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ABSTRACT

Aerodynamic Design and Optimization of Turbomachinery Blading

Temesgen Teklemariam Mengistu, Ph.D.

Concordia Unviersity, 2005

Aerodynamic shape optimization of gas turbine blades is a very challenging
task, given e.g. the flow complexity, the stringent performance requirements, the
structural and manufacturing constraints, etc... This work addresses the challenge
by automating the optimization process through the development, implementation
and integration of state-of-the-art shape parametrization, numerical optimization
methods, Computational Fluid Dynamics (CFD) algorithms and computer architec-
tures. The resulting scheme is successfully applied to single and multi-point aero-
dynamic shape optimization of several cascades involving two-dimensional transonic
and subsonic, viscous and inviscid flow in compressor and turbine cascades.

The optimization objective is to achieve a better aerodynamic performance,
subject to aerodynamic and structural constraints, over the full operating range of
gas turbine cascades by varying the blade profile. That profile is parameterized
using a Non-Uniform Rational B-Splines (NURBS) representation, which is flexible
accurate and capable of representing the blade profiles with a relatively small number
of control points for a given tolerance. The NURBS parameters are then used as
design variables in the optimization process.

The optimization objective is determined from simulating the flow using an in-
house CFD code that solves the two-dimensional Reynolds-Averaged Navier-Stokes
(or Euler) equations using a cell-vertex finite volume method on an unstructured

triangular mesh and turbulence is modeled using the Baldwin-Lomax model.

il



To save computing time significantly, Artificial Neural Network (ANN) is used
to build a low fidelity model that approximates the optimization objective and
constraints. Moreover, to reduce the computing wall-clock time, the optimization
scheme was parallelized on an SGI ALTIX 3700 machine using Message Passing
Interface (MPI), resulting in a parallelization efficiency of almost 100%.

Different numerical optimization methods (genetic algorithm, simulated an-
nealing and sequential quadratic programming) were developed, tested and imple-
mented for the different parts of this work.

The present choice of ob jective function and optimization methodology results
in a significant improvement in performance for all the cascades that were optimized,
without violating the design constraints. The use of ANN results in a ten-fold speed-
up of the design process and the scheme parallelization allows for further reduction

of the wall-clock time.
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Chapter 1

INTRODUCTION

In the last two decades, the unprecedented progress in computer technology and
the maturity of Computational Fluid Dynamics (CFD) have enabled industry to
routinely use two-dimensional (2D) and three-dimensional (3D) simulations of the
flow field in understanding the complex nature of the flow in e.g. turbines and
compressors. Recently, CFD is used in the optimization in turbomachinery design
of different components and configurations.

Continuous progress has been made in the performance, reliability, and effi-
ciency of the gas turbine engines, however there is still a constant need for continuous
improvement with regard to noise, cost, efficiency, power, safety, and weight. More-
over, there is always a constant drive to reduce design cycle time. Unfortunately,
an improvement in any one of these areas can often lead to detrimental effects in
another area unless it is properly accounted for. Therefore, different engine types
have specific engine design criteria which are optimized for their particular appli-
cation. Hence a great deal of research is currently devoted to CFD-based shape
optimization so as to allow the designer to meet the challenging design criteria in

the shortened design cycle time.



The stators and rotors that make up the numerous stages of a turbomachine
are designed to operate at a certain optimal condition, usually referred to as the
design point. However, during their actual application they are operated at off-
design conditions as well. In these off-design ranges the flow enters the stator and
rotor stages at varying incidence angles, and lower losses are even more difficult to
achieve due to certain flow phenomena such as flow separation and shock waves.
Moreover, optimization should also take into account some key flow features that
control the operating range such as compressor surge and stall, and turbine choke.

For years, researchers have used cascade tests to conduct research and to push
the envelope for running turbomachines at off-design conditions. Although these
cascade tests are not a perfect model representation of an actual rotating turbo-
machine, cascade testing provides the blade designer with a more economical and
experimentally simpler method of examining the aerodynamic performance under
various operating conditions. Some of the cascades are used in the present work as

optimization test cases.

1.1. Aerodynamic design approaches to turboma-
chine blading

The internal flow in turbomachines is three-dimensional, viscous, and unsteady. The
computational cost of such flow field is so high that it is common to consider an
axisymmetric flow during the design cycle. The fully 3D problem is replaced by a
series of 2D problems on two mutually perpendicular planes, the meridional plane
and the blade-to-blade plane, which gives rise to the so-called through-flow problem

and blade-to-blade problem, as illustrated in Fig. 1.1.



The through-flow is solved in the meridional plane, S2 plane in Fig. 1.1,
containing the axis of the machine and provides the radial variation of pressure,
temperature, and velocity triangles [1]. The flow in the blade-to-blade plane, which
is 51 plane in the Fig. 1.1, is then solved on each of these axisymmetric surfaces like
the flow around the rotor and the stator. The present work deals with the design of
blade sections on these so-called blade-to-blade surfaces.

There are several approaches to the design problem. The classical approach
called 'direct approach’ where the designer evaluates the performance of a given
geometry, and modifies it manually as a function of the computational results, ac-
cording to either empirical rules or his/her own experience. This approach can be
very time consuming and inefficient in some cases; this prompted researchers to de-
velop alternate approaches to the design such as inverse methods and optimization
methods.

Inverse methods derive their name from the fact that they invert the flow
analysis algorithm such that the target performance e.g., the blade loading (pressure
difference across the blade surfaces) or the pressure distribution along the blade
surfaces is specified and the geometry that satisfies it is part of the flow solution
[3]. This approach is ideal when the designer knows how to prescribe a ’good’
target performance. Inverse methods are very efficient computing-wise however they
require an experienced designer.

In cases where the designer would like to specify a range of design objectives
and constraints, the alternative approach is numerical optimization method where
some of the difficulties of inverse methods are avoided, however it is computationally
much more expensive than inverse methods. Optimization methods are more flexible

than inverse method in that objectives and constraints of any type can be imposed.



Figure 1.1: Illustration of S1 and S2 surfaces,[Boyer,[1]].

1.2. Aerodynamic blade shape optimization

Simulation-based shape optimization has three main components:
e geometric parametrization of the shape to be optimized
e flow simulation method to compute the optimization objective
e optimization algorithm to drive the optimization process

These three components are independent of each other and need to be integrated

into one computation loop if this optimization approach is to be fully automated.
Although numerical optimization methods have been successfully used for a

variety of design problems, its application to blade shape optimization still remains

a formidable task. First of all the flow field inside a compressor or turbine blade is
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generally unsteady, three-dimensional, turbulent, subsonic or transonic and the flow
structure can be extremely complex. Secondly, the aerodynamic design optimization
problem of a blade is severely constrained with e.g., structural and manufacturing
constraints that result in a rather complex design space. Moreover the aerodynamic
performance of a blade in transonic flow regime is very sensitive to the blade shape,
which requires an accurate and flexible parametrization of that shape, and has to
allow for local as well as global shape control. In addition, the objective function of
an aerodynamic design optimization problem is often multi-modal and nonlinear as

the flow field is governed by a system of nonlinear partial differential equations.

1.2.1 Optimization algorithms

Any numerical optimization method uses an optimization algorithm, the latter can
use either direct or indirect search methods. The gradient-based search methods are
well known algorithms of the indirect search type; they probe the optimum using
the local gradient information. This method is efficient in searching the optimum,
however it would frequently find and stop at the nearest local optimum value. This
approach has been widely used in many problems including aerodynamic design of a
wing [4] and some turbomachinery design optimization problems, some of which are
mentioned later. However, the objective function for aerodynamic design problem
of turbomachinery is usually multimodal, and thus one could only hope for reaching
the optimum that is in the neighborhood of the initial design point using gradient-
based methods. To find a global optimum, one must start the optimization process
repeatedly from a number of initial points and check for consistency of the computed

optima.



The second approach is the use of direct search methods. Global optimiza-
tion method (e.g. Simulated Annealing (SA) and Genetic Algorithm (GA)) is an
emerging optimization algorithm, which is recently applied in turbomachinery design
problems [5; 6; 7]. These methods are global optimizers that can handle complex
nonlinear search domains to provide global optimum design solution. Unlike the
gradient-based methods, which usually require the objective function to be well be-
haved, these search techniques are able to tolerate noisy and discontinuous design
spaces and objective functions. They are stochastic in nature, so they are able to
search the entire design space with more chance of finding the global optimum when
compared with gradient-based methods. They do not suffer of getting trapped in a
local optimum and hence failing to find a global optimum. However they require sig-
nificantly higher computation effort (in terms of the number of function evaluations)

compared with the gradient-based methods.

1.2.2 Response surface approximation (RSA)

Compared with the gradient methods, direct methods require a relatively large num-
ber of function evaluations, which is found to be the most time consuming part of the
optimization task. To reduce that computation load, it is possible to approximate
the objective function over the design space using a Response Surface Approxima-
tion (RSA). Therefore, RSA is capturing the attention of researchers working on
Multidisciplinary Optimization (MDO) problems in order to reduce the cost of op-
timization. RSA reduces significantly the number of objective function evaluations
by using a surrogate model to approximate the objective function. It gives a low
fidelity model, which must be validated later with the high fidelity model (the CFD

simulation).



RSA is used to model the output of aerodynamic problem in aerodynamic de-
sign and optimization task. The RSA model is then used as an inexpensive model
to approximate the objective function. The high fidelity evaluations of the objec-
tive function using the CFD simulations are reserved for initial model construction,

design validation and model update.

1.3. Previous work on optimization

Over the past few years, there has been a significant research activity on aerodynamic
optimization for turbomachines. Some representative works done on optimization
in turbomachinery are given below.

| Dennis [5] used a combination of GA and Sequential Quadratic Programming
(SQP) algorithms for single point optimization of a two-dimensional turbine cascade.
The objective function was penalized with aerodynamic, mechanical and geometric
constraints. The optimization scheme required from 220 to 675 objective function
evaluation, each requiring a call to the flow analysis code; this is quite a substantial
amount of CFD computations. The blade geometry was modeled with a B-spline,
and the genetic algorithm implemented in the optimization process required a bi-
nary representation of the design variables. The B-spline representation required
a relatively large number of control points; in addition to its lack of flexibility in
representing a larger family of blade profiles. This increases the load on the opti-
mization process and narrows the design space. In addition, a binary representation
of the real parameters of the design variables needs more memory compared with

that of a real parameter representation.



Wang et al. [6] implemented the SA method on multiple processors for aero-
dynamic shape optimization. Their major focus was in the reduction of the com-
putation associated with SA, the stochastic global optimization algorithm. It was
indicated that SA was less powerful in exploring the design space, it also required
large computational resources (8].

Dennis et al. [9] worked on design optimization of a two-dimensional cascade.
The optimization objective was to minimize a weighted sum of total pressure loss,
the negative of the aerodynamic loading (defined in terms of the force tangent to the
cascade) and the number of airfoils subject to various aerodynamic and mechanical
constraints, which were also included in the weighted sum. The shape of the blade
was defined with physical parameters and B-spline representation. The optimization
computations were reduced by combining a stochastic optimization with a response
surface approach. The computation was carried out on 32 distributed memory par-
allel computers, consuming a wall-clock time of 50 hours. The design optimization
process was found to consume a total of 5611 analysis calls to the 2b flow analysis
code.

Oyama et al. [7] worked on the design point optimization of three-dimensional
blades using genetic algorithm in a parallel computation environment. Although the
optimization was carried out only at the design point, the researchers noted that
the off-design performance had also improved.

Burguburu and Pape [10] worked on the design of turbomachinery bladings
by numerical optimization using a gradient and genetic algorithm. The authors
modified the suction side of the blade using Bézier curve with the goal of achieving
maximum efficiency at some given operating point. The optimization approach used
in the work is a combination of gradient and GA to make the search process fast

and to find the global optimum. The result of the gradient method was verified by



GA and found to give the same optimum. This is most probably a local optimum
solution which might be achieved under one or more of the following conditions:
relatively small design space, insufficient exploration time and cycle for the GA, an
initial solution that is very close to the found ’optimum’ one. The authors noticed
that the optimized blading shows a significant improvement both at the design
and at off-design points, although the optimization was carried out at the design
point. The Bézier curve used for this work is an effective representation for shape
optimization of simple curves however complex curves require a high-degree Bézier
curve. As the degree of Bézier curve increases so does the round-off error. Also it
can be quite inefficient to compute a high-degree Bézier curve [11].

Multi-point optimization has been getting more attention recently since per-
formance improvement in a turbine or compressor is required at both design and at
off-design points. Koller et al. [12] designed a subsonic compressor for low losses
over a wide operating range. The number of evaluations of the objective function,
which involves a flow simulation using a CFD code, is significantly increased in this
case as each blade profile is analyzed at all selected operating points.

It was shown that RSA can provide an inexpensive means to compute the
objective function for a set of design variables [13]. It reduces the required number
of CFD analysis and smoothes out the design space [14]. It provides a low fidelity
model, which has to be validated using the high fidelity model, namely the CFD flow
simulation. Artificial Neural Networks (ANN) is one type of RSA to approximate the
design space. There are some attempts of using ANN for a single point aerodynamic
design and optimization task in the area of turbomachinery design and optimization
[13; 15; 16].

In summary, the examples of recently published research work done on single

and multi-point aerodynamic shape optimization demonstrate the feasibility of using
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numerical optimization methods such as GA and SA, in conjunction with Euler and
Navier-Stokes codes. Application of some RSA models has also been published for
a single-point aerodynamic optimization.

This review also shows that there is a need for: a) a more accurate and flexible
representation for the blade shape, b) a more efficient numerical optimization meth-
ods and c) a more efficient optimization process. A typical multi-point aerodynamic
design and optimization would be to improve the aerodynamic performance over the
entire operating range including the design and off-design points using the minimum
number of design parameters, the minimum number of CFD flow simulations and

the minimum possible wall-clock time.

1.4. Present work

There are several motivations for this research. First, aerodynamic shape optimiza-
tion in internal flow problems is relatively less investigated compared with optimiza-
tion in external flow over wings. Research funding is definitely one reason. Another
reason is that a typical wing is probably simpler than a typical turbine blade in
terms of geometry as well as flow behavior. Therefore there is more work to be done
in optimization in e.g. gas turbine blading owing to the flow as well as shape com-
plexity, which also implies that the aerodynamic blade design requires a relatively
large number of design parameters, making the task of blade design quite difficult
and challenging.

The second motivation is the advancement and innovation of computer tech-
nology as well as the maturity of CFD and of optimization techniques, which have
made simulation-based automated optimization a realizable task with a relatively

modest computing cost.
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The third motivation is the requirement that the design cycle time be reduced
while the design constraints are made more stringent. This can be accomplished
by automating the process of sweeping the design space hence allowing designers
to focus on the resulting optimum blade shapes rather than spending their time in
manually exploring the design space.

"The optimization is achieved by devising a strategy for each of the main com-
ponents of the optimization process listed in Sec. 1.2, namely a parametric repre-
sentation of the blade shape, a flow simulation method to compute the objective
function and an optimizer that decides on how to change that shape to achieve the
optimization objective.

This research aims at developing a robust, flexible, and efficient global aero-
dynamic design and optimization method for turbomachines that can be used for
single point as well as multi-point optimization problems. To this end, the following

points, which also represent the contributions of this work, are developed:

1. A parametric representation of blade profiles in two-dimensional flow using
Non-Uniform Rational B-Splines (NURBS) is developed, implemented and

assessed for 2D turbine and compressor cascades

2. Genetic algorithm (GA) and simulated annealing (SA) are developed, vali-
dated and applied to 2D cascade optimization as well as to optimally repre-
sent the blade geometry using NURBS with the minimum possible number of

parameters

3. A gradient-based scheme that uses sequential quadratic programming (SQP) is
developed, validated and used in conjunction with GA /SA for the construction

of ANN approximation model.
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4. The choice of objective function for single point and multi-point optimization

is developed

5. The methodology of using ANN, a low order approximation of the optimization

objective is developed, validated and implemented in the optimization loop

6. Optimization of different compressor and turbine cascades are carried out for
single and multi-point optimization, inverse method optimization, in transonic

or subsonic, inviscid or viscous turbulent flow regimes

The thesis is organized as follows. Chapter 1 gives an introduction, motiva-
tion, scope and organization of the thesis. The numerical optimization algorithms,
GA and SA, as well as the response surface approximation, ANN, are discussed
in Chapter 2. In Chapter 3, a key element of the design, namely the paramet-
ric representation of the blade shape, is developed and applied to different turbine
and compressor cascade profiles. Chapter 4 presents the development and imple-
mentation of aerodynamic design using GA and applies it to the design of turbine
and compressor cascades. Both single and multi-point optimization of turboma-
chine cascades are studied and results are presented. In addition RSA based design
scheme is presented and implemented for the case of a compressor rotor at the design
point and at off-design points in the same chapter. The last chapter summarizes
and concludes the thesis; it also points out some outstanding challenges and makes

recommendations for future work.
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Chapter 2

NUMERICAL OPTIMIZATION

2.1. Introduction

The major elements in turbomachinery blade design using optimization scheme are
three: shape parametrization, numerical optimization and objective function com-
putation. These three elements perform independently of each other and coupling
of them gives the automated shape optimization procedure.

The computation time involved during the optimization process can be pro-
hibitively large in particular when using the Navier-Stokes equations to simulate the
flow field so as to compute the objective function. For this reason, Response Surface
Approximation (RSA) is also an important element in the design process in order
to reduce the optimization computing time by providing a good approximation of
the objective function.

‘This chapter will focus on presenting the numerical optimization methods that
were used namely, GA and SA, as well as the RSA method used to approximate the
objective function, namely ANN. It will also outline the numerical scheme that was

used to simulate the flow in a 2D cascade so as to compute an accurate value for
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the objective function.

2.2. Numerical Optimization

Numerical optimization schemes are categorized into two broad classes: gradient
based and non-gradient based optimization scheme.

Gradient-based optimization schemes are fast and need a relatively small num-
ber of function evaluations when compared with the non-gradient based optimizers,
however they are local optimizers, they will probably stop at the first optimum ob-
tained during the process. They are of limited use when searching for e.g. global
optimum of multi-modal optimization problem, such as aerodynamic optimization.
The most popular and common method of the gradient-based algorithm is the se-
quential quadratic programming (SQP). The SQP method works very well and is
relatively fast for problems, which have not multi-modal extrema.

Hybridization of the gradient method with global stochastic search schemes is
an idea found to perform well in some cases [14; 17].

Both the gradient and the non-gradient schemes were tested for different cases
of multi-modal problems and for the aerodynamic optimization. The global opti-
mizers GA and SA are found to perform best in most cases but at a relatively high
computing cost. There is a way to work with these algorithms by reducing the com-
putation load by using ANN to approximate the objective function, hence taking
advantage of their global optimization behavior. The weakness of the gradient-based
method and the strength of the global optimization method have been critically ob-
served by several researchers in the field [18].

The interest of this research falls on the use of global optimization technique

after performing a thorough investigation and tests on several kinds of optimization

14



scheme.

After carrying out tests of GA, SA and SQP on solving the current problem, it
was decided to use GA and SA in the aerodynamic optimization and SA in NURBS
parametrization and SQP combined with GA/SA in the process of building ANN

model.

2.2.1 Genetic Algorithm

Genetic algorithms are increasingly used for aerodynamic and other optimization
task [19; 5; 20; 21; 22; 23]. They provide robust strategy capable of finding the near
global minimum in a problem containing many local minima.

Genetic algorithms are general-purpose search algorithms based upon the
principles of evolution observed in nature. Genetic algorithms combine selection,
crossover, mutation, and elitism operators with the goal of finding the best solution
to a problem. It searches for this optimal solution until a specified termination
criterion is met [24; 25].

The variables for the GA algorithm (the genes) can be either binary coded or
real coded. A real coded genetic algorithm is used in this work. Using a real param-
eter for real variable problems instead of binary parameter for the design variables
are common now in a problem where the design variables are real parameters [13].

The basic operations that make up the genetic algorithm developed are selec-

tion, crossover, mutation, and elitism.

Population Size

The population size is the number of candidate solutions in one generation. The

larger the population size the more computationally intensive is the search. In
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nature, the bigger the gene pool the more diverse is the genetic make up of the
population with many individuals each with its own set of characteristics that enable
it to survive. One advantage of this diversity is that there will be no dominant
gene that, for instance, may be susceptible to a particular disease and result in the
elimination of the whole species.

With large populations, it can be seen how the search for the global optimal
solution can be a slow (if not a never-ending) process.

If the population size is small, then a strong individual quickly becomes domi-
nant and the diversity of the gene pool is reduced. The result is that good individuals
(local optima) are quickly created but the dominance of particular genes restricts
the search space.

As new solutions are generated, it is common to keep the population size
constant by replacing the old individuals with new ones. Each generation could be
completely replaced by its offspring, or as a new offsprings is created, it could be
accepted or rejected depending on its fitness, which is based on the value of the
objective function. The advantage that computers have over nature is that good
individuals do not have to die and can be retained for indefinite reproduction. The

retention of certain fit individuals is known as elitism.

Selection

This is the operation of choosing candidates (parents) on which to perform crossover
in order to create new solutions. The purpose is that the best individuals prevail
the selection process.

There are two commonly used selection procedures which are driven by fitness:
roulette wheel and tournament selection [19]. In roulette wheel, each individual is

assigned a slice of a wheel, the size of the slice being proportional to the fitness of
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the individual. The wheel is then spun and the individual having better fitness has

a better chance of being selected.

Crossover

Crossover is the operator that creates new candidate solutions. The idea behind
crossover is that the new chromosome may be better than both of the parents if
it takes the best characteristics from each of the parents. Crossover occurs during
evolution according to a user-definable crossover probability (Pc).

Two kinds of crossover operations are included in the real-coded GA developed
in this work namely, arithmetic and heuristic crossover operators.

Arithmetic crossover operator combines linearly two parent chromosome vec-

tors to produce two new offsprings given as:

Childl = aParentl + (1 — o) Parent2

Child2 = (1 — a) Parentl + aParent2
where « is a random number between 0 and 1.
While heuristic crossover operator uses the fitness values of the best individual and
the worst individual to determine the search direction and creates the new offspring.

The offspring are created according to the following equations:

Childl = Bestparent + a(Bestparent — Worstparent)
(2.2)

Child2 = Bestparent

Where a is a random number between 0 and 1.
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Mutation

Mutation is a genetic operator that alters one or more gene values in a chromosome
from its initial state. This can result in entirely new gene values being added to the
gene pool. With these new gene values, the genetic algorithm may be able to arrive
at a solution better than was previously possible.

Mutation is an important part of the genetic search as it helps to prevent
the population from stagnating at any local optimum. Mutation occurs during
evolution according to a user-defined mutation probability (Pm). This probability
should usually be set fairly low (the default value is set to 0.01). If its value is set too
high, the search will turn into a primitive random search. Uniform type mutation is
used for the algorithms in this work; it replaces the value of the chosen gene with a
uniform random value selected between the user-specified upper and lower bounds

for that gene.

Elitism

For a generational GA, elitism makes few identical copies (e.g. two) of the best
performer in the old pool and places them in the new pool, thus ensuring that the
fit chromosome survives. It is simply the guarantee that the fit solution found to
date would remain within the population.

The calculation is stopped when anyone of the following three criteria is
reached: When the best fitness in the current population becomes less than the speci-
fied fitness threshold during the minimization problem; when the specified maximum
number of generation has been run; or when the elapsed evolution time exceeds the
specified maximum evolution time.

In summary, GA is a non-gradient based optimization. It does not use gradient
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information during the process. It is based on the function value. For this reason,
1t requires a large number of iterations (function calls) compared with SQP. Their
great advantage is that they cannot be easily trapped in local minima or maxima.
They can be used effectively for multi-modal optimization problems with several

extreme.

2.2.2 Simulated Annealing

As its name implies, simulated annealing (SA) exploits analogy between the way in
which a metal cools and freezes to form the minimum energy crystalline structure
(the annealing process) and the search for a minimum in a general system. If a
physical system is melted and then cooled slowly, the entire system can be made to
produce the most stable (crystalline) arrangement which corresponds to the system
global minimum energy level, and not get trapped in a local minimum.

The SA algorithm was first proposed by Metropolis et al. [26] as a means to
find the equilibrium configuration of a collection of atoms at a given temperature.
Kirkpatrick et al. [27] were the first to use the connection between this algorithm
and mathematical minimization as the basis of an optimization technique for com-
binatorial (as well as other) problems.

SA’s major advantage over other methods is its ability to avoid being trapped
in local minima. The algorithm employs a random search, which not only accepts
changes that decrease the objective function f, but also some changes that would
increase it. The latter are accepted with a probability P = e~ % where § f is the
increase in objective function f and T is a control parameter, which by analogy with
the original application is known as the system ”temperature” irrespective of the

objective function involved.
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Briefly SA works in the following way. Given a function to optimize, and
some initial values for the variables, simulated annealing starts at a high artificial
temperature. While cooling the temperature slowly, it repeatedly chooses a subset
of the variables and changes them randomly in a certain neighborhood of the current
point. If the objective function has a lower function value at the new iterate, the new
value is chosen to be the initial value for the next iteration. If the objective function
has a higher function value at the new iterate, then the new value is chosen to be
the initial value for the next iteration with a certain probability, depending on the
change in the value of the objective function and the temperature. The higher the
temperature and the lower the change, the more probable the new value is chosen
to be the initial variable for the next iteration.

Throughout this process, the temperature is decreased gradually, until even-
tually the values do not change anymore. Then, the function is presumably at
its global minimum. The global minimum is obtained by choosing an appropriate
”cooling schedule”, which includes the temperature and its cooling rate. A cooling
schedule describes the temperature parameter T', and gives rules for lowering it as
the search progresses.

Unfortunately, there is no systematic way of determining the best annealing
schedule for a given optimization problem. The one implemented in this work is
that suggested by Corana et al. [28], in which T is decreased geometrically after a
predetermined number of function evaluations. An initial temperature T}, is given
based on Kirkpatrick’s [27] suggestion, namely that a suitable initial temperature is
one that results in an acceptance rate of about 80% for all moves and, after every
m steps, T' is multiplied by €, a temperature reduction factor, that assumes a value

between zero and one.
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2.3. Flow Field Analysis

The flow field analysis method is used to simulate the flow in order to compute the
aerodynamic performance of the given turbomachine blade. An accurate analysis
method must be used to calculate e.g. the loss, efficiency, total pressure ratio, mass
- flow rate so that aerodynamic optimization can be achieved by a proper sweep of the
design space. The accurate prediction of the flow field for the turbomachine cascade
is crucial for optimization. If the flow simulation does not capture the flow physics
then the optimizer will not capture it either, which may result in an untrue optimum.
In other words, the optimum design is at best as good as the flow simulation tool.
The CFD simulation code that is used in this work, was originally devel-
oped and implemented by Ahmadi and Ghaly [3] for 2D inviscid flow and was fur-
ther extended to solve the Reynolds-Averaged Navier Stokes (RANS) equations by
Daneshkhah [29] where turbulence is modeled using the Baldwin-Lomax model. The
two-dimensional inviscid/viscous flow equations are solved using a cell-vertex finite
volume space discretization on an unstructured triangular mesh. The steady state
solution is reached by pseudo-time marching the Euler/RANS equations using an
explicit five-stage Runge-Kutta scheme. Local time stepping and implicit residual
smoothing was used for convergence acceleration. The nonlinear blend of second
and fourth order artificial viscosity was found to be successful in capturing shocks
and eliminating pressure-velocity decoupling with minimal numerical diffusion. The
method of characteristics was used to impose inflow and outflow boundary condi-
tions. A short description of the CFD algorithm is given in Appendix B and more

details of the method are given in [3; 29).
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2.4. Response Surface Approximation

Response surface methodology is currently commonly used in engineering design
optimization problems [24; 18]. It is a method of building a relatively inexpensive
approximation model to compute the objective function instead of using the CFD
simulation results to compute it. The approximation model can then be used in-
side an optimization loop to compute the objective function in place of the original
expensive model, hence the number of such evaluations is no longer a critical param-
eter to be considered. In addition, as it is mentioned by Lai and Yuan [14], using
approximation models can eliminate the computational noise which has a strong
adverse effect on numerical optimization techniques by creating some non-physical
local optima. The commonly known methods of approximations are Polynomial
Approximations and Artificial Neural Networks (ANN) [30; 31].

In the Polynomial Approximation method, the response surface model is a
polynomial of n** degree whose coefficients are determined from a linear system of
equations. The linear system is set up using least square minimization of the error
between the polynomial and the actual model.

The selection of the data set for building the approximation is crucial and
challenging. It affects the end result of the approximation as well as the optimiza-
tion that is based on this approximation. For this, there is a task of Design of
Experiments (DOE) before the creation of the model. The DOE gives a systematic
and efficient means of analyzing a design space. It explores the high-dimensional
design space and screen the most influential variables as design variables. Quadratic
model is widely used in polynomial approximation scheme due to its flexibility and
ease of use. The method has been used by several researchers in aerodynamic design

[32; 30]. The effectiveness of the approximation method was studied by Markine and
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Toropov [33] and was presented in comparison with the high fidelity model. The
authors found that the low fidelity model was accurate enough with a good quality
of approximation.

ANN-based approximation is a response surface approximation method based
on the notion of artificial intelligence. The ANN-based approximation model is
obtained by training it with some representative data and validating with data that
was not used in the training. ANN is a very powerful interpolator that can be used
to map functions with multiple inputs/otputs.

Researchers have used ANN-based approximation successfully for turboma-
chinery blade design [34; 35; 16; 36; 37; 23], and a comparison of ANN based and
polynomial approximation has been reviewed and compiled in a paper by Shyy et al.
[18]. Rai and Madavan [38] investigated the feasibility of applying neural networks
to the design of turbomachinery airfoils. The ANN approach was found to be quite
efficient for the task.

In this work the ANN is used as a low order Response Surface Approximation
(RSA) of the objective function at a relatively low computing cost.

Artificial Neural Network is a mathematical model of the human brain. It
is a network of multiple layers of simple processing elements called neurons. Each
neuron is linked to some of its neighbors with varying coefficients of connectivity that
represent the strengths of these connections. Learning is accomplished by adjusting
these strengths to cause the overall network to output results for a certain set of
inputs [39].

The most basic element of the human brain is a specific type of cell, which
provides us with the abilities to remember, think, and apply previous experiences
to each of our every actions. These cells are known as neurons, each of which can

connect with up to 2 x 105 other neurons. Brain power is a function of the number
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of these basic components and the multiple connections between them [40].

A biological neuron receives inputs from other sources, combines them in some
way, performs a generally nonlinear operation on the result, and then provides its
own output as the final result. Figure 2.1 below shows a simplified biological neuron
and the relationship of its four components.

The basis of ANN is to simulate the basic functions of natural neurons, however
1t is much simpler than the biological neuron. Figure 2.2 shows the basic operation
of each artificial neuron in ANN.

The basic building blocks of ANN are the artificial neurons analogous to the
natural ones. The various inputs to each neuron are multiplied by a connection
weight and these products are summed up. It is then fed to a transfer function to

generate the output. The following equation mimics the action of a net of neurons:

Y = f() (2.3)

I = Z(VViXi)

Where the neuron output Y is a function of the weighted sum I of inputs/or the
input layer coming from the previous layer of neurons.

As the brain basically learns from experience, ANN learn from the given data.
It is sometimes called machine learning algorithms. Changing its connection weights
(training) causes the network to learn the solution to a problem. The system learns
new knowledge by adjusting these connection weights W; using an optimization
algorithm so as to minimize the error of its prediction [40].

The learning ability of a neural network is determined by its architecture and
the algorithmic method chosen for training. There are generally two kinds of training

scheme: unsupervised learning and supervised learning [41].
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In unsupervised learning, the network learns from the given input data only.
The sample output is not given in this case. It will find a way to organize or cluster
the data without seeing the outputs [41]. In supervised learning, the network learns
from the input and output sample data presented.

Back propagation algorithm is a method that is proven highly successful in
training of multilayered neural nets using supervised learning.

It is believed based on a semi-theoretical proof that a feed-forward neural net
with at least one hidden layer can approximate any continuous nonli’near function
arbitrarily well, provided that sufficient number of hidden neurons are available [42].

A typical back propagation neural network has an input layer with several
neurons, one or more hidden layers, and an output layer. Each of them are connected
by adjustable weights which enable the network to compute complex associations
between the input and output variables. Figure 2.3 shows a typical neural net with
one input layer having four neurons or nodes, one hidden layer with several nodes
and one output layer with two nodes.

The design of ANN involves two steps: a training step followed by a testing

step.

2.4.1 ANN Training

The ANN training involves finding the right ANN model for a given problem, i.e.
determining the type of ANN network, its architecture and choosing a training strat-
egy. These choices depend on the function being approximated, like the presence of
local minima, high dimensionality, disparity in input scales, etc.

The training algorithm in this work is a combination of GA and SA optimiza-

tion for wider exploration of the design space and is followed by a gradient-based
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scheme for a better exploitation. The weights are initialized randomly at the start
and after a few iterations of the exploration algorithm, the weights are saved and
are used for future experimentation.

The error is measured based on the maximum relative error or average error
or percentage of the exact prediction out of the total cases under consideration at a
certain predefined accuracy.

The steps in designing ANN model are:

e Choosing an appropriate structure: The multi-layer feed forward network is
the most popular, it is the hierarchy of processing units, organized in a series
of two or more mutually exclusive set of neurons or layers [41]. The first is the
input layer used to accept input from the external. The last layer is the output
layer which returns the output of the network. In between lies one or more
hidden layers, where the computational process of the network is concentrated.

The weights connect each unit in one layer to those in the next layer.

¢ Training strategy: The design of a reasonable training strategy is problem
dependent. The following factors must be very well considered for the suc-
cess of the training: order of training set, training algorithm convergence and

divergence, trap at local minimum error, and measure of error.

e Setting and updating initial conditions for the weights: This step mainly de-
pends on the characteristics of the error surface. If the error surface changes
rapidly, the gradient calculated based on local information alone will give a
poor indication of the "right path” [43], for this case, a smaller learning rate is
desirable. If the surface is relatively smooth, a larger learning rate will speed
convergence. However the shape of the error surface is rarely available, thus

a general rule might be to use a larger learning rate that works and does not
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cause oscillation. Proper initialization of the weight overcome local minimum

and make the training more efficient [39].

e Choosing the number of hidden layers and units: The choice of the number
of hidden layers and units requires engineering judgement [43]. Trade-offs
between training time and network accuracy lead to iterative adjustment of

the network using simulations. It is problem dependent.

2.4.2 ANN Testing

This is a measurability of the network generalization capability. Generalization is
defined as the ability of the trained network to correctly predict the output for an
input data not included in the training set. This is a major objective of the ANN
design. The ANN design should produce a network that generalizes the behavior
correctly to new as yet unforeseen inputs [43; 41].

The training algorithm keeps on reducing the error, but that is not an indi-
cation for its accuracy, because a behavior called memorization might be occurring.
The units memorize the I/O mappings in the training set, without any capability to
generalize. For this reason, there must be an optimum point where the training has
to be stopped although it can still reduce the error. This point is determined by the
test data that are not included in the training set. The training has to stop at the
point where the error on the test set data is minimum and reasonably acceptable.
This can measure the generalization capability of the network. A net that has been
overtrained will usually have poor generalization, since the output space will follow
the training data too closely.

The flow chart showing the steps involving the design steps is shown in Fig.

24.
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The Back-propagation is one of the most commonly used ANN, structures cou-
pled with supervised learning as the training strategy. In this training algorithm, the
error between the results of the output neurons and the actual outputs is calculated
and propagated backward through the network.

The algorithm is based on the Delta Rule which is based on the idea of con-
tinuously modifying the strengths of the input connections to reduce the difference
(the delta) between the desired output value and the actual output of a neuron
[41]. This rule changes the connection weights in the way that minimizes the mean
squared error of the network. The error is back propagated into previous layers one
layer at a time. The process of back-propagating the network errors continues until
the first layer is reached. The network type called Feed forward, Back-propagation
derives its name from this method of computing the error term.

Given the input/target data for the training given below as:

[X’T] = {($17t1)7(x2at2)7'-'7($n7t'n)} (24)

where n is the number of training sets.
The basic steps involved in the design of an ANN of back propagation type is

described as follows:

1. The number of nodes in the input and output layers is given in the problem
of interest; the number of hidden layer(s) and the number of nodes in each

hidden node, which can solve the problem are estimated.
2. The weights of each connection are randomly initialized.

3. The input vector is fed forward.
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4. The output vector is calculated using Eq. 2.4 that mimics the neuron behavior

by weighing each input, summing it and passing it to a transfer function.

5. The network error, defined as l/;-norm of the difference between the computed

and the target outputs, is calculated using Eq. 2.8.

6. The network then attempts to minimize that error using an optimization ap-

proach.

For a general backpropagation ANN with input layer, hidden layer(s) and
output layer, the input to each layer other than the first layer is given by the

weighted sum of outputs coming from previous layers:

net; =y (wiz;) (2.5)

)

Where i is the index for the node in the previous layer while j is in the current
layer.

The output is obtained from the transfer function, f:

Y; = f(net;) = f(Q_(W;; X)) (2.6)

)

The transfer function, f, called activation function could be any function that
can be used to convert the activation input into an output. Usually a continuous
and analytic transfer function is used. Examples of activation functions used in
ANN are step function which simulates a binary decision, and sigmoid function and
tan hyperbolic function for nonlinear, continuous and differentiable replacement of
the step function.

The sigmoid function is given by:
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f(z) (2.7)

The output obtained from the output layer is compared with the target output

given, and error is computed as follows:

=Y (i~ o) (28)

]

Where FE is the sum of squared error, ¢ is the target output and o the predicted
output from the network.
The learning algorithm is adjusting the connection weights in order to minimize

the error function. The learning rule is thus:

OF
oW,

Wi — Wi + AW;, AW, = — (2.9)

Where the term a%f—,; is the gradient of the error function with respect to the
connecting weight W;, AW is the change in weight and 7 is the learning rate used
to accelerate the training strategy, a value between 0 and 1 is assigned based on the
nature of the problems, i.e the error surface. If the error surface changes rapidly,
the gradient calculated based on local information only will give a poor indication
of the "right path” [43], for this case, a smaller learning rate is desirable. If the
surface is relatively smooth, a larger learning rate will speed convergence. However
the shape of the error surface is rarely available, thus a general rule might be to use
a larger learning rate that works and does not cause oscillation.

Another way to avoid oscillation when using large value of learning rate is

to make the change in weight dependent of the past weight change by adding a

momentum term [44]:
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b +aAW;(t - 1) (2.10)

Where ¢ denotes the presentation number and « is a constant which determines the
effect of the previous weight change.

Gradient descent learning scheme can easily be trapped in local minima and
its convergence rate is slow. In order to improve its performance and accelerate the
convergence, advanced optimization scheme of second order training accurate can
be used.

Approximating the function to be minimized, i.e. the error function in Eq.

2.8, based on 2™ order Taylor series expansion:

1
F(Xk_H) = F(Xk) + VF(Xk)TAXk + §AX,Z1V2F(X;€)AX;¢ (2.11)

For quadratic function:

F(X) = %XTAX +b6'X +¢ (2.12)

where T' denotes transpose, and A is the Hessian matrix which is defined below.

c= F(X) b=VF(X) A=V’F(X) (2.13)

Setting the gradient of the Taylor series quadratic function to zero:

VF(Xy) + VF(X)AX, = 0 (2.14)

VF(Xy) + HiAX, = 0

Solving for AX}:
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AX, = —H{'VF(X,) (2.15)

Xi1 = Xe— HIVF(X,)

Where H is the Hessian matrix defined as A in Eq. 2.13.

The evaluations of the Hessian matrix is very costly, hence the idea of SQP
method is used to approximate the Hessian matrix. Different form of approxima-
tions exists. The two common approximation methods are Davidon-Fletcher-Powell
(DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS), in which an initial Hessian
matrix H,, is chosen and subsequently updated by an updated formula given in each
methods [45; 46].

Although it requires n iterations to converge for a quadratic systems with n
degree of freedom, the n directions have to be followed several times due to the fact
that the system is not quadratic and the presence of round-off errors [44].

Although many practical issues are still unresolved, there are some useful
observations:

Lack of success in application is usually due to faulty training, faulty architec-
ture (number of hidden layers & units), and lack of functional relationship between
input and output.

Boosting of the training strategy using GA and SA algorithms was found to

improve the efficiency [47].
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Chapter 3

BLADE SHAPE
PARAMETRIZATION

3.1. Introduction

In blade design optimization, one of the major challenges is how to choose the
least number of design variables while maintaining the freedom and quality of the
blade representations. The geometric representation of curves in two-dimensions,
or surfaces in three-dimensions, is an important part of any shape optimization
procedure. The geometry needs to be represented with a set of geometric parameters.
These parameters must be chosen so that the variations of airfoil geometry can be
obtained by smoothly varying them. It might also be necessary to impose some
of the geometric constraints for structural reasons, aerodynamic reasons (e.g. to
eliminate flow separations), etc. One would like to represent the shape with the
least possible number of parameters for a given accuracy. Compressor blades of gas
turbine engines are usually thin, low cambered and have a round leading edge (LE)

and a sharp trailing edge (TE), whereas turbine blades are highly cambered and
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have round leading and trailing edges. Therefore, the geometric representation of
such blades with one function is quite a challenge.

Bézier curves (48] were first used in representing airfoil geometry, probably
because of their ease of implementation. It has been used by several researchers in
the field [49; 50; 51]. They used two Bézier curves, one for suction side and one
for pressure side to define the blade section. Continuity of first, second or higher
derivative is satisfied at the leading and trailing edge. They have two limitations,
first they are global in nature, i.e. when a control point is moved the entire blade
shape is modified, which results in less control over the local blade profile; second
they cannot represent conics (e.g. leading and trailing edge circles) exactly.

To overcome the global nature of the Bézier polynomials, B-splines use the
concept of control points introduced by Bézier, but with more complex interpolation
functions that can capture local characteristics such that the displacement of a
control point introduces a local modification of the curve near that point [9; 24]
However, B-splines cannot represent conics exactly so that e.g. leading and trailing
edge circles cannot be captured exactly.

Rai and Madavan [16] defined the thickness at specified control points and
the thickness values at other points are obtained using B-spline method. Different
airfoil shapes can be obtained by varying the thickness values at the control points.
Similarly they defined control points on the mean camber line and splines are used
to obtain other points on the camber line. Again the B-spline representation does
not represent a wide family of blade shapes.

To alleviate the shortcomings of Bézier curves and B-splines, i.e. to allow
for local control of the curve and represent conics exactly, NURBS can be used to
represent the blade shape. Using a single NURBS function with at most thirteen

control points and weights, Trépanier [4], were recently successful in representing,
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rather accurately (up to manufacturing tolerance) and efficiently, the geometry of
two-dimensional airfoils used in wing sections.

After making a search of the existing parameterizations schemes, NURBS func-
tions are selected and developed to find the optimum parameterizations of blades
used in gas turbine engines in this work. The NURBS curve is given by a sum over all
control points, n, of a rational B-spline N p, times the control point coordinates,l_ﬁ,-,
times a weight, W;, so that the coordinates of the blade profile are determined once
the control points and the corresponding weights are specified. The NURBS curve
is defined as [52]:

_ ko Nip(w)Wi P
Ol = =0 Nip (W)W

(3.1)

Where _C_‘(u) are the x- and y-coordinates of the point on the curve, W; is the
corresponding weight, N;, is the py, degree B-spline basis function, and ﬁi are the
z- and y-coordinates of control point ¢ on the curve, which corresponds to u;, the it*
element of the knot vector. The latter is determined using the chord length method
[52]. The basis functions N;p vanish everywhere except in the vicinity of point 4,
where the size of this vicinity depends on the order p. The weight W; provides
control on the curve attraction towards control point 5. The NURBS are defined on
the non-uniform parameters called knots, so that some of the control points affect a
larger region of the curve while others affect a smaller region depending on the knot
vector distribution.

The basis function, N;,, is given by the recurrence formula [52]. Letting
U = ug,...,um as a nondecreasing sequence of real numbers, defining u; as knots

and U as the knot vector, the i** basis function of order p + 1 (degree p), denoted

by N;p(u), is defined as:
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I ifu <u<wuyg,
Nip = (3.2)

0 otherwise.

u— U U; — U
Nip(u) = ———Nip1(u) + —FE—— Ny 1 (u) (3.3)
Uitp Uy Uitp+1 Ui+

In order to compute the points on the NURBS curve, the control point as well
as the basis function have to be defined. The control points can be set at any x-
and y-locations, but fixing the basis function requires specification of the degree, p,
and the knot vector, U.

The key feature of a NURBS curve is that its shape is determined/controlled
by the set of control points and the corresponding weights. Moreover, placing and
moving either one or more of the control points, the knots or the weights can ac-
complish either a local or a global change of the target shape. However, using the
NURBS to model a desired shape is a very challenging task. A NURBS curve also
represents exactly conics, e.g. circles, ellipses, hyperbolas, cylinders, cones. This im-
plies that NURBS functions can represent a much wider family of curves compared
with what B-splines or Bézier curves can represent, while simultaneously ensuring
the profiles smoothness, confirmed by other researchers in the field as well [17],
NURBS are becoming an industry standard tool for the representation and design

of geometry; here are summary of the key reasons for the use of NURBS:

e They can represent exactly conics, e.g. circles, and provide the flexibility to

design a large variety of shapes.

e They can be evaluated reasonably fast by numerically stable and accurate

algorithms.

e They are invariant under affine as well as perspective transformations
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e They are generalizations of B-splines and Bézier curves and surfaces.

In this section, geometric representation of existing blade with the least pos-
sible number of parameters for a given accuraéy would be presented.

In the present research, NURBS functions have been selected and developed to
represent several airfoil shapes used in blades of gas turbine engines. The objective
of geometric parametrization is dual: in addition to parameterizing the geometry
with a given accuracy, it was required to find the optimum parametrization that
would minimize the number of geometric parameters to describe the blade profile.

This parametrization involves the solution of an inverse problem for the ge-
ometric parameters, where the error in the representation is minimized using an
optimization algorithm- Simulated Annealing (SA), the latter gives the geometric

parameters that would approximate a given blade shape up to a given tolerance.

3.2. Methodology

3.2.1 NURBS Functions

Consider the NURBS representation of a curve, as given by Eq. 3.1, with e.g. ten
points; this representation will have 30 design variables, namely z, y, and W at each
control point. This number of control points would correspond to 20 design variables,
had we used B-splines or a Bézier polynomial. The reduction in the number of design
variables in this case seems in favor of using B-splines however, Fig. 3.1 shows that
with the same number of control points, a NURBS function represents a given curve
more accurately and smoothly than a B-spline representation of the same curve. This
result concurs with a similar observation made by Trépanier et al. [4] for airfoils

used in wing sections. Figure 3.1 also suggests that a B-spline representation with
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the same number of design variables (rather than same number of control points)
as a NURBS representation will have approximately the same level of accuracy but

not the same smoothness.
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Figure 3.1: NURBS vs B-Splines accuracy for the generic compressor.

3.2.2 Optimization Objective

In this work, one would like to approximate the blade profile with the minimum
number of NURBS parameters, given a certain approximation tolerance. This pa-
rameterizations involves the solution of an inverse problem for the control points
and weights, where the error in the geometric representation has to be minimized.
"This error is taken to be the objective function E(X) to be minimized, and can be

defined in different forms. One way is the following:

E(X) = kegye + Emax (34)
where
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E(X) is the objective function, X is the vector of design variables, which
contains the control points and the corresponding weights, e; is the distance between
the original curve and its approximation computed at m locations, and k is a weight
factor. The precision level required to represent a given shape is determined based

on the manufacturing tolerances and/or the change in aerodynamic performance.

3.2.3 Optimization Scheme

"The simulated annealing technique is implemented to solve the problem. It should be
noted that the problem under consideration was found to be strongly nonlinear with
local optima. When using a gradient-based optimization algorithm, the sequential
quadratic programming (SQP) method, it was not possible to reach the allowable
tolerance, which suggests that for the present problem, the SQP method was trapped
in a local minimum.

Figure 3.2 shows the convergence history for the SQP method when applied
to the generic compressor with 9 and 11 control points, where the objective function
decreases by about one order of magnitude and levels off around 2.5 x 10~3. On the
other hand, when the SA method was used, a transition out of local minima into
the neighborhood of the global minimum was possible.

In all cases tested, the SA gives approximately the same value for the objective
function for different initial guesses of the design variables. However, these initial
guesses are not arbitrary; they are based on the profiles curvature, as described

below. This verifies that the solution is near the global optimal value.
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Figure 3.2: SQP convergence history for generic compressor with 9 and 11 control

points.

3.2.4 Numerical Implementation

Given the blade shape as a list of z- and y-coordinates, the optimum NURBS func-

tion that would represent it is obtained as follows:

1. Some carefully selected points are chosen from the given data.

2. An initial guess is obtained for the NURBS control points assuming all the

weights are set equal to one, this is simply a B-spline.

3. The position of the selected control points and the corresponding weights are
optimized using SA so as to minimize the error between the representation

and the original data.
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The initial guess for the control points should be carefully selected since this
problem is a strongly nonlinear one. It was found [4] that the best results were
obtained when the selected data points are concentrated in areas of high curvature,
typically in the round leading and trailing edge regions, where a high accuracy is
also required. This initial guess is then obtained by fitting these selected data points
with a non-uniform B-spline function, which is a NURBS but with weights equal to
one. The control points can be found directly by solving a linear system of equations
[52].

For any given blade shape, the optimum NURBS representation is obtained
as follows. Using a relatively small number of control points, e.g. five or seven,
the SA parameters controlling the cooling schedule are tuned such as to give the
highest convergence rate for the optimizer. These SA parameters are then fixed
and the SA optimizer is repeatedly run for gradually increased number of control
points until the error in the objective function falls within the predetermined limit.
The resulting set is the optimum one; it will be composed of the minimum number
of control points (and corresponding weights) for which the objective function falls
within the prescribed limit.

The precision level required to represent a given shape is determined based on
the manufacturing tolerances and/or the change in aerodynamic performance. For
a gas turbine blade, the manufacturing tolerance would be around 2 x 10~ for a
blade of unit chord.

The methodology, described in this section and the previous one, was pro-
grammed in C++ and the resulting program was used to calculate the results pre-
sented in the following section. The calculations were performed on an IBM Pentium

4 running at 1.6 GHz clock speed.
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This implementation of the developed scheme starts with a validation of the
methodology described above. Blade cascade profiles are then approximated with
NURBS and are optimized with the proposed method. Generic as well as real blade
shapes typical of turbine and compressor blades are represented and some of the

results are presented.

3.3. Method Validation

The methodology and optimization scheme described above were first validated by
representing a quarter circle. This case has an exact solution, where the quarter
circle is exactly represented using NURBS function with three control points and
weights. In principle, one should be able to drive the objective function to zero and
recover the exact control points and weights. Since the first and last points are fixed,
the design variables reduce to three, the z- and y -coordinates and the weight at
the remaining point. The present methodology was able to approximate the quarter
circle of radius one with a precision of €., = 1078,

Figure 3.3 shows the representation of the quarter circle with three control
points. The maximum normal distance between the reference/original and approx-
imated curve is 1078 so that the two curves are seen as one on the figure.

The method is then used to represent different shapes of interest. In all cases
tested, it was possible to represent the blade shapes with a tolerance of 2 x 10~* with
nine to thirteen control points for the generic blade shapes and eleven to nineteen

for the actual blade shapes.
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Figure 3.3: NURBS representation of quarter circle and the control polygon.

3.4. NURBS Representation of Generic Blade Cas-
cades

In this section, generic shapes of gas turbine engine blades are represented by
NURBS and are tested with the proposed method. These generic shapes are given
by analytical expressions for the camber line and the blade thickness and represent
typical blade features such as the inlet and exit blade angles, the maximum blade
thickness, the LE and TE shapes (round or sharp). Two blade shapes have been

tested, one typical of turbine blades and one typical of compressor blades. The
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generic turbine blade is an inlet guide vane (IGV) that has a 25% maximum thick-
ness with round leading and trailing edges, the inlet and exit blade angles are 0°
and 50°, respectively and the spacing-to-chord ratio is 0.5. The generic compressor
blade has 12% maximum thickness with a round LE and a sharp TE, the inlet and
exit blade angles of —20° and 20°, respectively and the spacing-to-chord ratio is
0.5. The flow incidence angle in both cases is zero. These shapes are represented
analytically with the following profile. Refer the Appendix A for the nomenclature
of the blading.

v(@) = (o) £ 57() (35)
where
£(&) = Y(tan(By) — tan(6))2* + atan(8y)
and
T(z) = 2Tmaa(y/2(1 — )) for round LE and TE
or

T(z) = 3—?Tmm\/f(l—m) for round LE and sharp TE

The blade shape on the upper and lower blade surfaces is given by y+, f is
the camber line, and T is the thickness distribution, T},,; is the maximum thickness
on the blade, z is the distance along the chord ,4; and (3, are the blade angles at
LE and TE respectively.

The generic compressor cascade, described by the analytic profile given above,
was first used in the evaluation of the NURBS parametric representation. Different

numbers of control points, as well as initial guesses, were used to obtain an optimum
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representation of the blade shape. The optimization convergence history is given
in Figs. 3.4 a and b, for different number of control points. As we increased the
number of control points from 7 to 19, the objective function E(X) decreased from
8.1x107* to 1.2 x 107*, at the cost of an increased computation time. The optimal
representation for this case, i.e. the minimum number of control points for the given
tolerance is obtained with nine control points. Figure 3.5 provides the initial and
final blade profiles, and the control polygons (joining the control points) for the
optimum compressor blade representation.

The accuracy of the representation can also be measured by the aerodynamic
performance of the approximate shape as compared with the original one. The
flow in the cascade was simulated using the JST scheme [53]. The latter is a cell-
centered finite volume time marching scheme with a blend of nonlinear second and
fourth order artificial viscosity. Similar H-grids were used for both approximate
and original blade profiles. Each H-mesh has 151x51 grid points; in the streamwise
direction there are 30 points upstream, 90 in the blade region and 30 downstream,
and 51 grid points in the blade-to-blade direction. The boundary conditions used
in the CFD simulations are: total pressure, total temperature, and inlet flow angle
far upstream and the static pressure far downstream; both inlet and exit flows are
subsonic. At present, the Mach number distribution along the blade surfaces was
compared for the approximate and the original profiles.

Figure 3.6 shows that the Mach number distribution corresponding to the
exact blade shape and the optimal representation of the same blade almost coalesce.
This result suggests that the manufacturing tolerance restriction for this case is
more stringent than the error in the aerodynamic performance associated with the

approximation of the profile using NURBS.
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"The generic turbine IGV cascade, described by the analytical profile described
above, was also used in the evaluation of the NURBS parametric representation.
Figure 3.7 gives the final NURBS profile and the control polygon for the turbine
IGV. The optimal number of control points for this cascade was found to be thirteen.
Note that the turbine IGV has a round edge at both ends, which requires relatively

more control points to resolve the high curvatures at both edges. -
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3.5. NURBS Representation of Sanz Transonic
Compressor Cascade

The Sanz cascade is a transonic compressor cascade that is given in Fottner [54] as
a test case for CFD code validation. It is given as a set of z-y pair of data values
and is characterized by a round LE and a sharp TE. The spacing to chord ratio is
1.034, the inlet and exit flow angles are 30.81° and —0.35°, respectively, and the exit
Mach number is 0.544.

The optimization method is repeated for this cascade and the optimal number

of control points for this geometry was found to be eleven. Figure 3.8 shows the
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final NURBS profile and the control polygon. The H-mesh is shown in Fig. 3.10
for two blade passages. Figure 3.9, where the isentropic Mach number along the
approximate and original profiles is given, shows excellent agreement except in the
shock-free supercritical flow region. This suggests that, for such shock-free super-
critical regions, matching the aerodynamic performance may be more stringent than
matching the manufacturing tolerance.

This blade, although similar to the generic compressor blade, required more
control points to reach the same approximation tolerance. This is due to the fact
that the Sanz profile is less smooth than the compressor generic profile (which is a
smooth analytic profile). This smoothness can be measured by the profile curvature,
which is given in Fig. 3.12 for the original and the NURBS approximated profiles.
Note that the noise in the original data (probably due to including the displacement
thickness in the profile) is not present in the NURBS approximation. This lack of
smoothness possibly explains the need for eleven (rather than nine) control points

to adequately represent this cascade.
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3.6. NURBS Representation of DFVLR. Subsonic

Turbine Cascade T106

The DFVLR-T106 cascade is a subsonic turbine cascade that is also given in Fottner
[54] as a test case for CFD code validation. It is given as a set of z-y pair of
coordinates and is characterized by round leading and trailing edges. The spacing to
chord ratio is 0.6869, the inlet and exit flow angles are 37.7° and —63.2°, respectively,
and the exit Mach number is 0.59. This case was simulated as a laminar flow case
where Reynolds number is equal to 500.

The optimal number of control points for this cascade was found to be nineteen.
Figure 3.11 shows the final NURBS profile and the control polygon. Again the lack
of smoothness of this profile compared with the generic turbine profile explains the
need for nineteen (rather than thirteen) control points to adequately represent this
cascade. Figure 3.13 shows the excellent agreement between the isentropic Mach

number along the original and the NURBS-approximated blade profiles.
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Chapter 4

OPTIMIZATION OF GAS
TURBINE CASCADES

4.1. Introduction

In this part of the work, an optimization method is developed and tested for two-
dimensional cascades of compressor and turbine blades with the goal of improving
their aerodynamic performance either at the design point or over the full range of
operation by properly reshaping their profile, which is parameterized using a NURBS
approximation. The performance is measured in terms of the cascade adiabatic
efficiency, total pressure ratio, and/or total pressure loss. The present work uses
Genetic Algorithm (GA) as the optimization scheme and computes the objective
function and constraints from the flow CFD simulations. Parallel processing is
also implemented to reduce the computation turn-around time. The validity and
effectiveness of the developed optimization method is demonstrated (see Appendix

C) and is applied to the redesign of different turbine and compressor cascades.
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4.2.  Design Methodology and Choice of Objective

Function

A common aerodynamic shape design problem is to achieve a better performance of
gas turbine cascade with the minimum number of blades over the entire operating
range. The objectives can then be defined as e.g. maximizing the adiabatic efficiency,
minimizing the total pressure loss and /or minimizing the blade count for a given set
of flow conditions, aerodynamic and structural constraints. One way to accomplish
these objectives is to vary the blade spacing and the blade shape (which is described
by the blade camber line and thickness distribution) while fixing the inlet and exit
flow boundary conditions as well as constraining the minimum blade thickness and
cross-sectional area for structural reasons.

In any optimization problem, the choice of the objective function affects the
optimization process as well as the results. Thus, a careful and well-studied identifi-
cation and formulation of that function is crucial. For example, the overall aerody-
namic performance of a compressor rotor is measured by its adiabatic efficiency and
total pressure rise at design and at off-design conditions. Therefore, one can choose
to maximize the efficiency or the pressure ratio or both; this can be done either at
the design point only or on the full operating range. With this design strategy in
mind, the objective function is constructed such that it can serve for a single point

or multi-point optimization case, and can be defined as follows.

n n

n n PR
Fobj(X) = Min CIZ(l —ni)+CQZZ’7’j—ni, +C3Z<1 - PRO)+

i=1 i=1j=1 i=1

C4Zwi+0522|wj—wi|+PT

i=1 i=1 j=1

(4.1)
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Where X is the vector of design variables, which includes the shape parameters that
control the blade profile as well as the backpressure. Varying the backpressure in the
pre-determined range from the choke to the stall limits while fixing the rotor speed
allows for tracing a speed line, it allows for design and off-design calculations that
correspond to different mass flow rates with varying efficiency and pressure ratio.

The first, third and fourth terms in the objective function, Eq. 4.1, attempt to
maximize the efficiency (7), the pressure ratio(PR) and minimize the total pressure
loss coefficient(w) at the design and off-design points,respectively. The second term
eliminate large difference in efficiency and the fifth term eliminates large difference
in total pressure loss at the design and off-design points which would tend to keep
them constant over the entire operating range. The pressure ratio PR is divided
by the maximum pressure ratio PR° so that it would be scaled between 0 and 1.
The last term in the objective function is a penalty term, PT that accounts for the
mechanical, geometrical and aerodynamic constraints imposed on the optimization
process. The constraints could include the exit flow angle deviation, the spacing to
chord ratio, and the stall margin.

The summation is carried out over n pre-selected operating points. In this
work, these pre-selected points are the design point and three off-design points,
Le. n = 4. The weights Ci, k = 1 — 5, are prescribed by the designer, they are
determined such that the different components of the objective function have the
desired influence on the optimization process.

Note that the current choice of the objective function, given in Eq. 4.1, allows
for the implementation of different design options depending on the values given to

the Cy coefficients. Some of the options are given below:

1. Single point design: n =1, C, = C; =0
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2. Multi-point design: n > 1
3. Multi-point maximum efficiency design: n > 1 and Cy = 0 for k = 3,4,5
4. Multi-point maximum pressure ratio design: n > 1 and Cy = 0 for k = 1,2,4,5

5. Multi-point minimum total pressure loss coefficient design: n > 1 and Cy =0

fork=1,2,3

The objective of the present task of aerodynamic shape design optimization is
to design and optimize a turbine or a compressor cascade for improving the aerody-
namic performance at the design point and/or at off-design conditions.

In the case of redesign or retrofit of an existing blade, this can be achieved
by minimizing the total pressure loss across a two-dimensional linear cascade with
the modification of the blade camber line and thickness distribution while fixing the
mass flow rate and the flow turning. The redesign of an existing blade requires the
enforcement of a number of specific constraints. The original and the new blades
should have the same axial chord so that it may fit into the existing turbomachine
(see Appendix A for the blade nomenclature). The inlet and exit flow angles should
be the same in the redesigned blade as in the original one otherwise the velocity tri-
angles will not match with the neighboring blade rows. The mass flow rate through
the redesigned blade row also must be the same as in the original blade row other-
wise the turbomachine will perform at an off-design mass flow rate which can lead to
a serious drop in efficiency and create performance problems. The spacing between
the blades must be kept fixed so that the total number of blades in the turbomachine
is maintained. The thickness distribution for the redesigned airfoil is chosen to be
the same as the original airfoil to avoid an unacceptably thin blade and to fix the

section area so that it will be able to sustain the expected loads without performing
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a detailed elasticity analysis of the blade geometry. Other constraints that were
directly implemented in the CFD simulation include fixing the inlet flow angle, the
inlet total pressure and temperature, the exit static pressure, as well as the blades
axial chord and spacing. A numerical optimization method using a Genetic Algo-
rithm (GA) was implemented and the objective was calculated based on the flow
field analysis solver. The blade camber line and thickness distribution were param-
eterized with non-uniform rational B-splines (NURBS) so0 as to keep the number of
design variables, namely the NURBS control points, relatively small while achieving

high flexibility and robustness.

4.3. Geometric Representation

In this work, the blade profile is defined using the mean camber line and the tangen-
tial thickness distribution as shown in Fig. 4.1. The camber line strongly influences
the flow turning hence the blade loading distribution while the thickness distribution
allows for a direct implementation of the structural constraints such as minimum
blade thickness. Either the camber line or thickness distribution or both have to
be modified to achieve the objective. Both profiles are parameterized using NURBS
function described in the previous chapter. The camber line and the thickness dis-
tribution were represented with 7 to 9 control points. The y-coordinates and/or the

weights of these control points were used as design variables.
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Figure 4.1: Blade geometry description.

4.4. Optimization Algorithm

A global optimization technique was used to design the airfoil shape by varying
the geometric representation parameters described in the previous section. The
objective of the optimization given by Eq. 4.1 is to determine the airfoil shape
that satisfies the chosen objectives while conforming to the specified constraints.
An implementation of the GA was used in this work as described in Ch. 2. The
following parameters are used as default values in the GA algorithm: 32 individuals
in each generation, the crossover probability is 0.75, the mutation probability is

0.06, the number of elitism is 2, and the maximum number of generations is 100.
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These values have been selected after performing numerical experimentation on a
typical multi-modal optimization test problem (see Appendix C), as the aerodynamic

optimization problem is expected to show multi-modality behavior.

4.5. Flow Field Analysis

The CFD algorithm described in Sec. 2.3 was used to simulate the flow field. The
flow at the inlet and exit planes, which are placed one chord upstream and down-
stream of the cascade, is always subsonic for the case presented. At the exit plane,
the exit static to inlet total pressure is specified. The boundary conditions at inlet
that can be imposed in this CFD code are total pressure, total temperature and
inlet flow angle, or reduced mass flow rate, total temperature and inlet flow angle.
The first set of inlet boundary conditions is used in the constrained optimization
where the objective function is penalized by delta mass flow rate, while the sec-
ond set is used in the optimization with no constraints, since all geometry and flow

requirements are explicitly specified.

4.6. Aerodynamic Optimization Process

The aerodynamic optimization process starts with the geometric parametrization of
the blade geometry using NURBS functions. The coefficients of this representation,
which are used as design variables are varied by the numerical optimization method,
GA, to generate a generation of blades for which the objective function is computed
based on either a CFD simulation of the flow or ANN. This objective function is
then used in the GA calculations to generate the next generation of geometries and

so on until the optimization process converges. Figure 4.2 shows a flow chart of the
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aerodynamic optimization process.

When the objective function is evaluated from ANN then the optimization
process is slightly modified such that an initial pool of candidates that are feasible
and cover the design space is generated and then the objective function is calculated
for these candidates and is used in the training and testing of the ANN. Figure 4.3
shows a flow chart of constructing the ANN model as well as using the generated

model in the aerodynamic optimization process.

Original design

Geometric CFD
pam};n;gi}zguon For objective function calculation

Stopping
criteria

Change design
GA

Figure 4.2: The aerodynamic optimization implementation.
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Figure 4.3: The ANN-based aerodynamic design optimization process.
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4.7. Single-Point Optimization

The developed algorithm was used to design an impulse turbine cascade given in [3]
and the Onera compressor cascade described in [54]. Both cascades are transonic
and they were redesigned for minimum design point loss.

One important issue in the design process is how to choose the design variables
and reduce their number to a minimum while maintaining the freedom and qual-
ity of the blade shape representation. The design variables are the y-coordinates
or/and weights of the NURBS control points that are used in the blade geometric
parametrization. This parametrization ensures good continuity of the blade profile,
and the parameters defining the geometry have intuitive meaning that facilitates
imposing constraints on their variation so as to restrict the design space. The cost
function is the design point total pressure loss subject to several aerodynamic and
mechanical constraints, which include fixed mass flow rate, inlet and exit flow angles,
exit static pressure, chord and spacing, and thickness distribution. The constants
defined in Eq. 4.1 are zero except for Cy, and the objective function is penalized
with delta mass flow rate and delta exit flow angle (to enforce a given mass flow
rate and flow turning). The other constraints are directly enforced through the pre-
scribed inflow boundary conditions imposed in the CFD code, which are the total
pressure, total temperature and inlet flow angle as well as the static pressure at the

outflow boundary. The objective function for this case is given by:

Fobj(X) = Mm[w + Kl(Am) + KQ(Aﬂ)] (4.2)

Where Arh is the difference between computed and target mass flow rates and Ag
is the difference between the computed and the target exit flow angles (in degree).

The weights K and K are user specified penalty coefficients; they are chosen so as
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to have equal penalizing effect on the objective function. In this case, they take the

following values:

K, =1000 when |Am|>0.01, and 0 otherwise (4.3)

K, =10 when |AB] > 1.0, and 0 otherwise

Note that a fixed mass flow rate can be imposed as an inlet condition to the
CFD flow simulation; in that case Kj is set to zero.

In order to redesign a given blade, the following approach is used. Initially
we have a transonic blade which has a shock formed on the blade suction side. The
original blade profile, which is described by its camber line and tangential thickness
distribution, is taken as the initial design. The camber line is represented by NURBS
using between 7 to 11 control points whereas the thickness distribution remains fixed.

‘The optimization algorithm generates a new blade profile by changing the
NURBS control points for the camber line. The unstructured grid is generated for
this new blade geometry, Euler equations CFD solver is then used to simulate the
flow and compute the total pressure loss. These steps are repeated until the total
pressure loss is reduced to a minimum (Theoretical limit is zero, however due to
the presence of artificial viscosity in the CFD code, this limit cannot be achieved
exactly.), which implies that the shock is either eliminated or at least weakened.

The transonic impulse turbine and Onera compressor cascade are redesigned

using the current optimization procedure, and results are presented below.

4.7.1 Redesign of Transonic Impulse Turbine Cascade

This case is optimized using two different objectives. The first objective is mini-

mization of the total pressure loss while the second objective is to match a given
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pressure distribution on the blade surfaces.

Optimization for minimum loss

In this subsection, the impulse turbine is redesigned to minimize the total pressure
loss so that the objective function takes the form discussed in Sec. 4.7.

For this cascade, the spacing to chord ratio is 0.526 and the thickness distribu-
tion assumes a parabolic profile with maximum thickness to chord ratio of 21.45%
occurring at mid-chord. The inlet flow angle is 40.63° and the ratio of exit static to
inlet total pressure is 0.833.

The optimization history is given in Fig. 4.4 where the best candidate in each
GA generation is given. The total pressure loss is reduced from 0.0043 to 0.0019
in three generations for the unconstrained optimization, and from 0.0043 to 0.0026
in five generations for the constrained optimization; each generation consists of 32
individuals. A single flow field analysis took approximately two minutes of CPU
time (when starting from a converged solution obtained for a given candidate of the
previous generation) with a CFL number of 4 on a mesh with 2800 points.

Figure 4.5 shows that the flow over the original cascade exhibits a shock located
around mid-chord; this shock has been eliminated in the optimized cascade. Figures
4.5 and 4.7 give the results for an unconstrained optimization, whereas Figs. 4.6
and 4.9 show the results for a constrained optimization case. Note that the Mach
number level for the latter case is the same in both original and optimized cascades.
Figure 4.8 shows that the changes in shape between the original and the redesigned
blades are relatively small, which would be difficult to achieve by manually changing
the blade shape. Note also that both designs have a reversed curvature particularly
along the suction side to allow the flow to compress reversibly. Other researchers

[3; 55] have also observed similar behavior.
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In order to assess the flexibility of the developed design method, the thickness
distribution was allowed to vary by few percents from the original one. A very
close but smoother and better design has been achieved with insignificant change in
the computing time. The optimized Mach contour and distribution along the blade
surfaces are shown in Figs. 4.10 and 4.11.

This cascade was also optimized using the SA algorithm. The SA algorithm
used about 25% less function evaluations to eliminate the shock by modifying the
blade geometry and the resulting blade shape has a reversed curvature along the
blade suction side so that the flow can be compressed reversibly. The blade shape
and corresponding isentropic Mach distribution along the blade resulting from the
SA algorithm, which are given in Figs. 4.12 and 4.13, clearly show that the blade
shape obtained using SA is not as smooth as the one obtained with GA; moreover
the mach distribution resulting from SA although transonic and shock free, is far
from being smooth.

This case reflects the fact that GA is more powerful in exploring the design re-
gion and is best suited for large scale problems where the number of design variables
and the size of the design space are relatively large, while the SA method seems to
be more accurate and quick for relatively low number of design variables [8]. Thus
GA was adopted as the preferred optimization scheme in the cases reported in this

Chapter.

Inverse Design Using Optimization

In this section, the optimization problem is formulated such that the optimization
objective is to reach a target pressure distribution along the blade so as to mimic the
inverse design problem. The objective function is the least-square sum of differences

in pressure between the target and the current design at a fixed number of points
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on the pressure and suction sides as shown below:

Fuy(X) =3 (p—p*)? (4.4)

=1

The design variables X are the y-coordinates and weights of the NURBS control
points, p and p* are the calculated and target pressures, respectively, at a preselected
set of n points on the blade surfaces.

‘The convergence history of the optimization by GA is shown in F ig. 4.14. It
took about 1000 generations each of which consists of 32 individuals to reach the
optimum. The computation was done in parallel using 16 processors so that the
wall time for each generation is about 3 minutes. The optimum and target pressure
distributions along the blade surfaces are shown in Fig. 4.15. The developed design
algorithm seems to be flexible enough to handle different optimization objectives,
though the problem was relatively stiff and took a large number of GA generations

to converge.

4.7.2 Redesign of Onera Compressor Cascade

This cascade is a highly loaded transonic compressor cascade tested at ONERA [54]
with a detached strong shock that impinges on the blade suction side. The blade is
optimized for minimum total pressure loss with fixed mass flow rate and exit flow
angle as constraints, as given in Eq. 4.2 and discussed in Sec. 4.7.

The inlet flow angle is 39°, and the exit flow angle is —24°. The exit static
pressure is (.77 times the inlet total pressure.

Figures 4.16 and 4.17 show the Mach number field where a shock that occurs
in the original design was removed in the optimized one. The total pressure loss

was reduced from 0.0045 to 0.0017 in five generations of the GA optimization with a
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population of 32 in each generation. The modified and original blade profiles, shown

in Fig. 4.18, suggest that the change in blade geometry is concentrated in the first

quarter chord where the shock occurs.
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Figure 4.4: GA convergence history for the impulse turbine cascade.
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Figure 4.10: Isentropic Mach contours.
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4.8. Multi-point Design of NACA Transonic Com-
pressor Cascade

The near-tip section of a NACA transonic compressor rotor blade [56] is presently
used as a test case for multi-point optimization where the target is to improve
the rotor blade performance over the design speed line. (A speed line is obtained
by varying the backpressure while keeping the rotor angular velocity fixed.) The
performance of that particular blade was numerically investigated by Veress and
Séanta [57]. The adiabatic efficiency of this cascade varies between 65% and 89%
and the maximum pressure ratio is close to two.

The performance map (given by e.g. efficiency or pressure ratio vs. mass
flow rate) for the original design was constructed and was used as the base line in
the optimization process. The rotor performance is usually measured in terms of
the adiabatic efficiency, pressure ratio and total pressure loss. For this test case,
the objective function was defined as maximizing the efficiency and minimizing the
total pressure loss coefficient at the design point and at three pre-selected off-design
points so as to cover the entire speed line. Given the fact that the flow was assumed
to be two-dimensional and inviscid, the CFD flow simulation is rather rapid, hence
the objective function was computed from the CFD flow simulation using the 2D
Euler finite volume method described earlier [58].

The design variables are the backpressure and the geometric parameters de-
scribing the blade profile. The latter is described by the blade camber line and a
thickness distribution, which are represented by nine NURBS control points and
weights, where only the y-coordinate of the control points is allowed to vary. By
varying the backpressure in the pre-determined range from choke to stall limit, the

rotor would perform at different mass flow rates with varying efficiency and pressure
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ratio.

The objective function is a weighted sum of adiabatic efficiency and total
pressure loss over the entire operating range, given by the multi-point maximum
efficiency and minimum total pressure loss design, Eq. 4.1. It also includes the
geometric and aerodynamic constraints as penalty terms.

The weights, C; to Cs in Eq. 4.1, are determined through numerical experi-
mentation and are taken as 1, 0.5, 0.0, 1 and 0.5, respectively so as to maximize the
adiabatic efficiency and minimize the total pressure loss over the operating range.
This choice of weights achieves the objectives and in addition, results in an increase
in total pressure ratio although the latter was not included in the objective function.
This fact was also observed by other researchers {7]. The penalty term (PT) in the
objective function takes into account the mechanical and geometrical constraints
imposed on the optimization process. The spacing to chord ratio is fixed, a mini-
mum bound is set on the thickness distribution, and the exit flow angle is set to the
value prevailing in the original design.

The first step in the optimization process is to properly define the design space.
Taking the existing original blade profile as a baseline, the lower and upper limits
for the above-mentioned design variables are determined such as to cover the target
performance range. These limits correspond to an incidence angle varying between
+11°, a flow turning between 8° and 28°, and an adiabatic efficiency between 65%
and 89%.

The goal of the optimization is to achieve maximum efficiency at all points
on the design speed line. The optimized blade, whose profile is given in Fig. 4.19,
shows that this goal is accomplished rather well. Figures 4.20, 4.21 and 4.22 show
the improvement in efficiency and reduction in total pressure loss. The efficiency

increases by about 1.7% and the total pressure loss coefficient was reduced by an
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average of 15%. At the same blade speed and backpressure, the improved blade was
found to have an average of 1.4% higher mass flow rate.

The higher mass flow rate achieved at a reduced total pressure loss suggests
that a smaller number of the optimized blades may give an acceptable performance;
this will reduce the weight and the manufacturing cost.

In addition the range of the improved blade is wider than that of the original
blade. The optimum blade shape results in a weaker passage shock, which was
prevailing in the original design and is now weakened in the improved design.

The four-point optimization task was performed at the design point plus three
off-design points, where the values of the backpressure are 0.65, 0.70, 0.75, and 0.78.
Note that Figs. 4.20 to 4.22 include not only those points used in the optimization
but they also include points that were not implied in the optimization process and, as
can be seen from these figures, the improved solution shows a continuous variation
of blade performance for all points including those that were not included in the
optimization function.

The Mach contours and Mach distribution along the original and the optimized
blades at a given mass flow rate, are given in Figs. 4.23 and 4.24. This mass flow
rate does not correspond to one of the four values of back pressure that were used in
the optimization function; in other words, the CFD simulation of the flow over the
optimized blade at that mass flow rate is not implied in the optimization process.
The Mach contours, given in Fig. 4.23, indicate that the passage shock in the
optimized design is spilled out of the passage, so that the pressure side is shock free
and the shock on the suction side is weakened, as can be depicted in Fig. 4.24. This
can explain the performance improvement of the optimized blade at that mass flow

rate.

92



0.8

0.6

0.4

0.2

IlllllIIIIIIIIIIIITVIIIIIIII

Original
— - - — improved

TN DS T S T i TN T EEENT R NI SETENN N BTN N

Figure 4.19

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
X

: The original and optimized NACA transonic compressor rotors.

93



0.85 -

©
©
I

Adiabatic eff.

—o——Original
——é—— Improved

0.7

| SR

1 i I
1.7 1.8 1.9 2
Pressure ratio

Figure 4.20: Efficiency vs. total pressure ratio for the original and optimized NACA

‘transonic compressor rotors.

94



) _— /X
.85-—- OB
5f $
o | Fi S
s f (
8 0.8 -
c | 4
T | q
s T
i . . q
[ ———&—— QOriginal
| ————i— |mproved a
0.7 N &
: 1 { i L | I L L 1 L I 1 1 ! L
0.3 0.32 0.34 0.36

mass flow rate

Figure 4.21: Efficiency vs. mass flow rate for the original and optimized NACA

transonic compressor rotors.

95



0.3F
- @
i ¢ 1
0251  we—i——- Qriginal
@ | ——s— Improved { 4
o |
Qo2 ( v §
!
m L
an 5
o i ® A
Qo.15} ()
orf
_OIIIIIIIIIlllllllllllllllllllll

0.31 0.32 0.33 0.34 0.35 0.36
mass flow rate

Figure 4.22: Total pressure loss coefficient vs. mass flow rate for the original and

optimized NACA transonic compressor rotors.

96



Original

Improved

Figure 4.23: Isentropic Mach contours for the original and optimized NACA tran-

sonic compressor profile at a given mass flow rate.

97



o Original

* Optimized

0.9

0.8

0.7

0.6

0.5

0.4

R P i T Ty i T Tiptrervprerrrprirvryrorigtrtinrd
BT T T T T T

0.3

0.2

0.1

4III|IIII|[IIIII

Figure 4.24: Pressure distribution along the original and optimized NACA transonic

compressor profile at a given mass flow rate.

4.9. ANN-Based Multi-point Optimization of a

NACA 65 Subsonic Compressor

This test case deals with optimizing the performance of a subsonic compressor rotor

where the flow is assumed to be turbulent and is governed by the RANS equations;
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the Reynolds number is 2.45 x 10°. ANN is used so as to reduce the computational
effort and hence accelerate the design process, and the optimization objective is to
maximize the adiabatic efficiency over the rotor operating range. Four values for
the backpressure were taken to cover the operating range.

The optimization approach is similar to the previous case, (i.e. the transonic
NACA compressor cascade) except for the use of ANN in this case to obtain an
approximate value of the objective function. More explicitly, the NURBS represen-
tation, the GA numerical optimization, the CFD boundary condition implementa-
tion used in the previous section are also used in this section. The performance
is measured in terms of adiabatic efficiency and the objective function is given in
Eq. 4.1. The ANN model is trained and tested using a data base of blade profiles
for which the flow is simulated using CFD. The accuracy and effectiveness of the
developed optimization method is demonstrated (see Appendices C) in the process
of redesign of this NACA subsonic compressor cascade.

The base line geometry is given by a NACA 65 airfoil, for which there are
extensive low speed cascade experimental data [59], the blade shape is defined in
terms of a mean camber line and a thickness distribution. Both the camber line and
thickness distribution have been parameterized using NURBS with 11 and 9 control
points, respectively. The family of airfoils used in training and testing the ANN
was obtained by perturbing the NURBS control points in a preset range in order
to build an approximation model using ANN. This approximate model is then used
in the GA optimization process to compute the objective function for a given set of
design parameters.

ANN was used to construct the response surface using relatively few CFD flow
simulations. A family of fifty blade profiles has been generated in the design space

and, for each blade profile, the flow was simulated at the design point and at three
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off-design points; thus the total number of CFD runs amounts to 200 simulations
that cover a reasonably large range of the design space, see Fig. 4.25. The camber
and thickness is allowed to vary from 7% to 10% while the back pressure is varied
incrementally from the choke to stall limit of the original design.

The CFD flow simulations were carried out in parallel (one CFD simulation
per node) on four nodes of an ALTIX 3700 server using Message Passing Interface
(MPT), which required about 60 hours of wall-clock time.

The ANN was constructed with one hidden layer containing 41 nodes and was
trained using 35 of the 50 candidates; it was then tested with the remaining 15
candidates. The success of ANN depends on its performance on the test cases, as
the ANN training does not include these cases. The ANN training took about five
hours on a Pentium IV running at 2.2GHz clock speed and the average error was
found to be less than £5%, as seen in Fig. 4.27.

The stopping criterion of ANN training is such that it is determined based on
the error incurred in ANN testing. As the ANN weights optimization is continued,
the error on the training keeps decreasing until it goes down to machine accuracy
(which implies overtraining). Unlike the error on the training, the error on testing
ANN reaches a certain minimum and then it starts to rise again, when the over-
training degrades its generalization capability and it starts to study details on the
data that leads to memorization rather than generalization. The ANN weights opti-
mization is stopped at the point where the error on the testing reaches its minimum,
as shown in Fig. 4.26.

The optimization algorithm that employs the GA uses the trained ANN to
compute the objective function as well as the constraints. The result obtained from
ANN-based numerical optimization is then verified by simulating the flow over the

optimum shape using CFD.
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This test case is a multi-point maximum efficiency optimization where the
design point and three off-design points are included in the optimization function,
Eq. 4.1. The weights, C;...Cs in Eq. 4.1 are taken as 1, 0.5, 0, 0 and 0, respectively.
The selected choice was found to achieve the objectives and it also resulted in an
increase in total pressure ratio; this ‘behavior was also observed by Oyama et al.[7].

Figure 4.28 shows the performance map for the candidates used in building
the ANN model as well as the improved blade; the latter has shown more than 4%
gain in adiabatic efficiency.

The optimized profile has shown a significant change near the trailing edge as
shown in Fig. 4.29. It gives a better performance in terms of adiabatic efficiency as
well as pressure ratio (although the latter was not part of the optimization function)
over the full range of operation. Figures 4.30 and 4.31, which plot the efficiency vs.
mass flow rate and vs. pressure ratio, show a 7% improvement in efficiency and
about 1% increase in total pressure ratio for the same blade speed and mass flow
rate.

The performance of the improved rotor blade is tested at an operating point
different from those taken in the optimization, a smooth and continuous trend similar
to the first test case is observed at all points, as seen in Figs. 4.32, 4.33, and 4.34

As mentioned earlier, the optimized profile has shown a significant change
near the trailing edge as shown in Fig. 4.29 and the maximum thickness of the
optimized profile has increased by 3.7% and has slightly moved downstream. The
high camber near the trailing edge resulted in a higher flow turning at the cost of
an increase in profile loss. Figures 4.35 and 4.36 show a comparison of the Mach
contour and pressure distribution of the improved design with the original design at

one operating point.
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Chapter 5

CONCLUSION

5.1. Summary

Aerodynamic shape design of compressor and turbine blades is quite challenging
given the complexity of the design space and the inherent multidisciplinary nature
of such design. An attempt to automate this design process is explored in this work,
by developing an automated optimization process that integrates shape parametriza-
tion functions, used to approximate the blades profile, with CFD, to compute the op-
timization objective from the flow simulation, with numerical optimization methods
that drive the optimization process. Each component of this automatic optimization
process (except for the CFD method) is developed and validated, the goodness of
the automated process is then demonstrated in the redesign of two-dimensional flow
in turbine and compressor cascades where the flow is transonic, subsonic, viscous
or inviscid, and where the optimization objective is a weighted sum of single design
point or multi-point, single or multi-objectives; the weighted sum is augmented by
the design constraints.

The main objective of this work is to develop and implement methods for
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automated aerodynamic shape optimization of turbomachinery blades. The first
step in this process is to parameterize the blade profile. At present, Non-Uniform
Rational B-Splines (NURBS), which are used by modern Computer Aided Design
(CAD) tools such as CATIA, were chosen because of their excellent mathematical
properties for shape parametrization in terms of accuracy, generality and flexibility,
and in terms of their ability to adequately represent the blade shape with as few
design parameters as possible. A separate optimization algorithm that uses SA has
thus been integrated in the design cycle to enable the NURBS parametrization of a
given blade with a relatively small number of parameters while keeping the quality
and smoothness of the original blade profile.

The numerical optimization schemes that were developed, tested, and used in
this work are GA and SA which are direct global optimization methods; and SQP
which is a gradient-based method that is effective for detecting a local optimum. It
was found necessary in the course of this work to develop these schemes to address
the different optimization tasks. The GA was chosen for the aerodynamic optimiza-
tion part, SA was found to work best with the NURBS control point and weight
calculation, and a hybrid scheme of GA, SA and SQP was needed to find the weights
of the ANN algorithm.

By using a response surface-based optimization objective instead of a CFD-
based objective, the computational effort in achieving an improved design can be
dramatically reduced. Although this low order approximation is not as accurate as
the CFD-based value, the result from this method can be verified with the CFD-
based calculation and it provides with a more economical and computationally sim-
pler method of achieving the design task in a short period of time.

An Artificial Neural Network (ANN) is chosen as the low order response surface

approximation of the objective function. The construction of the response surface
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approximation with ANN is based on a database generated using CFD simulations,
which are parallelized using MPI on a cluster of parallel computers.

The objective function formulation is made so general that the designer have
an option of choosing single or multi-point optimization and combine different aero-
dynamic performance measures like adiabatic efficiency, total pressure loss, pressure
rise etc... The developed methodology and the formulation of the objective function
resulted in a significant and consistent aerodynamic design improvement, and the

use of ANN resulted in a ten-fold speed-up of the design process.

5.2. Concluding remarks

A fast, flexible, and robust single as well as multi-point global shape optimization
method for the aerodynamic performance of gas turbine blade cascades was devel-
oped and was successfully applied to the design of transonic, subsonic, inviscid, or
viscous two-dimensional flow in compressor and turbine cascades.

The choice of objective function was found to be crucial for the success of
the optimization process; it was constructed so as to achieve a better aerodynamic
performance over the full operating range (including the design point) by reshaping
the blade profile. The objective function is formulated as a weighted sum of the
performance parameters such as adiabatic efficiency, total pressure loss (or entropy
rise) and pressure ratio. It is also augmented with the constraints such as the
minimum blade thickness, the stall margin, and the mass flow rate.

The objective function is obtained from either a high fidelity or a low fidelity
model. The high fidelity model is based on solving the Euler/Navier-Stokes equa-

tions for the flow field, which is then used in computing the objective function.
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The low fidelity model uses an ANN with a back propagation algorithm to ap-
proximate the optimization objectives and constraints. The ANN is developed and
implemented for multi-point optimization of viscous turbulent flow in cascades. The
ANN is found to reduce the computing time by approximately one order of magni-
tude. The turn-around computation time was further reduced by parallelizing the
optimization process; this parallelization achieved almost 100% efficiency.

The NURBS functions used to parameterize the profile are found to be flexible,
smooth and accurate. They also allow for representing a given blade shape with a
relatively small number of parameters. Finding these parameters involves an opti-
mization process, where SA was implemented to search for the NURBS parameters
that would best represent the initial turbomachinery shape.

In the course of this work, it was found necessary to develop different numer-
ical optimization methods to address different optimization tasks within the global
optimization process. A real-coded Genetic Algorithm (GA) is used in the aerody-
namic optimization. A Simulated Annealing (SA) scheme is used to find the initial
NURBS representation of the blade profile. A Sequential Quadratic Programming
(SQP) is used in conjunction with GA and SA to determine the weights of the ANN.

The test cases that are presented show that the developed optimization process
is general and flexible, and it can handle various aerodynamic design objectives and
constraints. They also showed that the present methodology is able to reach the
optimization objective in increasing the adiabatic efficiency and/or increasing the
pressure ratio and/or decreasing the total pressure loss in a sustained manner over
the full operating range.

The ANN approximation of the aerodynamic objective function can perform
well for a rather modest size of the database, which has a significant impact on the

accuracy and effectiveness of the resulting ANN model. The database was chosen to
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adequately cover the design space and was composed of feasible blade shapes. This
was found to save on the computation time for generating the CFD simulations, and
it also improved the generalization capability of the ANN model by reducing the
overtraining or memorization problem.

In an industrial environment, the database already exits, at least partially,
therefore the use of ANN can be even more attractive since the aerodynamic opti-

mization effort will be significantly reduced.

9.3. Recommendations for future work

The work that was carried out in this thesis has pointed out some research direc-
tions such as further improvement and refinement of the optimization process, the

geometric parametrization, the ANN approximation, and their coupling are needed.

e The geometric parametrization is crucial for the success of the design optimiza-
tion and generation of new blade profiles. Flexibility of the parametrization
and smoothness of the blade profile eases the optimization task. As the or-
der of the NURBS curve increases, the blade becomes smoother, however the
number of NURBS parameters increases. The former eases the optimization
task while the latter tends to rise the optimization cost. Therefore a high
order NURBS using curvature information as constraints and a small number

of parameters needs to be developed.

e The numerical optimization in this work is global optimization scheme in the
hope of finding a near global optimum. There are many factors that determine
the success of the optimization process. The formulation of the objective

function and constraints, the selection of design variables and their range are
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some of the factors that affect the optimization results. A sensitivity analysis
is needed to study the effect of the the design variables as well as the different

formulations of the objectives and constraints on the optimization results.

The results of the optimization are as good as the analysis tool used therein.
Hence a careful consideration of the fluid flow simulation tool is important in
generating physically correct designs. Issues such as discretization methods,
turbulence models, convergence, boundary conditions, mesh quality should be

carefully considered.

A different and improved method for estimating the aerodynamic performance
is needed. The total pressure loss, the adiabatic efficiency, and the pressure
ratio are performance measures that have different requirements. Some of
them even have contradicting goals, e.g. minimizing the total pressure loss in
a rotor does not guarantee maximizing its adiabatic efficiency, and vice-versa.
The same argument holds for the pressure rise. Therefore the problem of
aerodynamic optimization would fall into multi-objective optimization even for
a single point design. Other ways of measuring the aerodynamic performance
that would account for all the necessary aerodynamic performance measures

would simplify the optimization task.

To account for three-dimensional flow effects on the optimum design, 3D flow
simulation and blade parametrization are needed. The methods presented in

this work can readily be extended to the optimization of 3D blade rows.

Multi-Disciplinary Analysis and Optimization (MDO) including various disci-
plines, such as aerodynamics, thermodynamics, structural dynamics, aeroelas-

ticity and manufacturing affect the design space.
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e ANN has a lot of unexplored potential that needs further work, e.g. data
selection for the training and testing, ANN architecture in terms of number
of hidden layer(s) and nodes in each layer, the optimization method for the
training algorithm, the type of transfer function. Moreover, work is needed to
optimize the size of the database needed for the ANN training and testing so as
to generate an accurate model with relatively little effort. The scaling rule for
the number of neurons, the size of the database, for a given set of input /output
variables is an area of active research in the ANN research community. Some

rules of thumb exist but still need more work.
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Appendix A

BLADE NOMENCLATURE

Consider the schematic figure for a typical blade cascade shown in Fig. A.1, This
figure is taken from the David Gordon [60).
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Figure A.1: Blade definition.

The followings terms are defined for the blading shown in the figure.

1. aspect ratio: the ratio of the blade height to the chord.
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10.

11.

axial chord: the length of the projection of the blade chord onto 2 line parallel

to the the turbine axis

. axial solidity: the ratio of the axial chord to the spacing.

blade height: the radius at the tip minus the radius at the hub.

. blade inlet angle: the angle between the tangent to the camber line at the

leading edge and the turbine axial direction.

. blade exit angle: the angle between the tangent to the camber line at the

trailing edge and the turbine axial direction.

camber angle: the external angle formed by the intersection of the tangents
to the camber line at the leading and trailing edges. It is equal to the sum of

the angles formed by the chord line and the camber-line tangents.

camber line: the mean line of the blade profile. It extends from the leading
edge to the trailing edge, halfway between the pressure surface and the suction

surface.

chord: the length of the perpendicular projection of the blade profile onto the

chord line. It is approximately equal to the linear distance between the leading

kedge and the trailing edge.

chord line: if a two-dimensional blade section were laid convex side up on a
flat surface, the chord line is the line between the points where the front and

the rear of the blade section would touch the surface.

deflection: the total turning angle of the fluid. It is equal to the difference

between the flow inlet angle and the flow exit angle.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

deviation angle: the flow exit angle minus the blade exit angle.

flow exit angle: the angle between the fluid flow direction at the blade exit

and the machine axial direction.

flow inlet angle: the angle between the fluid flow direction at the blade inlet

and the machine axial direction.

hub: the portion of a turbomachine bounded by the inner surface of the flow

annulus.

hub-tip ratio: the ratio of the hub radius to the tip radius.
incidence angle: the flow inlet angle minus the blade inlet angle.
leading edge: the front, or nose, of the blade and the tip.

meridional plane: a plane cutting a turbomachine through a diametral line

and the (longitudinal) axis.

pitch: the distance in the direction of rotation between corresponding points

on adjacent blades.
solidity: the ratio of the chord to the spacing.
spacing: same as pitch.

stagger angle: the angle between the chord line and the turbine axial direction

(also known as the setting angle).
trailing edge: the rear, or tail, of the blade.

mean section: the blade section halfway between the hub.
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Appendix B

FLOW FIELD ANALYSIS

B.1. The Governing Equations

The conservation of mass, momentum and energy for a two-dimensional, viscous
compressible flow, loosely referred to as Navier-Stokes equations can be written in

a Cartesian coordinate system (r,y) as:

ow Of

Ow of 0dg OR 0S
ot Oz

B_y—8x+8y

where w is the vector of flow variables, f and g are the convective flux vectors, and

(B.1)

R and S are the viscous flux vectors in each of the coordinate directions.

[ [ [
p pu pu
U u? + puv
w=|"* , f= g P , = (B.2)
pv puv pv2 +p :
pE ] puH puH
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and . _ -

0 0
o g
R = o s S = w (B3)
ny O'yy
UOTzz + U0y + Gz UC gy + VO + qy

the stress tensor components and the heat flux vector are given by

2
Opz = 20Uy — §H(Uy + v:c)

2
Oyy = 200y — = Uy + vy)

3
Oy = Oyz = Uz + vy) (B.4)
)
Qz = oz
orT
— _k___
Qy 8y

Assuming that the fluid is an ideal gas thermally and calorically and given the
definition of total enthalpy H
H=FE+p/p (B.5)

Also, for an ideal gas, the equation of state may be written as
1 9 2
p=0-1p|E- S +v) (B.6)

where + is the ratio of specific heats.
The effect of turbulence is taken into account by using the eddy-viscosity hy-
pothesis. That is, the molecular viscosity u and the molecular thermal conductivity

k are replaced with

M=yt e
-l @)
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where ¢, is the specific heat at constant pressure, Pr is the Prandtl number and the
subscripts [ and ¢ refer to laminar and turbulent. The turbulence quantities y; and
Pr; are computed using the two-layer algebraic model of Baldwin and Lomax [61].

The Euler equations can be easily obtained by neglecting the viscous terms,

namely the right-hand side of Eq. (B.1).

B.2. Space Discretization

The flow governing equations presented in the previous section are discretized in
space using a cell-vertex finite volume method, on an unstructured triangular mesh.
The computational domain is divided into triangles, fixed in time, and the flow
variables are stored at their vertices. For any node, the control volume (surface in
2D) is taken as the union of all triangles with a vertex at that node, i.e. the control
volume are overlapping (see Fig.B.1).

The governing equations, Eqs. (B.1), are then integrated over each control
volume § (surface in 2D) which is bounded by the surface 9 (curve in 2D), and

using Gauss theorem (Green’s theorem in 2D) one obtains

d

2 fdy — g dz) = ?( dy —Sd B.8

i lfovirdut § (fdy-gin)= ¢ Ray-Sda) (B.3)
when the cell-vertex discretization scheme is applied to Eq. B.8, the following set

of coupled ordinary differential equations is obtained for each cell or control volume

i surrounding node 1 :

a n n
—a—t(in,-) + D (fenoe + geny,) = Y (Renge + Seny,) (B.9)
e=1

e=1

where the summation is taken over all edges of cell i, §); is the cell area, f. and

ge are the components of convective flux vector on edge e, R, and S — e are the
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components of viscous flux vector, and n;, n, are the components of the outward
normal to edge e.

The convective fluxes, f and g, along a particular edge of a control volume are
numerically evaluated as the average of the nodal flux values at the ends of that edge,
which assumes a linear variation and is second order accurate. In order to estimate
the viscous fluxes, R and S, an auxiliary control volume is formed by connecting the
cell centers. The discrete Gauss theorem is applied once on the computational cells
to obtain a numerical approximation to the stress tensor and heat flux vector at the
cell centers. The divergence of the stress tensor and of the heat flux vector is then
obtained directly at the enclosed vertex by a second application of the theorem to
the auxiliary control volume which is scaled for consistency, to the computational

cell used in convective balance.
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Figure B.1: The cell vertex.

B.3. Artificial Viscosity

In principle, the physical viscous terms of the Navier-Stokes equations are capa-
ble of providing the numerical scheme with the dissipative property necessary for
stability and capturing discontinuities. However, for high Reynolds-number flows,
this can only be achieved by resorting to extremely small mesh spacing through-
out the domain. Thus, in practice, it is necessary to introduce artificial dissipative

terms to maintain stability in the essentially inviscid portion of the flow field, and
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to efficiently capture discontinuities.

In the present work, the nonlinear artificial viscosity formulation advanced by
Jameson et al. [53], combined with the pseudo-Laplacian discretization, introduced
by Holmes and Connell [62] have been used. Details of implementation can be found

in [58].

B.4. Integration to Steady State

The discretization of the spatial derivatives transforms equation B.1 into the set of

coupled ordinary differential equations

where n is the number of mesh nodes. The residual Q(w) represent the discrete
approximation to the convective fluxes. D(w) represents the dissipative terms, i.e.
the discrete approximation to the viscous fluxes, as well as the artificial dissipation
terms. These equations are integrated in pseudo-time using a five-stage hybrid time-

stepping scheme given by

w® =" (B.11)
w® = @ — al% [Q®) - Dy (B.12)
w® = — ag% [Q(w(l)) - Dl] (B.13)
w® = w©® — m,% [Q(w®) — Dy (B.14)
w® = © m% [Qw®) — Dy (B.15)
w® = O as%‘f [@w™) - D] (B.16)
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W™t = () (B.17)

w™ represents the value of the solution vector at the n'* time step and w(® represents
the values at the ¢** stage within a time step. The dissipative operator D(w) is
evaluated only at the first, third, and fifth stages of the scheme.

The coefficients of integration are:

01=1/4 a2=1/6 01323/8 a4=1/2 Ot5=1 (B18)

B.5. Boundary Conditions

For a cascade problem, there are four types boundary condition, namely inflow/outflow
boundary conditions, periodic boundary conditions and solid wall boundary condi-
tions, which must be enforced along the boundaries of the computational domain,

see Fig. B.2. Each boundary condition types is discussed below.

B.5.1 Inflow/Outflow Boundary Conditions

The computation of inflow and outflow boundary conditions is based upon a lin-
earized characteristics method, described in Giles [63]. The change in the incoming
characteristics are determined such as to satisfy specified boundary conditions.

For a subsonic inflow, there are three characteristics propagating into the do-
main and only one outgoing . The flow angles, stagnation enthalpy and stagnation
pressure are specified at the inflow and the static pressure is extrapolated from
inside the domain. In some cases the mass flow rate is specified instead of total

pressure. There are four incoming waves for a supersonic inflow. The Mach number
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is also specified for a supersonic inflow and subsequently the flow condition will be
determined from these variables using isentropic relations.

For subsonic outflow, three outgoing waves are calculated from the numerical
solution, while the incoming wave is fixed by specifying the static back pressure.
There are four outgoing waves for a supersonic outflow, hence all the flow variables

are extrapolated from inside the domain.

B.5.2 Periodic Boundary Conditions

For a linear cascade, the flow periodicity implies that all the variables are the same
at periodic pairs of nodes. To avoid interpolation and accompanying inaccuracy,
the grid generation provides the periodic nodes in pair, which are treated as in-
terior nodes by adding all the contributions at one periodic node to its periodic

counterpart.

B.5.3 Solid wall Conditions

For an inviscid flow along an impermeable wall, the flow tangency condition is
imposed, which implies that all fluxes through the wall faces vanish except for the
pressure contribution to the momentum equation. For viscous flow, the no slip

boundary condition is imposed along the impermeable walls.
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Figure B.2: Cascade notation and boundary conditions.
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Appendix C

VALIDATION CASES

C.1. Optimization Scheme Validation

In order to test the SA and GA implementations, some standard optimization prob-
lems were chosen from the literature [64]. The problems size ranges from 2 to 10,000
design variables. The tests include the Rosenbrock banana function, the Rastrigin
function and others. The test functions vary in difficulty, in number of local min-
ima, and in number of design variables. They have a global extremum that is hidden
among many local extrema. Therefore they are appropriate for testing different im-
plementations of global search optimizers such as GA and SA. The search range
that was chosen for each function includes several local minima. These problems

are given below.

C.1.1 The Rosenbrock Function

The Rosenbrock test function is given by:
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n—1

F(X) =32 (100 x (&7 = 2431)? x (; ~ 1)?) (C.1)

i=1

It is a classic optimization problem, also known as the banana function. The
global minimum is inside a long, narrow, parabolic shaped flat valley. The conver-
gence to the global optimum is difficult and hence this problem has been repeatedly
used to assess the performance of optimization algorithms. The function has a
global minimum value of zero at the point z; = 1 for all i, i.e. f(1) = 0 is the
global optimum. Different ranges of the design variables were defined as 42.048,
+10.048 and +60.048. In the following results, the range +10.048 was used. Table
C.1, which compares the current SA results with those of Ref. [64], shows that the
present implementation of SA is more efficient in terms of the number of function
evaluations needed to reach the global minimum. Figure C.1 shows the convergence
history for the problem of minimizing the Rosenbrock function with forty design
variables, n = 40. Both GA and SA have shown a large improvement in the optimal
solution relative to the initial one, but SA outperforms GA in getting very close
to the global solution. SA was able to find the global optimum with an absolute
error of 1020 with 2,424,000 function evaluations. In all cases, the SA was able to
find the global optimum point very accurately without any significant change in the
computation time whereas the GA algorithm had difficulty in reducing the absolute
error below 20, except for the case where n=2 (i.e., two variables) the GA did find

the global minimum very accurately.

C.1.2 The Rastrigin Function

The Rastrigin function is given by the following expression
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f(z) =10n+ zn: (:z:f - 10 cos(27m;i)) (C.2)

It is a widely used multivariable multimodal (i-e., with several local extrema)
test function. The function global minimum value is 0 and it occurs at r; =0, i.e.
the global minimum is f(0) = 0. In the optimization search, all the z;’s are defined
in the range +5.12 and 410.12 and even larger.

Figure C.2 shows a comparison of the SA and GA algorithms applied to the
Rastrigin function, with forty design variables, n = 40. Both SA and GA brought a
large improvement in the optimal value. SA improved the optimal value by 99.6%
relative to the initial value while GA improved it by 100%. The absolute error is
less than 10~ for GA and 4.97 for SA.

The range of the design variables was successively increased from +5.12 to
:i:lQ.12, which increased the number of local optima from 11 to 21 as each integer
corresponds to a local minimum of the Rastrigin function, see Fig. C.3. In all cases
the GA was able to find the global minimum accurate to 10-14 without any signifi-
cant change in the computation time. The values reported in Table C.2 correspond
to an z, range of +100.12.

Fogel and Beyer [65] reported results for the Rastrigin function with 30-
variables; the best function value that they reported was larger than 10 after 200,000
function evaluations. In the present work, starting from the same initial range of de-
sign variables, a function value of 10~¢ was achieved in 12,400 function evaluations,
and a value less than 10~ was achieved with 13,710 function evaluations. Deb et
al. [64] reported results for the same function but with 20-variables and starting the
optimization from an initial solution away from the global optimum, they were only

able to reduce the function to a value between 10 and 20.
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C.1.3 Concluding Remarks

Further tests were carried out with GA and SA and, in almost all cases tested, it was
found out that SA and/or GA were able to track the global optimum in a reasonable
computational effort however the algorithm parameters have to be well tuned.

The solution accuracy and convergence rate for both SA and GA algorithm
depends on the respective parameters. For SA, the solution is most sensitive to the
cooling schedule parameters i.e., the temperature (T') and its reduction factor (rt).
A temperature of 5 x 106 and 10°® are used for the Rosenbrock and Rastrigin test
functions respectively, and a temperature reduction factor of 0.85 is used for both
cases.

The value of the parameters used in testing the GA on the Rosenbrock and
Rastrigin functions are as follows. The crossover probability is 0.65 and 0.85, the
mutation probability is 0.01 and 0.05 and the elitism is 2, respectively.

The test functions that vary in difficulty, in number of local minima, and
in number of design variables X, have been tested with the GA and SA routines
developed by the authors. The GA algorithm had difficulty with the Rosenbrock
function, which has a long flat valley near the global minimum; while the SA algo-
rithm had difficulty with the Rastrigin function, which has numerous local minima.

This suggests that any optimizer would not necessarily work for all cases.

C.2. ANN-based Optimization Scheme Validation

The purpose of this task is to validate the ANN-based optimization scheme. A
test case of Rosenbrock’s function has been selected and modeled by ANN back
propagation with a 2-21-1 architecture of the network which contains 2 inputs nodes

and 21 hidden nodes and 1 output node. The approximation was done using the

144



representative sample points selected by Latin-Hypercube experiments [66] over the
specified domain for 100 sample data. A surface plot is generated and compared
with the actual plot. The average relative error is about 23% while the maximum
relative error is 58%. The 3D surface shown in Figs. C.4 and C.5 indicate that
the ANN appears to better emulate the the underlying system. This result was
obtained using only 100 sets of sample data, increasing the number of sample data
set would improve the accuracy of the prediction without any significant additional
load of computations. Table C.3 shows a comparison of the predictions by ANN
with the exact value. The average relative error of each predictioﬁs show the good
prediction power of ANN. In order to validate the use of ANN-based approximation
for optimization process, the same test case has been optimized with the prediction
of the objective function by the ANN-approximated model. As one can see from
the Fig. C.6, the optimization process based on a low fidelity approximation gives
a result with same trend as that of the exact high fidelity model. Thus it can be
used for optimization process in order to simplify the computation task from the
high fidelity model.

Note that this test case is a difficult function used repeatedly to assess the
performance of optimization algorithms. As it can be seen from the Table C.3,
the design space covers a large range and has a long, narrow, parabolic shaped flat
valley. The convergence to the global optimum is difficult, hence the result obtained

using only 100 data set for building the approximation by ANN is satisfactory.
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Table C.2: The computation result of SA and GA for the Rastrigin function

SA GA
Cases(no. of DV) Optimal value no. of functions Optimal value no. of functions
20 2.98 5,601 1014 7050
30 2.98 8,401 10~ 13710
40 4.97 16,801 10714 14310

Table C.1: The SA result for the Rosenbrock function
# OF FUNCTION EVALUATIONS

(Absolute error < 10~%)

DV Present work Literature [64]

20 1,174,000 1,396,496
30 1,764,000 3,719,887
40 2,424,000 ~
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Table C.3: Predicted value vs. actual values at the 21 test points

Cases Actual Value Target value % BError
1 2732.360 2768.150 1.310
2 1768.509 1826.403 3.274
3 1014.373 850.539 16.151
4 469.952 320.570 31.787
5 962.975 906.408 5.874
6 433.654 362.341 16.445
7 114.048 93.248 18.238
8 4.157 5.546 33.423
9 103.981 45.956 55.803
10 420.430 324.591 22.796
11 105.858 47.538 55.092
12 105.858 48.973 53.737
13 420.430 332.608 20.889
14 958.879 905.862 5.529
15 429.558 362.635 15.580
16 109.952 69.816 36.503
17 99.885 41.997 57.955
18 3897.734 3872.096 0.658
19 2724.168 2716.429 0.284
20 1760.317 1868.154 6.126
21 1006.181 821.830 18.322
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Figure C.1: Convergence history for the Rosenbrock test function with 40 design

variables.
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Figure C.2: Convergence history for the Rastrigin test function with 40 design

variables.
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plot for Rastrigin’s function.

Figure C.3: The surface
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Figure C.4: The Rosenbrock surface plot.
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Figure C.5: The surface plot of ANN-approximation for the Rosenbrock’s function.
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Figure C.6: Comparison of convergence history for the optimization of Rosenbrock

test function based on ANN approximation with the optimization based on the exact

function.
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