(3):214—

230, May 1993.
[36] T. Kamada and S. Kawai, An algorithm for drawing general undirected graphs,

Information Processing Letters, 31(1):7-15, April 1989.

60

Appendix A Creating Nodes and Editing Node Properties

© (21 Retations existing in the DB

& @ person

&£ student

© £ dept

& i works_in
& teaches

& majors_in

& takes

& 2l un_by

o pretequisites

& [assessment
& lives_in

© 27 first_supenvisor

[second_supenvisor

[User de

fined relations

y_staff

It_by

&1 studenl

=
=
3
Q
o
2
3
8

61

Appendix B Creating Edges and Editing Edge Properties

& staff
© [student

©- &Y Relations existing in the DB

-

o[address

© [works_in
& [teaches

& majors_in

penvisor

rst_su

fi

Shurodng

- [User defined relations

y_staff

t_by

© 7] studen

y_staff

student_by

!
B
3
52
z
@
>
3
S

-
.

o

-

Jaeal [
< e

62

Appendix C Creating a Blob and Editing Blob Properties

€ student

& course

&) address

& 3 works_in
1 teaches

e £ majors_in

© 1 takes

€ run_by

© [prerequisites

& [assessment
o lives_in

@ [first_supervisor

€[] secand_supenvisor

(2 User defined refatians

.

o

student{ID)

student_by_staff

o

=
2
t
-

i

63

Appendix D The “teachingAll” Blob (the Example in Figure 20)

.

it
b

& 7 first_supenvisor
[second_supemvisor

© [assessment
@] teachingall

@ [lives_in

[User defined relations
© (1 student_by_staft
© (1 student_by_stat

© [prereguisites

&3 stugent
© [address
&l works_in
@ teaches
@ [majors_in
© [takes

© [run_by

teachingAll

-
.
o

e

L Welcome o the Visual Query System for University Database

64

Appendix E Query with Blob (for the Example in Figure 20)

15y DB
Relations existing in'the-DB

&) course

& address

‘ &2 works_in
teachingll : @] teachis

& (4 majors,_in

& A takes

& 1 nin_ by

& £ prerequisites

© [assessment

& lves_in

© [rst_superisor
o 8REONd-suparvisor
5] User defined relations

teachingAll

65

Appendix F Blob Class — Attributes, Constructor, and Drawing Method

public class Blob
{
private String label ;
private boolean dummy_ = false;

protected Node containerNode_;

protected NodeList containedNodeList_;
protected Rectangle blobRect_;

protected boolean distinguished = false;

public boolean selected = false;

public Blob(Node container, Nodelist containedList,
Rectangle rect, String label, boolean dummy)
{

containerNode_ = container;
containedNodeList_ = containedList;
blobRect_ = rect;

dummy = dummy;
if (dummy)

label_ = new String("Blob_XYZ");
else label =label;

}

public void draw(Graphics graphics, int quality, int which gr)

{

graphics.setColor (Color.Balack) ;

// draw the blob rectangle
graphics.drawRect (blobRect .x, blobRect .y,
blobRect_.width, blobRect_.height);

// make the blob rectangle thicker if it's distinguished
if (distinguished_)
graphics.drawRect (blobRect_.x - 1, blobRect_.y - 1,
. blobRect_.width + 2, blobRect_ .height + 2);
graphics.drawRect (blobRect _.x + 1 , blobRect_ .y + 1,
blobRect_.width - 2, blobRect_.height - 2);
}

// Draw label.
if (quality > 0 && label_ != null && label_.length{() > 0)

FontMetrics fm = graphics.getFontMetrics();

int x, y;

x = (int) (blobRect_.x + blobRect_.width - fm.stringWidth(label_)
y = (int) (blobRect_ .y + fm.getHeight () + 2);
graphics.drawString(label , x, y);

...... // Other methods are omitted.

66

Appendix G mouseDown: Initiation of Blob Creation and Proerty Edtion

public boolean mouseDown (Event e, int x_in, int y_in)

{

}

// System.out.println("mouse down event in Graph Canvas.");

// finishing edge drawing if appropriate
w . //omitted: edge finishing code

// Determine which action to take.

we « //omitted

// Taking the action determined above
if (currentMouseAction == 1) { // create a new node

w - // omitted
} else if (currentMouseAction_ == 2) { // create a new edge
we .. // omitted

} else if (currentMouseAction_ == 5) { // Xuede: Create a new blob
newContainerNode = null;

if (selectedNode_ != null || selectedEdge != null) ({
unselectItems () ;
paintOver () ;

}

// initiate a new blob if a container node has been selected
if ((newContainerNode = findNearestNode_ (x_in, y_ in, false)) != null)
DDimension bbox = newContainerNode .getBoundingBox() ;

containedNodelList_ = new NodeList () ;

blobSelectX = x_in;
blobSelectY = y in + (int) bbox.height / 2;
blobSelectX2 = -1; // First time flag.

}

} else if (currentMouseAction == 3) { // Select object.

i

selected_ = NONE_;

// Xuede: Blob Support
if (selectedBlob_ != null && e.clickCount == 2)

//open the Property Dialog and get any changes
setBlobProperties (false) ;

return false;

}

w. . // omitted

return false;

67

Appendix H mouseDrag: Keep Resizing the Blob Rectangle until mouseUp

-public boolean mouseDrag (Event e, int x_in, int y in)

...... // omitted

if (currentMouseAction_ == 5 && newContainerNcde != null) // Xuede:

{

// the container node has been selected already (set in mouseDown)
if (%x_in - blobSelectX > 0 && y_in - blobSelectY_ > 0) {

// dragging a blob rectangle
blobSelectX2 = x_in;
blobSelectY2 = y _in;

drawSelectRect_ (blobSelectX_ , blobSelectY_,
blobSelectX2 , blobSelectY2);

...... // omitted

return false;

68

Appendix I mouseUp: Finish Blob Drawing and Capturing

public boolean mouseUp (Event e, int x_in, int y_in)

...... // omitted

// Xuede: Finish creating a blob - capturing contents, then paintOver!

if (currentMouseAction_ == 5 && newContainerNode != null
&& (blobSelectX2_ - blobSelectX > 0
&& blobSelect¥2 - blobSelectY > 0))

double x1, yl, x2,y2;

x1 = (double)Math.min(blobSelectX , blobSelectX2);
yl = (double)Math.min(blobSelectY , blobSelect¥Y2);
%2 = (double)Math.max (blobSelectX , blobSelectX2);
y2 = (double)Math.max(blobSelectY , blobSelect¥2);

// Capture the blob rectangle
Rectangle blobRect = new Rectangle((int) x1, (int) vy1,
(int) (x2 - x1), (int) (y2 - y1) };

// Selecting all the nodes and edges enclosed by the blob rectangle
multiSelect (x1, y1, x2, y2);

// Get all the contained nodes in the blob rectangle
Node tmpNode;
for(tmpNode = graph .firstNode();
tmpNode != null; tmpNode = graph .nextNode(tmpNode)) {
if (tmpNode.getId() != newContainerNode .getId()) {

DPoint3 nodePos = tmpNode.getPosition3 () ;

nodePos.transform(viewTransform) ;
1if (nodePos.xX >= X1 && nodePos.X <= x2
&& nodePos.y »= yl && nodePos.y <= y2) {
containedNodeList_.addNode{ tmpNode) ;
}
}
}

Blob newBlob = new Blob({ newContainerNode_,
containedNodeList_,
blobRect,
new String("Blob_" + Integer.toString(
newContainerNode_.getIndex())),
false);
graph_.insertBlob(newBlob);

// create the blob visually
paintOver () ;

...... // omitted

return false;

69

Appendix J Translation of Blobs into TGL

public class TGLGraph {
int type ; // EDGE type or Node type; Xuede: if (type_ == 12) it's BLOB type;
...... // omitted: more definitions

// Xuede: For Blob support
public String blob_toString() {

Blob thisBlob;

if (objectValue_ == null)
return "";
else thisBlob = (Blob) objectValue_;

String retstr = padding(2)+"<blobs>\n";

// add blob ID
retstr += padding(3)+"<id>BID" + thisBlob.getLabel() + "</id>\n";

// add blob label as predicate
String blob_label = thisBlob.getLabel(); //default blob value

if (! (thisBlob.getLabel().equals(""))) {
blob label = thisBlob.getLabel();
if (blob label.equals(new String(">")) || blob label.equals(new String("<")))

blob label = "&" + blob label;
}
retstr += padding(3)+ "<predicate>" + blob_label + "</predicate>\n";
// add blob's outer node
retstr += padding(3)+ "<outerNodeID>NID" +
(thisBlob.getContainerNode () .getId()) + "</outerNodeID> \n";

// add blob's inner nodes
NodeList innerNodeList = thisBlob.getContainedNodeList () ;

Node node;
for (node = innerNodeList.firstNode() ;
node != null; node = innerNodeList.nextNode (node))
retstr += padding(3)+"<innerNodeID>NID"+node.getId()+"</innerNodeID> \n";
retstr += padding(2)+ "</blob>";

return retstr;

...... // omitted: more methods

public void divide_Content_Show () {
...... // omitted

TGLGraph obj;

for(obj = this; obj != null; obj = obj.next_){
if (obj.type == 10){
...... // omitted: edge processing
} else if (obj.type_ == 11){

...... // omitted: node processing

70

} else if (obj.type == 12) { // Xuede: Blob Support

Blob tempBlob = (Blob) obj.objectValue ;

if (tempBlob.getDistinguished() == true) { // distinguished blob toShow
toShow.addElement (obj) ;
if ((this.graph_type_) .equals ("defineGraphlog")) {

newRelName = tempBlob.getLabel () ;

}

} else content.addElement (obj) ;

}
}

}
public Vector define toString() {
...... // omitted: definitions

while (!toShow.isEmpty() && toShow.size()> counter) {
TGLGraph obj = (TGLGraph) toShow.elementAt (counter);
if (obj.type == 10){
...... // omitted: edge processing

} else if (obj.type_ == 12) { // Xuede: Blob Support
System.out.println("OBJ is a blob " + obj.objectvalue_.toString()) ;
Blob thisBlob = (Blob) obj.objectValue_;
predicate name = thisBlob.getLabel();
new_rel.addElement (predicate name) ;

String containerNode = (thisBlob.getContainerNode()) .getLabel();
new_rel.addElement (containerNode) ;

NodeList containedNodeList = thisBlob.getContainedNodeList () ;
Node node = null;
for (node = containedNodelList.firstNode();
node != null; node = containedNodeList.nextNode (node)) {
new_rel.addElement { node.getLabel());
}
!
counter++;

}

return new_rel;

}

71

Appendix K Visualizing Blobs in the DOT Language and Visual Blob Pattern

private void visualizeResult () {

// Omitted: definitions of variables

// 1. parse TGL XML result into internal data structures (3 vectors)
//

TGTranslator result = new TGTranslator();
result.parseXML ("E: /NewDQT/QueryResult . .xml") ;

// 2. construct the result graph & legend in dot, with object properties
//

GraphViz gv = new GraphvViz();

gv.addln(gv.start_graph());

gv.addln("fontsize=28;");

gv.addln("compound=true;");

gv.addln{("size=\"9,8\"; ratio=fill; center=true;");

// first: go over the blob vector to make a cluster for each blob
for (i1=0; i<result.blobVec.size(); i++) {
tglBlob = (TGLBlob) (result.blobVec.elementAt(i)); // get a blob

// get the blob's name, color, etc
blobId = tglBlob.getBID() ;
for (j=0; j<dotBlobVector.size(); j++) {
dotBlob = (DOTBlob) (dotBlobVector.elementAt (j));
if (dotBlob.getId().equalsIgnoreCase{ blobId)}) {
blobName = dotBlob.getName () ;
blobColor = dotBlob.getFillColor () ;
break;
}
}
if (j == dotBlobVector.size())
System.out.println("BID could not be found ??? " + blobId);

// get the outer node

outerNode = tglBlob.getOuterNode() ;
outerNodeId = outerNode.getNID() ;
outerNodeText = outerNode.getText () ;

// make outer node rank lists
for (j=0; j<outerNodeRankVector.size(); j++) {
outerNodeRank = (Rank) (outerNodeRankVector.elementAt(j)) ;
if (outerNodeRank.getObjectId().equalsIgnoreCase(blobId)) {
outerNodeRank.addNode{ "\"" + outerNodeText + "\";");
break;
}
}
if (j == outerNodeRankVector.size())
outerNodeRankVector.addElement (new Rank(blobId,
"\ "riouterNodeText+"\""));

// remove any node which is a duplicate of the outer node
removeDuplicatedNode (outerNodeId, outerNodeText, result);

// get the outer node's name, shape and color
for (j=0; j<dotNodeVector.size(); j++) {
dotOuterNode = (DOTNode) (dotNodeVector.elementAt (j));
if (dotOuterNode.getId() .equalsIgnoreCase(outerNodeId)) {
outerNodeName = dotOuterNode.getName () ;

72

outerNodeShape = dotOuterNode.getShape() ;
outerNodeColor = dotOuterNode.getFillColor () ;
break;
}
}

if (j == dotNodeVector.size())
System.out.println("Outer NID could not be found ?" + cuterNodeld);

// draw the outer node
gv.addln("\"" + outerNodeText + "\"" +
" [fontsize=22, shape=" + outerNodeShape +
", style=filled, fillcolor=" + outerNodeColor + "};");

// make legend rank lists - add the outer node in if not there yet
for (j=0; j<legendNodeRankVector.size(); j++) {
legendNodeRank = (Rank) (legendNodeRankVector.elementAt(j));

if (legendNodeRank.getObjectId() .equalsIgnoreCase(outerNodeId))
break;
}

if (j == legendNodeRankVector.size()) {
legendNodeRankVector.addElement (new Rank(outerNodeId, outerNodeName,
outerNodeShape, outerNodeColor));
}

// open a new dot cluster for this blob

gv.addln("subgraph cluster" + i + " {" };

gv.addln("style=filled;");

gv.addln("fillcolor=" + blobColor + ";");

gv.addln("labeljust=\"r\"; label=" + blobName + ";" };

// get an inner nodes' name, shape and color
// and then add this node into the dot graph
innerNodeList = tglBlob.getInnerNodeList () ;
for (k=0; k<innerNodeList.size(); k++) {

// get an inner node

innerNode = innerNodeList.getTGLNodeAt (k) ;
innerNodeId = innerNode.getNID() ;
innerNodeText = innerNode.getText () ;

// remove any node which is a duplicate of the inner node
removeDuplicatedNode (innerNodeId, innerNodeText, result);

// get the node's properties & add into the dot graph
for (j=0; j<dotNodeVector.size(); j++)
dotInnerNode = (DOTNode) (dotNodeVector.elementAt(j));
if (dotInnerNode.getId().equalsIgnoreCase{ innerNodeId }) ({
innerNodeName = dotInnerNode.getName () ;
innerNodeShape = dotInnerNode.getShape () ;
innerNodeColor dotInnerNode.getFillColor () ;

gv.addln("\"" + innerNodeText + "\"" + " [shape=" +
innerNodeShape + ", style=filled, fillcolor="
+ innerNodeColor + "1;");

// Add the inner node into the legend list if not there yet

int n;
for (n=0; n<legendNodeRankVector.size(); n++) {
legendNodeRank = (Rank) (legendNodeRankVector.elementAt(n));

if (legendNodeRank.getObjectId() .equalsIgnoreCase (innerNodelId))
break;

73

//

//

gv.

/7

}

if (n == legendNodeRankVector.size()) {
legendNodeRankVector.addElement (new Rank(innerNodelId,
innerNodeName, innerNodeShape, innerNodeColor));
}

// remove the edge between the outerNode and the innerNode
removeBlobEdge (outerNodeId, outerNodeText,
innerNodeId, innerNodeText, result);
break;
1
}

if (j == dotNodeVector.size())
System.out .println("Inner NID could not be found?" +innerNodeld);

}

// define a dummy inner node for the dummy outer-inner connection
dummyInnerNodeText = blobName + ij;

dummyInnerNodeShape = "point";

dummyInnerNodeColor = blobColor;

gv.addln("\"" + dummyInnerNodeText + "\"" + " [style=invis, shape=" +
dummyInnerNodeShape + ", color=" + dummyInnerNodeColor + ",
style=filled, fillcolor=" + dummyInnerNodeColor + "]");

gv.addln("}"); // close the cluster for this blob

// add the outer node and link it to the dummy inner node (the blob)

gv.addln("\""+outerNodeText+"\"" + " -5 " 4 “\""idummyInnerNodeText+"\""

+ " [style=bold, arrowsize=2, arrowhead=inv, arrowtail=dot, len=0.1, "

+ " tailport=s, headport=n, lhead=cluster" + i +"];");
gv.addlin() ;
// loop for blobs
Omitted: code for visualizing edges and then nodes
close the dot graph
addln(gv.end_graph()) ;

Omitted: code for constructing the legend graph & calling Graphviz

74

Appendix L. Automated Translation and Visualization of Query Results

// Xuede: generate DOT graph, then call Graphviz to get visualization layout
//

private void visualizeResult () {
int i, j, k;

Vector outerNodeRankVector = new Vector();
Rank outerNodeRank = null;

Vector legendNodeRankVector = new Vector();
Rank legendNodeRank = null;

Vector legendEdgeVector = new Vector();
LegendEdge legendEdge = null;

DOTBlob dotBlob;

DOTEdge dotEdge;

DOTNode dotNode, dotOuterNode, dotInnerNode;

TGLBlob tglBlob;

TGLEdge tglEdge;

TGLNode tglNode, outerNode, innerNode, fromNode, toNode;
TGLNodeList innerNodeList;

String blobId = "", blobName = "", blobColor = "", rankSetl];
String outerNodeId = "", outerNodeName = "", outerNodeText = "",
outerNodeShape = "", outerNodeColor = "";
String innerNodeId = "", innerNodeName = "", innerNodeText = "",
innerNodeShape = "", innerNodeColor = "";
String dummyInnerNodeText="", dummyInnerNodeShape="", dummyInnerNodeColor="";
String edgeId = "", edgeName = "", edgeColor = "", edgeStyle = "";
String fromNodeId = "", fromNodeName = "", fromNodeText = "",
fromNodeShape = "", fromNodeColor = "";
String toNodeId = "", toNodeName = "", toNodeText = "",
toNodeShape = "", toNodeColor = "";
Note 1:
String nodelId = "", nodeName = "", nodeText = "', Parse the TGL
nodeShape = "", nodeFillColor = ""; result file.

// 1. parse TGL XML result file into internal data s
!/

TGTranslator result = new TGTranslator();
result.parseXML ("E: /NewDQT/testQueryResult .xml") ;

res (3 vectors)

//a.parseXML (" /mnt/jeeves0/repository/Graphlog/result/tempQueryResult.xml") ;

// 2. construct the result graph & legend in dot language
//

GraphViz gv = new GraphViz();

gv.addln(gv.start_graph());

gv.addln("fontsize=28;");

gv.addln("compound=true;");

gv.addln("size=\"9,8\"; ratio=fill; center=true;");

// First: Go over result.blobVec
for (i=0; i<result.blobVec.size(); i++) {

tglBlob = (TGLBlob) (result.blobVec.elementAt(i)); // get a blob

// get the blob's name, color, etc

75

blobId = tglBlob.getBID() ;
for (j=0; j<dotBlobVector.size(); j++) {
dotBlob = (DOTBlob) (dotBlobVector.elementAt (j));
if (dotBlob.getId().equalsIgnoreCase(blobId)) ({
blobName = dotBlob.getName () ;
blobColor = dotBlob.getFillColor () ;
break;
}
}
if (j == dotBlobVector.size())
System.out.println("BID could not be found ??? " + blobId);

// get the outer node

outerNode = tglBlob.getOuterNode () ;
outerNodeId = outerNode.getNID () ;
outerNodeText = outerNode.getText () ;

// make outer node rank lists
for (j=0; j<outerNodeRankVector.size(); j++) {
outerNodeRank = (Rank) (outerNodeRankVector.elementAt (j));
if (outerNodeRank.getObjectId().egualsIgnoreCase(blobid)) {
outerNodeRank.addNode{ "\"" + outerNodeText + "\";");
break;
}
}
if (j == outerNodeRankVector.size())
outerNodeRankVector.addElement (new Rank (blobId, "\""+outerNodeText+"\""));

// remove any node which is a duplicate of the outer node
removeDuplicatedNode (outerNodeld, outerNodeText, result);

// get the outer node's name, shape and color
for (j=0; j<dotNodeVector.size(); j++) {
dotOuterNode = (DOTNode) (dotNodeVector.elementAt (j));
if (dotOuterNode.getId() .equalsIgnoreCase(outerNodeId)) {
outerNodeName = dotOuterNode.getName () ;
outerNodeShape = dotOuterNode.getShape() ;
outerNodeColor = dotOuterNode.getFillColor () ;
break;
}
}
if (j == dotNodeVector.size())
System.out.println ("Outer NID could not be found ? " + outerNodeId };

// draw the outer node
gv.addln("\"" + outerNodeText + "\"" +
" [fontsize=22, shape=" + outerNodeShape +
", style=filled, fillcolor=" + outerNodeColor + "];" };

// make legend rank lists - add the outer node in if it is not there yet
for (§=0; j<legendNodeRankVector.size(); j++) {
legendNodeRank = (Rank) (legendNodeRankVector.elementAt (j));

if (legendNodeRank.getObjectId() .equalsIgnoreCase(outerNodelId))
break;
1
if (§ == legendNodeRankVector.size()) {
legendNodeRankVector.addElement (new Rank(outerNodeId, outerNodeName,
outerNodeShape, outerNodeColor));

}

// open a new dot cluster for this blob
gv.addln("subgraph cluster" + i + " {");

76

//gv.addln{ "orientation=portrait;");

//gv.addln("rankdir=LR;");

gv.addln("style=filled;");

gv.addln("fillcolor=" + blobColor + ";");

gv.addln("labeljust=\"r\"; label=" + blobName + ";");

// get an inner nodes' name, shape and color
// and then add this node into the dot graph
innerNodeList = tglBlob.getInnerNodeList () ;
for (k=0; k<innerNodeList.size(); k++) {

// get an inner node

innerNode = innerNodeList.getTGLNodeAt (k) ;
innerNodeId = innerNode.getNID() ;
innerNodeText = innerNode.getText () ;

// remove any node which is a duplicate of the inner node
removeDuplicatedNode (innerNodeld, innerNodeText, result);

// get the node's properties & add into the dot graph
for (j=0; j<dotNodeVector.size(); j++) {
dotInnerNode = (DOTNode) (dotNodeVector.elementAt(j));
if (dotInnerNode.getId().equalsIgnoreCase(innerNodelId)) {
innerNodeName = dotInnerNode.getName () ;
innerNodeShape = dotInnerNode.getShape ()} ;
innerNodeColor dotInnerNode.getFillColor () ;

]

gv.addln("\"" + innerNodeText + "\"" +
" [shape=" + innerNodeShape + ", style=filled, fillcolor="
+ innerNodeColor + "}1;");

// make legend rank lists - add the inner node in if not there yet

int n;
for (n=0; n<legendNodeRankVector.size({); n++)}
legendNodeRank = (Rank) (legendNodeRankVector.elementAt (n));

if (legendNodeRank.getObjectId() .equalsIgnoreCase (innerNodeld))
break;

}

if (n == legendNodeRankVector.size()) ({
legendNodeRankVector.addElement (new Rank (innerNodeld, innerNodeName,
innerNodeShape, innerNodeColor));
}

// remove the edge between the outerNode and the innerNode
removeBlobEdge (outerNodeId, outerNodeText,
innerNodeId, innerNodeText, result);

break;
1
}

if (j == dotNodeVector.size())
System.out.println("Inner NID could not be found? " + innerNodeId);

}

// define a dummy inner for the dummy outer-inner connection
dummyInnerNodeText = blobName + i; Note 2:
dummyInnerNodeShape = "point";
dummyInnerNodeColor = blobColor; Ckﬂnegdunnny
gv.addln{ "\"" + dummyInnerNodeText + "\"" + connection for a blob
" [style=invis, shape=" + dummyInnerNodeSITape +
", color=" + dummyInnerNodeColor + ", sgtyle=filled, fillcolor="

77

+ dummyInnerNodeColor + "1");

gv.addln{ "}"); // close the cluster for this blob
// add the outer node and link it to the dummy inner nodes, i.e., the
blob.
gv.addln("\""+outerNodeText+"\"" + " -> "+"\""+dummyInnerNodeText+"\""+
" [style=bold,arrowsize=2,arrowhead=inv,arrowtail=dot,len=0.1, "+
" tailport=s, headport=n, lhead=cluster" + i +"];");
gv.addln() ;
Note 3:
} // loop for blobs Rank the blobs.

// define ranks for all the blobs
for (j=0; j<outerNodeRankVector.size(); j++) {

outerNodeRank = (Rank) (outerNodeRankVector.elementAt (j))
gv.addln("{ rank=same; " + outerNodeRank.getNodeList ()

+ " }n)

/** Second: Go over result.edgeVec

*

*/

for (i=0; i<result.edgeVec.size(); i++) {
tglEdge = (TGLEdge) (result.edgeVec.elementAt(i)); // get an edge

// get the edge's name, color, etc
edgeId = tglEdge.getEID() .trim() ;
for (§=0; j<dotEdgeVector.size(); j++) {

dotEdge =

(DOTEdge) (dotEdgeVector.elementAt (J)) ;

if (dotEdge.getId().trim().equalsIgnoreCase(edgeId)) {

edgeName

= dotEdge.getName () .trim() ;

edgeStyle = dotEdge.getStyle() .trim();

edgeColor = dotEdge.getColox () .trim();
break;
}
if (j == dotEdgeVector.gize())

System.out.println("EID could not be found ??? " + edgeld);

// get the from node

fromNode =

fromNodeId

fromNodeText

tglEdge.getFromNode () ;

fromNode.getNID() .trim() ;
= fromNode.getText () .trim() ;

// get the to node
toNode = tglEdge.getToNode () ;

toNodeId = toNode.getNID().trim() ;

toNodeText

toNode.getText () .trim() ;

// remove any node which is a duplicate of the fromNode or the toNode
removeDuplicatedNode (fromNodeId, fromNodeText, result);
removeDuplicatedNode (toNodeId, toNodeText, result);

// get the from node's name, shape and color
for (j=0; j<dotNodeVector.size{); j++) {

dotNode =

(DOTNode) (dotNodeVector.elementAt(j)) ;

if (dotNode.getId().trim().equalsIgnoreCase(fromNodeId)) {
fromNodeName = dotNode.getName () .trim();
fromNodeShape = dotNode.getShape () .trim();

78

fromNodeColor = dotNode.getFillColor () .trim();
break;
}
}
if (j == dotNodeVector.size())
System.out.println("FromNID could not be found ??? " + fromNodeId);

// get the to node's name, shape and color
for (j=0; j<dotNodeVector.size(); j++) {
dotNode = (DOTNode) (dotNodeVector.elementAt (j));

if (dotNode.getId{).trim().equalsIgnoreCase(toNodeId)) {
toNodeName = dotNode.getName () .trim();

toNodeShape = dotNode.getShape () .trim();
toNodeColor = dotNode.getFillColor () .trim(}; Note 4:
| break; Add an edge.
}
if (j == dotNodeVector.size())

System.out.println("toNID could not be found ??? "

// add the edge into the dot graph
gv.addln("\""+fromNodeText+"\"" + " -> " + "\""itoNodeText+"\"" +

" [style=" + edgeStyle + ", color=" + edgeColor + "];");
// replace the above line with the one below if want to show edge labels
//" {label="+edgeName+", style="+edgeStyle+", color="+edgeColor+"];");
gv.addln("\"" + fromNodeText + "\"" + " [shape=" + fromNodeShape +

", style=filled, fillcolor=" + fromNodeColor + "];");
gv.addln{ "\"" + toNodeText + "\"" + " [shape=" + toNodeShape +

", style=filled, fillcolor=" + toNodeColor + "J;");

// make Legend Edge lists
for (j=0; j<legendEdgeVector.size(); j++) {
legendEdge = (LegendEdge) (legendEdgeVector.elementAt(j));
i1f (legendEdge.getEdgeName () .equalsIgnoreCase(edgeName)
&& legendEdge.getFromNodeName () .equalsIgnoreCase (fromNodeName)
&& legendEdge.getToNodeName () .equalsIgnoreCase (toNodeName)})
break;

if (j == legendEdgeVector.size()) {
legendEdgeVector.addElement (new LegendEdge (fromNodeName, toNodeName,
edgeName, edgeStyle, edgeColor));

}

// make legend rank lists - add the from/to node in if not there yet
int n;
for (n=0; n<legendNodeRankVector.size(); n++) {

legendNodeRank = (Rank) (legendNodeRankVector.elementAt (n));

if (legendNodeRank.getObjectId().equalsIgnoreCase(fromNodeId))
break;

if (n == legendNodeRankVector.size()) {
legendNodeRankVector.addElement (new Rank (fromNodeId, fromNodeName,
fromNodeShape, fromNodeColor));

}

for (n=0; n<legendNodeRankVector.size(); n++)} {
legendNodeRank = (Rank) (legendNodeRankVector.elementAt (n));

if (legendNodeRank.getObjectId() .equalsIgnoreCase(toNodeId))
break;

79

}

if (n == legendNodeRankVector.size()) {
legendNodeRankVector.addElement (new Rank (toNodeId, toNodeName,
toNodeShape, toNodeColor));
}

} // loop for edges

/** At Last: add all the orphan nodes still left in result.nodeVec

*

*/
gv.addln("{ rank=same; ");
for (i=0; i<result.nodevVec.size(); i++) {
tglNode = (TGLNode) (result.nodeVec.elementAt (i)); // get a node

// get the node's name, color, etc
nodeld = tglNode.getNID().trim();
nodeText = tglNode.getText () ;
for (j=0; j<dotNodeVector.size(); j++) {
dotNode = (DOTNode) (dotNodeVector.elementAt(j)) ;

if (dotNode.getId().trim().equalsIgnoreCase(nodeId)) {
nodeName = dotNode.getName () .trim();
nodeShape = dotNode.getShape () .trim() ;
nodeFillColor = dotNode.getFillColor () .trim() ;

} break Note 5:
) Add nodes.
if (j == dotNodeVector.size())

System.out.println("NID could not be fou ~7? " + nodelId);

// add the node into the dot graph
gv.addln("\"" + nodeText + "\"" + " [shape=" + nodeShape +
", style=filled, fillcolor=" + nodeFillColor + "];");

// make legend rank lists - add the all orphan nodes in if not there yet
int n;
for (n=0; n<legendNodeRankVector.size(); n++)

legendNodeRank = (Rank) (legendNodeRankVector.elementAt (n)) ;

if (legendNodeRank.getObjectId() .equalsIgnoreCase(nodelId))
break;

if (n == legendNodeRankVector.size()) {
legendNodeRankVector.addElement (new Rank (nodeId, nodeName,
nodeShape, nodeFillColor)) ;
}

} // loop for nodes
gv.addln("}"); // close node rank

// close the dot graph Note 6:
gv.addln(gv.end_graph()) ; Call Graphviz to

layout the result graph.

System.out.println(gv.getDotSource()) ;

// 3. call graphviz to get the result layout

//
File resultOut = new File ("E:/NewDQT/Graphviz/result.gif");
gv.writeGraphToFile (gv.getGraph (gv.getDotSource()), resultOut);

// 4. make legend graph & layout for the result >
// / Note 7:

GraphViz legend = new GraphViz(); Construct'the Legend
graph.

80

legend.addln{(legend.start_graph()};

legend.addln("fontsize=28;");

legend.addln("size=\"1.6, 8\"; ratio=fill; center=true;");
legend.addln{("rankdir=LR;");

// define ranks for all the blobs

legend.addln("{ rank=same; ");
for (i=legendNodeRankVector.size()-1; i>=0; i--) {
legendNodeRank = (Rank) (legendNodeRankVector.elementAt(i));

String legendNodeName = legendNodeRank.getNodeList();
String legendNodeShape = legendNodeRank.getNodeShape () ;
String legendNodeFillColor = legendNodeRank.getNodeFillColor () ;

legend.addln("\""+legendNodeName.trim()+"\"" + " [shape="+legendNodeShape
+",style=filled,fillcolor="+legendNodeFillColor +"];");
}

legend.addln("}"); // close rank

// add edges into legend
for (i=0; i<legendEdgeVector.size(); i++) {
legendEdge = (LegendEdge) (legendEdgeVector.elementAt (i));

legend.addln("\""+legendEdge.getFromNodeName () .trim () +"\"" +" -5 g
"\"" + legendEdge.getToNodeName () .trim() + "\"" +
" [label=" + legendEdge.getEdgeName () +
", labelfloat=true, labeldistance=0.2, style=" +
legendEdge.getEdgeStyle() +
", color=" + legendEdge.getEdgeColor{) + "];");

// close the dot graph for the Legend
legend.addln(legend.end graph());
System.out.println(legend.getDotSource());

// layout the Legend

File legendOut = new File ("E:/NewDQT/Graphviz/legend.gif") ;
legend.writeGraphToFile {legend.getGraph (legend.getDotSource ()), legendOut);

81

