NOTE TO USERS

This reproduction is the best copy available.

®

UMI

A Usability Study of

Two Knowledge Acquisition Tools

Mohammad Lokman Hossain

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

April 2005

© Mohammad L. Hossain, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04446-2
Our file Notre référence
ISBN: 0-494-04446-2
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

1ii

ABSTRACT

A Usability Study of Two Knowledge Acquisition Tools

Mohammad Lokman Hossain

In today's world, knowledge-based systems are widely used for both large and small
tasks. Acquiring knowledge from domain experts is one of the major bottlenecks in
building such systems, and hence, Knowledge Acquisition (KA) tools are given
importance. The goal of these tools was to assist the knowledge engineer in eliciting
knowledge from domain experts. Until recently, the usage of these tools was limited to
people with significant computer expertise. User interface difficulties form one source
that prevents people at large from receiving the expected benefits of KA tools. This has
prompted the investigation of the usability of two popular knowledge acquisition tools in

this thesis.

This thesis focuses on designing and conducting a usability test with two popular KA
tools: Protégé2000 and PCPACK4. The purpose of this study is to assess the usability of
these two KA tools against a set of criteria, and to provide recommendations for further
improvement of these tools or to help in the development of new KA tools. To conduct
this usability test, this thesis adopted and modified Hix’s methodology for the evaluation
of knowledge-acquisition tools. Testing with a small set of end-users revealed several
usability issues. Based on these observations recommendations are made in this thesis for

further enhancement of usage of KA tools.

Dedicated to my parents, Assad and Aziba.

v

ACKNOWLEDGMENTS

My deepest gratitude goes to my supervisors, Dr. T. Radhakrishnan and Dr. Ahmed
Seffah for their invaluable guidance and encouragement. I consider Dr. Radhakrishnan
much more than a supervisor. He is a father figure who cares very deeply about the
welfare of his students. The financial support for this work has been provided by the
Canadian Institute for Telecommunication Research special project on Highly Qualified
Personnel Training (HQP) through a research grant to Dr. T. Radhakrishnan. The support

from CITR is greatly acknowledged.

I would like to thank my colleagues in Human Computer Interaction Lab for their
cooperation during this time. I would like to thank the test participants for their

cooperation during the testing.

Thanks to my family members and friends for their help and support. I like to give a
special thanks to my wife Yasmin who was always there whenever times became

difficult. I deeply appreciate her care and support during my studies at Concordia.

Vi

TABLE OF CONTENTS

List Of FigUIes ...c.coviviviininicniinniiiiniiieiasierisnesssaccsasersans 1X

List of Tables....... eeeeeeietcettinttetcttttntsnttracnectttttrstrsennnsarsane X

1. Introduction......cccevieviecneiiiiiinrieciienenacissecinccsnssasencens 1
1.1 Problem Statement.........oviiriieiiiiiis ciietiiiiiieiireeeeeannanss 1
1.2 Related WorK. . ..ot i et 2
1.3 Investigating The Usability of KA Tools: A new Approach... 3
1.4 Objectives and Scope of the Thesis............cc.oe ciiiiiiinn, 4
1.5 Thesis Organization.............coeovieiiiiiiniiiiiineiniiinienann 6

2. An Analysis of Two Knowledge Acquisition Tools: User

Interface Prespective.....cceceieiniieiiiieieiicnniecieccnnnes covenns 7
2.1 PCPACKA..... i ittt 7
2.1.1. Important Features and Functionalities................... 8
2.1.2. PCPACK4 Usage: An illustrated Scenario................... 9

2.2, Protég€ 2000.ot e 16

2.2.1 Important Features and Functionalities...............c.... 17
2.2.2. Protégé Usage: An illustrated Scenariocccc......... 18

2.3, SUIMIMALY. ..ttt et e et eae e e tenaeneaeeenetaneneenn 24

3. Techniques and Methods of Usability: An Overview....... veee 25
3.1, Whatis Usability?........coiiiiiiiiiiiiiiiiiiiii e 25

3.2. Usability MEaSUIes.oouvuiniitiiiiiitine e aeeireene e 26

3.3. Usability Evaluation............coivviiiirinii i eeeeeens 29

3.3.1 Usability Inspection.........c.cccoeveviriiiiinniiiniiininininnnnn 30

3.3.2 Usability INQUIrY.....c.ooeviiiiiiiiiiiiiiinieiiiie e 32

3.3.3 Empirical Testing.....cc..eveiiuinininiiiinininiinieiiieennann. 34

3.4. Selection of Usability Technique and Methods. 36

vii

4. Usability Testing of Knowledge Acquisition Tools:

A New Approach......ccceevvviiiieiiinnniniiecsesnsnsccsocans 39
4.1.Hix’s Checklist-based Methodology............ccceeririeninncnenenenennenn 39
4.2.0Ur ODBJECtIVES. ...vviiie ettt e 41
4.3. Modified approach to evaluate Protégé and PCPACK KA tools.... 42

4.3.1. Selection of the test tasks and participants........................ 42
4.3.1.1. Selection of tasks...........coveieiiiiiiiiiiiiiininnnnnn. 43

4.3.1.2. Selection of participants..............coveveveeniienennon 48

4.3.2. Creation of the tables..........ccooviiiiiniiiiiiiiiiiniiicenieanes 49
4.3.3. Learning the tools.........covuiiiiiiiiininiii e 53
4.3.4. Performing the tasks............coviiiiiiiiiiiiiiiiiiiinans 53
4.3.5. Review of the sessions and completing the table entries 54
4.3.6. Compute the Metrics.........couvuuiiiiiiiiiiiierireiieieaeeans 56
4.4, SUMIMATY. L.0uininitiianetieet et eetneterreeraeeeeeroeneserens e nenees 59

5. Analysis and Interpretation of Test Results............ 60

5.1, RESUMS. ettt 60
5.1.1. Participants’ EXpertise...........cooveviiiiiiiiiiiiiiiinennna. 60

5.1.2. Test Results.......ccouiviiiiiiiiiiiiiiiiiiiiiiiii e 61

5.1.3. Satisfaction Questionnaire............cocveeuriverennenneannann 66
5.1.4.Problems.ooiiiiiiiii e 68

5.2. Analysis of Usability Problems...............ccoviiiiiiiiinninnnnn. 71
.5.2.1. Classification of Usability Problems......................... 71
5.2.2. Interpretation of Usability Issuesc...ceieenen. 74

5.2.3. Usability Principles..........cccooveviiiiiiiiinaiiiraenanns 84

5.3. Lessons Learned.ccoeiiiiiiiiiiiiiiiiiiiiiiii 86
5.4. Recomméndations ... 87

5.5. Discussions of the Results.oooviiiviiiiiiiiiii i 91

viil

6. ConClUSION.....vvvriereneeeresescassssscassesssssarsssee
6.1, CONtIDULIONS. . vttt ettt e eenennneeeensesseaneneenneneeseeeeens

6.2, FULUIE W OTKS. . ettt et e et rae e eee

References.oon..ooto..loo.oooooo.c.0.00onoooo.o..noo.'o.c.oo.oootcooncconcoooo 96

Appendix crersesesenas ceeesesusererristnraas crerersrersesaans ceeeseonns 103

LIST OF FIGURES

Figure 2.1: Tool Launcher in PCPAK4 tool-set............cocvvviiiiiiiiiiiiinnininnns.

Figure 2.2: Initial screen for creating PCPACK knowledge base

Figure 2.3: Protocol tool for analyzing the

Figure 2. 4: A rearranged PCPAK4 ladder

Figure 2.5: Matrix attributes in the Y-axis,

.......................

17, € S
forstudents......ooveeeieiiieeiiennnnn,

and concepts in X-axiS........c.ooeueunnnn.

Figure 2. 6: Knowledgebase Matrix after modification....................cooiinnn

Figure 2.7: PCPACK4 Code for creating the Annotation template....................

Figure 2.8. Annotation Template for Graduate Student Node...........................

Figure 2.9: Annotation corresponding to Masters Node...............ccocooeiiiiai.

Figure 2.10: Initial screen for creating a new project in Protégé 2000.................

Figure 2.11: A standard text project in Protégé-2000................cooovviiiiiinne.

Figure 2.12: Protégé class tab for creating

and modifying class............c..co.eeinen.

Figure 2.13: Slot tabbed window for creating and modifying slots.....................

Figure 2.14: Form-tabbed window for customization............c..ccoeveviieriinnnnnn,

Figure 2.15: Instance tab for browsing and inserting Instances........................

Figure 2.16: Query generating tab..........

...

Figure 4.1: Hierarchical task analysis to derive the test tasks...........................

Figure 5.1: Participants computer €Xpertise.cc.oovuvreriniiiniieiinnierienenenenenes

Figure 5.2: Usability metrics for Protégé and PCPACK............cccoovvviiiiinninnn,

Figure 5.3: Protégé metaphors in save dialogue..............cooeeiiiiiiiiiianiinian,

Figure 5.4: Protégé user interface...........

Figure 5.5: PCPACK ladder toolbar icons

..

--

ix

10
11
11
12
13
14
15
15
15
19
19
20
21

21

Table 3.1:
Table 3.2.

Table 3.3:
Table 4.1:

Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 4.6:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:

Table 5.6:

LIST OF TABLES

Satisfaction questionnaire for Protégé and PCAPCK KA tools............ 28
Usability Evaluation Methods Overviewccccovveviviiiiiinnnnnns 29
Definitions 0f heuristics.ovuvuiiiiitiiiiiiiii e 32
Descriptions of technical terms used in figure 4.1. 47
Task List for Protégé 2000 and PCPACKA4.coviiiiiiiiiiinnnn.., 48
Evaluation table for Protégé KA tool..........ccoovviviiiiiiiiiiiiiiiiiinnin, 51
Evaluation table for PCPACK4 KA tool........coovveiiiiiiiiiiiiiiiinnnn 52
Evaluation table of a particular user of Protégé KA tool 55
Combined evaluation table (Partial) of Protégé KA tool.................... 57
Combined table for Protégé KA tool..........ccovviviiiniiiiiiiiiinnen, 63
Combined table for PCPACK KA tool......c.coeiiiiiiiiiiiiiiienn, 64
User’s comment on difficult and confusing aspect.......................... 67
Worst aspects according to user comment............coeoeivieiiniiiiininenn. 67
Protégé and PCPACK Satisfaction sCores..........cocoviveniieniieninnnens 68
Usability issues for Protégé and PCPACK................cooiiiiiiniiiinin. 74

1. Introduction

1.1. Problem Statement

Knowledge Acquisition (KA) tools are used to provide support in eliciting, and
transferring expertise from a knowledge source (i.e. human expert, documents) to a
computer program (Hayes-Roth, 1983). Such tools are gaining wide popularity in the
industry today. Application of these tools range from creating and maintaining expert

systems to knowledge based Internet sites.

The idea of using knowledge acquisition tools was started in late 1970. In the beginning,
the aim of knowledge acquisition tool was to assist knowledge engineer by providing
direct interaction with the domain expert, and some of the early tools (i.e. TEIRESIAS
[Davis, 1979], MORE [Kahn, 1984]) were limited in scope when used by a knowledge
engineer for data inserting, error checking, and data editing. During Mid 1990, a number
of KA tools in the market place were claiming the ability to capture knowledge by
interacting with the domain experts very successfully, but researchers noticed that some
tools are still restricted by implementation environment rather than end-users [Puerta.
AR, and Erickson. H., 1994]. With the advancement of software engineering tools and
technologies, more advanced KA tools (Protégé 2000, PCPACK4, WEBGRID III) have
been developed, which are easy to use for a knowledge engineer or even by a domain
expert who has adequate computer experience. It would be ideal for a domain expert to
play the role of a knowledge engineer rather than an intermediary playing that role. So, in
order to overcome the communication barrier, these tools should be adequately user-

friendly.

The impediments for having a user-friendly KA tool are numerous, such as (1) users with
less computer skill take more time to learn the KA tools; (2) terminologies are knowledge
engineer based not domain based; and (3) most of the recent tools' user interfaces are
with too many complex functionalities and features. Understanding all the functions, and
features, and applying them correctly takes time and effort, and also, the users have to
remember many details, which loads their short-term memory. In this perspective,
Usability, a competitive necessity for the success of software [Butler, 1996], needs to be
achieved for having successful knowledge acquisition. Either to improve the existing
tools, or to create a new usable tool, human computer interaction problems that exist in

today’s KA tool needs to be discovered through proper usability study.

In this thesis, two KA tools (Protégé and PCPACK) will be evaluated from user interface
perspective. The evaluation results can possibly lead to a set of benchmarks for further
study of KA tools and recommendations for the improvement of these tools or to develop

more usable KA tools.

1.2. Related Work

The literature related to the usability studies of knowledge acquisition tools is not
substantial. In the following, we are providing some of the related works that have been
done.
¢ [Kim et. al, 2000] conducted a series of experiment with a range of users to
evaluate an intelligent interface for acquiring problem solving knowledge to

describe how to accomplish a task. They reported that EMeD (A Method

Acquisition Interface for the EXPECT Architecture) saves users an average of
32% of the time it takes to add new knowledge.

e TURVY study (Maulsby et al, 1993) was conducted by David Maulsby and Allen
Cypher at the advanced Technology group at Apple Inc. It tests an approach to
programming by demonstration that learns as a user performs simple tasks.

e [Noy N.F. et al. 2000] conducted an empirical study to test the Protégé 2000 KA
tools performance by domain experts. As developer of Protégé, they tried to test
certain selected criteria of usability, such as ability to find errors in knowledge
base, rate of knowledge acquisition, errors occurring during the task execution
etc.

In this thesis, we concentrate on the methodology and design of usability experiments to
investigate the usability measures and problems of two KA tools (Protégé 2000, and
PCPACK4). The results can be used as a guideline for further design of knowledge

acquisition tool.

1.3. Investigating the Usability of KA Tools: A New Approach

Knowledge Acquisition tools belong to a class of interactive systems that provides an
environment for developing knowledge bases. Despite recent proliferation of such tools,
it is believed that there are no procedures for systematically evaluating the usability of
KA tools. The closest tool evaluation research was the “Checklist-based methodology
(Hix, et. al. 1991) for evaluating and comparing human computer interface development

tools.” This research does not specialize to KA tools but is general for all interactive

systems. We follow this methodology and make certain minor modifications and apply

them to the study of two selected KA tools.

This approach is based on a number of representative participants, tasks, and evaluation
criteria relevant to the KA tools (Protégé and PCPACK). Tasks have been selected based
on task analysis. Representative users have been recruited by analyzing the user profile of
the target audience. Before testing, the author as the evaluator had prepared an
“evaluation table” using selected criteria as conditions, and simple task' as actions.
Having prepared the necessary groundwork, test monitor scheduled the test sessions with
ten test participants. Before test session, the participants were given a short tutorial so
that they become uniformly acquainted with the tool environment. Test session was
recorded by screen capturing software “Camtasia” with the consent (Appendix A3) of the
participant. By reviewing the recorded session, the evaluation table entries were filled out
by the evaluator. At the same time, evaluator also noted some other critical incidents
from the test session. At the end of the session, a small post-test questionnaire (Appendix

A5) was given to the participants for getting their assessment about the tool.

1.4. Objective and Scope of the Thesis

The purpose of this thesis is to assess the usability of two KA tools Protégé and
PCPACK. Before defining the test objectives, it is important to understand the
backgrounds of the users who will use these KA tools. Domain experts and knowledge
engineers use knowledge acquisition tools to create and maintain knowledge-based

system. The primary end-users of these tools are domain experts. So, the success of these

! Simple Task: the simplest unit of task, which has no control structure.

tools depends on the usefulness of these tools by the domain experts. Considering the
above, we are aiming to test the following objectives with domain experts (end-users),
which in turn will fulfill the broad objective of our evaluation.
1. To assess usability measures (Learnability, Understandability, and Satisfaction) of
Protége and PCPACK KA tools.
2. To find usability problems in the user interfaces of these tools to provide

recommendations for the improvement of KA tools.

From several existing knowledge acquisition tools, the two popular KA tools Protégé and
PCPACK were specifically chosen because they are perceptibly similar in structuring the
knowledgebase; both use ontology as the base of the knowledgebase. Therefore, it would
be expected to perform task in similar way rather than being different. As a result,
common problems across these tools can be colleted, consequently, which can be used to
provide recommendations for further development of similar knowledge acquisition tool.
In this study, many issues arose regarding internal and external characteristics of these
tools. However, our research aimed only at answering the user interface related following
questions:

e How to design an effective test to measure the usability of a knowledge

acquisition tools?
¢ How to evaluate a knowledge acquisition tool?
e What are the major usability issues that should be addressed during the design of

KA tools?

1.5. Thesis Organization

This chapter (chapter 1) started with the problem definition, and then the way to conduct
the proposed study. Some related works to understand the background of the research
were presented.

Chapter 2 provides an analysis of knowledge acquisition tools from the user interface
perspective. Protégé 2000 and PCPACK4 are described to provide background
information for understanding the results obtained from the study.

Chapter 3 discusses the concepts of usability testing, also discusses different candidate
techniques and methods in the context of this study.

Chapter 4 presents the methodology to perform the usability study. It describes the major
steps required to conduct the test, which includes recruiting participants, selecting tasks,
criteria, developing evaluation table, performing the tasks, collecting the data and
computing the metrics.

Chapter 5 provides the compiled and summarized results gathered from the tests,
usability issues derived from the test result and recommendations made to overcome the
problems that have been observed during the test.

Chapter 6 summarizes the contributions of the thesis particularly the usability issues of

KA tools. It also discusses some future improvements of our studies.

2. An Analysis of Two Knowledge Acquisition Tools: User

Interface Perspective

In this chapter, we analyze Protégé 2000 and PCPACK4, two popular knowledge
acquisition tools. The analysis focuses on the features and functionalities of the user

interface, and we use scenario-based examples for understanding the usability aspects.

2.1. PCPACKA4

PCPACKA4, a set of tools, was developed to create knowledge bases for any knowledge-
based systems or knowledge-based Internet sites. Epistemics [Speel P.H. et al. 1999]
developed PCPACK under a contract with the UK’s Defense Research Agency.
Knowledge engineers and domain experts use these tools for the following purposes:

1. Analyze knowledge from the text document.

2. Structure knowledge using different models.

3. Acquire and validate knowledge from various experts.

4. Publish and implement the knowledge base.

5. Re-use knowledge in different domains and subject areas.
KA tools make use of knowledge acquisition techniques and knowledge models for
representing knowledge in the knowledge bases. PCPAK4 uses a number of techniques,
such as Protocol analysis, Laddering, Diagram based, and Grid-based techniques for
eliciting knowledge from the various knowledge sources, and it uses ontology templates
for the initial structure of the knowledge base. If needed, the user of the tool can create a

new ontology for creating the structure of a new knowledge base.

2.1.1. Important Features and Functionalities

1. Multiple windows can be opened and placed anywhere on the screen. If required,
particular arrangement of windows can be selected.

2. There is an option to create new version of the existing knowledge base when it is
loaded to different tools for adding and modifying the content of the knowledge
base, and it keeps the original KB unchanged.

3. Different color markers are available to highlight the objects in the text
transcripts.

4. Post-it notes can be attached to the marked objects. And, it is also possible to hide
or view all post-it notes associated with the marked objects.

5. Different styles for each relationship link line can be used to enhance the
presentation.

6. Matrix widget is used to represent the relationship between concepts and
attributes. It is also possible to change the relationship by just a mouse-click in
the matrix cell. The relationship is stored in the knowledge base.

7. Diagram templates can be used for specifying the styles of different types of
nodes or links. Templates can be any network style diagrams where relationship
exists among the nodes. In template, any node can be set to be decomposable to
further lower level.

8. Realistic metaphors are available, such as marker toolbar with different color

markers, and eraser, etc.

9. Help system is suitable for beginners as well as advanced users. Help system
provides individual tutorial for each tool. An online help facility is available from
the developer.

10. A window for browsing ontologies is available with almost all tools in
PCPACKA4, except annotation template, and annotation tools. Necessary objects
can be dragged from ontology browsing window and dropped to tool-window

11. Flexibility to place the toolbar anywhere in the window

12. Publishing tool is available to create a standard website. All hyperlinks in
annotation pages are maintained when published. The style, structure and content

of the website can be customized.

2.1.2. PCPACK4 Usage: An illustrated Scenario

Problem: In this scenario, a knowledge-based system is considered that is intended for
managing students' information. The scenario is presented in several steps. It involves
retrieving students' information when needed, categorizes students based on different
factors, such as grades, level of study, nationality, scholarship etc and analyzes students'
data from different perspectives. For performing these activities the knowledge base
needs to contain the following information:

e Information about the program and duration of study

¢ Information about students' grades, type of scholarship, nationality (local or

international), current status of the student.

¢ Personal Information, such as name, address, phone number, date of birth etc.

10

Step 1 (Tool Launching): Tool launcher is an integrated environment from where other
tools can be launched. At the same time, it can be used for creating knowledge base as
well. For beginners, it provides a good starting point for knowledge acquisition
activities. Tool launcher that is shown in figure 2.1 can be started from the navigation

sequence “Programs>PCPACK4->Launcher”.

Knowledgebase Dilagrams
firstvi Create Diggram

Matrices

Eull lo b. Laddering Tool Diagram Tool

E
: Annotation
ICARE Forms

Analyse Text
Impont and Marlcup new transcript
students

Figure 2.1: Tool Launcher in PCPAK4 tool-set.

Step 2 (Creating Knowledge Base): Knowledge base can be created either from the tool
launcher (fig-2.1) or from any other tool in the tool-set except from the annotation tool.
After choosing to create a new knowledge base, a window (figure 2.2) appears for taking
the name, security password, and selecting ontology for the knowledge base. Empty
ontology or any existing one can be chosen for the initial template of the knowledge base.
After creating an empty knowledge base, any tool can be selected for knowledge
acquisition activities. For example, for analyzing the existing knowledge (in the text file),

Protocol tool from the popup start menu can be invoked.

11

] Create knowledge base

Figure 2.2: Initial screen for creating PCPACK knowledge base.

Eraser,
rod different color
Marke markers
Concepts Marked

Attribute

» sucre §Fy

a year-and-a-half to three, and a iR is at least four years long. { prtificates
j s usually take no longer than a year-and-a-half
i to complete Students are aso allowed take course independently. Students|fervice centre
maintain studsnts
i such as RBES, I3, BaE sl i i i BHEE, generally

Jigifi students. Most Graduate students are paid

FERESHIE, 30% of the students hold high @FIB#. some other 20% students

c ;
poor GPA and the rests are

Figure 2.3: Protocol tool for analyzing the text.

Step 3 (Importing transcripts): The Protocol tool without any source file is just a blank
window with menus and tool bars. For analyzing “students.txt”, which contains the
transcripts of the knowledge base, needs to be imported to the integrated environment. It
can be imported by selecting the “protocol --> import”. Figure 2.3 shows typical

transcripts in the protocol window.

12

Step 4 (Analyzing the Text Transcripts): For analyzing the imported transcripts the
protocol tool uses two default markers and one eraser to mark the objects in the window
that is shown in Figure 2.3. If needed, different color markers can be added to mark
different types of knowledge entities in the text. The new marker can be added from the
marker pull down menu of top menu bar. The marked concepts and attributes are added

to the knowledge base automatically.

=]

.
B} Attributes and Vales I
& Relationship

Step 5 (Creating the Ladder): Laddering tool is used to create and edit ladders, which are
hierarchical (tree-like) representations of knowledge in the knowledgebase. Each ladder
comprises nodes and links. Initially the ladder displays the knowledge items based on
default ontology selected in the beginning, but the real relationship hierarchy among the
knowledge objects might be different. For this reason, the ladder needs to be rearranged
(figure 2.4). Making one node as the root of all similar types and other nodes as different

level children of the root creates hierarchy in the ladder. These options are available from

13

toolbar or popup menu, which can be invoked by right-mouse click at the selected object

in the ladder.

Step 6 (Creating the Matrix): Two types of matrix possible from the matrix tool: attribute
matrix, and relationship matrix. Attribute matrix is a way of associating attributes and
values to knowledge objects and Relationship matrix used to define the relationship
between concepts in the domain. Selecting “create new matrix” option from the matrix
pull-down menu of the top menu bar can create attribute or relationship matrix. Attribute
matrix shown in figure 2.5 can be generated from default row, column, or it is possible to
rearrange the row-columns to generate the matrix as needed. Similarly, row and column
can be created from the concepts to create relationship matrix, which is not required in
this example. Using this tool, new values can be added and relationship can be changed
according to the requirement. Figure 2.6 shows one of the modified attribute matrix. The

domain expert can validate the acquired knowledge by observing the matrix.

- Concept

- Task

@ Task Compone:
& Attiibutes and V
& Relationship

R

3 : Attributes and Values

il Concept O
3l Relationship e
Task _

Figure 2.5: Matrix attributes in the Y-axis, and concepts in X-axis.

14

- Relationship

Figure 2. 6: Knowledgebase Matrix after modification

Step 7 (Creating The Annotation Template): Templates allow annotations for objects to
have a consistent appearance, and it is the prerequisite for creating the annotation for an
object. If a template is created for an object, all new annotations for descendants of the
object will inherit it unless the descendant has a different template. Though object and
relationship template are possible, current PCPACK supports only object annotation
template. If a template is edited, annotation pages previously created with it will be
unaffected. A typical template can contain relationship with the objects, the name of the
objects, the attributes and relations associated with the particular objects. The node for
which the template needs to be created is selected from the ladder. Then cascading popup
menu provides option for selecting annotation template tool for creating corresponding
template for the node. The template is inheritable to the node’s subclasses. Figure 2.7
shows the annotation template for Graduate node in the ladder, and figure 2.8 displays the
annotations for graduate object, and figure 2.9 shows annotation masters’ node which

was inherited from the parent node, other children node will also inherit the template.

the following are is a relationship:

<-1s a.B]1|

The following table gives the associated
attributes of [ObjectName]

[attributes]

wWing table gives the associate

Inherited from

The following table gives the assaociatad attributas
of Masters

1 Aaaribute walue | Inhearited from
Grades toww

Graduate (Uunassignad)
Graduate (unassigned)

it Residency

1 Scholarship | T

e TN

igure 2.9: Annotation corresponding to Masters Node.

15

16

Step 9 (Publish the Knowledge Base): The knowledge base created by PCPACK4 tools
normally published after the expert validation. Publishing is simple with the “ Publish
Tool” menu. The knowledge is published in the default XML or in a selected format on

the web.

Using the above scenario-based step-by-step method, I have created a sample knowledge
base web site, and it is presented in Appendix B2. It is not mandatory to follow all the
steps that have been described above. For example, if someone doesn’t have any text
transcript s/he doesn’t need to use the protocol tool rather s/he can start from ladder tool

to build the knowledge base.

2.2, Protégé-2000

Protégé-2000 is a tool that enables users to acquire knowledge and maintain the
knowledge base [N. F. Noy, et al., 2000]. Application experts can use it to enter and
browse knowledge base instances. Protégé uses domain ontology, which is a means to
specify the domain conceptualization (Guarino, 1995), as the skeletal of the
Knowledgebase [Cupit, J. et al., 1999]. In fact, Protégé is both an ontology development
and knowledge acquisition tool, which is designed to provide assistance for knowledge
engineers as well as domain experts in maintaining and editing knowledge bases. It is a
component based, and platform independent tool-set, which supports Open Knowledge-
Base Connectivity (OKBC) protocol [Chaudhri, V.K., 1998]. OKBC facilitates
interoperability by providing an application-programming interface (API) that serves as
common query and construction interface for frame-based systems. Developers can

enhance the Protégé system by contributing new plug-ins to a library that is maintained

17

on the Internet. Users can freely download from the sites to augment the behavior of their

own knowledge acquisition systems constructed using Protégé-2000.

2.2.1 Important Features and Functionalities

1.

Widgets are used to display and input data of particular types in a task specific
way. Protégé-2000, currently, supports two types of widgets, default widgets,
which are generated with the default layout and advanced widgets, which are
added to the Protégé-2000 project by loading special plug-ins.

Protégé uses Metaclass [Noy, et al., 2000], which is the template of ontology
classes and slots. The usage of Metaclass makes the creation of classes and the
ontology simpler.

Over lapping tabbed window feature (Shneiderman, 1992) is em‘bedded in the
user interface. It allows partial obscuring of each other like overlapping papers
arranged on a desk. It places different tabs, such as Class, Slot, Form, Query and
Instance to be represented in the over lapped way.

Popup menus are attached with all the selected items to change the relevant
attributes of the items. It provides almost all-available options that can be used
from toolbar and menu bar.

Customizable forms are available that are generated automatically corresponding
to a class, where widgets correspond to slots in the class. These customized forms

are used to insert instances by the end-users.

18

6. Different look and feel user-interface styles are supported. To facilitate major user
groups, protégé provides three different look and feels, such as metal look and
feel, windows look and feel, and java look and feel.

7. Diagrammatic approach is followed to display the ontology and its instances for
visualizing the knowledge base contents and their relationship.

8. Wide varieties of data types (String, Boolean, Symbol, Instance, Class, Integer,
and float) for slot definition are supported.

9. Allows importing ontology from compatible sources. For example, ontology
constructed in the ontolingua can be imported to Protégé system.

10. Alternatives “back-ends” are provided for archival storage. In the early
development, Protégé would store all ontologies and knowledge bases on flat files
encoded in the CLIPS knowledge representation language, but protégé 2000
allows developers to add new “back-end” support for alternative storage. With the
help of plug-in capability several storage formats (XML, RDF, and Relational
database) have already been created, and it is also possible to add any new desired

format by developing new plug-in.

2.2.2. Protégé 2000 Usage: An illustrated Scenario

Problem: In the previous section, we used a scenario for PCPAK4 and it is used also

for illustrating Protégé 2000 in the same manner.

Step 1 (Creating the Project): The first task to develop a knowledge-based system using

protégé involves creating a project. After choosing to create a new project

19

(“Project->new" at fig-2.10), a window will appear on the screen for selecting the
knowledgebase format. Based on the format selected, another window will appear to
accept the project name and other information as shown in figure 2.11. In this example,
standard text file has been selected; consequently, a window (figure 2.11) appears to take
the project, class, and file name. After receiving the project name, same name will be
automatically inserted with different extension, and an empty knowledge base will be

created.

BRDF Schema

students.pont

students.pins

Figure 2.11: A standard text project in Protégé-2000.

20

: 1% .
Register D stuedents who
are currently enrolled are in this

k1

Undergraduate

»-%Fumime
- (S Part-time

Figure 2.12: Protégé class tab for creating and modifying class.

Step 2 (Creating ontology): Creating ontology involves creation of class-subclass
relationship and attaching slots with the classes. For creating class-subclass hierarchy,
class TAB from the toolbar needs to be selected. In a newly created project, there are
only SYSTEM classes in the class pane. System class THING: needs to be selected as
parent for any root level classes of taxonomy. For example, in creating student class (as
the root of the given taxonomy) first, THING: needs to be selected as parent class, then
‘C ‘button from the class button or “create new class” option from the popup menu needs
to be activated. Similarly, graduate and undergraduate classes can be created (figure-
2.12) from the Student class. After creating these subclasses, further subclasses can be
created in the similar way. In ontology, classes are defined in terms of slots, which are
attributes of the class. Slots can be created and attached with specific class (Template
slots that indicated in figure 2.12). When a slot is created, it becomes a global object and
can be attached to any class in the hierarchy, for this reason duplicate slot name is not
allowed in a project. Slots are defined in terms of their facets, which can be specified

based on the slot-template displayed in the right side window of figure 2.13.

21

lents.ppri))

A

ationality
councillor
Supervisor
ANNOTATED-INSTANCE

Left = removes customization
Middle-> default customization
Right-> customize like other form

@ student
@Bl 6raduate
o= B’

Figure 2.14: Form-tabbed window for customization.

Step 3 (Customizing the Forms): Customization of forms involves reorganizing the
forms in such a way that users can insert and browse instances in the knowledge bases
easily. For customization, form tab is selected, which consists of class pane and form-
editing pane. Class pane contains the list of classes in the ontology, and from-editing
pane displays the form corresponding to the selected class in the class pane. In the form,

widgets are associated with the slots in the Class. Individual form is generated for each

22

class automatically. For ease of use, forms can be changed like other class form or it can
be updated manually by dragging and dropping the widgets. Options are also available to
select particular widget format for a selected widget from the widget menu. Figure 2.14
shows the selected widget that can take any of the formats from the given pull down

menu.

¥ stud‘énAtusM Progtam f-ile.s':\,F"l'dienjve-ZD[ll]'\lél:udents‘.pprj)v

©-(©) Graduate
H

Masters

Figure 2.15: Instance tab for browsing and inserting Instances.

Step 4 (Entering and Browsing Instances): Inserting and browsing instances are most
important activities in a knowledge-based system. Instance tab consists of three panes:
class-pane, direct instance pane, and instance browsing pane. Class pane is used to select
particular class, where instance needs to be inserted or browsed. Direct instance pane
provides way for creating instance. Instance can be added by pressing “C” button in the
direct instance pane. Instance-browsing pane provides way for browsing and inserting
instances. After creating an instance, information can be added as form fill-up way in the
instance-browsing pane. Selecting the browsing key from the direct instance pane (figure

2.15) can browse the instances already stored in the knowledge base

23

Step 5 (Create a query): Two different types of querying are possible, automated query
generated by machine in machine learnt expert systems and user-generated query to
obtain particular results from the database. Query tab, which is not part of the basic
Protégé integrated system can be added to the system to create query. Figure 2.16 shows
a query in the query box and the results displayed in the search results pane. The

generated query can be added to the query library for further use.

P> KB_7941_00012 (Masters)
> KB_7941_00014 (PhD)
B EFORAEOOTH S 1RG5 S

Figure 2.16: Query generating tab.

Protégé 2000 KA tool creates knowledge base in two steps. First, it acquires domain
conceptualization (concepts, attributes and relationship) to create the ontology, which
used as the structure of the knowledge base. Later, domain instances are acquired. A
computer program can use the knowledge base for solving problem. Also, query can be
created manually to browse the knowledge base instances. For example, I created a query
by using the query plug-in, which is not part of basic Protégé system, to browse the

created knowledge base and it is shown in Appendix B3.

24

2.3. Summary

In this chapter, Protégé 2000 and PCPACK4 have been described from the users’ point of

view. The following are the comparative summaries of these two knowledge acquisition

tools Protégé and PCPACK:

L.

2.

Protégé and PCPACK both provide a graphical user interface for modeling
domain concepts, attributes, and their relationship.

Protégé and PCPACK are similar in structuring the knowledgebase; both use
ontology as the base of the knowledgebase.

The resulting PCPACK and Protégé knowledge base can be stored in different
formats, such as XML, ASCII, RDF, and a relational database. In addition, the
desired format can also be added to the Protégé system through plug-ins.

Protégé has wide varieties of users, such as system developers, knowledge
engineers, and domain experts. System developers create new plug-ins via Java
API to augment functionality to the Protégé open framework. Knowledge
engineers and domain experts can build conceptual models of the domain, and can

customize the forms for inserting and browsing instances.

5. PCPACK is also aimed at developing knowledge-based Internet sites for

providing knowledge-based services through the Internet.

25

3. Techniques and Methods of Usability: An Overview

3.1 What is Usability?

Usability is the capability of a product that enables the users to learn the product quickly
and use it easily to accomplish their own tasks (Dumas and Redish, 1994). Usability
aspects are integrated into the product throughout the system development cycle in a
systematic approach known as “usability engineering”. This includes identifying users,
analyzing tasks, setting specifications, developing and evaluating prototypes, and the
iterative cycles of development and evaluation (Dumas and Redish, 1994). Usability
evaluation is performed in different stages of the product to provide feedback in the
iterative system development (Gould and Lewis, 1985). Evaluating prototypes or systems
involves measuring the usability of the product and identifying the user-interface

problems [Dix et. al., 1998; Nielsen, 1993].

Usability is measured in terms of several usability attributes to examine the capability of
the product. Although there is a consensus about the concept of usability, there are
diverse approaches [Shackel, 1991][Nielsen, 1993][ISO 9241-11]{ISO 9126-2] to define
usability in terms of usability measures. For this thesis, we adopted ISO 9126-2 definition
that deals with certain capabilities of the sofiware product: (1) understandability, (2)
learnability, (3) operability, and (4) attractiveness to the user when used under specified
conditions. ISO 9126-2 defined a set of metrics to measure understandability,
learnability, and operability. We assume that attractiveness can be measured by a set of

subjective satisfaction questionnaire to measure the degree of satisfaction.

26

3.2. Usability Measures

We consider that the primary end-users of Protégé and PCPACK KA tools to be the
domain experts themselves. Therefore, the success of these tools depends on the usage of
these tools by such end-users. Considering this, the following measures were selected for
the experimental study of this thesis:

1. Learnability — Objective measure.

2. Understandability- Objective measure.

3. Satisfaction- Subjective measure.

Understandability is defined as the capability of a software product to enable the user to
understand: (1) whether the software is suitable for a particular purpose, (2) how it can be
used for particular tasks under particular conditions (ISO 9126-2). Understandability
plays an important role to motivate the end-users in using the product. For this reason,
measuring understandability is important for the test of Protégé and PCPACK KA tools
where the major target users are end-users who have little computer experience. This
attribute will depend on many factors including documentation and initial impressions
given by the software. For measuring the understandability, ISO 9126-2 defined the
following metrics:

(1) What proportion of functions (or types of function) can be identified based upon

start up conditions?
(2) What proportion of interface functions is understandable? *

(3) What proportion of the demonstrations / tutorials the user can access?

" Selected metrics for measuring understandability and learnability.

27

(4) Can users understand what is required as input data and what is provided as
output by software system?

The proposed test measures the understandability of Protégé and PCPACK KA tools for
domain experts who have minimal degree of computer experience. Accessibility (first
metric) and functional understandability (second metric) are two important
understandability indicators for novice users. For this reason, we selected the first two of
the above metrics for measuring the understandability of Protégé and PCPACK KA tools.
The remaining (third and fourth) metrics can suitably be measured through the
redesigning of the experiment, which is costly in the scope of this thesis. For this reason,

they were not measured in the designed test.

Learnability is the capability of the software product to enable the user to learn its
application. Learnability is important for systems where users of the system are
intermittent rather than regular (Nielsen, p.80, 1993). For this reason, measuring
learnability is important for Protégé and PCPACK KA tools’ end-users who use these
tools intermittently and have little computer experience. ISO 9126-2 defined the
following metrics to measure learnability:

(1) How long users take to learn how to use a particular function?

(2) The proportion of the help topics the user can locate ™

(3) The effectiveness of help system and documentation. ™

For measuring the first metric, users need to keep trying until the selected tasks are

successfully performed. On the other hand, locating required help options and able to use

28

them efficiently help end-users in learmning the new functionalities of Protégé and
PCPACK KA tools. For this reason, the learnability of Protégé and PCPACK KA tools
was measured through the second and third metrics. The selected measures indicate the

degree of support that help-system can provide in learning and using the tools

Satisfaction is the degree of pleasantness felt when the users are using the product.
Measuring satisfaction is a subjective process generally measured through a set of
subjective questionnaire. For the test of Protégé and PCPACK KA tools two types of
questionnaires were used. First, every user was asked: (1) Are any parts of the interface
confusing and difficult to understand? (2) What is the worst aspect of the interface? The
second part of the questionnaire was designed to obtain the satisfaction ratings on the

following aspects of both knowledge acquisition tools:

1. Starting the tool

Creating ontology/ladder

Customizing form/ annotating the tool

Inserting instances

Selecting icon from the toolbar

Using Menu bar and popup menu

Understanding naming/ labeling

Overall

ol B BESY Bdl E

Table 3.1: Satisfaction questionnaire for Protégé and PCAPCK KA tools.

29

3.3. Usability Evaluation

Usability evaluation is concerned with collecting data about the usability of a design or a
product by a group of users performing particular activities within a specified test
environment or work context [Preece, J. et al., 1994 p. 602]. Many techniques and
methods [Table 3.2] have been developed to evaluate usability in different stages of
software lifecycle over the last 15 years. Based on the way of conducting the test, [Zang]
categorized these methods into three different categories:

1. Inspection

2. Inquiry and

3. Experimental/empirical

METHODS Requirem | Design | Code Test | Deployment
ent.
Proactive field study v
Pluralistic walkthrough v
Teaching method 4 v 4
Shadowing method 4 v v
Co-discovery learning v v 4
Question asking protocol v v v
Scenario based checklist v v v v
Heuristic evaluation v v v v
Thinking aloud protocol v v v 4
Cognitive walkthroughs v v v v
Coaching method v v v v
Performance measurement v v v v
Interview v v v v
Retrospective testing v v v v
Remote testing v 4 v v
Feature inspection v v v
Focus groups v v
Questionnaires v v
Field observation v v
Actual logging 4 v

Table 3.2: Overview of Usability Evaluation methods (Folmer, E. 2004).

30

3.3.1. Usability Inspection

Usability inspection methods are evaluation methods involving usability experts
examining the software user interface. In this technique, usability specialists, software
developers, users and other professionals examine and judge whether each element of a
user interface or prototype follows the established usability principles. Most of the
inspection methods are used early in the software lifecycle to discover the usability
problems, and some others are used addressing overall system usability covering the final
prototype.

The following are the brief descriptions of the main methods of this category.

1. Heuristic Evaluation (Nielsen, 1994) involves usability specialists who judge
whether each dialogue element follows established usability principles.

2. Cognitive Walkthrough (Wharton et al 1994) and (Rowley et al 1992) uses a
detail procedure to simulate task execution at each step through the dialogue,
determining if the simulated user’s goals and memory content can be assumed
to lead to the next correct action.

3. Feature Inspection (Nielsen, 1994) lists sequences of features used to
accomplish typical tasks, checks for long sequences, cumbersome steps, steps
that would not be natural for a user to try, and steps that require extensive
knowledge in order to assess a proposed feature set.

4. Pluralistic walkthrough (Bias, R., 1991) uses group meetings where users,
developers, and usability experts step through a leaming scenario, discussing

each dialogue element.

31

5. Standards inspection (Wixon et al, 1994) during which experts inspect the
interface for compliance with certain standards. This can involve user
interface standards as well as domain-specific software standards,
departmental standards if they exist, etc.

Among the above inspection methods, heuristic evaluation is one of the least expensive
and popular methods used for testing from early design stage to functional prototype
evaluation [Victoria, L. E., 1999]. Considering the importance, heuristic evaluation

method is described in the following:

Heuristic Evaluation

Heuristic evaluation (Mack & Nielsen, 1994) is one of the most informal methods where
a small set of evaluators find usability problems by checking them against a set of
heuristics or principles. The most commonly used heuristics is a set of interface design
principles collected by Jacob Nielsen (1994). Table 3.3 summarizes the basic guidelines

used to conduct the inspection by usability experts.

Heuristic evaluation doesn’t involve any end-users, for this reason it is fast, cheap, and
easy, but the problems discovered from this method is not always significant [Kelly et.al,
1995]. Actually, heuristic evaluation is suitable if there are qualified usability experts in
the organization; otherwise, it might produce misleading results. The heuristic evaluation
can preferably be used early in the development process to reveal design problems. The

evaluations can be conducted on early stage prototypes, including paper mockups, as well

32

as later-stage electronic prototypes, with or without all of the back-end functionality

implemented.
HEURISTICS EXPLAINATION
1. Simple and natural | Dialogues are achieved through text, graphic design
dialogue. and color. They should not contain rare and irrelevant
information because it competes with the relevant units
of information and diminishes their relative visibility.
2. Speak the users’ | The dialogue should be expressed clearly in words,
language. phrases, and concepts familiar to the users, rather than
system oriented.
3. Minimize the users’ | The users should remember information from one part

memory load

of the dialogue to another, and icons should be easy to
recognizable.

4. Consistency. Follow platform convention and standards.

5. Feedback. System should always keep informed the users what
going on through appropriate feedback within
reasonable time.

6. Clearly marked exit. Users often chose system functions by mistake and will

need a clearly marked emergency exit to leave the
unwanted state.

7. Shortcuts. Speed up the interaction for the expert users mostly
unseen by the novice users.
8. Good error messages. Plain errors message easy to understand for recovering

from problems.

9.

Prevent errors.

Prevents a problem from occurring.

10. Help and documentation.

Easy to search and find information.

Table 3.3: Definitions of heuristics (From Nielsen, 1994).

3.3.2. Usability Inquiry

Usability inquiry requires usability evaluators to obtain information about users’ likes,

dislikes, needs and understanding of the system by talking to them, observing them using

33

the system in real work (not for the purpose of usability testing) or letting them answer
questions verbally or in written form. Inquiry methods include:

e Field observation (Nielsen, 1993)

o Interviews/ Focus groups (Nielsen, 1993)

e Survey (Alreack and settle, 1994)

e Logging (Nielsen, 1993)

¢ Questionnaire (i.e. SUMI, WAMMI (HFRG)).

For evaluating usability of desktop and web based application, Questionnaire is one of
the widely used methods (Folmer et al., 2004). Software Usability Measurement
Inventory (SUMI) [Kirakowaski et. al. 1993] is one such questionnaire collection used
for assessing satisfaction measures of the application. SUMI is concerned with the
perception and feelings that the user has when working with a piece of software. The
principle behind this questionnaire is that user perceptions are very important and must be

taken into account in evaluating any software (Kirakowaski & Cobertt, 1993)

SUMI is internationally standardized 50-item questionnaire. It takes a maximum of 10
minutes to complete and could work with small user sample sizes (Kirakowaski &
Cobertt, 1993). SUMI results have been shown reliable, and used to compare different
kinds of software products. SUMI results are analysed into 5- sub-scales: affect,
efficiency, helpfulness, control, and learnability. These scales present a view of

subjective usability for which there is high level of empirical support.

34

3.3.3. Empirical Testing

The usability testing approach requires representative users to work on typical tasks using
the system or a prototype. A Prototype models the final product that allows testing of the
attributes of the final product even it is not ready yet. The evaluators use the results to see
how the user interface supports the users to do their tasks. Empirical testing includes the
following methods:

o Coaching Method (Nielsen, 1993)

¢ Co-discovery learning (Nielsen, 1993), (Dumas and Redish 1993)

o Performance Measurement (Nielsen, 1993)

e Question asking protocol (Dumas and Redish 1993)

e Remote Testing (Hartson et al., 1996)

e Thinking aloud method (Nielsen, 1993)
Most of the above methods are used to collect qualitative data except Performance
measurement method, which is used to collect quantitative data. Thinking aloud method
is the most used method used to collect qualitative usability problems. For the test of
Protégé and PCPACK qualitative and quantitative data needs to be collected. Considering

this, two most used methods are described in the following:

Performance Measurement Method

Performance is almost always measured by having a group of test users perform a
predefined set of test tasks while measuring task time and other related data (Nielsen J.,

p-192, 1993).

35

Performance measurement starts with an abstract concept, such as measuring the
usability. To obtain such type of a goal one needs to break this goal into some
components (i.e. learnability, understandability) for having the expected results. Once the
components of the goal have been defined, it becomes necessary to quantify them
precisely. For example, the component “learnability” needs to be quantified. For this, a
number of metrics have been selected that already been defined ISO 9126-2. Given the
quantification of a metrics, one needs to define a method for measuring the metrics.
There are two obvious alternative ways. First one, bring some test users into the
laboratory and give them a list of tasks to perform, second one is to observe a group of
users at work in their own environment and measure them whenever a task like the
specified test tasks occur. For the first method, a systematic approach to perform the test
and compute the results is necessary. A major pitfall with respect to such measurement is
the potential for measuring something that is poorly related to the property one is really
interested in assessing [Nielsen, J., 1994]. For example, users might be interested to
measure the overall learnability but the method only provides help accessibility and help

frequency and learning time for specified tasks.

Thinking Aloud Method

Thinking aloud test involves having a test user using the system while continuously
speaking aloud what s/he is thinking (Lewis 1982). By verbalizing their thoughts, the test
users enable the evaluators to ’understand how they view the computer system, and this
again makes it easy to identify the users’ major misconceptions. One gets a very direct

understanding of what part of the dialogue causes the most problems.

36

The main disadvantage of this method is that it does not lend itself very well to most
types of performance measurement. On the contrary, its strength is the wealth of
qualitative data it can collect from a fairly small number of users. At the same time,
thinking aloud also gives a false impression of the cause of usability problems if too
much weight is given to the users’ own theories of what caused trouble and what would
help. The most difficult part in thinking-aloud is verbalizing because user performs many
operations so quickly, but they may have nothing to say. They may not even consciously
know what they are doing in cases where they have completely automated certain

common proc

3.4. Choosing Usability Technique and Methods

The kind of evaluation technique and methods required for a test depends on the purposes
of the test. The purpose of the tests in our case is to assess the usability of KA tools
against a set of criteria, and to provide recommendations for further improvement of
these tools or to help in the development of new KA tools. These objectives can be
achieved through the performance of a set of test tasks by representative end-users.

Therefore, user-based experimental testing is the only option for this study.

There are many aspects of usability that have to be considered in selecting an
experimental method for a particular test. Every method has its own strength, weakness,
and used for specific context. No single method is sufficient enough for measuring

usability in all the stages of the software development lifecycle [Jacobsen, 1999],

37

therefore, methods needs to be selected considering the every individual context, for this
reason, often more than one method chosen for the usability testing. The methods for a
particular context can be selected based on the following issues [Dix A., 1998]

o The stage in the cycle at which the evaluation is carried out i.e. either at design or

implementation stage.

e The required level of subjectivity or objectivity from the test

¢ Type of measures needed either qualitative or quantitative

e Resources available for the method

¢ Information provided by the method

e Usefulness of the method in the context of use.

After a thorough analysis the experimental methods with respect to above issues,
laboratory based performance measurement can be selected for this test. Performance
measurement method in the laboratory used to collect performance data. Along with
- performance data, problems faced by participants during the test session can be obtained
through the review of the participants’ activities. It is difficult to measure satisfaction
from the task performances. For this reason, I have created satisfaction questionnaire to
collect satisfaction scores on different aspects of Protégé and PCPACK KA tools. The
subjective questionnaire was administrated at the end of the test session. Once the
technique and methods are selected for the study, it is important to devise a systematic
method to conduct the study. We believe there is no systematic approach to conduct the
experimental study of KA tools. For this thesis, we adopted “Checklist based

methodology” [Hix et al. 1991] that was not designed for KA tools but is intended for

38

general interactive systems. In chapter 4, we follow this methodology and make certain

minor modifications in it to apply it to the study of the two selected KA tools.

39

4. Usability Testing of Knowledge Acquisition Tools: A New
Approach

Knowledge Acquisition tools belong to a class of interactive systems that provides an
environment for developing knowledge bases. Despite recent proliferation of such tools,
it is believed that there are no procedures for systematically evaluating the usability of
KA tools. The closest tool evaluation research was the “Checklist-based methodology
(Hix, et. al. 1991) for evaluating and comparing human computer interface development
tools.” This research was not specialized to KA tools but is general for all interactive
systems. We follow this methodology and make certain minor modifications and apply it

to the study of two selected KA tools.

4.1. Hix’s Checklist Based Methodology

In 1983 Robert and Moran produced a methodology for evaluating text editors. They
considered a common basis for all editors along four dimensions:

a) Time to perform tasks.

b) Errors and cost of errors.

c) Leaming time.

d) Tool’s functionality support.

Based on the above research, 8 years later Hix and Schulman developed a checklist based
methodology for evaluating User Interface (UI) development tools. The following are the

major characteristics of Hix’s methodology:

40

e It is based on 28-page ‘“checklist” matrix built along two dimensions:
functionality and usability. This list is called the evaluation form. Functionality
indicates what the tool can do; that is, what interface styles, techniques, and
features can be produced by the tool for a target application interface. Usability
indicates how well the tool performs its possible functions, in terms of ease-of-use
(a subjective, but quantitative rating such as: difficult (1), adequate (2) and easy
3

o The purposes of this methodology are to evaluate and compare human-computer
interaction tools.

e It is an inspection-based evaluation approach where only well-trained UI expert
participated in the study. The number of participants typically less than 10.

e They have also evaluated the validity of the methodology. Empirical study
conducted by six evaluators was used to show the consistency of the results when
performed repeatedly.

e In this methodology functionality rating is expressed as a percentage of the
number of functions possible with the tool with respect to the total number of
functions on the “evaluation form”. The usability is expressed as the percentage of
the ease-of-use rating of all functions possible within the tool with respect to the

maximum ease-of-use rating for those same possible functions.

Based on the above characteristics, Hix’s methodology used the following steps in
evaluating user interface development tool:

Step 1: Acquire user interface development tools to be evaluated and compared.

41

Step 2: Learn and use the tools being evaluated. Three stages are suggested in
learning the tools and using the methodology.
e Users will learn how to use the tool(s) to a reasonable level of expertise.
e Users will perform baseline tasks for the experimenter, to ensure that
participants attained a minimum level of expertise in using the tool(s).
e Users will be given training on the use of the form and glossary by the
experimenter.
Step 3: Complete the evaluation forms for each tool.
Step 4: Perform the benchmark tasks (optional)‘.

Step 5: Compute functionality and usability.

4.2. Our Objectives
The study of Protégé and PCPACK KA tools is based on the following objectives:

e We wish to conduct an experimental study.

e The two purposes of this study are: (1) to measure usability attributes in
terms of three factors: a.) Learnability, the capability of the product that
enables users to learn its application, b.) Understandability, the capability
of the product that enables users to understand its suitability for KA
purpose, and c.) Satisfaction, the degree of users’ satisfaction; (2) to
discover the problems, if any, with the two selected KA tools and suggest

improvements for the future.

* This is a traditional benchmark testing using representative tasks that was not addressed in Hix’s
methodology.

42

e The participants in this experimental study are to be drawn from the

student community in order to make the experiment viable for us.

4.3. Modified Approach to Evaluate Protégé and PCPACK KA Tools

Considering the objectives of the intended study, the steps used in Hix’s methodology
have been modified to result in the following six steps:
Step 1: Selection of the test or benchmark tasks and participants with regard to KA
tools.
Step 2: Creation of the format of the tables to be used as “evaluation forms”
Step 3: Participants learning the tools.
Step 4: Participants perform the tasks.
Step 5:Review of the sessions and collect data using the table (“evaluation form™).
This was done by the researcher.
Step 6: Compute metrics and interpret results.

The following are the description of the proposed six evaluation steps in detail:

4.3.1. Selection of the Test Tasks and Participants

Hix’s evaluation methodology uses inspection-based technique where evaluators select
possible functions from the total functions given on the “checklist” form. However, the
experimental study of Protégé and PCPACK KA tools, which involves preparing
laboratory and test materials, recruiting users of the target systems, and managing test
sessions is an expensive and time consuming process. Considering the expenses and time

constraint, instead of trying all the possible tasks, for the experiment we choose to use a

43

small number of representative test tasks those will provide reasonable coverage of the
most important part of the user-interface. Similarly, a set of representative users need to

be selected those will represent the real end-users of these tools.

4.3.1.1. Selection of Test Tasks

The test tasks can be selected based on user-defined tasks or based on product-supported
tasks [Corde, R.E., 2001]. User defined tasks are based on user requirements and they
are selected by having users bring into the laboratory certain tasks they want to perform
and believe they should be able to perform with the product [Corde, R.E., 2001]. On the
contrary, product supported tasks are based on the intended uses of the systems, which
can be found in the identity statement listing for the product. Ruben (1993) suggested to
select the product supported test tasks based on frequency (most frequently performed
tasks), criticality (if performed incorrectly or missed, have serious consequences to the
users) and vulnerability (suspected tasks that might be hard to use or that have known
design flaws) of the tasks. Also, information from the logging of frequencies of use of
commands in running systems and other ways of learning how users actually use system
such as field observations can be used to construct representative sets of test tasks for Ul
evaluation (Gaylin 1986). For user-defined tasks, users should be familiar with the
intended activities of the target system or use some earlier versions of the product.
However, the intended users of this test are domain experts who have very little degree of
experience in computer and have no experience in knowledge acquisition tools. For this
reason, the selection of user-defined tasks for our test is not suitable. For our test, we

selected product-supported tasks based on the intended uses of the systems. The intended

44

purpose of Protégé and PCPACK KA tools is to create and maintain knowledge base.
Based on this purpose, for the experiment with Protégé and PCPACK KA tools, we

selected the following major task:
“Develop a knowledge base for maintaining student information”.

This type of major task is also known as goal or desired state of the system. However,
(Nielsen, 1993, p.185) tasks should be small enough so that they can be completed within
the time limits of the user test, but they should not be so small that they become trivial.
Since, the selected task is large, a set of sub-tasks can be derived from the large task
using task analysis, which is aimed at splitting any work activity into its basic elements
and each being directed to a particular goal (Clegg. et al. 1988, p.168). Hierarchical Task
Analysis (HTA), described by Annet, Duncan, Stammers and Gray (1971) is one of the
popular action oriented techniques for describing how work is organized in order to meet
the overall goal and it was used for this purpose. Among many task analysis methods, the
selection of HTA for this purpose was based on its strength in breaking the large-task into
a number of sub-tasks. The following brief overview of the task analysis methods will

justify the selection of the HTA over other methods:

The task analysis techniques may be grouped together in many ways, but probably the
most important distinction is whether the technique aims to represent cognition, practice
or logic of the task (Payne and Green, 89). The techniques that aimed to represent
cognition focus on the mental processes, which underlie observable behavior (e.g.
decision making and problem solving), are referred to as cognitive approaches. Cognitive

task analysis techniques seek to model the internal representation of knowledge that

45

people have or need to have in order to complete a task (Preece, 1994). Among many
cognitive task analysis techniques, GOMS (Goals, Operations, Methods and Selection
rules) (Card et al. 1983) used for modeling how-to-do-it knowledge and, KAT
(Knowledge Analysis of Tasks) (Johnson, 1992) used for identifying previous knowledge
of users relevant to the generic and specific tasks. On the contrary, practice oriented
techniques provide a minimum description of the observable aspects of the operator
behavior of various levels of details together with some indications of the structure of the
task (Embrey, 2000). Decision flow diagram and Hierarchical Task Analysis are the
commonly used [Embrey, D., 2000] practice oriented methods. Decision flow diagrams
can be used to represent tasks, which involve decision-making, time-sharing, and it also
can be used to identify critical checks that the users have to carry out. However, HTA
describes how work is organized, in order to meet the overall goal which involves an
iterative process of identifying tasks, categorizing them, breaking them down into
subtasks and checking the accuracy of the decomposition (Preece, 1994, p.413). These
imply that HTA conform to the intended purpose to derive the task list from the specified

goal (development of a KB for student information system).

In HTA, most important question involves deciding upon the level of detail that is
required at what point to stop the decomposition. This can range from a fine level of
description, in which individual keystrokes (e.g. click mouse) are outlined to a higher
level, in which basic units of activity are described (e.g. delete a class) (Preece, 1994,
p-416). It depends on the analyst who is performing task analysis (Embrey, 2000). For

design purpose, tasks are decomposed into keystroke level and describe the details in

46

terms of operation and plan that consists of a number of task-actions. However, for
deriving the tasks to conduct user studies the large task (goal) can be decomposed into a

number of higher-level tasks. The following figure 4.1 shows how tasks are decomposed

into a number of sub-tasks.

Develop a KB for
student information

N I
Create the KB Create KB Modify KB Insert Create iy Create |
Project structure of Instances Query | matrix |
KB <
. I [— -l

I Il

Modify Modify
structure Presentation

J r ...
: Create I [Create root Create sub- Create slots/ Add i | i Attachslot i
{ ladder I'| Class/node class/node attributes facets to {1 : withaclass
PR . slots Ereeeamseesnnrnssreend
o I e N
Multiple Delete class/ { Delete : i Customize : Create l
inheritances node i slots i theforms i annotation :
ST I SOPOTROTIURPIOOON: B PR -

ooooooo

47

Name Description

Project A project is a file that contains the presentation information and
references to external sources of the domain information.

Ladder A ladder is a hierarchical (tree-like) network diagram.

Class Representation of a concept in a domain.

Node | Representation of a concept in a domain.

Slot An attribute of a class.

Attributes An attribute is a quality or feature of PCPACK object.

Facets The attributes of a slot.

Forms The Protégé-2000 use forms for acquiring instances of classes.

Table 4.1: Descriptions of technical terms used in figure 4.1.

The leaf nodes in figure 4.1 are test tasks. There are three types of leaf-nodes. Solid-
boundary nodes are common tasks for both Protégé and PCPACK KA tools, star-
boundary nodes are only for Protégé KA tool, and broken-line boundary nodes are only
for PCPACK KA tool. Although Protégé and PCPACK tools use ontology for structuring
the knowledgebase, the differences in their features and functionalities create differences
in performing the same large task. For this reason, a number of derived tasks that are
possible in one tool are not possible in other. Table 4.2 shows the lists of test tasks that

have been derived from the above task analysis.

The test of Protégé and PCPACK knowledge acquisition tools includes tasks to create
knowledge base structure and to acquire instances in the knowledge bases. The browsing
of knowledge bases, which includes creating and executing queries, were not included in
this test because the basic Protégé and PCPACK system do not support these activities.

For performing browsing, a query plug-in that is not part of the original system needs to

48

be added to the protégé system; and a browsing interface needs to be created for

PCPACK knowledgebase. Adding new plug-ins and creating browsing interfaces are

beyond the capabilities of end-users. For this reason, they were not included in this test.

TASKS PROTEGE | PCPPACK
1. Create a project v v
2. Create a new ladder NA 4
3. Create the root level class/node for the taxonomy v 4
4. Create a subclass/children node for a class/node in the v v
given taxonomy
5. Create a slot/attribute v v
6. Specify the artifacts of a slot v NA
7. Attach a slot with a class v NA
8. Create multiple inheritance for a class/node v v
9. Delete classes/node 4 v
10. Delete slots v NA
11. Create the annotation template for a node NA v
12. Customize a form v NA
13. Insert an instance to the knowledge base v v
14. Create a query v NA
15. Create attribute matrix with the matrix tool NA v

Table 4.2: Task List for Protégé 2000 and PCPACK4. (Reformatted from figure 4.1).

4.3.1.2. Test Participants

Test participants should be as representative as possible of the intended users of the

system (Nielsen, 1993 p.175). The target audiences for KA tools would be domain

experts and knowledge engineers. Since, our aim is to investigate how domain experts

perform with these tools, representative domain experts have been selected for the test.

Protégé 2000 and PCPACK4 KA tools’ users generally would be from different age

49

group, sexes, cultures, and backgrounds, but it is difficult for us to recruit users from each
category. Considering the task domain, we have recruited ten graduate and undergraduate

students from different educational and cultural backgrounds.

Recruited participants had no prior experience with these tools. Three of the ten test
participants were computer science undergraduate first year student. They were between
the ages of 20 to 25. They had no work experience, but were familiar with programming
as well as a number of other application software. The others were Electrical
Engineering, Civil Engineering, and Mathematics and Statistics graduate students who
had work experience in their area for at least five years. Two of the ten users were native
English speakers and others were non-native language speakers but had good command

in reading, writing and listening.

4.3.2. Creation of the Table

Hix’s methodology uses a 28-page fixed “checklist” forms to record possible functions
and their corresponding ease-of-use scores, which in turn used to measure functionality
and usability. The purposes of this experimental study are to collect usability problems
and to obtain usability measures (e.g. learnability, understandability, and satisfaction). In
this study, usability problems can be identified by reviewing the recorded test sessions;
satisfaction in different aspects of a tool can be measured through a set of post-test
questionnaire. For obtaining learnability and understandability metrics, the researchers
need to plan something in advance so that later s/he can compute the metrics efficiently.

Similar to Hix’s “checklist” form, a table can be created along the two dimensions:

50

simple tasks and usability criteria to measure the desired understandability and
learnability metrics. The simple tasks are task actions (functions) that obtained through
the decomposition of the given tasks [Telford, 1999]. Based on this, the following
understandability and learnability metrics have been adopted as the usability criteria, to
form the evaluation table.
Column 1: Able to locate: Whether a user tried to locate the simple task in the start-
up condition? It includes both able to perform and not able to perform a simple
action. There are cases where the tool user cannot even locate task action.
Column 2: Able to perform without help: Whether a user able to understand and
perform the located simple task?
Column3: Able to locate the help: Whether users able to locate the required help
option in the help system? A user unable to perform a simple task looks for help in
the help system and s/he may or may not be able to locate the help facility of the tool.
Column4: Able to use the help: Whether a user is able to understand and use the
located help to perform the located simple task action?
Based on the above usability criteria and selected test tasks the following tables [Table

4.3 and Table 4.4] can be created for Protégé and PCPACK KA tools:

|

Tasks decomposed into simple tasks

—
—» Usability Criteria

2J8307] 0} QY
dpay moyam
uriopd 0} JIqV
apy ay)

Ard0] 0) JqV
dpy

ay) asn 0} AqV

Task1: Create a project
Start the tool from the start-up menu
Use Save the option
Giving file name
Locate the project destination

51

Task2: Create the root level class for the taxonomy

Select the parent Class (THING) for creating the class

Select the option to create the class

Name the class

Task 3: Create a subclass for a class in the given taxonomy

Select the parent class of the subclass

Select the command

Task4: Create multiple inheritance for a class

Select the class for Multiple inheritance

Select the super class pane

Select another super class for multiple inheritance

Task5: Delete classes

Select the class to be deleted

Select the option to delete the selected class

Task 6: Create slot

Select the class

Select the button for creating template slot

Name the slot

Task 7: Specify the artifacts of a slot

Select the type of the slot

Specify the cardinality

Specify maximum, minimum (if the type is integer)

Specify template value

Specify Default value

Specify inverse slot (if applicable)

Task 8: Attach a slot with a class

Select the class

Use the command to add the slot at class level

Select the slot

Task 9: Delete slots

Select the specific slot

Use menu option to delete the slot

Delete the slot

Task 10:Customize a form

Select the proper browsing key

Select the form customization

Select the widget

Move the widgets in the suitable place

Select the suitable widget type

Task 11: Insert an instance to the knowledge base

Select the class for which instance need to be inserted

Select and press the button to insert an instance

Insert the values in the corresponding slots for that class

Task 12: Create a query

Select the class

Select the slot in the class

Select the logical condition

Set the comparison value

Execute the query

Table 4.3: Evaluation table for Protégé KA tool.

—» Measurement Criteria
.

Tasks decomposed into simple tas

38077 0) AIqV

mi0y1od

v

0}

GETENT)

aer0] 0} JqV

dpy

ayj asn 03 AqV

Taskl: Create a project with ladder tool

Start the ladder tool

Select the menu option/toolbar icon to create knowledgebase

Give name and password for knowledgebase

Select the ontology for the knowledgebase

Task2: Create a new ladder

Locate the option/icon for creating new ladder

Give name of the ladder

Specify the relation

Task 3: Create a root for the ladder

Select the icon/ give command for creating a root.

Name the root object

Task 4: Create children for parent node in the ladder

Select the icon/ menu command for creating child node

Specify the relation between parent and child node

Name the new child node

Task 5: Create multiple inheritance for a node

Select the second parent node

Select the tangled command

Select the command to create a child from second parent node

Locate the child node that needs multiple inheritance

Select the option to activate the child creation

Task 6: Delete a node

Select the object that has to be deleted

Locate the command for deletion from Menu/icon

Task 7: Assign the attributes to the concept

Select the node for attaching attributes

Select the command from popup menu to create attribute

Give attribute name

Task 8: Create the annotation template for a node

Select the node

Activate the annotation template

Write the code for the template

Task 9: Insert instances to the knowledge base

Convert the leaf object node into instance

Select the command to add attribute value in the instance

Task 10: View the knowledge base with matrix tool.

Select the command for creating attribute matrix

To add/ remove attributes in X the axis

To add/remove concepts in the Y-axis

Add/remove attributes corresponding to the concepts in KB

Table 4.4: Evaluation table for PCPACK KA tool.

53

4.3.3. Learn the Tools

In Hix’s methodology, users (evaluators) need to select possible functions from the total
functions on the “checklist” form. For this reason, they need to learn the detailed use of
the tools. For reliable results, users need to attain a minimum level of expertise in using
the tool. They suggested three stages of learning that have been mentioned before to
ensure evaluators minimum level of expertise in using the tool(s). On the contrary, the
test users of Protégé and PCPACK KA tools are not specialists and the purpose is to
measure initial understandability, learnability and satisfaction in using these tools and to
collect usability problems at that level. For this reason, its not needed to train the users
like Hix’s methodology, instead, before the test session, they will be given a short tutorial

for one-hour to facilitate them to learn the tool by themselves.

4.3.4. Performing the Tasks

Hix’s method is inspection-based, for this reason it didn’t involve any task performance.
In addition to the inspection-based subjective evaluation, Hix’s method optionally
suggested performing benchmark tasks to evaluate the user interfaces, but they did not
address it within the given methodology. The study itself is an experimental test of the
user interfaces, therefore; performance of test tasks is one of the important parts of the

study.

This experimental study consists of two test sessions. In the first session, all users will be
asked to perform a set of Protégé tasks; and in the second sessions they will be asked to
perform a set of PCPACK tasks. Before the test, participants will be given a detailed task

scenario (Appendix A4) rather than the task lists [Table 4.2] so that they can understand

54

what they have to perform with a particular KA tool. The task session will be captured
through Camtasia screen capturing software. The software is also capable of recording
the users’ comments during the test. This approach has been developed by targeting the
evaluation of the end-users’ performance with KA tools: Protégé and PCPACK; for this
reason, users will be allowed to take as much time as they need to complete a task so that
they can do so without any time pressure. At the end of the session, users’ satisfaction in
using these tools will be measured subjectively through a number of post-test

questionnaires (See: Appendix AS).

4.3.5. Review of the Sessions and Completing the Table Entries:

In Hix’s methodology, evaluators completed a predefined “checklist” that in turn used to
compute functionality and usability. In this study, Camtasia software recorded the task
sessions with Protégé and PCPACK KA tools. For collecting required information,
researchers reviewed the recorded sessions with the help of test participants so that they
can help in answering any questions that arise during the review. During the review, the
researchers looked for two types of data. First, usability problems those users faced
during the test session. Second, user’s interaction data corresponds to the simple task
action (Table 4.3 and Table 4.4). During the review, researchers recorded the user
interaction of a particular user in the evaluation table (Table 4.5). In this recording
process, researchers checked the corresponding usability criteria for every simple task
action. For instance, in performing the first simple task action of taskl a particular user
able to locate it and performed it without any help. As a result, corresponding usability

criteria (Able to locate, and able to perform without help) were checked in the given

55

evaluation form (Table 4.5). Similarly, in performing the first simple task of task2, the
same user performed it with the usage of help system (i.e. the particular user was able to
locate and use the help to perform the given simple task action). As a result,
corresponding usability criteria (able to locate, able to locate the help, and able to use the
located help) were checked for that simple task action. In this way, the researchers fill-up
the evaluation tables for Protégé and for PCPACK KA tool. Table 4.5 is an example of
individual evaluation table of Protégé KA tools. In terms of column table 4.5 is similar to
the final table but in terms of rows it has fewer rows (simple tasks) in comparison to the

final table.

—>» Measurement Criteria
o

dpy

2182077 0} AV
dpY Jnoim

b

Tasks decomposed into simple tasks

waojad 03 JqV
3y} 9jed0] 0} IqV
djoy ayy asn 0) 3lqVy

Taskl: Create a praoject \

- 1. Start the tool from the start-up menu X |x

ii. Use Save button (b)/Menu (m) option

iii. Giving file name

iv. Locate the project destination

Task2: Create the root level class for the taxonomy - |- - -

i. Select the parent Class (THING) for X X X
creating the class

ii. Select the command to create the class x | X
iii. Name the class x | X
Task 3: Create a subclass for a class in the given taxonomy | - - - -
i. Select the parent class of the subclass x |X
ii. Select the create command x |X

Table 4.5: Evaluation table of a particular user of Protégé KA tool.

56

4.3.6. Compute the Metrics

Hix’s methodology computes functionality and usability based on the selection of
possible functions with the tool and their corresponding ease-of-use rating. Functionality
expressed as a percentage of the number of functions possible with the tool with respect
to the total number of functions on the “evaluation form”, and usability as the percentage
of the ease-of-use rating of all functions possible within the tool with respect to the

maximum ease-of-use rating for those same possible functions.

For the test of Protégé and PCPACK KA tools, usability metrics can be computed from
the entries of the evaluation tables. For calculating usability metrics, researchers
combined all the individual evaluation tables into a single table that they called
“combined table”. In this way, they created separate combined table for Protégé and
PCPACK KA tools. In the combined table, the designated cell entries are no longer
interaction entries, but they are the number of users’ who performed a particular simple
task successfully. In addition to the existing columns in the evaluation table, the
combined table adds one extra column (first column). The combined tables for Protégé
and PCPACK KA tools are presented in chapter 5. For example, a part of the combined
Protégé table is presented in the following. In terms of usability criteria, the example
[Table 4.6] of combined table is similar to final combined Protégé table presented in
chapter 5, but different in terms of simple tasks, that is; it has fewer rows (simple tasks)
in compare to final table. The content of these columns are described in the following:

1. First column provides the number of users who were available for a particular

simple task. For a given test task, table 4.6 shows that the number of available

57

users in the first few simple tasks are almost 10, but the number of users

decreases as the simple tasks proceed because a number of users face difficulties

in the first few simple tasks, therefore; they abandoned the given task. For this

reason, they were not available for the remaining simple tasks of a particular

task.

The data in the second column indicates the number of users who were able to

locate the particular simple task. This number can be less than or equal to the

number of available users for the particular simple task.

Third column indicates the number of users who were able to perform the

located simple task. It can be less than or equal to the number of users indicated

in the second column.

ii. Select the create command

—» Measurement Criteria o B T -
—_— < T =z |& = =2
E s B F & |F
=8 Fs| 8§
® o = I~ @
= e |8 g 2 ®
SFFE| % |
Tasks decomposed into simple tasks “ -;1 s |P
(4]
Taskl: Create a project
i. Start the tool from the start-up menu 10 10 10
ii. Use Save button (b)/Menu (m) option | 10 |6 6
iii. Giving file name 6
iv. Locate the project destination 3
Task2: Create the root level class for the taxonomy |- |-) i)
i. Select the parent Class (THING) for 10 (10 17 2 2
creating the class
ii. Select the command to create the class
iii. Name the class
Task 3: Create a subclass for a class in the given - - 3 - }
taxonomy.
i. Select the parent class of the subclass |10 [10 [8
8 8 8

Table 4.6. Combined evaluation table of Protégé KA tool.

58

4. Fourth column indicates the number of users who were able to locate the

5.

required help. The users who were unable to perform the located simple task
tried to locate help from the help system.
Fifth column indicates the number of users who were able to perform the simple

task with the located help.

The following usability metrics can be calculated from the combined evaluation

table[Table 4.6]:

Function Accessibility: The ratio of users who were able to identify a function in
the start-up condition to the number of users who were available to identify that
function.

Function Understandability: The ratio of users who were able to understand and
use a function to the number of users who were trying to use the particular
function.

Help Accessibility: The ratio of users who were able to locate the help to the total
number of users who wanted help. The users who located the function but unable
to use it wanted help from the help system. This can be obtained by subtracting
column3 from column2.

Help Efficiency: The ratio of users who were able to understand and use the help

to the total number of users who were able to locate that help.

59

4.4. Summary

Hix’s methodology for the evaluation of user-interface development tool has been
modified and applied to study Protégé and PCPACK KA tools from the end-users’ point
of view. In the modified approach, the important modifications include selection of test
tasks for the experimental study and creation of evaluation tables to collect user-
interaction data of Protégé and PCPACK KA tools. By reviewing the test sessions, we
collected the usability problems, combined the evaluation tables to compute the usability

metrics. The results of the experimental research are presented and interpreted in chapter

60

5. Analysis and Interpretation of Test Results

In this chapter, we take a closer look at the outcome of the usability study of knowledge
acquisition tools. Section 5.1 presents the results obtained from the usability test. Section
5.2 provides an analysis of the problems collected from the study. Finally, based on the

analysis, we make specific recommendations for the improvement of the two KA tools.

5.1. Results

The goal of this thesis has been to assess the usability of KA tools against a set of criteria,
and to provide recommendations for further improvement of these tools or to help in the
development of new KA tools. In order to fulfill this goal, we must understand not just
what test participants did during the test session, but why they behaved and reacted as
they did. This can be accomplished first by characterizing the test participants, and then
by examining their performances, the satisfaction ratings, and the observed problems. In
the following, the results obtained from the usability tests are presented in the same order,

as they were collected.

5.1.1. Participant’s Expertise

The participants were graduate and undergraduate students who had no prior experience
with these tools. In total 10 participants were selected. Three of the ten test participants
were Computer Science undergraduate students who were in their first year. The others
were Electrical Engineering, Civil Engineering, and Mathematics and Statistics graduate
students who had work experience in the area of their expertise. Two of the ten users

were native English speakers and the others were non-native English speakers who had

61

good command in reading, writing, and listening English. The histogram in Figure 5.1
summarizes the usages of default computer software by the test subjects. It describes the
number of users who were familiar with the software (Windows, Linux, MSword, Excel,
Programming, and other tools) to a certain level of expertise. The histogram shows that
all the users were familiar with the Windows operating system, and with Microsoft Word,
and that seven users were familiar with Excel software. A number of graduate students
had experience with other professional tools, such as MATLAB, ORCAD, and Computer

Aided Drawing (CAD).

O Beginner
B Medium
B advance

No. of users
CANWRNOINDOO

Application

Figure5.1: Participants' computer expertise.

5.1.2. Test Results

As stated in Chapter 4, when users were performing the given tasks, the interactions with
the tools were captured through Camtasia [http://www.techsmith.com/products/studio], a
screen capturing software developed by techsmith. In the previous chapter, evaluation

tables for both KA tools (Protégé, PCPACK) were developed against a set of criteria for

62

logging the test data in a structured way. Replaying the task session activity through
Camtasia player, the researcher filled out the evaluation table for every individual user.
After developing one for each participant, they were combined into a single table where
the designated cell entries were no longer interaction entries, but they were the number of
users’ who performed a particular simple task successfully. The combined tables 5.1 and

5.2 for Protégé and PCPACK KA tool are presented in the following.

— Measurement Criteria ;: g i g g E g
E|& = o | | &
5|58 @
cl2lzg 2| ¢
alsl”eg s z
2 = =
Tasks decomposed into simple tasks =
Task1: Create a project - - - -
Start the tool from the startup menu 10 10 | 10
Use Save button (b)/Menu (m) option 10 6 |6
Giving file name 6 6 |6
Locate the project destination 6 3 13
Task2: Create the root level class for the taxonomy - - - -
Select the parent Class (THING) for creating the class 10 10 {7 2 2
Select the command to create the class 9 9 19
Name the class 9 9 {9
Task 3: Create a subclass for a class in the given taxonomy - - - -
Select the parent class of the subclass 10 10 | 8
Select the create command 8 8 |8
Task 4:Create multiple inheritance for a class - - - -
Select the class for Multiple inheritance 10 10 | 10
Select the super class pane 10 2
Select another super class for multiple inheritance 2 2 1 1 0
Task 5: Delete classes - - - -
Select the class to be deleted 10 10 | 10
Select the option to delete the selected class 10 10 | 4 3 3
Task 6: Create a slot
Select the class 10 10 | 10
Select the button for creating template slot 10 8 |8
Name the slot 8 8§ |8
Task 7: Specify the artifacts of a slot
Select the type of the slot 10 4 13 1 1
Specify the cardinality 10 5 2 1 1
Specify maximum, minimurmn (if the type is integer) NA
Specify template value 10 5 12 1 1
Specify Default value 10 5 |3 1
Specify inverse slot (if applicable) NA

63

Task 8: Attach a slot with a class - - - -
Select the class 10 10 | 10
Use the command to add the slot at class level 10 6 |3 2 2
Select the slot 5 5 5
Task 9: Delete slots - - - -
Select the specific slot 10 10 |1 4 4 3
Use menu option to delete the slot 7 6 |6
Delete the slot 6 6 |6
Task 10:Customize a form - - - -
Select the proper browsing key 10 5 15
Select the form customization 10 3 13
Select the widget 10 10 | 10
Move the widgets in the suitable place 10 10 | 10
Select the suitable widget type 10 7 12 3 3
Task 11: Insert an instance to the knowledge base - - - -
Select the class for which instance need to be inserted 10 8 8
Select and press the button to insert an instance 8 8§ 18
Insert the values in the corresponding slots for that class | 8 8 {8
Task 12: Create a query - - - -
Select the class 10 10 | 10
Select the slot in the class 10 10 | 10
Select the logical condition 10 10 | 10
Set the comparison value 10 10 | 6 2 2
Execute the query 8 8 8
Table 5.1: Combined table for Protégé KA tool
'——’. Measurement Criteria AR2ES> %- 2l ge
=4 cz Se Po |Ta
=X el e? g g
g1 8|°8| 8| %
Tasks decomposed into simple tasks 8 =
Task1: Create a project with ladder tool - - - -
Start the ladder tool 10 |10 |10
Select the menu option/toolbar icon to create knowledgebase 10 110 |7 3 3
Give name and password for knowledgebase 10 { 10 |10
Select the ontology for the knowledgebase 10 | 6 6
Task 2: Create a new ladder - - - -
Locate the option/icon for creating new ladder 10 10 |7 3 3
Give name of the ladder 10 110 |10
Specify the relation 10 |3 3
Task 3: Create a root for the ladder - - - -
Select the icon/ give command for creating a root. 10 110 |5 2 2
Name the root object 7 17 7
Task 4: Create children for parent node in the ladder - - - -
Select the icon/ menu command for creating child node 10 |7 4 3 3
Specify the relation between parent and child node 7 |2 2
Name the new child node 7 |7 7

64

Task 5: Create multiple inheritance for a node

Select the second parent node 10 | 4 4
Select the tangled command 4 1 1
Select the command for creating child from second parent 4 |4 4
node
Locate the child node that needs multiple inheritance 4 |4 2 2 0
Select the option (from the check box) and activate the child | 4 0 0
creation
Task 6: Delete a node - - -
Select the object that has to be deleted 10 { 10 | 10
Locate the command for deletion from Menw/icon 7 17 4 3 2
Task 7: Assign the attributes to the concept - - - -
Select the node for attaching attributes 10 |7 7
Select the attribute command from popup menu to create 7 4 4 2 2
attribute
Give attribute name 6 |6 6
Task 8: Create the annotation template for a node - - - -
Select the node 10 | 10 | 10
Activate the annotation template 10 | 7 4 2 2
Write the code for the template 6 |6 3 3 1
Task 9: Insert instances to the knowledge base - - - -
Convert the leaf object node into instance 10 |5 3 2 2
Select the command to add attribute value in the instance 7 17 5
Task 10: Modify the knowledge base with matrix tool. 3 5 3
Select the command for creating attribute matrix 10 J10 |5 3 1
To add/ remove attributes in X the axis 6 |6 3 2 2
To add/remove concepts in the Y-axis 6 |6 6
Add/remove attributes corresponding to the conceptsinKB | 6 | 6 6

Table 5.2: Combined table for PCPACK KA tool.

The above combined tables [Table 5.1 & Table 5.2] present the number of users

corresponding to the simple tasks. The content of these columns are described in the

following:

L.

First column provides the number of users who were available for a particular simple

task. For a given test task, table 5.1 shows that the number of available users in the

first few simple tasks are almost 10, but the number of users decreases as the simple

tasks proceed because a number of users face difficulties in the first few simple tasks,

therefore; they abandoned the given task. For this reason, they were not available for

the remaining simple tasks of a particular task. Also, there were few tasks where

65

difficulty in one simple task didn’t create problem for the preceding ones. Therefore,
the number of available users remained unchanged in the subsequent simple tasks of a
particular task.

2. The data in the second column indicates the number of users who were able to locate
the particular simple task. This number can be less than or equal to the number of
available users for the particular simple task.

3. Third column indicates the number of users who were able to perform the located
simple task. It can be less than or equal to the number of users indicated in the second
column.

4. Fourth column indicates the number of users who were able to locate the required
help. The users who were unable to perform the located simple task tried to locate
help from the help system.

5. Fifth column indicates the number of users who were able to perform the simple task

with the located help.

From the combined tables [Table 5.1 & Table 5.2] I have computed the usability metrics:
(1) functional accessibility, (i1) functional understandability, (iii) help accessibility, and
(iv) help efficiency that were defined in chapter 4. The computed results of these metrics
have been presented in figure 5.2. The result [Figure 5.2] shows that both tools are
someWhat high in terms of function accessibility (Protégé 0.77125, PCPACK 0.6835) and
function understandability (Protégé 0.835, PCPACK 0.7173). These metrics show that
Protégé performed comparatively better. In terms of help accessibility (Protégé 0.5913,

PCPACK 0.6627) both tools performed relatively low. In this case, PCPACK performed

66

comparatively better than Protégé. Such low help accessibility for Protégé is not
surprising, because it is a free tool and its maintenance level is somewhat lower. Due to

the lack of “search” feature in both tools many users failed to locate the required help

topics.

~ 1
";'-; ;

0.8
E .
3 0.6 §
S ; B Protégé

04 &
2 : EPCPACK
b
2 0.2
[} H
Q F
= 0=

Function Access Function Understd. Help access Help efficiency
Usability Metrics

Figure 5. 2: Usability metrics for Protégé and PCPACK.

5.1.3. Satisfaction Questionnaire

Immediately following the usability session, participants were given a post-test
questionnaire. Two types of questionnaires were given. First, every user was asked to
answer two questions: (i) Are any parts of the interface confusing and difficult to
understand? (ii)) What is the worst aspect of the interface? The responses of these
questions are presented in Table 5.3 and Table 5.4 respectively. The second part of the
questionnaire was satisfaction ratings of different aspects of both knowledge acquisition

tools, in which users were asked to rate every aspect on a scale of (1 to 7), where 7 is

67

easy to use, 1 is difficult, 5 is somewhat easy, and 3 is somewhat difficult. The mean

satisfaction scores in different aspects of these tools are presented in Table 5.5.

Specifying artifacts for Protégé slots (3)

Confusion between knowledgebase and ontology (3)

The term ontology in both tools is confusing (6)

Many tools in PCPACK (4)

Options in PCPACK for importing and opening the knowledgebase (1)
Many options for creating PCPACK knowledgebase (2)

Table 5.3: User’s comment on difficult and confusing aspects (entries in the bracket

indicates the number of users commented).

Visibility of Protégé (7)

Help System of Protégé (4)

A number of panes with each tab, some of them are not initially visible (2)
Storage format of Protégé and PCPACK (3)

Writing annotation template (3)

PCPACK toolbar icons are very close to each other (5).

Table 5.4: Worst aspects according to user comment (entries in the bracket indicates the

number of users commented).

Aspects of the KA tool Protégé (mean | PCPACK (mean

satisfaction score.) | satisfaction score)
Starting the tool. 6.376 5.7532
Creating ontology/ladder. 3.375 4.0934
Customizing form/ annotating the tool. | 6.5273 4.575

Inserting instances. 6.325 5.333

68

Aspects of the KA tool Protégé (mean | PCPACK (mean
satisfaction score.) | satisfaction score)

Selecting icon from the toolbar. 4.666 5.025

Using Menu bar and popup menu. 6.7512 4.152

Understanding naming/ labeling. 4.33 5.251

Overall 5.735 5.336

Table 5.5: Protégé and PCPACK Satisfaction scores (In the scale of 1 to 7, 1 is difficult,

7 is easy, 3 somewhat difficult, 5 is somewhat easy)

Table 5.5 presents the mean satisfaction scores in different aspects of the Protégé and
PCPACK KA tools. Overall, the satisfaction scores (Protégé 5.735 and PCPACK 5.336)
for both tools were somewhat easy to use or better. Among the Protégé aspects, creating
ontology (3.375) seems somewhat difficult; understanding labels (4.33) and selecting
icons from the toolbar (4.66) are average; and the other aspects (starting the tool,
customizing the form, inserting instances, and using the menu bar and the popup menu)
are somewhat easy to use or better. On the contrary, most of the aspects of PCPACK KA
tools, except creating the ladder and using the menu bar are somewhat easy to use.
Creating the ladder (4.093) and usage of menu bar (4.153) seems somewhat difficult to

use.

5.1.4. Observed Problems
Usability testing revealed many problems in the KA tools (Protégé and PCPACK). These
problems were gathered through observing the test session, collecting user comments,

and analyzing the tabulated data. The following are the top five problems for each tool

69

(Protégé and PCPACK), which have been collected from the observation of the test

session and user comments.

Protégé
Pi.

P2.

P3.

P4.

Ps.

Six out of ten participants did not notice the slide bar arrows to increase and
decrease the window size, because the arrows have a low degree of color
contrast with respect to background. Also, they are small in size. Therefore, it
remained unnoticed to the participants.

Participants who had no programming knowledge faced problems in
understanding a number of terminologies (e.g. class and instance type in the slot
definition) used in the interface. Similarly, many users also failed to understand
the usage of the inverse slots.

Search features in help systems are used to locate the required help notes on
specific topic. In the help system, most of the users were looking for a search
option to locate the required help topic. For example, in creating multiple
inheritances, a number of users were trying to get the required help from the
help system; however, the lack of search feafure prevented them from locating
the help notes.

The super class pane remained hidden with the default class tab; for this reason,
many participants had problems in locating the super class pane.

Many participants commented on the poor or lack of attractive user interface.

They mentioned that they failed to identify many objects in the interface due to

70

low visibility, and poor visual cues. They also mentioned that they could have

done the tasks more easily if they were able to see the objects in the interface.

PCPACK

Ql.

Q2.

Q3.

Q4.

Many participants were confused about using the “Import” and “Open” option
for loading and opening the knowledgebase into the ladder window. Most of the
users knew the “Open” command for both loading and opening a file. For this
reason, they tried to use the open command to load and open the
knowledgebase. Users also thought that the purpose of the import option was to
import a knowledgebase from a system other than PCPACK.

All participants commented that they didn’t understand the purpose of the
ontology-browsing window. Some of them also added that they didn’t
understand the purpose of the ontology template in creating a knowledgebase in
the beginning of the project.

Participants expressed their concern over the icon density of the toolbar. We
observed that, due to high display density, participants failed to identify the
required object from the toolbar. Also, many participants expressed their
concerns over many features and functionalities of PCPCAK KA tools, over
which they lost some time in the system.

Participants had difficulties creating annotation templates for the concepts.
Problems arise due to the requirement of writing template code using symbols.

Users who had programming backgrounds easily understood the help notes for

71

creating a template, but those who were not familiar with programming
concepts failed to create the template.

Q5. Participants had difficulties creating the relationship for the ladder. They thought
the option would be available either in the toolbar or in the menu bar. In fact,
such a frequently used option was not directly available; rather, it was a part of

the property window, which is difficult to discover.

5.2. Analysis of Usability Problems

In the context of user interface evaluation, current research suggests that, in addition to
collecting usability problems, much can be gained by analyzing the problems themselves
[Keenan et al., 1999]. In this section, we follow three steps: first, classifying the
problems according to common usability issues; second, interpreting the issues in
accordance with the context of the problems, finally, commenting on the effects of

problems on the usability principles.

5.2.1. Classification of Usability Problems

Many usability evaluation techniques, such as checklist, and heuristics are used to
classify and analyze usability problems. In addition, [Susan, L. Keenan, et. al. 1999]
suggested a framework to classify usability problems based on the problems. Using the

framework (http://home.townisp.com/~keenan/upt/fastpage.htm), the problems found in

the KA tools (Protégé and PCPACK) has been classified. In the following [Table 5.6],
problems conceming Protégé and PCPACK are presented with the corresponding

usability issues:

72

USABILITY | PROTEGE PROBLEMS PCPACK PROBLEMS

ISSUE

1. Object a) “Move to wupper level” and| a) Annotation icon

appearance “Desktop” icon in the open/save remained unnoticed.
dialog window is not consistent | b) Participants said it
with similar windows icons. would have been easy to

b) Colorblind users had problem in create annotation
distinguishing system objects and template if there were a
created objects. symbol toolbar in the

c) Slide bar arrows mostly remained annotation template
unnoticed. tool.

d) Notes (“c,x”) icons remained | c) Tangled and untangled
unnoticed because of their low icons have poor color
visibility, and small size. contrast.

e) Default font size is relatively
small in compare to other
windows applications.

f) Labels (Role, Type) and their
values have similar foreground
and background color.

g) “Delete” button to delete a
class/slot in the toolbar/main
menu is not available.

2. Object a) Mapping difficulties in | a) High density of objects

layout specifying cardinality. in the PCPACK user

b) Super class pane is not by default interface made users
visible. confused.

c) Browsing key and widget types
are placed in such a location that
they remained unnoticed.

d) User expressed their
dissatisfaction in the aesthetics
(i.e. color contrast and
organization of labels and icons)
of the user interface.

3. Wording a) Error message needed to prevent | a) Users failed to
entering data for maximum and understand the help
minimum box other than integer notes in writing the
type. annotation template.

5. Labeling a) Users confused with the usage of | a) Imprecise word

/Naming similar name ‘“reference” at “Analyze text” to start

“Class relationship menu” and at
“Class button”.
b) Users had wrong perception in

protocol tool from the
tool launcher.
b) Participants get |

73

the label “Role”.

confused in using open

c¢) Users failed to understand the and import option for
meaning of the tool tips (View loading and opening
selected slots) and (view selected knowledgebase in the
slots at class). tool window.

d) Users didn’t understand name,
such as Abstract/Concrete class.

e) Types of the slot are not easily
understandable.

6. Visualcue | a) Users thought the purpose of the a) Users failed to identify
reference “&” (view instances the root node icons from
that reference a selected the toolbar.
class) symbol is to go upper level | b) Many users selected the
in the class hierarchy. “Move up” arrow for

b) Users failed to recognize the creating a node instead
purpose of “¥” (view slot) and of using the “ladder up”
“M” (view slot at class level) from the toolbar.
icons. c) Users failed to identify

¢) Confusing “+” symbol for icons” Ladder wup”,
attaching objects. (“+” generally “ladder down”,
used in creating object). “Tangled ladder”,

d) Participants were not able to untangled” from the
recognize form (&% (Default toolbar.
layout),E?!(layout options like))
icons for specifying the
customization.

e) Confusing cue “+” instead of
“browse” in locating the
destination of the project during
the project save.

7. Cognitive a) To create root level classes for | a) Users expected a kind

aspects taxonomy, selecting a system of tabular structure for
class as parent was not well entering instances.
perceived with the wuser’s| b) Creating multiple
cognitive task. inheritance didn’t not

b) In multiple inheritance, Locating match with user’s
second parent for a class don’t cognitive model (Users
match with user’s mental model expected drag and drop
(user thought some drag type type of connection).
relationship). c) Users could not

understand how to

create multiple roots for
a ladder.

74

8. Miscellan { a) No “search” option in the help
eous. system.

d)

No “Search” option in

the help system.
No “Undo” option to
reverse the
knowledgebase.

No feedback when
original knowledgebase
modified and lost the

original knowledge
entries.
Participants didn’t

understand the purpose
of ontology browsing
window and ontology
template.

Locating annotation
template for a node
Problems in locating the
option for converting
leaf object into instance.

Table 5.6: Usability issues for Protégé and PCPACK KA tools.

5.2.2. Interpretation of Usability Issues

Table 5.6 presents usability problems with the corresponding usability issues [Keenan et

al., 1999] for both KA tools. Although the frequency of problems for an issue may be

lower for a particular tool, caution must be used in judging one tool as more “usable”

than the other based on the number of problems with a specific issue because (i) users

may have had a number of different usability problems in different contexts, (ii) the

severity of the problems is important in comparing tools, and (iii) some usability issues

may be strictly user-related, thus inflating the number of issues for software.

75

1) Object Appearance

Participants had many object appearance problems in Protégé KA tools, some of which,
namely “inconsistency” with the windows icons, and missing the “delete” option in the
toolbar and menu bar were repeatedly faced by many users. Figure 5.3 shows that icon:
(1) going one level up, (ii) create new folder, and (iii) desktop, are not consistent with the
de facto standard (windows icons). For this reason, many participants had difficulty
identifying such icons. However, consistency in object appearance is equally important
for both expert and novice users. Inconsistency leads expert users to face difficulties in
performing the task efficiently, and novice users to face difficulties in learning a tool.
Since the majority of Protégé users are intermittent users and have a low degree of
computer expertise, difficulty in learning the tool is a major concern for the Protégé KA

tool.

Up one level

Desktop Create new folder

Figure 5.3: Protégé metaphors in save dialogue.

It was also found that many users were looking for the “delete” option in the toolbar and
in the menu bar for deleting a class or a slot object, but this option was available only
with the popup menu. Comparatively, more users had difficulties finding the “delete”
option for the slot than for the class. In deleting a slot, users first tried to use the “delete”
button from the toolbar, after which, they tried to delete the slot from class level from

where they created it. In fact, slot must be selected from the slot list within the slot tab.

76

Perhaps, by considering the low frequency of the “delete” option compared to the
“create” option, or by considering the consequences of an unexpected delete action, the
designer chose not to place this button in front of the interface. Since most systems keep
the “create” and “delete” option together, maintaining consistency with other systems is

important for making the interface easy to use and easy to leamn.

is is an abstract superclass of

oth advertisaments and arficles,
ntaining the the information
mmon to them both.

{S| layout Instance single classes={Content_Layout} [
[S] expiration_date String single

Instance single classes={Section}
Integer single

Instance single classes={Newspaper}
Boolean single default={false}

Figure 5.4: Protégé user interface.

Many other object appearance problems are as follows: (i) the “notes” icon in the top-
right corner remained unnoticed, (ii) drop-down lists, such as “Role” could not draw the
users’ attention, and (iii) colorblind users couldn’t distinguish between system objects
and user created objects. These problems are mostly attributable to the low degree of
color contrast, and to the small size. For example, a drop-down list, such as “Role” could
not gain users’ attention as it has the same color for both the drop-down list item and for

its label. Also, Protégé tools uses colors (yellow and pale) to distinguish between system

77

objects and user created objects. The low contrast between the colors (indicated in circle
1[figure 5.4]) prevented partially colorblind users from being able to distinguish between

them.

PCPACK users faced many similar object appearance problems due to color contrast and
to size. Among them, one of the frequent PCPACK problems was identifying tangled and
untangled icons. There might be several reasons behind the failure to identify tangled and
untangled icons, but most users mentioned that the low degree of color contrast block
their visibility. Although the pop-up menu provides the option to create an annotation
template, many users were looking for a template creation icon in the toolbar. Although

there was an icon in the interface, most users didn’t find that template icon.

The majority of the object appearance problems in both Protégé and PCPACK were due
to color contrast and to the size of the objects. Once user locates and overcomes the
above-mentioned problems, s’he can easily use the function second time. As a result,
regular users of these tools can easily overcome these problems (except that of
colorblindness); however, most of the KA tools’ users are intermittent rather than regular,
so these problems pose setbacks in using these tools. In this regard, the proper use of
color in the user interface object can facilitate the users’ identification of and usage of
these objects. Conversely, if used inappropriately, color can be distracting and can disrupt

the visual search.

78

2) Screen layout

Screen layout refers to how the user-interface objects are laid out on the screen. A
consistent layout helps users to predict where to find information and where the particular
object is located on the screen. Generally, objects are placed on the screen based on
different guidelines [Nielsen, J. 1994], but there is no agreement among people. For this
reason, it is very difficult to place objects in an order that will satisfy all users. In this
way, the screen layout for KA tools is a challenge because it involves users from different

backgrounds.

After the test, when Protégé users were asked why they didn’t use the objects such as (i)
browsing key in the form screen, (ii) super class pane with the class tab, and (iii) widget
types in the form, they stated that these objects were placed in a way that made locating
them and using them difficult. These objects were not placed in the proper location, and,
they had a low degree of color contrast; therefore, they failed to grab the users’ attention.
Moreover, all the participants except one found specifying the “multiplicity” of the
objects problematic because of the difficult visual mapping of the related options in the
interface. Users expressed dissatisfaction with Protégé’s aesthetics. Such negative
impressions about a system discourage users from using the system in future. On the
other hand, PCPACK users reported high display density, the amount of information on a
display and how tightly packed it is in relation to the size of the display [Jones, M.K.,
1989], created problem in selecting the objects from the interface. The problems

mentioned above have little impact on the users who have a high degree of computer

79

literacy because they can overcome most of the problems; however, users who have

minimal computer expertise can suffer in learming and using the tools.

The screen consists of different types of resources, such as icons, buttons, the toolbox,
and text. Usage of these components revealed that PCPACK had very few problems
compared to Protégé. This is not surprising, as Protégé is a free tool managed by a
research group, whereas, PCPACK is a commercial tool in which high quality visual

interface is important for attracting users.

3) Labeling/Naming

Telling people what will happen before they click on a new object is a basic, long-
established principle of user interface design [Nielsen, 1994]. But, until now, there has
been discrepancy between the designer’s interpretation and user’s interpretation of the
labels that are common in most software systems. Most of the time, such discrepancies
create major problems for end-users. In the context of KA tools, of which the majority of

users are end-users, the labeling of objects is an important usability issue.

Two major types of labeling problems, (i) confusing similar names for two different
objects, and (ii) having a non user-centered name for the problem domain, were observed
in the Protégé and PCPACK interfaces. Most participants were confused about using two
labels in Protégé. One is a “reference button” in the class button to display the instances
that refer to the selected objects, and the other is the “reference” option in the class pane

that indicates the reference classes for the selected class. Most users selected one instead

80

of the other. In the same way, PCPACK users were confused about the “import” and
“open” options, which have been used for loading and opening any knowledgebase. To
many users, “open” mostly meant loading and opening a file within the system, and
“import” was for importing a file/project from another system. For this reason, most users
had difficulties choosing the option for opening a project. This type of confusing labels
created problems for individual users to learn the system. This is also problematic for

intermittent users of the tool.

Due to the lack of user-centered naming, users had problems with understanding the
labels. For example, many users thought that the purpose of the label “Role” was to
describe the purpose of the particular class, whereas the actual purpose was to define
whether a class was of the abstract or concrete type. Also, they failed to understand the
meaning of the tool tip, “{View selected slots}” and “{view selected slots at class}” and

terminologies such as “Abstract/Concrete” class and slot types.

For any system, user-centered naming is important in order for end-users to understand
and use the system easily. KA tools are kind of systems that borrow many terminologies
from the knowledge engineering discipline in order to identify the objects and the system
functionalities. From this perspective, user-centered naming is more important for end-
users of KA tools because most users are not familiar with knowledge engineering
terminologies. Designing appropriate user-centered labels can provide easier user
interaction with the system, which in turn will increase the efficiency, and the learnability

of the system.

81

4) Visual Cue

Visual cues are provided in the user interface to show the user the existence of individual
user-interface elements and the operations that those objects afford [Jones, M.K., 1989].
Even though most developers use visual cues in the interface objects, using the
appropriate visual cue that will become part of the user’s cognitive model of the system is

one of the most challenging tasks [Jones, M.K., 1989].

Annotation

Ladder up Show generic root Move to bottom
Ladder down set lgdder properties Move one level down
Edit root node Unfangled ladder Move one level up
Add root node TAngled ladder Move to top

Figure 5.5: PCPACK ladder toolbar icons.

Many different visual cue problems have been recorded in Protégé. Among the observed
problems, the back-reference button provided a misleading cue. All of the test
participants first thought that the purpose of the reference symbol (display objects that
reference the selected class “&#”) is to go to an upper level in the class hierarchy, as a
similar symbol was also used in other places of Protégé to go “one level up” in the
directory hierarchy; therefore, users get confused when using this symbol. Also, the
symbols, ‘+’ and ‘C’ have been used with most features for adding/attaching and for
creating an object respectively. A number of users were confused with the usage of create
vs. add symbol because they were familiar with ‘+’ for creating an object rather than for
adding one. In addition, problem also arises when the ‘+’ sign is used to locate a folder

instead of browse. In customizing the screen for a particular class, none of the ten users

82

used the form layout (& (Default layout),Ef?.(layout options like)) icons for specifying the
customization. When they were asked why they didn’t use these, they stated that they

didn’t understand the purpose of these icons based on their appearance.

In PCPACK, although many icons have been used to represent real life concepts, users
frequently made mistakes in selecting and using these icons. For example, icons used for
creating and deleting a child node, for creating a ladder, and for creating a root node
didn’t match well with the users’ cognitive model, knowledge that the user gains through
the experience of using other systems. We have often observed many times users trying
to use one icon instead of another. For example, in creating a child node, instead of using
the “ladder up” icon most users tried to use the “move up” icon, which is for moving one
step in the ladder. Also, all users had difficulties identifying the root node icon on the

toolbar.
The above description shows that improper use of visual cues in both PCPACK and
Protégé created many problems, a number of which created difficulties in the initial

learning stage.

5) Cognitive Aspects

In addition to visual cue problems, users of PCPACK and Protégé had many cognitive
problems with the interfaces. Actually, the problems were due to poor or conflicting
cognitive models, knowledge that the user gains through the experience of using other

systems. For example, in PCPACK, the users expected a kind of tabular structure related

83

to the concept tree for entering the instances that they gain from database concepts. Also,
participants did not understand the purpose of the ontology browsing window and the
ontology template in creating the knowledge base. In creating “multiple inheritances”
using Protégé, users were trying to make a “drag-drop” relationship in order to create
multiple parents for a class, but the relationship needed to be created through the super
class pane, which was invisible in the class tab. In creating multiple inheritances, most

users failed to understand the necessity of the super class pane and its usages.

The Cognitive aspects of any interface are important, because a sequence of task
activities in a system conform to the user’s cognitive model of the task makes the system
easy to use. On the other hand, the conflicting model makes the systems difficult to learn.
This sort of problem is more difficult for novice users because these problems contribute
to learning difficulty and to a reduction in efficiency for users who have experience with

other KA tools.

6) Miscellaneous

A number of problems were found that do not fit into any of the above categories,
especially for PCPACK users. The users of both tools felt the necessity of the search
feature to look for help topics in the help system. The other problem that creates a major
drawback in PCPACK system is the absence of an “undo” option, without which,
participants failed to retrieve lost knowledge entries from the knowledgebase. Also, the
automatic updating in the knowledgebase without any system feedback is another major

concern for PCPACK users.

84

5.2.3. Usability Principles

Required usability attributes, including learnability, understandability, and satisfaction
have been described in Section 3.2. Usability assessment scores and most of the common
problems analyzed in the previous sub-section will be used to understand the current state

of usability of these tools.

Understandability: Understandability is a measure that indicates how well a new user

will able to understand whether the software is suitable and how it can be used for
particular tasks (ISO 9126-2). Protégé and PCPACK tools have somewhat better
understandability to locate the functions (Protégé 0.77125, PCPACK 0.6835) and to use
these functions (Protégé 0.835, PCPACK 0.717). The interpretation of results reveals that
their poor cognitive aspects and visual cues make PCPACK tools comparatively difficult
to understand. Since the users are not regular users of this tool, it is likely that they will
face cognitive problems each time when they return to this tool.

On the contrary, Protégé suffers from visual cues and labelling problems that most users
were able to overcome resulting better performances. Non-user centred labelling,
particularly knowledge engineering terminologies in Protégé, created challenges in

understanding the system functionalities and documentation.

Learnability: Learnability is a measure of how quickly a user can become proficient at
using the system (Nielsen, 1993). Since participants in this study were not experienced in
these tools, the learnability of these systems was a major issue. Learnability was

measured in terms of help accessibility and help efficiency. In terms of help accessibility

85

(Protégé 0.5913, PCPACK 0.6627) both tools performed relatively low. But in terms of
help efficiency (Protégé 0.96 and PCPACK 0.88) both tools performed better.
Learnability is strongly related to understandability, and the measures of
understandability can be indicators of learnability (ISO 9126-2, 2002). The

understandability metrics indicate the level of ease with which one can learn these tools.

The analysis of problems indicates that the visual cues of the interface objects and
cognitive problems created a major challenge for beginners who were attempting to learn
the KA tool PCPACK. Also, the analysis showed that some of these problems had high

severity, which hindered the normal task flow in most cases.

The learnability of the inconsistent icons and the non user-centered labeling in the
Protégé interface, however, were issues for some participants. The usage of inconsistent
icons in the interface created a major challenge for participants who had experience with
Microsoft products. The non-user-centered labeling and wording created setbacks for
end-users. The difficulty in learning was increased when labeling and wording are related

to Knowledge engineering terminologies.

Satisfaction: The results of the post-test questionnaire examined the participants’ overall
experience with the Protégé and PCPACK KA tools. Overall, satisfaction ratings from
the post-test questionnaire suggest that these tools are somewhat easy to use with Protégé
scoring 5.735, and PCPACK, 5.336. Also, the participants reacted positively to most of

the aspects of both tools. Creating ontology/ladders, using PCPACK menus, and

86

navigating toolbars seem the most difficult in users’ satisfaction ratings. During the
satisfaction questionnaire, most users expressed their dissatisfaction with Protégé

aesthetics and with PCPACK’s abundant functions and features.

5.3. Lessons Learned

The process of designing usability tests, and collecting and analyzing data provided the
authors with important experience in usability testing. From the testing, we learned that
the selection of critical tasks and representative users in accordance with the test criteria
is one of the important pre-conditions for gathering useful data to provide

recommendations for further improvements to the system.

Identifying problems that the test users were having with KA tools (Protégé and
PCPACK), and exploring the issues arising from the problems was complex because
three different categories of issues that provided us with valuable lessons related to user
study and to KA tools arose from this investigation. First, problems reported in the

previous sections were mostly related to the specific tool.

Second, we identified typical user issues that come with most usability studies.
e Users brought their biases and experiences with them
e Users compared the given interface to the interfaces that they have used before,
and these comparisons revealed a great deal about an interface’s usability
e Users if motivated to use the tools could have tried more features and

functionalities, and thereby more problems could have been reported

87

Finally, we discovered few issues that were purely related to the development of
knowledgebases using both tools.
e The sequence of task activities in the system mostly differed with the users’
cognitive model of the task.
o Limited familiarity with the knowledge engineering concepts leads to the
misunderstanding of naming and wording that were used in KA tools’ interface.
e Users required a detailed understanding of the knowledge model
(ontology/ladder) before creating a knowledgebase structure, because most

participants had difficulties in understanding and using the knowledge model.

5.4. Recommendations

The usability study of Protégé and PCPACK KA tools (described in chapter 4) produced
a set of usability metrics along with a set of usability problems, which were presented in
section 5.1. The metrics can be used as benchmarks for further study of KA tools. To
alleviate the observed problems, we conducted an analysis of these problems in section
5.2. The analysis of these problems revealed two different types of problems: (i) that are
common in both tools, and (ii) that are explicitly related to one of the particular KA tool.
Based on this we make two different types of recommendations for further improvement
of these tools. First, considering the commonality of the problems we make the following
two general recommendations.

1) Test participants need to perceive and use a number of functionalities (Table 4.3 for

Protégé and table 4.4 for PCPACK) to perform a KA task (Table 4.2). However, I

2)

88

observed many users failed to perceive the sequence of required functionalities to
perform the given tasks. Such type of recurring problems was observed in both
Protégé and PCPACK KA tools. To alleviate these problems, the sequence of
functional activities of these KA tools can be examined thoroughly to discover the
interaction difficulties.

Analysis of results in section 5.2 indicates that participants had difficulties in
understanding non user-centered labeling and wording borrowed from knowledge
engineering terminologies. To alleviate these problems, the usage of user-centered

labeling and wording and some background on KA process are recommended.

Second, a set of product-specific recommendations were produced based on the analysis

of the results presented in section 5.2. The following actions are recommended to

improve the Protégé knowledge acquisition tool.

1.1

1.2.

Search option in the system help is very common and useful feature to learn and
understand a particular system. However, it has been found that there is no search
option in the Protégé help system. The help system should provide search
functionality to facilitate searching by topics.

As most of the users are familiar with the Windows platform, metaphors used in
Protégé should be consistent with those in Windows. For example, in the Save
dialogue, the metaphor “Move one level up” and “create new folder” should be
consistent with the de facto windows standard. The usage of the de facto standard

increases the efficiency in use for both expert and end users.

1.3.

1.4.

L.5.

1.6.

1.7.

1.8.

89

The usage of ambiguous tool tips can create difficulties in learning and
understanding the new user interface features. The analysis of results (section 5.2)
indicates that a number of users were confused by ambiguous tool tips. Tool tips
text messages used with icons should be precise, specific, and provide a direct
reference to the icon function.

Drop-down lists, such as “Role,” “Relationship,” “Browse,” and “Selected widget
type” remained unnoticed to the users because both the label and the drop-down
list item were in the same color. For grabbing users’ attention, the drop-down item
should be a different color than that of label.

Colors (Pale, Yellow) have been used to distinguish between systems object and
user-created objects, but a number of partially colorblind users failed to make the
distinction. Alternative cues should be used so that this minority percentage of
users can distinguish between the objects.

Participants were confused using ‘+’ (to attach a slot with a class) and ‘C’ (Create
a slot, class) buttons because a number of users were already familiar with the ‘+’
sign for creating objects in other applications. The use of ‘A’ ('to attach an object)
instead of ‘+’ will be easier for the user.

Many participants failed to identify “Add/ delete note” icon from the toolbar.
Using a bright color for the “Add/delete note” icon and placing it in the left of the
class form can focus the users’ attention.

Most users faced problems in specifying the cardinality of the slot; therefore, the

cardinality of the slot should be re-examined.

90

Similarly, based on the findings from the analysis of usability results presented in section

5.2, we recommend the following improvements for the PCPACK KA tool.

I.1.

1.2.

1.3.

1.4.

1.5.

L.6.

Users frequently selected the wrong icon; therefore, further research is required
to determine the icon for a specific function, so that the icon’s functionality in
the system is easy to recognize, and interpret, and so that the user will not have
to remember complex metaphors.

Due to similarity in appearance and meaning most users tried to use “Ladder
up” icon (to delete a child) instead of “Move up” (moving one step up in the
ladder). For better understandability, it is recommended to avoid using similar
appearances for different types of icons.

The analysis of results indicated that objects in the user failed to garb user
attention due to high display density and poor color contrast. Increasing the
object size, and the spacing between objects; and implementing a high degree of
color contrast can make the interface objects more visible to the users.

To prevent the unexpected modification of knowledge bases, the system should
provide feedback information during the updating of knowledgebases.

Having “Import” and “Open” options for loading and opening a knowledgebase
confused many participants as “open” is known to be used for both purposes,
and “import” is generally used for importing a project/file from another system.
In this regard, it is recommended that the “open” option be used for both
opening and importing knowledgebases.

PCPACK is used for inserting, deleting and editing knowledge entries in the

Knowledgebases. For the lack of “Undo” option users frequently lost

91

knowledge entries. The addition of an “Undo” function in the PCPACK KA tool

will allow for the retrieval of lost knowledge entries.

Although these recommendations are product-specific, and based on the results of a
systematic study conducted in this thesis, designers should not view these as a
comprehensive list or final solution to prevent usability issues because these are based on
a segment of users (only end-users) who performed a set of test tasks in the education
domain. In implementing these recommendations the designers need to be cautious so
that the design change will not create any further usability problems for the users that

were not considered in this thesis.

5.5. Discussions of the Study

The experimental study conducted in this research measured a number of usability
attributes” and identified a set of usability problems. The findings of this study were
limited in term of certain issues’. In the following, the limitations of the findings and if

possible, the ways to overcome these limitations were discussed:

First of all, the purpose of this study was to investigate how end-users perform with
Protégé and PCPACK KA tools. Thereforé, the study used only the tasks that were
pertaining to the end-users of Protégé and PCPACK KA tools. Knowledge engineers are

the other types of users who perform different types of tasks. As a result, they could face

? Measures: learnability, understandability and satisfaction
3 Selection of users, available resources and experimental setup

92

different types of challenges that were not included in this study may affect the

generalization of the current findings.

Another important user issue that limits the findings of the study is the differences of user
skills. During the review (section 4.3.5) the researcher found that a majority of the
participants’ who had positive attitudes and interest toward new computer system
performed better than others’. Such an inclination toward a new system by the majority of
the test participants decreases the reliability of the Iresults because the real end-users
rather have mixed attitudes. The larger number of users from broad user categories in
terms of ages, professions and skills could provide more reliable results. The other
advantage is that it would increase the likelihood of uncovering problems unique to

specific types of users.

The tests of Protégé and PCPACK KA tools were conducted in two consecutive® test
sessions. In the second session, users became tired and less interested toward the test
tasks. Therefore, instead of trying to overcome any difficulty they simply abandoned the
test task resulting lower performances with PCPACK KA tool. Since users frequently
abandoned tasks in the second session, a large portion of the PCPACK tasks remained
inaccessible; therefore, fewer problems were noticed from their task activities in compare
to Protégé. The above problems affect the reliability of the findings and can be overcome

by scheduling the test of Protégé and PCPACK KA tools in two different days. If it’s not

% Electrical and Mechanical Engineering graduate students, and Computer Science first year
Undergraduate students

5 Mathematics and Statistics graduate students

® Protégé in first session and PCPACK in the second session

93

possible within the available budget, the users can be divided in two different groups. In
the first session, instead of assigning all users to perform tasks with Protégé KA tool two
groups can be assigned to perform tasks with two different KA tools. In the second
session, they (two groups) can be assigned to perform tasks with alternate KA tools that

may minimize the affects of the above-mentioned problems.

The usability attributes (subjective and objective) were measured within the scope of the
available resources. Objective attributes: understandability and learnability were
measured in terms of a limited number of metrics’ rather than all the available metrics;
and, subjective satisfaction ratings were collected through a set of questionnaire. Users
rated the aspects (included in the questionnaire) based only on their limited experiences
with the test tasks rather than based on the experience with all interface features and
functionalities. These limitations in measuring the required attributes may affect the

usage of these measures as a benchmark for further usability study.

7 (i) Understandability metrics: function understandability, function accessibility; (ii) learnability metrics:
help accessibility and help efficiency

94

6. Conclusions

6.1 Contributions

In this thesis we examined two KA tools for usability evaluation. We reviewed major
usability techniques and methods for selecting appropriate techniques and methods for
our study. For usability studies, Hix’s “Checklist based methodology” has been adopted
and modified for the evaluation of Protégé and PCPACK KA tools. Following this
methodology, usability experiments have been designed and conducted for assessing

usability and for identifying the usability problems of the two KA tools.

The usability of the two KA tools Protégé and PCPACK was studied using a population
of graduate and undergraduate students for the domain of student information system.
Objective and measurable usability attributes such as, accessibility, function
understandability, help accessibility, and help effectiveness were measured to obtain the
understandability and learnability of these KA tools. A satisfaction questionnaire was
used to collect users’ attitude in different aspects of these tools. In term of these
attributes, Protégé seems somewhat better of the two KA tools except in its help feature.
Overall, participants reacted positively to both KA tools. The study also reported in
chapter S the critical usability problems in both KA tools. The critical problems were
analyzed to determine where usability principles were violated. Product-specific
recommendations were made in that chapter to help designers adhere to these principles
in future improvements of these two tools. The use of product-specific recommendations

in the future design can help to increase the usability of the KA tools.

95

The major finding from this study is that KA tools need a balance of simplicity and
functionality. Although Protégé has more problems with respect to “Visualness” and
language of expression, its simplicity allowed the participants to complete more tasks
using Protégé when compared to PCPACK. The other important result is there is striking

similarity in the identified shortcomings by the end-users’ when using these two tools.

6.2. Future Work

This study was conducted using a specific case study of student information systems
where a sample set of tasks were tested with ten users. The results of this study provided
specific information on the usability of knowledge acquisition tools. Although this
information is helpful, it also provides opportunities for further study of the usability of
knowledge acquisition tools. The opportunities include varying the population of end
users to eliminate any bias; testing the features of the tools more thoroughly such as
testing menu navigation, testing the usability of labels, icons and icon metaphors. Also,
critical usability issues from this research can be re-investigated to understand their

impact on the KA tools’ user interface.

The results of the tests indicate that participants face difficulties in selecting the sequence
of task activities, understanding the labels and recognizing the icons. Further work can be
done in designing user-centered tasks, icons, and labels for KA tools. It also remains to

be tested the effectiveness of the product specific recommendations made in this thesis.

96

Reference

1.

[Avouris 2002] Avouris, N.M. An Introduction to Software Usability: A report of
Network of Excellence on Software Usability funded by the Greek Secretariat for
Research and Technology (GSRT) 2002.

[Bias 1991] Bias, R. Walkthroughs: Efficient collaborative testing. IEEE Software
8,5 (September), 94-95.

[Brian 1996] Brian R. Gaines and Mildred L. G. Shaw “Eliciting Knowledge and
transferring it Effectively to a Knowledge-Based System”, a research report of
Knowledge Science Institute University of Calgary
(http://ksi.cpsc.ucalgary.ca/articles/KBS/KSS0/).

[Brian 1998] Brian R. Gaines and Mildred L. G. Shaw “Web Grid: Knowledge
Modeling and Inference through the World Wide Web” A report of Knowledge
Science Institute, University of Calgary (http://repgrid.com/reports/KBS/KMD/)
[Blythe 2001] Blythe, J., Kim, J., Ramachandran, S. and Gil, Y. " An Integrated

Environment for Knowledge Acquisition" International Conference on Intelligent
User Interfaces, 2001.

[Birmingham 1989] Birmingham, W. and Klinker, G. " Building Knowledge
Acquisition Tools" A publication of Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, 1989.

[Butler 1996] Butler, K.A. “Usability Engineering Turns 10” Interaction, January
1996.

[Chaudhry 1998] Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D. and Rice,
J.P. OKBC: A programmatic foundation for knowledge base interoperability. In:
Proceedings of the Fifteenth National Conference on Artificial Intelligence.
Madison, Wisconsin, July 1998.

[Cupit 1999] Cupit, J.,, Shadbolt, N., Cheng, P. Peebles, D. “Compiling
Ontologies _into Structured Views and Interviews : The Design of A
Diagrammatic Knowledge AcquisitionTool” KAW99, Voyager Inn, Banff,
Alberta, Canada.

10. [Carol 2002] Carol M. Barmmum “Usability Testing and Research" A Longman

Publications-2002.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

97

[Corde 2001] Corde, R.E. Task selection-bias: A Case for User-Defined Tasks,
International Journal of Human-Computer Interaction 13(4) 411-419.

[Kirakowski 1993] Kirakowski, J. and Corbett, M. SUMI: The Software Usability
Measurement Inventory, British Journal of Educational Technology, 24(3), 210-
212.

[Davis, 1979] Davis, R. Interactive transfer of expertise: Acquisition of new
inference rules. Artificial Intelligence, 12, 121--157
[Dix 1998] Dix. A, Finlay. J, Abowd. G, and Beale. R."Human-Computer
Interaction- 2" Edition: Evaluation Techniques” Prentice Hall-1998
[Drs. 1998] Drs. Erik P.W.M. and van veenendaal CISA “Questionnaire based
usability testing “in Conference Proceeding of European software quality week,
Brussels, Nov-1998.

[Dumas 1993] Dumas, J. S. & Radish, J.A. Practical Guide to Usability Testing,
Ablex Publishing, Norwood, NJ.

[Embrey 2000] Embrey, D. Task Analysis Techniques, A technical report of
Human Reliability Associates Ltd. 2000.

[Folmer 2004] Folmer, and E. & Bosch, J. “ Architecting for usability; a survey”
Journal of systems and software. issue 70-1, 2004. pp. 61-78.

[Gennari 2002} Gennari, J., Musen, M.A., Fergerson, R.W., Grosso, W.E., Noy,
N.F. and W. Tu, S.W. The Evolution of Protégé: An Environment for Knowledge-
Based Systems Development. 2002
Girgensohn, A. and Shipman, F.M. Supporting Knowledge Acquisition by End
Users: Tools and Representations, 1992 ACM 0-89791.

[Guillemette, R.A. 1995] Guillemette, R. A, “ The evaluation of usability in
interactive information systems” Chapter 13, Human Factors in Information
Systems: Emerging theoretical bases, Ablex Publishing Corporation, New Jersey,
1995.

[Hayes-Roth 1963] Hayes-Roth, F., Waterman, D.A. & Lenat, D.B., Eds. (1983).
Building Expert Systems. Reading, Massachusetts: Addison-Wesley
[Hix 1991] Hix, D., and Schulman, R.S. Human-computer interface development

tool: Communication of the ACM, March 1991/Vol. 34 No. 3

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

98

[Hix 1993] Hix, D. & Hartson, H.R. Developing user interfaces: Ensuring
usability through product and process, Chap 2. Willy & Sons, NY

[ISO 9241-11 1998] ISO 9241-11 Ergonomic requirements for office work with
visual display terminals (VDTs) — Part II: guidance on usability (1998)

[ISO 9126-2] ISO/IEC 9126-2: Software engineering —Product quality —
Part 2: External metrics.

[Jackson, 1999] Jackson, Peter. Chapter 10, Introduction to Expert Systems.
Addison-Wesley, 1999.

[Jones 1989] Jones, Mark. K. Human-Computer Interaction: a design guide
Educational Technology Publications, New Jersey.

[Jtrigen 1994] Jtirgen, K.B., John, M. C., Mary, B. R. and Mark K. S. "
Comparative Usability Evaluation: Critical incidents and critical threads" CHI-94
(21]

[Jacobsen 1999] Jacobsen, N.E. " Usability Evaluation Methods: The Reliability
and Usages of Cognitive Walkthrough and Usability Test" Department of
Psychology, Copenhagen University, Denmark, 1999,

[Kline 2002] Kline, R., Seffah, A., Javahery, H., Donayee, M., & Rilling, J.

(2002, September). Quantifying developer experiences via heuristic and

psychometric evaluation. Proceedings of the IEEE Symposia on Human Centric
Computing Languages and Environments (HCC 2002), Arlington, VA, pp. 34-36.
[Kim, 2000] Kim, J. & Gil Y. User studies of an interdependency-based interface

for acquiring problem-solving knowledge. Conference on Intelligent User
Interfaces (IUI-2000), New Orleans, Louisiana.

[Kantner 1994] Kantner, L. " Techniques for Managing a Usability Test” IEEE
Transactions on Professional Communication, Volume 37, Number 3, September
1994.

[Kartz] Katz B. “From Sentence Processing to Information Access on the World
Wide Web” An Qverview of the START System

[Keenan 1999] Keenan, S. L., Hartson, H.R, Kafura, D.G, and Schulman, R.S

“The Usability Problem Taxonomy: A Framework for Classification and
Analysis”, Empirical Software Engineering, 4, 71-104(1999)

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

99

[Kahn 1984] Kahn G., and McDermott J. MORE: an intelligent knowledge
Acquisition tool. In Proc. 9™ International joint conference on Artificial
Intelligence, pp.581-4.

[Kelly 1995] Kelly, T. & Allender, L. Why choose? A process approach to
usability testing. In Yuichiro Anzai, Katsuhiko Ogawa, & Hirohiko Mori (Eds.),
Symbiosis of human and artifact: Human and social aspects of human-computer
interaction proceedings of the sixth international conference on human computer
interaction,Tokyo, Japan, 9-14 July 1995, Volume 2 (pp.393-398). Amsterdam:
Elsevier.

[Lansdale 1994] Lansdale, Mark. W., and Ormerod, Thomas. C. “Understanding
interfaces: A Handbook of Computer Dialogue”, Academic Press, 1994.

[Lea, 1988] Lea, M. Evaluating user interface designs. In T. Rubin (Ed.), user
interface design for computer systems (pp. 134-167). Chichester, England: Ellis
Horwood.

[Lewis 1982] Lewis, C. Using the “ Thinking Aloud” method in cognitive
interface design. Research report RC9265, IBM T.J. Watson Research Center,
Yorktown, NY.

[Matera 2002] Matera, M., Costabile, F. M., Garzotto, F. and Paolini, P. SUE
Inspection: An effective method for systematic usability evaluation of
Hypermedia, IEEE transactions on systems, man, and cybernetics- Part A: System
and humans Vol. 32 No. 1, January 2002.

[Mayhew 1999] Mayhew J. Deborah " The Usability Engineering Life Cycle:
Usability Goal Setting" Morgan Kaufmanns Publishers, INC- 1999.

[McGraw 1989] McGraw, LK. Harbison-briggs, K. "Knowledge Acquisition:
Principles and Guidelines " Prentice Hall, Englewood Cliffs, New Jersey, 1989.
[Mildred L.G] Mildred L. G. Shaw and Brian R Gaines “WebGrid: Knowledge
Elicitation and Modeling on the Web”
(http://ksi.cpsc.ucalgary.ca/articles/ WN96/WNIOWG/WNIO6WG.html)

[Maulsby, S., 1993] Maulsby, S., Greenberg, S., & Mander, R. Prototyping an
intelligent agent through wizard of oz. In INTERCHI-93

100

46. [Mack 1994] Mack, R. L. & Nielsen, J. (1994). Usability inspection methods.
New York, NY: John Wiley & Sons. ISBN 0-471-01877-5.

47. [Meij 1997] Meij, H.V.D. The ISTE Approach to Usability Testing, IEEE
Transactions on Professional Communication, Vol. 40, No. 3, September 1997.
48. [Musen 19889] M. Musen An Editor for the conceptual models of interactive
knowledge-acquisition tools. International Journal of Man-Machine Studies 31,

673-698.

49. [Nielsen 1993] Nielsen, J. Usability engineering. San Fransisco, CA: Morgan
Kaufmann. ISBN 0-12-518406-9.

50. [Nielsen 1994] Nielsen, J. (1994). Heuristic evaluation. In J. Nielsen and R. L.
Mack (Eds.), Usability inspection methods (pp. 25-62). New York: John Wiley.

51. [Nigel 2000] Nigel Bevan- ISO and Industry standard for user centered design a
report for Serco, UK at 2000.

52. [Noy 2000] Noy, N.F. Grosso, W. & Musen, M.A., Knowledge-Acquisition
Interfaces for Domain Experts: An Empirical Evaluation of Protege-2000.
Twelfth International Conference on Software Engineering and Knowledge
Engineering (SEKE2000), Chicago, IL, 2000.

53. PCKAK4- Knowledge Acquisition tools (http://www.epistemics.co.uk/Notes/55-

0-0.htm)
54. Protégé 2000 user’s Guide (http://protege.stanford.edu/useit.html) developed by

Stanford Medical Informatics at the Stanford University School of Medicine

55. [Preece 1994] Preece, J. et al. Human-Computer Interaction, Addison-Wesley
Publication, 1994.

56. [Pureta 1994] Puerta, A. R.; Eriksson, H.; Gennari, J.; & Musen, M. A. Model-
Based Generation of User Interfaces. Seattle WA, 1994.

57. Performance Measurement Hand Book —version 3, Serco Usability Services

58. [Rubin 1994] Rubin, J. “ Handbook of Usability Testing: How to Plan, Design,
and Conduct Effective Tests” —John Wiley and Sons, Inc. 1994.

59. [Rosson 2002] Rosson, M.B., & Carroll, J.M. 2002 "Usability Engineering:
Scenario-Based Development of Human-Computer Interaction”, Morgan

Kaufmann Publishers.

101

60. [Roberts] Roberts, T.L., and Moran, T.P. The evaluation of text editors:
methodology and empirical results. Communication of ACM: 26, 4.265-283.

61. [Speel 1999] Speel P.H. et al. 1999 “Kknowledge Mapping for Industrial
Purposes” 12th Conference Knowledge Acquisition, Modeling and Management
Voyager Inn, Banff, Alberta, Canada.

62. [Seffah et al. 2002] An integrated framework for usability measurement. 12th
Internal Conference on Software Quality, Ottawa, Ontario.

63. [Shreiber 1994] “CommonKADS: A Comprehensive Methodology for KBS
Development”, IEEE Expert, Intelligent Systems and their Applications, vol. 9,
no. 6, December 1994, pp.28-37.

64. [Shakel 1991] Shakel, B. Usability- context, framework, design and evaluation,
Human factors for Informatics Usability. Cambridge University Press, Cambridge
21-38.

65. [Shneiderman 1987] Shneiderman, B. Designing the user interface: Strategies for
effective human computer interaction. Reading, MA: Addison Wesley.

66. [Tallis, et al. 1999] “Studies of Knowledge Acquisition tools: Methodology and
Lessons Learned” KAW-99 proceedings, Alberta, Canada.

67. [Telford 1999] Telford, D.G., and Brown, M. Task-based software testing.
Software Tech News Vol. 3, No. 3, 1999.

68. Usability- Special Interest Group (http://www.stcsig.org/usability/)

69. [Victoria 1999] Victoria, E.L, “User Interface design and Usability Testing: An

Application”, A Masters thesis submitted to the School of Information and
Library Science, University of North Carolina at Chapel Hill.

70. [Wharton 1994] Wharton, C., Rieman, J., Lewis, C., and Polson, P. (1994). The
Cognitive Walkthrough Method: A Practitioner's Guide. In Usability Inspection
Methods, J. Nielsen and R.L. Mack (Eds.), New York: John Wiley & Sons,
pp-105-141.

71. [Wixon 1994] Wixon, D, Jones, S., Tse. L., and Casaday, J. Inspections and
design reviews: Framework, history and reflection. In Nielsen, J., and Mack, R.L.

(Eds.), Usability Inspection methods. John Willy & Sons, Boston, MA. 89-92.

102

72. Zang, Z. “ An Overview of Usability evaluation methods”
(www.cs.umd.edu/~zzi/Usabilityhome.html.

103

APPENDIX
APPENDIX A
Al. Please rate your degree of skill in using the following software.

Not Not Sontewhat Comtfortable Very

Applicable Comfortable Comfortable (3) Comfortable

(2) (4)

Windows

95/Me/MP

Linux/Unix

Microsoft Word

Microsoft

Access

Microsoft Excel

Programming

Others (specify)

104

A2. Orientation Script

Hi, my name is Lokman. I will be working with you in today’s session.

Let me explain why we’ve asked you to come here today.

We’re here to test knowledge acquisition tool Protégé 2000 and
PCPAKA4; in this regard we’d like your help.

You will be performing some typical tasks with these tools today; I
would like you to perform as normally would. Usually, each task takes
3-5 minutes. Since, we are not measuring the task time; you may take as
much time as you need. I hope you will be done within 15 minutes. You
may ask me question any time, I am not answer them because this is a
study. Since there is online support document we will see how helpful

these documents for you.

During today’s session 1‘ll also be asking you to complete some forms
and answers some questions. It’s important that you answer truthfully.
My only role here is to discover the flaws and advantages of the

products from your perspective.

While you are working, I'll be sitting nearby taking some notes. The
task session will be recorded by screen capturing software. Also your
comments will be recorded through microphone for the purpose of

discovering the misconception.

Do you have any question?

If not, then lets begin by having you sign the nondisclosure agreements

and consent to

105

A3. Consent Form

I understand that screens capture and voice recordings will be made of
my session. I grant Human computer interaction research group of
computer science department, Concordia University to use these
recordings for the purpose of research, and waive my right to review

or inspect the tapes prior to their dissemination and distribution.

Please print name:

Signature:

Date:

Ad. Task Scenario

Protégé KA tool

Please perform the following tasks using Protégé KA tool. The tasks need to be
performed in the given order because every individual task is depended on the previous
tasks. I want you to attend all the tasks and discover the flaws in the tool. In the mid of a
task, if you think you wouldn’t be able to complete the task, please discard the task, and

start the next task by clicking into the given desktop icon for that task.

1) Create a project for student information system.

2) Create root level class “student” for the ontology.

3) Create subclasses for the root class in the given taxonomy: (First, create
subclasses “Graduate”,” Undergraduate” from the “student” class. In
the second phase, create “Masters” and “PhD” class as subclass of
“Graduate” class, after that create “Full-time” and “Independent” as

subclass of “Undergraduate” class.

106

4) Create multiple inheritances for “Independent”’ class: “Independent”
class should have another super class “Graduate”, as there are
independent graduate students.

5) Delete the class “Full-time” from the hierarchy.

6) Create the following slots with student class: name, student-id, previous-
institute, and nationality, scholarship, CGPA.

7) Specify the artifacts for the slots created in task 5.

8) Attach the slot Scholarship with the “Graduate” class.

9) Delete the “previous-institute” slot.

10) Customize the form for “Graduate” class.

11) Insert the following instance for student class into the knowledge base:

i. Name: Jasmine
ii. Student-id: 4355362
iii. Nationality: Canada
12) Create a query to find out the list of graduate students who are receiving

scholarship.

PCPACK KA Tools

Please perform the following tasks using PCPACK KA tool. The tasks need to be
performed in the given order because every individual task is depended on the previous
tasks. I want you to attend all the tasks and discover the flaws in the tool. In the mid of a
task, if you think you wouldn’t be able to complete the task, please discard the task, and
start the next task by clicking into the given task number (e.g. Task3) in the tool launcher

window of PCPACK.

1) Create an empty knowledgebase for student information system with the
ladder tool.

2) Create a new “student-info” ladder

107

3) Create root node “Student” for the new ladder.

4) Create the following children nodes: (First, create node “Graduate”,
“Undergraduate” as the direct children of “student”” node. In the second
phase, create “Masters” and “PhD” node as direct children of
“Graduate” node, after that create “Full-time” and “Independent”’ node

2

as direct children of “Undergraduate”” node.

5) Create the following attributes with the student node: name, student-id,
previous-institute, nationality, and CGPA.

6) Create multiple inheritances for “Independent” node. “Independent”
node should have another parent ‘“’Graduate”, as there are also
independent graduate students.

7) Delete the “full-time” node.

8) Create an annotation template for “Graduate” node that will display the
name of the children nodes and the attributes values of that node.

9) Insert the following instance for the independent node:

i. Name: Jasmine
ii. Student-id: 4355362
iii. Nationality: Canada

10) Create attribute matrix with the matrix tool.

AS. Post-test Questionnaire

Question 1: Are there any parts of the interface that you found confusing or difficult to

understand?

Question 2: What are the worst aspects of the tool?

108

Please rate the following aspects of Protégé and PCPACK KA tools in the scale of 1 to 7

(7 is easy to use, 5 for somewhat easy, 3 somewhat difficult, and 1 is difficult)

Aspects of the KA tool Protégé (Mean | PCPACK (Mean

satisfaction Score.) | satisfaction score)

Starting the tool

Creating ontology/ladder

Customizing/ annotating the

tool

Inserting the instance

Selecting icon from the

toolbar

Using Menu bar and popup

menu

Understanding naming/

labeling

Overall

109

APPENDIX B

B1. Participants Computer Expertise

(Scale: 0- Not Applicable, 1- Not Comfortable, 2-Somewhat Comfortable, 3-Comfortable, and 4-

Very Comfortable)

Question Value Frequency | Percentage

Degree of comfort with |0 0 0

Windows 95/98 1 0 0

2 0 0

3 3 30

4 7 70

Degree of comport with Linux/ | 0 5 50

Unix OS 1 3 30

2 2 20

3 0 0

4 0 0

Degree of comfort with |0 1 10

Microsoft Excel 1 1 10

2 1 10

3 2 20

4 5 50

Degree of comfort with other | 0 4 40

Tools 1 1 10

2 1 10

3 0 0

. 4 4 40

Degree of comfort with|0 0 0

Microsoft word 1 0 0

2 0 0

3 3 30

4 7 70

Degree of comfort with|0 6 60

programming 1 1 10

2 0 0

3 0 0

4 3 30

Table: Users expertise with other applications

B2. Knowledgebase published by PCPACK4

uSu nt
QzlGrgduate
W1 mMasters
[® 4438586
[asza3s7
Q@ pro
B ssaaz7e
B 2425262
B 1ndependent

Grad-Diplama
(@ Underarsduate

E’ Part-time

B Full-time

Related links
« Masters

(81(©) Graduate

110

1| objectName : 4624337 !

4{ - Subtypes | R
- Super Types .
S é Atftribute Value tnherited from
; ‘ [Name James : 4
" Attributs ;
tbutes : |Residency |Canadian
§ { 1Scholarship|TA

