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ABSTRACT

A Study of Designing Recursive 2-D Digital Filter from an

analog Bridged-T network

Ashraf Ul Haque

Two-dimensional recursive digital filters are widely used in signal processing and image
processing, as well as divers communication systems. The main objective of this thesis
has been to propose a new technique of designing 2-D recursive digital filters from an
analog Bridged-T network. Starting from transfer function of a Bridged-T network in the
analog domain which is VSHP, 2-D recursive digital filters can be obtained through the
application of the double generalized bilinear transformations with the coefficients in
their specified ranges. The impedance values of the transfer function of the Bridged-T
network are obtained with compare to the fourth order Butterworth polynomial. For
different impedance values of the Bridged-T network we get different types of filter
output - all pass filter, band pass filter, band stop filter and low pass filter. The manner
how each coefficient of generalized bilinear transformation affects each kind of 2-D

recursive digital filter is investigated in details.
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Chapter 1

Introduction

1.1 General [21,24, 25, 26]

Two dimensional 2-D digital filters have been used extensively in recent years for the
processing, enhancement and restoration of images. Their application encompasses many
fields and includes tomography, seismic record processing, geophysical exploration, oil
prospecting, radar, radio astronomy, to name a few. Two dimensional processing of an
image is accomplished by scanning the image and then digitizing it by means of an
analog to digital converter. The discrete data generated are then stored in the memory of a
computer and, subsequently, they are processed by using a 2-D digital filter. It is possible
to process such signals by means of 1-D digital filters. However, it is preferable to use 2-
D techniques, because of some important inherent advantages in these techniques. On the
other hand, computation time can be reduced and other 2-D systems have many more

degrees of freedom which give a system designer flexibility not encountered in 1-D



techniques. In addition, in 2-D techniques the rate at which a band limited signal is
sampled can be adjusted and also the scanning of an image can be performed in several
directions, whereas in 1-D techniques only the sampling rate can be adjusted. Two
classes of digital filters can be identified depending on the nature of their impulse
response, namely, infinite impulse response (IIR) and finite impulse response (FIR)
filters. IIR filters are, in general, implemented recursively while FIR filters are, in
general, implemented non-recursively.

FIR filters are always stable and can readily be designed to have constant group
delay. However, in order to obtain high selectivity, the order of an FIR filter has to be
much larger relative to that of an IIR filter having similar characteristics.

IIR filters, on the other hand, cannot be designed to have constant group delay and,
consequently, their design entails the solution of a difficult approximation problem
whereby amplitude and group delay specification must be satisfied simultaneously. A
second problem associated with IIR filters is that their stability is not always assured as in
the case of FIR filters and hence their design must incorporate stability tests in order to
ensure that the filters obtained in the solution of the approximation problem are stable.

Much more attention has been devoted to IIR digital filters than to FIR filters due to
their potential advantages and efficiency in processing large amounts of data. Recently,
2-D filters with variable characteristics are widely applied to signal processing processes
and communication systems where the frequency-domain characteristics of digital filters
are required to be adjustable. More researchers have started to study the properties of
such filters. These could be variable magnitude response, phase response and group

delay. To achieve the variable characteristics, one or more coefficients of the digital



transfer functions should be changeable. However, the stability conditions have to be
satisfied always.

There are various methods for designing 2-D digital filters. Among them the popular
methods are based on frequency transformation, adding adjustable multipliers to filter
analog circuits and bilinear transformation. The most frequently used methods for
designing a 2-D recursive digital filter is to start from a corresponding 2-D analog filter

and then apply the well-known bilinear transformation [23].

Si’—‘ki

Zi"% wherei=1,2 (1.1)
.+b

Z; +0;
where ki, aj, b; are positive constants, and ki>0, | a; I <1 and I b; | <1,i=1,2.

The main problem of this method is stability. This can be overcome by a special class
of polynomial with 2-variable analog domain called Very Strict Hurwitz Polynomial. A

brief review of such polynomials is given below.

1.2 Overview of Very Strict Hurwitz Polynomial

1.2.1 Definition of Very Strict Hurwitz Polynomial [1]
In one-dimensional systems (both analog and discrete), we can use suitably
chosen transfer functions having no common factors between the numerator and

denominator in order to design a filter required specifications. Specifically, let

- NG

D, () (1-2)

Ha(s)

be a transfer function in the analog domain with Ny(s) and D4(s) being relatively prime. In
order that the function is stable, D,(s) should be a Strictly Hurwitz Polynomial (SHP),

which contains all its zeros strictly in the left-half of s-plane.



However, for 2-D analog filter system with the transfer function

N, (s,,8,)

Ha(51=52)= D (S S )
a\"1>>2

(1.3)

the denominator D,(s;,s;) is @ SHP cannot always guarantee stability, as it contains non-
essential singularity of the second kind. That is, the numerator and denominator become
zero at two points s; = joipand sz = jwzo, but not in its neighborhood.

We need to explain in short some definitions in order to better understanding of

getting digital filter circuit.

1.2.2 Singularities [1]}

Considering the case of 2-D analog system, it is quite possible that both the even
and the odd parts of a polynomial may become simultaneously zero at specified sets of
points, but not in their neighborhood. If this occurs in the denominator of the transfer
function, it is called non-essential singularity of first kind. In addition, in 2-D transfer
functions, both the numerator and denominator polynomials can become zero
simultaneously at a given set of points. When this happens, it is known as non-essential

singularity of second kind. Mathematically, for

Hy(si) = eon®s) (14)
D,(s;,s,)
i) Da(s10,820) = 0 and Na(s10,520) # 0 constitute non-essential singularity of the
first kind at (s10, S20)-
ii) Da(s10,820) = 0 and Ny(s10,820) = O constitute non-essential singularity of the

second kind.



1.2.3  Stability [4,22]

As mentioned above, 2-D filters can be classified into two main categories
namely the Finite Response Filters (FIR) and the Infinite Impulse Response Filters (1IR).

The Finite Response Filters have transfer functions resulting from a finite
sequence and the Infinite Impulse Response Filters have transfer functions resulting from
an infinite sequence.

One important issue concerning both the above types of filters is the stability of
the filter. Now it is known that FIR filters are inherently stable, while IIR filters may or
may not be stable depending upon the transfer function.

The most commonly used definition for stability is based on the bounded input
bounded output (BIBO) criterion. This criterion states that a filter is stable if its response
to a bounded input is also bounded. Mathematically, it is possible to show that for causal

linear shift invariant systems, this corresponds to the condition that

}O‘:i|h(nl,n2)|<oo (1.5)

n,=0n,=0
where, h(ny, ny) is the impulse response of the filter.

The above definition points out an important observation that the stability
criterion is always verified if the number of terms of the impulse response is finite which
is the case with FIR filters. However, the above condition does not prove feasible to the
test of stability of IIR filters. In the 1-D case, it is possible to relate the BIBO stability
conditions to the positions of Z-domain transfer function poles which have to be within
the unit circle and it is possible to test the stability by determining the zeros of the
denominator polynomial. Similarly, in the 2-D case, a theorem establishing the

relationship between the stability of the filter and the zeros of the denominator



polynomial can be formulated. This theorem states that [28], for causal quadrant filters, if
B(zi, z2) is a polynomial in z; and z,, the expansion of 1/ B(z;, z,) in the negative powers
of z; and z; converges absolutely if and only if

B(z1, 22) # 0 for {|z,| >1, |z,| =1} (1.6)

The above theorem has the same form as in the 1-D case, i.e., it relates the stability of the
filter to the singularities of the z-transform. However, in the 2-D case such a formulation
for stability condition does not produce an efficient method for stability test, as in 1-D
case, due to the lack of appropriate factorization theorem of algebra. Therefore, it is
necessary in principle, to use an infinite number of steps to test the stability. Also, even if
it is possible to find methods to test conditions equivalent to equation (1.6) in a finite
number of steps [4], computationally it is not easy to incorporate them in a design method
and there is a problem of stabilizing the filters which may become unstable.

From the point of view of stability tests, there can be two different approaches
that can be considered, in designing in IIR filter. One method is to carry out the stability
test in every stage of the filter design so that eventually the filter is stable. In the second
method, stability is not considered as a part of the design and a magnitude squared
function is first designed. Then a stable filter is obtained, by choosing the poles in the
stability region. Such an approach is convenient, because squared magnitude functions

can be in a simple form and it is easy to find the poles of the filter.

1.2.4 Bilinear Transformation {1, 6, 23]
One method of generating a stable 2-D digital function has been to apply

generalized double bilinear transformation



s = k;— 2 , where i =1,2 (1.7

on a two-variable analog function with strict Hurwitz denominator. In some cases the 2-D
digital function generated using double bilinear transformation may possess nonessential
singularities of the second kind on the closed unit bi-disk of the (z;, z;) biplane. As the
bilinear transformation maps the entire (s, sz) biplane on the entire (z;, z;) biplane on a
one-to-one basis, the behavior of the function is not altered by the application of the
double bilinear transformation.

We first give the definitions of certain terms which we will use in the following
sections. We use the notation Re (x) to mean real part of x.
Definition 1.1 A rational function f(s) with real coefficients such that Re(f(s)) > 0 for
Re(s) > 0 is called a positive real function.
Definition 1.2 A positive real function f(s) is said to be a strict positive real function if
Re(f(s)) > 0 for Re(s) = 0.
Definition 1.3 A positive real function f(s) is said to be minimum reactive, susceptive if
it has neither poles nor zeros on the imaginary axis of the s plane.
Definition 1.4 A positive real function f(s) is called a reactance function if Re(f(s)) = 0
for Re(s) = 0.
Definition 1.5 A two-variable rational function f(s;,s;) with real coefficients such that
Re(f(s1,52)) = 0 for Re(s)) > 0, Re(s;) > 0 is called a two-variable positive real function.
Definition 1.6 A two-variable positive real function f(s;,s;) such that f(s;,s2) = - f(-51,-52)
is called a two-variable reactance function.
Definition 1.7 A two-variable polynomial Q(sy,s;) is an even polynomial if Q(s1,52) =

Q(-s1,-s2) and is an odd polynomial if Q(sy,s2) = -Q(-51,-52).



1.2.4.1 Stability conditions for Generalized Bilinear Transformation [23]

We have to get the stability conditions for the bilinear transformation which we
will employ. Here we first consider the one domain only.
Theorem 1.1 When k; > 0, the condition for stability for the generalized bilinear

transformation applied to analog transfer function are:

EES (1.8)
i) [ by <1 (1.9)
iii) ajb; <0 (1.10)
Proof: Let,
s1=0j +jo; (L.11)
zZ; = +jvy (1.12)

Substitute them into equation of the generalized bilinear transformation (1.7), we get,

=g v (@ b +ab, (1.13)
(u, +b,)* +v,°

_nbi-a) (1.14)

@1 = ki 2 2
(u, +b)" +v,

For the purpose of stability, it is required the imaginary axis of s; plane or 6; = 0 need to

be mapped to the inner or on the unity circle in the discrete z; domain.

n=u’+v <1 (1.15)
Let, u; =ricos @ (1.16)
vy =r1;5in¢ (1.17)

Substituting them into the equation (1.13), and for o, = 0, we can get the equation
% +(a; +b)ricosg +ab; =0 (1.18)

The roots of equation (1.18) are



(g +b1)cosgoi\ﬁa, +b,)* cos® p—4ab,
2

r2 (1.19)

The magnitude of the roots should not be greater than unity. The roots have their
maximum values at ¢ = T x. The corresponding roots are
rn=*a (1.20)
r;=1tby (1.21)
Thus it is proved that
|ai|<1 (1.22)
|bs|<1 (1.23)
Also for the stability, the unity circle in the discrete domain should be mapped to

the closed left of s; plane. That requires 6, < 0 for r; = 0, hence from (1.13) we can get

aib; <0 fork; >0 (1.24)
or ajb; >0 fork; <0 (1.25)
Without any loss of generality, we can assume k; to be positive, then a; and b,
should be of opposite signs. Thus Theorem 1.1 is proved. The results obtained here can

be extended to the two domains. The theorem can be applied in 1-D and 2-D cases.

1.2.4.2 The mapping relationship [23]

For the imaginary axis in s;plane or 5; = 0, from (1.13) we have

u?+vi2+(a; + bu; +ab;=0 (1.26)

a, —b,

S Ay (@b (127



a, +b,

Equation (1.27) is a function of a circle, which the center is at (- , 0), with radius =

a : L o . oo
| ?bl | . That is to say, the imaginary axis in s; plane is mapped to the circle in the z
1

plane, and the left half plane of s; plane is mapped to the inner of the circle, and the right-

half plane of s, plane is mapped to the outside of the circle.

1.2.5 Two variable Hurwitz polynomial [1]

In a recent survey paper on the stability of multidimensional polynomials [2], Jury
has discussed the existence of more than one type of two-variable Hurwitz polynomials.
In the study of properties of two-variable reactance functions, Ansell [3] defined a two-
variable Hurwitz polynomial in the narrow sense as against the two-variable Hurwitz
polynomial in the broad sense, which is similar to the one-variable Hurwitz polynomial.

Finding this definition inadequate in the study of stability analysis, Huang [4]
modified this definition so as to avoid the zeros on the imaginary axes of the (s;, s;)
biplane and called the resulting polynomial a strict Hurwitz polynomial. As stated earlier,
the nonessential singularities of the second kind were not considered, and this has caused
the difficulty reported by Goodman [5]. As one is interested in the closed right half of the
(s1, s2) biplane in the study of the stability of transfer functions, it is desirable to include
the behavior of the polynomial at infinite distant points in the definition of Hurwitz
polynomials. Here a modified definition so as to avoid the second-kind singularities at
infinite distant points is proposed. To distinguish this class of polynomials from the
earlier classes, these are called Very Strict Hurwitz (VSH) Polynomials. In all, then, there

are four types of Hurwitz polynomials and their definitions are stated below in a slightly
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different form in terms of singularities rather than zeros as has been the common practice.
This has been done so as to facilitate a uniform definition for all the four types of
polynomials, differing only in the region of analyticity. In the following definitions,

‘ Da(s1,52) is a polynomial in s; and s; and Re (s) refers to the real part of s.

Definition 1.8 Dy(s,s2) is a broad sense Hurwitz polynomial (BHP) if 1 does

a (Sl 4 SZ)
not possess any singularities in the region
{(s1,52) |Re(s1) > 0, Re(s2) > 0,
| s1} <o, and | sy <o }.
Definition 1.9 D.(s;,s;) is a narrow sense Hurwitz polynomial (NHP) if B_(l——) does
a SX’SZ

not possess any singularities in the region
{(s1,52) [Re(s1) > 0, Re(sz) > 0,
|si <co,and | sy <c0}
U {( s1,52) [Re(s1) =0, Re(sz) > 0,
| 1] <oo,and | spf <0}
U {( s1,52) |Re(s1) > 0, Re(s2) = 0,

| 1] < oo, and sy <0 }.

. . 1
Definition 1.10 D,(s1,s2) is a strict Hurwitz polynomial (SHP) if ————— does not

a Sl > SZ
possess any singularities in the region
{('s1,52) [Re(s1) = 0, Re(sz) = 0,

1] <o, and |sg] < oo }.
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Definition 1.11 D4(s;,s;) is a very strict Hurwitz polynomial (VSHP) if —D—(l——) does
a\81,8;

not possess any singularities in the region
{(s1,%2) |Re(s1) > 0, Re(sp) > 0,
Is1] < o0, and |sy| <o }.
From these definitions, one can see that a VSHP is required to be necessarily a
SHP. From the 2-D digital filter design experience, to get a guaranteed stable digital filter
from the well-known bilinear transformation, the 2-D analog transfer function is required

to have a 2- variable VSHP as its denominator.

1.3 Design methods for 2-D Recursive Filters [20]

A recursive filter is one, which can be expressed in the form of a difference
equation of the input and output samples with finite orders. Unlike in the non-recursive
case, the design of 2-D recursive filter is more complex than the design of a 1-D one. The
main reason is the stability consideration. Stability test is more complex as the order of
the dimension increases.

To design a 2-D recursive digital filter expressed in the following equation

M, M,

Zzanzlmzzn

H(zi, z) =222 (1.28)

N, N,

ZZAuzlizzj

i-0 j=0

where, Ao = 1, Ajjand B, are real coefficients.
The main work is now is to choose the coefficients of Ajjand B, to approximate

the frequency response of the desire one, and the coefficients should make the realizable

filter stable.
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A popular method to design a 2-D recursive digital filter is to start from an analog
prototype filer, getting the analog transfer function, and then applying the double bilinear
transformations to the analog transfer function to design the digital filter. If we assign a
VSHP as the denominator of the analog transfer function, we can always obtain a stable
digital transfer function, if the well known bilinear transformation is used. However,
when the double generalized bilinear transformations are applied to the analog transfer
function with VSHP denominator, additional stability conditions need to be introduced to
guarantee the stability of the resulting digital filter. It is obvious that, the analog transfer
function with a VSHP denominator is always necessary in the situations to obtain stable

digital filters by the well known bilinear transformation.

1.4 Methods of generation of VSHP [8]

From the various properties of VSHPs discussed so far, it is possible to generate such
polynomials. Some of the methods used for this purpose are discussed below:
First Method :

In this method, the starting point is the generation of a SHP in 2- or n-variables first
This is always possible, because the input impedance or admittance of a k-variable
physically realizable network always represents an even or an odd part of a SHP in the
corresponding number of variables. Some of the possibilities are briefly discussed below:

i) In [9], the starting network is an n-port gyrator terminated in n-variables
reactances, each of degree unity. It has been shown that the determinant of
the immitance matrix yields an even or an odd part of an n-variable

Hurwitz polynomial. A SHP results by the addition of this determinant to
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its derivatives with respect to the n-variables. The resulting SHP in n-
variables can be converted to a 2-variable VSHP. A large number of
possibilities exist.

i) In [10], it is shown that, instead of taking the derivatives of the
determinant of the terminated n-port gyrator, one can make some of the n-
variables positive real constants, VSHPs can be generated. The number of
computations required can be considerably decreased.

iii) It is well known that a positive definite or positive semi definite matrix is
physically realizable [11-14]. Consider

D,=A%A's;+ BAB's; +RTR' + G (1.29)

where A, B and R are lower triangular matrices given by

B arg 0 0.. 0 ] (1.30)
agn az 0... 0
a3 ans ass 0
A=
L aln a2n a3n vee cee e ann__
(b 0 0 . . . 0T 1.31)
b12 bzz 0... 0
b3 bas bss 0
B:
__b]n b2n b3n e e e bnn 1
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I 0
2 r»
13 I3
R=
. Tin Ion

33

I3p

vy, AandI" are diagonal matrices given by

WV=diag [yi, v2, ... ... A
A=diag [A, 22, ... ... eee An]
' =diag [y;, y2, ... ... A

And G is a skew-symmetric matrix given by

0 g12
g2 0
~£13 -823
G=
L_~Zin -8an

g13
£23...

-23n

I'nn

gln_
Z2n
23n

(132)

(1.33)
(1.34)

(1.35)

(1.36)

The matrices A, B and R can be upper-triangular also. If all the y;’s, Ai’s and ;s are

positive, A, B and R are positive-definite matrices, and they are physically realizable.

Some of wi’s, A’s and yi’s can be made equal to zero without affecting physical

realizable, because in such cases A B and R become positive semi-definite matrices

respectively. If I' is null matrix, determinant of D, becomes a strictly even or strictly odd
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polynomial depending on whether n is even or odd. In such a case, by the use of
derivatives, it has been shown that suitable VSHP can be obtained.
Second Method :

One of the simplest methods of generating a VSHP is to start from the VSHP

D, (s1, $2) = a118152 + 21081 +agis2 + ago (1.37)
For the reactance function so obtained as

8158, +ag

Gai(s1, 82) = (1.38)
8,08, +2,,5,

One can apply the transformation

51— 2S5 ¥ 0 (1.39)

bs, +by,s,
where b;;> 0, bjg> 0, bg; >0 and bgy > 0
which results in
_ P,(s,,5,)

Gax(s1, $2) = m (1.40)
where
Paa(s1, 52) = a11biis182” + aoobiosy + (a11boo + agobor)sz (1.41)
Qax(s1, 52) = 20152 + (210b11 + a01b10)s152 + a10boo (1.42)

The polynomial Dg(s1, S2) = Paa(s1, s2) + Qa2(s1, s2) is a VSHP in which s; is of

unity degree and s; is of second degree. When the transformations s as in (1.39) and

C,,S;S, +C
5y — w3152 T oo (1.43)
€108 TCp8;

where, c;1> 0, c10> 0, co1 >0 and cgo > 0
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are applied simultaneously for Gai(si, s2) in (1.38), the resulting VSHP contains s; and s;

of second degree each. The resulting reactance function is given by

P(s,,8,)

OS50 = 5 60052)

(1.44)

where, Pu(s1, 82) = aibiiciisi’ss” + aooboocios:® + (aooboiCor + acoboicor + aribogerr +
a11b11Co0)s1S2 + a0obo1cors2” + a11booCoo (1.45)
and Qu(s1, S2) = (atobiicio + aorbroci1)si’sz + (arobiicor + aoibiocii)sisa® + (aioboocio +
a01b10co0)s1 + (a10booCor + ag1boicoo)sz (1.46)
If higher order VSHPs are desired, these transformations can be repeated.
Third Method :
In certain cases, product-separable denominators of the type Dai(s1).Daz(s2) may
Be required. It is obvious that D,i(s;) and Da(sz) shall be SHP in s; and s;. Such
denominator polynomials can be generated by
a) the substitution of s; =s;=sin (1.29) or
b) either making A; =0 or B; =0 in (1.29).
Then the required polynomials are associated with Dy;(s;) and Da(sz).
Alternatively, one can generate Schur polynomials [27] directly in the discrete
domains. In this method, it is shown that any discrete-domain polynomial can be

decomposed as

Du(z) = Zq:dizi =Fy(z) + Fa(2) (1.47)

i=1

where, Fi(z) is the mirror-image polynomial given by
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% [D(z) + 2°D(z )] (1.48)
and  Fa(2) is the mirror-image polynomial given by

% [D(z) - 2Dz )] (1.49)

It is further shown that D(z) will be Schur polynomial, if and only if the following

conditions hold:

d

=21 <l 1.50
i) a. (1.50)

ii) When q is even:

q2

Fi(z) =K. | [ 2" -2a;z+1) (1.51)
i=l
and
(q-2)12
Fiie)=(@Z-1) [[@ -2biz+D) (1.52)
i=1l
with
1>a >b>a> [0 b(q_z)/z > g2~ -1 (1.53)
iii) When q is odd
(g-1)/2
Fi(z) =Ko(z+) [ —22;z+D) (1.54)
i=l

18



and

(q-2)2

Fa2)= (-1 [[@ -2biz+]) (1.55)

with
1>a1>b1>a>by> ... ... .. ... > 8q-1)2 >b(q.1)/2 > -1 (156)

Hence, D(z;) and D»(z;) can be generated independently and can be used in the

design of 2-D filters [15,16].

Now, depending on the filter desired, a suitable numerator is associated with the
VSHP so generated. This gives the transfer function in the 2-D analog domain and the
various coefficients have to be determined. By applying the bilinear transformations s; =
(zi — D/Nzi + 1), i = 1, 2, the transfer function in the discrete domain is
obtained [17,18]. In the case when such polynomials are generated directly in the 2-D Z-
polydomain, the bilinear transformations are not required and one can proceed with the

designs directly.
1.5 Scope and Organization of the Thesis

The objective of the thesis is to get a new approach of the design of a 2-D recursive
digital filter, which has variable magnitude characteristics in the frequency domain. To
design a stable recursive digital filter, we start from a typical Bridged-T network.
Researchers did not try before with Bridged-T network for the design of digital filter. To
ensure stability we start with Very Strict Hurwitz Polynomial for designing doubly

terminated Bridged-T network in the analog domain. To get the digital filter whose
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characteristics are changeable, one or more of the coefficients of the digital transfer
function should be variable. The generalized double bilinear transformation is one of the
processes that can introduce variable coefficient into the transfer function of the resulting

digital filters.

In chapter 2, at first we introduce Bridged-T network circuit. Then we discuss
thoroughly the procedure for testing whether a polynomial is VSHP or not. Then we test
all the possibilities of the transfer function for VSHP. There are four impedance arms in
the Bridged-T circuit. So there are many combinations for the four arms with inductances
and capacitances as s; and s; variables. Here we arrange two tables for different
combinations of impedances. In TABLE 2.1 we get nine cases which are VSHP and nine
cases which are not VSHP. In TABLE 2.2 we get seven cases for the VSHP and eleven
cases for not VSHP. In this chapter we give brief discussion about the testing method for
VSHP and then compare with the fourth order Butterworth polynomial to the transfer
function of the Bridged-T network, we find the impedance values of the transfer function

those which are VSHP.

In chapter 3 we analyze and design the digital filter from VSHP transfer function.
From the TABLE 2.1 and 2.2 we get total sixteen possibilities whose transfer functions
contain VSHP. Then we compare them with the fourth order Butterworth polynomial to
make the equations for finding impedance values. But unfortunately for the most of the
cases there are not enough equations to solve the impedance values. Here we get total
three cases from the TABLE 2.1 which we can find the impedance values. In this chapter
at first we give the total design procedure of digital filter for the Case of 7 from TABLE

2.1. In this case we choose different values of source and load resistances (R; Rz) and get
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different values of impedances. Here we discuss the two different cases for the R; and R,
At first we consider the R; = 0.6, R, = 0.4 and then R; = 0, R, = 1. To investigate the
manner in which each coefficient of generalized bilinear transformation affects the
magnitude response of the resulting 2-D digital filters, we change the value of the
deserving coefficient or coefficients while fixing the other coefficients to the specified
values. Then we discuss about the design procedure for the Case 13 from TABLE 2.1.
From the Case 13, we get also different combinations of R; and R,. We design filter for
R; = 0.6, R, = 0.4 for comparing with other cases. And then we also design for the Case

17 from TABLE 2.1 with R; = 0.6, R, = 0.4.

In chapter 4 we compare the magnitude response curves of three different cases from
TABLE 2.1 which we get from chapter 3. We compare the effect of each bilinear
transformation coefficient on different impedance values of the transfer function of the

Bridged-T network.

The conclusions and the directions for future work are given in chapter 5.
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Chapter 2

Design procedure to make digital filter from Bridged-T Network

i 1
Zs
]
R
M- )
y2 Z3

Figure 2.1 A typical Doubly Terminated Bridged-T Network
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Networks having impedances (capacitances and inductances) will have a
frequency and phase response, either or both of which may be advantageous to the
engineer in circuit application for filter design. Doubly-terminated Bridged-T Network,
as represented by figure 2.1 is advantageous in that they are the least sensitive to small
variations in component values. In this circuit R; and R, are the source and load
resistances respectively where the main bridge network is in the dotted portion.

We can create a 2-D analog filter system by setting the impedances values of Z;,
73, 73, 74 as inductors and capacitors in the s; and s; variable.

After putting the values of Z;, Z,, Z3, Z4 we have to verify whether the transfer
function is VSHP or not. The method of testing VSHP is described in this chapter. In our
thesis we tried many possible ways by putting the different impedance values of Z,, Z,,
Z3, Z4. Among them we got some transfer functions which are not VSHP and some are
VSHP. Among the transfer functions which are VSHP, some are complicated to
determine the value of impedance and resistance values of the transfer function Ry, Ry, L.
C. For finding these values we have to compare our transfer function with fourth order
Butterworth Polynomial. After finding the values of impedance variable we have to apply
generalized bilinear transformation to get recursive digital filter.

With the help of node analysis we can find the equation of the transfer function of
this circuit (Fig 2.1).

Vo = RyT/ [Ri(T+ Z3Z4) + Ro(THZ1Za) + RiIRY( Zy + Zs + Zg) + Zo(T = ZoZg)]  (2.1)

where, T= Zy Z4+ 72723+ 2,25+ 7Z1Z,

So, applying the different values of Z,, Z,, Z3 and Z, we test whether it is VSHP or not.
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Now we have to explain how to determine whether a given polynomial is a VSHP

or not.

2.1 Methods to determine whether a given polynomial is a VSHP or not [8]

In order to determine whether a given two variable polynomial D,(s;,s;) is a VSHP or
not, we have to first determine whether it is SHP or not. For this purpose, the following
procedure shall be adopted:

i) Determine that D, (s;,1) is SHP in s;.

ii) From the given polynomial D, (s},s2), formulate
Dy(jon,joz) = [Af@)o® + Api(@)e®! + ... Ax(o)o® + Ao+
Ao(mz)] +j[Bp((,02)(01p + Bp_l((Dz)(D]p'l + ... Bz(mz)mlz + B]((Dz)(l)ﬁ‘ Bo(COQ)]

(2.2)
where, Aj(®z) and Bi(wy), i = 0,1,2,.....p are polynomials in w,.

iii)  Now (2.2) shall be rearranged in the form of Inners as follows:

B p p-1 Bp-2 0 0 0
(] Bp B p-! --- - - - 0 0 0
0 0 Bp - - 0 0 0
0 0 0 B p B p-1 B p-2 B p-3 - - -
0 0 0 0 B p B p-1 B p-2

0 0 0 0 AD Av-l Ap—2 -- -— -
0 0 0 Ap Ap- 1 Ap-2 Ap-3

0 0 Ap 0 0 0
0 Ap Ap-] - 0 0 0
Ap Ap- 1 Ap-2 --- --- --- - 0 0 0
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iv) In order that Dy(s,s2) is a SHP, it is required that the inner determinants Ag>
0,k=1,2,...... p, for all w,.
V) If the certain conditions of D,(s;,s;) are satisfied then we can concluded that

the given Da(s1,s2) is a VSHP. The conditions are :

Da(sl,i) * 9, ass;— 0Oands;, — 0
s, 0

Da(i,sz) * —g, ass;— 0ands; — 0

5y
Da(i,—l—)qﬁ -q,as s;i— 0ands; — 0
S, S, 0

In this thesis we use the procedure (v) for testing the polynomial whether it is

VSHP or not.

2.2 Testing Results of the Transfer Function of our circuit

In the Bridged-T network we have four impedances and two variables (si, $;). So
there are many ways to put the different values. In TABLE 2.1, for the cases of 1-16 we
put s variable in Z;, Z3 and s, variable in Z,, Z4. In case 17, it is similar to the case 7, just
interchange the s variable in Z4 arm to observe if there is significant change or not. In
case 18, it is also similar to the case 8, just interchange the s;, s; variables in Z3 Z4 arms
of figure 2.1.

In TABLE 2.2, for the cases of 1-16 we keep the inductances and capacitances
remain same position with their respective arms with respect to TABLE 2.1, just change

the values of s; and s,. In case 17, it is similar to the case 7, just interchange the s variable
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in Z4 arm to observe if there is significant change or not. In case 18, it is also similar to

the case 8, just interchange the s; s, variables in Z3 Z4 arms of figure 2.1.

TABLE 2.1

Case Z, Z Z3 Z4 VSHP or
Not

1. siLy ) silsa sola Not VSHP

2. siLy s2l siLs 1/(52C4) Not VSHP

3. silg s2l 1/(1C3) Sl VSHP

4. sily ol 1/(5:1Cs) 1/(s2Cs) VSHP

5. s1L; 1/(52C3) siLs3 sola Not VSHP

6. siLg 1/(s2C2) 1/(52Cs) 1/(s1Cs) Not VSHP

7. siLy 1/(53C») 1/(s:Cs) SoLa VSHP

8. siL1 1/(s2C5) siL3 1/(52Cy) Not VSHP

9. 1/(s1Cy) s2lo siLs LA VSHP

10. 1/(s1Cy) s2l siL3 1/(s:Cy) VSHP

1. 1/(s1Cy) sl 1/(s1C3) Sala Not VSHP

12. 1/(s:1Cy) szl 1/(51C3) 1/(s2Cs) Not VSHP

13. 1/(s1Cy) 1/(s2C2) sils SoLa VSHP

14. 1/(s1Cy) 1/(s2Cy) siLa 1/(52Cs) VSHP

15. 1/(s1Cy) 1/(s2Cy) 1/(5:Cs) SoL.a Not VSHP

16. 1/(s1Cy) 1/(s52C2) 1/(51C3) 1/(52Cs) Not VSHP

17. siLi 1/(52Cy) 1/(51C3) siLa VSHP

18. siLy 1/(s,Cy) sol3 1/(s1Cq) VSHP
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TABLE 2.2

Case Z Z Z3 Zy4 VSHP  or
Not

1. solg sala siL3 siLa4 Not VSHP

2. soLy s2la siLs 1/(51C4) Not VSHP

3. oL sl 1/(s1Cs) s1Las Not VSHP

4. solg solo 1/(51C3) 1/(51C4) Not VSHP

5. s2Lg 1/(s2C3) siLs3 siLa VSHP

6. oLy 1/(52C2) 1/(s2C3) 1/(s1Cs) VSHP

7. s2L U(s2C) | U(s1Cs) SiLa VSHP

8. oLy 1/(s2C) siLs 1/(s1C4) VSHP

9. 1/(s2Cy) salo siLs L4 Not VSHP

10. 1/(s2C1) sl siL3 1/(s1Cs) VSHP

11. 1/(s2C1) sl 1/(s1Cs) siLs4 VSHP

12. 1/(s2C1) sl 1/(51Cs) 1/(s1Cs) Not VSHP

13. 1/(s2C1) 1/(s2C2) siL3 siLa4 Not VSHP

14. 1/(s2C1) 1/(s2Cy) siLs 1/(s1Cs) Not VSHP

15. 1/(s2C1) 1/(s2C7) 1/(s1C3) siLa VSHP

16. 1/(s2Cy) 1/(s2C2) 1/(51Cs) 1/(s1Cs) Not VSHP

17. sal 1/(52C2) 1/(51Cs) A Not VSHP
| 18. s;L 1/(52C2) siL3 1/(s,C4) Not VSHP

The required details of these tables are given in section 2.4.
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2.3 Fourth order Butterworth Low Pass Filter Network

Now we begin to design 2-D filter. For this we have to find the values of input,
output resistances and capacitances/inductances of these four impedances. Here we
consider a fourth order 1-D low pass Butterworth polynomial and compare to our transfer
function equation to find the values of C, L and R.

We know, the transfer function of fourth order Butterworth low pass filter
(analog) is

Tip (s) = 1/ (s* +2.6131259s> + 3.4142136s% + 2.6131259s + 1) (2.3)
From TABLE 2.1 we get nine values which transfer function is VSHP and nine values

which are not.

Now we will discuss all the results of TABLE 2.1.

2.4 Transfer function of the Bridged-T network which is not VSHP (case T1-1)

Here in the Bridged-T network we put inductances in Z; Z,, Z3 and Z4 in equation

@.1).

We get,

\Y

V—(fl—s—)) = (LLaRos2* + LiLoRossso + RoLiLas? + RoLoLasiss) /(RiLaLasa? + RoLoLisy?
in SI’SZ

+ RiLiLasi? + RoLiLss)® + RiLalasis; + RiLiLosis; + RyLsLasis; + RoLoLasisy +

RleLzsISZ + R2L1L45182 + R]Rlesx + R1R2L351 + R1R2L482 + L2L3L451522 + L1L2L4S1522 +

LiLsLasi®) 24

Now we apply the procedure (v) of article (2.1) then we see
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1
Vo (Sla:)

2

1
Vi (845 S—)

2

,ass;— O0ands; — 0

oo

So, Yo81:82) 1ot vSHp,
V.. (5,8;)

2.5 Transfer function of the Bridged-T network which is not VSHP (case T1-2)

Here in the Bridged-T network we put inductances in Z;, Z,, Z3 and capacitance in
Z4 in equation (2.1).
We get,

Vo (Sl’sz)

V. G.5,) = ( Rylosy + RoLoLsCasi®sy + RoLiL3Casi® + RoLiLoCasi®sy) / (RiLosy +
in (8158,

RoLos; + RiLaLaCasi?sy + RiLiLaCasi?sy + RaLoLsCasi®sy + RoLiLaCasi?s + RiLiLsCasy®
+ RzL1L3,C4S13 + RiRy + R1R2L1C4S12 + R1R2L3C4512 + L1L3S12 + L,Lssysy + LiLasisy +

RiLss; + Ralisi) 2.5)

Now we apply the procedure (v) of article (2.1) then we see

1
Vo(slﬁ';_) 0
———13—— = a,assl—>0andsz—>0
Vi (s1,—)
SZ
So, ol81:82) o0t v,

?
Vi, (8158,)
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2.6 Transfer function of the Bridged-T network which is VSHP (case T1-3)

Here in the Bridged-T network we put inductances in Z;, Z,, Z4 and capacitance
in Z3.
Putting the value of Z,, Z, Z3 and Z4 in the equation (2.1) and make it 1-D, i.e., put s; =

s;= s and then we find

\"
‘VO—((S))‘ = (33(R2L2L4C3 + R2L1L2C3) + S(R2L2 + Ry;Ly)) / (S4L1L2L4C3 + 53(R1L2L4C3 +
in S

RoLoL4Cs + RiLiLoCs + RoLiLoCs + RoLiL4Cs) + s*(RiR;L1Cs + RiRL4Cs + LiLg +
LoLg) + s(RiLz + RiLs + RoLy + RiL; + R3Ly) + RjR2) (2.6)
If we equate the coefficient of s in the denominator of equation (2.3) and (2.6) then we
get five equations.

LiLL4Cs=1 --- --- --- (2.6.1)

R;L,L4Cs + Ryl LsCs + RiLiLoCs +

RoL1L;Cs + RyLiLyCs = 2.6131259 - (262)
RiR,L;Cs + RiRoL4Cs + LiLg + LoLg = 3.4142136 (2.6.3)
RiL; + RyLs + RoLy + RyL; + RyLy =2.6131259 — (264
RRy; =1 -- (2.6.5)

and if we equate the coefficient of s in the numerator of equation (2.3) and (2.6) then we

get one equation.
L2L4C3 + L1L2C3 = L1 + L2 -— = -— (266)
It is noted that for ease of the calculation here we put the value of angular frequency w =

1.

Now using these six equations we can’t solve for the values of Ry, Ry, Ly, Lo, La,

C; and hence is not considered.
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2.7 Transfer function of the Bridged-T network which is VSHP (case T1-4)

Here in the Bridged-T network we put inductances in Z,, Z, and capacitances in
Zs, Zs.
Putting the value of Z;, Z,, Z3 and Z4 in the equation (2.1) and make it 1-D, i.e., put s; =

s> =s and then we find

V\% = (s RoLyCs + C3 Ry Ly + C4RyLy) + s'CiC4RoLiL; Y (SH(CsC4RILIL, +
in S

C3CaRLILy) + $°( CsCRIRoL; + C3Lily) + s3(CsRaLi+ CoRiLot+ CaRyLot+ CsRiRy+
CiRiLi+ GiRoly + C4RoLy) + 8(CaRiRz + Lz + Ly + RiRCa)+ Ry ) 2.7
If we equate the coefficient of s in the denominator of equation (2.3) and (2.7) then we
get five equations.

C3C4R1LiL, + C3CaRoL Ly = 1 --- --- --- 2.7.1)
C3C4RiRoL; + C3L1L2=2.6131259 --- --- --- 2.7.2)

C3RoL 1+ C4R Lo+ CyRolo+ C3RiRo+ C4R L1+ C3RyL, +

C4RoL1=3.4142136 --- -- (2.7.3)
C:RR+1,+ 1,4 +RiR,C3 = 2.6131259 - -—- - (274)
Ry=1 - (2.7.5)

and if we equate the coefficient of s in the numerator of equation (2.3) and (2.7) then we
get one equation.

C3CLiLy = LaCs + C3 Ly + Gyl --- --- --- (2.7.6)
It is noted that for ease of the calculation here we put the value of angular frequency o =

1.
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Now using these six equations we can’t solve the value of Ry, L;, Ly, Cs, C4 and

hence is not considered.

2.8 Transfer function of the Bridged-T network which is not VSHP (case T1-5)

Here in the Bridged-T network we put inductances in Z;, Z3, Z4 and capacitance
in Z> in equation (2.1).
We get,

V, (s,
—D—(Eli)- = (R2L482 + R2L1L3C281282+ Rolssy + R2L1S1) / (L]L3L4C2S]2822 +
Vin (SI’SZ)

R2C2L1L331252 + RjLss; + RiLis; + RaLss; + RoLygsy + C2R1L1L3512$2 + C2R2L1L4S1522 +
C2R1L3L451822 + C2R1R2L15]Sz + C2R1R2L38152 + L3L4S152 + L1L45152 + C2R1R2L4522 +

R1L452 + R2L4S;),) (2.8)

Now we apply the procedure (v) of article (2.1) then we see

1
Vo(SpS—) 0
———12—— = a,assl——>0andsz—->0
Vin (sl’_)
S,
0, —Y"-(—S"S—Z) is not VSHP.
Vi (5158,)

2.9 Transfer function of the Bridged-T network which is not VSHP (case T1-6)

Here in the Bridged-T network we put inductance in Z; and capacitances in Z,, Z3

and Z4 in equation (2.1).
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We get,

V. (s,

Q—O—((—Sl—'-s-z—))— = (C3Rys; + C4Rys; + R2L1C2C451282+ R2L1C3C4S1252) / (C2C3C4R1R2L1812522
in {8155,

+ C2C4R1L151252 + C3C4R1L181282 + C2C4R2L151252 + C3C4R2L151282 +R1Css1 + RyCysy +

CoC3RaLisis® + CoCaRiRosisy + Colisisy + CaLisis; + CoCsRyRosy” + 1+ CaRys; +

CsRas; + CoRs7) 2.9

Now we apply the procedure (v) of article (2.1) then we see

1
Vo (S[’”—)
_ "2
1
Vin (Sl’—)
S

2

=%,assl—>0andsz—>0

V. (5,,5,) .

So, is not VSHP.
Vi (8158,)

2.10 Transfer function of the Bridged-T network which is VSHP (case T1-7)

Here in the Bridged-T network we put inductances in Z;, Z4 and capacitances in
72y, Z3.
Putting the value of Zi, Z5, Z3 and Z4 in the equation (2.1) and make it 1-D, i.e., put s; =

s, = s and then we find
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A%

v"—((sl) = (Ry + $*(CsRaLy + CsRaLs + CoRoLy)) / (s*CoC3RaLiLs + s%(C2C3RIRoLy +
in S

CsLiLg + CoC3R1RoLs + CoLiLy) + Sz(C3R1L1 + C3R3L, + CoRLs + C3R1Lg + CoR(Ly +

CsRoLg + C2R2L1) + s(CoR1R; + L4) +R; + Rz) (2.10)

If we equate the coefficient of s in the denominator of equation (2.3) and (2.10) then we
get five equations.

CoCRoLILs =1 --- --- --- --- (2.10.1)
C2C3R1RoL  + CsLyLy + CoC3R Ry + CoLliLy = 2.6131259 (2.10.2)

CsRiL; + C3RoLy + C3RLs + CsR( Ly +

CaRiL; + CaRyLg + CoRoLy = 3.4142136 - (2.10.3)
CoRiR; +L4=2.6131259 - — (2.10.4)
R, +Ry=1 —  (2.105)

and if we equate the coefficient of s in the numerator of equation (2.3) and (2.10) then we
get one equation.
GL+Cls+C L =1 --- --- - - (2.10.6)
It is noted that for ease of the calculation here we put the value of angular frequency =
1.

From these six equation for different values of R;, R, we get the values of

inductances and capacitances.

Thus we make a TABLE 2.3 for finding the different impedance variables (For

the case 7).
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TABLE 2.3

Case | R R; L, L, C C;

Do 1 06340 | 2.6131 0.6532 0.9238
2) |03 0.7 0.0462 1.1756 | 6.8454 3.8389
3 |04 0.6 0.1708 | 0.7981 7.5628 1.6170
2 |05 0.5 02977 | 0.5995 8.0546 13914
5 |06 Toa4 0.5807 | 0.4455 9.0316 1.0699
& 07 0.3 79596 | 03152 10.9425 | 0.1231

After finding the impedance value then we can design the digital filter. The detailed

design procedures for digital filter are described in the next chapter.

2.11 Transfer function of the Bridged-T network which is not VSHP (case T1-8)
Here in the Bridged-T network we put inductances in Z,, Z3 and capacitances in
Z, Z4 in equation (2.1).

We get,

%’1((51&)5 = (Ry + CuC4RL1Lsi %)™+ C4R;Lys1s,> + CaRolsssg) / (C2CaR LyLssi®sy*
in 51535,

+C2L1L351252 + C2R1R252 + L]S] + L3S1 + R1 + R2 + C2C4R2L1L3812$22 + C2C4R1R2L151522
+ C2C4R1R2L351822 + C4RiLssis; + C4R Lysisz + CaRiLss sy + C4Rolss sy + C4RoLgss;
+ CaR;L1s182) (2.11)

Now we apply the procedure (v) of article (2.1) then we see
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1
Vo(sl’:)
2

1
Vin (Sl » ;—)

2

=%,ass.—>0andsz—>0

o Vo(sl’s2)
Vi (5,58,)

is not VSHP.
2.12 Transfer function of the Bridged-T network which is VSHP (case T1-9)

Here in the Bridged-T network we put inductances in Z;, Z3, Z4 and capacitance
inZ;.
Putting the value of Z;, Z,, Z3 and Z4 in the equation (2.1) and make it 1-D, i.e., put ;=
s»=s and then we find

Vo (s)
Vin (S)

= (s*(RoLoL4Cy + RoLoLsCy) + s(RoLs + RaLo)) / (s*LaLsLaCy + s’ (RiL,LsCy +

RoLoLsCy + RiLoLsCy + RiL3L4Cp + RoLoLaCh) + s*(RiR,LsCp + RiRoL4Cy + LaLg +
LoLg) + s(RiLz + Ryl + RoLg + RiL3 + RoLs) + RiRy) (2.12)
If we equate the coefficient of s in the denominator of equation (2.3) and (2.12) then we
get five equations.

LoLsL4Cr =1 --- --- --- (2.12.1)

RiLoL4Cy + RoLoL4Cy + RiLoLsCy +

RiL3L4Cy + RoLoLaCy = 2.6131259 - (2.122)
RiR,L;Cy + R{RL4Cy + LaLy + LoLy = 3.4142136 (2.12.3)
RiL, + RoLy + RyLg + RyLs + RoLs = 2.6131259 — @2.124)
RiR;=1 - 2.12.5)
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and if we equate the coefficient of s in the numerator of equation (2.3) and (2.12) then we
get one equation.
L,L4Cy+ LoLsCi= L+ Ls - --- - (2.12.6)
It is noted that for ease of the calculation here we put the value of angular frequency w =
1.

Now using these six equations we can’t solve for the values of Ry, Ry, L, L3, Ly,

C; and hence is not considered further.

2.13 Transfer function of the Bridged-T network which is VSHP (case T1-10)

Here in the bridge network we put inductances in Z, Z3 and capacitances in Zi,
Zy.
Putting the value of Z, Z,, Z3 and Z4 in the equation (2.1) and make it 1-D, i.e., put s; =

s, = s and then we find

\\;l’—((s’)) = (s%RgL2Cs + CiRoLy + C4Rols) + s* CC4RyLoL3) (s(CiCqR{L,Ls +
in S

CiCsRoLoL3) + s°(CiC4R1RaLs + CiL,Ls) + s%(CiRiLs + C4RiL, + C4RoL; + CiRIL, +
C4RiL3 + CiRzL; + C4RoL3) + s(CiR Ry + Ly + L + RiIR2Ci)+ Ry) (2.13)
If we equate the coefficient of s in the denominator of equation (2.3) and (2.13) then we
get five equations.

CiC4R L3 + C1C4R2L2L3 =1 --- --- --- (2.13.1)
CiC4RiR,Ls + CiLols =2.6131259 --- - - (2.13.2)
CiR L3 + C4R; Ly + C4RoL: + CiR Ly + C4R L3 + CiRoL, +

C4RoL3=3.4142136 --- - (2.13.3)

C:RiRy + L + L3 + RiRyCy =2.6131259 - - - (2.13.4)
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Ry=1 --- --- --‘- --- --- (2.13.5)
and if we equate the coefficient of s in the numerator of equation (2.3) and (2.13) then we
get one equation.
CiC4loLls=L1LyCq + CiLly + Cyls --- --- - (2.13.6)
It is noted that for ease of the calculation here we put the value of angular frequency o =
1.

Now using these six equations we can’t solve the value of R;, L, Ly, C;, C4 and

hence is not considered.

2.14 Transfer function of the Bridged-T network which is not VSHP (case T1-11)
Here in the Bridged-T network we put inductances in Z,, Z4 and capacitances in

Z,, Z3 in equation (2.1).

We get,

\l;-‘%sl-’-ﬁ-))— = (Rz + LoC3Ro8182 + R2L2L4C1C3S12522 + RszC]Slsz) / (C1C3R1L2L4512522 +
in SI’SZ

C1C3R2L2L4812522 + C1C3R1R2L481282 + C3L2L451$22 + CiRyLzs1sz TR1R2Css; + RiRoCysy
+ C1L2L451522 + C3RiLyss; + CiLaRysisy + CiRoLgs sz + CsRpLasisz + RaLaCssisy + Ry
+Ry+ Lussy ) (214)

Now we apply the procedure (v) of article (2.1) then we see

1
Vo (sl’ ;—)

2 =

,ass;— O0and s, — 0

oo

1
an (515 g—)

2

So, YeS1:52) 4o h ot vSHP,
V.. (51,8,)
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2.15 Transfer function of the Bridged-T network which is not VSHP (case T1-12)
Here in the Bridged-T network we put inductance in Z; and capacitances in Z,,

Z3, Z4 in equation (2.1).

We get,

Vo (51552)
Vi (8158;)

= (R2L2C1C351252 + R2L2C1C4S1822 + RyCysy + R2L2C3C451822 ) 7 (RiCysz
+R1L2C1C4S1522 + R1L2C3C481822 + R2L2C1C451522 + R2L2C3C4S1522 + RoCusy + RiCysy +
RyCssy + RiR2C35Cs152 + RpCasy + RiR2CiCasisz + LoCysysy + LaCasisy +R|R2C1C3S12 +1
+ R1L2C1C351252) (2.15)

Now we apply the procedure (v) of article (2.1) then we see

1
Vo (817;—) 0
———Tz— = a,assl—ﬂ)andsz—-»O
Vi 51,—)
S,
So, Yo(81282) 10t VSHP.
Vi (8,58,)

2.16 Transfer function of the Bridged-T network which is VSHP ( case T1-13)

Here in the Bridged-T network we put inductances in Z3, Z4 and capacitances in
7\, Z,.
Putting the value of Z), Z,, Z3 and Z, in the equation (2.1) and make it 1-D, i.e., put s, =

s, = s and then we find

We have,
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%/2% = (R2 + s*(CiRoLs + CiRoLat+ CaRsLy)) / (s*CiCRLsLy + s°(CiCRIR,L; +
in S

CiLsL4 + C1CoRRoLy + CoLlsLy) + s3(CiR L3 + CiRoLs + CoRoLy + CRyLy + CR(Ls +
CiRoLs + C2RoL3) + s(CoRiR, + Ls) + Ry + Ry) (2.16)
If we equate the coefficient of s in the denominator of equation (2.3) and (2.16) then we
get five equations.

CiCRiL3Ls=1 --- -~ --- e (2.16.1)
CiCRRoLs + CiLsls + CiCoRiRoLy + CoLsLy =2.6131259 (2.16.2)

CiRiL3 + CiRyL; + CoRoLs + CiR Ly +

CaRiLs + CRyLs + CoR,L; = 3.4142136 (2.16.3)
CRR; +Ls=2.6131259  --- - (2.164)
Ri+Ry=1 - —_— —  (2.16.5)

and if we equate the coefficient of s in the numerator of equation (2.3) and (2.16) then we
get one equation.
CiLs +CiLs +Cols=1 - --- - (2.16.6)
It is noted that for ease of the calculation here we put the value of angular frequency o =
L.
From these six equation for different values of R;, R; we get the values of inductances
and capacitances.

Thus we make a TABLE 2.4 for finding the different impedance variables (For

the case 13).
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TABLE 2.4

Case | R R> Ls L4 G G

D) 0.3 0.7 7.8305 0.3152 0.1233 10.9425
2) 0.4 0.6 0.3496 0.7225 1.2566 7.8762

3) 0.5 0.5 0.2977 0.5995 8.0546 1.3914

4) 0.6 0.4 0.1705 0.7981 1.6190 7.5626

5) 0.7 0.3 0.0462 1.1756 3.8406 6.8451

After finding the impedance value then we can design the digital filter. The detailed

design procedures for digital filter are described in the next chapter.

2.17 Transfer function of the Bridged-T network which is VSHP (case T1-14)

Here in the Bridged-T network we put inductance in Z3 and capacitances in Z;,
75, Zs.
Putting the value of Zy, Z;, Z3 and Z4 in the equation (2.1) and make it 1-D, i.e., put s; =

so= s and then we find

-\‘;‘)—((S)) = (s°(ReL3C1Cs + RoL3CaCy) + s(RoCy + RyCa)) / (s*RiIR2L3CI1CCy + $°(R1L3C1Cy
in S

+ RiL3C1Cy + RoL3CiCy +RL3CCy + R2L3C2C4) + SZ(R1R2C2C4 + RiR,CiCy + LsCy +

LsCy) + s(RiCy + RoCy + RiCy + RoCy + RoCp) + 1) (2.17)

If we equate the coefficient of s in the denominator of equation (2.3) and (2.17) then we
get four equations.
R1R2L3C1C2C4= 1 === . === (2.17.1)

RiLACiCy + R1L3CCy + RoL3CiCy+
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RiL3CCq + RoL3CoCy = 2.6131259 --- --- - (217.2)
RiR2CoCy + RiIR,CCy + LsCy + LsCy = 3.4142136 --- (2.17.3)
RiC; + RyC; + RiCy + RyCy + RyC2=2.6131259 --- -~ (2174
and if we equate the coefficient of s in the numerator of equation (2.3) and (2.17) then we
get one equation.
L3CiCa+ L3CoCy= C; +Cy --- --- - (2.17.5)
It is noted that for ease of the calculation here we put the value of angular frequency o =
1.

Now using these five equations we can’t solve for the values of R, Ry, L3, Ci, Ca,

C4 and hence is not considered.

2.18 Transfer function of the Bridged-T network which is not VSHP (case T1-15)
Here in the Bridged-T network we put inductance in Z4 and capacitances in Z,

Z,, Z3 in equation (2.1).

We get,

Vo (SI’SZ)

vV ( ) = (R2L4C1C351252+ RyCis+ RaCosy + RoCssy ) / (R2Cys1 + R1Cssyp + RoCysp +
in {8155,

RyCss1 + RiCasy + RoCasy + R1L4C1C281822 + R2L4C2C351522 + RiRyGCssysy +
RiR,CiCysi82 + LaCysisy + LaCssysy + R1R2L4C1C2C3512522 + R2L4C1C351282 +L4C2522 +

RiL4CCas1%s0) (2.18)

Now we apply the procedure (v) of article (2.1) then we see
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1

V,(s;,—)
s, _ 0
— —G,assl—-»Oandsz—»O
Vin (Sl’__)
S,
So, Yo(S1:52) 4o h o vsHp.

’ Vin (Sl’sz)

2.19 Transfer function of the Bridged-T network which is not VSHP (case T1-16)
Here in the Bridged-T network we put capacitances in Z;, Z3, Z3, Zs in equation
2.1).

We get,

V\—/—o—g(il—iz——))— = (R2C1C3812 + RyCiCysisy + R2C2C4822 + RyC3Cusisz ) / (R1C1C3812 +
in Sl>52

RzC1C3Sl2 + RiCiCssis2 + RoCiCasisz + RoCiCausisz + RoCsCusisy + RyCoCasisy +
RiC3Cys18; + R1C2C4522 + R2C2C4822 =+ R1R2C1C2C351252 + R1R2C2C3C481522 +

RiR,C1CyCas152° + Cys + Casg + Casy) 2.19)

Now we apply the procedure (v) of article (2.1) then we see

1
Vo (Sl’—_——)

2

1
Vin (Sl * ;_)

2

,ass;— 0ands; — 0

olo

So, Ye(1:82) 4o vSHP.
Vi (8158,)
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2.20 Transfer function of the Bridged-T network which is VSHP (case T1-17)

Here in the Bridged-T network we put inductances in Z;, Z4 and capacitances in
Zs, Zs.
Putting the value of Z,, Zz, Z3 and Z,4 in the equation (2.1) and make it 1-D, i.e., put s; =
S2=S.
We have,

\"/

79-((—5)5 = (Rz + SZ(C3R2L4 + CRLy + C3R2L1)) / (S4C2C3R2L1L4 + S3(C2C3R1R2L1 +
in S

CsLiLs + C2C3R1RoLa + CoLiLa) + s((C3R1Ly + C3RoLy + CoR Ls + CaRiLs + CRILy +

CsRoLys + CRoLy ) + S(C2R1R2 +L4) + Ry +Ry) (2.20)

If we equate the coefficient of s in the denominator of equation (2.3) and (2.20) then we
get five equations.

CCsRoLiLs =11 --- --- --- --- (2.20.1)
C2C3R 1R, L + C3L Ly + CoC3R IR Ly + CoL Ly = 2.6131259 (2.20.2)

C3RiL; + C3RoL; + CoR Ly + CsRyLg +

CoR(L; + CsRoLs + CoR,Ly = 3.4142136 (2.20.3)
CRR; + L4 =2.6131259 - - (2204)
Ri+Ry =1 — — (220.5)

and if we equate the coefficient of s in the numerator of equation (2.3) and (2.20) then we
get one equation.

CGL+GLy+C L=t - --- --- (2.20.6)
It is noted that for ease of the calculation here we put the value of angular frequency ® =

1.
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From these six equations for different values of R;, R, we get the values of inductances
and capacitances.
Thus we make a TABLE 2.5 for finding the different impedance variables (For

the case 17).

TABLE 2.5

Case Ry Ra L, L4 G Cs

D) 0.3 0.7 0.8064 1.4375 5.5982 0.2201
2) 0.4 0.6 1.6139 1.8150 3.3253 0.1711
3) 0.5 0.5 0.3478 2.0137 2.3978 1.1908
4) 0.6 0.4 0.2568 2.1676 1.8563 2.4195
5) 0.7 0.3 0.0259 2.2979 1.5009 37.33

After finding the impedance value then we can design the digital filter. The detailed

design procedures for digital filter are described in the next chapter.

2.21 Transfer function of the Bridged-T network which is VSHP (case T1-18)

Here in the Bridged-T network we put inductances in Z;, Z3 and capacitances in
7o, Zs.
Putting the value of Z;, Z,, Z3 and Z4 in the equation (2.1) and make it 1-D, i.c., put s, =

s; = s and then we find
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VO(S]’SZ)

W = (Ry + s (CRyL; + C4Ril3) + s'CoCiRILIL3Y (S*(CoC4RILILs +
in {5158,
C2CaR,LiL3) + 8°( CoC4R R,L; + CoL L3 +CoCaR RoLs) + s*(C4RiL; + C4RoL; + CR Ls

+ C4RiL3 + C4RpLs + CoRoLy) +s( CoRjRy + Ly + L)+ Ry + Ry) 2.21)

If we equate the coefficient of s in the denominatér of equation (2.3) and (2.21) then we
get five equations.

CoCsRiLiLs + CoC4R L L= 1 --- --- --- (2.21.1)
CC4RiR,L; + CoLyLs + CoC4R RoL3 =2.6131259 --- (2.21.2)

CiRiL1 + C4RoL + CoR L3 + C4R L3

+C4RoLs + CoRoLy =3.4142136 - (2.21.3)
CRRy+Ls+L, = 26131259 - - (2214)
Ri+R; =1 - (2.21.5)

and if we equate the coefficient of s in the numerator of equation (2.3) and (2.21) then we
get one equation.
1+ CCyliLs = C4Ly +Cyls --- - - - (2.21.6)
It is noted that for ease of the calculation here we put the value of angular frequency » =
1.

Now using these six equations we can’t solve for the values of Ry, Ry, Ly, Ls, Cy,
C,4 and hence is not considered.

From TABLE 2.2 we get seven values which transfer function are VSHP and

eleven values which are not.

Now we will discuss all the results of TABLE 2.2.
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2.22 Transfer function of the Bridged-T network which is not VSHP (case T2-1)
Here in the Bridged-T network we put inductances in Z; Z,, Z3 and Z4 in equation

(2.1).

We get,

Vo (SI’SZ)
V., (5158,)

mn

= (L1L2R2822 + LoL4Rosiss + RoLiLssisy + R2L2L35182) /(R1L2L48182 +

RiL;Lssis; + RiLilssisy + Rolalasisy + Rololssis; + Rolilasis; + Rolilasisy; +
R1L1L2$22 + R2L1L2522 + R1L3L4812 + RiRoLysy + RiRoLast + RiRoLgs; + L1L2L4S[Sz2 +

LsLassi®s; + LiLsLasi’so) (2.22)

Now we apply the procedure (v) of article (2.1) then we see

1
Vo (SI,S_) 0
12 = a,assl—>0andsz——>0
Vin (Sl’—)
SZ
So, AACIEHN) is not VSHP.
Vi (8158,)

2.23 Transfer function of the Bridged-T network which is not VSHP (case T2-2)
Here in the Bridged-T network we put inductances in Z;, Z,, Z3 and capacitance in

Z4 in equation (2.1).

We get,

V,(s,,8,)

V. ) = ( Ralasy + RoloLsCasi®sy + RoLiLsCasi®sy + RoLiLoCasisy®) / (RiLasz +
in S1’S2

Rolos, + R1L2L3C4S1252 + R1L1L3C4S1252 + R2L2L3C481252 + R2L1L3C451252 =+
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R1L1L2C481522 + R2L1L2C451522 + RiR; + RiR,LCysysy + R1R2L3C4S]2 + LoLasisy +
LiLssisz + LiLos;” + RiLss; + RyLsy) (2.23)
Now we apply the procedure (v) of article (2.1) then we see

1

Vo(sl9—-) 0
———12— = a,assl—>0andsz—>0
Vin (Sl’_)
SZ
o, Yo01:52) oot vsHP.

’ Vin (SI’SZ)

2.24 Transfer function of the Bridged-T network which is not VSHP (case T2-3)
Here in the Bridged-T network we put inductances in Z;, Z,, Z4 and capacitance in

Zs in equation (2.1).

We get,

V, (s,

—\—]3—((—5—1—82—)) = ( Ralasy + RoLoLaCasi®s; + RoLisy + RoLiLoCssisy®) / (RiLasy + RiLisy +
in 51552

R1L2L4C381282 + R2L2L4C3S1252 + R2L1L4C351282 + L1L2L4C3512522 + R1L1L2C351522 +

R2L1L2C381522 + RjRy + RiR2LiCssys2 + R1R2L4C3512 + Lolysisy + Lilssisy + Rilasy +

RiL4s; + RzLis)) 2.249)

Now we apply the procedure (v) of article (2.1) then we see

1
VO(SI’S_) 0
12 = a,assl—>0andsz——>0
Vi (81,—)
5,
0 Vo(18,) is not VSHP.

s
Vin (SI’SZ)
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2.25 Transfer function of the Bridged-T network which is not VSHP (case T2-4)
Here in the Bridged-T network we put inductances in Z;, Z, and capacitances in

Z3, Z4 in equation (2.1).

We get,

Vo (51752)

V. (5) = ( RoLyCssis2 + RoLiLaC3Casi?sy” + RoLoCasisa + RoL1Casisg) / (RiLoCisisy
in SI’SZ

+ RiLoCssi8t RiLiCssisa + RoLoCasisy + RolaCasisy + RpliCasisy + RoLiCssysy +
R1L1L2C3C4512522 + Ry + R2L1L2C3C4S12322 + R1R2L1C3C451252 + RiR2Css1 + RiR,Cssy+

L1L2C3S1522 + Losy + L1Sz) (2.25)

Now we apply the procedure (v) of (2.1) then we see

1
Vo(sl’s-_) 0
———12— = a,assl—->0andsz—>0
Vin (SI’___)
2
So, Vo(51:52) o0t VSHP,
Vin (SI’S2)

2.26 Transfer function of the Bridged-T network which is VSHP (case T2-5)

Here in the Bridged-T network we put inductances in Z;, Zs, Z4 and capacitance
in Z,.
Putting the value of Z;, Z,, Z3 and Z4 in the equation (2.1) and make it 1-D, i.e., put s, =

s, =s and then we find
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V. (5)
Vi (5)

= (s(RzL4 + RaLs + RoLy) + 8°CaR,L L3 )/ (s*CaoLiLsLg + s°(CoR 1 LiLs + CoRaL4Ls
+ CyRyL1Lg + CoRiLsLy ) + S2(C2R1R2L1+ CoRIRoLs+ CoR RoLat LyLat LsLyg) + s(LaRy
+ L3Ry + LsRy+ LsRy + LR+ LiR3) (2.26)

If we equate the coefficient of s in the denominator of equation (2.3) and (2.26) then we

get four equations.

CoL\LsLs =1 (2.26.1)
CoRiLiLs + CoR,L L3 + CaRoLi Ly + CoRyLsLy = 2.6131259 - —  (2.262)
CaRiR;Li+ CoR1RoLs + iR RaLa+ LiLg+ LsLg = 3.4142136 - - (2263)
LR, + L3R, + LyRy+ LsRy + LR, + LR, = 2.6131259 --- e (2264)

and if we equate the coefficient of s in the numerator of equation (2.3) and (2.26) then we
get one equation.
CLiLs=Ls+Ls+L, --- - - (2.26.5)
It is noted that for ease of the calculation here we put the value of angular frequency o =
1.

Now using these five equations we can’t solve for the values of Ry, Ry, L1, L3, La,

C, and hence is not considered.

2.27 Transfer function of the Bridged-T network which is not VSHP (case T2-6)
Here in the Bridged-T network we put inductance in Z; and capacitances in Z;,
Z3, Z4 in equation (2.1).

We get,
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VO(S],SZ)

V. (5.5)) = (RyCs81 + RoLiC3Casi®sy + RoCasy + RoLiCaCasisy®) / (RiCasy + RoCasy +
in{S1>S,

R1L1C3C431282 + R2L1C3C451252 + R2L1C2C451822 + R1R2L1C2C3C4812522 + R2L1C2C351$22
+ R1L1C2C481$22 + 1 + RiRyCyCysys; + L1C2822 + RjR,CoC345182 + L1Cssysp + RiCasy +

R,Cssy + R2C451) (2 27)

Now we apply the procedure (v) of article (2.1) then we see

1
Vo (813:) O
————12 = a,assl—>0andsz——>0
Vin (Slbd_)
5,
So, Vo(5155,) is not VSHP.
Vi, (8158,)

2.28 Transfer function of the Bridged-T network which is VSHP (case T2-7)

Here in the Bridged-T network we put inductances in Z;, Z4 and capacitances in
7y, Zs.
Putting the value of Z;, Z,, Z3 and Z; in the equation (2.1) and make it 1-D, i.e., put s; =

s, = s and then we find

V,(s)
Vi (s)

= (Ry + s¥(C3RyLs + CaRoLy + CaRiLy)) / (s*CaCaRoLiLy + s°(C2CsRIR,Ly +
CsLiLg + CoCsRiRoLs + CoLiLs) + Sz(C3R1L1 + C3RoL; + CoRiLg + CsRLs + CRLy +
C3RyLg + CoRyL) + s(CoRiRy + Lg) + Ry +Ry) (2.28)

Equation (2.28) is totally same to equation (2.10). So the rest of the procedure for finding

impedance variables would be the same as that of section 2.10.
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2.29 Transfer function of the Bridged-T network which is VSHP ( case T2-8)

Here in the Bridged-T network we put inductances in Z;, Z3 and capacitances in
7, Zas.
Putting the value of Z1, Z5, Z3 and Z4 in the equation (2.1) and make it 1-D, i.e., put s; =

s> = s and then we find

V,(s)
Vi (s)

= (Ry + s"RaL1L3 + s*(RaL3Cy + RoL1L3) ) (s*(RiL1L3C2Cs + RoLiLsCoC) + s%(
RiR,L1CoCy + RiR,L3CCat CoLyLs ) + s2(RyL3Cat RoLsCat+ RoLiCot RiL Cyt RiLsCot
RoL1Cy) + s(RiR2C2+ L3+ L) + Ry +Ry) (2.29)
If we equate the coefficient of s in the denominator of equation (2.3) and (2.29) then we
get five equations.

RiL1L3CoCs + RoL i L3CoCy =1 --- - --- (2.29.1)
RiR2L1CoCy + RiRoL3CoCy + CoLy L3 = 2.6131259 --- - (2292

RiL3Cs+ RyL3Cs + RoLiCy+ RiL1Cy +

RiL3Cy+ RoLiCs=3.4142136 - - (2.29.3)
R1R2C2+ L3+ L1 =2.6131259 - —— - (2294)
Ri+Ry;=1 -— -—- -— (2295)

and if we equate the coefficient of s in the numerator of equation (2.3) and (2.29) then we
get one equation.

1+ LiL3=L3Cs + LiL3 -- --- - (2.29.6)
It is noted that for ease of the calculation here we put the value of angular frequency o =
1.

Now using these six equations we can’t solve for the values of Ry, Ry, L, L3, Cz, C4 and

hence is not considered.
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2.30 Transfer function of the Bridged-T network which is not VSHP (case T2-9)
Here in the Bridged-T network we put inductances in Z, Z,, Z4 and capacitance in

Z, in equation (2.1).

We get,

V,(5,,8,)

V. ( ) = (RoLosy + RoLoLaCisisy® + RoLssi + RolaLsCisisy®) / (RiLas; + RoLasy +
in{S158;

R1L2L4C151522 + R1L2L3C151$22 + R2L2L4C151522 + R2L2L3C151522 + R1L3L4C181252 +
L2L3L4CIS12822 + R1R2 -+ R;R2L3C15152 + L3L4812 + R1R2L4C15152 + L2L48152 + R1L232 +

Rolgsy + R2L4Sz) (2.30)

Now we apply the procedure (v) of article (2.1) then we see

1
Vo(sl9_) 0
—_Iz_ = a,assl—>0andsz—>0
Vin (519’—)
SZ
o, AACH?Y) is not VSHP.
V.. (s58;)

2.31 Transfer function of the Bridged-T network which is VSHP (case T2-10)

Here in the Bridged-T network we put inductances in Z,, Z3 and capacitances in
7, Zy.
Putting the value of Z), Z,, Z3 and Z4 in the equation (2.1) and make it 1-D, i.e., put s =

s, = s and then we find
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= (S*(RoLiC; + CRyLs + CqRyly) + s*CiCRuLoLs)Y (SH(CiCaRiLLs +

CiCiRyL0L, ) + S3( CiCRiR,L; + CiL,Ls) + 52(C1R1L3 + C4RiLy + C4RoL, + CiRiL, +
CiRiL3 + CiRoL; + C4R3L3) + s(CR1Rz + Ly + Ly + RiR,Cy) +Ry) (2.31)
Equation (2.31) is totally same to equation (2.13). So the rest of the procedure for

finding impedance variables would be the same as that of section 2.13.

2.32 Transfer function of the Bridged-T network which is VSHP (case T2-11)

Here in the Bridged-T network we put inductances in Z,, Z3, Z4 and capacitance
inZ;.
Putting the value of Zy, Z5, Z3 and Z4 in the equation (2.1) and make it 1-D, i.e., put s; =

s, = s and then we find

://—0((% = (Ry + s*(RaL2Cr + C3RoLy) + s°C1C3RoL,Ls) (s*(CiC3R1LoLs + CC3RoLoLs) +
in S

S3(C1C3R1R2L4 + CiLoLy + C3L2L4) + SZ(C1R1L2 + CiRoLs + CsRyL4 + C3RiL; + CiR1Ly

+ C3R2L2) + S(C3R1R2 +Ls +RIRCH+ R +Ry) (2.32)

If we equate the coefficient of s in the denominator of equation (2.3) and (2.32) then we
get five equations.

CiCsRiLoLs + CiCaRaL L3 = 1 --- --- --- (2.32.1)
C\C5RR,L4 + CiLoLg + CL,Ls=2.6131259 - (2322)
CiR1Ly + CiR;L; + C3RyLg + C3Ry L, +

CiRiLs + CsRyL, = 3.4142136 - - (2.32.3)

C:RIR; + Ly +RiR,Cy=2.6131259 -— w—— -—- (2324)
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R;+Ry=1 --- --- --- (2.32.5)
and if we equate the coefficient of s in the numerator of equation (2.3) and (2.32) then we
get one equation.
1+ C,C3L,Ls = LoCy + C3L --- --- - (2.32.6)
It is noted that for ease of the calculation here we put the value of angular frequency o =
1.

Now using these six equations we can’t solve for the values of Ry, Ry, Ly, Ls, Cy,

C; and hence is not considered.

2.33 Transfer function of the Bridged-T network which is not VSHP (case T2-12)
Here in the Bridged-T network we put inductance in Z, and capacitances in Zj,

73, Z4 in equation (2.1).

We get,

A\
V—O%iz))- = (R2L2C3C451252 + R2L2C1C451522 + RoCysit R2L2C3C451822) !/ (RyCysy +
in (5155,

R1L2C1C351522 + R1L2C1C4S1522 + R2L2C1C351522 + R2L2C1C451522 + RiCys1 + RyCysy +
RiCss1 + RiRyCiCysysp + RoCssy + R1RCCssysy + LaCasysy + L2C1522 +R1R2C3C4S12 +1
+ RiL,C3Casi%sz) (2.33)

Now we apply the procedure (v) of article (2.1) then we see

1
VO(SP—S__)
———~—12—— =—,ass;— O0ands; — 0
Vin (SU—)
S,
\Y
So, ARG is not VSHP.
Vi, (8158,)
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2.34 Transfer function of the Bridged-T network which is not VSHP (case T2-13)
Here in the Bridged-T network we put inductances in Zs, Z4 and capacitances in

71, Z; in equation (2.1).

We get,

V, (s,
V—O((ES—Z)) = (R2L4C15182 + RyLsCysis; + Ry + R2L3C28152) / (R1L4C1S]Sz + RiL3Cys15 +
in S11‘52

RiL3Cas182 + RoL4Cisis2 + RpL3Cisisy + RoLsCasisy + RyLaCosysy + R1R2L4C1C281522 +
Ri+Ry+ R1L3L4C1C2512522 +RiRyCosp + R1R2L3C1C2S132z + L3L4C151282+ L3L4C251252 +

Last) (2.34)

Now we apply the procedure (v) of article (2.1) then we see

1
VO(S“S__) 0
———12— = 6,a531—>0andsz—>0
Vin (Sl’—‘)
SZ
\Y
So, e(1:82) 4o Vs,
Vin (51752)

2.35 Transfer function of the Bridged-T network which is not VSHP (case T2-14)
Here in the Bridged-T network we put inductance in Z3 and capacitances in Z;,
Z,, Z4 in equation (2.1).

We get,
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V, (s,
V—"((—S‘i% = (RoCi52 + RoL3CiCasi®sz + RaCasy + RoLsCaCasi®s ) / (RiCisz + RoCisg +
in SI’SZ

Ry,Cosy + R1L3C1C4S1252 + R1L3C2C481252 + R2L3C1C451252 + R2L3C2C4512S2 + R;Cys; +
RyCassp + RiR2CCausisy + LsCysysy + L3Casysy + R1R2L3C1C2C4812522 + R1R2C1C2822 +

RiL3Cosis”+ 1) (2.35)

Now we apply the procedure (v) of article (2.1) then we see

1
v, (Sps—) 0
————12— = 6,assl—>0and52—+0
Vin (Sl’_)
SZ
V. (s, .
So, Vo182 oo vsp,
Vin (SI’SZ)

2.36 Transfer function of the Bridged-T network which is VSHP (case T2-15)

Here in the Bridged-T network we put inductance in Z4 and capacitances in Zi,
Zy, Zs.
Putting the value of Z,, Z,, Z3 and Z4 in the equation (2.1) and make it 1-D, i.e., put s; =

s;=s and then we find

V. (s)

V6 = (s(RC; + RaCy + RyCs) + $’LaRyCiCs)/ (s*RiR2L4CICoCa + s°(LaR,CiCs +
in S

L4sRyCiCs + LR, CoCs + L4R1C1C2) + 52(R1R2C2C3 + RiR2Ci1Cy + G RIR L4+ LyCop +

L4C3) + s(R;Cy + R2Cy + RoCy + RoCor + R1C3 + RyCa) (2.36)
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If we equate the coefficient of s in the denominator of equation (2.3) and (2.36) then we

get four equations.

RiR,L4C1C,Cs =1 (2.36.1)
L4R;C1C3 + LiRyCCs + LiRyCoCs + LgR €1 Co = 2.6131259 - — (2362)
RiR,C,C3 + RiRyC1Ca + CoR RoLy + LyCa + LyCs = 3.4142136 --- - (2363)
R,C; + RoCy + RoCy + RoCy + RiC3 + RyCs = 2.6131259 --- — e (2364)

and if we equate the coefficient of s in the numerator of equation (2.3) and (2.36) then we
get one equation.
LiCiC3=C1+Cy + G5 --- --- (2.36.5)
It is noted that for ease of the calculation here we put the value of angular frequency © =
1.

Now using these five equations we can’t solve for the values of R;, Ry, Ls, Cy, Cy,

C; and hence is not used further.

2.37 Transfer function of the Bridged-T network which is not VSHP ( case T2-16)
Here in the Bridged-T network we put capacitances in Z,, Z,, Z3, Z4 in equation
2.1.

We get,

\\//—"((—SL&% = (R2C1C33182 + RyCiCysysy + R2C3C4512 + RyCrCyusis2 ) / (RiC(Css157 +
in 51,5,

RiCiCys1sz + RiCoCasisz + RCiCssisy + RyCiCasisz + RpCoCusisz + RyCoCssysy +
R1C2C4512 + R2C3C4S12 + R1C1C2522 =+ R1R2C2C3C431232 + R1R2C1C2C481522 +

RiR;C1CoCss152° + Cisa + Casz + Casy) (2.37)
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Now we apply the procedure (v) of article (2.1) then we see

1
Vo (SI’S_-) 0
—-—TZ =6,assl——>0andsz——eO
vin (Sl’_)
SZ
So, e81:82) oot vsHP,

’ Vi, (5158,)

2.38 Transfer function of the Bridged-T network which is not VSHP ( case T2-17)
Here in the Bridged-T network we put inductances in Z;, Z4 and capacitances in

Z,, Z3 in equation (2.1)..

We get,

A\
V—o((-si’—s—z—))- = (R2L4C38152 + R, + R2L1C2522 + RoLiCssisa ) / R; + Ry + R1L1C2822 +
in {81557

R1L4C2522 + R2L1C2522 + R2L1L4C2C331523 + R1R2L1C2C351522 + R1R2L4C2C351522 +
L1L4C381522 + R1R2C282 + L4Sz + L1L4C2823 + R1L4C3S152 + R1L1C3S1SZ + R2L4C3S152 +
R2L1C38182) (2.38)

Now we apply the procedure (v) of article (2.1) then we see

1
Vo(slas_) 0
————12— = 6,ass;—>0andsz—>0
Vin (Sl’——)
S,
So, Ye1:52) 4o vsnp,

’ Vi, (51582)
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2.39 Transfer function of the Bridged-T network which is VSHP ( case T2-18)

Here in the Bridged-T network we put inductances in Z;, Zs and capacitances in
Z, Zs.
We get,

V, (s,
V(L((EL—SZ_)) = (RoL3Casi52 + Ry + RoLiL3CaCasisy” + RoLiCasy® ) / (R + Ry + RiLaCasys,
w\S(>5,

+ RoL3Cysisz + RiL3Cosisa + R2L1L3C2C481823 + RzL1L3C2C4S1523 + R1R2L1C2C4Sz3 +
R1R2L3C2C481522+ L1L3C2C451322 + Lisy; + RiRyCosy + Liasy + R1L1C4822 + R2L1C4822 +

RoL1Cos7%) (2.39)

Now we apply the procedure (v) of article (2.1) then we see

1
Vo(sls:) 0
——————Tz— = 6,ass;—>0andsz—>0
Vin (Sl’——)
S,
\Y
0, AACIY) is not VSHP.
\/in (51’52)

2.40 Summary and Discussion

In this chapter, we have introduced a doubly terminated Bridged-T Network. The
main difficulty of designing a filter is to ensure stability. To maintain the stable filter
output we use in this circuit a special class of polynomial with 2-variable analog domain
called Very Strict Hurwitz Polynomial. The procedure of testing whether a given
polynomial is VSHP or not is described in this chapter. Applying the procedure we get

two tables which give a list of testing transfer function. In this chapter we give details
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description of the equations for TABLE 2.1 and 2.2. In TABLE 2.2, we keep the
inductances and capacitances remain same position with their respective arms of the
Bridged-T network with respect to TABLE 2.1, just change the values of s; and s;
Among the 18 cases of TABLE 2.1 we get nine values which are VSHP and nine values
which are not VSHP. In TABLE 2.2 we get seven values which are VSHP and eleven
values which are not VSHP. Among the sixteen values from the two tables which are
VSHP, we face difficulties for finding the impedance values from the derived equations.
Though we have six equations for six variables, but the equations are non-linear and not
possible to find the impedance values. Anyway there are three cases (7, 13, 17 from
TABLE 2.1) which we can determine the value of impedance variable of the Bridged-T
network. While computing the impedance variables we compare with fourth order
Butterworth polynomial with the denominator of the transfer function of the Bridged-T
network. The numerator of the Butterworth polynomial is considered as unity. For
obtaining the equation from the numerator we let the angular frequency be unity for the
ease of calculation.

This chapter mainly describes for choosing the transfer function which is VSHP
from the different combinations of the impedance values of the Bridged-T network.
Among total 36 combinations of transfer function we get only three combinations which
are suited for designing 2-D digital filter. After finding the impedance values we design

digital filter which will describe in chapter 3.
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Chapter 3

Analyze and design of the digital filter from VSHP Transfer Function

A popular method to design a 2-D recursive digital filter is starting from an
analog filter, getting the analog transfer function, and then applying the double bilinear
transformations to the analog transfer function to design the digital filter. If we assign a
VSHP in the denominator of the analog transfer function, we can obtain a stable digital
transfer function, if the bilinear transformation is used. There are some stability
conditions for coefficients of general bilinear transformation which we discussed in
article 1.2.4.1.

The conditions are k> 0, k, >0, | ar| <1,| b | <1, aibi<0, |az| <1,|b2| <1, ab,<0. In
our whole thesis we maintain these conditions of coefficients of bilinear transformations.

In the previous chapter from TABLE 2.1 we can get the impedance values for the
case 7, 13 and 17. Now we have to design digital filter for case 7 which transfer function

is VSHP.
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3.1 Design procedure of Digital Filter for the case 7 from TABLE 2.1

Using the transfer function of the Bridged-T network of equation (2.10), if we
compare with 1-D fourth order Butterworth Polynomial we get the impedance values of
the Bridged-T network. After obtaining the values of impedance variables given in
TABLE 2.3, we will make the transfer function in 2-D by putting the values of Z;, Z, Z3,

Z4 in (2.1) and then we get,

A\

—\%SL% = ( Ry + C3ReLisi” + C3RoLasisz + CoRyLisisy) / (CaRyLysy? + CaRoLysi® +
in SI’SZ

C2R1L4822 + C2C3R1R2L151252 + C3L1L4S]252 + CoRRps; + Lusy + CoRLysysy + R + R, +

C2C3R2L1L4512522 + C2C3R1R2L481822 + ColiLasy 822 + C3RiLysiso + CsRgplssisy +

C2R2L13182) (3. 1)

Putting the value of R, Ry, L1, L4, C;, C3 in the above equation and apply generalized
bilinear transformation which is given below:

si=ki (zi—aj)/(zi+by) where Iai |§1 and |bi |51

For stability we have to ensure, k;>0, k>0, | aj | <1, I by I <1, a;b;<0

and l a | <], I b, | <1, apby<0.

3.2 Frequency response of the 2-D recursive Digital Filters (When R; = 0.6, R, = 0.4)
In this thesis we use MATLAB (The programs are given in Appendix) to obtain
the contour and 3-D magnitude response plots of the resulting 2-D digital filters. With the

input coefficients of the generalized bilinear transformations, we can obtain the contour
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and 3-D magnitude plots of the resulting 2-D digital filters. To investigate the manner in
which each coefficient of generalized bilinear transformation affects the magnitude
response of the resulting 2-D digital filters, we change the value> of the deserving
coefficients while keeping the other coefficients make constant. That can separate the
effects from the other coefficients. Now we will observe the effect caused by each
coefficient to the frequency responses of the resulting 2-D digital filter.

From TABLE 2.3 we analyze the data when R; = 0.6 and R, = 0.4.

3.2.1 Frequency response for the 2-D Digital Filter with variable a,;

To study the manner how a; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of a;, while fixing the other coefficients of the generalized bilinear transformation
tobeay=0.5,b1=1,b,=1,ki=1,k,=1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.1 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable a, and other

coefficients constant.

It can be seen from Fig 3.1 that the coefficient a; mainly affects the @, domain of
the filter. Here we vary the value of a; within 0 to 1. As a, increases the value, the output

converges to band pass filter with respect to @, domain. But with respect to @, domain, it
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is seen from the figure that the filter output is a low pass filter. It is also seen from the
figure that the pass band of the filter with respect to ®; becomes smaller from the lower

boundary of 0 to the upper boundary of 1.

3.2.2 Frequency response for the 2-D Digital Filter with variable a,

To study the manner how a, affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of a,, while fixing the other coefficients of the generalized bilinear transformation
tobea;=05b=Lbh=Lk=1Lk=1

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.2 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable a, and other

coefficients constant
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It can be seen from Fig 3.2 that the coefficient a; mainly affects the w; domain of
the filter. From the figure it is observed that a, varies the gain of the pass band of the
resulting 2-D filter. Specifying the other coefficients to be with proper signs, and when a;
changes from 0 to 1, the gain in the pass band increases from 0.25 to 0.4. It is noticeable
that the changing of gain of the resulting filter at origin is opposite in the case of a; to the
case of a;. For the case of a; the gain at origin decreases from the value 0 to 1, while for
the case of a, the gain at origin increases from the value of 0 to 1. At a; = 0 the filter
characteristics correspond to band pass filter with respect to ®; domain and it is
converging to all pass filter increasing the value a, from 0 to 1. But with respect to w;

domain, it is low pass filter.

3.2.3 Frequency response for the 2-D Digital Filter with equal a; and a,

To study the manner how equal a; and a, affect the frequency response behavior
of the resulting 2-D filter and to separate the effect of the other coefficients, we change
the value of a, = ap, while fixing the other coefficients of the generalized bilinear

transformationtobe by =1, b, =1, k; =1,k = 1.
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Figure 3.3 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable equal a; and

a, and other coefficients constant.

From Fig 3.3, it is seen that the effect on the gain of pass band portions becomes
more pronounced when we change the two coefficients, a; and ay, simultaneously than
the effect from the individual a; or a; only. When the values of a; and a, change from
their lower boundary to their upper boundary, the gain of the pass band increases from

0.2t0 0.4.

70



3.2.4 Frequency response for the 2-D Digital Filter with variable b,

To study the manner how b, affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of by, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5,a,=0.5b=1,k=1k=1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.4 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable b, and other

coefficients constant

From Fig 3.4, it is seen that the coefficient b; affects the filter characteristics. As
we change the value from 0 to 1, we see that at by = 0 it is almost all pass filter with
respect to ®; domain. If we increase the value of b; the output characteristics changes to
likely band pass filter. But with respect to > domain, the filter output is low pass filter.

Here the effect on gain is not significant amount compare to the coefficients a; and a;.
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3.2.5 Frequency response for the 2-D Digital Filter with variable b,

To study the manner how b, affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of by, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5a,=05b=1,ki=1,k=1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).

NI
7 /’”//;”,/':% LT
0%

1
1 .
JN 1
K o ! [ 02
553~ 5
522

D)
f/;//f//
(\(\
NS
NN
:/’)’

%
S 2

@ %

500 ’00 Q
ZSSRHIEAES N
wo.o'nﬂ-
255 ‘,:,000,:::/

4 .
- 08 06 -04 02 L] 0.2 0.4 08 0.8 1
o, 0

(a)by=0

g (1)

(b) b=0.5

73



S AN

- -t 08 06 -04 -02 o 0.2 04 0.8 08 1
w,

(c) b2=0.9

5% ;
o
R
I

(dby=1

Figure 3.5 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable b, and other

coefficient constant

It is seen from the Fig 3.5 that b, also affects the filter characteristics. When b, =
0, its output is band pass filter with respect to ®; domain and low pass filter with respect
to @, domain. As we increase the value of b,, it converges all pass filter in ®; domain and

low pass in w, domain. The b, coefficient has no significant effect on gain of the pass

band filter.
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3.2.6 Frequency response for the 2-D Digital Filter with equal b; and b,

To study the manner how equal b, and b, affect the frequency response behavior
of the resulting 2-D filter and to separate the effect of the other coefficients, we change
the value of b; = by, while fixing the other coefficients of the generalized bilinear

transformation to be a; = 0.5, a2=0.5, k; =1, k, = 1.
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Figure 3.6 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable equal b, and

b, and other coefficients constant

From Fig 3.6, it is seen that the effect on the filter characteristics is different when
we change the two coefficients, b; and b,, simultaneously than the effect from the
individual b; or b, only. When we change the two coefficients the gain remains almost

constant.

3.2.7 Frequency response for the 2-D Digital Filter with variable k;

To study the manner how k; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of k;, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5,a,=05b;=1,b=1,k;=1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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From Fig 3.7, it is seen that the higher value of k; makes almost all pass filter
with respect to @; domain and low pass in @, domain. The gain is not affected by the
change of the k; variable.

3.2.8 Frequency response for the 2-D Digital Filter with variable k;

To study the manner how k; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of k;, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5,a,=0.5,b;=1,by=1, k1 =1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.8 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable k; and other

coefficient constant.

From Fig 3.8, it is seen that when we increase the value of k;, variable it becomes
band pass filter with respect to @; domain and low pass in ©, domain. The gain of this
filter is significantly changes while we increase the value of k,. The gain decrease from

0.12 to 0.02 as we increase the value of k; from 10 to 100.

3.2.9 Frequency response for the 2-D Digital Filter with equal k; and k;

To study the manner how equal k; and k; affect the frequency response behavior
of the resulting 2-D filter and to separate the effect of the other coefficients, we change
the value of k; = k,, while fixing the other coefficients of the generalized bilinear '

transformationtobe by =1,b,=1, a; = 0.5, 2, =0.5.
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Figure 3.9 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable equal k,
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From Fig 3.9, it is seen that the effect on the gain of pass band portions becomes
more pronounced when we change the two coefficients, k; and k;, simultaneously than
the effect from the individual k; or k; only. When the values of k; and k; change from 10
to 100, the gain of pass band decreases from 0.06 to 0.002 The pass band area becomes
enlarged in both ®; and ®, domains, but the effect is very slight. Here it is noticeable that

if we make high both the value of k; and k; then we get low pass filter in both domain.

3.3 Frequency response of the 2-D recursive Digital Filters (When R;=0, R, =1)

To investigate the manner in which each coefficient of generalized bilinear
transformation affects the magnitude response of the resulting 2-D digital filters, we
change the value of the deserving coefficients while keeping the other coefficients make
constant. That can separate the effects from the other coefficients.

Now if we make the input resistance of the Bridged-T network zero then the
effect of coefficient of the generalized bilinear transformation is quite different from the
previous one.

Now we will analyze the data when Ry=0and R;=1

3.3.1‘ Frequency response for the 2-D Digital Filter with variable a;

To study the manner how a; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of a;, while fixing the other coefficients of the generalized bilinear transformation

tobea;=05,b1=1,b=1k =1k =1.
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For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.10 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable a, and

other coefficient constant

From Fig 3.10, it is seen that the coefficient a; mainly affects the ©; domain of the
filter. Here we vary the value of a; within 0 to 1.. It is seen from the figure that the gain
of the filter becomes larger from the lower boundary of 0 to the upper boundary of 1. The

shape of the filter curve is distorted and the region of the band pass is affected for R; = 0.
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3.3.2 Frequency response for the 2-D Digital Filter with variable a,

To study the manner how a, affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of ay, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5,bi=1,bb=1Lk =1k =1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.11 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable a, and

other coefficient constant.

From Fig 3.11, it is seen that the shape of the magnitude response is also distorted

when we change the coefficient a;.

3.3.3 Frequency response for the 2-D Digital Filter with equal a; and a,

To study the manner how equal a; and a; affect the frequency response behavior
of the resulting 2-D filter and to separate the effect of the other coefficients, we change
the value of a; = ap, while fixing the other coefficients of the generalized bilinear

transformationtobe by=1,b, =1, k; =1, k= 1.
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Figure 3.12 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable equal a,

and a, and other coefficients constant.
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From Fig 3.12, it is seen that the effect on the gain of pass band portions becomes
more pronounced when we change the two coefficients, a; and a,, simultaneously then

the effect from the individual a; or a; only. But the output filter curve is still distorted.

3.3.4 Frequency response for the 2-D Digital Filter with variable b,

To study the manner how b; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of bj, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5,a,=05b,=1L,ki=1,k,=1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.13 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable b, and

other coefficient constant.
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From Fig 3.13, it is seen that at b; = 0, the magnitude response is all pass filter
with respect to ®; domain an low pass filter in @, domain without any distortion. But

when we increase the value b, from 0 to 1, it starts to distort the shape of the curve.

3.3.5 Frequency response for the 2-D Digital Filter with variable b,

To study the manner how b, affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of by, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5,a,=05b=1,ki=1,k=1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.14 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable b, and

other coefficient constant.

From Fig 3.14, it is seen that the gain of the pass band is not affected by changing
the coefficient of bilinear transformation b;. The distortion of the shape of the curve

increases if we increase the value of b, from 0 to 1.
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3.3.6 Frequency response for the 2-D Digital Filter with equal b; and b,

To study the manner how equal b; and b; affect the frequency response behavior
of the resulting 2-D filter and to separate the effect of the other coefficients, we change
the value of b; = by, while fixing the other coefficients of the generalized bilinear

transformation to be a; = 0.5,a;=0.5,k; =1, ko = 1.
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Figure 3.15 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable equal b,

and b,and other coefficients constant.

From Fig 3.15, it is seen that the effect on the filter characteristics is different
when we change the two coefficients, b; and b,, simultaneously than the effect from the
individual b, or b, only. When we change the two coefficients the gain remains almost

constant.

3.3.7 Frequency response for the 2-D Digital Filter with variable k;

To study the manner how k; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of k;, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5,a=05b=Lb=1Lk=1

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.16 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable k; and

other coefficient constant
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From Fig 3.16, it is seen that the higher value of k; makes almost all pass filter
with respect to ®; domain and low pass filter with respect to @, domain. The gain is not
affected by the change of the k; variable. It is seen from the figure that the higher value of

ki makes the filter output distortion less.

3.3.8 Frequency response for the 2-D Digital Filter with variable k;

To study the manner how k, affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of k;, while fixing the other coefficients of the generalized bilinear transformation
tobea;=05,a,=05b=1,by=1,k =1

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.17 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable k, and

other coefficient constant

From Fig 3.17, it is seen that when we increase the value of k; variable it tends to
low pass filter from band pass filter. The gain of this filter is significantly changed while

we increase the value of k;. The gain decreases from 0.3 to 0.05 as we increase the value

95



of k, from 10 to 100. It is noticeable that for R; = 0, there are distortions when we change
the bilinear transformation coefficients aj, a;, by, b, . But there is no distortion for the

curve of k; and k».

3.3.9 Frequency response for the 2-D Digital Filter with equal k; and k;

To study the manner how equal k; and k; affect the frequency response behavior
of the resulting 2-D filter and to separate the effect of the other coefficients, we change
the value of k; = ki, while fixing the other coefficients of the generalized bilinear

transformationtobe by =1,b;=1,a,=0.5,a,=0.5.
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Figure 3.18 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable equal k;

and k, and other coefficients constant.

From Fig 3.18, it is seen that the effect on the gain of pass band portions becomes
more pronounced when we change the two coefficients, k; and k,, simultaneously than
the effect from the individual k; or k; only. When the values of k; and k; change from 10
to 100, the gain of pass band decreases from 0.15 to 0.003. The pass band area becomes
enlarged in both o; and @, domains, but the effect is very slight. Higher the equal value
of k; and k; makes the filter low pass filter in both domain.

Now we will design 2- D digital filter of the case 13 from TABLE 2.1.

3.4 Design procedure of Digital Filter for the case 13 from TABLE 2.1

Using the transfer function of the Bridged-T network of equation (2.16), if we
compare with 1-D fourth order Butterworth Polynomial we get the impedance values of
the Bridged-T network. After obtaining the values of impedance variables given in
TABLE 2.4, we will make the transfer function in 2-D by putting the values of Z;, Z,, Z,

Z4in (2.1) and then we get,
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—V—M =(Ry + C1R2L3S12 + CiRoL4sis; + CoRoL3s1s) / (C1R1L3512 + C1R2L3812 +
Vin (S]’S2)

C2R2L4822 + C1C2R1R2L351252 + C1L3L4S1252 + CRiRysy; + Lss; + Ry + Ry +
C1C2R1L3L4512522 —+ C1C2R1R2L451522 + CoLslss 822 + CiRiL4sisy + CoRiLasisy +

CiRoLss;s; + CoRyLss180) (3.2)

Putting the value of R;, Ry, L3, L4, Cyi, C; in the above equation and apply
generalized bilinear transformation which is given below:
si=ki(zi—aj)/(z+b) where |ai |§1 and Ibi ISl

For stability we have to ensure, k>0, k>0, | aj | <1, | by | <1, a;b;<0

and I ap I <1, | b, I <1, aghy<0.

3.5 Frequency response of the 2-D recursive Digital Filters (When R; = 0.6, R; = 0.4)

In this thesis we use MATLAB (The programs are given in Appendix) to obtain
the contour and 3-D magnitude response plots of the resulting 2-D digital filters. With the
input coefficients of the generalized bilinear transformations, we can obtain the contour
and 3-D magnitude plots of the resulting 2-D digital filters. To investigate the manner in
which each coefficient of generalized bilinear transformation affects the magnitude
response of the resulting 2-D digital filters, we change the value of the deserving
coefficients while keeping the other coefficients make constant. That can separate the
effects from the other coefficients. Now we will observe the effect caused by each
coefficient to the frequency responses of the resulting 2-D digital filter.

From TABLE 2.4 we analyze the data when R; = 0.6 and R;=0.4
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3.5.1 Frequency response for the 2-D Digital Filter with variable a;

To study the manner how a; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of a;, while fixing the other coefficients of the generalized bilinear transformation
tobea,=0.5,b;=1,bo=1,k;=1,k,=1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.19 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable a, and

other coefficient constant

From Fig 3.19, it is seen that the coefficient a; mainly affects the ®; domain of the
filter. Here we vary the value of a; within 0 to 1. As a; increases the value, the output
converges to band pass filter with respect to ®; domain and low pass filter in @, domain.
It is also seen from the figure that the pass band of the filter with respect to o, becdmes

smaller from the lower boundary of 0 to the upper boundary of 1.
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3.5.2 Frequency response for the 2-D Digital Filter with variable a;

To study the manner how a, affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of a,, while fixing the other coefficients of the generalized bilinear transformation
tobea;=05,b;=1,b=1,ki=1,k=1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.20 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable a, and

other coefficient constant

From Fig 3.20, it is seen that the coefficient a; mainly affects the w; domain of the
filter. From the figure it is observed that a, varies the gain of the pass band of the
resulting 2-D filter. Specifying the other coefficients to be with proper signs, and when a;
changes from 0 to 1, the gain in the pass band increases from 0.10 to 0.4. It is noticeable

that the changing of gain of the resulting filter at origin is opposite in the case of a; to the
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case of a;. For the case of a; the gain at origin decreases from the value 0 to 1, while for

the case of a, the gain at origin increases from the value of 0 to 1.

3.5.3 Frequency response' for the 2-D Digital Filter with equal a; and a;

To study the manner how equal a; and a;, affect the frequency response behavior
of the resulting 2-D filter and to separate the effect of the other coefficients, we change
the value of a; = a,, while fixing the other coefficients of the generalized bilinear

transformationtobe by =1,b,=1, ki =1, ko= 1.
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Figure 3.21 The contour and 3-D magnitude plot of the resulting 2-D digital filter with variable equal a,

and a,and other coefficients constant.

From Fig 3.21, it is seen that the effect on the gain of pass band portions becomes
more pronounced when we change the two coefficients, a; and a,, simultaneously then
the effect from the individual a; or a; only. When the values of a; and a, change from
their lower boundary to their upper boundary, the gain of the pass band increases from

0.08 to 0.3.

3.5.4 Frequency response for the 2-D Digital Filter with variable b,

To study the manner how b; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of b;, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5,2,=05b=Lk =1k =1

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.22 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable b, and

other coefficient constant.
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It is seen from the Fig 3.22 that the coefficient b, aftects the filter characteristics.
As we change the value from 0 to 1, we see that at b; = 0 it is almost all pass filter. If we
increase the value of b; the output characteristics is likely to band pass filter with respect
to ©; domain and low pass filter in ®, domain . Here the effect on gain is not significant

amount compare to the coefficients a; and a.

3.5.5 Frequency response for the 2-D Digital Filter with variable b,

To study the manner how b, affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of by, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5,a,=05b =1Lk =1k =1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).

(a) by=0
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Figure 3.23 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable b, and

other coefficient constant

It is seen from the Fig 3.23 that b, also affects the filter characteristics. The shape
of the magnitude response is band pass filter with respect to ©; domain and low pass
filter with respect to w, domain. The b, coefficient has little effect on gain. As we

increase the value of b, the gain increases from 0.1 to 0.16.
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3.5.6 Frequency response for the 2-D Digital Filter with equal b; and b,

To study the manner how equal b; and b, affect the frequency response behavior
of the resulting 2-D filter and to separate the effect of the other coefficients, we change
the value of b; = b, while fixing the other coefficients of the generalized bilinear

transformation to be a; = 0.5, a= 0.5, k1 =1, k, = 1.
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Figure 3.24 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable equal b,

and b, and other coefficients constant.

From Fig 3.24, it is seen that the effect on the filter characteristics is different
when we change the two coefficients, b; and by, simultaneously than the effect from the
individual b; or b, only. When we change the two coefficients the gain remains almost
constant. The magnitude response is still band pass filter with respect to ®; domain and

low pass filter with respect to @, domain.

3.5.7 Frequency response for the 2-D Digital Filter with variable k;

To study the manner how k; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of k;, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5,a,=05b =1b,=1k=1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.25 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable k; and

other coefficient constant

It is seen from the Fig 3.25 that the higher value of k; makes low pass filter in

both ®; and w; domain. The gain is not affected by the change of the k; variable.
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3.5.8 Frequency response for the 2-D Digital Filter with variable k;

To study the manner how k; affects the frequency response behavior of the

resulting 2-D filter and to separate the effect of the other coefficients, we change the

value of ky, while fixing the other coefficients of the generalized bilinear transformation

tobea;=0.5,a,=05b;=1,b,=1,k =1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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(b) k2 =50
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Figure 3.26 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable k; and

other coefficient constant.

From Fig 3.26, it is seen that when we increase the value of k; variable it becomes
band pass filter in ®; domain. The gain of this filter is significantly changed while we
increase the value of k,. The gain decrease from 0.04 to 0.004 as we increase the value of

ko from 10 to 100.

3.5.9 Frequency response for the 2-D Digital Filter with equal k; and k;

To study the manner how equal k; and k; affect the frequency response behavior
of the resulting 2-D filter and to separate the effect of the other coefficients, we change
the value of k; = k;, while fixing the other coefficients of the generalized bilinear

transformationtobe by =1,b;=1,a;=0.5, a2 =0.5.
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Figure 3.27 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable equal k;

and k;and other coefficients constant.
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It is seen from the Fig 3.27 that the effect on the gain of pass band portions
becomes more pronounced when we change the two coefficients, k; and ky,
simultaneously than the effect from the individual k; or k; only. When the values of k;
and k; change from 10 to 100, the gain of pass band decreases from 0.06 to 0.006. The
pass band area becomes enlarged in both w; and w, domains, but the effect is very slight.

Now we will design 2- D digital filter of the case 17 from TABLE 2.1.

3.6 Design procedure of Digital Filter for the case 17 from TABLE 2.1

Using the transfer function of the Bridged-T network of equation (2.20), if we
compare with 1-D fourth order Butterworth Polynomial we get the impedance values of
the Bridged-T network. After obtaining the values of impedance variables given in
TABLE 2.5, we will make the transfer function in 2-D by putting the values of Z,, Z5, Zs,

Z4 in (2.1) and then we get,

\Y
M = ( Ry + Cg,RzL4S12 + C3R2L1512 + C2R2L1Sls2) / (C3R1L4S12 + C3R1L1812 +
Vin (Sl H S2 )

C3R2L4512 + C3R2L1512 + C2C3R1R2L151252 + C2C3R1R2L481252 + C2L1L451282 +R; +R;
+CoR1Rys; + Lgsy + C2C3R2L1L4S1352 + CsLiLy 513 + CoRiLs182 + CoRLgsis +

CszL]S(Sz) (3 3)

Putting the value of R;, Ry, Lj, L4, Cy, C3 in the above equation and apply
generalized bilinear transformation which is given below:
si=ki (zi—a) /(zi+b) where |a |<land |b; | <1
For stability we have to ensure, k>0, k2>0, | ay | <1, | by | <1, a;b1<0

and I ap I <I, | b, | <1, a;by<0.
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3.7 Frequency response of the 2-D recursive Digital Filter (When R; = 0.6, R; = 0.4)

In this thesis we use MATLAB (The programs are given in Appendix) to obtain
the contour and 3-D magnitude response plots of the resulting 2-D digital filters. With the
input coefficients of the generalized bilinear transformations, we can obtain the contour
and 3-D magnitude plots of the resulting 2-D digital filters. To investigate the manner in
which each coefficient of generalized bilinear transformation affects the magnitude
response of the resulting 2-D digital filters, we change the value of the deserving
coefficients while keeping the other coefficients make constant. That can separate the
effects from the other coefficients. Now we will observe the effect caused by each
coefficient to the frequency responses of the resulting 2-D digital filter.

From TABLE 2.5 we analyze the data when R; = 0.6 and R,= 0.4

3.7.1 Frequency response for the 2-D Digital Filter with variable a,

To study the manner how a, affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of a;, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5,bi=1L,b=1,k=1k =1

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.28 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable a, and

other coefficients constant.

It can be seen from Fig 3.28 that the coefficient a; mainly affects the w; domain
of the filter. Here we vary the value of a; within 0 to 1. As a; increases the value, the
output converges to stop band filter. It is also seen from the figure that the pass band of
the filter with respect to ; becomes smaller from the lower boundary of 0 to the upper

boundary of 1.

3.7.2 Frequency response for the 2-D Digital Filter with variable a,

To study the manner how a; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of a,, while fixing the other coefficients of the generalized bilinear transformation

tobea;=05,b;=1,b,=1Lk =1,k =1.
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For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.29 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable a, and

other coefficients constant.

It is seen from Fig 3.29 that the coefficient a, mainly affects the w, domain of the
filter. From the figure it is observed that a; varig:s the gain of the pass band of the
resulting 2-D band stop filter. Specifying the other coefficients to be with proper signs,
and when a; changes from 0 to 1, the gain in the pass band increases from 0.25 to 0.4. It
is noticeable that the changing of gain of the resulting filter at origin is opposite in the
case of a; to the case of a;. For the case of a; the géin at origin decreases from the value 0

to 1, while for the case of a; the gain at origin increases from the value of 0 to 1.
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3.7.3 Frequency response for the 2-D Digital Filter with equal a; and a;

To study the manner how equal a; and a; affect the frequency response behavior
of the resulting 2-D filter and to separate the effect of the other coefficients, we change
the value of a; = ap, while fixing the other coefficients of the generalized bilinear

transformationtobe bj=1,b,=1,k; =1,k =1.
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Figure 3.30 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable equal a,

and a, and other coefficients constant.

From Fig 3.30, it is seen that the effect on the gain of pass band portions becomes
more pronounced when we change the two coefficients, a; and a;, simultaneously than
the effect from the individual a; or a; only. When the values of a, and a, change from
their lower boundary to their upper boundary, the gain of the pass band increases from

0.2t0 0.3.
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3.7.4 Frequency response for the 2-D Digital Filter with variable b;

To study the manner how b; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the

value of b, while fixing the other coefficients of the generalized bilinear transformation

tobea;=0.5,a;,=0.5,

by =1,

1=1,k2=1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.31 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable b, and

other coefficients constant.

It is seen from the Fig 3.31 that the coefficient b; affects the filter characteristics.
As we change the value from 0 to 1, we see that at b; = 0 it is almost all pass filter with
respect to ®; domain and low pass filter with respect to @, domain . If we increase the
value of b; the output characteristics changes into stop band filter. Here the effect on gain

is not significant amount compare to the coefficients a; and a;.

3.7.5 Frequency response for the 2-D Digital Filter with variable b,

To study the manner how b; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of by, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5,a,=0.5>b =1,k =1,ky=1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.32 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable b, and

other coefficients constant.
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It is seen from the Fig 3.32 that b, also affects the filter characteristics. As we
increase the value of by, it becomes stop band filter with respect to ®; domain. The b,

coefficient has no significant effect on gain.

3.7.6 Frequency response for the 2-D Digital Filter with equal b; and b,

To study the manner how equal b; and b; affect the frequency response behavior
of the resulting 2-D filter and to separate the effect of the other coefficients, we change
the value of b; = b,, while fixing the other coefficients of the generalized bilinear

transformation to be a; = 0.5, a;=0.5, k; =1, k, = 1.
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(C) b1 = bz =0.9

Figure 3.33 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable equal b,

and b, and other coefficients constant.

From Fig 3.33, it is seen that the effect on the filter characteristics is different
when we change the two coefficients, b; and by, simultaneously than the effect from the

individual b; or b, only. When we change the two coefficients the gain remains almost

constant.
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3.7.7 Frequency response for the 2-D Digital Filter with variable k,

To study the manner how k; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the

value of k;, while fixing the other coefficients of the generalized bilinear transformation

tobea;=0.5,a,=05b =1,bb=1,k=1.

02 04 06 08 1

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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Figure 3.34 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable k; and

other coefficients constant.
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From Fig 3.34, it is seen that the higher value of k; makes low pass filter in both

©; and o, domain. The gain is significantly decreased with the increasing the value of k;.

3.7.8 Frequency response for the 2-D Digital Filter with variable k;

To study the manner how k; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of ko, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5,a,=05b;=1,b=1,k; =1.

For ensuring the stability here we maintain conditions stated in (1.2.4.1).
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(c) ka=100

Figure 3.35 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable k, and

other coefficients constant

From Fig 3.35, it is seen that higher the value of k, makes the band stop filter
distorted. The gain of the pass band region decreases significantly when we increase the

value of k,.

3.7.9 Frequency response.for the 2-D Digital Filter with equal k; and k;

To study the manner how equal k; and k; affect the frequency response behavior
of the resulting 2-D filter and to separate the effect of the other coefficients, we change
the value of k) = kj, while fixing the other coefficients of the generalized bilinear

transformationtobe by =1,b,=1,a;=0.5,a;=0.5.
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Figure 3.36 The contour and 3-D magnitude plots of the resulting 2-D digital filter with variable equal k,

and k; and other coefficients constant.
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From Fig 3.36, it is seen that the effect on the gain of pass band portions becomes
more pronounced when we change the two coefficients, k; and k,, simultaneously than
the effect from the individual k; or k; only. When the values of k; and k; change from 10
to 100, the gain of pass band decreases from 0.06 to 0.002. The pass band area becomes
enlarged in both ®; and ®; domains, but the effect is very slight. For higher value of k;

and k,, the filter output is low pass filter in both domain.

3.8 Summary and Discussion

In this chapter, we have introduced the procedure used to design 2-D recursive
digital filters by generalized bilinear transformation method. The manner how each
coefficient of the generalized bilinear transformation affects the magnitude response
behavior of the resulting 2-D filter has been studied in detail also.

With the transfer function of the Bridged-T network we compare to the fourth
order 1-D low pass Butterworth polynomial. Then we get 2-D analog transfer function.
The 2-D discrete transfer function has been derived from the analog transfer function by
double generalized bilinear transformations with stability constraints. When one or more
coefficients of the double bilinear transformations are changing, the resulting 2-D filter
has variable magnitude characteristics.

The coefficients of k;, a; and b, affect the magnitude response in ®;-domain,
while the coefficients of ks, a; and b, affect the behaviors of the magnitude response in
z-domain.

Here at first we design digital filter for the case of 7 from TABLE 2.1. The

stability conditions of 2-D recursive digital filter with single degree for each variable are
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still effective. For ensure the stability we vary the bilinear transformation coefficient a;
ay, by, by from 0 to 1. For stability we have to maintain a;b;<0, a;b,<0, ki>0 and k,>0. As
we use negative sign before a; and a; in equation (1.7), so we take all positive values of a;
and b; where i = 1, 2. While we change the coefficient a; and b;, we put the value k; =k, =
1. When we observe the effect of k; and k we vary these value between 10 to 100 to see
the affect of higher values of k. For the case 7, we have 5 cases (TABLE 2.3) for
different values of Rjand R,. We design digital filter for R; = 0.6, R;=0.4 and R; =0, R,
= 1. For the second case, i.e., when the source resistance R; = 0 the magnitude response
curve is significantly changed. So for the later cases(case 13 and 17) we do not design for
R; = 0. We analyze and compare the filter for the case of R; = 0.6, R, = 0.4. It is
noticeable that the effects of bilinear transformation coefficient a; az b, b2 on the transfer
function for the case of 7 make the all pass filter or near to all pass filter having some
exceptions (for example, figure 3.5 a) with respect to w; domain. But the effects of k; and
k, are different from other. For the case of ky, the output is band pass filter. We also study
the manner how equal coefficients i.e., a; = a;, b; = b, and k; = k; affect the frequency
response behavior of the resulting 2-D filter and to separate the effect of the other
coefficients, we change the value one equal coefficient while fixing the other coefficients
of the generalized bilinear transformation. The effect on the filter characteristics is more
pronounced when we change the two equal coefficients simultaneously than the effect
from the individual coefficient only.

The details comparisons are given in the next chapter.

Then we design digital filter for the case of 13 from TABLE 2.1. Here we also

maintain the stability conditions mentioning for the case 7. For this transfer function we
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have also got five cases (TABLE 2.4) for different values of Rjand R,. We design digital
filter for R; = 0.6, R, = 0.4 for making comparison with the case before which is
described in the next chapter. It is noticeable that the effects of bilinear transformation
coefficient a; az by, bz on the transfer function for the case of 13 make the band pass filter
or near to band pass filter having some exceptions (for example, figure 3.23 a) with
respect to ®; domain. But the effects of k; and k; are different from each other. For the
higher value of kj, the filter output is a low-pass filter and for higher value of k; the filter
output is that of band-pass. In this case we also study the manner how equal coefficients
i.e., aj = a, by = by and k; = k; affect the frequency response behavior of the resulting 2-
D filter and to separate the effect of the other coefficients, we change the value one equal
coefficient while fixing the other coefficients of the generalized bilinear transformation.
The effect on the filter characteristics is more pronounced when we change the two equal
coefficients simultaneously than the effect from the individual coefficient only.

And then we design digital filter for the case of 17 from TABLE 2.1. Here we
also maintain the stability conditions mentioning for the case 7 and 13. For this transfer
function we have also got five cases (TABLE 2.5) for different values of R;and R,. We
design digital filter for R; = 0.6, R, = 0.4 for making comparison with the case before
which is described in the next chapter. It is noticeable that the effects of bilinear
transformation coefficient a; a, bi, b, on the transfer function for the case of 17 make the
band stop filter or near to band stop filter having some exceptions (for example, figure
3.31 a) wither respect to ®; domain. But the effects of k; and k; are different from other.
We also study the manner how equal coefficients i.e., a; = ay, by = by and k; = k; affect

the frequency response behavior of the resulting 2-D filter and to separate the effect of
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the other coefficients, we change the value one equal coefficient while fixing the other
coefficients of the generalized bilinear transformation. The effect on the filter
characteristics is more pronounced when we change the two equal coefficients
simultaneously than the effect from the individual coefficient only.

This chapter could be useful in analyzing and designing 2-D recursive digital
filters with variable magnitude response characteristics from Bridged-T network. The
bilinear transformation coefficients contribute the significant role for the Bridged- T

network filter output.

134



Chapter 4

Compare the resulting magnitude response for different filter

characteristics

In this chapter we will compare the resulting magnitude response for digital filter
design which we have obtained from the previous chapter. As we noticed earlier we test
the transfer function of the Bridged-T network that VSHP or not. Among the 36 cases we
get 16 cases that are VSHP. But finally we get only 3 cases which we can completely
solve the value of impedance values. In the chapter 3, we discussed all of the 3 cases for
designing digital filter. In this thesis for each case we give brief discussion for the value
of R; = 0.6 and R, = 0.4. We also discuss the values of R; =0 and R, =1 for the case 7(
TABLE 2.1) only. It is noticeable from the observation that when we put the source

resistance (R;) = 0, the magnitude response of the digital filter is distorted by changing
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the bilinear transformation coefficient a), az, by, b,. But the magnitude response is not
distorted by changing k;, kz. In the previous chapter, to investigate the manner in which
each coefficient of generalized bilinear transformation affects the magnitude response of
the resulting 2-D digital filters, we change the value of the deserving coefficients while
fixing the other coefficients to the specified values. Now we will investigate how the
changing of each coefficient affects the magnitude response for three different cases of
impedance values. Here we will observe for the value of R; = 0.6 and R, = 0.4 of figure

2.1 for the case of 7, 13 and 17 from TABLE 2.1.

4.1 Frequency response of 2-D digital filter while changing a; coefficient

To study the manner how a; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of a;, while fixing the other coefficients of the generalized bilinear transformation
tobe a,=0.5,b;=1,b,=1,k; =1, k; = 1. To compare the magnitude response for the

three cases here we give the value of a; = 0.5.
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Figure 4.1 The contour and 3-D magnitude plots of the resulting 2-D digital filter with a; = 0.5, a, = 0.5, b,

=1,b2=1,k1=1,k2=1fOrR1=O.6andR2=O.4.

It is seen from the Fig 4.1 that the filter characteristics vary with their different
impedance values. The magnitude response of the Bridged-T network with respect to ®;
domain is an all pass filter for the case 7, a band pass filter for the case of 13 and a band
stop filter for the case 17 from TABLE 2.1. These observations are taken while we
change the bilinear transformation coefficient a;. The gain is also varied for the three

different impedance values of the transfer function.
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4.2 Frequency response of 2-D digital filter while changing a; coefficient

To study the manner how a, affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of ay, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5,b;=1,b,=1,k =1, ky =1. To compare the magnitude response for the

three cases here we give the value of a; = 0.8.
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Figure 4.2 The contour and 3-D magnitude plots of the resulting 2-D digital filter with a, =0.5, a, = 0.8, b,

=l,b2=l,k[=1,k2=1forR;=0.6andR2=0.4.

It is seen from the Fig 4.2 that the filter characteristics vary with their different
impedance values. The magnitude response of the Bridged-T network is an all pass filter
for the case 7, a band pass filter for the case of 13 and a band stop filter for the case 17
from TABLE 2.1. These observations are taken while we change the bilinear
transformation coefficient a;. The gain is also varied for the three different impedance

values of the transfer function.

4.3 Frequency response of 2-D digital filter while changing b coefficient

To study the manner how b; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of by, while fixing the other coefficients of the generalized bilinear transformation
tobe a;=0.5, a3 =0.5, b, =1, k; = 1, ky = 1. To compare the magnitude response for the

three cases here we give the value of by = 0.8
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Figure 4.3 The contour and 3-D magnitude plots of the resulting 2-D digital filter with a, = 0.5, 2, =0.5, b,

=0.8, b2= 1,1(1 = 1, k2= 1 for R, =0.6 and R2=0.4.
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It is seen from the Fig 4.3 that the filter characteristics vary with their different
impedance values. The magnitude response of the Bridged-T network is an all pass filter
for the case 7, band pass filter for the case of 13 and band stop filter for the case 17 from
TABLE 2.1. These observations are taken while we change the bilinear transformation
coefficient b;. The gain is also varied for the three different impedance values of the

transfer function.

4.4 Frequency response of 2-D digital filter while changing b, coefficient

To study the manner how b, affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of by, while fixing the other coefficients of the generalized bilinear transformation
to be a; =0.5,a,=0.5,b; =1, k; = 1, ky = 1. To compare the magnitude response for the

three cases here we give the value of b, = 0.9.
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Figure 4.4 The contour and 3-D magnitude plots of the resulting 2-D digital filter with a; = 0.5, a, = 0.5, b,

=1,b2 =0.8, k] = 1, k2 =1 for R] =0.6 and R2=0.4

It is seen from the Fig 4.4 that the filter characteristics vary with their different
impedance values. The magnitude response of the Bridged-T network is an all pass filter
for the case 7, a band pass filter for the case of 13 and a band stop filter for the case 17
from TABLE 2.1. These observations are taken while we change the bilinear
transformation coefficient b;. The gain is also varied for the three different impedance

values of the transfer function.
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4.5 Frequency response of 2-D digital filter while changing k; coefficient

To study the manner how k; affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of k;, while fixing the other coefficients of the generalized bilinear transformation
tobea;=0.5,a,=0.5b;=1,by=1, k;=1. To compare the magnitude response for the

three cases here we give the value of k; = 50.
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Figure 4.5 The contour and 3-D magnitude plots of the resulting 2-D digital filter with a; = 0.5, a, = 0.5, b,

=1,b,=1,k, =50,k,=1forR,=0.6 and R, = 0.4.

From Fig 4.5, it is seen that the effect on filter characteristics of bilinear
transformation coefficient k; is different from the coefficient a;, ay, by, bo. The magnitude
response of the Bridged-T network is an all pass filter for the case 7 and low pass filter
for the case of 13 and 17 from TABLE 2.1. It is seen that the higher value of k; make the
transfer function low pass filter. It is also seen that the magnitude curves of the case 13
and 17 are almost same. These observations are taken while we change the bilinear
transformation coefficient k;. The gain is also varied for the three different impedance
values of the transfer function.

4.6 Frequency response of 2-D digital filter while changing k; coefficient

To study the manner how k;, affects the frequency response behavior of the
resulting 2-D filter and to separate the effect of the other coefficients, we change the
value of ko, while fixing the other coefficients of the generalized bilinear transformation
to be a; = 0.5, a, = 0.5, b; =1, b = 1, k; = 1. To compare the magnitude response for the

three cases here we give the value of'k; = 50.
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Figure 4.6 The contour and 3-D magnitude plots of the resulting 2-D digital filter with a, = 0.5, 2, = 0.5, by

=1,b2 = 1, k| =1, k2=50 for R) = 0.6 and R2=0.4.
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From Fig 4.6, it is seen that the effect on filter characteristics of bilinear
transformation coefficient k; is completely different from the other. It is seen from the
figure that, the filter characteristics vary with their different impedance values. The
magnitude response of the Bridged-T network is band pass filter for the case 7 and 13.
The shape of the magnitude response curve is distorted for the case of 17 from TABLE
2.1. These observations are taken while we change the bilinear transformation coefficient
ky. The gain is also varied for the three different impedance values of the transfer

function.

4.7 Summary and Discussion

The comparison of magnitude response of the transfer function of the Bridged-T
network between three cases from TABLE 2.1 for the value of R; = 0.6 and R, = 0.4 are
discussed in this chapter. From the obtained magnitude response curves we can say that
changing the impedance variables change the filter characteristics of the transfer function
of Bridged-T network.

When we change the bilinear transformation coefficient a; for different
impedance variable of the transfer function of Bridged-T network, we observe that the
filter characteristic is an all pass filter for the case 7, a band pass filter for the case 13 and
a band stop filter for the case 17 from TABLE 2.1. The gain is also varied for the
different impedance variables of the transfer function.

As we change the bilinear transformation coefficient a, for different impedance
variable of the transfer function of Bridged-T network, we observe that the filter

characteristic is that of an all pass filter for the case 7, a band pass filter for the case 13
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and a band stop filter for the case 17 from TABLE 2.1. Here the gain is not significantly
changed for different values of impedance variables.

When we change bilinear transformation coefficient b, for different impedance
variable of the transfer function of Bridged-T network, we observe that the filter
characteristic is an all pass filter for the case 7, a band pass filter for the case 13 and a
band stop filter for the case 17 from TABLE 2.1. Here the gain is not significantly
changed for different values of impedance variables.

When we change bilinear transformation coefficient b, for different impedance
variable of the transfer function of Bridged-T network, we observe that the filter
characteristic is an all pass filter for the case 7, a band pass filter for the case 13 and a
band stop filter for the case 17 from TABLE 2.1. The gain is also varied for the different
impedance variables of the transfer function.

The behavior of the bilinear transformation coefficient k; on variable impedance
values of the transfer function is quite different from a;, a,, b;, b,. For the case 7, the
filter output is an all pass filter, but for the case 13 and 17 the filter output is a low pass
filter. The gain is also quite low for the case 13 and 17 compare to case 7.

When we change bilinear transformation coefficient k, for different impedance
variable of the transfer function of Bridged-T network, we observe that the filter
characteristic is a band pass filter for the case 7, 13 and a distorted low pass filter for the
case 17 from TABLE 2.1.

This chapter could be useful for understanding how different impedance variables

change filter characteristics of a Bridged-T network. According to the required filter
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applications, the impedance variable of the four arms of Bridged-T network can be

chosen.
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Chapter 5

Conclusions and Directions for Future Research

5.1 Conclusions:

In this thesis, a technique in designing 2-D recursive digital filters having variable
magnitude characteristics from a Bridged-T network has been proposed. Starting from the
transfer function of this network which is VSHP in the analog domain, we apply
generalized bilinear transformations and obtain a 2-D recursive digital filter. If one or
more coefficients of the generalized bilinear transformations are changing, the resulting
2-D digital filters have variable frequency responses. Through the different combinations
of the impedance values of the four arms of the Bridged-T network, we get all pass filter,
band pass filter, band stop filter and in some cases low pass filter. The manner in which
how each bilinear transformation coefficient and value of the impedance variable of the
Bridged-T network affect the magnitude response of each 2-D digital filter has been

investigated in this thesis.
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In chapter 2, a doubly terminated Bridged-T Network has been introduced. In the
transfer function of the Bridged-T network circuit, VSHP polynomials are used for the
impedance values. The procedure of testing whether a given polynomial is VSHP or not
is described in this chapter. Applying the procedure we get two tables which give a list of
testing transfer function. In this chapter we give details description of the equations for
TABLE 2.1 and 2.2. In TABLE 2.2, we keep the inductances and capacitances remain
same position with their respective arms of the Bridged-T network with respect to
TABLE 2.1, just change the values of s; and s;. Among the 36 cases of TABLE 2.1 and
TABLE 2.2, we get sixteen values which are VSHP and sixteen values which are not
VSHP. Among the sixteen values which are VSHP, we face difficulties for finding the
impedance values from the derived equation. Though we have six equations for six
variables, but the equations are non-linear and not possible to find the impedance values.
But there are three cases (7, 13, 17 from TABLE 2.1) from which we can determine the
value of impedance variables of Bridged-T network. While computing the impedance
variables we compare with fourth order Butterworth polynomial with the denominator of
the transfer function of the Bridged-T network. The numerator of the Butterworth
pblynomial is considered as unity. For obtaining the equation from the numerator we let
the angular frequency be unity for the ease of calculation.

This chapter mainly describes for choosing the transfer function which is VSHP
from the different combinations of the impedance value of the Bridged-T network.
Among total 36 combinations of transfer function, we get only three combinations which

are suited for designing 2-D digital filter.
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In chapter 3, we have introduced the procedure used to design 2-D digital filters
by generalized bilinear transformation functions. The manner how each coefficient of the
generalized bilinear transformation affects the magnitude response behavior of the
resulting 2-D filter has been studied in detail also.

With the transfer function of the Bridged-T network we compare to the fourth
order 1-D low pass Butterworth polynomial. Then we get 2-D analog transfer function.
The 2-D discrete transfer function has been derived from the analog transfer function by
double generalized bilinear transformations with stability constraints. When one or more
coefficients of the double bilinear transformations are changing, the resulting 2-D filter
has variable magnitude characteristics.

The coefficients of kj, a; and b; affect the magnitude response in ®;-domain,
while the coefficients of k, a, and b, affect the behaviors of the magnitude response in
©;-domain.

Here at first we design digital filter for the case of 7 from TABLE 2.1. For ensure
the stability we vary the bilinear transformation coefficient a; a, by, b; from 0 to 1. For
stability we have to maintain a;b;<0, a;b,<0, k;>0 and k,>0. While we change the
coefficient a; and b;, we put the value k; = ky = 1. When we observe the effect of k; and
k, we vary these value between 10 to 100 to see the effect of higher values of k. For the
case 7, we have 5 cases (TABLE 2.3) for different values of Rjand R,. We design digital
filter for R; = 0.6, R, = 0.4 and Ry = 0, R; = 1. For the second case, i.e., the magnitude
response curve is significantly changed. It is noticeable that the effect of bilinear
transformation coefficient a;, az, by, by on the transfer function for the case of 7 makes the

all pass filter or near to all pass filter having some exceptions (for example, figure 3.5 a)
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with respect to ®; domain. But the effect of k; and k; are different from other. We also
study the manner how equal coefficients i.e., a; = a;, by = b, and k; = k, affect the
frequency response behavior of the resulting 2-D filter and to separate the effect of the
other coefficients, we change the value one equal coefficient while fixing the other
coefficients of the generalized bilinear transformation. The effect on the filter
characteristics is more pronounced when we change the two equal coefficients
simultaneously than the effect from the individual coefficient only.

Then we design digital filter for the case of 13 from TABLE 2.1. Here we also
maintain the stability conditions mentioning for the case 7. For this transfer function we
have also got 5 cases (TABLE 2.4) for different values of Rjand R,. We design digital
filter for R; = 0.6, R, = 0.4 for making comparison with the case before which is
described in the next chapter. It is noticeable that the effect of bilinear transformation
coefficient a;, a, b;, by on the transfer function for the case of 13 makes the band pass
filter or near to band pass filter having some exceptions (for example, figure 3.23 a). But
the effect of k; and k; are different from other. In this case we also study the manner how
equal coefficients i.e., a; = az, b; = by and k; = k; affect the frequency response behavior
of the resulting 2-D filter and to separate the effect of the other coefficients, we change
the value one equal coefficient while fixing the other coefficients of the generalized
bilinear transformation. The effect on the filter characteristics is more pronounced when
we change the two equal coefficients simultaneously than the effect from the individual
coefficient only.

Then we design the digital filter for the case of 17 from TABLE 2.1. Here we also

maintain the stability conditions mentioning for the case 7 and 13. For this transfer
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function, we have also got 5 cases (TABLE 2.5) for different values of Rjand R;. We
design digital filter for R; = 0.6, R, = 0.4 for making comparison with the case before
which is described in the chapter 4. It is noticeable that the effect of bilinear
transformation coefficient a; ay, by, by on the transfer function for the case of 17 makes
the band stop filter or near to band stop filter having some eXceptions (for example,
figure 3.31 a). But the effect of k; and k; are different from other. We also study the
manner how equal coefficients i.e., aj = ap, b; = b, and k; = k; affect the frequeﬂcy
response behavior of the resulting 2-D filter and to separate the effect of the other
coefficients, we change the value one equal coefficient while fixing the other coefficients
of the generalized bilinear transformation. The effect on the filter characteristics is more
pronounced when we change the two equal coefficients simultaneously than the effect
from the individual coefficient only.

In chapter 4, the comparison of magnitude response of the transfer function of the
Bridged-T network between three cases from TABLE 2.1 for the value of R; = 0.6 and R,
= 0.4 are discussed. From the obtained magnitude response curves we can say that
changing the impedance variables change the filter characteristics of the transfer function
of Bridged-T network.

When we change the bilinear transformation coefficient a; for different
impedance variable of the transfer function of Bridged-T network, we observe that the
filter characteristic is an all pass filter for the case 7, a band pass filter for the case 13 and
a band stop filter for the case 17 from TABLE 2.1. The gain is also varied for the

different impedance variables of the transfer function.
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As we change the bilinear transformation coefficient a; for different impedance
variable of the transfer function of Bridged-T network, we observe that the filter
characteristic is an all pass filter for the case 7, a band pass filter for the case 13 and a
band stop filter for the case 17 from TABLE 2.1. Here the gain is not significantly
changed for different values of impedance variables.

When we change bilinear transformation coefficient b; for different impedance
variable of the transfer function of Bridged-T network, we observe that the filter
characteristic is an all pass filter for the case 7, a band pass filter for the case 13 and a
band stop filter for the case 17 from TABLE 2.1. Here the gain is not significantly
changed for different values of impedance variables.

When we change bilinear transformation coefficient b, for different impedance
variable of the transfer function of Bridged-T network, we observe that the filter
characteristic is an all pass filter for the case 7, a band pass filter for the case 13 and a
band stop filter for the case 17 from TABLE 2.1. The gain is also varied for the different
impedance variables of the transfer function.

The behavior of the bilinear transformation coefficient k; on variable impedance
values of the transfer function is quite different from a;, a;, by, b,. For the case 7, the
filter output is an all pass filter, but for the case 13 and 17 the filter output is low pass
filter. The gain is also quite low for the case 13 and 17 compare to case 7.

When we change bilinear transformation coefficient k; for different impedance
variable of the transfer function of Bridged-T network, we observe that the filter
characteristic is band pass filter for the case 7, 13 and a distorted low pass filter for the

case 17 from TABLE 2.1.
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From the comparison and analysis of the results of magnitude characteristics of
the filter output, we see that it is possible to get various type of filter output from a
Bridged-T network by changing bilinear transformation coefficients or changing

impedance variables.

5.2 The possible directions for future research:

In this thesis, we compare the denominator of transfer function of the Bridged-T
network with fourth order Butterworth polynomial for finding the impedance variable of
this circuit. Butterworth filter is a frequently used analog prototype filter, which has the
maximally flat magnitude. Besides Butterworth polynomial, one can use other
polynomials, e.g., Chebyshev. But the Butterworth is one of the popular polynomial and
widely used an arena of filter design. In future research, we can use chebychev
polynomial to compare the transfer function of the Bridged-T network.

In this thesis, we have investigated the manner how each coefficient of the
generalized bilinear transformation affects the magnitude response behavior of the
resulting 2-D filter. In every case we consider only the magnitude response. The phase
response is not discussed in this thesis. For different coefficients of the generalized
bilinear transformation, the phase response should have important role on the filter
output. The consideration of phase response is suggestion for future work.

In this thesis, we design for digital filter for the case of 7,13 and 17 from TABLE
2.1. For each of these cases, we get different combinations for different values of R; and
R,. Here we handle the value of R; = 0.6 and R, = 0.4 for designing digital filter.

Because this value of R; and R; has distinct filter output characteristics compare to other
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values. The other values for each case have different filter characteristics which could be
analyzed for possible future research direction.
Also, required computer programs can be developed for testing the stability, the

impedance values and the various designs.
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Appendix

Program Listing

5.1 Programs for Chapter 3: For the case of 7 from TABLE 2.1
% For the case of 7 from TABLE 2.1, when R1 =0.6 and R2=0.4
% The magnitude plot

clear

%We change the differentl values of coefficients of bilinear transformations for observing
% the effects.

al =0.5;

a2 =0.5;

bl =1;

b2=1;

kl=1;

k2=1,

R1=0.6;R2=04;

C2=9.0316; C3 = 1.0699;

L1=10.5807; L4 = 0.4455;
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w1=-pi:pi/16:pi;
w2=-pi:pi/16:pi;
Z1=exp(-j*wl);
Z72=exp(-j*w2);
[z1,22] = meshgrid(Z1,Z22);
% Applying bilinear transformation for making digital filter from analog domain
s1=k1.*(z1-al)./(z1+bl);
s2=k2.*(z2-a2)./(z2+b2);
% The transfer function of the Bridged-T network
output = ( R2 + C3.*R2.*L1.*s1.72 + C3.*R2.¥L4.*s1.*¥s2 + C2.*R2.*L1.*¥sl.*s2)./
(C3.*R1.*L1.*¥s1.72 + C3.*R2.*L1.*s1.”2 + C2.*R1.¥L4.*s2.22 + C3.*R1.*¥L4.*s1.*s2 +
C2.*C3.*R1.*R2.*¥L1.*%s1.°2.%s2 + C3.*L1.*L.4.%s1.72.*s2 + C2.*R1.*R2.*¥s2 + R1 + R2
+ C2*C3*R2*L1*L4%s1.42.*¥s2.°2+ + C2.*R1.*L4.*s1.*s2 +C2*L1*L4*s1.*s2./2 +
C3.*R2.*L4.*s1.*s2 + C2.*R2.*L1.¥s1.*s2 +L4*s2 + C2*C3*R1*R2*L4*s1.*s2./2);
res = abs(output);
% The 3-D magnitude plot
mesh(w1/pi,w2/pi,res);

xlabel(\omega 1 (\pi)"),ylabel("omega 2 (\pi)"),zlabel('res");

colormap cool

end

5.2 Programs for Chapter 3: For the case of 7 from TABLE 2.1

% For the case of 7 from TABLE 2.1, when R1=0.6 and R2=0.4
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% The contour plot

clear

%We change the different values of coefficients of bilinear transformations for
% observing the effects.

al =0.5;

a2 =0.5;

k2=1;

R1=0.6;R2=04;
C2=9.0316; C3 = 1.0699;
L1=0.5807; L4 = 0.4455;
wl=-pi:pi/16:pi;
w2=-pi:pi/16:pi;
Z1=exp(-j*wl);
Z2=exp(-j*w2);

[z1,22] = meshgrid(Z1,Z2);
% Applying bilinear transformation for making digital filter from analog domain
si=kl1.*(z1-al)./(z1+bl);
s2=k2.*(z2-a2)./(z2+b2);

% The transfer function of the Bridged-T network
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output = ( R2 + C3.*R2.*L1.%s1.°2 + C3.*R2.*L4.*s1.*s2 + C2.*R2.*L1.*sl.*s2)./
(C3.*R1.*L1.*s1.72 + C3.*R2.*L1.%s1.°2 + C2.*R1.*¥L4.*¥s2."2 + C2.¥*R2.*L1.*s1.*s2 +
C2.*C3.*R1.*R2.*L1.*%s1.22.*s2 + C3.*L1.*L4.*s1.72.*%s2 + C2.*R1.*R2.*s2 + L4*s2 +
C2*C3*R2*L1*L4*s1./2.#s2./2 + C2*C3*R1*R2*L4*s1.%s2.22 + C3.*R1.*L4.*s1.*s2
+ C2*L1*L4*s1.*s2./2 + C2.*¥R1.*L4.*s1.*s2 + C3.*R2.*L4.*s1.*s2 + R1 +R2 );

res = abs(output);

contour(w 1/pi,w2/pi,res,10);

xlabel(\omega_1 (\pi)"),ylabel("omega_2 (\pi)"),zlabel('res");

colormap cool

end

5.3 Programs for Chapter 3: For the case of 7 from TABLE 2.1

% For the case of 7 from TABLE 2.1, whenR1=0and R2=1

% The magnitude plot

clear

%We change the different values of coefficients of bilinear transformations for observing
% the effects.

al =0.5;

a2 =0.5;
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R1=0;R2=1;

C2=0.6532; C3 =0.9238;

L1=0.6340; L4 =2.6131;

w1=-pi:pi/16:pi;

w2=-pi:pi/16:pi;

Z1=exp(-j*wl);

Z2=exp(-j*w2);

[z1,22] = meshgrid(Z1,22);

% Applying bilinear transformation for making digital filter from analog domain
sl=kl.*(z1-al)./(z1+bl);

s2=k2.*(z2-a2)./(z2+b2);

% The transfer function of the Bridged-T network

output = ( R2 + C3.*R2.*L1.*sl."2 + C3.*R2.*L4.*sl.*s2 + C2.*R2.*L1.*s1.*s2)./
(C3.*R1.*L1.*¥s1.72 + C3.*R2.*L1.*s1./2 + C2.*R1.*L4.%s2.72 + C2.¥*R1.*¥L4.*s1.*s2 +
C2.*C3.*R1.¥*R2.¥L1.%s1.72.*s2 + C3.*L1.*L4.*s1./2.*s2 + C2.*R1.*R2.*s2 + L4*s2 +
C2*C3*R2*L1*¥L4*s1./2.*¥s2./2 + C2*C3*R1*R2*L4*s1.*#s2.°2 + C3.*R2.*L4.*5].*s2
+ C2*L1*L4*s1.*s2.~2 + C3.*R1.*L4.*s1.*s2 + + C2.*R2.*L1.*s1.*s2 + R1 + R2 );

res = abs(output);

% The 3-D magnitude plot

mesh(w1/pi,w2/pi,res);

xlabel("omega 1 (\pi)"),ylabel(\omega 2 (\pi)"),zlabel('res");

colormap cool

end
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5.4 Programs for Chapter 3: For the case of 7 from TABLE 2.1

% For the case of 7 from TABLE 2.1, when R1 =0and R2 =1

% The contour plot

clear

% We change the different values of coefficients of bilinear transformations for
% observing the effects.

al =0.5;

a2=10.5;

k2 =1;

R1=0;R2=1;

C2=10.6532; C3=10.9238;

L1=0.6340; L4 =2.6131;

w1=-pi:pi/16:pi;

w2=-pi:pi/16:pi;

Z1=exp(-j*w1);

Z2=exp(-j*w2);

[z1,22] = meshgrid(Z1,Z2);

% Applying bilinear transformation for making digital filter from analog domain

sl=k1.*(z1-al)./(z1+bl);
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s2=k2.*(z2-a2)./(z2+b2);

% The transfer function of the Bridged-T network

output = ( R2 + C3.*R2.*L1.*s1.”2 + C3.*R2.*L4.*s1.*s2 + C2.*R2.*L1.*s1.*s2)./
(C3.*R1.*L1.*¥s1./2 + C3.*R2.*L1.*s1./2 + C2.*R1.*L4.*s2.”2 + C3.*R1.*L4.*s].*s2 +
C2.*C3.*R1.*R2.*L1.*s1.72.*s2 + C3.*L1.*¥L4.¥s1.72.*s2 + C2.*R1.*R2.*s2 + L4*s2 +
C2*C3*R2*L1*L4*s1.72. #5222 + C2*C3*R1*R2*L4*s1.*#s2.°2 + C2*L1*L4*s1.*#s2./2
+ C2.*R1.*L4.*s1.*¥s2 + C3.*R2.%L4.*s1.*s2 + C2.*R2.*L1.*s1.*s2 + R1 + R2);

res = abs(output);

contour(w1/pi,w2/pi,res,10);

xlabel("omega 1 (\pi)"),ylabel("omega_2 (\pi)"),zlabel('res");

colormap cool

end

5.5 Programs for Chapter 3: For the case of 13 from TABLE 2.1

% For the case of 13 from TABLE 2.1, when R1 = 0.6 and R2 = 0.4

% The magnitude plot

clear

%We change the different values of coefficients of bilinear transformations for observing
% the effects.

al =0.5;

a2 =0.5;

b2=1;
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k1 =1;

k2=1;

R1=0.6;R2=04;

C1=1.6190; C2 = 705626;

L3=0.1705; L4 = 0.7981;

w1=-pi:pi/16:pi;

w2=-pi:pi/16:pi;

Z1=exp(-j*wl);

Z2=exp(-j*w2);

[z1,22] = meshgrid(Z1,Z22);

% Applying bilinear transformation for making digital filter from analog domain
sl=k1.*(z1-al)./(z1+bl);

s2=k2.*(z2-a2)./(z2+b2);

% The transfer function of the Bridged-T network

output = ( R2 + C1.*R2.*¥L.3.*s1.72 + C1.*R2.*L4.*s1.*s2 + C2.*R2.*L3.*sl.*s2)./
(C1.*R1.*L3.*s1.A2 + C1.*R2.*L3.*s1./2 + C2.*R2.*L4.*s2.*2 + C1.*R1.*L4.*s1.*s2 +
C1.*C2.*R1.*R2.*L3.*s1./2.*%s2 + C1.*L3.*L4.*s1.72.*s2 + C2.*R1.*R2.*s2 + L4*s2 +
CI*C2*R1*L3*L4*s1.72.#s2./2 + C1*C2*R1*R2*L4*s1.*s2.22 + C2*L3*L4*s].*52."2
+ C2.¥R1.*L3.*s1.*s2 + C1.*R2.*¥L4.*s1.*s2 + C2.*R2.*L3.*s1.*s2 + R1 + R2);

res = abs(output);

% The 3-D magnitude plot

mesh(w1/pi,w2/pi,res);

xlabel("omega 1 (\pi)"),ylabel(\omega_2 (\pi)'),zlabel('res");
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colormap cool

end

5.6 Programs for Chapter 3: For the case of 13 from TABLE 2.1

% For the case of 13 from TABLE 2.1, when R1=0.6 and R2 =04

% The contour plot

clear

%We change the different values of coefficients of bilinear transformations for
% observing the effects.

al =0.5;

a2 =0.5;

k2=1;

R1=0.6;R2=04;
C1=1.6190; C2 = 705626;
L3=0.1705; L4 = 0.7981;
w1=-pi:pi/16:pi;
w2=-pi:pi/16:pi;
Z1=exp(-j*w1l);

Z2=exp(-j*w2);
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[z1,22] = meshgrid(Z1,722);

% Applying bilinear transformation for making digital filter from analog domain
sl=k1.*(z1-al)./(z1+b1);

s2=k2.*(z2-a2)./(z2+b2);

% The transfer function of the Bridged-T network

output = ( R2 + CL.*R2.*L3.*¥s1.”2 + CL.*R2.*L4.*s1.*s2 + C2.*R2.*¥L3.*s1.*s2)./
(CL.*R1.*L3.*¥s1.72 + C1.*R2.*L3.*s1.A2 + C2.*R2.*¥L.4.*s2.72 + C1.*R1.*L4.*s1.*s2 +
C1.*C2.*R1.*R2.¥1.3.*¥s1./2.%s2 + C1.*L3.#*L4.*s1.2.*%s2 + C2.*R1.¥*R2.*s2 + 1.4*s2 +
CI*C2*RI*L3*L4*s1./2.%s2./2 + C1*C2*R1*R2*L4*s1.%s2./2 + C2*L3*L4*s1.*s2.72
+ C2.*R1.*L3.*s1.*s2 + C1.*R2.*L4.*%s1.*%s2 + C2.*R2.*L3.*s1.*s2 + R1 + R2 );

res = abs(output);

contour(w1/pi,w2/pi,res,10);

xlabel("omega_ 1 (\pi)"),ylabel("\omega_ 2 (\pi)"),zlabel('res');

colormap cool

end

5.7 Programs for Chapter 3: For the case of 17 from TABLE 2.1

% For the case of 17 from TABLE 2.1, when R1 = 0.6 and R2 =04

% The magnitude plot

clear

%We change the different values of coefficients of bilinear transformations for observing
% the effects.

al =0.5;
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k2=1;

R1=0.6;R2=04;

C2=1.8563;C3=24195;

L1=0.2568;14 =2.1676;

w1=-pi:pi/16:pi;

w2=-pi:pi/16:pi;

Z1=exp(-j*wl);

Z2=exp(-j*W2);

[z1,22] = meshgrid(Z1,Z2);

% Applying bilinear transformation for making digital filter from analog domain
sl=k1.*(zl-al)./(z1+b1);

s2=k2.*%(z2-a2)./(z2+b2);

% The transfer function of the Bridged-T network

output = ( R2 + C3.*R2.*L4.*s1.”°2 + C2.*R2.*L1.*s1.*s2 + C3.*R2.*L1.*s1./2)./
(C3.*R1.*L4.*¥s1.”2 + C3.*R1.*L1.*s1.”2 + C3.*R2.*L4.*s1.”2 + C3.*R2.*L1.*s1."2 +
C2.*C3.*R1.*R2.¥L1.*s1./2.*s2 + C2.*L1.*L4.*¥s1./2.*s2 + C2.*R1.*R2.*s2 + L4.*sl
+R1+R2+ C2.*C3.*R1.¥*R2.*L4.*s1./2.*%s2 + C2.*C3.*R2.*L1.*L4.*s1 /3. %52 +
C3.#L1.¥L4.*#s1./3+ C2.*R1.*L1.*¥s1.*s2 + C2.*R1.¥L4.*s1.*s2 + C2.¥R2.*L1.%¥s1.*s2);

res = abs(output);
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% The 3-D magnitude plot

mesh(w1/pi,w2/pi,res);

xlabel(\omega_1 (\pi)"),ylabel("omega 2 (\pi)"),zlabel('res");
colormap cool

end

5.8 Programs for Chapter 3: For the case of 17 from TABLE 2.1

% For the case of 17 from TABLE 2.1, when R1 =0.6 and R2=0.4

% The contour plot

Clear

% We change the different values of coefficients of bilinear transformations for
% observing the effects.

al =0.5;

a2=0.5;

k2=1;
R1=0.6;R2=0.4;
C2=1.8563; C3 =2.4195;
L1=0.2568; L4 =2.1676;
w1=-pi:pi/16:pi;

w2=-pi:pi/16:pi;
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Z1=exp(-j*wl);

Z2=exp(-j*w2);

[z1,22] = meshgrid(Z1,22);

% Applying bilinear transformation for making digital filter from analog domain
sl=kl.*(zl-al)./(z1+bl);

s2=k2.*(z2-a2)./(z2+b2);

% The transfer function of the Bridged-T network

output = ( R2 + C3.*R2.*L4.*s1.”2 + C2.*R2.*L1.*¥sl.*s2 + C3.*R2.*L1.*s1./2)./
(C3.*R1.*L4.*s1.~2 + C3.*R1.*L1.*s1.”2 + C3.*R2.*L4.*s1."2 +C3.*R2.*L1.*s1./2 +
C2.*C3.*R1.*R2.*¥L1.%s1.72.*s2 + C2.*L1.*L4.*s1.72.*%s2 + C2.*R1.¥*R2.*s2 + L4.*sl
+R1 + R2 + C2.*C3.*R1.*R2.*L4.*s1."2.*#s2 + C2.*C3.*R2.*L 1.¥L4.*s1./3.*s2 +
C3.*L1.*L4.*s1./3 + C2.¥R1.*L1.*s1.*s2 + C2.*R1.*L4.*s1.*s2+ C2.*R2.*¥L1.*s1.*s2);
res = abs(output);

contour(w1/pi,w2/pi,res,10);

xlabel(\omega 1 (\pi)"),ylabel(\omega 2 (\pi)'),zlabel('res");

colormap cool

end
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