Design Sensitivity analyses of Two-Dimensional Recursive Band-Pass and Band-Stop Digital Filters with an Application in Image Processing

Karthikeyan, Keelapandal Sundaram

A thesis
In
The Department
Of
Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements For the Degree of Master of Applied Science at
Concordia University
Montréal, Québec, Canada
December 2004
© Karthikeyan K Sundaram, 2004
NOTICE:
The author has granted a non-exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non-commercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

AVIS:
L’auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L’auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni les extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.
Abstract

Design Sensitivity analyses of Two-Dimensional Recursive Band-Pass and Band-Stop Digital Filters with an Application in Image Processing.

Two-dimensional variable recursive digital Band-pass and Band-stop filters are applied in signal processing and pro-imaging process, as well as communication systems where the frequency domain characteristics of digital filters are required to be adjustable. The main objective of this thesis has been to propose a new method of designing 2-D recursive Band-Pass and Band-Stop digital filters with variable characteristics. From the identical analog 1-D second order Butterworth Low-Pass analog ladder network, 2-D Band-Pass and Band-Stop digital filters can be obtained through the application of Low-Pass to Band-Pass / Band-Stop transformation and double generalized bilinear transformations. The denominators of these filters transfer functions are verified for VSHP. Sensitivity analyses are performed by varying the coefficients of the double generalized bilinear transformation such as k_1, k_2, a_1, a_2, b_1 and b_2 with respect to center frequency ω_0 and Bandwidth B on the resulted 2-D Band-Pass and Band-Stop filter, which are obtained by varying the coefficients of the double generalized bilinear transformation in the specific ranges in order to maintain the stability of the filter of the Band-Pass and Band-Stop transfer function respectively.
Acknowledgements

I would like to express my deepest gratitude to my thesis supervisor, Dr. Venkat Ramachandran, for his valuable guidance and encouragement through the course of this thesis, for his extremely careful, critical, and thorough review of my work. I thank Dr. Subhash Rakheja and Dr. Rabin Raut for their helpful suggestions in the preparation of the final manuscript of the thesis. I would also thank my parents and sisters for their encouragement and support.
Dedicated to my parents and sisters
Table of Contents

List of Tables xi
List of Figures xii
List of Abbreviations and Symbols xix

1 Introduction 1

1.1 General ...1

1.2 Analog and Digital filters ...2

1.3 Characterization of Digital Filters4

1.4 Different types of filters ...6

1.5 Design of digital filter from analog filters7

1.5.1 Design of Digital IIR filters from analog filters7

1.5.1.1 Filter Design by Impulse Invariance8

1.5.1.2 Filter Design by Bilinear Transformation9

1.5.2 Design of Digital FIR filters10

1.6 Two-Dimensional Digital filters10

1.7 Stability of the filters ..11

1.8 Overview of Very Strict Hurwitz polynomial14

1.8.1 Definition of Very Strict Hurwitz Polynomial14

1.8.2 Some Properties of VSHP16

1.9 Generation of VSHP ..21

1.9.1 Using Terminated n-port Gyrator Networks21
2 Two-Dimensional Band-Pass Filters from Low-Pass Butterworth filters 26

2.1 Butterworth Low-Pass Filters[2, 30] 27

2.2 Two-Dimensional Band-pass filter 31

2.2.1 Low-Pass to Band-Pass Transformation 31

2.2.2 Band-Pass Filter Structure 33

2.3 Determining the parameter values of the Band-Pass structure 34

2.4 Digital Transfer Function 37

2.4.1 Band-Pass Limits for the Coefficients of Generalized Bilinear Transformation 37

2.4.2 2-D Band-Pass Digital Transfer Function from Double Generalized Bilinear Transformation 38

2.4.3 Stability Conditions of the 2-D Digital Band-Pass Filter 39

2.5 Frequency Response of the 2-D Band-Pass filters 42

2.5.1 Frequency Response of 2-D Band-Pass filters with various \(k_1 \) values 44

2.5.2 Frequency Response of 2-D Band-Pass filters with various \(k_2 \) values 47

2.5.3 Frequency Response of 2-D Band-Pass filters with various \(a_1 \) values 50

2.5.4 Frequency Response of 2-D Band-Pass filters with various \(a_2 \) values 52

2.5.5 Frequency Response of 2-D Band-Pass filters with various \(b_1 \) values 54

2.5.6 Frequency Response of 2-D Band-Pass filters with various \(b_2 \) values 56
2.5.7 Frequency Response of 2-D Band-Pass filters with various k_1 values and fixed ω_0 with same values of a_1 and b_1 58

2.5.8 Frequency Response of 2-D Band-Pass filters with various k_2 values and fixed ω_0 with same value of a_2 and b_2 61

2.5.9 Frequency response for different values of B and ω_0 with unity for other coefficients 65

2.5.9.1 Frequency response for different values of B 65

2.5.9.2 Frequency response for different values of ω_0 65

2.5.10 Frequency Response of 2-D Band-Pass filters with fixed k_1 values and various ω_0 with same values of a_1 and b_1 67

2.5.11 Frequency Response of 2-D Band-Pass filters with fixed k_2 values and various ω_0 with same values of a_2 and b_2 74

2.5.12 Frequency Response of 2-D Band-Pass filters with various k_1 and ω_0 values with different values of a_1 and b_1 80

2.5.13 Frequency Response of 2-D Band-Pass filters with various k_2 and ω_0 values with different values of a_2 and b_2 80

2.5.14 Frequency Response of 2-D Band-Pass filters with various k_1, k_2 and ω_0 values with different values of a_1, a_2, b_1 and b_2 85

2.6 Summary and Conclusion 91

3 Two-Dimensional Band-Stop Filters from Low-Pass Butterworth filters 93

3.1 Low-Pass to Band-Stop Transformation 94

3.2 Band-Stop Filter Structure 94

3.3 Determining the parameter values of the band-stop structure 96

3.4 Digital Transfer Function 98
3.4.1 Band-Stop Limits for the Coefficients of Generalized Bilinear Transformation ... 98
3.4.2 2-D Band-Stop Digital Transfer Function .. 98
3.4.3 Stability Conditions of the 2-D Digital Band-Pass Filter 100

3.5 Frequency Response of the 2-D Band-Stop filters 103

3.5.1 Frequency Response of 2-D Band-Stop filters with various k_1 values 105
3.5.2 Frequency Response of 2-D Band-Stop filters with various k_2 values 109
3.5.3 Frequency Response of 2-D Band-Stop filters with various a_1 values 112
3.5.4 Frequency Response of 2-D Band-Stop filters with various a_2 values 115
3.5.5 Frequency Response of 2-D Band-Stop filters with various b_1 values 117
3.5.6 Frequency Response of 2-D Band-Stop filters with various b_2 values 119
3.5.7 Frequency Response of 2-D Band-Stop filters with various k_1 values and fixed ω_o with same values of a_1 and b_1 121
3.5.8 Frequency response of different values of B with all the other coefficients as unity. .. 124
3.5.9 Frequency Response of 2-D Band-Stop filters with fixed k_1 values and various ω_o with same values of a_1 and b_1 124
3.5.10 Frequency Response of 2-D Band-Stop filters with various k_2 values and fixed ω_o with same values of a_2 and b_2 130
3.5.11 Frequency Response of 2-D Band-Stop filters with fixed k_2 values and various ω_o with same values of a_2 and b_2 133
3.5.12 Frequency Response of 2-D Band-Stop filters with various k_1 and ω_o values with different values of a_1 and b_1 137
3.5.13 Frequency Response of 2-D Band-Stop filters with various k_2 and ω_0
values with different values of a_2 and b_2 ...142
3.6 Frequency Response of 2-D Band-Stop filters with various k_1,k_2 and ω_0 values
with different values of a_1, a_2, b_1 and b_2 ...148
3.7 Summary and Conclusion ..148

4 An Application of 2-D Band-Pass and Band-Stop Filters 151
4.1 Digital Speech Processing ...151
4.2 Digital Image Processing ...152
 4.2.1 Image smoothing and noise reduction ...153
 4.2.1.1 Peak Signal to Noise Ratio (PSNR) ..163
 4.2.2 Simulation results ..164
 4.2.3 Image analysis ...165
4.3 Summary ..166

5 Conclusions and Future Works 167
5.1 Conclusions ..167
5.2 Directions for future work ..170

Bibliography 172
Appendix 177
Programs ...177
List of Tables

4.1 PSNR for Smooth and Noise Reduced images at different noise level . . . 164
List of Figures

1.1 Block Diagram of a filter .. 2
1.2 Block diagram of a digital filter 3

2.1 An ideal low-pass magnitude response 27
2.2 Butterworth amplitude responses. 29
2.3 Butterworth loss curves. ... 30
2.4 Ideal band-pass filters ... 31
2.5 Band-Pass Filter structure .. 33
2.6 Low-Pass Filter Structure ... 35
2.7 Frequency response of the standard 2-D band-pass filter with all the coefficient values as unity .. 43
2.8 Frequency response of the band-pass filter with \(k_1 = 0.1, 0.75, 1.5 \) and 3 and all the other coefficients as unity. .. 45
2.9 Frequency response of the band-pass filter with \(k_1 = 5, 10, 50 \) and 100 and all the other coefficient as unity. 46
2.10 Frequency response for the band-pass filter with the value of \(k_2 = 0.1, 0.75, 1.5 \) and 3, and all the other coefficients as unity. .. 48
2.11 Frequency response for the band-pass filter with the value of \(k_2 = 5,10,50 \) and 100 and all the other coefficients as unity. .. 49

2.12 Frequency response for the band-pass filter with the value of \(a_1 = 0.25,0.5,0.075 \) and 0.9 and all the other coefficients as unity. 51

2.13 Frequency response for the band-pass filter with the value of \(a_2 = 0.25,0.5,0.075 \) and 0.9 and all the other coefficients as unity. 53

2.14 Frequency response for the band-pass filter with the value of \(b_1 = 0.25,0.5,0.075 \) and 0.9 and all the other coefficients as unity. 55

2.15 Frequency response for the band-pass filter with the value of \(b_2 = 0.25,0.5,0.075 \) and 0.9 and all the other coefficients as unity. 57

2.16 Frequency response for the band-pass filter with the value of \(k_1 = 0.1 \) and 0.4 for \(a_1 = b_1 = 0.5 \) and all the other coefficients as unity 58

2.17 Frequency response for the band-pass filter with the value of \(k_1 = 0.5 \) and 1.5 for \(a_1 = b_1 = 0.5 \) and all the other coefficients as unity 59

2.18 Frequency response for the band-pass filter with the value of \(k_1 = 2 \) and 100 for \(a_1 = b_1 = 0.5 \) and all the other coefficients as unity 60

2.19 Frequency response for the band-pass filter with the value of \(k_2 = 0.1 \) and 0.4 for \(a_2 = b_2 = 0.5 \) and all the other coefficients as unity 62

2.20 Frequency response for the band-pass filter with the value of \(k_2 = 0.5 \) and 1.5 for \(a_2 = b_2 = 0.5 \) and all the other coefficients as unity 63

2.21 Frequency response for the band-pass filter with the value of \(k_2 = 2 \) and 100 for \(a_2 = b_2 = 0.5 \) and all the other coefficients as unity 64

2.22 Frequency response of band-pass filter with various values of \(B \) 66

xiii
2.23 Frequency response for the band-pass filter with the value of \(\omega_0 = 0.5, 1.5, 2 \) and 3 and all the other coefficients as unity. .. 68
2.24 Frequency response for the band-pass filter with the value of \(k_1 = 0.25 \) for
\(a_1 = b_1 = 0.75 \) and all the other coefficients as unity 69
2.25 Frequency response for the band-pass filter with the value of \(k_1 = 0.5 \) for
\(a_1 = b_1 = 0.75 \) and all the other coefficients as unity 70
2.26 Frequency response for the band-pass filter with the value of \(k_1 = 1 \) for
\(a_1 = b_1 = 0.75 \) and all the other coefficients as unity 71
2.27 Frequency response for the band-pass filter with the value of \(k_1 = 2 \) for
\(a_1 = b_1 = 0.75 \) and all the other coefficients as unity 72
2.28 Frequency response for the band-pass filter with the value of \(k_1 = 5 \) for
\(a_1 = b_1 = 0.75 \) and all the other coefficients as unity 73
2.29 Frequency response for the band-pass filter with the value of \(k_2 = 0.25 \) for
\(a_2 = b_2 = 0.75 \) and all the other coefficients as unity 75
2.30 Frequency response for the band-pass filter with the value of \(k_2 = 0.5 \) for
\(a_2 = b_2 = 0.75 \) and all the other coefficients as unity 76
2.31 Frequency response for the band-pass filter with the value of \(k_2 = 1 \) for
\(a_2 = b_2 = 0.75 \) and all the other coefficients as unity 77
2.32 Frequency response for the band-pass filter with the value of \(k_2 = 2 \) for
\(a_2 = b_2 = 0.75 \) and all the other coefficients as unity 78
2.33 Frequency response for the band-pass filter with the value of \(k_2 = 5 \) for
\(a_2 = b_2 = 0.75 \) and all the other coefficients as unity 79
2.34 Frequency response for the band-pass filter with the value of \(k_1 = 0.25 \) for
\(a_1 = 0.25, b_2 = 0.75 \) and all the other coefficients as unity 81
2.35 Frequency response for the band-pass filter with the value of $k_1 = 3$ for
 $a_1 = 0.25, b_1 = 0.75$ and all the other coefficients as unity 82

2.36 Frequency response for the band-pass filter with the value of $k_1 = 0.25$ for
 $a_1 = 0.75, b_1 = 0.25$ and all the other coefficients as unity 83

2.37 Frequency response for the band-pass filter with the value of $k_1 = 3$ for
 $a_1 = 0.75, b_1 = 0.25$ and all the other coefficients as unity 84

2.38 Frequency response for the band-pass filter with the value of $k_2 = 0.25$ for
 $a_2 = 0.25, b_2 = 0.75$ and all the other coefficients as unity 86

2.39 Frequency response for the band-pass filter with the value of $k_2 = 3$ for
 $a_2 = 0.25, b_2 = 0.75$ and all the other coefficients as unity 87

2.40 Frequency response for the band-pass filter with the value of $k_1 = 0.25$ for
 $a_1 = 0.75, b_1 = 0.25$ and all the other coefficients as unity 88

2.41 Frequency response for the band-pass filter with the value of $k_2 = 3$ for
 $a_2 = 0.75, b_2 = 0.25$ and all the other coefficients as unity 89

2.42 Frequency response of a band-pass filter with the coefficient values of $k_1 = 0.25, k_2 = 5, a_1 = 0.25, b_1 = 0.5, a_2 = 0.75$ and $b_2 = 0.25$ 90

3.1 An ideal band-stop amplitude response. 94

3.2 Band-Stop filter structure .. 95

3.3 2-D Standard band-stop filter ... 104

3.4 Frequency response of the band-stop filter with $k_1 =$0.1 and 0.5 and all the
 other coefficients as unity. .. 106

3.5 Frequency response of the band-stop filter with $k_1 =$0.75,1.5 and 3 and all
 the other coefficients as unity. 107
3.6 Frequency response of the band-stop filter with $k_1 = 50$ and 100 and all the other coefficients as unity. .. 108

3.7 Frequency response of the band-stop filter with $k_2 = 0.1$ and 0.5 and all the other coefficients as unity. 109

3.8 Frequency response of the band-stop filter with $k_2 = 0.75, 1.5, 3$ and 5 and all the other coefficients as unity. 111

3.9 Frequency response of the band-stop filter with $k_2 = 50$ and 100 and all the other coefficients as unity. 112

3.10 Frequency response of the band-stop filter with $a_1 = 0.1, 0.5, 0.75$ and 0.9 and all the other coefficients as unity. 114

3.11 Frequency response of the band-stop filter with $a_2 = 0.1, 0.5, 0.75$ and 0.9 and all the other coefficients as unity. 116

3.12 Frequency response of the band-stop filter with $b_1 = 0.1, 0.5, 0.75$ and 0.9 and all the other coefficients as unity. 118

3.13 Frequency response of the band-stop filter with $b_2 = 0.1, 0.5, 0.75$ and 0.9 and all the other coefficients as unity. 120

3.14 Frequency response for the band-stop filter with the value of $k_1 = 0.1$ and 0.6 for $a_1 = b_1 = 0.75$ and all the other coefficients as unity. 122

3.15 Frequency response for the band-stop filter with the value of $k_1 = 0.75$ and 1.5 for $a_1 = b_1 = 0.75$ and all the other coefficients as unity. 123

3.16 Frequency response for the band-stop filter with the value of $k_1 = 5$ and 10 for $a_1 = b_1 = 0.75$ and all the other coefficients as unity. 123

3.17 Frequency response of band-stop filter with values of $B = 0.5, 1.5, 2$ and 3 and all the other coefficient as unity. 125

xvi
3.18 Frequency response for the band-stop filter with the value of $\omega_o = 0.5, 1.5, 2$
and 3 and all the other coefficients as unity. 126

3.19 Frequency response for the band-stop filter with the value of $k_1 = 0.5$ for
$a_1 = b_1 = 0.75$ and all the other coefficients as unity. 127

3.20 Frequency response for the band-stop filter with the value of $k_1 = 2$ for
$a_1 = b_1 = 0.75$ and all the other coefficients as unity. 128

3.21 Frequency response for the band-stop filter with the value of $k_1 = 5$ for
$a_1 = b_1 = 0.75$ and all the other coefficients as unity. 129

3.22 Frequency response for the band-stop filter with the value of $k_2 = 0.1$ and 0.6
for $a_2 = b_2 = 0.75$ and all the other coefficients as unity. 131

3.23 Frequency response for the band-stop filter with the value of $k_2 = 0.75$ and 1.5
for $a_2 = b_2 = 0.75$ and all the other coefficients as unity. 132

3.24 Frequency response for the band-stop filter with the value of $k_2 = 5$ and 10
for $a_2 = b_2 = 0.75$ and all the other coefficients as unity. 132

3.25 Frequency response for the band-stop filter with the value of $k_2 = 0.5$ for
$a_2 = b_2 = 0.75$ and all the other coefficients as unity. 134

3.26 Frequency response for the band-stop filter with the value of $k_2 = 2$ for
$a_2 = b_2 = 0.75$ and all the other coefficients as unity. 135

3.27 Frequency response for the band-stop filter with the value of $k_2 = 5$ for
$a_2 = b_2 = 0.75$ and all the other coefficients as unity. 136

3.28 Frequency response for the band-stop filter with the value of $k_1 = 0.25$
for $a_1 = 0.25, b_2 = 0.75$ and $\omega_o = 0.5, 1.5, 2$ and 3 with all the other
coefficients as unity. .. 138
3.29 Frequency response for the band-stop filter with the value of \(k_1 = 0.25 \)
for \(a_1 = 0.75, b_2 = 0.25 \) and \(\omega_o = 0.5, 1.5, 2 \) and 3 with all the other
coefficients as unity. ... 139

3.30 Frequency response for the band-stop filter with the value of \(k_1 = 3 \) for
\(a_1 = 0.25, b_2 = 0.75 \) and \(\omega_o = 0.5, 1.5, 2 \) and 3 with all the other coefficients as unity. ... 140

3.31 Frequency response for the band-stop filter with the value of \(k_1 = 3 \) for
\(a_1 = 0.75, b_2 = 0.25 \) and \(\omega_o = 0.5, 1.5, 2 \) and 3 with all the other coefficients as unity. ... 141

3.32 \(k_2 = 0.25, a_2 = 0.25, b_2 = 0.75 \) and \(\omega_o = 0.5, 1.5, 2 \) and 3 144

3.33 \(k_2 = 0.25, a_2 = 0.75 b_2 = 0.25 \) and \(\omega_o = 0.5, 1.5, 2 \) and 3 145

3.34 \(k_2 = 3, a_2 = 0.25 b_2 = 0.75 \) and \(\omega_o = 0.5, 1.5, 2 \) and 3 146

3.35 \(k_2 = 3, a_2 = 0.75 b_2 = 0.25 \) and \(\omega_o = 0.5, 1.5, 2 \) and 3 147

3.36 Frequency response of a band-stop filter with the coefficient values of \(k_1 =
0.25, k_2 = 5, a_1 = 0.25, b_1 = 0.5, a_2 = 0.75 \) and \(b_2 = 0.25 \). 149

4.1 Smooth and noise reduced lena images at noise level is 5 154

4.2 Smooth and noise reduced images of house at noise level is 5 155

4.3 Smooth and noise reduced images of tree at noise level is 5 156

4.4 Smooth and noise reduced lena images at noise level is 15 157

4.5 Smooth and noise reduced images of house at noise level is 10 158

4.6 Smooth and noise reduced images of tree at noise level is 10 159

4.7 Smooth and noise reduced lena images at noise level is 30 160

4.8 Smooth and noise reduced images of house at noise level is 20 161

4.9 Smooth and noise reduced images of tree at noise level is 20 162

xviii
LIST OF ABBREVIATIONS AND SYMBOLS

\(z_1, z_2 \) Z-domain parameter in first and second dimensions.

\(s_1, s_2 \) Laplace domain parameter in first and second dimensions.

\(\omega_1, \omega_2 \) Frequencies in radians in the analog domain parameter in first and second dimensions.

\(H \) Frequency response of the filter.

1-D One-dimensional.

2-D Two-dimensional.

FIR Finite Impulse Response.

IIR Infinite Impulse Response.

VSHP Very strictly Hurwitz Polynomial.

BIBO Bounded Input Bounded Output.

PSNR Peak signal to Noise Ratio.
Chapter 1

Introduction

1.1 General

Signals arise in almost every field of science and engineering like acoustics, biomedical engineering, communications, control systems, radar, physics, seismology and telemetry etc., Two general classes of signals can be identified, namely continuous-time and discrete-time signals. A continuous-time signal is defined at each and every instant of time. A discrete-time signal, on the other hand, is defined at discrete instants of time. A discrete-time signal, like continuous-time signal, can be represented by a unique function of frequency referred to as the frequency spectrum of the signal.

Filtering is a process by which the frequency spectrum of a signal can be modified, reshaped or manipulated according to some desired specifications. It may entail amplifying or attenuating a range of frequency components, rejecting or isolating some specific frequency components, etc. The uses of filtering are manifold such as eliminating signal contamination such as noise, to remove signal distortion brought about by an imperfect transmission channel, to separate two or more distinct signals which were purposely mixed
in order to maximize channel utilization, to resolve signals into frequency components, to
demodulate signals, to convert discrete-time signals into continuous-time signals, and to
band limit signals.[1]

Filters are classified as analog and digital filters. Analog filters are used to process
analog signals, signals which are functions of continuous-time variable. Digital filters, on
the other hand, process digitized continuous waveform.

1.2 Analog and Digital Filters

As stated earlier, in signal processing, the function of a filter is to remove unwanted parts
of the signal, such as random noise, or to extract useful parts of the signal, such as the
components lying within frequency range. The figure 1.1 illustrates the basic idea

![Block Diagram of a filter](image)

Figure 1.1: Block Diagram of a filter

An analog filter uses analog electronic circuits made up from components such as resistors,
capacitors and Op Amps to produce the required filtering effect. Such filter circuits
are widely used in such applications as noise reduction, video signal enhancement, graphic
equalisers in hi-fi systems, and also in many other areas. There are well-established stan-
dard techniques for designing an analog filter circuit for a given requirement. At all stages,
the signal being filtered is an electrical voltage or current which is the direct analogue of
the physical quantity involved.

A digital filter is a device or program that performs a prescribed manipulation or algo-
algorithm on an input sequence of numbers resulting in the desired output sequence of numbers. The numbers are limited to a finite precision. A digital filter uses a digital processor to perform numerical calculations on sampled values of the signal. The processor may be general-purpose computer such as a PC, or a specialised DSP (Digital Signal Processor) chip.

The analog input signal must first be sampled and digitised using an ADC (analog to digital converter). The resulting binary numbers, representing successive sampled values of the input signal, are transferred to the processor, which carries out numerical calculations on them. These calculations typically involve multiplying the input values by constants and adding the products together. The results of these calculations, which now represent sampled values of the filtered signal, are fed through a DAC (digital to analog converter) to convert the signal back to analog form. The signal is represented by a sequence of numbers, rather than a voltage or current [2]. The figure 1.2 shows the basic step of such a system.

![Diagram of a digital filter](image)

Figure 1.2: Block diagram of a digital filter

The following list gives some of the main advantages of digital filters

1. Component tolerances are uncritical.

2. Component drift and spurious environmental signals have no influence on the system performance.
3. Accuracy is high.
4. Physical size is small.
5. Reliability is high.

An important additional advantage of digital filters is the ease with which filter parameters can be changed in order to change the filter characteristics. This feature allows one to design programmable filters which can perform a multiplicity of filtering tasks. Also one can design new types of filters such as adaptive filters.

1.3 Characterization of Digital Filters

Analog filters are characterized in terms of differential equations. Digital filters, on the other hand, are characterized in terms of difference equations. Two types of digital filters can be identified, nonrecursive and recursive filters.

Nonrecursive Filters

The response of a nonrecursive filter at instant \(nT \) is of form

\[
y(nT) = f \{..., x(nT - T), x(nT), x(nT + T), ... \}
\]

If we assume linearity and time invariance, \(y(nT) \) can be expressed as

\[
y(nT) = \sum_{i=-\infty}^{\infty} a_i x(nT - T) \tag{1.1}
\]
where \(a_i \) represents constants. Now by assuming causality and then using causality criterion defined earlier, we can show that
\[
a_{-1} = a_{-2} = \ldots = 0
\]
and so
\[
y(nT) = \sum_{i=0}^{\infty} a_i x(nT - T)
\]
If, in addition, \(x(nT) = 0 \) for \(n < 0 \) and \(a_i = 0 \) for \(i > N \),
\[
y(nT) = \sum_{i=0}^{n} a_i x(nT - T) + \sum_{i=n+1}^{\infty} a_i x(nT - T)
= \sum_{i=0}^{N} a_i x(nT - T) + \sum_{i=N+1}^{n} a_i x(nT - T)
= \sum_{i=0}^{n} a_i x(nT - T)
\]
(1.2)

Therefore, a linear, time-invariant, causal, nonrecursive filter can be represented by an Nth-order linear difference equation, where N is the order of the filter.

Recursive Filters

The response of a recursive filter is a function of elements in the excitation as well as the response sequence. In the case of a linear, time-invariant, causal filter
\[
y(nT) = \sum_{i=0}^{N} a_i x(nT - T) - \sum_{i=0}^{M} b_i x(nT - T)
\]
(1.3)
if the instant nT is taken to be the present, the response is a function of the present and past N values of the excitation as well as the past M values of the response. Note that the equation (1.3) simplifies to equation (1.2) if $b_i = 0$, and essentially the nonrecursive filter is a special case of the recursive one [2, 16, 30].

1.4 Different types of filters

A frequency-selective filter is one that passes signals whose frequencies are in certain ranges or bands, called the passbands, and blocks, or attenuates, signals whose frequencies are in other ranges, called the stopbands. The nature of the amplitude function $|H(j\omega)|$ or the loss function $\alpha(\omega)$ may be used to classify the various types of filters according to the location of their passbands and stopbands. An ideal filter is one which has a linear phase response in its passbands, zero loss in its passband, and infinite loss $H(j\omega)| = 0$ in its stopband.

The most often encountered types of frequency-selective filters are defined as follows:

1. A low-pass filter is one with a single passband between 0 and a cutoff frequency ω_c, with all frequencies higher than ω_c constituting the stopband. The bandwidth is defined as $B=\omega_c$.

2. A high-pass filter is one with stopband $0 < \omega < \omega_c$, and pass-band $\omega > \omega_c$ where ω_c is the cutoff frequency.

3. A band-pass filter is one with a passband between two cutoff frequencies ω_c and $\omega_U > \omega_L$ and two stopbands, $0 < \omega < \omega_L$ and $\omega > \omega_U$. The bandwidth is defined as $B=\omega_U - \omega_L$.

4. A band-reject filter is one with a stopband $\omega_L < \omega < \omega_U$ and two passbands, $0 < \omega < \omega_L$ and $\omega > \omega_U$.

6
(5) An all-pass filter is one which passes all frequencies equally well. That is, \(|H(j\omega)|\) is constant for all frequencies, with the phase \(\phi(\omega)\) generally a function of frequency [2].

1.5 Design of digital filter from analog filters

The design of filters involves the following stages

(a) The specification of the desired properties of the system,

(b) The approximation of the specifications using a causal discrete-time system, and

(c) The realization of the system

In a practical setting, the desired filter is generally implemented with digital computation and used to filter a signal that is derived from a continuous-time signal by means of periodic sampling followed by analog-to-digital conversion.

1.5.1 Design of Digital IIR filters from analog filters

The traditional approach to the design of the discrete-time IIR filters involves the transformation of a continuous-time filter into a discrete-time filter meeting prescribed specifications. This is a reasonable approach for several reasons:

(1) The art of continuous-time filter IIR filter design is highly advanced, and useful results can be achieved, it is advantageous to use the design procedures already developed for continuous-time filters.

(2) Many useful continuous-time IIR design methods have relatively simple closed form design formulas. Therefore, discrete-time IIR filter design methods based on such standard continuous-time design formulas are rather simple to carry out.

(3) The standard approximation methods that work well for continuous-time IIR filters
do not lead to simple closed-form design formulas when these methods are applied directly to the discrete-time IIR case[20, 24].

In designing a discrete-time filter by transforming a prototype continuous-time filter, the specifications for the continuous-time filter are obtained by a transformation of the specifications for the desired discrete-time filter. The system function $H_c(s)$ or impulse response $h_c(t)$ of the continuous-time filter is obtained through one of the approximations of the continuous-time filter. The system function $H(z)$ or impulse response $h[n]$ for the discrete-time filter is obtained by applying to $H_c(s)$ or $h_c(t)$ a transformation of the type discussed in this section. In such transformations, we generally require that the essential properties of the continuous-time frequency response be preserved in the frequency response of the resulting discrete-time filter. Specifically, this implies that the imaginary axis of the s-plane is mapped onto the unit circle of the z-plane. A second condition is that a stable continuous-time filter should be transformed to a stable discrete-time filter. There are two methods of digital filter design. The first method is Impulse Invariance method and second method is Bilinear transformation[1, 3, 16].

1.5.1.1 Filter Design by Impulse Invariance

In the Impulse invariance design procedure for transforming continuous-time filters into discrete-time filters, the impulse response of the discrete-time filter is chosen proportional to equally spaced samples of the impulse response of the continuous-time filter,

$$h[n] = T_d h_c(nT_d)$$

where T_d represents a sampling interval. $h_c(nT_d)$ is the impulse response of the continuous-time filter.
In the impulse invariance design procedure, the relationship between continuous-time and discrete-time frequency is linear. Consequently, except aliasing, the shape of the frequency response is preserved. Thus the impulse invariance technique is appropriate only for bandlimited filters.

1.5.1.2 Filter Design by Bilinear Transformation[8]

The problem of aliasing is avoided by using the Generalized Bilinear Transformation instead of impulse invariance method. Bilinear Transformation is an algebraic transformation between the variable s and that maps the entire $j\Omega - axis$ in the $s-plane$ to the unit circle in the $z-plane$. Since $-\infty \leq \Omega \leq \infty$ maps onto $-\pi \leq \omega \leq \pi$, the transformation between the continuous-time and discrete-time frequency variables must be non-linear. Therefore, the use of this techniques is restricted to situations in which the corresponding warping of the frequency axis is acceptable.

With $H_c(s)$ denoting the continuous-time system function and $H(z)$ the discrete-time system function, the bilinear transformation corresponds to replacing s by

$$s = k_i \frac{z_i - a_i}{z_i + b_i}, \quad i = 1, 2$$

where k_i, a_i and b_i are coefficients of the generalized bilinear transformation. By replacing one for the coefficients for 1-D, we get

$$s = \frac{z - 1}{z + 1}$$

that is

$$H(z) = H_c \left[\frac{z - 1}{z + 1} \right]$$
1.5.2 Design of Digital FIR Filters

Nonrecursive filters are also called Finite Impulse Response (FIR) filters, which have their transfer function resulting from a finite input sequence. The output of nonrecursive filter at any point can be computed as a linear combination of a finite number of input samples. The main properties for nonrecursive filter are its inherent stability and linear phase feature. There are many methods, such as Windows methods, frequency transformation, and linear programming and these are generally used in a nonrecursive filters design[1, 23].

1.6 Two-Dimensional Digital Filters

The topic of Multidimensional system (MDS) analysis and design has attracted considerable attention during recent years and is still receiving increased attention by theorists and practitioners. Specifically, interest has been directed by researchers into the area of two-dimensional (2-D) digital systems due to several reasons: high efficiency due to high-speed computations; permitting better image processing and analysis; great application flexibility and adaptivity; decreasing cost of software or hardware implementations due to the large expansion and evolution of standard computers, microcomputers, microprocessors, and high-integration digital circuits. In general, two-dimensional digital filters are designed by combining two one-dimensional digital filters. Similar to one-dimensional digital filters, two-dimensional digital filters can be classified into two main groups. The first group comprises a finite sequence transfer function and so the filters in this group are called Finite Impulse Response (FIR) filters. The second group comprises an infinite sequence transfer function and so the filters in this group are called Infinite Impulse Response (IIR) filters[23, 24, 31].
These two-dimensional digital systems are being used increasingly to replace analog systems in important areas such as television, facsimile, radar, bio-medicine, remote sensing, underwater acoustics, moving-objects recognition, robotics and so on. Important operations that can be performed by two-dimensional digital systems include the following: two-dimensional digital filtering, two-dimensional digital transformations, local space processing, data compression, and pattern recognition. Digital filtering, digital transformations and local space operations play important roles in preprocessing of images, performing smoothing, enhancement, noise reduction, extracting boundaries and edges before pattern recognition, data compression operations permitting the reduction of large number of data representing the images in digital form and solving or minimizing transmission and storage problems. Pattern recognition operations permit the extraction of significant information and configurations from the images for final interpretation and utilization.

Over the past decade, researchers have shown particular interest in two-dimensional filters, both recursive and non-recursive. These two-dimensional filters find increasing applications in many fields, such as image processing and seismic signal processing. Also two dimensional filters find increasing applications in image restoration and enhancement. As an example, two dimensional highpass filtering removes the unwanted background noise from an image so that details contained in the higher spatial frequencies are easier to perceive [4, 15, 29].

1.7 Stability of the Filters

As mentioned before, 2-D filters can be classified into two main categories namely the Finite Impulse Response Filters(FIR) and the Infinite Impulse Response Filters(IIR). The Finite Impulse Response Filters have transfer functions resulting from a finite sequence and
the Infinite Impulse Response Filters have the transfer functions resulting from an infinite sequence.

One important issue concerning both the above types of filters is the stability of the filter. Now it is known that Infinite Impulse Response Filters are inherently stable. Infinite Impulse Response Filters may or may not be stable depending upon the transfer function.

The most commonly used definition for stability is based on the bounded-input bounded-output (BIBO) criterion. This criterion states that a filter is stable if its response to a bounded input is also bounded. Mathematically, for causal linear shift-invariant systems, this corresponds to the condition that

\[\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} |h(n_1, n_2)| < \infty \] \hspace{1cm} (1.4)

where \(h(n_1, n_2) \) is the impulse response of the filter.

The above definition points out an important observation that the stability criterion is always verified if the number of terms of the impulse response is finite, which is the case with FIR Filters. However, the above condition does not prove feasible to the test of stability for IIR filters. In the 1-D case, it is possible to relate the BIBO stability condition to the positions of the z-transfer function poles which have to be within the unit circle and it is possible to test the stability by determining the zeros of the denominator polynomial. Similarly, in the 2-D case, a theorem establishing the relationship between the stability of the filter and the zeros of the denominator polynomial, can be formulated. This theorem states that [8], for causal quadrant filters, if \(B(z_1, z_2) \) is a polynomial in \(z_1 \) and \(z_2 \), the expansion of \(1/B(z_1, z_2) \) in the negative powers of \(z_1 \) and \(z_2 \) converges absolutely if and only if

\[B(z_1, z_2) \neq 0 \text{ for } \{|z_1| \geq 1, |z_2| \geq 1\} \] \hspace{1cm} (1.5)
The above theorem has the same form as in the 1-D case, i.e., it relates the stability of the filter to the singularities of the z-transform. However, in the 2-D case such a formulation for stability condition does not produce an efficient method for stability test, as in 1-D, due to the lack of appropriate factorization theorem of algebra. Therefore, it is necessary in principle, to use an infinite number of steps to test the stability. Also, even if it is possible to find methods to test conditions equivalent to eqn.(1.5) in a finite number of steps [25], computationally it is not easy to incorporate them in a design method and there is a problem of stabilizing the filters which may become unstable.

From the point of view of stability tests, there can be two different approaches that can be considered, in designing an IIR filter. One method is to carry out the stability test in every stage of the filter design so that the eventual filter is stable. In the second method, stability is not considered as a part of the design and a magnitude-squared transfer function is first designed. Then a stable filter is obtained, by choosing the poles in the stability region. Such an approach is convenient, because squared magnitude functions can be in a simple form and it is easy to find the poles of the filter.

However, in the 2-D case, poles in the stability region cannot be substituted for poles in the instability regions. This is because, unlike in the 1-D case, it is not possible to substitute the 2-D pole-pair combination by taking the inverse pole-pair transformation. Therefore different methods have to be used in arriving at a solution. One possible solution can be obtained by considering this as a deconvolution problem. In the quadrant filter case, a filter $H(z_1, z_2)$ can be divided as a product of four filter $^{++}H(z_1, z_2), ^{+-}H(z_1, z_2), ^{-+}H(z_1, z_2), ^{-+}H(z_1, z_2)$ each of which correspondingly represents their transfer function in the first, second, third and fourth quadrant, respectively, and each of which is stable, if computed through suitable sequence of computation. In view of the property that multiplication in the z-domain corre-
ponds to a convolution in the space domain, the problem corresponds to the reconstruction of the four sequences. Similar procedures may be applied for unsymmetrical half-plane filters as well. In this case, the coefficient matrix, corresponding to the squared magnitude function, can be considered as the convolution of two unsymmetrical half-plane sequences. Thus it is possible to decompose the sequence into two half-plane filters. However in both the above cases there are problems which can arise, as the cepstra obtained using the above procedure are not finite extent and some amount of truncation is necessary. This again modifies the transfer function and also the minimum phase property cannot be guaranteed after truncation. It is possible to observe that half-plane filters constitute a more general class than the quadrant ones since completely general transfer functions with real impulse response can be generated. The decomposition of a squared magnitude function in four different quadrant filters or two half-plane filters, each being stable if a suitable sequence of computation is chosen, can give a direct method of obtaining linear phase filtering with IIR implementation. This is especially important when visual images have to be processed, because the shape of the object is related primarily to the phase information[10].

1.8 Overview of Very Strict Hurwitz Polynomial

1.8.1 Definition of Very Strict Hurwitz Polynomial

It is well known, a 1-D analog filter system with the transfer function

\[H_a(s) = \frac{N_a(s)}{D_a(s)} \]
is guaranteed to be stable, if the denominator of the transfer function \(D_a(s) \) is a Strictly Hurwitz Polynomial (SHP), which contains all its zeros in the left-half of s-plane.

However, for 2-D analog filter system with the transfer function

\[
H_a(s_1, s_2) = \frac{N_a(s_1, s_2)}{D_a(s_1, s_2)}
\]

The denominator \(D_a(s_1, s_2) \) is SHP cannot always guarantee the stability, as it contains non-essential singularity of the second kind. That is, the denominator becomes zero at two points \(s_1 = j\omega_{10} \) and \(s_2 = j\omega_{20} \), but not in its neighbourhood [9, 26].

In fact, there are four types of 2-variable Hurwitz Polynomials, which are different from each other only in the region of analyticity[27].

Definition 1.1 A polynomial \(D_a(s_1, s_2) \) is said to be a Broad Sense Hurwitz Polynomial (BHP), if \(\frac{1}{D_a(s_1, s_2)} \) has no singularity in the region

\[
\{(s_1, s_2)|\text{Re}(s_1) > 0, \text{Re}(s_2) > 0, |s_1| < \infty, |s_2| < \infty\}.
\]

Definition 1.2 A polynomial \(D_a(s_1, s_2) \) is said to be a Narrow Sense Hurwitz polynomial (NHP), if \(\frac{1}{D_a(s_1, s_2)} \) has no singularities in the region

\[
\{(s_1, s_2)|\text{Re}(s_1) > 0, \text{Re}(s_2) > 0, |s_1| < \infty, |s_2| < \infty\}
\cup\{(s_1, s_2)|\text{Re}(s_1) = 0, \text{Re}(s_2) > 0, |s_1| < \infty, |s_2| < \infty\}
\cup\{(s_1, s_2)|\text{Re}(s_1) > 0, \text{Re}(s_2) = 0, |s_1| < \infty, |s_2| < \infty\}.
\]

Definition 1.3 A polynomial \(D_a(s_1, s_2) \) is a Strictly Hurwitz Polynomial (SHP), if it
has no zeros in the regions

\[
\{(s_1, s_2) | Re(s_1) \geq 0, Re(s_2) > 0, |s_1| < \infty, |s_2| < \infty\}.
\]

Definition 1.4 A polynomial \(D_a(s_1, s_2) \) is a Very Strictly Hurwitz Polynomial (VSHP), if the polynomial does not have zeros in the regions

\[
\{(s_1, s_2) | Re(s_1) > 0, Re(s_2) > 0, |s_1| < \infty, |s_2| < \infty\}.
\]

From these definitions, one can see that a VSHP is required to be necessarily a SHP. From the two-dimensional digital filter design experience, in order to get a guaranteed stable digital filter from the well-known bilinear transformations, the 2-D analog transfer function is required to have a 2-variable VSHP as its denominator.

1.8.2 Some Properties of VSHP[9, 27]

Our discussion for the properties of VSHP are based on the following definition of 2-D analog transfer function

\[
H(s_1, s_2) = \frac{N(s_1, s_2)}{D(s_1, s_2)}
\]

where

\[
N(s_1, s_2) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{ij} s_1^i s_2^j
\]

\[
D(s_1, s_2) = \sum_{i=0}^{k} \sum_{j=0}^{l} B_{ij} s_1^i s_2^j
\]

Property 1: \(H(s_1, s_2) \) does not possess singularities in the closed right half of the \((s_1, s_2)\) biplane defined as \(\{(s_1, s_2) | Re(s_1) \geq 0, Re(s_2) \geq 0, |s_1| \leq \infty, |s_2| \leq \infty\}\), if and only if \(D(s_1, s_2) \) is VSHP.
This property is obtained easily from the definition of VSHP.

Property 2: If \(D(s_1, s_2) = D_1(s_1, s_2)D(s_1, s_2) \) is a VSHP, the necessary and sufficient condition is both \(D_1(s_1, s_2) \) and \(D_2(s_1, s_2) \) are VSHPs.

Proof:

Sufficient condition:

As \(D_1(s_1, s_2) \) and \(D_2(s_1, s_2) \) are VSHPs, \(D_1(s_1, s_2) \) and \(D_2(s_1, s_2) \) have no singular points in the closed half plane of \((s_1, s_2)\) - plane \(\{(s_1, s_2)| \text{Re}(s_1) \geq 0, \text{Re}(s_2) \geq 0, |s_1| \leq \infty, |s_2| \leq \infty\} \). Also \(D(s_1, s_2) \) is the product of \(D_1(s_1, s_2) \) and \(D_2(s_1, s_2) \) would not have any singular points in the closed right half of \((s_1, s_2)\) - plane, i.e \(D(s_1, s_2) \) is a VSHP.

Necessary condition:

\(D(s_1, s_2) \) is a VSHP.

Suppose that \(D_1(s_1, s_2) \) is not a VSHP, then there exists some points in the closed right half plane of \((s_1, s_2)\) - plane \(\{(s_1, s_2)| \text{Re}(s_1) \geq 0, \text{Re}(s_2) \geq 0, |s_1| \leq \infty, |s_2| \leq \infty\} \), \(D_1(s_1, s_2) \) will equal to zero. So \(D(s_1, s_2) \) will be zero at those points too, it will contradict our assumption that \(D(s_1, s_2) \) is VSHP, so \(D_1(s_1, s_2) \) must be a VSHP.

Similarly, we can prove that \(D_2(s_1, s_2) \) must be a VSHP.

Property 3:

If \(D(s_1, s_2) \) is VSHP, then \(\frac{\partial D(s_1, s_2)}{\partial s_1} \) and \(\frac{\partial D(s_1, s_2)}{\partial s_2} \) are also VSHPs.

Proof:

We can write \(D(s_1, s_2) \) in the following form

\[
D(s_1, s_2) = A_m(s_2)s_1^m + A_{m-1}(s_2)s_1^{m-1} + \ldots + A_1(s_2)s_1 + A_0(s_2)
\]

(1.6)

or

\[
D(s_1, s_2) = B_n(s_1)s_2^n + B_{n-1}(s_1)s_2^{n-1} + \ldots + B_1(s_1)s_2 + B_0(s_1)
\]

(1.7)
For any point s_2 in the open half of s_2 plane $\{s_2|Re(s_2) \geq 0, |s_2| < \infty\}$,(1.6) is an m^{th} order SHP with respect to s_1 including $|s_1| \leq \infty$. Now we need to check the behaviour at $|s_2| = \infty$.

Differentiating (1.7) with respect s_1, we have

$$\frac{\delta D(s_1, s_2)}{\delta s_1} = B'_n(s_1)s^n_2 + B'_{n-1}(s_1)s^{n-1}_2 + ... + B'_1(s_1)s_2 + B'_0(s_1) \tag{1.8}$$

Since (1.8) is known to be a SHP,

$$\frac{\delta D(s_1, s_2)}{\delta s_1} \bigg|_{s_2 \to \infty}$$

is also a SHP.

For $s_2 \to \infty$, we can get

$$\frac{\delta D(s_1, s_2)}{\delta s_1} \bigg|_{s_2 \to \infty} = \frac{B'_n(s_1)}{0} \tag{1.9}$$

As $B_n(s_1)$ is SHP of s_1, it has no zeros in the closed right-half of s_1 plane $\{s_1|Re(s_1) \geq 0, |s_1| < \infty\}$. So (1.10) will not be undeterminate. We can get the $\frac{\delta D(s_1, s_2)}{\delta s_1}$ is VSHP.

Similarly, we can prove that $\frac{\delta D(s_1, s_2)}{\delta s_2}$ is also VSHP.

Property 4:

When we express $D(s_1, s_2)$ as (1.6) or (1.7), then both $A_i(s_2)$, $i = 0, 1, 2, ...m$ and $B_j(s_1)$, $j = 0, 1, 2, ...m$ are SHPs of s_2 and s_1 respectively.

Proof:

In (1.6), since $D(s_1, s_2)$ is a VSHP, from Property 1.3, $A_0(s_2)$ is a SHP in s_2, which is obtained by setting $s_1 = 0$. Differentiating (1.6) partially with respect to s_1 and putting $s_1 = 0$, we get $A_1(s_2)$ is a SHP in s_2, since, from property 3, we know that $\frac{\delta D(s_1, s_2)}{\delta s_1}$
is a VSHP. By continuing this process, it is established that all the polynomials $A_i(s_2)$, $i = 0, 1, 2, \ldots, m$ are SHPs in s_2.

Using the same method, by successive differentiation with respect to s_2, and then putting $s_2 = 0$, it can be proven that all the polynomials $B_j(s_1)$, $j = 0, 1, 2, \ldots, n$ are SHPs in s_1.

Property 5:

If a real 2-variable VSHP can be written as $D(s_1, s_2) = \sum_{i=0}^{m} \sum_{j=0}^{n} d_{ij} s_1^i s_2^j$, then the coefficient $d_{mn} d_{ij} > 0$ for all i and j.

Proof:

The VSHP can be written in the compact form

$$D(s_1, s_2) = \sum_{i=0}^{m} A_i(s_2) s_1^i$$

and

$$D(s_1, s_2) = \sum_{j=0}^{n} B_j(s_1) s_2^j$$

From Property 4, both $A_i(s_1)$, $(i = 0, 1, \ldots, m)$ and $B_j(s_2)$, $(j = 0, 1, \ldots, n)$ are one-variable SHP's.

For the one-variable SHP $A_m(s_2) = \sum_{j=0}^{n} d_{mj} s_2^j$, the coefficients need to be positive or $d_{mn} d_{nj} > 0$ for all $j = 0, 1, 2, \ldots, n - 1$.

And for the one-variable SHP $B_j(s_1) = \sum_{i=0}^{m} d_{ij} s_1^i$, the coefficients need to be positive or $d_{mj} d_{ij} > 0$.

So, $d_{mn} d_{ij} > 0$, for all i and j. Thus, Property 5 is proved.

Property 6:

If we express $D(s_1, s_2)$ as (1.6) and (1.7), each of the functions $\frac{A_i(s_2)}{A_{i-1}(s_2)}$, $i = 1, 2, \ldots, m$,
is a maximum reactive positive real function in s_2. Also each of the functions $\frac{B_i(s_1)}{B_{j-1}(s_1)}$, $j = 1, 2, \ldots, n$, is a minimum reactive positive real functions in s_1.

Proof:

Dividing both side of (1.6) by $A_m(s_2)$, we have

$$
\frac{1}{A_m(s_2)} D(s_1, s_2) = s_1^m + \frac{A_{m-1}(s_2)}{A_m(s_2)} s_1^{m-1} + \cdots + \frac{A_1(s_2)}{A_m(s_2)} s_1 + \frac{A_0(s_2)}{A_m(s_2)}
$$

(1.12)

For any specified s_2 in the range of $\text{Re}(s_2) \geq 0$, (1.12) is a SHP in s_1, which means that it has all its zeros in the open left half of the s_1-plane. Let δ_i ($i = 1, 2, 3, \ldots, m$) be its zero. Then we have

$$
\frac{A_0(s_2)}{A_m(s_2)} = \prod_{i=1}^{m} (-\delta_i)
$$

and

$$
\frac{A_1(s_2)}{A_m(s_2)} = \sum_{i=1}^{m} \left(\prod_{j=1, j\neq i}^{m} (-\delta_i) \right)
$$

So, we have

$$
\frac{A_1(s_2)}{A_0(s_2)} = \sum_{i=1}^{m} \left(\frac{1}{\delta_i} \right)
$$

As $\text{Re}(\delta_i) < 0$, $\text{Re} \left(\frac{A_1(s_2)}{A_0(s_2)} \right) > 0$ for all $\text{Re}(s_2) \geq 0$. So we get the conclusion that $\frac{A_0(s_2)}{A_1(s_2)}$ is strict positive real function. In addition, from property 5, $A_0(s_2)$ and $A_1(s_2)$ are SHPs without any missing coefficients. So $\frac{A_0(s_2)}{A_1(s_2)}$ is also minimum reactive function. In the similar manner, we can show that $\frac{A_i(s_2)}{A_{i-1}(s_2)}$ ($i = 1, 2, \ldots, m$) are minimum reactive positive real functions in s_2.

Using the similar procedure, we can prove that $\frac{B_i(s_1)}{B_{j-1}(s_1)}$ ($j = 1, 2, \ldots, n$) are minimum reactive positive real functions in s_1.

20
1.9 Generation of VSHP

When VSHP is used in the denominator of a 2-D analog transfer function, it is guaranteed that the resulting 2-D digital bilinear transfer function obtained through the application of the well-known bilinear transformation is stable. Therefore, VSHP is highly useful in 2-D digital filter design. We can first generate a 2-variable Very Strictly Hurwitz Polynomial (VSHP) using its various properties, and assign the generated VSHP to the denominator of the 2-D analog transfer function, then obtain the digital transfer function through double bilinear transformations. Here we review some methods, which are used to generate VSHP.

1.9.1 Using Terminated n-port Gyrator Networks[11]

For a n-port gyrator network, its ports are terminated by capacitances. In much a case, the overall admittance matrix will be

\[
A = \begin{bmatrix}
\mu_1 & g_{12} & g_{13} & \cdots & g_{1n} \\
-g_{12} & \mu_2 & g_{23} & g_{23} & g_{2n} \\
-g_{13} & -g_{23} & \mu_3 & \cdots & g_{3n} \\
\vdots & \ddots & \ddots & \ddots \\
-g_{1n} & -g_{2n} & -g_{3n} & \cdots & \mu
\end{bmatrix}
\] \hspace{1cm} (1.13)

The determinant of the matrix \(A \) can be expressed as

\[
D_n = \sum_{1 \leq i \leq n} \mu_i |A_i| + \sum_{1 \leq i_1 < i_2 < i_3 < n} \mu_{i_1} \mu_{i_2} \mu_{i_3} |A_{i_1i_2i_3}| + \cdots + \mu_1 \mu_2 \mu_3 \cdots \mu_n \hspace{1cm} (n \text{ is odd})
\] \hspace{1cm} (1.14)
or \[D_n = |A_n| + \sum_{1 \leq i_1 < i_2 < n} \mu_{i_1} \mu_{i_2} |A_{i_1i_2}| + \sum_{1 \leq i_1 < i_2 < i_3 < i_4 < n} \mu_{i_1} \mu_{i_2} \mu_{i_3} \mu_{i_4} |A_{i_1i_2i_3i_4}| + \cdots + \mu_1 \mu_2 \mu_3 \cdots \mu_n \]

where \(|A_{i_1i_2}| \) is the determinant of the sub-matrix of \(A \) obtained by deleting both \(i_1^{th} \) and \(i_2^{th} \) rows and columns, the same holds for \(|A_{i_1i_2i_3}|, |A_{i_2i_3i_4}|, \) etc.

By making some of the \(\mu_i \)s equal to \(s_1 \), and some of the \(\mu_i \)s equal to \(s_2 \), under certain conditions, (1.14) and (1.15) will yield two-variable VSHPs.

1.9.2 Using the properties of positive semi-definite matrices [12]

In this case, we first define three \(n \times n \) square matrices \(A, \mu \) and \(G \) as

\[
A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \\
a_{1n} & a_{2n} & \cdots & a_{nn}
\end{bmatrix}
\]

(1.16)

\[
\mu = \begin{bmatrix}
\mu_1 & 0 \\
\mu_2 & \\
\mu_3 & \\
\vdots & \\
0 & \mu_n
\end{bmatrix}
\]

(1.17)
$$G = \begin{bmatrix}
0 & g_{12} & g_{13} & \cdots & g_{1n} \\
-g_{12} & 0 & g_{23} & g_{23} & g_{2n} \\
-g_{13} & -g_{23} & 0 & \cdots & g_{3n} \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
-g_{1n} & -g_{2n} & -g_{3n} & \cdots & 0
\end{bmatrix}$$

(1.18)

where \(A\) is a general symmetrical \(n \times n\) square matrix

\(\mu\) is an \(n \times n\) diagonal matrix

\(G\) is an \(n \times n\) skew-symmetric matrix

These matrices \(A, \mu\) and \(G\) are physically realizable.

Now, we define a matrix \(C\) as:

$$C = A\mu A^T + G$$

(1.19)

The determinant of matrix \(C\) is given by

$$M = \text{det}(C)$$

(1.20)

The polynomial \(M_n\)

$$M_n = M + \sum_{j=1}^{n} k_j \frac{\partial M}{\partial \mu_i}$$

(1.21)

is a two-variable VSHP when some of the \(\mu_i\)s are properly made equal to \(s_1\) and some of the \(\mu_i\)s equal to \(s_2\) and it is made sure the requirements of \(VSHP\) are met.
1.9.3 Using the properties of the derivative of even or odd parts of Hurwitz polynomial [13, 14]

From (1.16) and (1.17), one can obtain an \(n \)th order polynomial \(M_n \) as

\[
M_n = \text{det}[\mu I + A]
\]
(1.22)

From, the diagonal expansion of the determinant of matrix, \(M_n \) can be written as (1.14) and (1.15). We can observe that \(M_n \) is the odd (even) part of a \(n - \text{variable} \) Hurwitz polynomial when \(n \) is odd (even), So \(\frac{\partial M_n}{\partial \mu_4} \) is a reactance function. Therefore,

\[
M = M_n + \sum_{j=1}^{n} K_j \left(\frac{\partial M_n}{\partial \mu_4} \right)
\]
(1.23)

is a \(n \)-variable Hurwitz polynomial.

Assigning some of \(\mu_i \)'s to \(s_1 \) and some to be \(s_2 \), and ensuring the conditions of two-variable VSHP, a two-variable VSHP could be generated from (1.23).

1.10 Scope and Organization of the Thesis

The objective of the thesis is to propose a new approach in the design of a 2-D digital filter, which has variable magnitude characteristics in the frequency domain by performing the sensitivity analyses. This approach is based on the generalized bilinear transformation method. To get the digital filter with variable characteristics, sensitivity analyses are performed by varying one or more of the coefficients of the digital transfer function. The generalized double bilinear transformation is one of the processes that can introduce variable coefficients into the transfer function of the resulting digital filters.
In Chapter 2, two-dimensional band-pass digital filters are designed and analyzed. First, the second order Butterworth low-pass ladder structure is taken, the values of the inductor and capacitor are calculated. Analog transfer function of a Band-Pass filter is obtained using the low-pass to band-pass transformation. The inductor and capacitor values are determined. Then, double generalized bilinear transformation is applied to the analog transfer function to get its digital transfer function. Also in this chapter, the stability for the 2-D digital transfer function are considered. Using the links between the stability conditions to the coefficients of the double generalized bilinear transformations, we get the conditions for each of these coefficients. The effect of each coefficient on the resulting 2-D band-pass digital filter's magnitude response are studied in detail.

The 2-D Band-Stop digital filters having variable magnitude characteristics are studied in Chapter 3. Starting from the same analog low-pass transfer function as in Chapter 2, low-pass to band-stop transformation is applied and the resulting analog transfer function is digitized using the same double bilinear transformation. The coefficients are constrained by the stability condition for digital filters introduced in Chapter 2. The manner in which each double generalized bilinear transformation coefficient effects the digital filters magnitude responses are studied in detail.

Chapter 4 discusses the application of the band-pass and the band-stop filter. The summary, conclusions and the directions for the future work are given in Chapter 5.
Chapter 2

Two-Dimensional Band-Pass Filters

from Low-Pass Butterworth Filters

In this chapter, the 2-D band-pass filters are analyzed. The low-pass butterworth filter is transformed to a band-pass filter, and it is transformed to a digital filter by using the generalized Bilinear transformation. Then, sensitivity analyses are performed by varying the coefficient of the generalized bilinear transformation and the effect of the coefficient are observed in the design of 2-D band-pass filter. Section 2.1 gives the brief introduction to 2-D low-pass butterworth filter. Section 2.2 describes the low-pass to band-pass transformation. The band-pass structure, its transfer function and the determination of parameter values are explained in section 2.3 and 2.4 respectively. Section 2.5 describes the generalized bilinear transformation. Section 2.6 gives the detail frequency responses of band-pass filter on varying the different bilinear transformation coefficients. Finally, section 2.7 gives the summary and discussions of the results contained in this chapter.
2.1 Butterworth Low-Pass Filters[2, 30]

![Diagram of an ideal low-pass magnitude response](image)

Figure 2.1: An ideal low-pass magnitude response

The ideal low-pass amplitude response is shown in fig 2.1, in which ω_c is the normalized cutoff frequency. The amplitude function $|H(j\omega)|$ is an even function since it is the square root of the sum of the squares of the real and imaginary parts of $|H(j\omega)|$, which are respectively, even and odd functions. Therefore $|H(j\omega)|$ is a function of ω^2. A realizable $|H(j\omega)|^2$ which approximates the ideal case of fig 2.1 is given by

$$|H(j\omega)|^2 = \frac{A}{1 + f(\omega^2)} \quad (2.1)$$

where

$$f(\omega^2) \gg 1, \quad \omega > \omega_c$$

$$0 \leq f(\omega^2) \ll 1, \quad 0 \leq \omega < \omega_c \quad (2.2)$$

This is evidently true since in the passband, $0 \leq \omega < 1$, we have $|H(j\omega)|^2 \approx 1$, and in the stopband, $\omega > 1$, we have $|H(j\omega)|^2 \approx 0$, when $f(\omega)^2$ is given by eqn.(2.2).
One function suitable for use in eqns. (2.1) and (2.2) is given by

\[f(\omega^2) = \omega^{2n}; \quad n = 1, 2, 3, \]

(2.3)

It was first suggested by Butterworth. In this case

\[|H(j\omega)| = \frac{1}{\sqrt{1 + \omega^{2n}}}; \quad n = 1, 2, 3, \]

(2.4)

which is defined as the amplitude response of the \textit{nth-order Butterworth} filter. This is a montonically decreasing function and thus it attains its maximum value, \(|H(j\omega)|_{\text{max}} = 1 \), at \(\omega = 0 \). The approximation in eqn. (2.4) is better for higher values of \(n \), since for \(n_1 \gg n_2 \), we have \(\omega^{2n_1} \gg \omega^{2n_2} \) for \(\omega > 1 \). It is particularly good for near \(\omega = 0 \), by expanding eqn. (2.4) using the binomial theorem; this results in

\[|H(j\omega)| = 1 - \frac{1}{2}\omega^{2n} + \frac{3}{8}\omega^{4n} - \frac{5}{16}\omega^{6n} + \frac{35}{128}\omega^{8n} - ... \]

(2.5)

which is valid for \(\omega \) near 0. The first \(2n - 1 \) derivatives of \(|H(j\omega)| \) in eqn (2.5) will contain a factor \(\omega \), and thus will be zero at \(\omega = 0 \). Therefore for \(n \) large, the function \(|H(j\omega)| \) near \(\omega = 0 \) is exceedingly flat, or as it is \textit{maximally flat}.

For \(\omega \gg 1 \), the Butterworth amplitude function may be approximated by

\[|H(j\omega)| \approx \frac{1}{\omega^n} \]

with the loss in dB given by

\[\alpha_{\text{dB}}(\omega) \approx 20\log_{10}\omega^n = 20n\log_{10}\omega \]

(2.6)
Thus if the loss is plotted versus \(\omega \) in decades, then for large \(\omega \), the loss \(\alpha_{dB}(\omega) \) has a slope of 20\(n \) dB/decade. The loss thus increases rapidly for large \(n \), which indicates a good approximation to the ideal case [23].

![Butterworth amplitude responses](image)

Figure 2.2: Butterworth amplitude responses.

Plots of \(|H(j\omega)|\) and \(\alpha_{dB}(\omega)\) are shown in fig. 2.2 and 2.3 for various value of \(n \). Evidently the approximation to the ideal amplitude improves as \(n \) increases.

The Transfer function of Butterworth filter whose amplitude is given in eqn (2.4) is obtained by replacing \(\omega^2 \) by \(-s^2\) in \(|H(j\omega)|^2\)

\[
H(s)H(-s) = \frac{1}{1 + (-s^2)^n}
\]

so that

\[
H(s) = \frac{1}{Q(s)} \quad (2.7)
\]
where $Q(s)$ is the Hurwitz polynomial satisfying

$$Q(s)Q(-s) = 1 + (-s^2)^n$$

As an example, if $n = 2$, the case of the second-order Butterworth filter becomes

$$Q(s)Q(-s) = 1 + s^4$$

which may written as

$$Q(s)Q(-s) = (s^2 + \sqrt{2}s + 1)(s^2 - \sqrt{2}s + 1)$$

The first factor in the right member is the Hurwitz factor and is therefore $Q(s)$. Thus

Figure 2.3: Butterworth loss curves.
the Transfer function of the second-order Butterworth low-pass filter

\[H(s) = \frac{K}{s^2 + \sqrt{2}s + 1} \] \hspace{1cm} (2.8)

where the constant \(K \) should be of any real numbers.

2.2 Two-Dimensional Band-pass Filter

2.2.1 Low-Pass to Band-Pass Transformation

![Diagram of band-pass filters](image)

Figure 2.4: Ideal band-pass filters

To transform a low-pass prototype to a bandpass filter with the center frequency \(\omega_c \) and bandwidth \(B = \omega_U - \omega_L \), the transformation must map the ideal low-pass response of fig 2.1 into ideal bandpass response of fig 2.4. That is, (i) \(s = j0 \) must map into \(s = j\omega_c \), (ii) \(s = j1 \) must map into \(s = j\omega_U \), and (iii) \(s = -j1 \) must map into \(s = j\omega_L \). Since \(S = j\infty \)
maps into \(s = j\infty \), the function \(F(s) \) must be a rational fraction,

\[
S = F(s) = \frac{as^2 + bs + c}{ds + e}
\]

(2.9)

Applying mapping (i) above to eqn. (2.9) results in

\[
-j\omega_0^2 + j\omega_0 + c \quad \frac{d}{d\omega_0 + e} = 0
\]

Equating the real and imaginary parts to 0 results in

\[
e = a\omega_0^2, \quad b = 0
\]

(2.10)

Applying mapping (ii) and using eqn. (2.10) results in,

\[
e = 0 \quad d = \frac{a(\omega_U^2 - \omega_0^2)}{\omega_U}
\]

(2.11)

Mapping (c) results finally in

\[
d = \frac{a(\omega_0^2 - \omega_L^2)}{\omega_L}
\]

(2.12)

Equating the two values of \(d \) in eqn (2.11) and (2.12) yields

\[
\omega_0^2 = \frac{\omega_L\omega_U^2 + \omega_U\omega_L^2}{\omega_U + \omega_L} = \omega_L\omega_U
\]

(2.13)

Thus under this transformation \(\omega_0 \) is the geometric mean of \(\omega_L \) and \(\omega_U \). Using (2.10),

32
(2.11) and (2.12), the transformation eqn. (2.9) becomes

\[s = \frac{a(s^2 + \omega_0^2)}{a(\omega_U - \omega_L)s} \]

or

\[S = \frac{s^2 + \omega_0^2}{B s} \tag{2.14} \]

Thus a transfer function of a 4th order bandpass filter with center frequency \(\omega_0\) and bandwidth \(B\) is obtained by replacing \(S\) by eqn. (2.14) in (2.8). The numerator will be constant times \(s^n\) and the denominator will be a 4th degree polynomial. This transformation can be applied to any order[2, 21, 30].

2.2.2 Band-Pass Filter Structure

![Band-Pass Filter Structure Diagram](image)

Figure 2.5: Band-Pass Filter structure

The fig. 2.5 shows the 4th order Band-Pass filter structure.
The transfer function of this structure is given by

\[
H_B(s) = \frac{R_2 L_2 C_1 s^2}{(s^2 L_1 C_1 + s R_1 C_1 + 1)(s^2 R_2 L_2 C_2 + L_2 s + R_2) + R_2 L_2 C_1 s^2} \tag{2.15}
\]

If the above band-pass structure is considered as a \(2-D\) Band-Pass filter, there are several ways of converting this into a \(2-D\) band-pass transfer function. However, one of the ways is to convert the series arm into an impedance in \(s_1\) and the shunt arm into an impedance \(s_2\). Then, the transfer function will be given as

\[
H_B(s_1, s_2) = \frac{R_2 L_2 C_1 s_1 s_2}{(s_1^2 L_1 C_1 + s_1 R_1 C_1 + 1)(s_2^2 R_2 L_2 C_2 + L_2 s_2 + R_2) + R_2 L_2 C_1 s_1 s_2} \tag{2.16}
\]

2.3 Determining the parameter values of the Band-Pass structure

The \(4^{th}\) order Band-Pass filter transfer function is given by

\[
H_B(s) = \frac{R_2 L_2 C_1 s^2}{(s^2 L_1 C_1 + s R_1 C_1 + 1)(s^2 R_2 L_2 C_2 + L_2 s + R_2) + R_2 L_2 C_1 s^2} \tag{2.17}
\]

The second order Butterworth Low-Pass filter is shown in fig. 2.6 and its transfer function is given by [2, 30]

\[
H_L(S) = \frac{K}{(S^2 + \sqrt{2}S + 1)} \tag{2.18}
\]

By applying Band-Pass frequency transformation to the Low-Pass Butterworth filter in
(2.18),
\[H_B(s) = \frac{K B^2 s^2}{s^4 + \sqrt{2} B s^3 + \left(2\omega_0^2 + B^2\right)s^2 + \sqrt{2}\omega_0^2 B s + \omega_0^4} \] (2.19)

Because of the transformation the elements of the Low-Pass filter will change to Band-Pass filter elements. The inductance of the low-pass filter will transform into series combination of inductance and capacitance. Comparing the eqns. (2.16) and (2.19), we get
\[
\frac{L_s}{B} + \frac{L\omega_0^2}{B s} = \frac{L_1}{s} + \frac{1}{C_1 s}
\] (2.20)

From eqn. (2.20), the \(L_1\) and \(C_1\) values are
\[
L_1 = \frac{L}{B}
\]
\[
C_1 = \frac{B}{\sqrt{2}\omega_0^2}
\]

And also the capacitance of the Low-Pass filter will transform into parallel combination

![Figure 2.6: Low-Pass Filter Structure](image)

35
of Inductance and capacitance.

\[
\frac{1}{\frac{C_1}{B} + \frac{C_2\omega^2}{B^2}} = \frac{1}{C_2s + \frac{1}{L_2s}}
\]

\[
L_2 = \frac{B}{\sqrt{2\omega_0^2}}
\]

\[
C_2 = \frac{C}{B}
\]

Therefore, the parameter values of the Band-Pass structure are

\[
L_1 = \frac{L}{B}
\]

\[
L_2 = \frac{B}{\sqrt{2\omega_0^2}}
\]

\[
C_1 = \frac{B}{\sqrt{2\omega_0^2}}
\]

\[
C_2 = \frac{C}{B}
\]

where \(L\) and \(C\) are the values of Inductance and capacitance of the Low-Pass filter structure shown in fig. 2.6. The Values of \(L\) and \(C\) are \(\sqrt{2}\) each.
2.4 Digital Transfer Function

2.4.1 Band-Pass Limits for the Coefficients of Generalized Bilinear Transformation

In the previous section, we have obtained the 2-D analog transfer function, eqn (2.16), for the circuit shown in fig. 2.5. Substituting the values of all the parameters in eqn (2.16), it becomes

\[
H_B(s_1, s_2) = \frac{B^2 s_1 s_2}{4\omega^4 \omega_0^2 + (s_1 s_2 + s_2 s_1)2\sqrt{2}B\omega^2_0 + s_1 s_2 (B^2 + 2B^2\omega^4_0) + (s_1^2 + s_2^2)4\omega^2_0 + (s_1 + s_2)2\sqrt{2}B\omega^2_0 + 4\omega^2_0}
\]

(2.21)

When the generalized bilinear transformation is applied, it has to be ensured that the resulting 2-D digital filter is always stable. To satisfy the conditions of obtaining stable 2-D band-pass digital filters, the coefficients of the double generalized bilinear transformations should meet the following requirements [8, 26]

(i) \(k_i > 0\) \hspace{1cm} i = 1, 2 \hspace{1cm} (2.22)

(ii) \(0 < |a_i| \leq 1\) \hspace{1cm} i = 1, 2 \hspace{1cm} (2.23)

(iii) \(0 < |b_i| \leq 1\) \hspace{1cm} i = 1, 2 \hspace{1cm} (2.24)

With these constraints from eqns (2.22-2.24), we can obtain 2-D stable band-pass digital filter from its analog counterpart by the application of the generalized bilinear transformations.
2.4.2 2-D Band-Pass Digital Transfer Function from Double Generalized Bilinear Transformation

A familiar technique of designing a discrete filter is to start from an analog filter and then apply the bilinear transformation in order to obtain the discrete transfer function [8, 28]. This can also be applied to 2-D systems by

\[s_i = k_i \frac{z_i - a_i}{z_i + b_i} \] \hspace{1cm} (2.25)

using bilinear transformations to both the variables, where \(i = 1, 2 \ldots \)

The \(1 - D \) digital band-pass filter transfer function is obtained by applying the eqn (2.25) to eqn (2.16), the transfer function is

\[H(z) = \frac{R_2 L_2 C_1 k^2(z - a)^2}{\left[k^2(z - a)^2 L_1 C_1 + k(z - a) R_1 C_1 + (z + b)^2 \right]} \] \hspace{1cm} (2.26)

\[\left(k^2(z - a)^2 R_2 L_2 C_2 + k(z - a) L_2 + R_2(z + b)^2 \right) + R_2 L_2 C_1 k^2(z - a)^2 \}

The 2-D digital band-pass filter transfer function is obtained by applying the eqn (2.25) to eqn (2.17), the transfer function is

\[H(z_1, z_2) = \frac{R_2 L_2 C_1 k_1 k_2(z_1 - a_1)(z_2 - a_2)(z_1 + b_1)(z_2 + b_2)}{\left[k_1^2(z_1 - a_1)^2 L_1 C_1 + k_1(z_1 - a_1) R_1 C_1 + (z_1 + b_1)^2 \right]} \] \hspace{1cm} (2.27)

\[\left(k_2^2(z_2 - a_2)^2 R_2 L_2 C_2 + k_2(z_2 - a_2) L_2 + R_2(z_2 + b_2)^2 \right) + R_2 L_2 C_1 k_1 k_2(z_1 - a_1)(z_2 - a_2)(z_1 + b_1)(z_2 + b_2) \}

The MATLAB function d2band.m (refer to APPENDIX) can be employed to get the contour and 3-D magnitude plots of the resulting 2-D band-pass digital filters with the
transfer function (2.27). In this function, it is made certain that stability conditions are satisfied. As the changeable coefficients of the double generalized bilinear transformations can change the stability of the resulting 2-D digital filters, it is necessary to introduce stability constraints in discrete domain.

2.4.3 Stability Conditions of the 2-D Digital Band-Pass Filter

Starting from a 2-D analog transfer function with a VSHP as its denominator, applying the well-known used bilinear transformation will always results in 2-D stable digital filter. However, when the generalized bilinear transformation is applied, it has to be ensured that the resulting 2-D digital filter is always stable\[6, 17, 18\].

The inverse generalized bilinear transformation is

\[z_i \rightarrow \frac{b_is_i + k_ia_i}{k_i - s_i}, \quad i = 1, 2 \] \hspace{1cm} (2.28)

Substituting eqn 2.28 to 2.25, we get

\[s_i \rightarrow k_i \frac{s_i(1 + a_i) + (1 - a_i)}{s_i(1 - b_i) + (1 + b_i)} \] \hspace{1cm} (2.29)

where the eqn (2.29) can be rewritten as

\[s_1 \rightarrow \frac{s_1\alpha_1 + \alpha_2}{s_1\alpha_4 + \alpha_3}, \quad s_2 \rightarrow \frac{s_2\beta_1 + \beta_2}{s_2\beta_4 + \beta_3} \]

where

\[\alpha_1 = k_1 + k_1a_1; \alpha_2 = k_1 - k_1a_1; \alpha_3 = 1 + b_1; \alpha_4 = 1 - b_1 \] \hspace{1cm} (2.30)

\[\beta_1 = k_2 + k_2a_2; \beta_2 = k_2 - k_2a_2; \beta_3 = 1 + b_2; \beta_4 = 1 - b_2 \] \hspace{1cm} (2.31)
Applying (2.29) to \(\frac{1}{D_B(s_1, s_2)} \), where \(D_B(s_1, s_2) \) is the denominator in (2.21), we can obtain

\[
D_B(s_1, s_2) = \zeta_1 s_1^2 s_2^2 + \zeta_2 s_1 s_2^2 + \zeta_3 s_1^2 s_2 + \zeta_4 s_1 s_2 + \zeta_5 s_1^2 + \zeta_6 s_2^2 + \zeta_7 s_1 + \zeta_8 s_2 + \zeta_9 \tag{2.32}
\]

where

\[
\zeta_1 = \alpha_1^2 \beta_1^2 \gamma_1 + \alpha_1 \alpha_4 \beta_1^2 \gamma_2 + \alpha_1^2 \beta_1 \beta_4 \gamma_3 + \alpha_1 \alpha_4 \beta_1 \beta_4 \gamma_4 + \alpha_1 \beta_1^2 \gamma_5 + \alpha_4 \beta_1^2 \gamma_6 + \alpha_1 \alpha_4 \beta_1^2 \gamma_7 + \alpha_4 \beta_1 \beta_4 \gamma_8 + \alpha_4^2 \beta_4^2 \gamma_9 \tag{2.33}
\]

\[
\zeta_2 = 2 \alpha_1 \alpha_2 \beta_1^2 \gamma_1 + (\alpha_2 \alpha_4 - \alpha_1 \alpha_3) \beta_1^2 \gamma_2 + 2 \alpha_1 \alpha_2 \beta_1 \beta_4 \gamma_3 + (\alpha_2 \alpha_4 + \alpha_1 \alpha_3) \beta_1 \beta_4 \gamma_4 + 2 \alpha_1 \alpha_2 \beta_1 \gamma_5 + 2 \alpha_3 \alpha_4 \beta_1^2 \gamma_6 + (\alpha_2 \alpha_4 + \alpha_1 \alpha_3) \beta_1^2 \gamma_7 + 2 \alpha_3 \alpha_4 \beta_1 \beta_4 \gamma_8 + 2 \alpha_3 \alpha_4 \beta_1 \beta_4 \gamma_9 \tag{2.34}
\]

\[
\zeta_3 = 2 \alpha_1^2 \beta_1 \beta_2 \gamma_1 + 2 \alpha_1 \alpha_4 \beta_1 \beta_2 \gamma_2 + \alpha_1 \alpha_4 \beta_2 \beta_4 + \beta_1 \beta_3 \gamma_3 + \alpha_1 \alpha_4 \beta_2 \beta_4 + \beta_1 \beta_3 \gamma_4 + 2 \alpha_1 \beta_3 \beta_4 \gamma_5 + 2 \alpha_1 \beta_3 \beta_4 \gamma_6 + 2 \alpha_1 \alpha_4 \beta_3 \beta_4 \gamma_7 + \alpha_4 \beta_2 \beta_4 + \beta_1 \beta_3 \gamma_8 + 2 \alpha_4 \beta_3 \beta_4 \gamma_9 \tag{2.35}
\]

\[
\zeta_4 = 4 \alpha_1 \alpha_2 \beta_1 \beta_2 \gamma_1 + 2 \alpha_1 \beta_2 (\alpha_2 \alpha_4 + \alpha_1 \alpha_3) \gamma_2 + 2 \alpha_1 \alpha_2 (\beta_2 \beta_4 + \beta_1 \beta_3) \gamma_3 + (\alpha_2 \alpha_4 + \alpha_1 \alpha_3) (\beta_2 \beta_4 + \beta_1 \beta_3) \gamma_4 + 4 \alpha_1 \alpha_2 \beta_3 \beta_4 \gamma_5 + 4 \alpha_3 \alpha_4 \beta_1 \beta_2 \gamma_6 + 2 (\alpha_2 \alpha_4 + \alpha_1 \alpha_3) \beta_3 \beta_4 \gamma_7 + 2 \alpha_3 \alpha_4 \beta_1 \beta_3 \beta_4 \gamma_8 + 4 \alpha_3 \alpha_4 \beta_3 \beta_4 \gamma_9 \tag{2.36}
\]

\[
\zeta_5 = \alpha_1^2 \beta_2^2 \gamma_1 + \alpha_1 \alpha_4 \beta_2^2 \gamma_2 + \alpha_1^2 \beta_2 \beta_3 \gamma_3 + \alpha_1 \alpha_4 \beta_2 \beta_3 \gamma_4 + \alpha_1^2 \beta_2^2 \gamma_5 + \alpha_4 \beta_2^2 \gamma_6 + \alpha_1 \alpha_4 \beta_2^2 \gamma_7 + \alpha_4 \beta_2 \beta_3 \gamma_8 + \alpha_4^2 \beta_3^2 \gamma_9 \tag{2.37}
\]

\[
\zeta_6 = \alpha_1^2 \beta_1 \gamma_1 + \alpha_2 \alpha_3 \beta_1^2 \gamma_2 + \alpha_2 \alpha_3 \beta_1 \beta_4 \gamma_3 + \alpha_2 \alpha_3 \beta_1 \beta_4 \gamma_4 + \alpha_2^2 \beta_4^2 \gamma_5 + \alpha_3 \alpha_3 \beta_1^2 \gamma_6 + \alpha_3 \alpha_3 \beta_1^2 \gamma_7 + \alpha_3^2 \beta_1 \beta_4 \gamma_8 + \alpha_3^2 \beta_1 \beta_4 \gamma_9 \tag{2.38}
\]

\[
\zeta_7 = 2 \alpha_1 \alpha_2 \beta_2^2 \gamma_1 + (\alpha_1 \alpha_3 + \alpha_2 \alpha_4) \beta_2 \gamma_2 + 2 \alpha_1 \alpha_2 \beta_2 \beta_3 \gamma_3 + (\alpha_2 \alpha_4 + \alpha_1 \alpha_3) \beta_2 \beta_3 \gamma_4 + 2 \alpha_1 \alpha_2 \beta_2 \gamma_5 + 2 \alpha_3 \alpha_4 \beta_2 \beta_3 \gamma_6 + (\alpha_1 \alpha_3 + \alpha_2 \alpha_4) \beta_3 \gamma_7 + 2 \alpha_3 \alpha_4 \beta_2 \beta_3 \gamma_8 + 2 \alpha_3 \alpha_4 \beta_3 \gamma_9 \tag{2.39}
\]
\[
\zeta_8 = 2\beta_1\beta_2\alpha_2^2\gamma_1 + 2\alpha_2\alpha_3\beta_1\beta_2\gamma_2 + (\beta_1\beta_3 + \beta_2\beta_4)\alpha_2^2\gamma_3 + \alpha_2\alpha_3(\beta_2\beta_4 + \beta_1\beta_3)\gamma_4 + 2\alpha_2^2\beta_3\beta_4\gamma_5 + 2\alpha_3^2\beta_1\beta_2\gamma_6 + \\
2\alpha_2\alpha_3\beta_3\beta_4\gamma_7 + (\beta_1\beta_3 + \beta_2\beta_4)\alpha_3^2\gamma_8 + 2\alpha_3^2\beta_2\beta_4\gamma_9
\]
(2.40)

\[
\zeta_9 = \alpha_2^2\beta_2^2\gamma_1 + \alpha_3^2\beta_2^2\gamma_2 + \alpha_2^2\beta_2\beta_5\gamma_3 + \alpha_2\alpha_3\beta_2\beta_5\gamma_4 + \alpha_3^2\beta_3^2\gamma_6 + \alpha_2\alpha_3\beta_3^2\gamma_7 + \alpha_3^2\beta_2\beta_5\gamma_8 + \alpha_3^2\beta_3^2\gamma_9
\]
(2.41)

where \(\gamma_1 = 4\omega_4^4; \gamma_2 = 2\sqrt{2}\beta\omega^4_0; \gamma_3 = 2\sqrt{2}\beta\omega^4_0; \gamma_4 = B^2 + 2\beta\omega^4_0; \gamma_5 = 2\sqrt{2}\beta\omega^6_0; \gamma_6 = 2\sqrt{2}\beta\omega^6_0; \gamma_7 = 4\omega^6_0 \)

In order that \(D_B(s_1, s_2)\) is a Very Strict Hurwitz Polynomial (VSHP), the necessary and sufficient conditions are every polynomial coefficient needs to be positive and satisfy VSHP conditions [8, 9]. Hence, the stability conditions in (2.33)-(2.41) becomes

\[
\alpha_1^2\beta_1^2\gamma_1 + \alpha_1\alpha_4\beta_1^2\gamma_2 + \alpha_2^2\beta_1\beta_4\gamma_3 + \alpha_1\alpha_4\beta_1\beta_4\gamma_4 + \alpha_2^2\beta_1\beta_4\gamma_5 + \alpha_2^2\beta_2\gamma_6 + \alpha_1\alpha_4\beta_2\gamma_7 + \alpha_2^2\beta_1\beta_4\gamma_8 + \alpha_2^2\beta_2\gamma_9 > 0
\]
(2.42)

\[
2\alpha_1\alpha_2\beta_1^2\gamma_1 + (\alpha_2\alpha_4 + \alpha_1\alpha_3)\beta_2^2\gamma_2 + 2\alpha_1\alpha_2\beta_1\beta_4\gamma_3 + (\alpha_2\alpha_4 + \alpha_1\alpha_3)\beta_1\beta_4\gamma_4 + 2\alpha_1\alpha_2\beta_2^2\gamma_5 + 2\alpha_3\alpha_4\beta_2^2\gamma_6 + \\
(\alpha_2\alpha_4 + \alpha_1\alpha_3)\beta_2^2\gamma_7 + 2\alpha_3\alpha_4\beta_1\beta_4\gamma_8 + 2\alpha_3\alpha_4\beta_2\gamma_9 > 0
\]
(2.43)

\[
2\alpha_1\alpha_2\beta_1^2\gamma_1 + (\alpha_2\alpha_4 + \alpha_1\alpha_3)\beta_1^2\gamma_2 + 2\alpha_1\alpha_2\beta_1\beta_4\gamma_3 + (\alpha_2\alpha_4 + \alpha_1\alpha_3)\beta_1\beta_4\gamma_4 + 2\alpha_1\alpha_2\beta_2^2\gamma_5 + 2\alpha_3\alpha_4\beta_2^2\gamma_6 + \\
(\alpha_2\alpha_4 + \alpha_1\alpha_3)\beta_2^2\gamma_7 + 2\alpha_3\alpha_4\beta_1\beta_4\gamma_8 + 2\alpha_3\alpha_4\beta_2\gamma_9 > 0
\]
(2.44)

\[
4\alpha_1\alpha_2\beta_1\beta_2\gamma_1 + 2\beta_1\beta_2(\alpha_2\alpha_4 + \alpha_1\alpha_3)\gamma_2 + 2\alpha_1\alpha_2(\beta_2\beta_4 + \beta_1\beta_3)\gamma_3 + (\alpha_2\alpha_4 + \alpha_1\alpha_3)(\beta_2\beta_4 + \beta_1\beta_3)\gamma_4 + 4\alpha_1\alpha_2\beta_3\beta_4
\]

\[
4\alpha_3\alpha_4\beta_1\beta_2\gamma_6 + 2(\alpha_2\alpha_4 + \alpha_1\alpha_3)\beta_3\beta_4\gamma_7 + 2\alpha_3\alpha_4(\beta_1\beta_3 + \beta_2\beta_4)\gamma_8 + 4\alpha_3\alpha_4\beta_3\beta_4\gamma_9 > 0
\]
(2.45)

\[
\alpha_1^2\beta_2^2\gamma_1 + \alpha_1\alpha_4\beta_2^2\gamma_2 + \alpha_2^2\beta_2\beta_3\gamma_3 + \alpha_1\alpha_4\beta_2\beta_3\gamma_4 + \alpha_2^2\beta_2^2\gamma_5 + \alpha_2^2\beta_2^2\gamma_6 + \alpha_1\alpha_4\beta_3^2\gamma_7 + \alpha_2^2\beta_2\beta_3\gamma_8 + \alpha_2^2\beta_2\gamma_9 > 0
\]
(2.46)
\[
\alpha_2^2 \beta_1^2 \gamma_1 + \alpha_2 \alpha_3 \beta_1^2 \gamma_2 + \alpha_2^2 \beta_1 \beta_4 \gamma_3 + \alpha_2 \alpha_3 \beta_1 \beta_4 \gamma_4 + \alpha_2^2 \beta_4^2 \gamma_5 + \alpha_2^2 \beta_1^2 \gamma_6 + \alpha_3 \alpha_3 \beta_1^2 \gamma_7 + \alpha_2 \beta_4 \gamma_8 + \alpha_2^2 \beta_4^2 \gamma_9 > 0 \\
\text{(2.47)}
\]

\[
2 \alpha_1 \alpha_2 \beta_2^2 \gamma_1 + (\alpha_1 \alpha_3 + \alpha_2 \alpha_4) \beta_2^2 \gamma_2 + 2 \alpha_1 \alpha_2 \beta_2 \beta_3 \gamma_3 + (\alpha_2 \alpha_4 + \alpha_1 \alpha_3) \beta_2 \beta_3 \gamma_4 + 2 \alpha_1 \alpha_2 \beta_3^2 \gamma_5 + 2 \alpha_3 \alpha_4 \beta_2^2 \gamma_6 + (\alpha_1 \alpha_3 + \alpha_2 \alpha_4) \beta_3^2 \gamma_7 + 2 \alpha_3 \alpha_4 \beta_2 \beta_3 \gamma_8 + 2 \alpha_3 \alpha_4 \beta_3^2 \gamma_9 > 0 \\
\text{(2.48)}
\]

\[
2 \beta_1 \beta_2 \alpha_2^2 \gamma_1 + 2 \alpha_2 \alpha_3 \beta_1 \beta_2 \gamma_2 + (\beta_1 \beta_3 + \beta_2 \beta_4) \alpha_2^2 \gamma_3 + \alpha_2 \alpha_3 (\beta_2 \beta_4 + \beta_1 \beta_3) \gamma_4 + 2 \alpha_2 \beta_3 \beta_4 \gamma_5 + 2 \alpha_2 \beta_4 \gamma_6 + 2 \alpha_2 \beta_3 \beta_4 \gamma_7 + (\beta_1 \beta_3 + \beta_2 \beta_4) \alpha_3^2 \gamma_8 + 2 \alpha_3 \beta_3 \beta_4 \gamma_9 > 0 \\
\text{(2.49)}
\]

\[
\alpha_2^2 \beta_2^2 \gamma_1 + \alpha_2 \alpha_3 \beta_2^2 \gamma_2 + \alpha_2^2 \beta_2 \beta_3 \gamma_3 + \alpha_2 \alpha_3 \beta_2 \beta_3 \gamma_4 + \alpha_2^2 \beta_3^2 \gamma_5 + \alpha_2^2 \beta_2^2 \gamma_6 + \alpha_2 \alpha_3 \beta_2 \beta_3 \gamma_7 + \alpha_3 \beta_2 \beta_3 \gamma_8 + \alpha_2^2 \beta_3^2 \gamma_9 > 0 \\
\text{(2.50)}
\]

It can be observed from the eqns (2.42-2.50) is the function of \(\alpha's\) and \(\beta's\), which is given in eqns (2.30) and (2.31) respectively. As stable generalized bilinear transformation requires to satisfy the eqns (2.22) - (2.24), on applying these conditions to the eqns (2.30) and (2.31), the \(\alpha's\) and \(\beta's\) in these equations will always be positive. Since \(\alpha's\) and \(\beta's\) are positive the eqns (2.42-2.50) will also be positive, which will make all the coefficients in the eqn (2.32) positive. Thus the denominator of the band-pass filter transfer function given in eqn (2.21) will have the positive coefficients for each and every polynomials and hence it is VSHP.

2.5 Frequency Response of the 2-D Band-Pass Filters

The second-order 1-D Lowpass Butterworth filter is transformed to a 1-D Bandpass filter by applying Lowpass to Bandpass transformation. The resultant transfer function is digitized by applying generalized bilinear transformation. Eqn (2.27) gives the transfer function of the 2-D digital band-pass filter transfer function. With the input coefficient of
the generalized bilinear transformation, we can obtain the contour and 3-D magnitude plots of the resulting 2-D digital filter[22]. In this, the stability is taken care such that the $2 - D$ band-pass filter is stable with these input arguments.

To investigate the manner in which each coefficient of generalized bilinear transformation affects the magnitude response of the resulting $2 - D$ band-pass filter, we change the value of some of the coefficients or fixing some of the coefficient to the specific values. It is possible to obtain a $2 - D$ band-pass filter when the coefficients are in the limits of $k_i > 0$, $0 < |a_i| \leq 1$ and $0 < |b_i| \leq 1$ where $i = 1, 2$. Fig.2.7 shows the standard band-pass filter, which can be obtained by making all the coefficient values to be equal to one. In the following, we will see the effect of these coefficients to the frequency responses of the $2 - D$ band-pass filter[25, 28].

![Graph](image)

Figure 2.7: Frequency response of the standard 2-D band-pass filter with all the coefficient values as unity
2.5.1 Frequency Response of 2-D Band-Pass filters with various k_1 values

To study the manner how k_1 effects the frequency response behaviour of the resulting 2-D band-pass filter and to separate the effect of the other coefficients, we vary the values of k_1, and fixing all the other coefficients of the generalized bilinear transformation to be $k_2 = 1, a_1 = 1, a_2 = 1, b_1 = 1$ and $b_2 = 1$. The value of k_1 are varied from 0.1 to 100 and the 3-D magnitude and contour plots for the band-pass filter with the values of $k_1 = 0.1, k_1 = 0.75, k_1 = 1.5, k_1 = 3, k_1 = 5, k_1 = 10, k_1 = 50$ and $k_1 = 100$ are shown in figs. 2.8 and 2.9.

It can be observed that the coefficient k_1 mainly effects the center frequency(ω_c) and the bandwidth of the band-pass filter response at $\omega_1 - axis$. As k_1 increases, the center frequency moves to the minimum value from the maximum value in the $\omega_1 - axis$. In the diagrams, we can observe that the center frequency for $k_1 = 0.1$ is at 0.9π rad/sec. As the values of k_1 increases, the center frequency will start moving towards the minimum value, as it can be seen for the value of $k_1 = 5$ the center frequency reaches 0.2π rad/sec. If k_1 increases beyond 5, the center frequency will start moving towards the origin, and increase in the value of k_1 beyond 50 will decrease the gain of the response at $\omega_1 - axis$. Also, the bandwidth of the band-pass filter varies for the increase in the value of k_1. It can be observed that, at the lowest possible value of k_1 the bandwidth of this filter is less than 0.5. As k_1 increases, the bandwidth of the filter start increasing and it attains the maximum value at $k_1 = 1$ and decreases thereafter for the increase in value of k_1. We can simply mention it like k_1 is inversely proportional to ω_c at $\omega_1 - axis$, bandwidth increases up to $k_1 = 1$ and decreases for increase in value of $k_1 > 1$, and the coefficient k_1 has no effects on the gains in the pass-band and stop-band for limited value of k_1. Also, the changes in k_1
Figure 2.8: Frequency response of the band-pass filter with \(k_1 = 0.1, 0.75, 1.5 \) and 3 and all the other coefficients as unity.
Figure 2.9: Frequency response of the band-pass filter with $k_1 = 5, 10, 50$ and 100 and all the other coefficient as unity.
values did not make any changes in $\omega_2 - axis$.

2.5.2 Frequency Response of 2-D Band-Pass Filters with various k_2 values

In section 2.5.1, the effect of the coefficient of k_1 was analyzed. In this section, effect of the k_2 will be analyzed. To study the manner how k_2 effects the frequency response behaviour of the resulting 2 - D band-pass filter and to separate the effect of the other coefficients, we vary the values of k_2, and fixing the other coefficients of the generalized bilinear transformation to be $k_1 = 1, a_1 = 1, a_2 = 1, b_1 = 1$ and $b_2 = 1$. The value of k_2 is varied from 0.1 to 100 and the 3-D magnitude response and contour plots for the band-pass filter with the values of $k_2 = 0.1, k_2 = 0.75, k_2 = 1.5, k_2 = 3, k_2 = 5, k_2 = 10, k_2 = 50$ and $k_2 = 100$ are shown in fig. 2.10 and 2.11.

It can be observed that the coefficient k_2 mainly effects the center frequency(ω_c) and the bandwidth of the band-pass filter response at $\omega_2 - axis$. As k_2 increases, the center frequency moves to the minimum value from the maximum value in the $\omega_2 - axis$. In the diagrams, it can be observed that for the lowest possible value of k_2 the center frequency will be at maximum in the $\omega_2 - axis$, as it can be seen from the diagrams, for $k_2 = 0.1$ the ω_c is at 0.9π rad/sec. As the values of k_2 increases, the center frequency will start moving towards the minimum value, as it can be seen for the value of $k_2 = 5$ the center frequency reaches 0.2π rad/sec. If k_2 increases beyond 5, the center frequency will start moving towards the origin, and increase in the value of k_2 beyond 50 will decrease the gain of the response at $\omega_2 - axis$. Also, the bandwidth of the band-pass filter varies for the increase in the value of k_2. It can be observed that, at the lowest possible value of k_2 the bandwidth of this filter is less than 0.5. As k_2 increases, the bandwidth of the filter start increasing and it
Figure 2.10: Frequency response for the band-pass filter with the value of $k_2 = 0.1, 0.75, 1.5$ and 3, and all the other coefficients as unity.
Figure 2.11: Frequency response for the band-pass filter with the value of $k_2 = 5, 10, 50$ and 100 and all the other coefficients as unity.
attain the maximum value at \(k_2 = 1 \) and decreases thereafter for the increase in value of \(k_2 \). We can simply mention it like \(k_2 \) is inversely proportional to \(\omega_c \) at \(\omega_2 - axis \), bandwidth increases upto \(k_2 = 1 \) and decreases for the value of \(k_2 > 1 \), and the coefficient \(k_2 \) has no effects on the gains in the pass-band and stop-band for limited value of \(k_2 \). Also, the changes in \(k_2 \) values does not make any changes in \(\omega_1 - axis \). It is evident from this section that, the frequency response in \(\omega_1 - axis \) is similar to the frequency responses in \(\omega_2 - axis \) with respect to the similar changes in the values of \(k_1 \) and \(k_2 \).

2.5.3 Frequency Response of 2-D Band-Pass filters with various \(a_1 \) values

We can get the stable range of \(a_1 \) with the other specified coefficient of the double generalized bilinear transformation. There are many combinations possible for the coefficients. To analyze the response properly we fix the other coefficient values to be equal to unity, when studying the effect of \(a_1 \) on the frequency response of the band-pass filter. The range of \(a_1 \) varies from 0 to 1 and the other coefficient values are specified as \(k_1 = 1, k_2 = 1, a_2 = 1, b_1 = 1 \) and \(b_2 = 1 \).

The 3-D magnitude and contour plots with representative values of \(a_1 \) are given in fig 2.12. By making the \(a_1 = 1 \), it resembles the standard band-pass filter. It can be observed from the diagram that the coefficient \(a_1 \) effects the gain of the pass-band and the center frequency (\(\omega_c \)). At the lowest possible value of \(a_1 \), the gain of the passband will be less than 0.2. As the \(a_1 \) increases, the gain increases and reach the maximum value at \(a_1 = 1 \). The center frequency of the band-pass filter decreases as the \(a_1 \) increases at \(\omega_1 - axis \). The bandwidth of the passband will be approximately equivalent to the design bandwidth value, when the value of \(a_1 \) is varied between 0 and 1. Also, it is evident from the diagram,
Figure 2.12: Frequency response for the band-pass filter with the value of $a_1 = 0.25, 0.5, 0.75$ and 0.9 and all the other coefficients as unity.
the lower stopband has the non-zero gain at $\omega_1 - axis$. So we can relate on stating that the increase in the coefficient a_1 gives rise to the gain in the pass-band and it decreases the center frequency. The change in value of a_1 will not effect the response in $\omega_2 - axis$.

2.5.4 Frequency Response of 2-D Band-Pass filters with various a_2 values

In section 2.5.3, the effects of the coefficient a_1 are analyzed. In this section, the effects of the coefficient a_2 are analyzed. We can get the stable range of a_2 with the other specified coefficient of the double generalized bilinear transformation. There are many combinations possible for the coefficients. To study the response properly we fix the other coefficient values to be equal to unity, when studying the effect of a_2 on the frequency response of the band-pass filter. The range of a_2 varies from 0 to 1 and the other coefficient values are specified as $k_1 = 1, k_2 = 1, a_2 = 1, b_1 = 1$ and $b_2 = 1$.

The 3-D magnitude and the contour plots with the various values of a_2 are shown in fig 2.13. By making the $a_2 = 1$, it is that of the standard band-pass filter. It can be seen that the coefficient a_2 effects the gain of the pass-band and also the center frequency (ω_c). It is observed that the gain of the passband increases as the value of a_2 increases, and it reaches the maximum value at $a_2 = 1$ in the $\omega_2 - axis$. It can also be observed the center frequency decreases as the a_2 increases at $\omega_2 - axis$. The bandwidth of the passband will be approximately equivalent to the design bandwidth value, when the value of a_2 is varied between 0 and 1. The lower stopband in the band-pass filter will have the non-zero values in the $\omega_2 - axis$. So, we can conclude this on stating that the increase in the coefficient a_2 will give rise to the gain in the passband and decreases the center frequency. It is evident from the fig 2.12 and 2.13, the response in the $\omega_1 - axis$ is same as that of the response in

52
Figure 2.13: Frequency response for the band-pass filter with the value of $a_2 = 0.25, 0.5, 0.75$ and 0.9 and all the other coefficients as unity.
the $\omega_2 - axis$ with respect to similar changes in a_1 and a_2.

2.5.5 Frequecny Response of 2-D Band-Pass filters with various b_1 values

From the section 2.5.1 to 2.5.4, we analyzed the effect in the value of k_1, k_2, a_1 and a_2 respectively. In this section, the effect of b_1 is analyzed. We can get the stable range of b_1 with the other specified coefficient of the double generalized bilinear transformation. There are many combinations possible for the coefficients. To study the response properly we fix the other coefficient values to be equal to unity, when studying the effect of b_1 on the frequency response of the band-pass filter. The range of b_1 varies from 0 to 1 and the other coefficient values are specified as $k_1 = 1$, $k_2 = 1$, $a_1 = 1$, $a_2 = 1$ and $b_2 = 1$.

The 3-D magnitude and contour plots with representative values of b_1 are given in fig. 2.14. It is observed from the diagram, change in the value of b_1 will effect the gain in the pass-band and the center frequency(ω_c). At the lowest possible value of b_1, the response will have the lowest gain at the passband. As the b_1 increases, the gain of the passband increases and it reaches the maximum value at $b_1 = 1$. It can also be observed the center frequency increase as the b_1 increases in $\omega_1 - axis$. The bandwidth of the passband will be approximately equivalent to the design bandwidth value, when the value of b_1 is varied between 0 and 1. Also, it is evident from the diagram that the upper stopband has the non-zero gain at $\omega_1 - axis$ for $b_1 < 1$. So, we can relate this on stating that the gain in the passband and in the center frequency results by the increase in the coefficient of b_1.

54
Figure 2.14: Frequency response for the band-pass filter with the value of $b_1 = 0.25, 0.5, 0.75$ and 0.9 and all the other coefficients as unity
2.5.6 Frequency Response of 2-D Band-Pass filters with various b_2 value

In the previous section, we analyzed the effect of b_1 on the 2-D band-pass filters. In this, we continue our analyzes by varying the value of b_2. We can get the stable range of b_2 with the other specified coefficient of the double generalized bilinear transformation. There are many combinations possible for the coefficients. To study the response properly we fix the other coefficient values to be equal to unity, when studying the effect of b_2 on the frequency response of the band-pass filter. The range of b_2 varies from 0 to 1 and the other coefficient values are specified as $k_1 = 1, k_2 = 1, a_1 = 1, a_2 = 1$ and $b_1 = 1$.

The 3-D magnitude and contour plots with representative values of b_2 are given in fig. 2.15. It is observed from the diagram, change in the value of b_2 will effect the gain in the pass-band and the center frequency(ω_c). At the lowest possible value of b_2, the response will have the lowest gain at the passband. As the b_2 increases, the gain of the passband increases and it reaches the maximum value at $b_2 = 1$. It can also be observed the center frequency increase as the b_2 increases in $\omega_2 - axis$. The bandwidth of the passband will be approximately equivalent to the design bandwidth value, when the value of b_2 is varied between 0 and 1. Also, it is evident from the diagram that the upper stopband has the non-zero gain at $\omega_2 - axis$ for $b_2 < 1$. So, we can relate this on stating that the gain in the passband and in the center frequency results by the increase in the coefficient of b_2.

From the fig. 2.14 and 2.15, the response in the $\omega_1 - axis$ is similar to the response in the $\omega_2 - axis$ with the same in values of b_1 and b_2.
Figure 2.15: Frequency response for the band-pass filter with the value of $b_2 = 0.25, 0.5, 0.75$ and 0.9 and all the other coefficients as unity.
2.5.7 Frequency Response of 2-D Band-Pass Filters with various k_1 values and fixed ω_c with same values of a_1 and b_1

In section 2.5.1, we saw the frequency response of the band-pass filter for the various k_1 values with a unity for the other coefficients. In this, we are going to assign the same values for a_1 and b_1 ranging from 0 to 1, and for remaining coefficients are considered to be unity such as $k_2 = 1$, $a_2 = 1$, $b_2 = 1$ and the theoretical center frequency (ω_c) is considered as unity. The 3-D magnitude and the contour plots are shown from figs. 2.16, 2.17 and 2.18 for various values of k_1 with the coefficient values a_1 and b_1 are 0.5.

Figure 2.16: Frequency response for the band-pass filter with the value of $k_1 = 0.1$ and 0.4 for $a_1 = b_1 = 0.5$ and all the other coefficients as unity

The effect of response will be in the $\omega_1 - axis$ and there will not be any change in response in the $\omega_2 - axis$. If the value of k_1 happens to be equal to the theoretical center
Figure 2.17: Frequency response for the band-pass filter with the value of $k_1 = 0.5$ and 1.5 for $a_1 = b_1 = 0.5$ and all the other coefficients as unity.
Figure 2.18: Frequency response for the band-pass filter with the value of $k_1 = 2$ and 100 for $a_1 = b_1 = 0.5$ and all the other coefficients as unity
frequency (ω_o), then the response will be similar to the standard band-pass filter shown
in the figure 2.7 but gain will be decreased. This decrease in gain is due to the change
in the a_1 and b_1 values. In this section, we can see three types of filter response namely
band-pass, high-pass and low-pass response. The band-pass response are seen between
$1 - a_1 or(b_1) \leq k_1 \leq 1 + a_1 or(b_1)$. The high-pass response are seen in the range of k_1
less than $1 - a_1 or(b_1)$. The low-pass response are seen in the range of k_1 greater than
$1 + a_1 or(b_1)$. Bandwidth for all the cases will remain close to the design bandwidth. And
also in all the response shown from fig 2.16, 2.17 and 2.18 the gain increase and reach the
maximum value for k_1 equal to unity and then it start decreasing for the higher values of
k_1.

2.5.8 Frequency Response of 2-D Band-Pass Filters with various k_2 values and fixed ω_b with same value of a_2 and b_2

In section 2.5.2, we saw the frequency response of the band-pass filter for the various k_2
values with a unity for the other coefficients. In this, we are going to assign the same values
for a_2 and b_2 ranging from 0 to 1, and for remaining coefficients are considered to be unity
such as $k_1 = 1$, $a_1 = 1$, $b_1 = 1$ and the theoretical center frequency (ω_o) is considered as
unity. The 3-D magnitude and contour plots are shown from figure 2.29 to 2.31 for various
values of k_2 with the coefficient values a_2 and b_2 are 0.5.

The effect of response will be in the $\omega_2 - axis$ and there will not be any change in
response in the $\omega_1 - axis$. If the value of k_2 happens to be equal to the therotical center
frequency (ω_o), then the response will be similar to the standard band-pass filter shown in
the fig 2.7 but with of decreased gain. This decrease in gain is due to the change in the a_2
and b_2 values. In this, we can see three types of filter response namely band-pass, high-pass
Figure 2.19: Frequency response for the band-pass filter with the value of $k_2 = 0.1$ and 0.4 for $a_2 = b_2 = 0.5$ and all the other coefficients as unity
Figure 2.20: Frequency response for the band-pass filter with the value of $k_2 = 0.5$ and 1.5 for $\alpha_2 = b_2 = 0.5$ and all the other coefficients as unity
Figure 2.21: Frequency response for the band-pass filter with the value of \(k_2 = 2 \) and 100 for \(\alpha_2 = b_2 = 0.5 \) and all the other coefficients as unity.
and low-pass response. The band-pass response are seen between $1 - a_2 \cos(b_2) \leq k_2 \leq 1 + a_2 \cos(b_2)$. The high-pass response are seen in the range of k_2 less than $1 - a_2(b_2)$. The low-pass response are seen in the range of k_2 greater than $1 + a_2(b_2)$. Bandwidth for all the cases remain closer to the designed values. Also in all the responses shown in the figs. 2.19, 2.20 and 2.21, the gain increases and reaches the maximum value for k_2 equal to unity and then it starts decreasing for the higher values of k_2.

2.5.9 Frequency response for different values of B and ω_o with unity for other coefficients

2.5.9.1 Frequency response for different values of B

In this section, we will see the frequency response for the various values of B with the other coefficients values are fixed to be unity. The 3-D magnitude and the contour plot for various values of B are plotted in fig 2.22, it is same for both $\omega_1 - axis$ and $\omega_2 - axis$. From these plots, it is clear that the bandwidth increases as the value of B is varied in the range of 0.5 to 3.

2.5.9.2 Frequency response for different values of ω_o

From section 2.5.1 to 2.5.8, the frequency response of the fixed value ω_o are shown. In this section, we will see the frequency response for the various values of ω_o with the other coefficients values are fixed to be unity. The 3-D magnitude and the contour plot for various values of ω_o are plotted in fig 2.23, it is same for both $\omega_1 - axis$ and $\omega_2 - axis$. From these plots, it is clear that the center frequency shifts from the minimum to maximum value when ω_o is varied in the range of 0 to 3. Bandwidth of the response starts with larger
Figure 2.22: Frequency response of band-pass filter with various values of B
bandwidth for the minimum value of ω_o, it decreases for the increase in ω_o and reaches the minimum bandwidth for the highest possible value of ω_o.

2.5.10 Frequency Response of 2-D Band-Pass Filters with Fixed k_1 Values and Various ω_o with Same Values of a_1 and b_1

In section 2.5.9, the frequency response of the various values ω_o are discussed. In this, we will see the frequency response for the various values of ω_o with fixed value of k_1 and with same values of a_1 and b_1. The 3-D magnitude and the contour plots for specified values of k_1 such as 0.25, 0.5, 1.2 to 5 are shown from figs. 2.24 to 2.28 with the ω_o values as 0.5, 1.5, 2 and 3. The a_1 and b_1 values are taken as 0.75.

It can be seen that the effect of ω_o and k_1 are in the ω_1 - axis. Whenever the values of k_1 and ω_o are same the center frequency of the response is similar to standard band-pass filter but with the decrease in gain. For the k_1 less than unity and for the ω_o in the range of $0.1\pi \leq \omega_o \leq \pi$, the frequency response will start from a band-pass filter for the lower value ω_o and slowly it transform to a high-pass filter. Figs. 2.24 and 2.25 shows the transformation of band-pass to high-pass filter in the ω_1 - axis. For the k_1 value around unity, the frequency response will be of band-pass filter only, but the center frequency will shift from lower to higher value for the change in value of ω_o, fig 2.26 shows the frequency response for $k_1 = 1$. And finally, for the values of k_1 greater than unity, the frequency response will start from low-pass filter for the lower value of ω_o, and slowly get transformed into a band-pass filter for higher value of ω_o, fig 2.27 and 2.28 shows the response for $k_1 = 2$ and 5 respectively. The bandwidth of the frequency response varies accordingly to the value of ω_o. As ω_o increases the bandwidth decreases, bandwidth increases as the ω_o decreases. Thus on varying the values of k_1 and ω_o, different types of
Figure 2.23: Frequency response for the band-pass filter with the value of $\omega_p = 0.5, 1.5, 2$ and 3 and all the other coefficients as unity.
Figure 2.24: Frequency response for the band-pass filter with the value of $k_1 = 0.25$ for $a_1 = b_1 = 0.75$ and all the other coefficients as unity
Figure 2.25: Frequency response for the band-pass filter with the value of $k_1 = 0.5$ for $a_1 = b_1 = 0.75$ and all the other coefficients as unity
Figure 2.26: Frequency response for the band-pass filter with the value of $k_1 = 1$ for $a_1 = b_1 = 0.75$ and all the other coefficients as unity.
Figure 2.27: Frequency response for the band-pass filter with the value of $k_1 = 2$ for $a_1 = b_1 = 0.75$ and all the other coefficients as unity
Figure 2.28: Frequency response for the band-pass filter with the value of $k_1 = 5$ for $a_1 = b_1 = 0.75$ and all the other coefficients as unity.
filter response are obtained with the bandwidth inversely related to ω_o.

2.5.11 Frequency Response of 2-D Band-Pass filters with fixed k_2 values and various ω_o with same values of a_2 and b_2

In section 2.5.9, the frequency response of the various value ω_o are discussed. In this, we will see the frequency response for the various values of ω_o with fixed value of k_2 and with same values of a_2 and b_2. The 3-D magnitude and the contour plots for specified values of k_2 such as 0.25, 0.5, 1,2 to 5 are shown from fig. 2.29 to 2.33 with the ω_o values as 0.5, 1.5, 2 and 3. The a_2 and b_2 values are taken as 0.75.

It can be seen that the effect of ω_o and k_2 are in the $\omega_2 - axis$. Whenever the values of k_2 and ω_o are same the center frequency of the response is similar to standard band-pass filter but with the decrease in gain. For the k_2 less than unity and for the ω_o in the range of $0.1\pi \leq \omega_o \leq 3\pi$, the frequency response will start from a band-pass filter for the lower value ω_o and slowly it transform to a high-pass filter. The fig. 2.29 and 2.30 shows the transformation of band-pass to high-pass filter in the $\omega_2 - axis$. For the k_2 value around unity, the frequency response will be of band-pass filter only, but the center frequency will shift from lower to higher value for the change in value of ω_o, fig 2.31 shows the frequency response for $k_2 = 1$. And finally, for the values of k_2 greater than unity, the frequency response will start from band-pass filter for the lower value of $\omega_o > 0.3\pi$, and slowly get transformed into a highpass filter for higher value of ω_o, fig. 2.32 and 2.33 shows the response for $k_2 = 2$ and 5 respectively. The bandwidth of the frequency response varies accordingly to the value of ω_o. As ω_o increases the bandwidth decreases, bandwidth increases as the ω_o decreases. Thus on varying the values of k_2 and ω_o, different types of filter response are obtained with the bandwidth inversely related to ω_o.

74
Figure 2.29: Frequency response for the band-pass filter with the value of $k_2 = 0.25$ for $\omega_2 = b_2 = 0.75$ and all the other coefficients as unity
Figure 2.30: Frequency response for the band-pass filter with the value of $k_2 = 0.5$ for $\omega_2 = b_2 = 0.75$ and all the other coefficients as unity
Figure 2.31: Frequency response for the band-pass filter with the value of $k_2 = 1$ for $\omega_2 = b_2 = 0.75$ and all the other coefficients as unity.
Figure 2.32: Frequency response for the band-pass filter with the value of $k_2 = 2$ for $a_2 = b_2 = 0.75$ and all the other coefficients as unity
Figure 2.33: Frequency response for the band-pass filter with the value of $k_2 = 5$ for $a_2 = b_2 = 0.75$ and all the other coefficients as unity
2.5.12 Frequency Response of 2-D Band-Pass filters with various k_1 and ω_o values with different values of a_1 and b_1

In section 2.5.7 and section 2.5.10, we saw the frequency response for various k_1 and ω_o values with the same values of a_1 and b_1. In this section we will see the effect different values of a_1 and b_1, for various values of k_1 and ω_o. Fig 2.34 to 2.37 shows the 3-D magnitude and contour plots for different k_1, a_1 and b_1 values for ω_o ranging from $0.1\pi < \omega_o < \pi$.

It can be seen from the figure that the for the k_1 values less than unity, the response will start from a band-pass filter for lower value of ω_o and it slowly transform into a high-pass filter for higher value of ω_o, for the different values of a_1 and b_1. Fig 2.34 and 2.36 shows the response for the coefficient values $k_1 = 0.25$ for the different values of a_1 and b_1 for $\omega_o = 0.5, 1.5$, 2 and 3. Also, the frequency response for the k_1 greater than unity, the response will start from a low-pass filter for lower value of ω_o and slowly it moves on into a band-pass filter for higher value of ω_o. Fig. 2.35 and 2.37 shows the response for $k_1 = 3$ for the different values of a_1 and b_1 for $\omega_o = 0.5, 1.5$, 2 and 3. When $a_1 < b_1$, the bandwidth decreases but when $a_1 > b_1$, bandwidth is approximately the same. Bandwidth of the response for $a_1 < b_1$ varies inversely to the change in ω_o. The gain of the passband decreases for all the cases if the value of a_1 and b_1 is less than unity.

2.5.13 Frequency Response of 2-D Band-Pass filters with various k_2 and ω_o values with different values of a_2 and b_2

In section 2.5.8 and section 2.5.11, we saw the frequency response for various k_2 and ω_o values with the same values of a_2 and b_2. In this section we will see the effect different values of a_2 and b_2, for various values of k_2 and ω_o. Fig2.38 to 2.41 shows the 3-D magnitude
Figure 2.34: Frequency response for the band-pass filter with the value of $k_1 = 0.25$ for $a_1 = 0.25, b_2 = 0.75$ and all the other coefficients as unity
Figure 2.35: Frequency response for the band-pass filter with the value of $k_1 = 3$ for $a_1 = 0.25, b_1 = 0.75$ and all the other coefficients as unity
Figure 2.36: Frequency response for the band-pass filter with the value of $k_1 = 0.25$ for $a_1 = 0.75, b_1 = 0.25$ and all the other coefficients as unity

83
Figure 2.37: Frequency response for the band-pass filter with the value of $k_1 = 3$ for $a_1 = 0.75, b_1 = 0.25$ and all the other coefficients as unity
and contour plots for different k_2, a_2 and b_2 values for ω_o ranging from $0.1\pi < \omega_o < 3$.

It can be seen from the figure that the for the k_2 values less than unity, the response will start from a band-pass filter for lower value of ω_o and it slowly transform into a high-pass filter for higher value of ω_o, for the different values of a_2 and b_2. Fig. 2.38 and 2.40 shows the response for the coefficient values $k_2 = 0.25$ for the different values of a_2 and b_2 for $\omega_o = 0.5$, 1.5, 2 and 3. Also, the frequency response for the k_2 greater than unity, the response will start from a low-pass filter for lower value of ω_o and slowly it moves on into a band-pass filter for higher value of ω_o. Fig. 2.39 and 2.41 shows the response for $k_2 = 3$ for the different values of a_2 and b_2 for $\omega_o = 0.5$, 1.5, 2 and 3. When $a_2 < b_2$, the bandwidth decreases but when $a_2 > b_2$, bandwidth is approximately the same. Bandwidth of the response for $a_2 < b_2$ varies inversely to the change in ω_o. The gain of the passband decreases for all the cases if the value of a_2 and b_2 is less than unity.

2.5.14 Frequency Response of 2-D Band-Pass filters with various k_1, k_2 and ω_o values with different values of a_1, a_2, b_1 and b_2

In this section, we can see the effect of all the coefficient such as k_1, k_2, a_1, a_2, b_1, b_2 and ω_o. Fig. 2.42 shows the combination of all the effect in $\omega_1 - axis$ and $\omega_2 - axis$. The coefficients k_1, a_1 and b_1 contributes for the effect in $\omega_1 - axis$, similarly the coefficient k_2, a_2 and b_2 contributes for the effect in $\omega_2 - axis$. The effects of each coefficient are studied up to the section 2.5.6. The fig. 2.42 shows the combination of the effect discussed in section 2.5.12 and 2.5.13. Bandwidth changes inversely to the the value of ω_o.

85
Figure 2.38: Frequency response for the band-pass filter with the value of $k_2 = 0.25$ for $a_2 = 0.25, b_2 = 0.75$ and all the other coefficients as unity
Figure 2.39: Frequency response for the band-pass filter with the value of $k_2 = 3$ for $a_2 = 0.25, b_2 = 0.75$ and all the other coefficients as unity
Figure 2.40: Frequency response for the band-pass filter with the value of $k_1 = 0.25$ for $a_1 = 0.75, b_1 = 0.25$ and all the other coefficients as unity
Figure 2.41: Frequency response for the band-pass filter with the value of $k_2 = 3$ for $a_2 = 0.75, b_2 = 0.25$ and all the other coefficients as unity
Figure 2.42: Frequency response of a band-pass filter with the coefficient values of $k_1 = 0.25$, $k_2 = 5$, $a_1 = 0.25$, $b_1 = 0.5$, $a_2 = 0.75$ and $b_2 = 0.25$
2.6 Summary and Conclusion

This chapter discusses the effects of the coefficient of the digital band-pass filter obtained by applying the generalized bilinear transformation to the band-pass transfer function which is transformed from low-pass butterworth filter. The detailed analysis on each of the coefficient is discussed in section 2.5. The summary of the effect of the coefficient are as follows. On increasing \(k_1 \) and \(k_2 \) as discussed in sections 2.5.1 and 2.5.2 respectively, the center frequency moves from maximum to minimum and bandwidth increases upto \(k_1 = k_2 = 1 \), then decreases in \(\omega_1 - axis \) and \(\omega_2 - axis \) respectively. Sections 2.5.3 and 2.5.4 discusses about the frequency response on varying \(a_1 \) and \(a_2 \) respectively. The increase in \(a_1 \) and \(a_2 \) will increase in gain and center frequency shift from maximum to minimum frequency with the negligible amount of change in bandwidth at \(\omega_1 - axis \) and \(\omega_2 - axis \) respectively. Section 2.5.5 and 2.5.6 discuss about the frequency response by varying \(b_1 \) and \(b_2 \) respectively. The increase in \(b_1 \) and \(b_2 \) will increase in gain and center frequency shift from minimum to maximum frequency with the negligible amount of change in bandwidth at \(\omega_1 - axis \) and \(\omega_2 - axis \) respectively. Sections 2.5.7 and 2.5.8 discuss the effect of the same value of \(a_1, b_1, \) and \(a_2, b_2 \). The different types of filter response are obtained with decreased gain. The effect of each of the coefficients of the band-pass filter are studied with the fixed value of center frequency (\(\omega_0 \)). In section 2.5.9, the effect of the coefficients, the center frequency and Bandwidth are analyzed. Sections 2.5.10 and 2.5.11 give the effect of the band-pass filter response for the combination of \(k_1, k_2 \) with various values of \(\omega_0 \) with same value of \(a_1, b_1 \) and \(a_2, b_2 \). Sections 2.5.12 and 2.5.13 discuss the effect of the band-pass filter for the various combination of \(k_1, k_2 \) and \(\omega_0 \) with the different values of \(a_1, b_1 \) and \(a_2, b_2 \). Finally, the combination of all the coefficients with \(\omega_0 \) are plotted in \(\omega_1 \) and \(\omega_2 - axis \). Thus the effects of the band-pass filter were analyzed.
for the various combinations of the coefficient of the generalized bilinear transformation along with the combination of the center frequency ω_o, and the selective 3-D magnitude and contour plots of the band-pass filter were plotted.
Chapter 3

Two-Dimensional Band-Stop Filters
from Low-Pass Butterworth Filters

In this chapter, the 2-D Band-stop filters are analyzed. The low-pass butterworth filter is transformed to a band-stop filter, and the same is transformed to a digital filter by using the generalized Bilinear transformation. Then, sensitivity analyses are performed by varying the coefficient of the generalized bilinear transformation and the effects are observed in the design of 2-D band-stop filter. Section 3.1 describes the low-pass to band-stop transformation. The band-stop structure and its transfer function and the determining of parameter values are explained in sections 3.2 and 3.3 respectively. Section 3.4 gives the stability condition and Band-Stop digital transfer function. Finally, section 3.5 gives the detail frequency response of band-stop filter on varying the Bilinear Transformation coefficient.
3.1 Low-Pass to Band-Stop Transformation

The low-pass filter response is explained in the section 2.1. In the case of a band-stop filter
the transformation $F(s)$ must map low-pass response to a band-stop response as shown in
the fig (3.1). The result is a band-stop filter with the center frequency ω_o and width B of the
band rejected. We may note that the transformation could be effected by first making a low-
pass to high-pass transformation with $\omega_c = 1$, and then making the mappings (a),(b) and
(c) of the low-pass to band-pass transformation explained in the section 2.2. The resulting
transformation then must be [21]

$$S = \frac{Bo}{s^2 + \omega_o^2}$$

(3.1)

3.2 Band-Stop Filter Structure

The fig 3.2 shows the 4th order Band-Stop filter structure.

![Diagram](image)

Figure 3.1: An ideal band-stop amplitude response.
The Transfer function of this structure is given by

\[H_{BS}(s) = \frac{R_2 + R_2(L_2 C_2 + L_1 C_1)s^2 + R_2 L_1 C_1 L_2 C_2 s^4}{(R_1 + R_2)L_1 C_1 L_2 C_2 s^4 + (R_1 R_2 C_1 + L_2)L_1 C_2 s^3 + [(R_1 + R_2)(L_1 C_1 + L_2 C_2)]} \]

(3.2)

\[+ R_2 L_1 C_2 s^2 + (L_1 + R_1 R_2 C_2)s + R_1 + R_2 \]

If the above band-stop structure is considered as 2 – D Band-stop filter, the transfer function will be given as

\[H_{BS}(s_1, s_2) = \frac{R_2 + R_2 L_2 C_2 s_2^2 + R_2 L_1 C_1 s_1^2 + R_2 L_1 C_1 L_2 C_2 s_1^2 s_2^2}{(R_1 + R_2)L_1 C_1 L_2 C_2 s_1^2 s_2^2 + R_1 R_2 L_1 C_1 C_2 s_1^2 s_2^2 + L_1 L_2 C_2 s_1 s_2^2} \]

(3.3)

\[+ (R_1 + R_2)L_1 C_1 s_1^2 + (R_1 + R_2)L_2 C_2 s_2^2 + R_2 L_1 C_2 s_1 s_2 + L_1 s_1 + R_1 R_2 C_2 s_2 + R_1 + R_2 \]

Figure 3.2: Band-Stop filter structure
3.3 Determining the parameter values of the band-stop structure

The 4th order band-stop filter transfer function is given by

\[
H_{BS}(s) = \frac{R_2 + R_2(L_2C_2 + L_1C_1)s^2 + R_2L_1C_1L_2C_2s^4}{(R_1 + R_2)L_1C_1L_2C_2s^4 + (R_1R_2C_1 + L_2)L_1C_2s^3 + [(R_1 + R_2)(L_1C_1 + L_2C_2) + R_2L_1C_2]s^2 + (L_1 + R_1R_2C_2)s + R_1 + R_2}
\]

(3.4)

The second order Butterworth Low-Pass filter is shown in figure 2.6 and its transfer function is given by

\[
H_L(S) = \frac{K}{(S^2 + \sqrt{2}S + 1)}
\]

(3.5)

By applying Band-Stop frequency transformation eqn (3.1) to the Low-Pass Butterworth filter in (2.18),

\[
H_B(s) = \frac{K(s^4 + 2s^2\omega_o^2 + \omega_o^4)}{s^4 + \sqrt{2}Bs^3 + (2\omega_o^2 + B^2)s^2 + \sqrt{2}\omega_o^2Bs + \omega_o^4}
\]

(3.6)

Because of the transformation the elements of the Low-Pass filter will change to Band-Stop filter elements. The Inductance of the Low-Pass filter will transform into parallel s combination of Inductance and capacitance.

\[
\frac{LsB}{s^2 + \omega_o^2} = \frac{1}{C_1s + \frac{1}{L_1s}}
\]

(3.7)

\[
\frac{1}{sL_B + \frac{s^2}{LsB}} = \frac{1}{C_1s + \frac{1}{L_1s}}
\]

(3.8)
From (2.20), the L_1 and C_1 values are

$$ L_1 = \frac{LB}{\omega_0^2} $$

$$ C_1 = \frac{1}{LB} $$

And also the capacitance of the Low-Pass filter will transform into series combination of Inductance and capacitance in band-stop filter design.

$$ \frac{s^2 + \omega_0^2}{CBs} = L_2s + \frac{1}{C_2s} $$ \hspace{1cm} (3.9)

$$ \frac{s}{CB} + \frac{\omega_0^2}{CBs} = L_2s + \frac{1}{C_2s} $$

$$ L_2 = \frac{1}{CB} $$

$$ C_2 = \frac{CB}{\omega_0^2} $$

Therefore, the parameter values of the Band-Stop structure are

$$ L_1 = \frac{LB}{\omega_0^2} $$

$$ L_2 = \frac{1}{CB} $$

$$ C_1 = \frac{1}{LB} $$

$$ C_2 = \frac{CB}{\omega_0^2} $$

where L and C are the values of Inductance and capacitance of the Low-Pass filter.
structure shown in figure 2.6. The Values of L and C are of $\sqrt{2}$ values.

3.4 Digital Transfer Function

3.4.1 Band-Stop Limits for the Coefficients of Generalized Bilinear Transformation

In the previous section, we have obtained the 2-D analog transfer function eqn (3.3) for the circuit in fig. 3.2. Substituting the values of all the parameters in eqn (3.3), it becomes

$$H_{BS}(s_1, s_2) = \frac{s_1 s_2^2 + \omega_0^2 s_1^2 + \omega_0^2 s_2^2 + \omega_0^4}{2s_1^2 s_2^2 + s_1 s_2 \sqrt{2B} + s_1^2 s_2 \sqrt{2B} + 2s_1 s_2 B^2 + 2\omega_0^2 s_1^2 + 2\omega_0^2 s_2^2 + \sqrt{2B}\omega_0^2 s_1 + \sqrt{2B}\omega_0^2 s_2 + \ldots}.$$

When the generalized bilinear transformation is applied, it has to be ensured that the resulting 2-D digital filter is always stable. To satisfy the conditions of obtaining stable 2-D band-stop digital filters, the coefficients of the double generalized bilinear transformations should meet the requirements given in eqns (2.22-2.24). With these constraints, we can obtain 2-D stable band-stop digital filter from its analog counterpart by the application of the generalized bilinear transformations.

3.4.2 2-D Band-Stop Digital Transfer Function

Generalized Bilinear Transformation is explained in section 2.4. The $1 - D$ digital Band-Stop filter transfer function is obtained by applying the equation 2.25 to equation 3.2, the
transfer function is

\[
H(z) = \frac{R_2 L_1 C_1 L_2 C_2 k^4(z - a)^4 + R_2 k_1 (L_2 C_2 + L_1 C_1)(z - a)^2(z + b)^2 + R_2(z + b)^4}{(R_1 + R_2) L_1 C_1 L_2 C_2 k^4(z - a)^4 + (R_1 R_2 + L_2) L_1 C_2 k^3(z - a)^3(z + b)^2}
\]

\[3.11\]

\[[(R_1 + R_2)(L_1 C_1 + L_2 C_2) + R_2 L_1 C_2]k^2(z - a)^2(z + b)^2 + (L_1 + R_1 R_2 C_2)k(z - a)(z + b)^3 + (R_1 + R_2)(z + b)^4\]

The 2-D digital Band-Stop filter transfer function is obtained by applying the equation \ref{3.3} to equation \ref{3.3}, the transfer function is

\[H_{BS}(z_1, z_2) = \frac{R_2 L_1 C_1 k_1^2(z_1 - a_1)^2(z_2 + b_2)^2 + R_2 L_1 C_1 L_2 C_2 k_2^2 k_1^2 k_2(z_1 - a_1)^2(z_2 - a_2)^2}{(R_1 + R_2) L_1 C_1 L_2 C_2 k_1^2 k_2^2(z_1 - a_1)^3(z_2 - a_2)^2 + R_1 R_2 L_1 C_1 C_2 k_1^2 k_2^2}
\]

\[3.12\]

\[(z_1 - a_1)^2(z_2 - a_2)(z_1 + b_2) + L_1 L_2 C_2 k_1 k_2^2(z_1 - a_1)(z_1 + b_1)(z_2 - a_2)^2 + (R_1 + R_2)L_1 C_1 k_1^3\]

\[(z_1 - a_1)^2(z_2 + b_2)^2 + (R_1 + R_2)L_2 C_2 k_2^2(z_2 - a_2)^2(z_1 + b_1)^2 + R_2 L_1 C_2 k_1 k_2(z_1 - a_1)(z_2 - a_2)\]

\[(z_1 + b_1)(z_2 + b_2) + R_1 R_2 C_2 k_2(z_2 - a_2)(z_2 + b_2)(z_1 + b_1)^2 + L_1 k_1(z_1 - a_1)\]

\[(z_1 + b_1)(z_2 + b_2)^2 + (R_1 + R_2)(z_1 + b_1)^2(z_2 + b_2)^2\]

The MATLAB function \texttt{d2stop.m} (refer to APPENDIX) can be employed to get the contour and 3-D magnitude plots of the resulting 2-D band-stop digital filters with the transfer function (3.12). In this function, it is made certain that stability conditions are satisfied. As the changeable coefficients of the double generalized bilinear transformations can change the stability of the resulting 2-D digital filters, it is necessary to introduce stability constraints in discrete domain.
3.4.3 Stability Conditions of the 2-D Digital Band-Pass Filter

Starting from a 2-D analog transfer function with a VSHP as its denominator, applying the well-known bilinear transformation will always result in 2-D stable digital filter. However, when the generalized bilinear transformation is applied, it has to be ensured that the resulting 2-D digital filter is always stable[17, 18, 19].

The inverse generalized bilinear transformation is

\[z_i \rightarrow \frac{b_i s_i + k_i a_i}{k_i - s_i}, \quad i = 1, 2 \] \hspace{1cm} (3.13)

Substituting eqn (3.13) to (2.25), we get

\[s_t \rightarrow k_t \left[\frac{s_t(1 + a_t) + (1 - a_t)}{s_t(1 - b_t) + (1 + b_t)} \right] \] \hspace{1cm} (3.14)

where the eqn (3.14) can be rewritten as

\[s_1 \rightarrow \frac{s_1 \alpha_1 + \alpha_2}{s_1 \alpha_4 + \alpha_3}; \quad s_2 \rightarrow \frac{s_2 \beta_1 + \beta_2}{s_2 \beta_4 + \beta_3} \]

where

\[\alpha_1 = k_1 + k_1 a_1; \quad \alpha_2 = k_1 - k_1 a_1; \quad \alpha_3 = 1 + b_1; \quad \alpha_4 = 1 - b_1 \] \hspace{1cm} (3.15)

\[\beta_1 = k_2 + k_2 a_2; \quad \beta_2 = k_2 - k_2 a_2; \quad \beta_3 = 1 + b_2; \quad \beta_4 = 1 - b_2 \] \hspace{1cm} (3.16)

Applying (3.14) to \(\frac{1}{D_{BS}(s_1, s_2)} \), where \(D_{BS}(s_1, s_2) \) is expressed as

\[D_{BS}(s_1, s_2) = \zeta_1 s_1^2 s_2^2 + \zeta_2 s_1 s_2^2 + \zeta_3 s_1^2 s_2 + \zeta_4 s_1 s_2 + \zeta_5 s_1^2 + \zeta_6 s_2^2 + \zeta_7 s_1 + \zeta_8 s_2 + \zeta_9 \] \hspace{1cm} (3.17)
where

\[
\begin{align*}
\zeta_1 &= a_1^2 \beta_1^2 \gamma_1 + a_1 a_4 \beta_1^2 \gamma_2 + a_1^2 \beta_1 \beta_4 \gamma_3 + a_1 a_4 \beta_1 \beta_4 \gamma_4 + a_1^2 \beta_4 \gamma_5 + a_1 a_4 \beta_2 \gamma_6 + a_1 a_4 \beta_1 \beta_4 \gamma_8 + a_2 \beta_2 \gamma_9 \\
\zeta_2 &= 2a_1 a_2 \beta_1^2 \gamma_1 + (a_2 a_4 + a_1 a_3) \beta_1^2 \gamma_2 + 2a_1 a_2 \beta_1 \beta_4 \gamma_3 + (a_2 a_4 + a_1 a_3) \beta_1 \beta_4 \gamma_4 + 2a_1 a_2 \beta_4 \gamma_5 + 2a_2 a_4 \beta_2 \gamma_6 + \\
&\quad (a_2 a_4 + a_1 a_3) \beta_1^2 \gamma_7 + 2a_3 a_4 \beta_1 \beta_4 \gamma_8 + 2a_3 a_4 \beta_2 \gamma_9 \\
\zeta_3 &= 2a_1 a_2 \beta_1 \beta_2 \gamma_1 + 2a_1 a_4 \beta_1 \beta_2 \gamma_2 + a_1 \beta_2 \beta_4 \gamma_3 + a_1 a_4 \beta_2 \beta_4 \gamma_4 + 2a_2 a_4 \beta_2 \beta_4 \gamma_5 + 2a_2 a_4 \beta_1 \beta_2 \gamma_6 + \\
&\quad 2a_1 a_4 \beta_3 \beta_4 \gamma_7 + a_1 \beta_4 \beta_2 + \beta_1 \beta_4 \gamma_8 + 2a_2 a_4 \beta_3 \beta_4 \gamma_9 \\
\zeta_4 &= 4a_1 a_2 \beta_1 \beta_2 \gamma_1 + 2\beta_2 (a_2 a_4 + a_1 a_3) \gamma_2 + 2a_1 a_2 (\beta_2 \beta_4 + \beta_1 \beta_3) \gamma_3 + (a_2 a_4 + a_1 a_3) (\beta_2 \beta_4 + \beta_1 \beta_3) \gamma_4 + \\
&\quad 4a_1 a_2 \beta_3 \beta_4 \gamma_5 + 4a_3 a_4 \beta_1 \beta_2 \gamma_6 + 2(a_2 a_4 + a_1 a_3) \beta_3 \beta_4 \gamma_7 + 2a_3 a_4 (\beta_1 \beta_3 + \beta_2 \beta_4) \gamma_8 + 4a_3 a_4 \beta_3 \beta_4 \gamma_9 \\
\zeta_5 &= a_1^2 \beta_1^2 \gamma_1 + a_1 a_4 \beta_1^2 \gamma_2 + a_1^2 \beta_1 \beta_3 \gamma_3 + a_1 a_4 \beta_1 \beta_3 \gamma_4 + a_1^2 \beta_3 \gamma_5 + a_1 a_4 \beta_2 \gamma_6 + a_1 a_4 \beta_1 \beta_3 \gamma_7 + a_2 \beta_1 \beta_3 \gamma_8 + a_2 \beta_1 \beta_3 \gamma_9 \\
\zeta_6 &= a_1^2 \beta_2 \gamma_1 + a_2 a_3 \beta_2 \gamma_2 + a_2 \beta_1 \beta_3 \gamma_3 + a_2 a_3 \beta_1 \beta_3 \gamma_4 + a_2^2 \beta_4 \gamma_5 + a_2 \beta_1 \beta_3 \gamma_6 + a_3 a_3 \beta_2 \gamma_7 + a_3 \beta_1 \beta \gamma_8 + a_3 \beta_1 \beta_3 \gamma_9 \\
\zeta_7 &= 2a_1 a_2 a_3 \beta_2 \gamma_1 + (a_1 a_3 + a_2 a_4) \beta_2 \gamma_2 + 2a_1 a_2 a_2 \beta_3 \gamma_3 + (a_2 a_4 + a_1 a_3) \beta_2 \beta_4 \gamma_4 + 2a_1 a_2 \beta_3 \gamma_5 + \\
&\quad 2a_3 a_4 \beta_2 \gamma_6 + (a_1 a_3 + a_2 a_4) \beta_2 \gamma_7 + 2a_3 a_4 \beta_2 \beta_4 \gamma_8 + 2a_3 a_4 \beta_3 \gamma_9 \\
\zeta_8 &= 2\beta_1 \beta_2 a_2 \gamma_1 + 2a_2 a_3 \beta_1 \beta_2 \gamma_2 + (\beta_1 \beta_3 + \beta_2 \beta_4) a_2 \gamma_3 + a_2 a_3 (\beta_2 \beta_4 + \beta_1 \beta_3) \gamma_4 + 2a_2 \beta_4 \gamma_5 + 2a_2 \beta_2 \beta_4 \gamma_6 + \\
&\quad 2a_2 a_3 \beta_4 \gamma_7 + (\beta_1 \beta_3 + \beta_2 \beta_4) a_2 \gamma_8 + 2a_2 \beta_3 \beta_4 \gamma_9
\end{align*}
\]
\[\zeta_0 = \alpha_2^2 \beta_2^2 \gamma_1 + \alpha_2 \alpha_3 \beta_2^2 \gamma_2 + \alpha_2 \beta_2 \beta_3 \gamma_3 + \alpha_2 \alpha_3 \beta_2 \beta_3 \gamma_4 + \alpha_2 \alpha_3 \beta_2 \beta_3 \gamma_5 + \alpha_2 \alpha_3 \beta_2 \beta_3 \gamma_6 + \alpha_2 \alpha_3 \beta_2 \beta_3 \gamma_7 + \alpha_2 \alpha_3 \beta_2 \beta_3 \gamma_8 + \alpha_2 \alpha_3 \beta_2 \beta_3 \gamma_9 \]

where \(\gamma_1 = 2; \gamma_2 = \sqrt{2}B; \gamma_3 = \sqrt{2}B; \gamma_4 = 2B^2 \)
\(\gamma_5 = 2\omega_0^2; \gamma_6 = 2\omega_0^2; \gamma_7 = \sqrt{2}B\omega_0^2; \gamma_8 = \sqrt{2}B\omega_0^2; \gamma_9 = 2\omega_0^4 \)

In order that \(D_B(s_1, s_2) \) is a Very Strict Hurwitz Polynomial (VSHP), the necessary and sufficient conditions are every polynomial coefficient needs to be positive and satisfy VSHP conditions [8, 9]. Hence, the stability conditions in (3.18)-(3.26) becomes

\[\alpha_2^2 \beta_2^2 \gamma_1 + \alpha_4 \beta_1^2 \gamma_2 + \alpha_1 \beta_1 \beta_4 \gamma_3 + \alpha_1 \alpha_4 \beta_1 \gamma_4 + \alpha_1 \alpha_4 \beta_1 \gamma_5 + \alpha_4 \beta_1^2 \gamma_6 + \alpha_1 \alpha_4 \beta_1 \gamma_7 + \alpha_4 \beta_1 \beta_4 \gamma_8 + \alpha_4 \beta_1^2 \gamma_9 > 0 \] \hspace{1cm} (3.27)

\[2\alpha_1 \alpha_2 \beta_1^2 \gamma_1 + (\alpha_2 \alpha_4 + \alpha_1 \alpha_3) \beta_1^2 \gamma_2 + 2\alpha_1 \alpha_2 \beta_1 \beta_4 \gamma_3 + (\alpha_2 \alpha_4 + \alpha_1 \alpha_3) \beta_1 \beta_4 \gamma_4 + 2\alpha_1 \alpha_2 \beta_4^2 \gamma_5 + 2\alpha_3 \alpha_4 \beta_1^2 \gamma_6 + \]
\[(\alpha_2 \alpha_4 + \alpha_1 \alpha_3) \beta_1^2 \gamma_7 + 2\alpha_3 \alpha_4 \beta_1 \beta_4 \gamma_8 + 2\alpha_3 \alpha_4 \beta_1^2 \gamma_9 > 0 \] \hspace{1cm} (3.28)

\[2\alpha_1 \alpha_2 \beta_1^2 \gamma_1 + (\alpha_2 \alpha_4 + \alpha_1 \alpha_3) \beta_1^2 \gamma_2 + 2\alpha_1 \alpha_2 \beta_1 \beta_4 \gamma_3 + (\alpha_2 \alpha_4 + \alpha_1 \alpha_3) \beta_1 \beta_4 \gamma_4 + 2\alpha_1 \alpha_2 \beta_4^2 \gamma_5 + 2\alpha_3 \alpha_4 \beta_1^2 \gamma_6 + \]
\[(\alpha_2 \alpha_4 + \alpha_1 \alpha_3) \beta_1^2 \gamma_7 + 2\alpha_3 \alpha_4 \beta_1 \beta_4 \gamma_8 + 2\alpha_3 \alpha_4 \beta_1^2 \gamma_9 > 0 \] \hspace{1cm} (3.29)

\[4\alpha_1 \alpha_2 \beta_1 \beta_2 \gamma_1 + 2\beta_1 \beta_3 (\alpha_2 \alpha_4 + \alpha_1 \alpha_3) \gamma_2 + 2\alpha_1 \alpha_2 (\beta_2 \beta_4 + \beta_1 \beta_3) \gamma_3 + (\alpha_2 \alpha_4 + \alpha_1 \alpha_3) (\beta_2 \beta_4 + \beta_1 \beta_3) \gamma_4 + 4\alpha_1 \alpha_2 \beta_1 \beta_2 \gamma_6 + 2(\alpha_2 \alpha_4 + \alpha_1 \alpha_3) \beta_3 \beta_4 \gamma_7 + 2\alpha_3 \alpha_4 \beta_1 \beta_4 \gamma_8 + 4\alpha_3 \alpha_4 \beta_3 \beta_4 \gamma_9 > 0 \] \hspace{1cm} (3.30)

\[\alpha_2 \beta_2^2 \gamma_1 + \alpha_1 \alpha_4 \beta_2 \gamma_2 + \alpha_2 \beta_2 \beta_3 \gamma_3 + \alpha_1 \alpha_4 \beta_2 \beta_3 \gamma_4 + \alpha_1 \alpha_4 \beta_2 \beta_3 \gamma_5 + \alpha_1 \alpha_4 \beta_2 \beta_3 \gamma_6 + \alpha_1 \alpha_4 \beta_2 \beta_3 \gamma_7 + \alpha_2 \beta_2 \beta_3 \gamma_8 + \alpha_2 \beta_2 \beta_3 \gamma_9 > 0 \] \hspace{1cm} (3.31)

\[\alpha_2 \beta_2^2 \gamma_1 + \alpha_2 \alpha_3 \beta_1 \gamma_2 + \alpha_2 \beta_1 \beta_4 \gamma_3 + \alpha_2 \alpha_3 \beta_1 \beta_4 \gamma_4 + \alpha_2 \beta_1 \beta_4 \gamma_5 + \alpha_2 \beta_1 \beta_4 \gamma_6 + \alpha_2 \alpha_3 \beta_1 \beta_4 \gamma_7 + \alpha_2 \alpha_3 \beta_1 \beta_4 \gamma_8 + \alpha_2 \alpha_3 \beta_1 \beta_4 \gamma_9 > 0 \] \hspace{1cm} (3.32)

\[2\alpha_1 \alpha_2 \beta_2^2 \gamma_1 + (\alpha_1 \alpha_3 + \alpha_2 \alpha_4) \beta_2^2 \gamma_2 + 2\alpha_1 \alpha_2 \beta_2 \beta_3 \gamma_3 + (\alpha_2 \alpha_4 + \alpha_1 \alpha_3) \beta_2 \beta_3 \gamma_4 + 2\alpha_1 \alpha_2 \beta_2^2 \gamma_5 + \]
\[2\alpha_3\alpha_4\beta_2^2\gamma_6 + (\alpha_1\alpha_3 + \alpha_2\alpha_4)\beta_2^2\gamma_7 + 2\alpha_3\alpha_4\beta_2\beta_3\gamma_8 + 2\alpha_3\alpha_4\beta_3^2\gamma_9 > 0 \]
(3.33)

\[2\beta_1\beta_2\alpha_2^2\gamma_1 + 2\alpha_2\alpha_3\beta_1\beta_2\gamma_2 + (\beta_1\beta_3 + \beta_2\beta_4)\alpha_2^2\gamma_3 + \alpha_2\alpha_3(\beta_2\beta_4 + \beta_1\beta_3)\gamma_4 + 2\alpha_2^2\beta_3\beta_4\gamma_5 + \]

\[2\alpha_3^2\beta_1\beta_2\gamma_6 + 2\alpha_2\alpha_3\beta_3\beta_4\gamma_7 + (\beta_1\beta_3 + \beta_2\beta_4)\alpha_3^2\gamma_8 + 2\alpha_3^2\beta_3\beta_4\gamma_9 > 0 \]
(3.34)

\[\alpha_2^2\beta_2^2\gamma_1 + \alpha_2\alpha_3\beta_2^2\gamma_2 + \alpha_2^2\beta_2\beta_3\gamma_3 + \alpha_2\alpha_3\beta_2\beta_3\gamma_4 + \alpha_3^2\beta_3^2\gamma_6 + \alpha_2\alpha_3\beta_3^2\gamma_7 + \alpha_2\alpha_3\beta_2\beta_3\gamma_8 + \alpha_3^2\beta_3^2\gamma_9 > 0 \]
(3.35)

It can be observed from the eqns (3.27-3.35) is the function of \(\alpha' \)'s and \(\beta' \)'s, which is given in eqns (3.15) and (3.16) respectively. As stable generalized bilinear transformation requires to satisfy the eqns (2.22) - (2.24), on applying these conditions to the eqns (3.15) and (3.16), the \(\alpha' \)'s and \(\beta' \)'s in these equations will always be a positive. Since \(\alpha' \)'s and \(\beta' \)'s are positive the eqns (3.27-3.35) will also be positive, which will make all the coefficients in the eqn (3.17) positive. Thus the denominator of the band-stop filter transfer function given in eqn (3.17) will have the positive coefficients for each and every polynomials and hence it is VSHP.

3.5 Frequency Response of the 2-D Band-Stop Filters

The second-order low-pass butterworth filter is transformed to a band-stop filter by applying low-pass to band-stop transformation. The resultant transfer function is digitized by applying bilinear transformation. With the input coefficient of the generalized bilinear transformation, we can obtain 3-D magnitude and contour plot of the resulting 2-D digital band-stop filter. In this, the stability is taken care such that the 2-D band-stop filter is stable with these input arguments.

To analyze the manner in which each coefficient of generalized bilinear transformation
effects the magnitude response of the resulting band-stop filter, we change the value of some of the coefficients or fixing some of the coefficient to a specified values. It is possible to obtain a 2-D band-stop filter when the coefficient are in the limits of \(k_i > 0, \; 0 < |a_i| \leq 1 \) and \(0 < |b_i| \leq 1 \), where \(i = 1, 2 \). Figure 3.3 shows the standard band-stop filter, which can be obtained by making all the coefficient values to be equal to one. In the following, we will see the effect of these coefficient to the frequency responses of the 2-D band-stop filter[25, 28].

Figure 3.3: 2-D Standard band-stop filter
3.5.1 Frequency Response of 2-D Band-Stop filters with various k_1 values

To study the manner how k_1 effects the frequency response behaviour of the resulting 2-D band-stop filter and to separate the effect of the other coefficients, we vary the values of k_1, and fixing the other coefficients of the generalized bilinear transformation to be $k_2 = 1, a_1 = 1, a_2 = 1, b_1 = 1$ and $b_2 = 1$. The value of k_1 is varied from 0.1 to 100 and the resulting frequency response of the band-stop filter are plotted in figures 3.4, 3.5 and 3.6 for the varies value of k_1. The contour and 3-D magnitude response plots for the filter with the values of $k_1 = 0.1$, $k_1 = 0.5$, $k_1 = 0.75$, $k_1 = 1.5$, $k_1 = 3$, $k_1 = 10$, $k_1 = 50$ and $k_1 = 100$ are shown in figures 3.4, 3.5 and 3.6.

It can be observed that the coefficient k_1 mainly effects the center frequency (ω_c) of the filter response at $\omega_1 - axis$ and also it effects the bandwidth of lower, upper passband and the bandwidth of stopband of the band-stop filter. At the lowest possible positive value of k_1, the lower passband will have the maximum bandwidth in the available frequency range, the bandwidth of the upper passband is almost negligible and the bandwidth of the stopband is also less. As k_2 increases from 0.1, the center frequency moves to the minimum value from the maximum value and simultaneously the bandwidth of the lower passband decreases, the upper passband increases and the bandwidth of the stopband increases upto $k_1 \leq 2$, after that the the bandwidth of the stopband decreases. In the above shown diagram we can observe that the center frequency for $k_1 = 0.1$ is at 2.8 rad/sec. As we increase the coefficient values of k_1, for example when we reach $k_1 = 3$ the center frequency will start moving towards the minimum value reaches at the minimum value of 0.7 rad/sec and also we can observe that the bandwidth of the lower passband decreases and upper passband
Figure 3.4: Frequency response of the band-stop filter with $k_1 = 0.1$ and 0.5 and all the other coefficients as unity.
Figure 3.5: Frequency response of the band-stop filter with $k_1 = 0.75, 1.5$ and 3 and all the other coefficients as unity.
Figure 3.6: Frequency response of the band-stop filter with $k_1 = 50$ and 100 and all the other coefficients as unity.
increases compared to the previous value of k_1. If we increase k_1 beyond 5, the center frequency will start moving towards the origin as shown in the figures 3.5 and 3.6. If we increase the k_1 value after 50, the response will become as the all-pass filter at $\omega_1 - axis$. We can simply mention it like k_1 is inversely proportional to ω_c at $\omega_1 - axis$ and the coefficient k_1 has no effects on the gains in the pass-band and stop-band. And also the changes in k_1 values did not make any changes in $\omega_2 - axis$.

3.5.2 Frequency Response of 2-D Band-Stop filters with various k_2 values

![Figure 3.7: Frequency response of the band-stop filter with $k_2 = 0.1$ and 0.5 and all the other coefficients as unity.](image)

To study the manner how k_2 effects the frequency response behaviour of the resulting
2 – \(D \) band-stop filter and to separate the effect of the other coefficients, we vary the values of \(k_2 \), and fixing the other coefficients of the generalized bilinear transformation to be \(k_1 = 1, \ a_1 = 1, \ a_2 = 1, \ b_1 = 1 \) and \(b_2 = 1 \). The value of \(k_2 \) is varied from 0.1 to 100 and the resulting frequency response of the band-stop filter are plotted in figure 3.7, 3.8 and 3.9 for the varies value of \(k_1 \). The contour and 3-D magnitude response plots for the filter with the values of \(k_1 = 0.1, \ k_1 = 0.5, \ k_1 = 0.75, \ k_1 = 1.5, \ k_1 = 3, \ k_1 = 10, \ k_1 = 50 \) and \(k_1 = 100 \) are shown in figure 3.73, 3.8 and 3.9.

It can be observed that the coefficient \(k_2 \) mainly effects the center frequency(\(\omega_c \)) of the filter response at \(\omega_2 – axis \) and also it affects the bandwidth of lower, upper passband and the bandwidth of stopband of the band-stop filter. At the lowest possible positive value of \(k_2 \), the lower passband will have the maximum bandwidth in the available frequency range, the bandwidth of the upper passband is almost negligible and the bandwidth of the stopband is also less. As \(k_2 \) increases from 0.1, the center frequency moves to the minimum value from the maximum value and simultaneously the bandwidth of the lower passband decreases, the upper passband increases and the bandwidth of the stopband increases upto \(k_2 \leq 2 \), after that the the bandwidth of the stopband decreases. In the above shown diagram we can observe that the center frequency for \(k_2 = 0.1 \) is at 2.8 rad/sec. As we increase the coefficient values of \(k_2 \), for example when we reach \(k_2 = 3 \) the center frequency will start moving towards the minimum value at reaches the minimum value of 0.7 rad/sec and also we can observe that the bandwidth of the lower passband decreases and upper passband increases compared to the previous value of \(k_2 \). If we increase \(k_2 \) beyond 5, the center frequency will start moving towards the origin as shown in the figure 3.8 and 3.9. If we increase the \(k_1 \) value after 50, the response will become as the all-pass filter at \(\omega_2 – axis \).

We can simply mention it like \(k_2 \) is inversely proportional to \(\omega_c \) at \(\omega_2 – axis \) and the
Figure 3.8: Frequency response of the band-stop filter with $k_2 = 0.75, 1.5, 3$ and 5 and all the other coefficients as unity.
coefficient k_2 has no effects on the gains in the pass-band and stop-band. And also the changes in k_2 values does not make any changes in ω_1 – axis. The responses is similar to the response obtained in the ω_1 – axis on varying the value of k_1, which is described in the section 3.5.1.

3.5.3 Frequency Response of 2-D Band-Stop filters with various a_1 values

We can get the stable range of a_1 with the other specified coefficient of the double generalized bilinear transformation. There are many combinations possible for the coefficients. To study the response properly we fix the other coefficient values to be equal to unity, when studying the effect of a_1 on the frequency response of the Band-Stop fil-

![Diagram of frequency response of the band-stop filter with $k_2=50$ and 100 and all the other coefficients as unity.]

Figure 3.9: Frequency response of the band-stop filter with $k_2=50$ and 100 and all the other coefficients as unity.
ter. The range of a_1 varies from 0 to 1 and the other coefficient values are specified as $k_1 = 1$, $k_2 = 1$, $a_2 = 1$, $b_1 = 1$ and $b_2 = 1$.

The contour and 3-D plots with representative values of a_1 are given in figure 3.10. By making the $a_1 = 1$ it resembles the standard band-stop filter. It can be observed that the center frequency (ω_c) of the stopband, bandwidth of the lower passband and the bandwidth of the upper passband changes on increasing the value of a_1, at $\omega_1 - axis$. At the lowest possible value of a_1, the gain of the upper passband will be similar to the gain obtain in the standard band-stop filter, but the gain of the lower passband is less than half of the original gain obtain in the standard band-stop filter. Also, the center frequency of the stopband will be at maximum value and the bandwidth of the lower passband will be greater than the bandwidth of the upper passband. As we keep on increasing the value of a_1, the center frequency of the stopband moves from the maximum value to the minimum value, the bandwidth of the lower passband decreases with the increase in gain of the lower passband and the bandwidth of the upper passband increases. And it can be observed that the last part of the lower passband and the beginning part of the upper passband merges in the stopband producing the small gain and also the maximum gain of the stopband decreases as the coefficient a_1 increases. For simplicity, it can be mentioned as increase in a_1 can make the lower passband to decrease in bandwidth with the increase in gain, the upper passband to increase in bandwidth with a constant gain and the center frequency of the stopband will move from maximum to minimum frequency.
Figure 3.10: Frequency response of the band-stop filter with $a_1 = 0.1, 0.5, 0.75$ and 0.9 and all the other coefficients as unity.
3.5.4 Frequency Response of 2-D Band-Stop filters with various a_2 values

We can get the stable range of a_2 with the other specified coefficient of the double generalized bilinear transformation. There are many combinations possible for the coefficients. To study the response properly we fix the other coefficient values to be equal to unity, when studying the effect of a_2 on the frequency response of the Band-Stop filter. The range of a_2 varies from 0 to 1 and the other coefficient values are specified as $k_1 = 1$, $k_2 = 1$, $a_1 = 1$, $b_1 = 1$ and $b_2 = 1$.

The contour and 3-D plots with representative values of a_2 are given in figure 3.11. By making the $a_2 = 1$ it resembles the standard band-stop filter. It can be observed that the center frequency (ω_2) of the stopband, bandwidth of the lower passband and the bandwidth of the upper passband changes on increasing the value of a_2, at $\omega_2 = axis$. At the lowest possible value of a_2, the gain of the upper passband will be similar to the gain obtain in the standard band-stop filter, but the gain of the lower passband is less than half of the original gain obtain in the standard band-stop filter. And also, the center frequency of the stopband will be at maximum value and the bandwidth of the lower passband will be greater than the bandwidth of the upper passband. As we keep on increasing the value of a_2, the center frequency of the stopband moves from the maximum value to the minimum value, the bandwidth of the lower passband decreases with the increase in gain of the lower passband and the bandwidth of the upper passband increases. And it can be observed that the last part of the lower passband and the beginning part of the upper passband merges in the stopband producing the small gain and also the maximum gain of the stopband decreases as the coefficient a_2 increases. For simplicity, it can be mentioned as increase in a_2 can make the lower passband to decrease in bandwidth with the increase in gain, the upper passband to
Figure 3.11: Frequency response of the band-stop filter with $\omega_2 = 0.1, 0.5, 0.75$ and 0.9 and all the other coefficients as unity.
increase in bandwidth with a constant gain and the center frequency of the stopband will move from maximum to minimum frequency. The frequency response analyzed in this section looks similar to the response obtained in \(\omega_1 - axis \) on varying the \(a_2 \).

3.5.5 Frequency Response of 2-D Band-Stop Filters with various \(b_1 \) values

We can get the stable range of \(b_1 \) with the other specified coefficient of the double generalized bilinear transformation. There are many combinations possible for the coefficients. To study the response properly we fix the other coefficient values to be equal to unity, when studying the effect of \(b_1 \) on the frequency response of the Band-Stop filter. The range of \(b_1 \) varies from 0 to 1 and the other coefficient values are specified as \(k_1 = 1, k_2 = 1, a_1 = 1, a_2 = 1, \) and \(b_2 = 1 \).

The contour and 3-D plots with representative values of \(b_1 \) are given in figure 3.12. By making the \(b_1 = 1 \) it resembles the standard band-stop filter. It can be observed that the center frequency (\(\omega_c \)) of the stopband, bandwidth of the lower passband and the bandwidth of the upper passband changes on increasing the value of \(b_1 \), at \(\omega_1 - axis \). At the lowest possible value of \(b_1 \), the gain of the lower passband is lesser than the half of the maximum gain. For example \(b_1 = 0.1 \), the center frequency of the stopband will be at minimum value and also the bandwidth of the lower passband will be lesser than the bandwidth of the upper passband. As we keep on increasing the value of \(b_1 \), the center frequency of the stopband moves from the minimum value to the maximum value, the bandwidth of the lower passband increases and the bandwidth of the upper passband decreases with the increase in gain. And it can be observed that the last part of the lower passband and the beginning part of the upper passband merges in the stopband producing the small gain and
Figure 3.12: Frequency response of the band-stop filter with $b_1 = 0.1, 0.5, 0.75$ and 0.9 and all the other coefficients as unity.
also the maximum gain of the stopband decreases as the coefficient b_1 increases. We can conclude this by saying that the increase in b_1 will increase the bandwidth of the lower passband, decrease in bandwidth of upper passband and shifting the center frequency from minimum to maximum frequency.

3.5.6 Frequency Response of 2-D Band-Stop Filters with various b_2 values

We can get the stable range of b_2 with the other specified coefficient of the double generalized bilinear transformation. There are many combinations possible for the coefficients. To study the response properly we fix the other coefficient values to be equal to unity, when studying the effect of b_2 on the frequency response of the Band-Stop filter. The range of b_2 varies from 0 to 1 and the other coefficient values are specified as $k_1 = 1$, $k_2 = 1$, $a_1 = 1$, $a_2 = 1$ and $b_1 = 1$.

The contour and 3-D plots with representative values of b_1 are given in figure 3.13. By making the $b_2 = 1$ it resembles the standard Band-Stop filter. It can be observed that the center frequency (ω_c) of the stopband, bandwidth of the lower passband and the bandwidth of the upper passband changes on increasing the value of b_2, at $\omega_2 = \text{axis}$. At the lowest possible value of b_2, the gain of the lower passband is lesser than the half of the maximum gain. For example $b_2 = 0.1$, the center frequency of the stopband will be at minimum value and also the bandwidth of the lower passband will be lesser than the bandwidth of the upper passband. As we keep on increasing the value of b_2, the center frequency of the stopband moves from the minimum value to the maximum value, the bandwidth of the lower passband increases and the bandwidth of the upper passband decreases with the increase in gain. And it can be observed that the last part of the lower passband and the
Figure 3.13: Frequency response of the band-stop filter with $b_2 = 0.1, 0.5, 0.75$ and 0.9 and all the other coefficients as unity.
beginning part of the upper passband merges in the stopband producing the small gain and also the maximum gain of the stopband decreases as the coefficient b_2 increases. We can conclude this by saying that the increase in b_2 will increase the bandwidth of the lower passband, decrease in bandwidth of upper passband and shifting the center frequency from minimum to maximum frequency.

3.5.7 Frequency Response of 2-D Band-Stop filters with various k_4 values and fixed ω_b with same values of a_1 and b_1

In section 3.5.1 we saw the frequency response of the band-stop filter for the various k_4 values with a unity for the other coefficients. In this, we are going to assign the same values for a_1 and b_1 ranging from 0 to 1, and for remaining coefficient it is considered as unity such as $k_2 = 1, a_2 = 1, b_2 = 1$ and the theoretical center frequency (ω_0) is considered as unity. The contour and the 3-D magnitude plot are shown from figure 3.14,3.15 and 3.16 for various values of k_4 with the coefficient values a_1 and b_1 are 0.75.

The effect of response will be in the $\omega_1 - axis$ and there will not be any change in response in the $\omega_2 - axis$. If the value of k_4 happens to be equal to the theoretical center frequency (ω_0), then the response will be similar to the standard band-stop filter shown in the figure 3.3 but with a reduced stopband. This reduced stopband is due to change in the values of a_1 and b_1. It can be observed that the frequency response is much similar to the frequency response obtained in the section 3.6.1, the only difference will be lower passband cutoff frequency extends and it merges with upper cutoff frequency which results in the reduced bandwidth at the stopband. The center frequency of the stopband moves from the maximum to minimum on increase in the coefficient value of k_4.

121
Figure 3.14: Frequency response for the band-stop filter with the value of \(k_1 = 0.1\) and 0.6 for \(a_1 = b_1 = 0.75\) and all the other coefficients as unity.
Figure 3.15: Frequency response for the band-stop filter with the value of $k_1 = 0.75$ and 1.5 for $a_1 = b_1 = 0.75$ and all the other coefficients as unity.

Figure 3.16: Frequency response for the band-stop filter with the value of $k_1 = 5$ and 10 for $a_1 = b_1 = 0.75$ and all the other coefficients as unity.
3.5.8 Frequency response of different values of B with all the other coefficient as unity.

In this section, we will see the frequency response for the various values of B with the other coefficients values are fixed to be unity. The 3-D magnitude and the contour plot for various values of B are plotted in fig 3.17, it is same for both $\omega_1 - axis$ and $\omega_2 - axis$. From these plots, it is clear that the bandwidth increases as the value of B is varied in the range of 0.5 to 3.

3.5.9 Frequency Response of 2-D Band-Stop filters with fixed k values and various ω_o with same values of a_1 and b_1

In section 3.5.7, the frequency response of the fixed value ω_o are shown. In this, we will see the frequency response for the various values of ω_o with fixed value of k_1 and with same values of a_1 and b_1. Before seeing the effect of ω_o and k_1, we will see the effect of ω_o for the other constant coefficient such as $k_1 = 1$, $k_2 = 1$, $a_1 = 1$, $a_2 = 1$, $b_1 = 1$ and $b_2 = 1$. The contour and the 3-D plot for various values of ω_o are plotted in figure 3.18 and it is same for both $\omega_1 - axis$ and $\omega_2 - axis$. From these plots, it can be observed that the center frequency(ω_c) of the stopband is directly proportional to the theoretical center frequency(ω_o), i.e as the ω_o increases ω_c also increases. It can also be observed that the bandwidth of the lower passband increases, the bandwith of the upper passband decreases and the bandwidth of the stopband decreases upon the increase in the value of ω_o.

The contour and 3-D plot for specified values of k_1 such as 0.5, 2 and 5 are shown from figure 3.19, 3.20 and 3.21 with the ω_o values as 0.5, 1.5, 2 and 3. The a_1 and b_1 values are
Figure 3.17: Frequency response of band-stop filter with values of $B = 0.5, 1.5, 2$ and 3 and all the other coefficient as unity.
Figure 3.18: Frequency response for the band-stop filter with the value of $\omega_o = 0.5, 1.5, 2$ and 3 and all the other coefficients as unity.
Figure 3.19: Frequency response for the band-stop filter with the value of $k_1 = 0.5$ for $a_1 = b_1 = 0.75$ and all the other coefficients as unity.
Figure 3.20: Frequency response for the band-stop filter with the value of $k_1 = 2$ for $a_1 = b_1 = 0.75$ and all the other coefficients as unity.
Figure 3.21: Frequency response for the band-stop filter with the value of $k_1 = 5$ for $a_1 = b_1 = 0.75$ and all the other coefficients as unity.
taken as 0.75. It can be seen that the effect of \(\omega_o \) and \(k_1 \) are in the \(\omega_1 \) - axis. Whenever the values of \(k_1 \) and \(\omega_o \) are the same the frequency response will resemble similar to standard band-stop filter but with the reduced stopband. It can be seen that the frequency response of the band-stop filter will be the combined effect of section 3.5.1, section 3.5.7 and the frequency response of the various value of \(\omega_o \) shown in the figure 3.18. The section 3.5.1 describes that the increase in value of \(k_1 \) makes the center frequency of the stopband to move from maximum to minimum value. The section 3.5.7 describes that the increase in value of \(k_1 \) with the same value of \(a_1 \) and \(b_1 \) makes the center frequency to move from maximum to minimum value but with the reduced stop band. When \(k_1 < 1 \), the frequency responses starts from band-stop filter ans slowly transforms into a low-pass filter response. When \(1 \leq k_1 \leq 2 \), the filter response will be a band-stop filter. When \(k_1 > 2 \), the filter response will get transformed to band-stop filter from a high-pass filter response on increase in value of \(\omega_o \). In this section, it is observed that the change in the value of \(k_1 \) with the various value of \(\omega_o \) makes the center frequency to move from maximum to minimum value with proportional to the value of \(\omega_o \).

3.5.10 Frequency Response of 2-D Band-Stop filters with various \(k_2 \) values and fixed \(\omega_k \) with same values of \(a_2 \) and \(b_2 \)

In section 3.6.1 we saw the frequency response of the band-stop filter for the various \(k_1 \) values with a unity for the other coefficients. In this, we are going to assign the same values for \(a_1 \) and \(b_1 \) ranging from 0 to 1, and for remaining coefficient it is considered as unity such as \(k_2 = 1, \ a_2 = 1, \ b_2 = 1 \) and the theoritical center frequency \((\omega_o) \) is considered as unity. The contour and the 3-D magnitude plot are shown from figure 3.22,3.23and3.24 for various values of \(k_1 \) with the coefficient values \(a_1 \) and \(b_1 \) are 0.75.
Figure 3.22: Frequency response for the band-stop filter with the value of $k_2 = 0.1$ and 0.6
for $a_2 = b_2 = 0.75$ and all the other coefficients as unity.
Figure 3.23: Frequency response for the band-stop filter with the value of $k_2 = 0.75$ and 1.5 for $a_2 = b_2 = 0.75$ and all the other coefficients as unity.

Figure 3.24: Frequency response for the band-stop filter with the value of $k_2 = 5$ and 10 for $a_2 = b_2 = 0.75$ and all the other coefficients as unity.
The effect of response will be in the $\omega_2 - axis$ and there will not be any change in response in the $\omega_1 - axis$. If the value of k_2 happens to be equal to the theoretical center frequency (ω_o), then the response will be similar to the standard band-stop filter shown in the figure 3.4 but with a reduced stopband. This reduced stopband is due to change in the values of a_2 and b_2. It can be observed that the frequency response is much similar to the frequency response obtained in the section 3.5.2, the only difference will be lower passband cutoff frequency extends and it merges with upper cutoff frequency which results in the reduced bandwidth at the stopband. The center frequency of the stopband moves from the maximum to minimum on increase in the coefficient value of k_2.

3.5.11 Frequency Response of 2-D Band-Stop filters with fixed k values and various ω_o with same values of a_2 and b_2

In section 3.5.9, the frequency response of the fixed value ω_o are shown. In this, we will see the frequency response for the various values of ω_o with fixed value of k_2 and with same values of a_1 and b_1. The contour and the 3-D plot for various values of ω_o are plotted in figure 3.18 and it is same for both $\omega_1 - axis$ and $\omega_2 - axis$. From these plots, it can be observed that the center frequency (ω_c) of the stopband is directly proportional to the theoretical center frequency (ω_o), i.e. as the ω_o increases, ω_c also increases. It can also be observed that the bandwidth of the lower passband increases, the bandwidth of the upper passband decreases and the bandwidth of the stopband decreases upon the increase in the value of ω_o.

The contour and 3-D plot for specified values of k_2 such as 0.5, 2 and 5 are shown from figures 3.25, 3.26 and 3.27 with the ω_o values as 0.5, 1.5, 2 and 3. The a_2 and b_2 values are taken as 0.75. It can be seen that the effect of ω_o and k_2 are in the $\omega_2 - axis$. Whenever
Figure 3.25: Frequency response for the band-stop filter with the value of $k_2 = 0.5$ for $a_2 = b_2 = 0.75$ and all the other coefficients as unity.
Figure 3.26: Frequency response for the band-stop filter with the value of $k_2 = 2$ for $a_2 = b_2 = 0.75$ and all the other coefficients as unity.
Figure 3.27: Frequency response for the band-stop filter with the value of \(k_2 = 5 \) for \(a_2 = b_2 = 0.75 \) and all the other coefficients as unity.
the values of k_2 and ω_o are same the frequency response will resemble similar to standard band-stop filter but with the reduced stopband. It can be seen that the frequency response of the band-stop filter will be the combined effect of section 3.5.2, section 3.5.9 and the frequency response of the various value of ω_o shown in the figure 3.18. The section 3.5.2 describes that the increase in value of k_2 makes the center frequency of the stopband to move from maximum to minimum value. The section 3.5.9 describes that the increase in value of k_2 with the same value of a_2 and b_2 makes the center frequency to move from maximum to minimum value but with the reduced stop band. When $k_2 < 1$, the frequency responses starts from band-stop filter and slowly transforms into a low-pass filter response. When $1 \leq k_2 \leq 2$, the filter response will be a band-stop filter. When $k_2 > 2$, the filter response will get transformed to band-stop filter from a high-pass filter response on increase in value of ω_o. In this section, it is observed that the change in the value of k_2 with the various value of ω_o makes the center frequency to move from maximum to minimum value with proportional to the value of ω_o.

3.5.12 Frequency Response of 2-D Band-Stop filters with various k_1 and ω_o values with different values of a_1 and b_1

In section 3.5.7 and section 3.5.8, we observed the frequency response for various k_1 and ω_o values with the same values of a_1 and b_1. In this section we will see the effect different values of a_1 and b_1, for various values of k_1 and ω_o. Figure 3.28,3.29,3.30and3.31 shows 3-D magnitude and the contour plot for different k_1, a_1 and b_1 values for ω_o ranging from $0.5 < \omega_o < 3$.

From the section 3.5.3, on increasing the value of a_1 from the lowest value, the lower
Figure 3.28: Frequency response for the band-stop filter with the value of $k_1 = 0.25$ for $a_1 = 0.25, b_2 = 0.75$ and $\omega_0 = 0.5, 1.5, 2$ and 3 with all the other coefficients as unity.
Figure 3.29: Frequency response for the band-stop filter with the value of $k_1 = 0.25$ for $a_1 = 0.75, b_2 = 0.25$ and $\omega_0 = 0.5, 1.5, 2$ and 3 with all the other coefficients as unity.
Figure 3.30: Frequency response for the band-stop filter with the value of $k_1 = 3$ for $\alpha_1 = 0.25, b_2 = 0.75$ and $\omega_o = 0.5, 1.5, 2$ and 3 with all the other coefficients as unity.
Figure 3.31: Frequency response for the band-stop filter with the value of $k_1 = 3$ for $a_1 = 0.75, b_2 = 0.25$ and $\omega_o = 0.5, 1.5, 2$ and 3 with all the other coefficients as unity.
passband increases in gain and decreases in bandwidth. From the section 3.5.5, on increasing the value of b_1 from the lowest value, the upper passband increases in gain but decreases in bandwidth. If we assign different value to both a_1 and b_1, response follows the way which has the larger value. If $a_1 > b_1$, then the frequency response will have the effect similar to the one which is explained in section 3.5.3, else the frequency response will have the effect similar to the one which is explained in section 3.5.5. Figure 3.28 and 3.30 shows the effect of $a_1 < b_1$, it can be observed that the lower passband will have lesser gain compared to gain of upper passband, the center frequency of the stopband will move from maximum to minimum frequency upon increase in k_1. Figure 3.29 and 3.31 shows the effect of $a_1 > b_1$, it can be observed that the upper passband will have lesser gain compared to gain of lower passband, and the center frequency of the stopband will move from minimum to maximum frequency upon increase in k_1. When $k_1 < 1$ the filter response will start from low-pass and transform into a all-pass filter with the variation of ω_o between 0.5 and 3 rad/sec. When $k_1 > 1$ the filter response will start from high-pass filter and get transformed to the band-stop filter. In the above two cases, the variation of ω_o will shift the center frequency to move proportionally to the value of ω_o. It can also be observed that for the different values a_1, b_1, k_1 and ω_o all the frequency response will look like a all-pass filter this is due to the merging of passband from lower and upper frequencies resulting in negligible bandwidth for the stopband.

3.5.13 Frequency Response of 2-D Band-Stop filters with various k_2 and ω_o values with different values of a_2 and b_2

In section 3.5.8 and section 3.5.10, we observed the frequency response for various k_2 and ω_o values with the same values of a_2 and b_2. In this section we will see the effect different
values of a_2 and b_2, for various values of k_2 and ω_o. Figure 3.32, 3.33, 3.34 and 3.35 shows 3-D magnitude and the contour plot for different k_2, a_2 and b_2 values for ω_o ranging from $0.5 < \omega_o < 3$.

From the section 3.5.4, on increasing the value of a_2 from the lowest value, the lower passband increases in gain and decreases in bandwidth. From the section 3.5.6, on increasing the value of b_2 from the lowest value, the upper passband increases in gain but decreases in bandwidth. If we assign different value to both a_2 and b_2, response follows the way which has the larger value. If $a_2 > b_2$, then the frequency response will have the effect similar to the one which is explained in section 3.5.4, else the frequency response will have the effect similar to the one which is explained in section 3.5.6. Figure 3.32 and 3.34 shows the effect of $a_2 < b_2$, it can be observed that the lower passband will have lesser gain compared to gain of upper passband, the center frequency of the stopband will move from maximum to minimum frequency upon increase in k_2. Figure 3.33 and 3.35 shows the effect of $a_2 > b_2$, it can be observed that the upper passband will have lesser gain compared to gain of lower passband, and the center frequency of the stopband will move from minimum to maximum frequency upon increase in k_2. When $k_2 < 1$ the filter response will start from low-pass and transform into a all-pass filter with the variation of ω_o between 0.5 and 3 rad/sec. When $k_2 > 1$ the filter response will start from high-pass filter and get transformed to the band-stop filter. In the above two cases, the variation of ω_o will shift the center frequency to move proportionally to the value of ω_o. It can also be observed that for the different values a_2, b_2, k_2 and ω_o, all the frequency response will look like a all-pass filter this is due to the merging of passband from lower and upper frequencies resulting in negligible bandwidth for the stopband.
Figure 3.32: \(k_2 = 0.25, \, a_2 = 0.25 \), \(b_2 = 0.75 \) and \(\omega_0 = 0.5, 1.5, 2 \) and 3
Figure 3.33: $k_2 = 0.25$, $a_2 = 0.75$, $b_2 = 0.25$ and $\omega_o = 0.5, 1.5, 2$ and 3
Figure 3.34: $k_2 = 3$, $a_2 = 0.25$, $b_2 = 0.75$ and $\omega_o = 0.5, 1.5, 2$ and 3
Figure 3.35: $k_2 = 3$, $a_2 = 0.75$, $b_2 = 0.25$ and $\omega_o = 0.5, 1.5, 2$ and 3
3.6 Frequency Response of 2-D and-stop filters with various k_1, k_2 and ω_0 values with different values of a_1, a_2, b_1 and b_2

In this section, we can see the effect of all the coefficient such as k_1, k_2, a_1, a_2, b_1, b_2 and ω_0. Figure 3.36 shows the combination of all the effect in $\omega_1 - axis$ and $\omega_2 - axis$. The coefficients k_1, a_1 and b_1 contributes for the effect in $\omega_1 - axis$, similarly the coefficient k_2, a_2 and b_2 contributes for the effect in $\omega_2 - axis$. The effects of each coefficient are studied in the section 3.5. It also shows the combination of the effect discussed in section 3.5.11 and 3.5.12.

3.7 Summary and Conclusion

This chapter describes the transformation of low-pass to band-stop filter, and applying the generalized bilinear transformation to a band-stop transfer function. The effects of each coefficient of the generalized bilinear transformation are discussed and plots are shown for the same in each subsection in the section 3.5. Section 3.5.1 and 3.5.2 explain the effects of k_1 and k_2, on increase in value of k_1 and k_2, the center frequency of the band-stop filter moves from maximum to minimum value and also the bandwidth of the response changes. Section 3.5.3 and 3.5.4 describes the effects of a_1 and a_2, the pass-band gain and the center frequency of the stopband filter and the gain of lower and upper pass-band are controlled by a_1 and a_2 in the ω_1 and ω_2 axis respectively. The center frequency of the stopband and the gain of the stopband are controlled by b_1 and b_2 in the ω_1 and ω_2 axis respectively are analyzed in the section 3.5.3 and 3.5.4. The effect of varying B and ω_o will make the center
Figure 3.36: Frequency response of a band-stop filter with the coefficient values of $k_1 = 0.25$, $k_2 = 5$, $a_1 = 0.25$, $b_1 = 0.5$, $a_2 = 0.75$ and $b_2 = 0.25$.
frequency of the stopband and the stop-band width varying proportionally are discussed in section 3.5.8 and 3.5.9. Section 3.5.7, 3.5.9, 3.5.10, 3.5.11, 3.5.12 and 3.5.13 explains the combination of all this effect, when the values of k_1, a_1, b_1 and ω_o are changed in the $\omega_1 - axis$, the same effect can be observed in the $\omega_2 - axis$ on varying the values of k_2, a_2, b_2 and ω_o. Finally the combination of all the coefficients are explained in section 3.6 and plotted in figure 3.36.
Chapter 4

An Application of 2-D Band-Pass and Band-Stop Filters

The application of digital signal processing techniques in general and of digital filtering in particular has expanded in many important areas such as speech signal processing, digital telephony and communications, facsimile and TV image processing, radar-sonar systems, biomedicine, space research and operative systems, geoscience, etc. Digital filters are widely applied to 1-D and multidimensional signals. Techniques used for 2-D systems can generally be extended to multidimensional systems. Examples of 2-D systems include image processing, seismic signal processing, meteorology, etc. This chapter discusses about the application of digital filters in digital speech and image processing.

4.1 Digital Speech Processing

Speech signals are obviously one of the most important signals and therefore it is quite natural that their processing by means of digital techniques has received so much atten-
tion. Indeed the representation and transmission of speech signals by digital means can result in more efficient and often more economic techniques than in the corresponding analog case. The application of digital filtering to speech processing and representation was made possible many years ago by the relatively low frequency range of speech and consequent availability of low cost analog to digital (A-D) and digital-to-analog (D-A) converters. Sampling frequencies in the range 8KHz-100KHz are used with word-length of 7-12 bits, depending on the nature of the processing[7].

4.2 Digital Image Processing

The most common applications of digital filters in image processing are in the areas of digital image enhancement and restoration. To enhance images digitally, filters can be designed that reduce noise by smoothing, emphasize some region of spectrum, sharpen edges, and implement other functions that produce improved images. Such improvement may be intended to provide a subjectively better image for humans to look at, or that may be intended as a preprocessor for higher level tasks, such as segmentation and pattern recognition or for machine vision. Digital restoration filters may be used to invert a degradation process. For example, the effect of known camera defocusing, or some other limitations, can be reduced or removed by developing a restoration model on it. Digital filters may also be applied in postprocessing after image coding, and in preprocessing before image segmentation[33]. In this section, we will see small application in the field of image processing using the designed band-pass filter in chapter 2.
4.2.1 Image smoothing and noise reduction

Digital filters are applied in image enhancement to try and improve the subjective appearance of images without attempting directly to invert the effect of any degradation. They may also be employed to enhance certain properties of the images and to suppress others [7]. The application of digital filters in image enhancement for three kinds of applications such as a preprocessor to provide an improved image, as a noise-reduction process in its own right, and as a postprocessor to reduce the effects of noise introduced by some other form of processing. In this section, the designed digital band-pass filters are used to obtain a smooth and noise reduced images.

The original images are added with the gaussian random noise with different noise level, which are then applied to a band-pass filter with the transfer function given in eqn (2.27), where the noise level is the number of times of the generated random noise. The smoothened and noise reduced images are shown in fig (4.1-4.9). Each figure consists of four images. The first one shows the original image, and under that is the smoothened image. Noisy images are shown to the right of original image. Noise reduced images are shown beneath the noisy images. Smoothened images are obtained on applying the band-pass filter to original image and the noise reduced images are obtained on applying the band-pass filter to the noisy images. The quality of the noise reduced images are measured in terms of Peak Signal to Noise Ratio. On varying the coefficients of the bilinear transformation an improved PSNR value of the noise reduced images can be obtained. PSNR is explained in the next sub-section. MATLAB program is in the appendix for this application.
Figure 4.1: Smooth and noise reduced Lena images at noise level is 5
Figure 4.2: Smooth and noise reduced images of house at noise level is 5
Figure 4.3: Smooth and noise reduced images of tree at noise level is 5
Figure 4.4: Smooth and noise reduced lena images at noise level is 15
Figure 4.5: Smooth and noise reduced images of house at noise level is 10
Figure 4.6: Smooth and noise reduced images of tree at noise level is 10
Figure 4.7: Smooth and noise reduced lena images at noise level is 30
Figure 4.8: Smooth and noise reduced images of house at noise level is 20
Figure 4.9: Smooth and noise reduced images of tree at noise level is 20
4.2.1.1 Peak Signal to Noise Ratio (PSNR)

Signal-to-noise (SNR) measures are estimates of the quality of a reconstructed image compared with an original image. The basic idea is to compute a single number that reflects the quality of the reconstructed image. Reconstructed images with higher metrics are judged better. In fact, traditional SNR measures do not equate with human subjective perception. Several research groups are working on perceptual measures, but for now we will use the signal-to-noise measures because they are easier to compute. Just remember that higher measures do not always mean better quality.

The actual metric we will compute is the peak signal-to-noise reduced image measure which is called PSNR. Assume we are given a source image $f(i,j)$ that contains N by N pixels and a noise reduced image $F(i,j)$ where F is noise reduced by applying the band-pass filter to $f(i,j)$. Error metrics are computed on the luminance signal only so the pixel values $f(i,j)$ range between black (0) and white (255).

First you compute the mean squared error (MSE) of the reconstructed image as follows

$$MSE = \frac{\sum [(f(i,j) - F(i,j))^2]}{N^2}$$

The summation is over all pixels. The root mean squared error (RMSE) is the square root of MSE.

PSNR in decibels (dB) is computed by using

$$PSNR = 20 \log_{10} \left(\frac{255}{RMSE} \right)$$

Typical PSNR values range between 20 and 40. They are usually reported to two decimal points (e.g., 25.47). The actual value is not meaningful, but the comparison between
two values for different reconstructed images gives one measure of quality. The MPEG committee used an informal threshold of 0.5 dB PSNR to decide whether to incorporate a coding optimization because they believed that an improvement of that magnitude would be visible.

4.2.2 Simulation results

The subjective test experiments are conducted to the three test model using the designed band-pass filter and the results are compared. The three test model of size 512 X 512 are taken and passed on to the band-pass filter to get a smooth image and the random noise are added to it at different levels starting from 5 to 30 then it is passed to the band-pass filter, the resultant will have noise reduced image. The tabular column below will give the Peak Signal to Noise Ratio at different noise levels.

<table>
<thead>
<tr>
<th>TestModel</th>
<th>Lena</th>
<th>House</th>
<th>Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth Image</td>
<td>33.65</td>
<td>39.99</td>
<td>38.60</td>
</tr>
<tr>
<td>Noise Level 5</td>
<td>33.55</td>
<td>35.09</td>
<td>34.69</td>
</tr>
<tr>
<td>Noise Level 10</td>
<td>33.12</td>
<td>30.58</td>
<td>30.49</td>
</tr>
<tr>
<td>Noise Level 20</td>
<td>31.57</td>
<td>25.54</td>
<td>25.57</td>
</tr>
<tr>
<td>Noise Level 30</td>
<td>29.55</td>
<td>22.45</td>
<td>22.51</td>
</tr>
</tbody>
</table>

Table 4.1: PSNR for Smooth and Noise Reduced images at different noise level

The PSNR values decreases as the noise level increases. This can be solved by passing the noise reduced image to the filter again after comparing with the original image.
4.2.3 Image analysis

Pictures such as radiographs, angiographs, tomographs, etc., are widely used in medicine for diagnosis, treatment monitoring and research. Consequently, the digital filters and image processing also find considerable application in this field. Image processing has two related functions here. First, it may be used to enhance and improve images which have been formed by X radiography or other means. Such pictures can be quite poor for a variety of reasons, and it is necessary to process and improve them. For example, there may be degradation blur and noise, occurring during the image formation process or as a result of uneven illumination.

The nature of the X-radiographic process itself may lead to distortion. In this case, image processing may actually be required to produce an image that physicians can study. But the most publicized application of image processing in medicine is the formation of X-ray images via computerized tomography. The basic radiographic problem involves reconstruction from projection measurements of the linear attenuation coefficient integrated along the path of a collimated X-ray beam. Digital filters are widely applied during the reconstruction process that produces the image. The second function of image processing is as a preprocessor for machine diagnosis, recognition or measurement. In such an application, the output of the image processor is aimed at a subsequent set of algorithms, rather than for subjective human viewing[7, 33].

165
4.3 Summary

This chapter deals with the application of the digital filters especially digital speech and image processing. Apart from this two areas, these types of filters can also be implemented in the field of digital communications such as digital telephony, digital telemetry and digital transmission, radar-sonar systems and biomedicine. One simple image processing application is provided using the band-pass transfer function obtained in the chapter 2 and its results are discussed in terms of PSNR. There are many kinds of applications are possible using these types of filters, since our thesis goal is to study the variable characteristics of these filters, we did not give proper attention in implementing other types of applications.
Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis, a technique for designing 2-D digital filters having variable magnitude characteristics has been proposed. A second order Low-pass Butterworth filter is transformed to a Band-Pass and Band-Stop filters, through double generalized bilinear transformations, 2-D band-pass and band-stop digital filters are obtained. If one or more coefficients of the generalized bilinear transformations are changing, the resulting 2-D band-pass and band-stop filters have variable frequency responses. The effect of each coefficients are studied in detail for the 2-D band-pass and band-stop filters.

In chapter 2, 2-D variable recursive band-pass filter has been investigated. Starting from a 2nd order 1-D Butterworth low-pass analog ladder network, the value of each element has been determined. The low-pass analog transfer function is transformed to a band-pass fil-
tter using the low-pass to band-pass transformation. Because of this transformation the 2nd order low-pass filter will become a 4th band-pass filter. In other words, the series inductor and parallel capacitor in the low-pass network will get transformed to a series inductor and capacitor and parallel inductor and capacitor in the band-pass filter network. By assigning the series inductor and capacitor as the \(s_1 = \text{variable} \) and the parallel inductor and capacitor as the \(s_2 = \text{variable} \), the doubly terminated 2-D 4th order band-pass analog network could be formed, and then the analog transfer function of the 2-D analog network has been obtained. Through the application of double generalized bilinear transformations to the 2-D analog transfer function, the 2-D digital transfer function has been derived. With the coefficients of the double generalized bilinear transformation are in the stable ranges: \(0 < k_i < \infty, 0 < a_i \leq 1, 0 < b_i \leq 1 \) (\(i = 1, 2 \)), the band-pass digital filter with variable magnitude characteristics has been obtained.

The effect of \(k_1, k_2, a_1, a_2, b_1, b_2, B \) and \(\omega_o \) are studied. The coefficients \(k_1 \) controls the center frequency and the pass-band width of the resulting 2-D band-pass filter in \(\omega_1 - \text{axis} \). When the value of \(k_1 \) is chosen near to its lower boundary, the filter center frequency will be closer to \(\pi \) radian and the pass-band width becomes narrower. On increasing the value of \(k_1 \) the center frequency of the filter will shift towards the origin and pass-band width also increase up to \(k_1 \) reaches unity, then on increase in \(k_1 \) after unity will make pass-band width to decrease gradually in \(\omega_1 - \text{axis} \). The same phenomenon is observed for the coefficients \(k_2 \), which control the center frequency and pass-band width in \(\omega_2 - \text{axis} \). The pass-band gain and the center frequency is controlled by the coefficients \(a_1 \) and \(a_2 \) in the \(\omega_1 \) and \(\omega_2 \) axis respectively. The center frequency of the pass-band, the pass-band gain and the stop-band gain are controlled by the coefficients \(b_1 \) and \(b_2 \) in the \(\omega_1 \) and \(\omega_2 \) axis respectively. The effect of varying \(\omega_o \) and \(B \) will make the center frequency
of pass-band and the pass-band width varying proportionally. The combination of all this
effect will be observed when the values of k_1, a_1, b_1 and ω_o are changed in the $\omega_1 - axis$.
The same effect can be observed in the $\omega_2 - axis$ on varying the values of k_2, a_2, b_2 and ω_o.

2-D band-stop filter with variable magnitude characteristics has been studied in chapter 3. From the same analog 2^{nd} order 1-D Butterworth low-pass analog ladder network, the value of each electronic element has been determined. The low-pass analog transfer function is transformed to a band-stop filter using the low-pass to band-stop transformation. Because of this transformation the 2^{nd} order low-pass filter will become a 4^{th} order band-stop filter. In other words, the series inductor and parallel capacitor in the low-pass network will get transformed to a parallel inductor and capacitor and series inductor and capacitor in the band-stop filter network. By assigning the parallel inductor and capacitor as the $s_1 - variable$ and the series inductor and capacitor as the $s_2 - variable$, the doubly terminated 2-D 4^{th} order band-stop analog network could be formed, and then the analog transfer function of the 2-D analog network has been obtained. Through the application of double generalized bilinear transformations to the 2-D analog transfer function, the 2-D digital transfer function has been derived. With the coefficients of the double generalized bilinear transformation are in the stable ranges: $0 < k_i < \infty$, $0 < a_i \leq 1$, $0 < b_i \leq 1$ ($i = 1, 2$), the band-stop digital filter with variable magnitude characteristics has been obtained.

The effect of $k_1, k_2, a_1, a_2, b_1, b_2, B$ and ω_o are studied. The coefficients k_1 controls the
center frequency, lower pass-band and the upper pass-band width in the $\omega_1 - axis$. When
the k_1 is near to the lower boundary the center frequency will be at π radian, on increasing
the k_1 the center frequency moves towards origin and also varying the lower pass-band and
upper pass-band width. The same phenomenon is observed for the coefficients k_2 in the
\(\omega_2 - axis \). The pass-band gain and the center frequency of the stopband filter and the gain of lower and upper pass-band are controlled by \(a_1 \) and \(a_2 \) in the \(\omega_1 \) and \(\omega_2 \) axis respectively. The center frequency of the stopband and the gain of the stopband are controlled by \(b_1 \) and \(b_2 \) in the \(\omega_1 \) and \(\omega_2 \) axis respectively. The effect of varying \(\omega_o \) and \(B \) will make the center frequency of the stopband and the stop-band width varying proportionally. The combination of all this effect will be observed when the values of \(k_1, a_1, b_1 \) and \(\omega_o \) are changed in the \(\omega_1 - axis \). The same effect can be observed in the \(\omega_2 - axis \) on varying the values of \(k_2, a_2, b_2 \) and \(\omega_o \).

Chapter 4 deals with the discussion of the application of band-pass and band-stop filter. Since, our thesis is mainly concerned with studying the variable magnitude characteristics of the band-pass and band-stop filters, proper attentions are not given to the implementations of the applications of these filters, although a application has been presented by using a band-pass filters and the results are discussed.

Hence, from chapter 2 and chapter 3 we can conclude that through the double generalized bilinear transformations, we can actually obtain 2-D band-pass and band-stop digital filters with the variable characteristics, which will introduce more changeable coefficients into our design. We thus have more freedom to design 2-D variable band-pass and band-stop digital filters, to meet the design specifications.

5.2 Directions for Future work

In this thesis, we have used the Butterworth 1-D 2\(^{nd}\) low-pass analog filters as our design starting point. Butterworth is frequently used analog prototype filter, which has the maximally flat magnitude. In future research, instead of using 1-D 2\(^{nd}\) order low-pass Butterworth filter one can use the 1-D 2\(^{nd}\) order Chebyshev filter as a starting point and apply
the transformation to band-pass or band-stop filters, digitize using bilinear transformation and can study the effect of these coefficients. In this thesis magnitude characteristics are discussed, for future research the same concept can be used to study phase response of 2-D recursive digital filters. 2-D digital filters has some kind of symmetry in its contour plot, for future research the same concept can be used to study symmetry in the contour plots.
Bibliography

172

173

174

175

[33] R. King, M. Ahmadi, R. Gorgui-naguib, Alan Kwabwe and Mahmood Azimi-sadjadi
"Digital Filtering in One and Two dimensions" Plenum Press, New York, 1989
Appendix

Programs

% Matlab program for determining whether the band-pass filter is stable for
% given coefficients

function val = BPstablerange(k1,k2,a1,a2,b1,b2,wo,B)

% Setting values of Center frequency (wo) and Bandwidth
B=1;
wo=1;

% Assigning the values to alpha's and beta's
alpha1=k1+a1*k1;alpha2=k1-k1*a1;alpha3=1+b1;alpha4=1-b1;
beta1=k2+a2*k2;beta2=k2-k2*a2;beta3=1+b2;beta4=1-b2;

% Assigning the coefficients of the denominator's to c's
C1=4*wo^4;c2=2*1.414*B*wo^4;c3=2*1.414*B*wo^4;c4=B*B+2*B*B*wo^4;
c5=4*wo^4;c6=4*wo^4;c7=2*1.414*B*wo^6;c8=2*1.414*B*wo^6;c9=4*wo^8;

% Checking the stability conditions for the given values of the coefficients
q1=[c1*alpha1^2*beta1^2+c2*alpha1*alpha4*beta1^2+c3*alpha1^2*beta1*beta4+... c4*alpha1*alpha4*beta1*beta4+c5*alpha1^2*beta4^2+c6*alpha4^2*beta1^2+...}
c7*alpha1*alpha4*beta4^2+c8*alpha4^2*beta1*beta4+c9*alpha4^2*beta4^2];
q2=[c1*2*alpha1*alpha2*beta1^2+c2*(alpha2*alpha4+alpha1*alpha3)*beta1^2+...
c3*2*alpha1*alpha2*beta1*beta4+c4*(alpha2*alpha4+alpha1*alpha3)*beta1*beta4+...
c5*2*alpha1*alpha2*beta4^2+c6*2*alpha3*alpha4*beta1^2+...
c7*beta4^2*(alpha2*alpha4+alpha1*alpha3)+c8*2*alpha3*alpha4*beta1*beta4+...
c9*2*alpha3*alpha4*beta4^2];
q3=[c1*2*beta1*beta2*alpha1^2+c2*2*alpha1*alpha4*beta1*beta2+...
c3*alpha1*2*(beta2*beta4+beta1*beta3)+c4*alpha1*alpha4*(beta2*beta4+beta1+beta3)+...
c5*2*alpha1^2*beta3*beta4+c6*2*alpha4^2*beta1*beta2+c7*2*alpha1*alpha4*beta3*beta4+...
c8*alpha4^2*(beta2*beta4+beta1*beta3)+c9*2*alpha4^2*beta3*beta4];
q4=[c1*4*alpha1*alpha2*beta1*beta2+c2*beta1*beta2*(alpha2*alpha4+alpha1*alpha3)+...
c3*2*alpha1*alpha2*(beta2*beta4+beta1*beta3)+c4*(alpha2*alpha4+alpha1*alpha3)*...
(beta2*beta4+beta1*beta3)+c5*4*alpha1*alpha2*beta3*beta4+c6*4*beta1*beta2*alpha3*alpha4-
c7*2*beta3*beta4*(alpha2*alpha4+alpha1*alpha3)+c8*2*alpha3*alpha4*(beta2*beta4+beta1*be-
c9*4*alpha3*alpha4*beta3*beta4];
q5=[c1*alpha1^2*beta2^2+c2*alpha1*alpha4*beta2^2+c3*alpha1^2*beta2*beta3+...
c4*alpha1*alpha4*beta2*beta3+c5*alpha1^2*beta3^2+c6*alpha4^2*beta2^2+...
c7*alpha1*alpha4*beta3^2+c8*alpha4^2*beta2*beta3+c9*alpha4^2*beta3^2];
q6=[c1*alpha2^2*beta1^2+alpha2*alpha3*beta1^2+alpha2^2*beta1*beta4+...
alpha2*alpha3*beta1*beta4+alpha2^2*beta4^2+alpha3^2*beta1^2+beta4^2*alpha2*alpha3+...
beta1*beta4*alpha3^2+alpha3^2*beta4^2];
q7=[c1*2*alpha1*alpha2*beta2^2+c2*beta2^2*(alpha2*alpha4+alpha1*alpha3)+...
c3*2*alpha1*alpha2*beta2*beta3+c4*(alpha2*alpha4+alpha1*alpha3)*beta2*beta3+...
2*c5*alpha1*alpha2*beta3^2+c6*2*alpha3*alpha4*beta2^2+...
c7*beta3^2*(alpha2*alpha4+alpha1*alpha3)+2*c8*alpha3*alpha4*beta2*beta3+...
2*c9*alpha3*alpha4*beta3^2];
q8=[c1*2*alpha2^2*beta1*beta2+2*c2*beta1*beta2*alpha2*alpha3+...
c3*alpha2^2*(beta2*beta4+beta1*beta3)+c4*alpha2*alpha3*(beta2*beta4+beta1*beta3)+...
c5*2*alpha2^2*beta3*beta4+c6*2*alpha3^2*beta1*beta2+c7*2*beta3*beta4*alpha2*alpha3+...
c8*alpha3^2*(beta2*beta4+beta1*beta3)+2*c9*alpha3^2*beta3*beta4];
q9=[c1*alpha2^2*beta2^2+c2*alpha2*alpha3*beta2^2+c3*alpha2^2*beta2*beta3+...
c4*alpha2*alpha3*beta2*beta3+c5*alpha2^2*beta3^2+c6*alpha3^2*beta2^2+...
c7*alpha2*alpha3*beta3^2+c8*alpha3^2*beta2*beta3+c9*alpha3^2*beta3^2];
% Checking the coefficients of the denominator's are real or not
% If it is real 1 will be returned otherwise 0 will be returned
if (q1>0 & q2>0 & q3>0 & q4>0 & q5>0 & q6>0 & q7>0 & q8>0 & q9>0)
 val = 1;
else
 val=0;
end
% MATLAB code for displaying frequency response for the given values of the
% coefficients d2band.m

clear;clc;

% Assigning the values of center frequency and Bandwidth
wo=1;
B=1;

% Enter and checking for stability of the coefficients
k1=input('Enter the k1 coefficient value=');
if (k1<=0 | k1 >100)
 error('k1 range is between 1 to 100');
end

k2=input('Enter the k2 coefficient value=');
if (k2<=0 | k2 >100)
 error('k1 range is between 1 to 100');
end

a1=input('Enter the a1 coefficient value=');
if (a1<=0 | a1 >1)
 error('selection of a1 will make the filter unstable');
end

b1=input('Enter the b1 coefficient value=');
if (b1 <=0 | b1 >1)
error('selection of b1 will make the filter unstable');
end

a2=input('Enter the a2 coefficient value= ');
if (a2 <=0 | a2 >1)
 error('selection of a2 will make the filter unstable ');
end

b2=input('Enter the b2 coefficient value= ');
if (b2 <=0 | b2 >1)
 error('selection of b2 will make the filter unstable ');
end

% calling BPstable to check the stability
val=BPstable(k1,k2,a1,a2,b1,b2,wo,B);
% If val is one then the filter is stable
if val == 1
 display('Stable Band-Pass filter can be obtained');
% Setting w1 and w2 axis
w1=0:pi/50:pi;
w2=-pi:pi/50:pi;
z1=exp(-j*w1);
z2=exp(-j*w2);
[Z1,Z2]=meshgrid(z1,z2);
% Assigning the values to the filter parameters
R2=1;
R1=1;
L1=1.414214/B;
L2=B/(1.414214*wo*wo);
C1=B/(1.414214*wo*wo);
C2=1.414214/B;

% Applying Bilinear Transformation
S1=k1.*(Z1-a1)./(Z1+b1);
S2=k2.*(Z2-a2)./(Z2+b2);

% Transfer function of Band-Pass filter
H=(S1.*S2*R2*L2*C1)./(((S1.*S1*L1*C1+R1*S1.*C1+1).*(S2.*S2*R2*L2*C2+S2.*L2+R2))+...R2*L2*C1.*S1.*S2);

figure;

% Plotting the magnitude and contour plots of the Band-Pass filters
subplot(211);
mesh(w1/pi,w2/pi,abs(H));
axis square;
xlabel('omega_1(pi)');
ylabel('omega_2(pi)');
zlabel('Magnitude');
title(['\omega_o = ',num2str(wo), ', B = ',num2str(B), ', k_1 = ',num2str(k1), ', k_2 = ',num2str(k2)..., ', a_1 = ',num2str(a1), ', a_2 = ',num2str(a2), ', b_1 = ',num2str(b1), ', b_2 = ',num2str(b2)]);
subplot(212);
[c1,c2]=contour(w1/pi,w2/pi,abs(H));
axis square;

title(['\omega_o=' num2str(wo), ',B=' num2str(B), ',k_1=' num2str(k1), ',k_2=' num2str(k2)...
', 'a_1=' num2str(a1), ',a_2=' num2str(a2), ',b_1=' num2str(b1), ',b_2=' num2str(b2)]);

xlabel('\omega_1(\pi)');
ylabel('\omega_2(\pi)');

else
 error('Coefficients used will not provide an stable band-pass filter');
end
% Matlab Code for band-stop stable

function val = BSstable(k1,k2,a1,a2,b1,b2,wo,B)

% Setting values of Center frequency (wo) and Bandwidth
B=1;
wo=1;

% Assigning the values to alpha's and beta's
alpha1=k1+a1*k1;alpha2=k1-k1*a1;alpha3=1+b1;alpha4=1-b1;
beta1=k2+a2*k2;beta2=k2-k2*a2;beta3=1+b2;beta4=1-b2;

% Assigning the coefficients of the denominator's to c's
\[c1=2; c2=1.414*B; c3=1.414*B; c4=2*B*B; c5=2*wo^2; c6=2*wo^2; c7=1.414*B*wo^2; c8=1.414*B*wo^2; c9=2*wo^4; \]

% Checking the stability conditions for the given values of the coefficients
\[q1=[c1*alpha1^2*beta1^2+c2*alpha1*alpha4*beta1^2+c3*alpha1^2*beta1*beta4+... \]
\[c4*alpha1*alpha4*beta1*beta4+c5*alpha1^2*beta4^2+c6*alpha4^2*beta1^2+... \]
\[c7*alpha1*alpha4*beta4^2+c8*alpha4^2*beta1*beta4+c9*alpha4^2*beta4^2]; \]
\[q2=[c1*alpha1*alpha2*beta1^2+c2*(alpha2*alpha4+alpha1*alpha3)*beta1^2+... \]
\[c3*2*alpha1*alpha2*beta1*beta4+c4*(alpha2*alpha4+alpha1*alpha3)*beta1*beta4+... \]
\[c5*2*alpha1*alpha2*beta4^2+c6*2*alpha3*alpha4*beta1^2+... \]
\[c7*beta4^2*(alpha2*alpha4+alpha1*alpha3)+c8*2*alpha3*alpha4*beta1*beta4+... \]
\[+c9*2*alpha3*alpha4*beta4^2]; \]
\[q3=[c1*2*beta1*beta2*alpha1^2+c2*2*alpha1*alpha4*beta1*beta2+... \]
\[c3*alpha1^2*(beta2*beta4+beta1*beta3)+c4*alpha1*alpha4*(beta2*beta4+beta1+beta3)+... \]
\[c5*2*alpha1^2*beta3*beta4+c6*2*alpha4^2*beta1*beta2+c7*2*alpha1*alpha4*beta3*beta4+... \]
\[c8*alpha4^2*(beta2*beta4+beta1*beta3)+c9*2*alpha4^2*beta3*beta4]; \]
\[q_4 = [c_1 \cdot 4 \cdot \alpha_1 \cdot \alpha_2 \cdot \beta_1 \cdot \beta_2 + c_2 \cdot \beta_1 \cdot \beta_2 \cdot (\alpha_2 \cdot \alpha_4 + \alpha_1 \cdot \alpha_3) + \ldots \\
 2 \cdot 4 \cdot \alpha_1 \cdot \alpha_2 \cdot (\beta_2 \cdot \beta_4 + \beta_1 \cdot \beta_3) + c_4 \cdot (\alpha_2 \cdot \alpha_4 + \alpha_1 \cdot \alpha_3) \cdot \ldots \\
 (\beta_2 \cdot \beta_4 + \beta_1 \cdot \beta_3) + c_5 \cdot 4 \cdot \alpha_1 \cdot \alpha_2 \cdot \beta_3 \cdot \beta_4 + c_6 \cdot 4 \cdot \beta_1 \cdot \beta_2 \cdot \alpha_3 \cdot \alpha_4 \cdot \\
 c_7 \cdot 2 \cdot \beta_3 \cdot \beta_4 \cdot (\alpha_2 \cdot \alpha_4 + \alpha_1 \cdot \alpha_3) + c_8 \cdot 2 \cdot \alpha_3 \cdot \alpha_4 \cdot (\beta_2 \cdot \beta_4 + \beta_1 \cdot \beta_3) \\
 c_9 \cdot 4 \cdot \alpha_3 \cdot \alpha_4 \cdot \beta_3 \cdot \beta_4 \cdot \beta_4]; \\
\]

\[q_5 = [c_1 \cdot \alpha_1 \cdot \alpha_2 \cdot \beta_2 \cdot 2^2 + c_2 \cdot \alpha_1 \cdot \alpha_4 \cdot \beta_2 \cdot 2^2 + c_3 \cdot \alpha_1 \cdot \alpha_2 \cdot \beta_2 \cdot \beta_3 + \ldots \\
 c_4 \cdot \alpha_1 \cdot \alpha_4 \cdot \beta_2 \cdot \beta_3 + c_5 \cdot \alpha_1 \cdot \alpha_2 \cdot \beta_3 \cdot \beta_2 + c_6 \cdot \alpha_4 \cdot \beta_2 \cdot \beta_2 + \ldots \\
 c_7 \cdot \alpha_1 \cdot \alpha_4 \cdot \beta_3 \cdot \beta_2 + c_8 \cdot \alpha_4 \cdot \beta_2 \cdot \beta_3 + c_9 \cdot \alpha_4 \cdot \beta_3 \cdot \beta_2]; \\
\]

\[q_6 = [c_1 \cdot \alpha_2 \cdot \alpha_1 \cdot \beta_2 \cdot \beta_4 + c_2 \cdot \alpha_1 \cdot \alpha_4 \cdot \beta_2 \cdot \beta_4 + c_3 \cdot \alpha_2 \cdot \alpha_4 \cdot \beta_2 \cdot \beta_4 + \ldots \\
 \alpha_2 \cdot \alpha_3 \cdot \beta_1 \cdot \beta_4 + \alpha_2 \cdot \beta_4 \cdot \beta_2 + \alpha_3 \cdot \beta_2 + \beta_1 \cdot \beta_4 + \ldots \\
 \beta_4 \cdot \beta_2 + \alpha_2 \cdot \alpha_3 + \beta_1 \cdot \beta_4 \cdot \alpha_3 \cdot \beta_2 + \beta_4 \cdot \beta_4 \cdot \beta_2]; \\
\]

\[q_7 = [c_1 \cdot 2 \cdot \alpha_1 \cdot \alpha_2 \cdot \beta_2 \cdot 2^2 + c_2 \cdot \beta_2 \cdot 2^2 \cdot (\alpha_2 \cdot \alpha_4 + \alpha_1 \cdot \alpha_3) + \ldots \\
 c_3 \cdot 2 \cdot \alpha_1 \cdot \alpha_2 \cdot \beta_2 \cdot \beta_3 + c_4 \cdot (\alpha_2 \cdot \alpha_4 + \alpha_1 \cdot \alpha_3) \cdot \beta_2 \cdot \beta_3 + \ldots \\
 2 \cdot c_5 \cdot \alpha_1 \cdot \alpha_2 \cdot \beta_3 \cdot 2^2 + c_6 \cdot 2 \cdot \alpha_3 \cdot \alpha_4 \cdot \beta_2 \cdot 2^2 + c_7 \cdot \beta_3 \cdot 2^2 \cdot (\alpha_2 \cdot \alpha_4 + \ldots \\
 \alpha_1 \cdot \alpha_3) + 2 \cdot c_8 \cdot \alpha_3 \cdot \alpha_4 \cdot \beta_2 \cdot \beta_3 + c_9 \cdot \alpha_3 \cdot \alpha_4 \cdot \beta_3 \cdot \beta_2]; \\
\]

\[q_8 = [c_1 \cdot 2 \cdot \alpha_2 \cdot \beta_1 \cdot \beta_2 + 2 \cdot c_2 \cdot \beta_1 \cdot \beta_2 + \beta_1 \cdot \beta_2 \cdot \alpha_2 \cdot \alpha_3 + \ldots \\
 c_3 \cdot \alpha_2 \cdot \beta_2 \cdot (\beta_2 \cdot \beta_4 + \beta_1 \cdot \beta_3) + c_4 \cdot \alpha_2 \cdot \alpha_3 \cdot \beta_1 \cdot \beta_3 \cdot \beta_4 + \beta_1 \cdot \beta_3 \cdot \beta_4 \cdot \alpha_3 \cdot \beta_2 + \ldots \\
 + c_5 \cdot 2 \cdot \alpha_2 \cdot \beta_3 \cdot \beta_4 + c_6 \cdot 2 \cdot \alpha_3 \cdot \beta_2 \cdot \beta_2 + c_7 \cdot 2 \cdot \beta_3 \cdot \beta_2 \cdot \alpha_4 \cdot \beta_2 \cdot \alpha_3 \cdot \beta_2 + \ldots \\
 + c_8 \cdot \alpha_3 \cdot \beta_2 \cdot (\beta_2 \cdot \beta_4 + \beta_1 \cdot \beta_3) \cdot 2 + c_9 \cdot \alpha_3 \cdot \beta_2 \cdot \beta_2 \cdot \beta_4 \cdot \beta_2]; \\
\]

\[q_9 = [c_1 \cdot \alpha_2 \cdot \beta_2 \cdot 2^2 + c_2 \cdot \alpha_2 \cdot \alpha_4 \cdot \beta_2 \cdot 2^2 + c_3 \cdot \alpha_2 \cdot \alpha_4 \cdot \beta_2 \cdot 2^2 + \ldots \\
 c_4 \cdot \alpha_2 \cdot \alpha_3 \cdot \beta_2 \cdot \beta_3 + c_5 \cdot \alpha_2 \cdot \beta_3 \cdot \beta_2 \cdot 2^2 + c_6 \cdot \alpha_3 \cdot \beta_2 \cdot \beta_2 \cdot 2^2 + \ldots \\
 c_7 \cdot \alpha_2 \cdot \alpha_3 \cdot \beta_3 \cdot 2^2 + c_8 \cdot \alpha_3 \cdot \beta_2 \cdot \beta_3 + c_9 \cdot \alpha_3 \cdot \beta_2 \cdot \beta_3]; \\
\]

% Checking the coefficients of the denominator's are real or not
% If it is real 1 will be returned otherwise 0 will be returned

185
if (q1>0 & q2>0 & q3>0 & q4>0 & q5>0 & q6>0 & q7>0 & q8>0 & q9>0)
 val = 1;
else
 val=0;
end
% MATLAB code for displaying frequency response for the given values of the
% coefficients

clear;clc;

% Assigning the values of center frequency and Bandwidth
wo=1;
B=1;

% Enter and checking for stability of the coefficients
k1=input('Enter the k1 coefficient value=');
if (k1 < 0 | k1 > 100)
 error('k1 range is between 1 to 100');
end

k2=input('Enter the k2 coefficient value=');
if (k2 < 0 | k2 > 100)
 error('k2 range is between 1 to 100');
end

a1=input('Enter the a1 coefficient value=');
if (a1 < 0 | a1 > 1)
 error('selection of a1 will make the filter unstable');
end

b1=input('Enter the b1 coefficient value=');
if (b1 < 0 | b1 > 1)
 error('selection of b1 will make the filter unstable');
end

a2=input('Enter the a2 coefficient value=');
if (a2 < 0 | a2 > 1)
 error('selection of a2 will make the filter unstable');
end
b2=input('Enter the b2 coefficient value=');
if (b2 < 0 | b2 > 1)
 error('selection of b2 will make the filter unstable');
end

% Enter and checking for stability of the coefficients
val=BSstable(k1,k2,a1,a2,b1,b2,wo,B);
% If val is one then the filter is stable
if val==1
 display('Stable Band-Pass filter can be obtained');
end

% Setting w1 and w2 axis
w1=0:pi/50:pi;
w2=0:pi/50:pi;
z1=exp(-j*w1);
z2=exp(-j*w2);
[Z1,Z2]=meshgrid(z1,z2);
% Assigning the values to the filter parameters
R2=1;
R1=1;
L1=(1.414214*B)./(wo*wo);
L2=1./(1.414214*B);
C1=1./(1.414214*B);
C2=(1.414214*B)/(ωo * wo);

% Applying Bilinear Transformation
S1=(k1.*(Z1-a1))/(Z1+b1);
S2=(k2.*(Z2-a2))/(Z2+b2);

% Transfer function of Band-Pass filter
H=((R2)+(R2*L2*C2.*S2.*S2)+(R2*L1*C1.*S1.*S1)+(R2*L1*C1*L2*C2.*S1.*S1.*S2.*S2))... /
((R1+L1.*S1+R1*L1*C1.*S1.*S1+R1*R2*C2.*S2+R2*L1*C2.*S1.*S2+R1*R2*L1*C1*...
(R2)+(R2*L2*C2.*S2.*S2)+(R2*L1*C1.*S1.*S1)+(R2*L1*C1*L2*C2.*S1.*S1.*S2.*S2));

figure;

% Plotting the magnitude and contour plots of the Band-Pass filters
subplot(211);

mesh(w1/pi,w2/pi,abs(H));

axis square;

title(['\omega_o=',num2str(ωo),',\;\;B=',num2str(B),',\;\;k_1=',num2str(k1),',\;\;k_2=',num2str(k2),',\;\;a_1=',num2str(a1),',\;\;a_2=',num2str(a2),',\;\;b_1=',num2str(b1),',\;\;b_2=',num2str(b2)]);

xlabel('\omega_1(\pi)');
ylabel('\omega_2(\pi)');
zlabel('Magnitude');

subplot(212);

[c1,c2]=contour(w1/pi,w2/pi,abs(H));

axis square;

title(['\omega_o=',num2str(ωo),',\;\;B=',num2str(B),',\;\;k_1=',num2str(k1),',\;\;k_2=',num2str(k2),',\;\;a_1=',num2str(a1),',\;\;a_2=',num2str(a2),',\;\;b_1=',num2str(b1),',\;\;b_2=',num2str(b2)]);
xlabel(\omega_1(\pi));

ylabel(\omega_2(\pi));

else

 error('Coefficients used will not provide an stable band-pass filter');

end
% Matlab code for image processing in smoothing and noise reduction

% Three images are used lena,tree an house for this program

clear;
clear;

% Initializing all the parameters
B=1;
L=1.414;C=1.414;
con=1.414;
wo=1;

% Checking the coefficients values to maintain stability conditions
k1=input('Enter the k1 coefficient value=');

if (k1 > 0)
 error('k1 should be in positive');
end

k2=input('Enter the k2 coefficient value=');

if (k2 > 0)
 error('k2 should be in positive');
end

a1=input('Enter the a1 coefficient value=');

if (a1<=0 | a1>1)
 error('selection of a1 will make the filter unstable');
end

b1=input('Enter the b1 coefficient value=');

191
if (b1 <= 0 | b1 > 1)
 error('selection of b1 will make the filter unstable');
end

a2=input('Enter the a2 coefficient value= ');
if (a2 <= 0 | a2 > 1)
 error('selection of a2 will make the filter unstable');
end

b2=input('Enter the b2 coefficient value= ');
if (b2 <= 0 | b2 > 1)
 error('selection of b2 will make the filter unstable');
end

% noise level
noise=30;
% reading of the image
x=double(imread('lena512.bmp'));
% Adding noise to the image
x_rand=noise*randn(size(x));
y=double(uint8(x + x_rand));
% Transfer function of the band-pass filter
for i=1:5
 for j=1:5
 z1=(k1.*(i*(1+a1)+(1-a1))./(i*(1-b1)+(1+b1));
 end
end
\[z_2 = (k_2 \cdot (j^*(1+a_2)+(1-a_2)))./(j^*(1-b_2)+(1+b_2)) \]
\[a_{11} = B^2 \cdot z_1 \cdot z_2 \]
\[a_2 = L \cdot z_1 \cdot z_1 + z_1 \cdot B + \text{con} \cdot \text{wo}^2 \]
\[a_3 = C \cdot z_2 \cdot z_2 + z_2 \cdot B + \text{con} \cdot \text{wo}^2 \]
\[h(i,j) = a_{11}/((a_2 \cdot a_3 + a_{11})) \]
end
end

% convoluting the transfer function with the image signal
\[f_1 = \text{conv2}(x,h, ' \text{same}') \]
% Convoluting the transfer function with the noise image signal
\[r_{f_1} = \text{conv2}(y,h, ' \text{same}') \]
% Outputing the original, noise, smooth and noise reduced images
figure;
subplot(2,2,1); imagesc(x); title('Lena');
subplot(2,2,2); imagesc(y); title('Noisy Lena');
subplot(2,2,3); imagesc(f_1); title('Smooth');
subplot(2,2,4); imagesc(r_{f_1}); title('Noise Reduced Lena Image ');
colormap(gray);
% Calculating the PSNR values
\[\text{psnr}_{\text{bp}} = 20 \cdot \log_{10} (255^2 \cdot \text{prod}(\text{size}(x))/\text{sumsqr}(f_1-x)) \]
\[\text{est}_{\text{psnr}}_{\text{bp}} = 20 \cdot \log_{10} (255^2 \cdot \text{prod}(\text{size}(y))/\text{sumsqr}(y-r_{f_1})) \]