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Abstract

Improved SOVA and APP Decoding Algorithms for

Concatenated Codes

Chuanxiu Huang

In this thesis, we propose a novel and simple approach for dealing with the exaggerated
extrinsic information produced by the soft-output Viterbi algorithm (SOVA). We
identify the reason behind producing these exaggerated values and propose a simple
remedy for it. We argue that what leads to these optimistic extrinsic information
is the inherent strong correlation between the intrinsic information (input to the
SOVA) and extrinsic information (output of the SOVA). The proposed remedy is
based on mathematical analysis and it involves using two attenuators, one applied to
the immediate output of the SOVA and another applied to the extrinsic information
before it is passed to the other decoder (assuming iterative decoding). We examine
the modified SOVA (MSOVA) on various channel models including additive white
Gaussian noise (AWGN) channels, flat fading channels, and storage channels for both
parallel concatenated codes (PCCs) and serial concatenated codes (SCCs). We show
that the MSOVA provides substantial performance improvements over these channels.
For example, it provides improvements of about 0.8 to 1.0 dB on AWGN channels,

il



about 1.4 to 2.0 dB on fading channels, and up to 1.6 dB on storage channels, all at
bit error rate 107°. We also show that there are cases where the MSOVA is superior
to the a posteriori probability (APP) algorithm. With this motivation, we extend
the proposed modification to the APP algorithm on AWGN and fading channels
with favorable results. We demonstrate that the modified APP (MAPP) provides
performance improvements between 0.3 to 0.6 dB at bit error ratel0=> relative to
the APP. We lastly mention that the proposed modifications, while they provide
considerable performance improvements, add only two multipliers to the complexity

of the conventional SOVA, which is remarkable.
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Chapter 1

Introduction

The main challenge of communication systems is to recover the original information
at the receiver as reliably as possible. To improve the transmission quality, channel
coding has become an indispensable tool. It involves the addition of some redundant
symbols to a group of source symbols, which helps to correct errors in the received
signals corrupted by a noisy channel. In 1948, Shannon demonstrated in his landmark
paper [1] that by proper encoding of the information, errors caused by a noisy channel
or storage medium can be reduced to any desired level if the data transmission rate
R (in bits/sec) from the source encoder is smaller than the channel capacity C, where
C = Blog, (1 + S/N), where B is the system bandwidth and S/N is the signal-to
notse ratio (SNR).

Since then, great efforts have been made to design codes that would approach the
Shannon limit. An important step towards achieving this goal was made by Forney

[2], where he proposed to cascade relatively simple codes to obtain powerful overall



codes. One of the most prominent concatenation schemes is the serial concatenation
of an inner convolutional code and a powerful nonbinary Reed-Solomon (RS) outer
code. With this scheme, a nearly error-free performance is achievable (bit error rate
on the order of 1071°.) The astonishing performance of these concatenated codes
resulted in a surge in the research on concatenated codes.

In 1993, Berrou, et al. [3] introduced a new coding/decoding technique referred
to as turbo coding. A turbo codes normally consists of two recursive convolutional
codes concatenated in parallel and is decoded using an iterative algorithm consisting
of two maximum a posteriori probability (MAP) decoders. Performance less than
1.0 dB away from capacity is reported with a short constraint length, very long block
length, and 10 — 20 iterations of decoding. Later, Benedetto, et al. introduced in [4] a
coding scheme that involves concatenating two convolutional codes in a serial fashion
with a random interleaver separating them. It was shown that serial concatenated
convolutional codes normally outperform their counterpart parallel concatenated con-
volutional codes over an additive white Gaussian noise (AWGN) channel. Due to
their excellent error correcting capability, these codes are being considered for the
3rd Generation (3G) mobile communication standards, 3GPP, UTMS, and CDMA.

The idea of concatenated codes can be extended to various codes and code com-
binations. In this thesis, our interest is focused on the concatenation of two convolu-
tional codes because of their impressive performance and wide range of applications.
For simplicity, we refer to the parallel concatenated code as the PCC code and the

serial concatenated code as the SCC code.



1.1 PCC and SCC Codes

Fig. 1.1 depicts a PCC system. As shown in the top part of the figure, the encoder
consists of two recursive systematic convolutional (RSC) encoders (denoted by El,
E2) arranged in a parallel fashion, and separated by a random interleaver (denoted
by IT). A puncturing mechanism (denoted by P) is also employed to obtain various

code rates.

Information
bits

El

I1 Phi.
E2 . ¥

a) PCC Encoder

Codewords

Channel
information L
Decoded
—" DI D2
= it
Iteratei)
IH -1 |l

b) PCC Decoder

Figure 1.1: Encoder (top) and decoder (bottom) structure of a PCC system. [E
denotes encoder component, D denotes decoder component, II, [I7* denote interleaver
and de-interleaver, respectively, P denotes puncturing.]

Without loss of generality, we assume that the constituent codes are identical. A
corresponding PCC decoder is shown in the bottom part of the figure. The input to

each decoder component (denoted by D1, D2) includes information from the channel
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and extrinsic information delivered from the other decoder component. This soft-
in/soft-out (SISO) decoder works in an iterative fashion, and is known to converge at
low bit error rates as the number of iterations increases [5].

The basic structure of a SCC code is shown in Fig. 1.2. As seen in the top
part of the figure, the outer encoder (E1) and the inner encoder (E2) are serially
concatenated with an interleaver inserted between them. The overall code rate r of
the SCC code is the product of the outer code rate r, and the inner code rate r;,
ie., r = r,-7;. In the bottom part of the figure, we present the iterative decoder
structure for a SCC code. This iterative SCC decoder employs two SISO decoding
components, one matched to the trellis of the outer encoder and another matched to

the trellis of the inner encoder.

Information

= |
bits 11 jE’ Codewords
El P E2

a) SCC Encoder

Channel Decoded

information DI . D2 bits

Iterate:)

| -1 ]
e
b) SCC Decoder

Figure 1.2: Encoder (top) and decoder (bottom) structure of a SCC system. [E
denotes encoder component, D denotes decoder component, I, [I7! denote interleaver
and de-interleaver, respectively, P denotes puncturing.]



1.2 Iterative Decoding Algorithms

An iterative decodernormally consistes of two SISO decoder components!. The goal
of the decoder component is to iteratively estimate the a posteriori probabilities of
each information bit u; given the observation of the received sequence y. In the
logarithm domain, the log-likelihood ratio (LLR) of the a posteriori probability is

defined as

(1.1)

L(i) 2 log {Pw’“ =+ Y)] .

P(u = -1]y)

A SISO decoder component produces soft-output values of the LLR. This LLR can
be represented as the sum of three independent terms [6]: the channel information
Loy (Le £ 4rEy/Ny, is called the reliability value of the channel), the a priori
values L(uy) delivered from the other SISO decoder component, and the extrinsic

information L(4y), i.e.,
L) = Leyw + L(ug) + Le (). (1.2)

The extrinsic information L.(1), is obtained by subtracting L.yg + L(uy) from L(dy)
(see 1.2), and then passed on to the other decoder component. This extrinsic infor-

mation serves as a prior information for the receiving decoder component. For SCC

1Tt is possible for the iterative decoder to consist of more than two SISO decoders, depending
on the number of concatenated codes. However, for practical reasons, only two SISO decoders are
used.



codes, the iterative decoding proceeds as D2, D1, D2, etc., with the previous de-
coder passing extrinsic information along to the next decoder at each half iteration.
In the case of PCC codes, for hardware implementations, D1 and D2 can operate
simultaneously by initializing the a prior information to zero in the first iteration.
The a posteriori probability (APP) algorithm or sub-optimal algorithms, such
as the soft — output Viterbi algorithm (SOVA) are implemented in each decoder
component to produce the soft output LLRs. In the following subsections, we give a

brief introduction to the APP algorithm and the SOVA algorithm.

1.2.1 The APP Algorithm

In the symbol-by-symbol APP decoder, the decoder decides uy = +1 if P(u = +1 |
y) > P(ux = —1]|y), and it decides uy = —1 otherwise, where y is the noisy received

sequence. In the logarithm domain, the decision 1y is given by

i, = sign [L(@)], (1.3)

where L(1y) is the log a posteriori probability defined by (1.1). To utilize the code

trellis in computing the LLRs, we rewrite L(4y) as

> P(sp1=¢8,8,=38,Y)

up==+1

E P(Sk—l = 3/7519 = 57)’)7

uk:—l

L(i) = log

(1.4)



where s, is the encoder state at time k, ux = +1 is the set of pairs (¢, s) for the
state transitions (sx—1 = §') — (sx = s) which corresponds to the event u; = +1, and

up, = —1 is similarly defined. To compute (1.4), we factor P (sx-1 = §',8x = s,¥) as

P (s = s, sk = 5,y) = P(Slayj<k) . P(S»yk|5') ' P(?Jj>k|5>,

or, in the logarithmic domain

o

log P (sg-1=5,8, = 8,y) = log P(s',yj<k2+log P(s,ykls'2+£og P(y;>k|s)

G_1(s") Fe(s', 8) Br(s). (1.5)

From (1.4) and (1.5), we have

L(t) = log { > exp (&k—l(s') + (s, 5) +5k(5)>}

up=+1

—log [ Z exp <&k—1(8') + (s, 8) + Bk(s)>jl . (1.6)

up=—1

To compute Fx(s', s), which is also named as the branch metric, we have

Ar(s',s) = log <P(S|5/) ,p(yk|5',8)>

P(s) P(s',s)

= log P(uy) + log p(y|ux)

= log P(us) — log(v/A/Ee) — —= s — ekl (L.7)



According to the definition of the extrinsic information

Lo(i) 2 log [igg’; “_Lm (1.8)
we have
e = o (L) i)
= g+ SueL(w). (1.9)

2

Note that L(uy) is the extrinsic information produced by the other decoder. Substi-

tuting (1.9) into (1.7), we have

- 1 L.
(s, 8) = éukL(uk) -7 lye — ckl|* + A — log(y/47/Le). (1.10)

With the knowledge of x(s', s) of each branch in the code trellis, we compute &x(s)

in the forward recursion by

ay(s) = log (Z) expldg_1(s") + (s, 8)]- (1.11)

Since each component convolutional encoder is initialized to the zero state, &(s) is

initialized according to



In the backward recursion, B_1(s') is yield according to

Be_1(s') = log (/z) exp|Fe(s', 5) + Br(s)]. (1.12)

For a component convolutional encoder which is terminated to the zero state, in the
corresponding decoder component, Bk(s) is initialized according to
0,s=0
ﬁ K(S) = .
—00,8 # 0

A diagram of the computation of dx(s), Be(s),and L(d) is shown in Fig. 1.3. In
addition, in order to isolate the extrinsic information from L(ty), and feed it to the

other decoder as the a priori information, it is obtained from (1.2) as

Le(tig) = L(tig) — Leyr — L(ux). (1.13)



&k_](Sll) : Vk(sllas)
a,(s)
a,.,(s,) 7i(s2:9) a,(s)=log (of two sums)
a) Forward recursion
. S\
}/k (Sl’s) ﬂk(sl)
Bi(s)
N ACH) ~
B, (s')=log (of two sums) B.(s,)
b) Backward recursion
3 7.(0,0) .
ak-I(O) —. ﬂk(o)

&, (1) B. () 1
------ u, = +
u, =-1
@,(2) B.(2)
PR A
a,.,3) e= B.(3)

7.(33)

LG, ) =logl D (@, + 7, +B)1~log[ D, (&, + 7, +B)]

up=+1 up=-1

c) Computation of L(#,)

Figure 1.3: A diagram on the trellis of the APP decoder. The top part of the figure
depicts the forward recursion, the middle part of the figure depicts the backward
recursion, and the bottom part depicts the computation of L(ay).
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1.2.2 Overview of the SOVA Algorithm

The Viterbi algorithm is optimal in the sense that it maximizes the a posteriori
probability P(s | y), where s is the state sequence representing the trellis path, and y
is the received sequence. The SOVA finds the most likely (ML) path sequence as the
original Viterbi algorithm, and traces back the ML path to obtain the hard decision
. To produce the soft value as the a posteriori probability for each bit, the SOVA
only involves the two most competitive paths, in contrast to the APP algorithm that
actually considers all the trellis paths. This benefits the SOVA decoder by reducing
its complexity about a factor of two relative to the APP decoder [7].

However, some performance degradation is suffered. For example, the SOVA
performance was examined on AWGN channels for rate 1/2 in [7] and (8], rates that
range from 1/2 to 8/9 in [6], and rates from 4/5 to as high as 64/65 in [9]. In all
of these works, it was demonstrated that the SOVA algorithm is inferior to the APP
algorithm by about 0.7 to 1.0 dB at bit error rate 1072, This performance gap widens
considerably on fading channels and band-limited channels such as partial response
(PR) channels. For instance, on fading channels, as we will demonstrate in Chapter
2, the degradation due to using the SOVA, relative to the APP, can be as large as
2.5 dB at bit error rate 1075 with code rate 4/5. Larger degradations are expected
at higher code rates. Also, on PR channels, as we will see later in Chapter 3, the
degradation can be as large as 2.0 dB at bit error rate 10~ relative to the APP,
depending on the concatenation scheme and code rate.

On the other hand, the SOVA is still attractive, not only because it reduces the

11



complexity, but also because, unlike the APP decoder, it does not require knowledge
of the channel noise variance [10], which makes it easier to implement in practice.

Several papers have recently looked into why the SOVA gives a poor performance
relative to the APP [10]—{15]. It is suggested in these papers that the reason behind
this degradation is that the reliability values at the output of the SOVA decoder are
typically larger than those that would have been produced by the APP decoder. In
[11], the authors show that the output of the SOVA typically suffers some sort of
distortion, which often leads to producing optimistic reliability values at its output.
With this motivation, they propose to apply an adaptive attenuator to the output of
the SOVA. With this scheme, improvements of about 0.3 dB over AWGN channels
can be achieved at bit error rate 107*, relative to the APP.

In [12]—[14], the authors propose to apply a fixed attenuator to the output of
SOVA, where improvements of about 0.2 to 0.3 dB are shown to be possible. Another
approach was introduced in [10], which involves applying a threshold to the output
of the SOVA so that the reliability values are clipped if they exceed a certain value.
However, in addition to being heuristic, as was pointed out in [15], this approach
provides in general marginal improvements. In [15], the author proposes to apply
both an attenuator and a threshold at the same time to the output of the SOVA. With
these modifications, the SOVA performs within 0.1 dB from the APP at high signal-
to-noise ratio (for parallel concatenated codes.) For convenience, we shall henceforth

refer to the SOVA algorithm when a single attenuator (SA) is applied as SOVA-SA.

12



Details about the SOVA algorithm on AWGN and fading channels will be pre-
sented in Chapter 2, while the extension to the SOVA on PR channels is given in

Chapter 3.

1.3 Thesis Outline

In this chapter, we presented some of the basic concepts of concatenated codes. We
also reviewed the APP algorithm. We showed that performance degradation is suf-
fered when the APP decoder is replaced by the SOVA decoder on various channels.
The main advantage of employing the SOVA, however, is a reduction in complexity
by about 50% relative to that of the APP. In addition, the SOVA decoder, unlike the
APP decoder, does not require knowledge of the channel noise variance, which makes
it even more attractive. Efforts that people have made to improve the performance
of the SOVA decoder were also discussed.

In Chapter 2, after a brief introduction to the SOVA algorithm, we identify the
reason behind the performance degradation when the APP algorithm is replaced
with the SOVA algorithm in the iterative decoder. A simple modification based on
the original SOVA is proposed. We examine the modified SOVA (MSOVA) on AWGN
channels and flat fading channels, and show that the MSOVA provides substantial
performance improvements over these channels. We also show that there are cases
where the MSOVA is superior to the APP algorithm. With this motivation, we extend

the proposed modification to the APP algorithm with favorable results.
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In Chapter 3, we examine the MSOVA on turbo-coded magnetic recording chan-
nels. We consider both idealized PR channels and the Lorentzian model equalized to a
PR target. We demonstrate that substantial performance improvements are possible.

In Chapter 4, conclusions are made and directions for future work are suggested.

1.4 Thesis Contribution

The contributions of this thesis can be summarized as follows:

e We pin point the reason as to why the SOVA is inferior to the APP in terms
of performance. We show that this degradation is due to the large extrinsic
information produced by the SOVA relative to those that would have been
produced by the APP. This exaggeration in the extrinsic values is mostly due
to the strong correlation between the intrinsic information (inputs to the SOVA)

and extrinsic information (outputs of the SOVA).

e Based on mathematical analysis, we propose a simple remedy for these exagger-
ated values. The proposed remedy involves using two attenuators, one applied
to the immediate output of the SOVA and another applied to the extrinsic
information before it is passed on to the other decoder component (assuming

iterative decoding.)

e We show that the proposed solution succeeds in reducing this inherent correla-

tion substantially, where the resulting correlation becomes comparable to that

of the APP.
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We examine the MSOVA on AWGN and fading channels. We show that sub-

stantial performance improvements can be achieved.

We extend the proposed modifications to the APP algorithm on AWGN and
fading channels. We show that performance improvements of up to 0.6 dB at

P, = 107° are possible, relative to the APP.

We examine the performance of the MSOVA on PR channels. We demonstrate
that improvements of up to 1.6 dB at P, = 107° are achievable. Moreover, the

performance gap between the APP and MSOVA is only around 0.4 dB.

The above mentioned substantial improvements come at the expense of adding
two multipliers to the complexity of the conventional SOVA, which is still much

less complex than the APP.
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Chapter 2

Improved SOVA and APP
Decoding Algorithms for AWGN

and Fading Channels

2.1 Introduction

In this chapter, we propose a simple approach for dealing with the exaggerated re-
liability values produced by the SOVA algorithm. We first pin point the reason as
to why the SOVA tends to produce these exaggerated reliability values at its output,
and then propose simple modifications to overcome this problem. We argue that the
reason behind these large reliability values is mostly the high correlation between the
intrinsic information (inputs to the SOVA) and extrinsic information (outputs of the

SOVA). Our proposed remedy for this problem is based on mathematical analysis and
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it involves using two attenuators, one applied to the immediate output of the SOVA
and another applied to the extrinsic information before it is passed on to the other
decoder component (assuming iterative decoding.)?

We examine the performance of the proposed modified SOVA (MSOVA) on AWGN
and fading channels for both PCC and SCC systems. For the PCC system, the
MSOVA performs as good as the APP on both AWGN and fading channels. As for the
SCC case, the MSOVA outperforms the SOVA by about 1.2 dB at bit error rate 1073
on both channels. It was also interesting to observe that the MSOVA outperforms the
APP by about 0.2 dB on AWGN and 0.5 dB on fading channels (both at bit error rate
1075.)? Motivated by these promising results, we modify the APP following the same
approach that we used to modify the SOVA. With these modifications, we show that
the modified APP (MAPP) provides improvements by about 0.3 dB on AWGN and
0.7 dB on fading channels (for the SCC system), all relative to the APP. As for the
PCC case, the MAPP provides performance improvements of about 0.2 dB relative
to the APP on both channels. We will give later some insight as to why the proposed
modifications are more effective for the SCC system as compared to the PCC system.

The rest of this chapter is organized as follows. In Section 2.2, we describe the
system model. In Section 2.3, we present the proposed MSOVA algorithm and discuss
the rationale behind proposing these new modifications. Performance analysis is given

in Section 2.4. We present and discuss the simulation results in Section 2.5. Finally,

1Tt is worth mentioning that the proposed MSOVA has almost the same complexity as that of
the conventional SOVA, which makes it quite attractive.

We remark that the APP algorithm when used in an iterative decoding environment is
suboptimal.
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Section 2.6 concludes this chapter.

2.2 System Model

The system under consideration is depicted in Fig. 2.1. In the top part of the figure,
the channel is modeled as AWGN, whereas it is modeled as independent fading in
the bottom part of the figure. In the fading case, the system is equipped with M;
transmit and M, receive antennas, and it employs, in addition to the PCC (or SCC)
code, a space-time block code (STBC) as described in [16] and [17]. An interleaver
is inserted between the outer code and STBC code to decorrelate the coded sequence

so as to ensure that the maximum diversity order is achieved.

ng Cor | AWGN | PCCor
Channel " ScC
encoder decoder
a) AWGN
PCC or | 1y Fla Y 1 Soe
. i fading or
STBC : : . _
] sce encoder * i channel i * Combiner — H [ B SCC -
encoder MY 7 M decoder
b) Flat fading

Figure 2.1: System model with an AWGN channel (top) and a flat fading channel
(bottom) [IT denotes interleaver.|

When a PCC code is employed, the encoder consists of two identical RSC codes

connected in parallel and separated by an interleaver. This code is decoded using
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two identical iterative decoder components. In the SCC case, the encoder consists of
two convolutional codes connected serially and separated by an interleaver. For the
inner code, we always use a rate-1 differential encoder modeled by 1/(1 + D). The
SCC code is decoded using two iterative decoder components, one matched to the
trellis of the outer encoder and another matched to the trellis of the inner encoder.
For both concatenation schemes, each iterative decoder component implements the
SOVA, SOVA-SA, MSOVA, APP, or MAPP. The decoder components used at a time
are assumed to implement the same algorithm.

For the fading case, the signal yi received by antenna j at time k received, after

demodulation, matched-filtering, and sampling, is given by
. Mt .
y{c = Z O 4 (k,')C}C + w,”c, (21)
i=1

where ¢} is the signal transmitted from antenna i at time k, the noise wi at time k is
modeled as independent samples of a zero-mean complex Gaussian random variable
with variance Ny/2 per dimension. The coefficients «; ;(k) model fading between
the ¥ transmit and j** receive antennas at time k and are assumed to be complex
Gaussian random variables with zero mean and variance 0.5 per dimension. We
assume that the fading coeflicients are known exactly at the receiver, and are constant
over a block of consecutive M, symbols and vary independently from one block to
another. Moreover, the subchannels are assumed to fade independently. For the

AWGN case, the signal model in (2.1) is modified as yr = cx + wy.
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2.3 Modified SOVA Algorithm

2.3.1 Proposed Modifications

In this section, we discuss the SOVA algorithm as an approximation to the APP
algorithm for the PCC system; SOVA decoding for the SCC system is discussed in
the following section. In the symbol-by-symbol APP decoder, the decoder decides
up = +1if Pluy = +1 | y) > P(ux = =1 | y), and it decides uy = —1 otherwise,
where y is the noisy received sequence. In the logarithm domain, the decision 4y is

given by

fy = sign [L(@)], (2.2)

where L(1y) is the log a posteriori probability ratio defined as

R Plug = +1] y)}
L(a) £ 1o [ . 2.3
Using Bayes’ rule, (2.3) may be expressed as
R P(yluk:+1)] |:P(Uk=+1):|
L =1lo +1 —_—, 2.4
) =tox [prie =T e |p T 24

where the second term represents the a prior: information of bit ug. Since equally
likely inputs are typically assumed, the a priori term is usually zero for conventional

decoders. However, in iterative decoding this a priori term is usually non-zero and it
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represents the soft (extrinsic) information that the decoder components pass to each
other.

The SOVA algorithm was first introduced in its MAP form by Forney [18]. Then
Hagenauer [19] modified it so that the metric of the Viterb: algorithm (VA) incorpo-
rates the a priori or a posteriori information about the probability of the information
bits. Without loss of generality, assuming an iterative decoder using two SOVA de-

coders (D1 and D2), the output of D1 at time k can be expressed as [6]

L(tx) = Leyx + L(ug) + Le(dx), (2.5)

where L.y is the channel value (L, £ 4rEy/N,, which can be set to 1.0 for SOVA
[10], r is the code rate, Ej is the average energy per information bit, y; is the k%t
noisy received systematic bit), L(uy) is the a priori values delivered from D2, and
L. (ig) is the extrinsic information produced by D1. Now let L;(ux) = Leyx + L(ug),
which represents the input (intrinsic information) to D1. It has been shown that the
extrinsic information L. (dy) follows a Gaussian distribution [20], and so does L;(uy)
simply because L(uy) is the extrinsic information passed from D2 and L.yx is the
output of the channel.

In the conventional SOVA algorithm, it is normally assumed that the term L. ()

in (2.5) is weakly correlated with the other two terms [6], and thus L.(dx) can be
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obtained by directly subtracting L;(ux) from L(d). That is

Le('&k) = L(fék) —_ Lz(uk) (26)

However, we have observed through computer simulations that the correlation be-
tween L;(ug) and L,(tx) is rather strong, which is normally ignored. We believe that
this is essentially the reason behind the degradation in the SOVA performance. To
elaborate on this, we have listed in Table 2.1 (last row) values for the correlation
coefficient between the intrinsic and extrinsic information of the SOVA at 3 dB for

different decoder iterations of the upper decoder.

Table 2.1: Correlation coefficient between the intrinsic and extrinsic information sup-

plied by the MAPP, APP, MSOVA, SOVA-SA and SOVA in the PCC scheme.

#IternsathBl 1 | 3 | 8

MAPP 0.0310.04 | 0.04
APP 0.04 { 0.04 | 0.05
MSOVA 0.040.14 | 0.20
SOVA-SA 0.2010.22 { 0.25
SOVA 0.20 { 0.24 | 0.30

These values are obtained by simulating a PCC code with generator polynomials
(91,92) = (7,5)0ct, where gy is the feedback polynomial and g, is the feedforward
polynomial, and code rate 1/2. We also list in Table 2.1 the correlation coefficient
for the APP, SOVA-SA and two modification version algorithms proposed in this
thesis later: the MSOVA and MAPP. In this table, all correlation coefficients were
computed for the same noise and bit sequences. As is evident from the table, there
is clearly a strong correlation between the extrinsic and intrinsic information of the
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SOVA as compared to that of the APP (or MAPP). This correlation, however, is
reduced significantly for the MSOVA particularly for small number of iterations.

The consequence of this correlation is that the extrinsic information estimated by
the SOVA is larger than its true value. This is explained as follows. As the name
suggests, the extrinsic information passed from one decoder to another should present
new information to the receiving decoder. However, this strong correlation between
the extrinsic and intrinsic information implies that part of the extrinsic information
passed to a decoder is already known to this decoder. However, it is not treated
as such, i.e., the receiving decoder normally regards all what it receives from the
other decoder as new information. Consequently, this leads to a redundancy in the
exchanged information, which tends to produce exaggerated extrinsic information at
the output of the SOVA.

In light of the above discussion, it is clear that the output of the conventional
SOVA is not really L(ug) as defined by (2.4), and consequently its extrinsic informa-
tion is not L. (@) as defined by (2.6). Now, let us denote the actual SOVA output by
V() and the corresponding extrinsic information by Ve (i), where the latter can be

expressed as

Ve(tie) = V (ti) — Li(ur), (2.7)

with L;(uy) representing the intrinsic information (inputs to the SOVA). Our objective

here is to modify V(&) and Ve(ix) in order to obtain the true L;(ug) and L.(tx),
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which are supposed to be uncorrelated. As per the above discussion, the variables

L;(uy) and V() are correlated Gaussian random variables with means m;, m., and

variances o7, o2, respectively. Assuming uy, = +1 is transmitted, the joint conditional

probability density function (pdf) P(V,(tx), Li(ug)|ux = +1) is then given as

1

2m0;004/1 — p%
o g M )

p+(Ve(iix) — me) (La(ur) — mi) 2.8
( ) (238)

0i0e (1 = p%)

P(Veltu), Li(ug)lug = +1) =

- exp

where p, is the correlation coefficient given by

. = T Zme) (Lulue) — ] (2.9)

where m, and m; are estimated as m, = % chvzl Ve(ty) and m; = % Zgzl Li(ug),

respectively, and NV is the data block size. Also, o, and o; are estimated as o, =

\/ SV V.(a;)]? and o; = \/ SV Li(ug))?, respectively. Similarly,

when u; = —1 is transmitted, the joint conditional pdf P(V,(tx), Li(uk)|ug = —1) is
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given as

- 27raiae\1/1T;)2__
e (e (A | (B o]

2
o o}

P(Ve(i), Li(ug)[ue = —1)

. ex p-(Ve(tr) +me) - (Li(ug) + m;)
P ( o0 (1 — p2)

) (210

where

p = E[(Ve(iy) + m;.)a' (Li(ue) + mi)]‘ (2.11)

Using Bayes’ rule, the a posteriori log-likelihood ratio L(#y) can be computed as

P(uk = +1|‘/e(’llk), L,(U,k))

L(tu,) =1o -
N P | FAGT WA
= a%(ﬁk) + bLi(uk), (2.12)
where
1 g;
a= 1 7 (re — pria—e), (2.13)
pe (ri — pre %) (2.14)
- 1 . p2 Tl preo_i b .

Te = 2m. /02, r; = 2my;/o?, and p = py = p_.
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Substituting (2.7) into (2.12) yields
L(ﬁk) =a (V(ﬂk) — Li(uk)) + bLi(uk), (2.15)

and, consequently, the extrinsic information to be passed to the other SOVA decoder,

L.(t), can be expressed as

Le(@k) = L(ﬂk)—Lz(uk)

a

= (e+1-0)\ =3

which can be implemented as shown in Fig. 2.2 where c and d in the figure correspond
to a+1-—band —1-5 respectively. This expression suggests that the immediate output
of the SOVA should be scaled by d before the intrinsic information is subtracted off,

and then the difference should be scaled by c.

d c
L;(uy) Conventional | 7 () % +, C_") | é() L, (ukl)
SOVA =

Figure 2.2: Implementation of the proposed MSOVA algorithm.

2.3.2 Extension to the SOVA in the SCC Case

Following the same experiment in the PCC case, we have studied the SCC case,

and observed through computer simulations that the correlation between L;(u;) and
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L. () is rather strong, similar to the case of PCC. We believe that this is the same
reason behind the degradation in the SOVA performance in the SCC system. To
elaborate on this, we have listed in Table 2.2 (last row) values for the correlation
coefficient between the intrinsic and extrinsic information of the SOVA at 4 dB for
different decoder iterations of the inner decoder. These values are obtained by sim-
ulating a SCC code with generator polynomials (g1,¢92) = (7,5)oc, where g; is the
feedback polynomial and gs is the feedforward polynomial, and code rate 1/2 (the
inner code is simply a rate-1 differential code.) We also list in the table the correlation
coefficient for the SOVA-SA, MSOVA, APP and MAPP (all correlation coefficients
were computed for the same noise and bit sequences.) As is evident from the table,
there is clearly a strong correlation between the extrinsic and intrinsic information of

the SOVA as compared to that of the APP (or MAPP).

Table 2.2: Correlation coefficient between the intrinsic and extrinsic information sup-

plied by the MAPP, APP, MSOVA, SOVA-SA and SOVA in the SCC scheme.

#lternsat 4dB| 3 | 5 | 7

MAPP 0.03 1 0.03]0.03
APP 0.03 | 0.04 | 0.06
MSOVA 0.0710.15{0.20
SOVA-SA 0.18 | 0.20 | 0.22
SOVA 0.18 | 0.22 | 0.25

In order to reduce this inherent correlation, we go through the same derivation
as we have done in the PCC case, and the result is the same for both code systems,
except the following two differences.

First, in the PCC case, due to symmetry, both iterative decoder components will
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have the same structure, which is described by (2.16). Both decoders will even have
the same values of ¢ and d. However, this is not the case in the SCC case. That is,
the inner decoder receives its inputs from the channel as well as the outer decoder,
whereas the outer decoder receives all its inputs from the inner decoder. As such, for
(2.16) to hold for the SCC case, the intrinsic information L;(uy) in (2.16) should be
replaced by L(uy) for both inner and outer decoders.

Secondly, the pair of values (c, d) is always the same for both decoder components
in the PCC system, whereas they may not be the same in the SCC system. The
reason being is that these values depend on the structure of the code, as well as the
puncturing scheme. Therefore, when selecting the values of ¢ and d, the inner and
outer decoders in the SCC scheme should be treated separately. (More detail on this

point is given later.)

2.3.3 Extension to the APP Algorithm

The changes applied to the SOVA algorithm, as outlined above, extend in a straight-
forward manner to the APP algorithm (for both PCC and SCC schemes.) The MAPP
will also have the same structure as that of the MSOVA. Extending these modifica-
tions to the APP algorithm was actually inspired after we have observed that the
MSOVA substantially outperforms the APP algorithm in the SCC system. As we
have shown in Table 2.1, and Table 2.2, for both PCC and SCC schemes, the cor-
relation coeflicient of the MAPP is slightly decreased relative to the APP. Actually,

modifying the APP algorithm with the aim of improving its performance has been
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looked into before (see [3], as an example.)

2.3.4 Computation of the Coefficients ¢ and d

In general, as mentioned above, to obtain the values of ¢ and d, we need to compute
the means and variances of V(i) and L;(ux), and the correlation coefficient between
them for every received data block and every decoding iteration.> However, this
method has two drawbacks. First of all, these computations increase the complexity
of the decoder due the additional processing delay. Also, the extrinsic information
V. (fix) may not be strictly Gaussian [21], especially when the data block is relatively
short, e.g., N = 512. As a matter of fact, we examined the performance of the MSOVA
with the parameters ¢ and d computed for data block length N = 512 and 1024 with
the assumption that V,(7y) is Gaussian, but not much improvement was observed
relative to the conventional SOVA.

As an alternative, we perform a computer search in an effort to find the pair (c, d)
that would give the best performance. Since the values of ¢ and d are dependent upon
the correlation between the extrinsic and intrinsic information, they are affected by
the code structure and the puncturing mechanism. Through simulations we found
that once the code generator polynomials and puncturing mechanism are determined,
there is a fixed pair (c,d) that can be used for any received data block and every

decoding iteration. Moreover, this fixed pair of values works well for both channel

3In the unlikely event that when the correlation coefficient is very small, i.e., p = 0, and the
output of the SOVA follows a Gaussian distribution, i.e., r; = 7. =1 [11], we have c =d = 1. In
such cases, the proposed modifications are no longer needed.
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models. We list in Table 2.3 the values of ¢ and d that we found through Monte Carlo
simulations for various PCC and SCC codes, and for various code rates. Each pair of

(c,d) was obtained by averaging over 3 x 108 sample points (i.e., received symbols).

Table 2.3: Values of ¢ and d for various PCC and SCC codes for the MSOVA algorithm
on AWGN and fading channels.

PCC Code (¢, d)

(7v 5)oct7 r= ]-/2 (09, 08)
(31,33) s, 7 =4/5 (0.8,0.7)
SCC Code (¢, d)

Outer Inner Outer Inner
(7,5)0ct, T =1/2 HLD, r=11(0.7,0.8) | (0.8,1.0)
(7,5)0ct, 7 = 8/9 HLD, r=11/(0.9,0.8) | (1.0,0.9)

To illustrate the efficacy of the proposed MSOVA, we perform another experiment
in which we compare the actual extrinsic information supplied by the SOVA, SOVA-
SA, MSOVA, and APP algorithms with that supplied by the MAPP (for the same
noise and bit sequences.)

In Fig. 2.3, we plot the extrinsic information of the SOVA, SOVA-SA, and MSOVA
against that of the MAPP (for the PCC case.) Each part of the figure includes 2048
data points obtained after the first iteration at SNR = 3 dB (on AWGN).We observe
from the figure that the extrinsic information of the SOVA is too optimistic relative
to that of the MAPP, whereas the extrinsic information of the MSOVA matches very
well that of the MAPP.

The same experiment was repeated for the SCC system and the results are scat-

tered in Fig. 2.4.
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Figure 2.3: Comparison between the extrinsic information supplied by the SOVA
(top), the SOVA-SA (middle), and the MSOVA (bottom), and that supplied by the
MAPP (for PCC and AWGN using the same bit and noise sequences.)
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Figure 2.4: Comparison between the extrinsic information supplied by the SOVA
(top), the SOVA-SA (middle), and the MSOVA (bottom), and that supplied by the
MAPP (for SCC and AWGN using the same bit and noise sequences.)

31



In Fig. 2.5, we compare the extrinsic information of the APP with that of the
MAPP for both concatenated coding schemes. It is also evident from these figures

how effective the proposed modifications are.

E /N,=3d8

PCC

MAPP Extrinsic Info

10 L 1 ! i L ( ‘ L L

MAPP Extrinsic Info

APP Extrinsic Info

Figure 2.5: Comparison between the extrinsic and intrinsic information for the MAPP
and APP algorithms. (The top figure is for the PCC case, and the bottom one is for
the SCC case.)

2.4 Performance Analysis

For the purpose of making this thesis self-contained, we review in this section some of
the main results, related to our work, on the maximum likelihood (ML) performance
analysis of the above concatenation schemes. We use these results as a benchmark

for the performance of the various iterative algorithms discussed in this chapter.
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2.4.1 AWGN Channels

The ML analysis of turbo and turbo-like codes involves the union bound argument,
which applies in the floor region only. Let us assume that the all-zero codeword
was transmitted. Also, let the data block length be N. Assuming binary phase-
shift keying (BPSK), the probability of codeword error (i.e., the decoder picking any

codeword other than the all-zero codeword) is given by
P, =Pr (choosing any k € {1,2, 2N — 1} |0) ,

where the all-zero codeword is indexed as 0. This can be upper bounded using the

union bound argument as

2N 1

Py < 3 Pu(k]0) (2.17)
k=1
2N —1
E
= 30 (,/_d’” b), (2.18)
No
k=1
where P, (k|0) is the probability of choosing the k'* codeword given the all-zero
codeword was sent, dj, is the Hamming weight of the k' codeword, r is the overall

code rate, and FEj is the average energy per information bit.

At high SNR (i.e., in the floor region), the probability of bit error P, can then be

approximated as [22]

P~ i wan dw,minTEb (2 19)
6= N N, ’ '



where n,, is the number of weight w input information sequences that result in the
lowest weight codeword, denoted by dymin. Thus, (2.19) suggests that, to find an
upper bound on P, in the floor region, it suffices to find the minimum distance dy min
and its multiplicity n,, for all weight-t or lower input patterns. Typically, 1 <t < 3.
Note that weight-1 input patterns are excluded due to the recursive nature of the
constituent encoders as they result in very high-weight codewords. Equation (2.19)
holds for both of the PCC and SCC codes, except that the parameters n,, and dy, min

may differ due to the different structures these codes have.

2.4.2 Fading Channels

When an outer channel code is concatenated with a STBC code over fading chan-
nels, both time and space diversity gains can be achieved [23]. In such cases, the
maximum diversity order that can be achieved is M;M,d i, where d;, denotes the
minimum Hamming distance of the outer channel code. Such diversity gains may
be achieved when the underlying STBC code is orthogonal and the channel is fully
interleaved. The latter condition is normally referred to as ideal interleaving, which
can be accomplished by using proper interleaving between the two codes (see Fig.
2.1b.)

Assuming that the channel state information (CSI) is perfectly known at the re-

ceiver, the conditional pairwise error probability that the receiver will select codeword
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k over the all-zero codeword conditioned on the channel gains is given by

T'Eb d M, M;

23 e 2o 2o 2 lemasl

n=1 j=1 i=1

Pd|a) = Q

_—

- o\ % o) =

To compute the average pairwise error probability, we average the expression in (2.20)
with respect to the probability density function (pdf) of the random variables |ozn\2 for
n=1,..., MM.dy. To simplify the analysis, we first introduce an auxiliary random

variable that we denote by X, defined as

MMede
X= > lal.

n=1
Note that X is Chi-square distributed with 2M; M. d; degrees of freedom and whose

pdf is given as [23]

1 MM, dr—1 _—z
—_ tivip > .
@) = grra = e ©20

Consequently, the average pairwise error probability can be shown to be [23]

] > M, Mrdy
Py(dy) = [5 (1 - 1+%>]

MiMrdp—1 n
MM.d, — 1 1 -
Y ( w¥r Gk +”) [—<1+ i )] . (221)
n 2 1+

n=0 Vs
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where v, = %E[[anﬁ = %% and E[-] denotes the expectation operator. When

N
the SNR is sufficiently large, the expression in (2.21) can be approximated by [23]

OM, M, d;, — 1) ( o7 Eb>‘MtMrdk

~ — b 2.22
Bo(dy) ( M, M,d; N N, (2.22)

Clearly, at high SNR, the performance is dominated by the minimum Hamming dis-
tance of the outer code, which we denote by d;,. Consequently, the maximum diver-
sity order is M;M,dy;,. The average probability bit error rate (Pb) for this scheme

is then upper bounded as

P, < Z Bay, Pa(di), (2.23)

dr=dmin

where 3, is the multiplicity corresponding to distance dy.

2.5 Simulation Results

The simulation model is depicted in Fig. 2.1. The PCC scheme uses two identical RSC
encoders, where in one case each RSC encoder employs the generator polynomials
(g1,92) = (7,5)0et (4 states), whereas in the other case each RSC encoder employs the
generator polynomials (g1, g2) = (31, 33),.: (16 states). The SCC scheme uses an outer
RSC code whose encoder employs the generator polynomial (g1, g2) = (7,5)0t, and
a rate-1 inner code employing a differential encoder with transfer function HLD. All

interleavers used in these simulations are randomly generated. In the fading channel
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case, we consider the cases of M; = 2, and M, = 1,2.

2.5.1 AWGN Channel

In Fig. 2.6, we present the bit error performance (FP,) simulation results on an AWGN
channel for the PCC system with the 4-state code, code rate 1/2, data block length
N =512, and 8 decoder iterations. The PCC decoder uses two iterative MAPPs, two

APPs, two conventional SOVAs, two SOVA-SAs, or two MSOVAs.

PCC, AWGN

10° 1 | L I L
1 15 2 2.5 3 3.5 4
Eb/No {dB)

Figure 2.6: Bit error rate performance comparison between the SOVA, SOVA-SA,
MSOVA, APP, and MAPP decoders in AWGN channels. [PCC scheme with 4-state
RSC encoders, rate 1/2, N = 512, and 8 decoder iterations.]

We observe from the figure that the MSOVA achieves a performance improvement
of about 0.6 dB relative to the SOVA, and is only about 0.2 dB away from the MAPP,

all at P, = 1075, In contrast, the SOVA-SA achieves a performance improvement of
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only 0.3 dB relative to the SOVA at P, = 1075. It is also interesting to observe that
the MAPP is superior to the APP by about 0.2 dB at at P, = 1075.

In Fig. 2.7, we repeat the same experiment mentioned above except now we
use the 16-state code and code rate 4/5. We observe from the figure performance
improvements similar to those reported in Fig. 2.6. We also plot on the same figure
the ML bound for this code using (2.19) with the following parameters: ng = 9,
domin = 5; and n3 = 1, d3min = 3. These parameters were obtained using semi-

analytical techniques [22].

PCC, AWGN

— — ML bound

E, /N, (dB)

Figure 2.7: Bit error rate performance comparison between the SOVA, SOVA-SA,
MSOVA, APP, and MAPP decoders in AWGN channels. [PCC scheme with 16-state
RSC encoders, rate 4/5, N = 512, and 8 decoder iterations.]
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In Fig. 2.8, we plot simulation results for the SCC system with following parame-

ters: 4-state outer encoder with rate 1/2, 2-state differential encoder with rate 1, in-

terleaver size N = 512, and 8 decoder iterations. As shown in the figure, the MSOVA

improves the performance by about 1.2 dB relative to the SOVA at P, = 10~°. More-

over, the MSOVA is superior to the APP by about 0.2 dB. It is also observed from

the figure that the improvement provided by the MAPP, relative to the APP, is about

0.3 dB at P, = 107°. The values of ¢ and d used for the MAPP were (1.0,1.1) and

(0.7,0.8) for the inner and outer decoders, respectively.

SCC, AWGN

........................ LN B DecTtems

.inner(‘1/1* D)r=1

TNsB12 o

E /N, (dB)

Figure 2.8: Bit error rate performance comparison between the SOVA, SOVA-SA,
MSOVA, APP, and MAPP decoders in AWGN channels. [SCC scheme with 4-state
outer code, differential encoder for the inner code, overall rate 1/2, N = 512, and 8

decoder iterations.]
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2.5.2 Fading Channel

In Fig. 2.9, we plot the P, performance of the SOVA, MSOVA and APP for the PCC
system on the flat fading channel. The simulated system parameters are: 16-state

RSC encoders, r = 4/5, N = 512, 8 decoder iterations, and M; = 2, M, = 1,2.

PCC+STBC, Fading Channe!

2Tx 1Rx:

' 8 Dec lferns

Figure 2.9: Bit error rate performance comparison between the SOVA; MSOVA and
APP decoders in flat fading channels. {PCC scheme with 16-state RSC encoders, rate
4/5, N = 512, and 8 decoder iterations.]

We observe from the figure the substantial improvements achieved by the MSOVA
over the conventional SOVA. In the case of M, = 1, the SOVA is inferior to the APP
by about 2.0 dB at P, = 107°, where most of degradation is recovered by the MSOVA.

In the M, = 2 case, the MSOVA performs within 0.2 dB at P, = 107° from the APP,

whereas the SOVA is about 1.6 dB away from the APP. Furthermore, we plot on
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the same figure the ML performance bounds for the cases M, = 1,2 in the floor
region. The diversity order achieved by this code is 6 and 12 for the M, =1, and 2,
respectively.

We repeat the above experiment with the PCC code replaced by the SCC code.
In this experiment we only consider the case M; = 2, M, = 1. The simulation results
are plotted in Fig. 2.10. We observe from the figure that the MSOVA improves the
performance by about 1.2 dB and 0.4 dB at P, = 107° relative to the SOVA and APP,
respectively. Furthermore, the MAPP provides a performance improvement of about

0.6 dB over the APP, and is better than the MSOVA by only 0.2 dB at P, = 1075,

SCC+STBC, Fading Channel

. loner(1/4+Dyr=1
N=512
..8Decltems.. ...

E,/N, (9B}

Figure 2.10: Bit error rate performance comparison between the SOVA, MSOVA,
APP, and MAPP decoders in flat fading channels. [SCC scheme with 4-state outer
code, differential encoder for the inner code, overall rate 1/2) N = 512, and 8 decoder
iterations.]
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The experiment whose results are reported in Fig. 2.10 is repeated with code rate
8/9 and interleaver size 1024. The simulation results are plotted in Fig. 2.11. We also
plot on the same figure the corresponding ML bound using (2.23) with the following
parameters: ng = 1, damin = 2; and n3 = 1, dgmin = 4. We observe from the figure
that the MSOVA and APP give essentially identical performances, and both perfectly
agree with the ML bound. Furthermore, the gap between the MSOVA and SOVA is
about 1.8 dB at P, = 107, which is a remarkable improvement. Simulation results
for the MAPP are not included because very marginal improvements were achieved
by the MAPP over the APP. This is attributed to the fact that the APP already

achieves the ML bound where there is no room for further improvement.

SCC+STBC, Fading Channel
R L R s
: i T e APP
1) —o— MSOVA
..| -©— SOVA 1
.| = — ML bound

E/N(dB)

Figure 2.11: Bit error rate performance comparison between the SOVA, MSOVA,
and APP decoders in flat fading channels. [SCC scheme with 4-state outer code,
differential encoder for the inner code, overall rate 8/9, N = 1024, and 8 decoder
iterations.]
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It is clear from the above examples that the proposed modifications are more
effective for the SCC scheme as compared to the PCC scheme. We now give some
insight for this phenomenon. By looking closely at Figs. 2.3 and 2.4, we observe
that the extrinsic values produced by the SOVA for the SCC scheme are much more
exaggerated than their counterparts for the PCC scheme. The same phenomenon is
experienced in Fig. 2.5 for the APP decoder. This suggests that there is more room

for improvement in the SCC than in the PCC case.

2.6 Concluding Remarks

In this chapter, we have introduced simple modifications to the conventional SOVA in
an effort to attenuate the optimistic extrinsic information at its output. We showed
that the reason behind producing these exaggerated values is the strong correlation
between the input and output of the SOVA. The proposed modifications were aimed
at reducing this inherent correlation, which would ultimately lead to producing more
realistic extrinsic information. We have examined the performance of the MSOVA
on both AWGN and fading channels with favorable results. We have also extended
the proposed modifications to the APP algorithm where significant performance im-

provements were shown possible, particularly for the SCC scheme.
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Chapter 3

Improvements in SOVA-based
Decoding for Turbo-coded Data

Storage Channels

3.1 Introduction

Considerable research has been performed over the last few years [24]—[29] on the
application of turbo coding to partial response channels. In [24] and [25], a parallel
concatenated (turbo) coded partial response Class IV (PR4) system is considered
where the precoded PR4 channel is treated as an inner code. The PR4 channel is
detected using an APP detector matched to the precoded PR4 trellis, and the turbo
code is decoded using two APP decoders matched to the two RSC encoders. The PR4

detector may or may not share soft information with the turbo decoding, depending

44



on performance/complexity requirements [24], [25]. The turbo code may be replaced
by a single convolutional encoder as in [26]—[29], effecting a serial concatenated code
system with the precoded PR4 channel acting as the inner code. Obviously, three
APP decoders are required in the PCC system whereas two APP decoders are required
in the SCC system. In both cases, it was shown via simulations that a substantial
performance improvement is achieved over the uncoded system [24]—[29] (see also
references therein.)

Some degradation is suffered when the APP algorithm is replaced with the SOVA
on band-limited channels such as PR channels. For instance, as we will see later in
this chapter, the degradation due to using the SOVA can be as large as 2.0 dB at bit
error rate 1075 relative to the APP. Inspired by the substantial improvements of the
MSOVA relative to the SOVA algorithm on AWGN and fading channel in Chapter
2, in this chapter, we propose a simple approach for dealing with the exaggerated
reliability values produced by the SOVA algorithm on partial response channels. We
first pin point the reason as to why the SOVA tends to produce these exaggerated
reliability values at its output, and then propose simple modifications to overcome this
problem. We argue that the reason behind these large reliability values is mostly the
high correlation between the intrinsic information (inputs to the SOVA) and extrinsic
information (outputs of the SOVA). Our proposed remedy for this problem is based
on mathematical analysis and it involves using two attenuators, one applied to the
immediate output of the SOVA and another applied to the extrinsic information

before it is passed on to the other decoder component (assuming iterative decoding.)
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As we will see later, theoretically speaking, these attenuators should be updated
for every received data block as they depend on the means and variances of the
intrinsic and extrinsic information of the SOVA, as well as the correlation between
them. However, performing this update at the block rate is computationally complex.
As an alternative, we use Monte-Carlo simulations to determine the values of these
attenuators that would give the best performance. We then use these values for all
cases, including all range of SNR, and all iterations. While fixing these attenuators, we
examine the performance of the modified SOVA (MSOVA) on idealized PR channels
and the Lorentzian channel equalized to a PR target for both PCC and SCC systems.
We demonstrate that improvements of up to 1.6 dB at P, = 1075 are possible, relative
to the SOVA.

The rest of the chapter is organized as follows. In Section 3.2, we describe the
system model. In Section 3.3, we present the proposed MSOVA algorithm and discuss
the rationale behind proposing these new modifications. We present and discuss the

simulation results in Section 3.4. Finally, Section 3.5 concludes the chapter.

3.2 System and Channel Model

In this chapter, we consider two channel models: the idealized PR channel model
which is modeled by the polynomial fpr(D) followed by a white noise process (Fig.
3.1, a-a), and the Lorentzian channel equalized to a PR target (Fig. 3.1, b-b). We

now describe the Lorentzian model.
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Figure 3.1: System and channel model.
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We consider the recording head, the magnetic medium, and the read head to be

a single linear system with transition response equal to the Lorentzian pulse [30]

4 F; 1
) = \ mpwso 14 (2t/pwso)?’ (3.1)

where pwsg is the width of the pulse measured at half its height and E; is the energy

in the “isolated pulse.” Thus, when an NRZ signal of the form Y, aj p(t — kT}) is to
be recorded (ax € {£1}, p(t) =1 for t € [0,T¢], and 0 elsewhere), the>response of the
channel is
)= %ﬁ [h(t — KT,) — h(t — (k + 1)T)] + w(t). (3.2)
k
In (3.2), T, is the recorded bit duration and is related to the user bit duration T, via
the code rate r as T, = rT,; w(t) is assumed to be white Gaussian noise with power
spectral density Np/2 for simplicity, although a more accurate model will include
correlated media noise.
We assume the optimal receiver front end, which is a filter matched to the “dibit”
s(t) = h(t) — h(t — T.) followed by a symbol-rate (1/7,) sampler. This leads to a
discrete time equivalent channel response f1 (D), where f1(D)f.(D!) is a factoriza-

tion of the sampled autocorrelation function, Rs(D), of s(t). We use the (noncausal)

factorization of Bergmans [31] for which f; (D) = (1 — D)g(D) with the coefficients
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of g(D) given by

. 1/2
gﬁ{E’SCtanh(vrSc/m E+52 ez, (33)

o K2+ (S./2)2

where S. £ pwsg /T, is defined to be the channel density and is related to the user
density S, £ pwso/Ty, via S, = S, /r.

The discrete-time magnetic recording channel (MRC) model then consists of a
filter with response f;(D) and a white noise process, w(D), with spectral density
Ny /2 added to this filter’s output. The front end of the discrete-time receiver is the

matched filter f7(D™1).

3.3 Modified SOVA Algorithm

We discuss in this section the SOVA algorithm as an approximation to the BCJR-
APP algorithm for the SCC system; SOVA decoding for the PCC system is similar.
As mentioned earlier, the SCC system requires two SOVAs. One SOVA decoder
is matched to the RSC encoder, and the second SOVA is a detector matched to the
precoded PR trellis. Hagenauer in [6] and [19] derived the SOVA algorithm for binary
trellises. The SOVA algorithm was modified in [32] for PR trellises. For the purpose
of making this chapter self-contained, we summarize in the following section some of

the main results reported in [32] that are related to our work.
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3.3.1 The SOVA for PR Trellises

The branches of the trellis of a PR channel are labeled with the information bit uy
and its corresponding channel symbol cx. Let C{V =[c1 ¢z ... cn] be the PR channel
output sequence that corresponds to a block of information bits ud’ = [u; ug ... un},
and y¥ = [y1 v2 ... yn) be the corresponding noisy received sequence. Additive
white Gaussian noise (AWGN) of variance Ny/2 is assumed.

At any given time k, a block-wise APP detector searches for the state sequence
St = [S1,m S2.m ... Skm] that corresponds to the information sequence uf by maxi-

mizing the a posteriori probability

Mk,m é P ( llc,m | yllc) ? (34)

where m is an index that corresponds to the trellis path corresi)onding to the state
sequence S’f,m. Since y¥ does not depend on m then maximizing (3.4) is equivalent to

maximizing

P (y118tm) - P (sim) - (3.5)

Now, the term P (s’fym)can be expressed as

P(sf,) = PG5 Plsim)
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where uy , is the information bit that corresponds to the state transition sy_1,, —

Sk.m. We thus have from (3.4)—(3.6),

{P (S]f;zl) Hi:fp (Yi | Sic1,ms Siim)

-P (uk,m)p (yk l Sk—1,m» sk,m)} 3

max { My,m} = max (3.7)
where p (Yx | Sk—1,m» Sk,m) = P (Uk | Ceom). In maximizing (3.7), it is equivalent if we
take its logarithm, and add two constants that are independent of m. Let the two
constants be K; = —zlog[P (ux = +1)- P (u = —1)] and K; = log+/7N;. Also,
denote the logarithm of the first line in (3.7) by My_1 /2 which corresponds to the

cumulative metric at time k — 1 along path m. With this, (3.7) becomes

max {Mpm} = max {Mi—1,m + [log P (ukm) + Ki]

+ [log p (Yk | Sk—1,m> Sk;m) + Kal}, (3.8)
which simplifies to

{Mk—Lm — 7k — Cim)? (39)

max { My »} = max
m m 1
+§uk>mLa(uk;m)} ’

where Ly (ugm) = log% is the a priori (extrinsic) information on bit wu

that is usually obtained from another decoder assuming iterative decoding.
It follows from (3.9), after multiplying both sides by —1, that the cumulative

metric M(s) for state s at time k along some arbitrary path m is updated according
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to
Mi(s) = min {A(s',8) + Mr_1(s"), A\(s",8) + My_1(s")}, (3.10)

where A(s', s) is the branch metric for the transition from state s’ to state s at time

k which is defined as

1 1
)\(Sl, S) = Fo(yk - Ck)2 — EukLa(uk), (311)

and ¢ is the PR channel output at time k& corresponding to the transition s’ — s.
The branch metric A(s”,s) is similarly defined. Now define the difference metric for

state s at time k as [6]
Ay = |(Mp—1(s") + A8, 8)) — (Mr_1(s") + A(s", 8))]| . (3.12)

In [6], Ay was also shown to be approximated as

P(correct)

Ai 7 log 1 — P(correct)’

(3.13)

where P(correct) is the probability that the path decision of the survivor at time k
was correct. Therefore, Ay represents the reliability that the path ending at state s

at time k was correct.

In the conventional SOVA, to obtain the soft output for bit u, we first obtain the
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hard decision iy after a delay § (i.e., at time k + §) , where § is the decoding depth.
At time k + 9, we select the surviving path that ends at the state that has the lowest
metric and the selected path is considered to be the mazimum-likelihood (ML) path.
We trace back the ML path to obtain the hard decision ;. Along the ML path, there
are 0 + 1 nonsurviving paths that have been discarded, and each nonsurviving path
has a certain difference metric A; where k¥ < j < k+4¢. (Clearly, this is because along
the ML path there are ¢ + 1 states, and each state has a difference metric that was
calculated using (3.12).)

Now define

AZ = min {Aka Ak+17 BRI Ak+5} ) (314)

where the minimum is taken only over the nonsurviving paths within the time window
[k, k+ 0] that would have led to a different decision 4. It was shown in [6] that
A} represents the reliability of the hard decision 4y, and the reliability increases with
increasing 0. Given 4, and A, the soft output of the Viterbi algorithm for bit uy is

approximated by [6)]

Lsova('&k) ~ ﬁk . Z (315)

From Fig. 3.2, and Eqns. (3.11) and (3.12) it can be shown that A} has the
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Figure 3.2: The SOVA output for bit uy in PR trellises

following structure [6]

x 2 1) 2) 1)
Ap = (Mj<)k_ j(<k)+(Mk<j<k+i—M1§<j<k+i>

1

A ((yr — cx2)® = (e — cr1)?)

+ﬂk La (uk) s

(3.16)

where cx1, and c¢ge are the nominal channel outputs to state transitions at time k

along paths 1 and 2, respectively, 7 is the time index at which A} = Ax;, and

MY

<k

is the cumulative metric at time k£ — 1 along path 1. The other terms are obviously

defined. Substituting (3.16) into (3.15) yields
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N ~ 2 1
Lsova(uk) ~ Uk (M](<)k - M](<)/€)
- (2) (1)
+ug (Mk<j<k+i - ‘Mk<j<k+i>
1
+N&uk ((yk — o)’ = (yk — Ckl)z)

+La(u), (3.17)

where the first three terms represent the extrinsic information, which we denote by
Le(ty), i.e., Le(lx) = Lgova(lix) — La(uk). Le(lg) is then passed to the subsequent

decoder to be used as an a priori information in the next iteration.

3.3.2 Proposed Modifications

It has been shown in [20] that the extrinsic information L.(y) follows a Gaussian
distribution, and so does L,(uy) since it is a combination of the channel value and
the extrinsic information passed from the other decoder. In the conventional SOVA
algorithm, it is normally assumed that the terms L.(4y) and L,(ux) are weakly corre-
lated, and thus L.(4y) can be obtained by directly subtracting L, (ux) from Ly, (U ).

That is
Le(ﬂk) = Lsoya(fbk) — La(uk)‘ (318)

However, we have observed through computer simulations that the correlation
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between Lg(ug) and L.(tx) is rather strong. We believe that this is essentially the
reason behind the degradation in the SOVA performance. To elaborate on this, we
have listed in Table 3.1 values for the correlation coeflicient between the intrinsic and

extrinsic information of the SOVA at SNR = 12 dB for different decoder iterations.

Table 3.1: Correlation coefficient for the PCC and SCC codes on the equalized PR4
channels, Rate=16/17

Correlation Coefficient for PCC

# Iterns at 12dB | 1 2 5 8
APP 0.02 | 0.02 | 0.03 | 0.03
MSOVA 0.08 | 0.09 | 0.07 | 0.07
SOVA 0.19 1 0.28 { 0.33 | 0.34

Correlation Coefficient for SCC

APP 0.02 1 0.02 | 0.02 | 0.02
MSOVA 0.10 | 0.07 | 0.06 | 0.06
SOVA 0.20 | 0.20 | 0.28 | 0.31

Listed in the same table as well are the correlation coefficient values for the
MSOVA and APP. In this experiment, we simulate both the PCC and SCC codes
over the equalized-PR4 channel for code rate 16/17. For the same concatenation
scheme, we use the same bit and noise sequences for the three decoding algorithms.
As is evident from the table, there is clearly a strong correlation between the extrinsic
and intrinsic information of the SOVA, and it appears that this correlation increases
with the number of iterations. It is also evident from the table that this correlation

is significantly reduced in the MSOVA case.! (Similar observations were made for

ISince the correlation coefficient remains small in the MSOVA case for all iterations, one may
except to see constant performance improvements by increasing the number of iterations. However,
this is not the case since the extrinsic information converges to some value after a certain number
of iterations.
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different SNRs and for the idealized PR4 channel.)

The consequence of this correlation is that the extrinsic information estimated
by the SOVA is larger than the its true value. This is explained as follows. As the
name suggests, the extrinsic information passed from one decoder to another should
present new information to the receiving decoder. However, this strong correlation
implies that part of the extrinsic information passed to a decoder is already known to
this decoder. However, it is not treated as such, i.e., the receiving decoder normally
regards all what it receives from the other decoder as new information. Consequently,
this leads to a redundancy in the exchanged information, which tends to produce
exaggerated extrinsic information at the output of the SOVA.

In light of the above discussion, it is clear that the intrinsic and extrinsic informa-
tion of the SOVA need to be decorrelated before the latter is passed on to the second
decoder. Now let us denote the actual SOVA output by V (ix) and the corresponding

extrinsic information by V,(#g), where the latter can be expressed as

Ve(ti) = V() — La(ug), (3.19)

with L,(uy) representing the intrinsic information (inputs to the SOVA). Our objec-
tive here is to modify V' (ii;) and V, (i) in order to obtain the true L,(uy) and L (),
which are supposed to be uncorrelated. As per the above discussion, the variables
Lq(ug) and V,(4y) are correlated Gaussian random variables with means m,, me, and

variances o2, o2, respectively. Assuming u; = +1 is transmitted, the joint conditional
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probability density function (pdf) P(Ve(tx), La(ug) | ux = +1) is then given as

1
2m0,0er/1 — pi

! {(Ve(@k) —me)?  (La(ug) — ma)QD

's) —_ .+_
Xp( (1= /%) o2 o2

P(Ve(tk), Lo(uk) | uk = +1) =

exp <P+(Ve(fék) — e ) (La(ue) — ma)> (320)

040¢ (1 — p?i—)

where p, is the correlation coefficient given by

py = E[(Ve(tg) — TZEBT(La(Uk) - ma)] (3.21)

where m, and m, are estimated as m, = % Z{gv=1 Ve(t) and m, = % ZkN:1 Lo (ug),

respectively, and N is the data block size. Also, o, and o, are estimated as o, =

\/—1]\7 S [me — Vi(@)]? and o, = \/% SN L [ma = La(ug))?, respectively. Similarly,
when u; = —1 is transmitted, the joint conditional pdf P(V,(t), Lo(uk) | ux = —1)

is given as

oo (g | me)” , Lalue) 4 mﬂ)

1—p%) 02 o2

oy (£ Velin) + ) - (La(ue) + 1)
P ( 0a0¢ (1 - p2—)

) . (3.22)
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where

o EIVelin) +mo)(Eofue) +me)] 5.23)

Oi0e¢

Using Bayes’ rule, the a posteriori log-likelihood ratio L(y) can be computed as

Plug = +1 | Ve(di), La(ug))

L(tg) =1In =
s AR AT
= kl‘/;(ﬂk) + kgLa(uk), (324)
where

1 Oq
b= o (re = prict), (3.25)

1 Oe
k2 - 1 — pg (Ta - prea_a)) (326)

Te = 2m. /0%, ry = 2mg /02, and p=p. = p_.

Substituting (3.19) into (3.24) yields

L) = ky (V (i) — La(ug)) + kaLa(ug), (3.27)

and, consequently, the extrinsic information to be passed to the other SOVA decoder,
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Le(1y), can be expressed as

Le(fix) = L(Gx) — La(ug)

— cldV(@) — La(u)]. (3.28)

_ ok
where ¢ = k1 — k2 + 1 and d = ——

-. Equation (3.28) suggests that the imme-

diate output of the SOVA should be scaled by d before the intrinsic information is

subtracted off, and then the difference should be scaled by ¢ (see Fig. 3.3.)

La (uk ) Conventional
SOVA

d c
V(i) + o h L, ()

Figure 3.3: Implementation of the MSOVA algorithm

We finally remark that the pair of values (¢, d) is always the same for both decoder

components in the PCC system, whereas they may not be the same in the SCC system.

The reason being is that these values depend on the structure of the code, as well

as the puncturing scheme. Therefore, when selecting the values of ¢ and d, the inner

and outer decoders in the SCC scheme should be treated separately.

3.3.3 Computation of the Coefficients ¢ and d

In general, as mentioned above, to obtain the values of ¢ and d, we need to compute

the means and variances of V,({y) and L,(ux), and the correlation coefficient between
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them for every received data block and every decoding iteration.? However, this
method has two drawbacks. First, these computations increase the complexity of the
decoder due the additional processing delay. Second, the extrinsic information V(1)
may not be strictly Gaussian [21], especially when the data block is relatively short,
e.g., N = 512. As a matter of fact, we examined the performance of the MSOVA
with the parameters ¢ and d computed for block length N = 512 and 1024 with the
assumption that V(4 ) is Gaussian, but modest improvements were observed relative
to the conventional SOVA.

As an alternative, we perform a computer search in an effort to find the pair (c, d)
that would give the best performance. We list in Table 3.2 the values of ¢ and d that
we found through Monte Carlo simulations for various PCC and SCC codes, and for

various code rates.

Table 3.2: Values of ¢ and d for various PCC and SCC codes for the MSOVA algorithm
on PR4 channels.

PCC Code (23,31)0 (c,d)
r=4/5 (0.8,0.8)
r=16/17 (0.7,0.9)
r = 64/65 (0.8,0.8)
SCC Code (¢,d)
Outer Inner Outer Inner
(23,31)oet, r=14/5 | 1—D% r=1(0.8,0.9) | (0.8,0.9)
(23,31)0e, r = 16/17 | 1 = D2 r=11(0.8,0.9) | (0.7,0.9)
(23,31)0et, T =64/65 | 1 — D2, r =1 (0.7,0.8) | (0.7,0.8)

?In the unlikely event that when the correlation coefficient is very small, i.e., p & 0, and the
output of the SOVA follows a Gaussian distribution, i.e., r; =7, =1 [11], we have c =d = 1. In
such cases, the proposed modifications are no longer needed.
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Since the values of ¢ and d are dependent upon the correlation between the ex-
trinsic and intrinsic information, they are affected by the code structure and the
puncturing mechanism. Through simulations we found that once the code generator
polynomials and puncturing mechanism are determined, these fixed pairs (c, d) can
be used for any received data block and every decoding iteration. Moreover, these
fixed pair of values work well for both channel models.

To illustrate the efficacy of the proposed MSOVA further, we perform another
experiment in which we compare the actual extrinsic information supplied by the
SOVA and MSOVA algorithms with that supplied by the APP (for the same noise
and bit sequences.) In Fig. 3.4, we plot the extrinsic information of the SOVA and
MSOVA against that of the APP (for the PCC and SCC cases.) Each part of the
figure includes 2048 data points obtained after the first iteration at SNR = 6.5 dB
(on idealized PR4 channel.)

We observe from the figure that the extrinsic information of the SOVA is too op-
timistic relative to that of the APP, whereas the extrinsic information of the MSOVA
matches very well that of the APP. It is evident from these results how effective the

proposed modifications are.
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Idealized PR4 Channel, =16/17, E /N =6.5dB
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Figure 3.4: Comparison between the extrinsic information supplied by the SOVA
and MSOVA, and that supplied by the APP on the idealized PR4 channel. Left
plots for the SCC system,; right plots for the PCC system. (All results for the same
concatenation system were obtained using the same bit and noise sequences.)

3.4 Simulation Results

3.4.1 Idealized PR4 Channel

The simulation model is depicted in Fig 3.1(a-a). The PCC scheme uses two identical
RSC encoders, where each RSC encoder employs the generator polynomials (g;, g2) =
(23,31),¢ (16 states). As for the SCC scheme, it uses an outer RSC code whose
encoder employs the generator polynomial (g1, g2) = (23,31),¢ (16 states), whereas
the inner code is precoded idealized PR4 (or equalized-PR4) channel modeled by the

polynomial 1 — D?. The values of the attenuators c and d used in the simulations are
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shown in Table 3.2. These values are fixed for all range of SNR and all iterations.

For PCCs (SCCs), code rates of the form ko/ (ko + 1) for ko = 4, 16, and 64, were
achieved by saving the second bit in every 2kg-bit (ko-bit) parity block of each RSC
encoder output and puncturing the rest. In all cases, the interleaver employed are
S—random interleavers.

In Fig. 3.5, we present the bit error performance (P,) simulation results on the
idealized PR4 channel for the PCC system for code rate 4/5 and 5 decoder iterations.
The PCC decoder uses two iterative APPs, two conventional SOVAs, or two MSOVAs.
We observe from the figure that the MSOVA achieves a performance improvement of
about 1.2 dB relative to the SOVA, and is only about 0.4 dB away from the APP, all

at Pb =107°.

Performance of PCC over Idealized PR4 Channel
S N

"5 DecHems

10* I I 1 h "
4 45 5 5.5 8 6.5 7 75 8
Eb/NO d8)

Figure 3.5: Bit error rate performance comparison between the SOVA, MSOVA and
APP algorithm on the idealized PR4 Channel. [PCC system with 16-state RSC
encoders, rate 4/5, N = 2048, and 5 decoder iterations.]
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In Fig. 3.6, we plot the P, performance of the APP, SOVA and MSOVA algo-
rithms on the idealized PR4 channel for the SCC system for code rate 4/5 and 5
decoder iterations. We observe from the figure that the MSOVA yields a perfor-
mance improvement of about 1.2 dB at P, = 1075 relative to the SOVA, whereas the

performance gap between the MSOVA and APP is about 0.5 dB at P, = 1075.

Performance of SCC over ldealized PR4 Channel

/N, (dB)

Figure 3.6: Bit error rate performance comparison between the SOVA, MSOVA and
APP algorithm on the idealized PR4 Channel. [SCC system with 16-state outer RSC
encoder, rate—1 inner code, overall rate 4/5, N = 2048, and 5 decoder iterations.|
The same experiment mentioned above (for the SCC case) is repeated for rates
16/17 and 64/65 and the results are plotted in Figs. 3.7 and 3.8, respectively. As
we observe from Fig. 3.7, the MSOVA improves the performance by about 1.6 dB at

P, = 107° relative to the SOVA, and the performance gap between the MSOVA and

APP is only 0.4 dB.
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Performance of SCC over Idealized PR4 Channel
—T — — PR e
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Figure 3.7: Bit error rate performance comparison between the SOVA, MSOVA and
APP algorithm on the idealized PR4 Channel. [SCC system with 16-state outer RSC
encoder, rate—1 inner code, overall rate 16/17, N = 2048, and 5 decoder iterations.]

Performance of SCC over Idealized PR4 Channel

5 5.5 8 6.5 7 75 8 8.5 9 85 10
Eb/NO dB)

Figure 3.8: Bit error rate performance comparison between the SOVA, MSOVA and
APP algorithm on the idealized PR4 Channel. [SCC system with 16-state outer RSC
encoder, rate—1 inner code, overall rate 64/65, N = 2048, and 5 decoder iterations.]
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In contrast, the performance improvement in Fig. 3.8 is about 0.7 dB at P, = 107°
relative to the SOVA, whereas the MSOVA is only 0.2 dB away from the APP. It is
clear from this figure that the performance improvement is modest compared to that
for other code rates. This is attributed to the fact that, since the code rate is very
high, the performance gap between the SOVA and APP is already small (around 0.9

dB). So there is not much room for improvements.

3.4.2 Equalized PR4 Channel

The simulation model is shown in Fig. 3.1(b-b), where the channel model is the
Lorentzian model equalized to a PR4 target. The equalizer assumed is a finite impulse
response (FIR) filter of length 51 whose tap weights are generated based on the
minimum mean squared error (MMSE) criterion. In our simulations, a user density
of S, = 2.0 and 5 decoder iterations are used. Also, the PCC and SCC system
parameters used here are the same as those used for the idealized PR4 channel.

The P, simulation results on the equalized-PR4 channel for the PCC system for
code rate 16/17 and 5 decoder iterations are plotted in Fig. 3.9.As observed from the
figure, the MSOVA improves the performance, relative to the SOVA, by about 0.7
dB at P, = 107°. Furthermore, the performance gap between the MSOVA and APP
is only 0.3 dB at P, = 1075.

Similar performance improvements for the SCC system were observed in Fig. 3.10.
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Figure 3.9: Bit error rate performance comparison between the SOVA, MSOVA, and
APP decoders on the equalized PR4 channel. [PCC scheme with 16-state outer RSC
encoder, code rate 16/17, N = 2048, S, = 2.0, and 5 decoder iterations.]
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Figure 3.10: Bit error rate performance comparison between the SOVA, MSOVA, and
APP decoders on the equalized PR4 channel. [SCC scheme with 16-state outer RSC
encoder, rate-1 inner code, overall rate 16/17, N = 2048, S, = 2.0, and 5 decoder
iterations. |
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As observed from Fig. 3.10, the MSOVA improves the performance, relative to
the SOVA, by about 1.2 dB at B, = 107°. Furthermore, the performance gap between
the MSOVA and APP is only 0.3 dB at B, = 1075.

In Fig. 3.11, we compare the actual extrinsic information supplied by the SOVA
and MSOVA algorithms with that supplied by the APP (for the same noise and bit
sequences.) We consider both the PCC and SCC systems. Each part of the figure
includes 2048 data points obtained after the first iteration at SNR = 10 dB (on the
equalized PR4 channel.) It is clear from the figure how the extrinsic information of the
SOVA is too optimistic relative to that of the APP, whereas the extrinsic information

of the MSOVA somewhat matches very well that of the APP.
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Figure 3.11: Comparison between the extrinsic information supplied by the SOVA
and MSOVA, and that supplied by the APP on the equalized PR4 channel. Left
plots for the SCC system; right plots for the PCC system. (All results for the same
concatenation system were obtained using the same bit and noise sequences.)
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3.5 Concluding Remarks

In this chapter we have introduced simple modifications to the conventional SOVA in
an effort to attenuate the optimistic extrinsic information at its output. We showed
that the reason behind producing these exaggerated values is the strong correlation
between the input and output of the SOVA. The proposed modifications were aimed
at reducing this inherent correlation, which would ultimately lead to producing more
realistic extrinsic information. We have examined the performance of the MSOVA
on idealized PR channels and the Lorentzian model equalized to a PR target with
favorable results. We finally remark that the introduced modifications result in adding

only two multipliers to the complexity of the conventional SOVA.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

In this thesis, we proposed a simple modification to the conventional SOVA in an
effort to overcome the optimistic extrinsic information at its output. We explained
that the reason behind producing these exaggerated values is the strong correlation
between the input and output of the SOVA. The proposed modifications were aimed
at reducing this inherent correlation, which would ultimately lead to producing more
realistic extrinsic information. Based on mathematical analysis, the MSOVA involves
using two attenuators, one applied to the immediate output of the SOVA and another
applied to the extrinsic information before it is passed on to the other decoder com-
ponent. For PCC and SCC schemes, we examined the performance of the MSOVA
on various communication channels and storage medium with favorable results. For

example, it provides improvements of about 0.8 to 1.0 dB at B, = 107% on AWGN
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channels, about 1.4 to 2.0 dB at P, = 107° on flat fading channels, and up to 1.6
dB at P, = 107 on storage channels. We also showed that there are cases where
the MSOVA is superior to the a posteriori probability (APP) algorithm. With this
motivation, we extended the proposed modification to the APP algorithm on AWGN
and fading channels with favorable results. We demonstrated that the modified APP
(MAPP) provides performance improvements between 0.3 to 0.6 dB at P, = 107°
relative to the APP. We lastly mention that the proposed modifications, while they
provide considerable performance improvements, keep the complexity of these de-

coders almost the same, which is remarkable.

4.2 Future Work

For future work, we may apply the MSOVA to MIMO systems and examine the
performance over other practical channel models such as frequency-selective fading
channels for W-CDMA systems. These simulations will help us to confirm that the
MSOVA can be extended to any general case to which the conventional SOVA can
be applied. It will be interesting to know how much improvement that the MSOVA
can achieve relative to the conventional SOVA in the practical environment.
Furthermore, we can do more study on the coefficients ¢ and d. We have shown
in this thesis that the straightforward method to compute the values of ¢ and d is to
compute the means and variances of V. () and L;(uy), and the correlation coefficient

between them for every received data block and every decoding iteration. However,
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this method is not practical. Instead, we performed a computer search in an effort
to find the pair (¢, d) that would give the best performance. Although the number
of district pairs of ¢ and d may seem very large to search over, the range of values
for these attenuators is quite limited. For example, consider Table 3.2 which gives
these values for different code rates. As we can see from the table, all of the values
are between 0.7 to 0.9, which limits the number of possibilities to be searched over.
Nevertheless, it may be difficult to find an explicit relationship between these values
and the underlying code, or code rate. It would be, however, of great interest if such

a relationship can be defined explicitly.
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