NOTE TO USERS

This reproduction is the best copy available.

®

UMI

EFFICIENTLY MINING FREQUENT ITEMSETS FROM VERY

LARGE DATABASES

JIANFEI ZHU

A THESIS
IN
THE DEPARTMENT
OoF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF DOCTOR OF PHILOSOPHY
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

SEPTEMBER 2004

© J1ANFEIZHU, 2004

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-96957-6
Our file Notre référence
ISBN: 0-612-96957-6

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

[b |

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Efficiently Mining Frequent Itemsets from Very Large Databases

Jianfei Zhu, Ph.D.

Concordia University, 2004

Efficient algorithms for mining frequent itemsets are crucial for mining association rules and for
other data mining tasks. Methods for mining frequent itemsets and for iceberg data cube com-
putation have been implemented using a prefix-tree structure, known as a FP-tree, for storing
compressed frequency information. Numerous experimental results have demonstrated that these
algorithms perform extremely well. In this thesis we present a novel FP-array technique that greatly
reduces the need to traverse FP-trees, thus obtaining significantly improved performance for FP-tree
based algorithms. The technique works especially well for sparse datasets. We then present new
algorithms for mining all frequent itemsets, maximal frequent itemsets, and closed frequent item-
sets. The algorithms use the FP-tree data structure in combination with the FP-array technique
efficiently, and incorporate various optimization techniques. In the algorithm for mining maximal
frequent itemsets, a variant FP-tree data structure, called a MFI-tree, and an efficient maximality-
check’mg approach. are used. Anqther variant FP-tree data structure, called a CFl-tree, and an
efficient closedﬁess—tésting ai)proach ére also given in the algorithm for mining closed frequent item-
sets. Experimental results show that our me;cllnods outperform the existing methods in not only
the speed of the algorithms, but also their memory consumption and their scalability. We also
notice that most algorithms for mining frequent itemsets assume that the main memory is large
enough for the data structures used in the mining, and very few efficient algorithms deal with the
cases when the database is wery large or the minimum support is very low. We thus investigate
approaches to mining frequent itemsets when data structures are too large to fit in main memory.
Several divide-and-conquer algorithms are presented for mining from disks. Many novel techniques
are introduced. Experimental results show that the techniques reduce the required disk accesses by

orders of magnitude, and enable truly scalable data mining.

il

Acknowledgments

I would like to express my gratitude to all those who made it possible for me to complete this thesis.
I want to thank the Computer Science Department for giving me permission to commence this thesis
in the first instance, and to do the necessary research work. Ithank Prof. Dr. L. V. S. Lakshmanan,
my former co-supervisor and now the professor of University of British Columbia, who gave me
financial support for two years, supervised me and helped me so much. I learned a lot from him and
he was very kind to me.

I am deeply indebted to Prof. Dr. G. Grahne who is both my supervisor and my friend. As a
supervisor, he and Dr. Lakshmanan brought me from China, which totally changed my life. His help,
stimulating suggestions and encouragement helped me during the time of my research and writing
of this thesis. As a friend, he has suffered due to my English patiently without any complaints and
has always been nice to me.

My officemates and friends, Ritesh Mukherjee, Victoria Kiricenko and Alina Andreevskaia sup-
ported me in my research work, being especially helpful with my English style and grammar. T am
very grateful for all their assistance. I also want to thank all my friends. Especially Dr. Jianlong
Lin, who encouraged and helped me to apply for the Ph.D. program in the Department of Computer
Science in Concordia University.

Finally, I would like to give my special thanks to my parents who gave birth to me and raised
me for a long and difficult time, my wife Haixin Xia whose patient love enabled me to complete this

work, and my daughter Michelle who gave me much happiness and encouraged me to go ahead.

iv

Contents

List of Figures viii
List of Tables xii
1 Introduction 1
1.1 Motivation e e e 2
1.2 Contributions e e 4
1.3 Organization of thisthesis oo oo oo 5

2 Problem Definition and Related Work 7
2.1 Problem Definition L o 7
2.2 Related Work 10
2.2.1 Mining All Frequent Itemsets 10

222 Mining MEDs 0 o e 15

223 Mining CFT's e 18

2.3 Mining frequent itemsets in very large databases L. 19

3 Discovering All Frequent Itemsets 21
3.1 FP-array technique L e 21
3.2 DISCUSSION . . .« v v v vt i e e e e e 23
3.3 FPgrowth* : an improved FP-growth method, 24
3.4 Experimental evaluation and performance study L. 25
3.4.1 FPgrowth* versus FPgrowth, 25

3.4.2 FPgrowth* versus other algorithms 27

4 Discovering Maximal Frequent Itemsets: First Attempt

41 TheMFIL-Tree. o e e e e
4.2 FPmax: Discovering maximal frequent itemsets
4.3 Maximality checking L o
4.4 Data characteristics and performance L 0oL
4.4.1 Experiments on syntheticdata o oL :
4.4.2 Experiments onreal datasets Lo
4.4.3 Scalability of the algorithms

5 Discovering Maximal Frequent Itemsets: Second Attempt

51 FPmax™ Mining MFDPs
5.2 Maximality checking
5.3 Anoptimization
54 Discussion oL e
5.5 Experimental evaluation L o

5.5.1 FPmax* versus FPmax, MAFIA and GenMax

5.5.2 FPmax* versus other algorithms

6 Discovering Closed Frequent Itemsets
6.1 The CFI-tree and algorithm FPclose

6.2 Performance study

7 Mining Frequent Itemsets from Secondary Memory

7.1 Strategies for mining frequent itemsets from disk
7.2 Algorithm Diskmine L
7.2.1 Divide-and-conquer by aggressive projection
7.2.2 Memory management
7.2.3 Applying the FP-array technique
724 Statistics
7.2.5 Groupingitems
7.2.6 Database projection
727 ThediskI/O%s e,

vi

37
38
40
42
43
45
47

49

51
51
53
54
54
56
56
58

65
65
68

76

7.3 Experimental Results.

8 Conclusions and Future Work

8.1 Summary of thisthesis
82 Futurework
Bibliography

vii

List of Figures

2.1
2.2
2.3
24
2.5
2.6
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

Anitemset lattice Lo 8
Adatabaseexample L oL 9
Algorithm Apriorio . L e 11
An Example FP-tree e 13
Algorithm FP-growth o o 14
The bitmap representation and the depth-first search 16
Two FP-array examples L 22
Algorithm FPgrowth* 25
FPgrowth* vs. FPgrowth on sparse datasets 26
FPgrowth* vs. FPgrowth on dense datasets 27
Runtime of Mining All FI’s on T20I10N1KP5KC0.25D200K 29
Runtime of Mining All FP’s on T100I20N1IKP5KC0.25D200K 29
Runtime of Mining Al FI'son chess 30
Runtime of Mining Al F’s on conmect 30
Runtime of Mining All FI’s on mushroom 31
Runtime of Mining Al FI's on kosarak L 31
Runtime of Mining Al F’'s on accidents 31
Runtime of Mining Al F’s on pumsb™® 31
Memory Usage of Mining All FI's on T20I10NIKP5KC0.25D200K 33
Memory Usage of Mining All FI’s on TI100I20N1KP5KC0.25D200K 33
Memory Usage of Mining Al FP’son chess. 34
Memory Usage of Mining Al FI’son connect 34

viii

3.17
3.18
3.19
3.20
3.21
3.22
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Memory Usage of Mining All FI’s on mushroom 34

Memory Usage of Mining Al FI'son kosarak 34
Memory Usage of Mining Al FI’s on accidents 34
Memory Usage of Mining Al FI's on pumsb® 34
Scalability of runtime of Mining ALFT’'s 36
Scalability of Memory Usage of Mining Al FI’s 36
Construction of a MFI-tree e 38
Construction of Maximal Frequent Itemset Tree 40
Algorithm FPmax o 41
ATL=20, APL=20 e 45
ATL=20, APL=100 i 45
ATL=100, APL=20 e 46
ATL=100, APL=100 « o\ o et 46
ATL=20, minimum support=1% 47
APL=20, minimum support=1% 47
Best algorithms for different type of data. 47
Running FPmax, GenMax and MAFIA on dataset mushroom 43
Running FPmax, GenMax and MAFIA on dataset chess 48
Running FPmax, GenMax and MAFTA on dataset connect 48
Running FPmax, GenMax and MAFIA on dataset pumsb* 48
Scalability of FPmax, GenMax and MAFIA Running on Synthetic Datasets 49
Scalability of FPmax, GenMax and MAFIA on Duplicated Real Datasets 49
Algorithm FPmax* 52
Size-reduced Maximal Frequent Itemset Tree 56
dataset T4OII0DI00OK e e e 57
dataset T100I20DI00K i e 57
dataset pumshb® L 57
dataset connmect e e e 37
Runtime of Mining Maximal FT's on T20I10NIKP5KC0.25D200K 59
Runtime of Mining Maximal FI's on T100I20N1KP5KC0.25D200K 59

5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
6.1
6.2
6.5
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

Runtime of Mining Maximal FI'son Chess.
Runtime of Mining Maximal FI’s on Connect
Runtime of Mining Maximal FI's on Mushroom
Runtime of Mining Maximal FI's on Kosarak
Runtime of Mining Maximal FI’s on Accidents
Runtime of Mining Maximal FI’s on Pumsb® 0.,
Memory Consumption of Mining Maximal FI's on T20I10N1KP5KC0.25D200K . . .
Memory Consumption of Mining Maximal FI's on T100I20N1KP5KC0.25D200K . .
Memory Consumption of Mining Maximal FI’'son Chess
Memory Consumption of Mining Maximal FI's on Connect
Memory Consumption of Mining Maximal FI's on Mushroom
Memory Consumption of Mining Maximal FI's on Koesarak
Memory Consumption of Mining Maximal FI’s on Accidents
Memory Consumption of Mining Maximal FI's on Pumsb*.
Scalability of runtime of Mining Maximal FI’s
Scalability of Memory Consumption of Mining Maximal FI’s
Construction of Closed Frequent Itemset Tree
Algorithm FPclose
Size-reduced Closed Frequent Itemset Tree vv i v .on.
Runtime of Mining Closed FI’s on T20[10N1KP5KC0.25D200K
Runtime of Mining Closed FI's on TI100I20N1KPSKC0.25D200K
Runtime of Mining Closed FP’son Chess
Runtime of Mining Closed FI’son Connect
Runtime of Mining Closed FI's on Mushroom
Runtime of Mining Closed FI’s on Kosarak
Runtime of Mining Closed FI's on Aecidents
Runtime of Mining Closed FI’s on Pumsb*.
Memory Consumption of Mining Closed FI's on T20I10N1KP5KC0.25D200K
Memory Consumption of Mining Closed FI's on T100I20N1KP5KC0.25D200K . . .

Memory Consumption of Mining Closed FI'son Chess

61
62
62
62
62
62
62
64
64
66
67
69
70
70
71
71
71
71
72
72
73
73

6.15
6.16
6.17
6.18
6.19
6.20
6.21
7.1
7.2
7.3
7.4

7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17

7.18

Memory Consumption of Mining Closed FI’s on Connect 73
Memory Consumption of Mining Closed FI's on Mushroom 74
Memory Consumption of Mining Closed FI’s on Kosarak 74
Memory Consumption of Mining Closed FI's on Accidents 74
Memory Consumption of Mining Closed FI's on Pumsb* 74
Scalability of runtime of Mining Closed FT's 75
Scalability of Memory Consumption of Mining Closed FI’'s 75
General divide-and-conquer algorithm for mining frequent itemsets from disk. . .. 77
A simple divide-and-conquer algorithm for mining frequent itemsets from disk . .. 81
Recurrence structure of Basic Projectiono 0oL, 82

A more aggressive divide-and-conquer algorithm for mining frequent itemsets from

disk . .. e 83
Recurrence structure of Aggressive Projection 84
Algorithm Diskmine 85
Trial main memory mining algorithmo L. 85
Main memory mining algorithm oo o000 86
The FP-array Ag « -« « o o o o o e e e e e 89
Cutpoint o e e e e e e e 92
Performance of algorithms running on synthetic dataset: Runtime 95
Performance of algorithms running on synthetic dataset: Time for Disk I/0’s 96
Performance of algorithms running on synthetic dataset: CPU time 96
Performance of algorithms running on real dataset: Runtime 96
Performance of algorithms running on real dataset: Time for Disk I/O%s 97
Performance of algorithms running on real dataset: CPU time. 97
Estimation ACCUracy o . i e e e e 98
Scalability of Diskmine e 98

xi

List of Tables

xii

Chapter 1

Introduction

Today we all suffer from information overload. The amount of information available to us is so
overwhelming that it hinders rather than helps us. Computers were supposed to alleviate our lives
by providing and handling information, but they are only throwing massive amounts of data “in our
face”. The Internet, that was supposed to be panacea, has caused the “information glut”. Not only
do we face the problem of finding relevant information, but thanks to the information glut we do not
even know what to look for. On the other hand, the information glut is also a potential goldmine,
since terabytes of raw data are ubiquitously being recorded in commerce, science, and government.
For instance, a medium sized business or a huge company can easily collect a few gigabytes of data
each year. However, this data risks becoming a “data graveyard”, unless computerized methods are
developed to extract the knowledge inherent in the morass.

Computer Science, Statistics, Machine Learning, and many other fields already had some equip-
ment for knowledge extraction in their scientific toolboxes. However, these tools were not developed
for the data morass, for instance most algorithms assume that data sets are small enough for main
memory processing. The systematic, scientific adaptation and development of the toolbox constitute
the emerging discipline of Data Mining.

There are many successful applications of data mining. Here are some examples.

1. Market basket data. A rule in basket data could be that 98% of customers that purchase tires
and auto accessories also get automotive services done. Finding all such rules is valuable for

cross-marketing and attached mailing applications.

2. In a web access database at a popular site, an object is a web user and an attribute is a web
page. Finding sequences of most frequently accessed pages of that site is useful for restructuring

the web-site, or dynamically inserting relevant links in web pages based on user access patterns.

3. Decision trees can be constructed from bank-loan histories to produce algorithms to decide

whether to grant a loan.

4. Comparison of the genotype of people with/without a condition allowed the discovery of a set
of genes that together account for many cases of diabetes. This sort of mining will become

much more important now that the human genome has been constructed.

Besides database researchers, data mining is also noticed by researchers of many other subareas.
The researchers of statistics, machine learning, clustering algorithms; and visualization all have laid
claim to this subject. As database researchers, we concentrate on the challenges that appear when
the data is large and the computations are complex. That means, data mining can be thought
of as algorithms for extracting interesting patterns and discovering valuable rules from very large
databases.

What are the interesting patterns in large databases? Over the years, researchers have studied
various problems related to mining interesting patterns from large databases. For example, associ-
ation rules [6, 7, 37, 14, 58], causality [49], multidimensional patterns [31, 36], correlation patterns
[11, 17, 18], sequential patterns [8], episodes [38], classification [47}, clustering [62], patterns with
constraints {19, 39, 34] and so on. In this thesis, we focus on mining frequent itemsets from large
databases, which is the core of mining association rules. Novel techniques and new algorithms will

be proposed.

1.1 Motivation

The association rule mining is motivated by problems such as market basket analysis. A tuple in a
market basket database is a set of items purchased by a customer in a transaction. An association
rule mined from market basket database states that if some items are purchased in a transaction,
then it is likely that some other items are purchased as well. Finding all such rules is valuable for

guiding future sales promotions and store layout.

An itemset is a set of items in the database. The support of an itemset is the percentage of the
transactions in the database that contain the itemset. An itemset is called frequent if the support
of the itemset is greater than a user defined threshold.

The core of mining association rule is to efficiently mine frequent itemsets [6, 7, 37, 14, 58]. Once
we get all frequent itemsets, the generation of all association rule is straightforward. Efficiently
mining frequent itemsets also plays an important role in some other data mining tasks such as
sequential patterns, episodes, multi-dimensional patterns and so on [8, 38, 31]. In addition, frequent
itemsets are one of the key abstractions in data mining.

An important property of frequent itemset is “anti-monotonicity” [34], which means any subset
of a frequent itemset is frequent. When a transaction database is very dense, i.e. when the database
contains large number of long frequent itemsets, mining oll frequent itemsets might not be a good
idea. For example, if there is a frequent itemset with size £, then all 2¢ nonempty subsets of the
itemset have to be generated. Sometimes we only want to know whether an itemset is frequent or
not. Then it is sufficient to discover only all the mazimal frequent itemsets (MFI’s). A frequent
itemset is maximal if all its supersets are not frequent. Therefore, many of the existing algorithms
only mine maximal frequent itemsets.

The deficiency of mining only MFT’s, from a MFI and its support d, is that we only know that
all its subsets are frequent and the support of any of its subset is not less than §. We do not know
the exact value of the support. While for generating association rules, we do need the support of
all frequent itemsets. To solve this problem, another type of a frequent itemset, the Closed Frequent
Itemset (CFI), was proposed. A frequent itemset is closed if all its supersets have less support. In
most cases, though, the number of CFT’s is greater than the number of MFI’s, but still far less than
the number of all FT’s.

There are many factors that determine the efficiency of an algorithm for mining frequent itemsets.

In this thesis, the following factors are considered:

e The number of database scans. Since the database is very large, one database scan needs a

large number of disk I/0’s. Thus, the number of database scans should be as small as possible.

o The data structures. We need data structures for representing a database, and data structures
for keeping frequent itemsets and candidate frequent itemsets. The efficiency of the data

structures has great influence on the efficiency of the algorithm.

e Memory management. This is an issue for any algorithm, especially now as the input of the

algorithm is a very large database.

e The approaches for maximality checking and closedness testing also determine the efficiency

of the algorithm for mining maximal and closed frequent itemsets.

Most of the known algorithms, such as Apriori {6, 7], DepthProject {5], and dEclat {60], work
well when the main memory is big enough to fit the whole database or/and the data structures
(candidate sets, FP-trees, etc). When a database is very large or when the minimum support is very
low, either the data structures used by the algorithms may not be accommodated in main memory,
or the algorithms spend too much time on multiple passes over the database. This was, for example,
demonstrated by the First IEEE ICDM Workshop on Frequent Itemset Mining Implementations,
FIMI °03 [2], where a number of well known algorithms were implemented and independently tested.
The results showed that “none of the algorithms is able to gracefully scale-up to very large datasets,
with millions of transactions” [15].

At the same time very large databases do exist in real life. In a medium size business or in a
company as big as Walmart, it is very easy to collect a few gigabytes of data. Commerce, science,
and government can store terabytes of raw data. The question of how to handle these databases is

still one of the most difficult problems in data mining.

1.2 Contributions

In this thesis, we use the FP-tree structure, the data structure that was first introduced in [28], to

mine frequent itemsets in databases. The following is a list of our contributions:

1. A novel technique that uses the FP-array to greatly improve the performance of the algorithms

operating on FP-trees.

2. By giving algorithm FPgrowth*, we first demonstrate that the use of our FP-array technique
drastically speeds up the FP-growth method [28], since it needs to scan each FP-tree only
once for each recursive call emanating from it. We then use this technique and give a new
algorithm FPmax*, which extends our previous algorithm FPmax, for mining maximal frequent

itemsets. In FPmax*, we use a variant of the FP-tree structure for maximality testing, and give

number of optimizations that further reduce runtime. We also design an algorithm, FPclose,
for mining closed frequent itemsets. FPclose uses yet another variation of the FP-tree structure

for checking the closedness of frequent itemsets. The closedness checking is quite different from

CLOSET+ [53].

3. We also consider the problem of mining frequent itemsets from very large databases. We
adopt a divide-and-conquer approach. First we give three algorithms, the general divide-
and-conquer algorithm, then an algorithm using simple projection, and an algorithm using
aggressive projection. - We analyze the number of steps and disk I/Q’s required by these
algorithms. In a detailed divide-and-conquer algorithm, called Diskmine, we use’ the highly
efficient FPgrowth* method [21, 22] to mine frequent itemsets from a FP-tree for the main
memory part of data mining. We describe several novel techniques useful in mining frequent
itemsets from disks, such as the FP-array technique, the item-grouping technique, and memory

management technigues.

1.3 Organization of this thesis

The structure of this thesis is as follows,

e In Chapter 2 we define the problem of mining frequent itemsets in large and very large

databases and identify the related work done on the problem.

e Chapter 3 describes our solutions for the problems of mining all frequent itemsets. In this
chapter, we first give our FP-array technique that results in the greatly improved method
FPgrowth*. The FP-array technique is also applied to save disk 1/0O’s for mining frequency

pattern from very large datasets. Experimental results are given at the end of the chapter.

o Chapter 4 describes our first attempt to solve the problems of mining maximal frequent item-
sets. Algorithm FPmax and a data structure, MFI-tree, are introduced. The likely behavior

of some existing algorithms are analyzed and validated based on experimental results.

e Chapter 5 describes an improved solution for the problem of mining maximal frequent itemsets.
Algorithm FPmax* is given and some new techniques used in the algorithm are explained.

Experimental results are given at the end of this chapter.

e Chapter 6 describes our solutions to the problem of mining closed frequent itemsets. A data

structure, CFI-tree, is introduced. Experimental results are given at the end of the chapter.

e Since most algorithms for mining frequent itemsets do not perform very well for very large
datasets, in Chapter 7, we first introduce and analyze three algorithms for mining frequent
itemsets from disks. Then we give a detailed divide-and-conquer algorithm Diskmine, in which

many novel optimization techniques are used. Experimental results are also given.

e Chapter 8 summarizes the work done in this thesis. We also discuss some open problems and

future work.

Chapter 2

Problem Definition and Related

Work

In this chapter, we first define the problem of mining frequent itemset, then give a survey of the

related work done on the problem, in which some existing algorithms are identified and analyzed.

2.1 Problem Definition

Definition 2.1 Let I = {i3,12,...,%,}, be a finite set of items. An I-transaction 7 is a subset of
I. An I-transactional database D is a finite bag of I-transactions. An itemset S is a subset of I.

Association rules are statements of the form X=>Y , where X, Y C I. |

In this thesis, items will sometimes also be denoted by a, b, ¢,
The association rule X=-Y means that if we find all items in X, then we have a good chance of
finding all items in V.

To find all association rules, we use two important measures, support and confidence.

Definition 2.2 The count of an itemset X, count(X), is the number of transactions in Dthat
contain X. The support in Dfor X ‘is the percentage of transactions in Dthat contains X. The
support for a rule X = Y is the probability that a transaction of D contains both X and Y. In other
words, the support is the count of transactions that contain both X and Y divided by the number of

transactions in D. B

Since we always know the number of transactions, in this thesis, sometimes we also use count to

represent support.

For a rule whose support is low, the rule may have arisen purely by chance.

Definition 2.3 The confidence of a rule is the probability that a transaction of D contains Y given

that the transaction contains X (i.e., Prob(Y | X) = count(X UY)/count(X)). u

The confidence of a rule indicates the conditional probability (in the database) between the
itemsets in the rule.

The goal of mining association rules is to find rules with a support of at least a user specified
minimum support and a confidence of at least a user specified minimum confidence.

The central notion for the rest of this thesis is that of a frequent itemset.

Definition 2.4 An itemset X is called frequent if its support is greater than the minimum support.

From the definition of confidence, we can see that if we know the support of every itemset, it is
straightforward to compute the confidence of a rule. Thus, the problem of mining association rules
can be converted to the problem of mining frequent itemsets.

The itemsets in a transactional database gives rise to a subset lattice. Figure 2.1 is an example
of a lattice on the space I = {a,b,¢,d} of four items. In the figure, ® represents the empty set.

abed

T

abc abd acd bed

ST

ab ac ad be bd cd

Figure 2.1: An itemset lattice

When a transaction database is very dense, i.e. when the database contains a large number
of large frequent itemsets, mining all frequent itemsets might not be a good idea. For example, if

there is a frequent itemset with size £, then all 2¢ nonempty subsets of the itemset are also frequent

and have to be generated. However, since frequent itemsets are downward closed, meaning that any
subset of a frequent itemset is frequent, it is sufficient to discover only all the mazimal frequent

itemsets (MFT’s).

Definition 2.5 A frequent stemset X is called mazimal if there does not o exist frequent itemset Y

such that X C Y. E

Many existing algorithms only mine maximal frequent itemsets (MFT). However, mining only
MFT’s has the following deficiency. From a MFI and its support 4, we know that all its subsets
are frequent and the support of any of its subset is not less than 4, but we do not know the exact
value of the support. For generating association rules, we do need support of all frequent itemsets.
To solve this problem, another type of a frequent itemset, the Closed Frequent Itemset (CFI), was

proposed.

Definition 2.6 A frequent itemset X is called closed if the support of all its supersets is less than

the support of X. [

ade
bafgh
badf
bac
adgk
bdgci
bdgej

Figure 2.2: A database example

Definition 2.7 A CFIY is called minimal CFI of X if either X =Y or X CY and Y has the
greatest support in all supersets of X. The support of a frequent itemset X is the same as the support

of its minimal closed superset Y.]

In Figure 2.2, if the minimum support is 2, then {f,a} and {f,a,b} are closed itemsets, while
{/,b} is not. The support of {f,b} is 6, which is the same as the support of its minimal closed
itemset {f,a,b}.

In most cases, though, the number of CF1’s is greater than the number of MFI’s, but still far less
than the number of all frequent itemsets (FI's). As an example, in the small database Figure 2.2, if
the minimum support is 2, the number of all FI’s is 20, the number of MFI’s is 6, and the number

of CFI’s is 15.

To mine frequent itemsets from a transactional database, transactions must be read from sec-
ondary memory, processed and perhaps stored into some data structures. Some frequent itemsets
may be found and sometimes candidate frequent itemsets are generated. In order to make the min-
ing process fast, one must use data structures to organize the transactions, frequent patterns and
candidate frequent patterns intelligently. Some data structures may also be needed for maximality
testing. Pruning techniques also play an important role in the mining process. The following gives

a brief overview of the work that has been done on mining all FI's, MFT's and CFI’s.

2.2 Related Work

2.2.1 Mining All Frequent Itemsets

The itemset lattice is a conceptualization of the search space when mining frequent itemsets. There
are then basically two types of algorithms to mine frequent itemsets, breadih-first algorithms and
depth-first algorithms. The breadth-first algorithms, such as Apriori [6, 7], scan the database testing
all candidate itemsets level by level for frequency. Other depth-first algorithms, such as the FP-
growth method [28], search the lattice bottom-up in “depth-first” way (one should perhaps say
“height-first” way). From a singleton itemset {i}, successively larger candidate sets are generated
by adding one element at a time. The following two sections give brief introduction of algorithm

Apriori and the FP-growth method.

Apriori: A breadth-first Algorithm

The problem of mining frequent itemsets was first introduced by Agrawal et al. [6, 7], who proposed
algorithm Apriori. Many algorithms, such as partitioning [48, 33|, sampling [51}, mining of gener-
alized and multi-level rules [26, 50], mining of multi-dimensional rules [36], mining association rules
with constraints [39, 34], and so on, are variants of the Apriori algorithm.

Apriori discovers all frequent itemsets in a large database of transaction. It takes advantages
of the most important property of frequency pattern, anti-monotonicity. Anti-monotonicity means
that every subset of a frequent itemset is also frequent. A candidate frequent itemset is generated
only if all its subsets are all frequent. By this way, Apriori successfully prunes the candidate frequent

itemsets.

10

Apriori uses hash-trees to store frequent itemsets and candidate frequent itemsets. Each leaf node
in a hash-tree contains a list of itemsets, and each interior node contains a hash table. Candidate
frequent itemset generation and subset testing are all based on the hash-trees.

Figure 2.3 gives the Apriori algorithm. In the algorithm, a k-itemset is an itemset that contains
k items, Fy is set of frequent k-itemsets. Cj is set of candidate k-itemsets (potentially frequent
itemsets). Each member of Fj and Cy has two fields: 1) itemset and ii) support count.

Procedure Apriori(D)

Input: [-transactional data-set D

Qutput: The complete set of all FI’s in D.

Method:

Fi={frequent 1-itemsets};

for (k=2;Fp_1 # 0;k++) do begin
//joins Fr_1 with Fr_; to get k-itemsets
insert into Cj

select p.itemq,p.items, ..., pitemg_1, q.itemk — 1
from Fp_y p, Fr-1 9
where p.itemy = g.items, ..., pitemyg_o = q.itemk — 2, p.itemyp_1 < q.itemy_1;

for each itemsets ¢ € Cj, do //prune
for each (k — 1)-subsets s of ¢ do
if(s ¢ Fi-1) then
delete ¢ from Cy;
for each transactions T' € D.do begin
Cr ={c|ceCy and ¢ C T}; //Candidates contained in T
for each candidates ¢ € Cr do

c.count + -+;
end
Fr ={c € Cx | c.count > minsup}
end

return U, Fr;

Figure 2.3: Algorithm Apriori

In Figure 2.3, the first pass of the algorithm simply counts item occurrences to determine the
frequent 1-itemsets. A subsequent pass, say pass k, consists of two phases. First, the algorithm joins
Fr—1 with Fr_1 to generate all possible k-itemsets. Since any subset of a frequent itemset must be
frequent, the algorithm prunes all itemsets ¢ € C), such that some (k — 1)-subset of ¢ is not in Fg_1.
Next, the database is scanned and the support of candidates in Cy is counted. The output of the
algorithm is the union of the frequent itemsets of all passes.

The disadvantage of using Apriori for large database is in the fact that since transactions are not
stored in the main memory, Apriori needs £ database scans if the size of the largest frequent itemset
is £. Thus, for large database, the database scans may take much time.

Apriori is the first algorithm for mining frequent itemsets. Later, many variants {41, 51, 48,

11

39, 34, 10, 40] were proposed and implemented. These algorithms use some data structures to
reduce the database scans or count the support of frequent itemsets fast. For example, in [41],
hash tables are used for candidate set generation. The algorithm is especially fast for candidate
2-itemsets generation. Sampling [51] is another way to reduce the database scans. It picks a random
sample from the very large database, finds from the sample all association rules that probably hold
in the whole database, then verifies the results with the rest of the database. In [10], the Apriori
is implemented by using a prefix tree representation for counters and a doubly recursive scheme
to count the transactions. The kDCI method [40] applies a novel counting inference strategy to
efficiently determine the itemset supports. Because of all these improvements, it is shown in [15]

that Apriori is still the fastest algorithm for some datasets in some cases.

FP-growth method: A depth-first Algorithm

Breadth-first algorithms always repeatedly scan the database and check a set of candidates for
frequency by pattern-matching. This is costly especially when there exist prolific frequent patterns,
long patterns or quite low minimum support thresholds.

On the other hand, depth-first algorithms such as the FP-growth method save disk I/0’s by
scanning the database once or twice. In the FP-growth method, Han et al. proposed a data
structure tree called an a FP-tree (Frequent Pattern tree). The FP-tree is a compact representation
of all relevant frequency information in a database. Every branch of the FP-tree represents a
frequent itemset, and the nodes along the branches are stored in decreasing order of frequency of
the corresponding items, with leaves representing the least frequent items. Compression is achieved
by building the tree in such a way that overlapping itemsets share prefixes of the corresponding
branches.

A FP-tree T has a header table, T.header, associated with it. Single items and their counts are
stored in the header table in decreasing order of their frequency. The entry for an item also contains
the head of a list that links all the corresponding nodes of the FP-tree.

Compared with Apriori [7] and its variants, which need as many database scans as the length of
the longest pattern, the FP-growth method only needs two database scans when mining all frequent
itemsets. The first scan counts the number of occurrences of each item. The second scan constructs

the initial FP-tree which contains all frequency information of the original dataset. Mining the

12

database then becomes mining the FP-tree.

To construct the FP-tree, it is necesséry to find all frequent items by an initial scan of the
database. Then these items are inserted in the header table, in decreasing order of their count. In
the next (and last) scan, as each transaction is scanned, the set of frequent items in it is inserted
into the FP-tree as a branch. If an itemset shares a prefix with an itemset already in the tree, the
new itemset will share a prefix of the branch representing that itemset. In addition, a counter is
associated with each node in the tree. The counter stores the number of transactions containing
the itemset represented by the path from the root to the node in question. This counter is updated
during the second scan, when a transaction causes the insertion of a new branch. Figure 2.4 (a)
shows an example of a dataset and Figure 2.4 (b) the FP-tree for that dataset. Note that there may
be more than one node corresponding to an item in the FP-tree. The frequency of any one item 1 is
the sum of the count associated with all nodes representing 4, and the frequency of an itemset equals
the sum of the counts of the least frequent item in it, restricted to those branches that contain the

itemset. For instance, from Figure 2.4 (b) we can see that the frequency of the itemset {a,d} is 3.

A database The FP-tree for the database (minimum suppor=20%}) Conditional Pattern Base of {f}:
ade Header Table bag:1
5 Head of root:7 bad: 1
g aj;g h item | noderinks
adf b5
bac ' L.
a5 Conditional FP-tree Ti:
adgk .
. a5
bdgcei i root:2
bdgej g4
geJj 72
e:2
(a) c:2 8y, %, . /TN

Figure 2.4: An Example FP-tree

Thus the constructed FP-tree contains all frequency information of the database. Mining the
database becomes mining the FP-tree. Figure 2.5 gives the FP-growth method. In Figure 2.5,
FP-tree T has two attributes: base and header. T.base contains the itemset X, for which T is a
conditional FP-tree, and the attribute header contains the head table.

The FP-growth method relies on the following principle: if X and Y are two itemsets, the count

of itemset X UY in the database is exactly that of Y in the restriction of the database to those

13

transactions containing X . This restriction of the database is called the conditional pattern base of
X, and the FP-tree constructed from the conditional pattern base is called X’s conditional FP-tree,
which we denote by Tx. We can view the FP-tree constructed from the initial database as T, the
conditional FP-tree for §. Note that for any itemset Y that is frequent in the conditional pattern
base of X, the set X UY is a frequent itemset for the original database.

Procedure FP-grouwth(T)
Input: A conditional FP-tree T’
Output: The complete set of all FI's corresponding to T
Method:
if T only contains a single path P
then for each subpath Y of P
output pattern Y U T .base with count = smallest count of nodes in Y
else for each i in T.header do begin
output Y = T.base U {1} with i.count
traverse T to construct a new header table for Y'’s FP-tree
traverse T to construct Y's conditional FP-tree Ty ;
ifTy #0
call FP-growth(Ty);
end

Figure 2.5: Algorithm FP-growth

Given an item 7 in the header table of a FP-tree T, by following the linked list starting at 4
in the header table of T'x, all branches that contain item ¢ are visited. These branches form the
conditional pattern base of X U {i}, so the traversal obtains all frequent items in this conditional
pattern base. The FP-growth method then constructs the conditional FP-tree Ty}, by first
initializing its header table based on the found frequent items, and then visiting the branches of T'x
along the linked list of ¢ one more time and inserting the corresponding itemsets in Txy(;). Note
that the order of items can be different in Tx and Txy(;). As an example, let us construct the
conditional FP-tree Ty for the database in Figure 2.4 (a). By following the linked list for f in
the original tree Ty, we discover that the items and their counts in the conditional pattern base of
{f} are b:2, a:2, g:1, d:1. Then we follow the linked list for f in Ty one more time, now inserting
into T(s the branch (b:1,a:1) (g is not frequent in the base) from the first node in the linked list,
and then the branch (b:1,a:1) from the second node in the linked list. The resulting %) is the
conditional FP-tree for {f}, shown in Figure 2.4(c). The above procedure is applied recursively, and
it stops when the resulting new FP-tree contains only one single path. The complete set of frequent

itemsets is generated from all single-path FP-trees.

14

The FP-growth method has great performance when compared with Apriori algorithm. Experi-
mental results in [28] show that it is about an order of magnitude faster than the Apriori algorithm.
It has been widely used in many database research tasks such as the data cube computations [27].

There are many improved variants of the FP-growth method. Top-down FP-growth [54] searches
the FP-tree in top-down order, which is different from the bottom-up order in the original FP-growth
method. By top-down search, Top-down FP-growth does not generate conditional pattern bases and
sub-FP-trees, thus saving time and space. In [45], Pei et al. extended the FP-tree data structure
to Hyper-structure for mining frequent patterns in large databases. The experimental results show
that the algorithm H-mine has high performance in various kinds of data.

FPgrowth*[21, 22] extends the FP-growth method by using optimizations such as a FP-array
technique for reducing FP-tree traversing time. FPgrowth* is up to two times faster than the FP-
growth method especially when the dataset is sparse. Details of FPgrowth* will be explained in
Chapter 3.

PatriciaMine [46] uses the data structure Patricia Tries, which is similar to FP-tree, to represent
frequency information of the original dataset. In the algorithm, a number of optimizations are used

for reducing time and space of database projections.

Other Depth-first Algorithms

In [58], Zaki and Gouda also proposed a depth-first search algorithm, Eclat, in which the database is
“vertically” represented. Eclat uses a aned list to organize frequent patterns, however, each itemset
now corresponds to an array of transaction IDs (the “TID-array”). Each element in the array corre-
sponds to a transaction that contains the itemset. Frequent itemset mining and candidate frequent
itemset generation are done by TID-array intersections. Later, Zaki and Gouda [60], introduced a
technique, called diffset, for reducing the memory requirement of TID-arrays. The diffset technique
only keeps track of differences in the TID’s of a candidate itemset when it is generating frequent

itemsets. The Eclat algorithm incorporating the diffset technique, is called dEclat [60].

2.2.2 Mining MFD’s

Since frequent itemsets are downward closed, mining frequent itemsets can be reduced to mining a

“border” in the itemset lattice. All itemsets above the border are infrequent, the others that are

15

below the border are all frequent. For instance, if a database is D = {abd, bcd, abe, bed, abed, ac}
and the minimum support is 50%, then the border in the lattice of Figure 2.6(b), should be at the
dashed line. Since the sets abed, abe, abd, acd, and ad are above the border, they are all infrequent
itemsets. The rest of the itemsets, bed, ab, ac, be, bd, cd, a, b, ¢, d and § are all frequent itemsets,

and they can be compactly represented by listing only the maximal elements {ab, ac, bed}.

abed
?!1)8(1’ abc® abd acd - bed®
o111 e | o
1110 ; /
?} : } ab® ac’l ad?® /Ibc‘ bd* cd
e
a' b' c' d
@D

(a) (b)

Figure 2.6: The bitmap representation and the depth-first search

The problem of mining maximal frequent itemsets can be divided into two subproblems. First,
to mine for frequent itemsets. Second, for each discovered frequent itemset, to test if it is maximal.
There are many ways to test if a frequent itemset is maximal. The naive method is to do a pairwise
comparison between all pairs of frequent itemsets. However, we can take advantage of the order in
which the frequent itemsets are generated to avoid unnecessary maximality checking.

Bayardo [9] introduced MaxMiner which extends Apriori to mine only “long” patterns (large
maximal frequent itemsets). Since the MaxMiner only looks for the maximal FI's, the search space
can be reduced. MaxMiner performs not only subset infrequency pruning, where a candidate itemset
with an infrequent subset will not be considered, but also a “lookahead” to do superset frequency
pruning. MaxMiner still needs many passes of the database to find maximal frequent itemsets.

There are also some depth-first algorithms for mining MFI’'s. DepthProject by Agarwal, Ag-
grawal, and Prasad [5] mines only long patterns. It performs a mixed depth-first/breadth-first
traversal of the itemset lattice. In the algorithm, both subset infrequency pruning and superset
frequency pruning are used. The database is represented as a bitmap. Each row in the bitmap is
a bitvector corresponding to a transaction, each column corresponds to an item. The number of

rows is equal to the number of transactions, and the number of columns is equal to the number of

16

items. A row has a 1 in the ith position if corresponding transaction contains the item ¢, and 2 0
otherwise. Figure 2.6 (a) shows an example for bitmap representation of the transaction database
D. The count of an itemset is the number of rows that have 1's in all corresponding positions. For
example, the count of bed is 3 since row 2, 4 and 5 have 1’s in position b, ¢ and d. By carefully
designed counting methods, the algorithm significantly reduces the cost for finding support counts.
Experimental results in [5] show that DepthProject outperforms MaxMiner by at least an order of
magnitude.

In [12], Burdick, Calimlim, and Gehrke extend the idea in DepthProject and give an algorithm
called MAFIA to mine maximal frequent itemsets. Similar to DepthProject, their method also uses
a bitmap representation, where the count of an itemset is based on the column in the bitmap (the
bitmap is called “vertical bitmap”). As an example, in Figure 2.6 (a), the bitvectors for items b,
¢, and d are 111110, 011111, and 110110, respectively. To get the bitvectors for any itemset, we
only need to apply the bitvector and-operation ® on the bitvectors of the items in the itemset. For
the above example, the bitvector for itemset be is 111110 ® 011111, which equals 011110, while the
bitmap for itemset bed can be calculated from the bitmaps of be and d, i.e., 011110 ® 110110, which
is 010110. The count of an itemset is the number of 1’s in its bitvector. MAFIA is a depth-first
algorithm. The following example demonstrates its mining sequence. In the dataset Figure 2.6
(a), with a minimum support of 50%, Figure 2.6 (b) shows the the sequence of itemsets tested for
frequency. The sets are tested in the order indicated by the number on the top-right side of the
itemsets.

MAFIA also uses some pruning techniques. For example, the support of an itemset XY equals
the support of X, if and only if the and of the bitvectors for X and Y equals the bitvector for X.
This is the case if the bitvector for Y has a 1 in every position that the bitvector for X has 1. The
last condition is easy to test. This allows us to conclude without counting that XY also is frequent.
The technique is called Parent Equivalence Pruning in [12].

In general, MAFTA is regarded as one of the best method for mining all MFI’s.

Another method, GenMax, was proposed by Gouda and Zaki [16]. It takes a novel approach
to maximality testing. Most methods, including MaxMiner use a variant of the algorithm in [55]
and find the maximal elements among 7 sets in time O(y/nlogn). Gouda and Zaki use a technique

called progressive focusing. This technique, instead of comparing a newly found frequent itemset

Yy

with all maximal frequent itemsets found so far, maintains a set of local maximal frequent itemsets,
LMFT’s. The frequent itemset is firstly compared with itemsets in LMFI. Most non-maximal frequent
itemsets can be found by this step, thus reducing the number of subset tests. GenMax like other
methods uses a vertical representation of the database. However, for each itemset, GenMax stores a
transaction identifier set, or TIS, rather than bitvector. The cardinality of an itemset’s TIS equals
its support. The TIS of itemset XY can be calculated from the intersection of the TIS’s of X and
Y. Experiment results show that GenMax outperforms other existing algorithms on some types of
datasets.

In [20], G. Grahne and J. Zhu presented the FPmax algorithm for mining MFIs using the FP-tree
structure. FPmax is also a depth-first algorithm. It takes advantage of the FP-tree structure so that
only two database scans are needed, thus allowing for the database to be much larger than the size of
the main memory. In FPmax, a tree structure similar to the FP-tree is used for maximality testing.
Experimental results show that FPmax outperforms GenMax and MAFIA for many, although not
for all, cases. Details of FPmax will be introduced in Chapter 4. In [21, 22], FPmax is extended to
FPmax*, in which the FP-array technique is used to reduce the time spent on traversing FP-trees,
and a more efficient maximality checking approach is also used. In [15], FPmax* is recommended as
“one of the best for maximal itemset mining”. Details of FPmax* will be introduced in Chapter 5.

One more method that uses the FP-tree structure is AFOPT [35]. In the algorithm, item
searching order, conditional database representation, conditional database construction strategy,
and tree traversal strategy are considered which makes the algorithm adaptive to general situations.

SmartMiner [61], also a depth-first algorithm, uses a technique to prune candidate frequent
itemsets in the itemset lattice fast. The technique gathers “tail” information for a node in the lattice,
the tail information will be passed to determine the next node to explore during the depth-first
mining. Items are dynamic reordered based on the tail information. The algorithm was compared
with MAFIA and GenMax on two datasets, and it shows that it’s an order of magnitude faster than

MAFIA and GenMax.

2.2.3 Mining CFD’s

In [43], Pasquier et ol. introduced closed frequent itemsets. The algorithm proposed in the paper,

A-close, extends Apriori to mine all CFI's. Zaki and Hsiao [59] developed a depth first algorithm,

18

CHARM, for CFI mining. As in their earlier work [16], in CHARM, each itemset corresponds to
a TID-array, and the main operation of the mining is again TID-array intersections. CHARM also
uses the diffset technique to reduce the memory requirement for TID-array intersections.

In [44], Pei, Han, and Mao extend the FP-growth method to a method called CLOSET for
mining CFI’s. The FP-tree structure is used, and some optimizations for reducing the search space
are proposed. Experimental results show that CLOSET is faster than CHARM and A-close. In
[30], the FP-growth method is extended to mining top-K frequent closed patterns without minimum
support.

CLOSET is extended to CLOSET+ by Wang et al. in [53] to find the best strategies for mining
frequent closed itemsets. In CLOSET+, Wang ef al. use data structures and data traversal strategies
that depend on the characteristics of the dataset to be mined. In the algorithm, a global prefix-tree
is used to keep track of all closed itemsets. A candidate closed frequent itemset will be compared
with some already found closed itemset kept in the tree. According to the experimental results,
CLOSET+ outperforms all previous algorithms.

FPclose {21, 22] is also an extension of the FP-growth method. In FPclose, like in CLOSET+,
a prefix-tree is introduced. However, instead of maintaining one global tree for all candidate closed
frequent itemsets, a prefix-tree is constructed for each conditional FP-tree. With other optimizations,
FPclose outperforms almost all other algorithms in [14]. Details of FPclose will be discussed in
Chapter 6.

LCM [52] is another depth-first algorithm. In LCM, tree-shaped transversal routes are con-
structed. These routes consist of only frequent closed itemsets, and allow to find all frequent closed
itemsets in polynomial time per itemset. Thus, storing previously found closed itemsets becomes

unnecessary.

2.3 Mining frequent itemsets in very large databases

Many researchers have tried to mine frequent itemsets from very large databases. A number of
approaches have been proposed. One of them is sampling. For instance, {51} picks a random sample
of the database, finds all frequent itemsets from the sample, and then verifies the results with the
rest of the database. This approach needs only one pass of the database. However, the results are

probabilistic, meaning that some critical frequent itemsets could be missing.

19

Partitioning [48, 45] is another approach for mining very large databases. This approach first
partitions the database into many small databases, and mines candidate frequent itemsets from
each small database. One more pass over the original database is then done to verify the candidate
frequent itemsets. The approach thus needs only two database scans. However, when the data
structures used for storing candidate frequent itemsets are too big to fit in main memory, a significant
amount of disk I/O’s are needed for the disk resident data structures.

In [28, 29], Han et al introduced the FP-growth method by using the FP-tree structure. Two
approaches were suggested for the case that the FP-tree is too large to fit into main memory.

The first approach writes the FP-tree to disk, then mines all frequent sets by reading the frequency
information from the FP-tree. However, the size of the FP-tree could be the same as the size of the
database, and for each item in the FP-tree, we need at least two FP-tree traversals. Thus the I/O’s
for writing and reading the disk-resident FP-tree could be prohibitive.

The second approach projects the original database on each frequent item !, then mines frequent
itemsets from the small projected databases. The advantage of this approach is that any frequent
itemset mined from a projected database is a frequent itemset in the original database. To get all
frequent itemsets, we only need to take the union of the frequent itemsets from the small projected
databases. This is in contrast to the partitioning approach, where all candidate frequent itemsets
have to be stored and later verified by another pass of database. The biggest problem of the
projection approach is that the total size of the projected databases could be too large, and there
will be too many disk I/0’s for the projected databases.

To reduce the disk I/O’s for the projected databases, G. Grahne and J. Zhu [23] introduced an
aggressive projection approach. In the approach, a projected database is for a group of items. In
addition, the approach uses many techniques such as the FP-array technique, which make it possible

for the approach to fully use the limited main memory and save numerous number of disk I/0’s.

lin a way to be explained in Chapter 7

20

Chapter 3

Discovering All Frequent Itemsets

In this chaptgr, we address the problem of mining all frequent itemsets. First, we give our FP-array
technique for reducing the traversal of FP-trees. By applying FP-array on the FP-growth method,
the method is extended to FP-growth*. Then we give our first attempt to apply the FP-array
technigue on mining frequent itemsets from very large databases. Experimental results are given at

the end of this chapter.

3.1 FP-array technique

The main work done in the FP-growth method is traversing FP-trees and constructing new condi-
tional FP-trees after the first FP-tree is constructed from the original database. From numerous
experiments we found out that about 80% of the CPU time was used for traversing FP-trees. Thus,
the question is, can we reduce the traversal time so that the method can be sped up?

The answer is yes, by using a simple additional data structure. Recall that for each item ¢ in
the header of a conditional FP-tree Tx, two traversals of Tx are needed for constructing the new
conditional FP-tree Txy;;. The first traversal finds all frequent items in the conditional pattern
base of X U {i}, and initializes the FP-tree T'xy;; by constructing its header table. The second
traversal constructs the new tree T'xyy;;. We can omit the first scan of T'x by constructing a frequent

pair array Ax while building T'x. T'x is initialized with an attribute Ay.

Definition 3.1 Let T be a conditional FP-tree, I = {i1,12,...,%m} be the set of items in the header

table of T. A frequent pair array (FP-array) of T is a (m—1) % (m — 1) matriz, where each element

21

of the matriz corresponds the counter of an ordered pair of items in I. B

Obviously, there is no need to set a counter for both item pair (i;, jx) and item pair (ig, ;).
Therefore we only set the counters for all pairs (ix,4;) such that k < j.

We use an example to explain the construction of the FP-array. In Figure 2.4 (a), supposing
that the minimum support is 20%, after the first scan of the original database, we sort the frequent
items as b:5, a:5, d:5, g:4, f:2, €2, ¢:2. This order is also the order of items in the header table of
Tp. During the second scan of the database we will construct Tp, and a FP-array Ag. This FP-array

will store the counts of all pairs of items. All cells in the FP-array are initialized as 0.

ail3

41313

g1312]3

fl2]2 11

el1]1]211 0 d[2]

cl2lili]i]o o] a|1]1]
b ad g f e b d
(@) 4s (b) 4 ()

Figure 3.1: Two FP-array examples

In Ay, each cell is a counter of a pair of items, cell Agle,b] is the counter for itemset {c, b}, cell
Agle, a] is the counter for itemset {c,a}, and so forth. During the second scan for constructing Ty,
for each transaction, first all frequent items in the transaction are extracted. Suppose these items
form itemset I. To insert I into Tj, the items in I are sorted according to the order in header table
of Ty. When we insert I into Ty, at the same time Ag[¢, 7] is incremented by 1 if {i, 7} is contained
in I. For example, for the second transaction, {b,a, f, g} is extracted (item h is infrequent) and
sorted as b,a, g, f. This itemset is inserted into Ty as usual, and at the same time, Ay[f, b], Apl7, a],
Aglf, g, Aolg. b], Aglg,a], Agla,b] are all incremented by 1. After the second scan, FP-array Ag
contains the counts of all pairs of frequent items, as shown in table (a) of Figure 3.1.

Next, the FP-growth method is recursively called to mine frequent itemsets for each item in
header table of Ty. However, now for each item i, instead of traversing Ty along the linked list
starting at 4 to get all frequent items in i’s conditional pattern base, Ag gives all frequent items for 1.
For example, by checking the third line in the table for Ay, frequent iterns b, a, d for the conditional

pattern base of g can be obtained. Sorting them according to their counts, we get b,d, a. Therefore,

22

for each item 4 in T the FP-array Ay makes the first traversal of Ty unnecessary, and Ty, can be
initialized directly from Agp.

For the same reason, from a conditional FP-tree T'x, when we construct a new conditional FP-
tree for X U {i}, for an item i, a new FP-array Axyy; is calculated. During the construction of the
new FP-tree Ty}, the FP-array Axyq) is filled. For instance, from the FP-tree in Figure 2.4(b),
if the conditional FP-tree Ty, is constructed, the cells of its FP-array Ay, will be the table (b)
in Figure 3.1. This FP-array is constructed as follows. From the FP-array Ay, we know that the
frequent items in the conditional pattern base of {g} are, in order, b,d,a. By following the linked
list of g, from the first node we get {d,a} : 1, so it is inserted as (d: 1,a : 1) into the new FP-tree
Tigy- At the same time, Argy[d, a] is incremented by 1. From the second node in the linked list,
{b,a} : 1 is extracted, and it is inserted as (b : 1,a : 1) into Tf,y. At the same time, Argy[b, a] is
incremented by 1. From the third node in the linked list, {b,d} : 2 is extracted, and it is inserted
as (b:2,a:2) into T(y). At the same time, A;gy[b, a] is incremented by 2. Since there are no other
nodes in the linked list, the construction of Ty, is finished, and FP-array Ay, is ready to be used
for construction of FP-trees in next level of recursion. The construction of FP-arrays and FP-trees
continues until the FP-growth method terminates.

Based on above discussion, we define a variation of the FP-tree structure in which besides all
attributes given in [28], a FP-tree also has an attribute, FP-array, which contains the corresponding
FP-array.

Now let us analyze the size of a FP-array. Suppose the number of frequent items in the first
FP-tree is n. Then the size of the associated FP-array is Z?;ll i ==n(n—1)/2. We can expect that
FP-trees constructed from the first FP-tree have fewer frequent items, so the sizes of the associated
FP-arrays decrease. At any time, since a FP-array is an attribute of a FP-tree, when the space for

the FP-tree is freed, the space for the FP-array is also freed.

3.2 Discussion

The FP-array technique works very well especially when the dataset is sparse and very large. The
FP-tree for a sparse dataset and the recursively constructed FP-trees will be big and bushy, due to
the fact that they do not have many shared common prefixes. The FP-arrays save traversal time

for all items and the next level FP-trees can be initialized directly. In this case, the time saved

23

by omitting the first traversals is far greater than the time needed for accumulating counts in the
associated FP-arrays.

However, when a dataset is dense, the FP-trees are more compact. For each item in a compact
FP-tree, the traversal is fairly rapid, while accumulating counts in the associated FP-array may take
more time. In this case, accumulating counts may not be a good idea.

Even for the FP-trees of sparse datasets, the first levels of recursively constructed FP-trees are
always conditional FP-trees for the most common prefizes. We can therefore expect the traversal
times for the first items in a header table to be fairly short, so the cells for these first items are
unnecessary in the FP-array. As an example, in Figure 3.1 table (&), since b, a, and d are the first
3 items in the header table, the first two lines do not have to be calculated, thus saving counting
time.

Note that the datasets (the conditional pattern bases) change during the different depths of the
recursion. In order to estimate whether a dataset is sparse or dense, during the construction of each
FP-tree we count the number of nodes in each level of the tree. Based on experiments, we found
that if the upper quarter of the tree contains less than 15% of the total number of nodes, we are
most likely dealing with a dense dataset. Otherwise the dataset is likely to be sparse.

If the dataset appears to be dense, we do not calculate the FP-array for the next level of the
FP-tree. Otherwise, we calculate FP-array for each FP-tree in the next level, but the cells for the
first several (say 15) items in its header table are not set.

In Chapter 7, we will see that the FP-array technique works also very well for very large datasets.

3.3 FPgrowth* : an improved FP-growth method

Figure 3.2 contains the pseudo code for our new method FPgrowth*. The procedure has an FP-tree
T as parameter. The tree has attributes: base, header and FP-array. T.base contains the itemset X,
for which T is a conditional FP-tree, the attribute header contains the head table, and T.FP-array
contains the FP-array Ax.

In FPgrowth*, line 6 tests if the FP-array of the current FP-tree is NULL. If the FP-tree cor-
responds to a sparse dataset, its FP-array is not NULL, and line 7 will be used to construct the
header table of the new conditional FP-tree from the FP-array directly. One FP-tree traversal is

saved for this item compared with the FP-growth method in [28]. In line 9, during the construction,

24

Procedure FPgrowth®(T’)

Input: A conditional FP-tree T

Output: The complete set of all FI's corresponding to 7.

Method:

1. if T only contains a single path P

2. then for each subpath Y of P

3. output itemset Y U T .base with count = smallest count of nodes in Y
4. else for each i in T.header do begin

5. output Y = T.base U {i} with i.count

6. if T.FP-array is not NULL

7. construct a new header table for Y’s FP-tree from T.FP-array
8. else construct a new header table from T,

9. construct Y'’s conditional FP-tree Ty and its FP-array Ay;

10, if Ty #0

11. call FPgrowth*(Ty);

12. end

Figure 3.2: Algorithm FPgrowth*®

we also count the nodes in the different levels of the tree, in order to estimate whether we shall
really calculate the FP-array, or just set Ty .FP-array = NULL.

From our experimental results we found that a FP-tree could have millions of nodes, thus,
allocating and deallocating those nodes takes plenty of time. In our implementation, we used our
own main memory management for allocating and deallocating nodes. Since all memory for nodes
in a FP-tree is deallocated after the current recursion ends, a chunk of memory is allocated for
each FP-tree when we create the tree. The chunk size is changeable. After generating all frequent
iternsets from the FP-tree, the chunk is discarded. Thus we successfully avoid freeing nodes in the

FP-tree one by one, which is more time-consuming.

3.4 Experimental evaluation and performance study

In this section, we present a performance comparison of algorithm FPgrowth* with other algorithms.
We first compare the performance of FPgrowth* with FPgrowth, then compare FPgrowth* with

some of the best algorithms in FIMT’03 [21].

3.4.1 FPgrowth* versus FPgrowth

We implemented FPgrowth* and FPgrowth and compared them by running them on many datasets,
synthetic and real. Here we give the results on two representative datasets and two real datasets.

The two synthetic datasets, 740/10D100K and T100I20D100K, were generated from the benchmark

25

T40110D100K T100i20D100K

1000 1000 1000 % 1000
~—— FP-growth” =@ FP-growth” 1/
0 - FP-growth = w0~ FP-growth ol
& 100 | 100 g 100} 4100
1]
1 £
= =3
= 2
5 5
10k 10 10 10
1 . it b . 1 1 . . 1
225 2 175 15 125 1 075 05 025 O 12 10 8 8 4 2 0

Minimm Support {%) Minimum Support (%)

(a) (b)
Figure 3.3: FPgrowth* vs. FPgrowth on sparse datasets

application of [1]. They both use 100,000 transactions and 1000 items. In T40I10D100K, the average
transaction length was 40, and the average pattern length was 10. In T100I20D100K, the average
transaction length was 100, and the average pattern length was 20. These two synthetic datasets
are both sparse datasets. The two real datasets, pumsb* and connect, were downloaded from [2].
Dataset connect is compiled from game state information. Dataset pumsb* is produced from census
data of Public Use Microdata Sample (PUMS). These two real datasets are both quite dense, so a
large number of frequent itemsets can be mined even for very high values of minimum support.

All experiments were performed on a 1GHz Pentium III with 512 MB of memory running RedHat
Linux 7.3. All time units in the figures refer to CPU time.

Figure 3.3 (a) and (b) show the CPU time of the two algorithms running on dataset T40110D100K
and T100I20D100K respectively. Due to the use of the FP-array technique, and the fact that
T40I10D100K and TI100I20D100K are sparse datasets, FPgrowth* turns out to be faster than
FPgrowth. Since the FP-tree constructed from dataset T100I20D100K is taller and wider than
T40110D100K, the speedup from FPgrowth to FPgrowth* is increased. As another fact, when the
minimum support is very low, we can expect the FP-tree to achieve a good compactification, starting
at the initial recursion level. Thus the FP-array technique does not offer a big gain. Consequently, as
verified in Figure 3.3, for very low levels minimum support, FPgrowth* and FPgrowth have almost
the same runtime.

Figure 3.4 (a) and (b) show the CPU time of the two algorithms running on dataset pumsh*
and connect respectively. Since pumsb* and connect are both very dense datasets, by some statistics

we found that the FP-trees have very good compactness, and we can not expect that the FP-array

26

technique achieves a significant speedup for dense datasets, therefore the technique was not widely

used during the mining, and FPgrowth* and FPgrowth have almost the same runtime.

Pumsb_star Connect-4
1000 1000 1000 1000
—f— FP-growth” —&—FP-growth”
— -FP- 100 | i 100
100 L[| = O~ FPprowth 1 100 —-o—-FP-growth
O g
o
£ g " 10
i~ B
2 10 10 2
S G 1 41
1 1
E 01 ¢ 5 0.1
0.1 s . - 0.1 0.01 . L 0.01
40 35 30 25 20 15 100 90 80 YO 60 50 40 30 20 10

Minimum Support (%) Minimum Support (36)

(a) (b)

Figure 3.4: FPgrowth* vs. FPgrowth on dense datasets

3.4.2 FPgrowth* versus other algorithms

We conducted many performance tests to compare FPgrowth* with FP-growth, dEclat, and MAFIA
(with “all” option). Part of the experimental results from both synthetic and real datasets were
shown in [20, 21].

In 2003, the First IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'03)
[2] was organized. The goal of workshop was to find the most efficient algorithms for mining frequent
itemset. The independent experiments conducted by the organizers compared the performance of
algorithms such as optimized version of Apriori, FP-growth and Eclat. All in all 18 algorithms for
mining all frequent itemsets were compared. The results demonstrate that some algorithms have
obviously bad performance on all datasets. Unfortunately, the experiments in the workshop did not
compare the scalability of algorithms, and the experimental results of the memory consumption of
algorithms were not published. Therefore, we repeated part of the experiments of FIMI'03. In our
experiments, we compared FPgrowth™ with five existing algorithms, kDCI [40], dEclat [60], Apriori
[10, 6, 7], PatriciaMine [46] and LCM [52], and FP-growth method [28, 29] implemented by us. All
of these algorithms are the best or the second best algorithms in the workshop for some cases.

In FIMI'03, algorithms were run on 17 datasets, including synthetic and real, sparse and dense
datasets. We use 7 the most representative datasets of the 17 datasets here.

The seven datasets include one synthetic dataset and six real datasets. The synthetic dataset

27

is T20I10N1KP5KC0.25D200K. It is generated from the benchmark synthetic dataset application
from the website of IBM research center [1]. In T20110N1KP5KC0.25D200K, the average transaction
length is 20, average pattern length is 10, number of items is 1000, 5000 frequent patterns are used for
seeds, the correlation between consecutive patterns is 0.25 and the transaction number is 200,000. In
FIMTI’03, algorithms were also run on another synthetic dataset, T30/15N1KP5KC0.25D200K, which
is different from T20I10N1KP5K(C0.25D200K only in the average transaction length and the average
pattern length. In T80I15N1KP5KC0.25D200K, the average transaction length is 30 and the average
pattern length is 15. Instead of it, in our experiments we worked with another synthetic dataset,
T100I20N1KP5K(C0.25D200K, generated by using the benchmark synthetic dataset application.
Its average transaction length is 100 and average pattern length is 20. Obviously, the average
transaction length and average pattern length differences between T100I20N1KP5KC0.25D200K
and T20110N1KP5KC0.25D200K are bigger than those between T80/15N1KP5KC0.25D200K and
T20110N1KP5KC0.25D200K.

The six real datasets are: accidents, kosarak, chess, connect, mushroom, and pumsb*. Dataset
accidents was donated by Karolien Geurts and contains (anonymous) traffic accident data. Kosarak
was provided by Ferenc Bodon and contains (anonymous) click-stream data of a Hungarian on-
line news portal. The connect and pumsb* datasets are the same as the datasets in Section 3.4.1.
The chess datasets are derived from their respective game steps. The mushroom dataset contains
characteristics of various species of mushrooms. Connect, chess, and mushroom were originally taken
from the UC Irvine Machine Learning Database Repository. Table 3.1 lists the number of items,

average transaction length, size, and number of transactions in each dataset.

Dataset #Items | Avg. Length | Size (bytes) | #Transactions
T20I10N1KP5KC0.25D200K 1000 20 15,821,880 200,000
T100I20N1KP5KC0.25D200K | 1000 100 76,146,703 200,000
chess 75 37 342,294 3,196
connect 129 43 9,255,309 67,557
mushroom 119 23 570,408 8,124
kosarak 41,270 8.1 32,972,514 990,002
accidents 468 33.8 35,509,823 340,183
pumsb* 2088 50.5 11,291,914 49,046

Table 3.1: Dataset Characteristics

The experiments were performed on a DELL Inspiron 8600 laptop with Pentium M, 1.6 GHz

Processor, and 1GB of memory. The operating system was RedHat Linux 2.4.20 and gee 3.2.2 was

28

used for the compilation. Both time and memory consumption of each algorithm running on each
dataset were recorded. Runtime was recorded by “time” command, and memory consumption was
recorded by “memusage”. In the following figures, if there is no data for time of algorithm A running
on dataset B for some minimum support J, it is either because A needs too much time (longer than
30 minutes) to run on B for minimum support &, or the implementation of the A has some bugs.

There will be no memory consumption data either for A running on B for minimum support 4.

The runtime

Figure 3.5 and Figure 3.6 show the time of all algorithms running on T20[10N1KP5KC0.25D200K
and T100120N1KP5KC0.25D200K, respectively. In Figure 3.5, FPgrowth* is slower than kDCI,
Apriori and dEclat for high minimum support. While for low minimum support, FPgrowth* becomes
the fastest, and dEclat, kDCI and Apriori become an order of magnitude slower than FPgrowth*.
The algorithm which was the fastest, dEclat, now becomes the slowest. At the same time, FPgrowth*
and FPgrowth have almost the same runtime, their lines almost overlap, which means the FP-tree
constructed from T20I10N1KP5KC0.25D200K is not tall and wide enough for using the FP-array

techniques to make big difference.

T2011ONTKP5KC0.25D200K T100I20N1KPSKC0.25D200K
1000 1000 1000 1000
b [~ %~ PatriciaMine - =& - dEclat
— ~&= - dEciat +FPgroW'
wemfffine ERgrOWEh —6——x I;:tnon u
. —— riciaMine
Anriofi
100 —ﬁ——kgrcl(‘nn 100 oel
= ® @ ———t— FP-growth
Y FP-growth g 100 }[--0--1cu . 100
E ~~4J--LCM e - R - e n
E O | T T S g E g
g Deeeennnens Cevcomnsnnn 10 &
’ T
1 * - - 1 10 - — 10
1 0.75 0.5 0.25 0 10 9 8 7] 5
Minimum Support (%) Minimum Support (%}
Figure 3.5: Runtime of Mining All FI's on Figure 3.6: Runtime of Mining All FI’s on
T20I10N1KP5KC0.25D200K T100I20N1KP5KC0.25D200K

In Figure 3.6, almost all algorithms have consistent performance on the dataset. The kDCI
method is the fastest algorithm for all minimum supports. FPgrowth* ranks three in seven algo-
rithms. Notice that FPgrowth™* is almost 2 times faster than FPgrowth for minimum support 5%,
which means that the FP-array technique saved much time for traversing the FP-trees.

The results shown in Figure 3.5 and Figure 3.6 can be explained as follows. When the datasets

29

such as the synthetic datasets are sparse, FPgrowth* has to construct bushy FP-trees. However,
when the minimum support is high, not many frequent itemsets can be mined from the FP-trees.
On the contrary, if the minimum support is low, the dataset could have many frequent itemsets.
Then the time used for constructing FP-trees offers a big gain. For Apriori, kDCI, and dEclat, when
the minimum support is high, there are fewer frequent itemsets and candidate frequent itemsets to
be produced. Thus they only need to build small data structures for keeping frequent itemsets and
candidate frequent itemsets, which does not take much time. But for low minimum support, con-
siderable time has to be spent on keeping and pruning candidate frequent itemsets: The operations
take more time than mining frequent itemsets from the compact FP-trees. This is why in the present
experiment FPgrowth* is slow for high minimum support and fast for low minimum support. We
can expect that in Figure 3.6, FPgrowth* would outperform Apriori, kDCI and dEclat for lower
minimum support.

Figure 3.7 to Figure 3.12 show the experimental results of running 7 algorithms on all real
datasets. In all figures, the line for the FP-growth method overlaps the line for FPgrowth*, which
means the two methods have very similar performance on dense datasets.

In Figure 3.7, all the algorithms once again have consistent performances on dataset chess which
is a very dense dataset. FPgrowth* has similar performance to PatriciaMine and LCM when the

minimum support is high, but is slower than PatriciaMine and LCM when the minimum support is

low.
Chess Connect
1000 1000 1000 1000
— =X — -ParriciaMine ¥ PatriciaMing
— - dEclal — -4~ - dEclat
100 & = isz:;wm 3 100 e FP oW
 |—e—kDCI 100 == Apriari b 100
& 10 t--O--Lou 10 g —-&—KDCl
e }——t—FP-growth e z ——t—— FP-growth
E X =
E 1¢ 41 2
S wt s S 10
0.1 401
0.01 - . 0.01 1 1
%0 80 70 80 50 40 30 20 10 100 90 80 70 60 50
Minimum Support (%) Minimum Support (%)
Figure 3.7: Runtime of Mining All FI’s on Figure 3.8: Runtime of Mining All FT’s on con-
chess nect

30

Runtime (s)

Shown in Figure 3.8 and 3.9, algorithms have similar performances on datasets connect and mush-

room, both are very dense datasets. FPgrowth* is still slower than PatriciaMine for low minimum

support. However, it is always at least two times faster than LCM.

_ Mushroom
1000 5 1000
[= <%= -PatriciaMine
— -4+ dEclat
{ | e P growth
100 | eep— Apriori 100
—@—kDCl
. s FP-growth
2 --{1--LCM 10
i — .
g a7
& AT
e - 1
| ekl S
0.1 - 0.1
20 15 10 5

Minimum Support (%}

Figure 3.9: Runtime of Mining All FI's on
mushroom

Kosarak
1000

= -4+ dEciat
e FPgrowth*
e Apriori
~—&—kDCl
——++— FP-growth
s- - -LCM

100 ¢ 4 100

Runtime (s)

b
o

1 Q.75 0.5 0.25 Q
Minimum Support (%)

Figure 3.10: Runtime of Mining All FI's on
kosarak

In Figure 3.10, FPgrowth* and FPgrowth are the fastest algorithms for very low minimum

support. We also can see that FPgrowth™ is even slower than FPgrowth for minimum minimum

support 0.1%. That means the FP-tree constructed from dataset kosarak is so compact that the

time saved for FP-tree traversing is less than the time for applying the FP-array technique.

Figure 3.11 shows the performance of all algorithms on accidents. In the figure, the line for the

PatriciaMine almost totally overlaps the line for FPgrowth*, and FPgrowth* is one of the fastest

algorithms when the minimum support is low.

Accidents
10000

10000

-- -X— PaticiaMine
— -&- - dEclat
e FPgrowth”
1000 & ——0— Apriori
@ kDCH
~——t—FP-growth
--43--LCM

1 1000

j=3
=1

100 80 60 490 20 0
Minimum Support (%)

Figure 3.11: Runtime of Mining All FI’s on
accidents

Pumsb_star
1000

1000

——¥-— PatriciaMine

-~ -& « dEclat

[oo FPGrOWh*
== Apriori

——®—kDC}

—+—FP-growth

~-4--1LCM

100 3 100

=1

Runtime (s)

041 L N : N N 0.1
55 50 45 40 35 30 25 20

Minimum Support (%)

Figure 3.12: Runtime of Mining All FI's on
pumsb*

Similar to Figure 3.11, the PatriciaMine has almost the same speed as FPgrowth* (their lines

1000

once again overlap), and FPgrowth™ is still one of the fastest algorithms for low minimum support
in Figure 3.12.

In figures 3.5 to 3.12, FPgrowth* shows stable performance. It is always among the fastest algo-
rithms. On the contrary, Apriori, dEclat, kDCI, and LCM demonstrate their worst performances.
For example, in Figure 3.5, dEclat is the fastest algorithm when the minimum support is low, but
it is also the slowest one when the minimum support is high. The kDCI method has many cases as
a fast algorithm, but it is the slowest one in Figure 3.10 when the minimum support is low. Apriori
does not have a fastest case and it is always among the slowest algorithms.

There is no algorithm that is always the fastest. We believe that the data distributions in
the datasets have some influence on the performances of the algorithms. Unfortunately, the exact
influence of data distribution for each algorithm is still unknown. We also found that it is time-
consuming to determine the data distribution before mining the frequent itemsets. Thus, it would
be wise to choose the stable algorithms such as FPgrowth* to mine frequent itemsets.

Another observation is that PatriciaMine has similar performance as FPgrowth* method. This is
because both algorithms are based on prefix tree data structure. FPgrowth* has many optimizations
that are similar to those of PatriciaMine. Though FPgrowth* also uses the FP-array technique, all
real datasets in Table 3.1 are dense datasets and the FP-array technique does not work very well on

the dense datasets.

Memory Consumption

Since memory consumption also demonstrates the quality of an algorithm, we record the peak main
memory consumption of the algorithms when running them on the datasets.

Figure 3.13 and Figure 3.14 show the peak main memory consumption of the algorithms on two
synthetic datasets. FPgrowth* and the FP-growth method consume almost the same main memory,
their lines overlap again. We can see that FPgrowth* and the FP-growth method unfortunately use
the maximum amount of main memory. Its main memory consumption is almost 4 times bigger
than the dataset size. Algorithm kDCI uses the lowest amount of main memory when the minimum
support is low while dEclat uses the least main memory when the minimum support is high. From
the figures, we also can see that memory consumption of all algorithms is bigger than the dataset

size.

32

Main Memory (M)

T2011ON1KP5KC0.250200K T100120N1KP5KC0.25D200K

600 £00 500 500
= X~ PatriciaMine 450 L [=—X— PatriciaMine 450
500 [~ -4 - dEclat 1 500 — k-~ dEclal
el FPgrOWHR 400 b e FPgrOWth” g 400
400 [e Apriori 1 400 g 350 | o—- Apriori 1 350
® ’:;C’ " E 300 Ei-—8—kDC! 300
—t—FP-gro) e FP-growth]
L h E 3 -
300 H. . m..iom 300 g 250 eeQ--LCM 250
£ 200 200
200 | 13w Z 150 150
1100 100 100
50 } 1 50
0 ok OGO ® ® i,
) 12 10 8 6 4 2
Minimum Support (%) Minimum Support (%)
Figure 3.13: Memory Usage of Mining All FT’s Figure 3.14: Memory Usage of Mining AIl FT’s
on T20110N1KP5KC0.25D200K on T100I20N1KP5KC0.25D200K

The question of why FPgrowth* and the FP-growth method consume so much main memory
when running on synthetic dataset can be answered as follows. In both figures the minimum support
is pretty low, so there are many frequent single items in the datasets. Therefore wide and bushy
trees have to be constructed for mining all frequent itemsets. Since the number of frequent single
items almost stays the same as when the minimum support changes, the sizes of FP-trees remain
almost the same, as we can see from the figures.

Comparing Figure 3.5 with Figure 3.13, we also can see that FPgrowth* still has good speed
even it has to construct big FP-trees. However, from Figure 3.6 and Figure 3.14, we can see that
the construction of FP-trees does influence the speed of FPgrowth* much.

When we implemented FPgrowth*, the FP-tree structure was implemented as a standard trie.
In PatriciaMine, the FP-tree structure was implemented as a PatriciaMine trie. That’s why it uses
less main memory than FPgrowth*.

From Figure 3.15 to Figure 3.20, the FP-tree structure shows great compactness. Now, the
main memory consumption of FPgrowth* is almost the same as that of the PatriciaMine and the
FP-growth method. In the figures, we almost can not see the lines for the PatriciaMine and the FP-
growth method because they were overlapped by the lines for FPgrowth*. From the experimental
data, we see that for high minimum support, the memory used by FPgrowth* is even smaller than
the memory used by PatriciaMine, which means Patricia trie needs more memory than standard
trie when the compactness of FP-tree is very high.

From the figures, we also notice that when minimum support is low, the main memory used by

algorithms such as Apriori and kDCI increases rapidly, while the main memory used by FPgrowth*

33

Main Memory (M)

Main Memory (M)

Main Memory (M)

Chess

250 250
— <X -PatriciaMing
— &~ - dEclat

200 e FPgrOWtH® 120
——Q—= Apricri

150 ||——@——kDC! 4 150
- --LCM]

i FP-growth

p=3
(=3

50

50

50 50

40
Minimum Support (%)

Figure 3.15: Memory Usage of Mining All FI's

on chess
Mushroom

80

- X — -PatriciaMine
70 ¢ i~ -4 - dEclat
60 | | === EPgrowth*

O Apricrt
50 £ | —e—kDCt
40 | [FP-growth

--{3--1.CM

w
=]

L)
<

-
o

o

20

15

10 5
Minimum Support (%)

Figure 3.17: Memory Usage of Mining All FI's

on mushroom

Accidents
600
— K- PatriciaMing
-~ ~&~ - dEciat I‘ 3 500
wmnfjean FPgrowth® .
/
. 4 400
/
g FP-growth ‘[o 1 ago
-~ 41--LCM s .
L A 1 200
ja T < R u R = i /
100 | 4 4 100
YUY G VY NI S o ~% 4
0 0
100 80 60 40 20 0

Minimum Support (%)

Figure 3.19: Mem
on accidents

ory Usage of Mining All FI's

Main Memory (M)

Connect

160 160
140 ~—¥— PatiiciaMine 140
~ -4 - dEclat
120 | |l FPgrowth” 4 120
. e @mn ApTIOF
S 100 | {—gkDO! 3 100
|y -
E g0 ||+ FP-growth 180
s ~={1--1LCM
- 60 | 4 60
[
= 0t S gl o 40
20 20
0 il iz 0
100 30 80 70 &0 50
Minimum Support (%)

Figure 3.16: Memory Usage of Mining All FI’s

on connect
Kosarak
300 300
by R xR Qe---- o---g
— =X -PatriciaMine
250 H_ s - gEclat 1 %0
e FPgrowth”
200 —— Aprion 1200
~—@—~kDC!
150 e FP-growth
--O--1CM
100
50 r— ——————————————
o e n
1 Q.75 0.5 Q.25 0
Minimum Support (%)
Figure 3.18: Memory Usage of Mining All FI’s
on kosarak
Pumsb_star
80 0
8¢ geeeee G- 3? 80
[l S ~ T S 70
X~ Patriciahine ~--o
~ 680 60
k) &= - dEclat
z 50 | il FPgrowth® {50
E 40 e ApriOrn 40
% —&——kDCI
g 30 b} eapn FR-groWth 30
20 Fl--0--LcM {2
10 ¢ e~ 410
0 L = o
55 50 45 49 35 30 25 20
Minlmum Support (%)

Figure 3.20: Memory Usage of Mining All FT’s

on pumsbh*

and PatriciaMine does not have a big change. This is because algorithms such as Apriori and kDCI
have to keep large number of frequent itemsets and candidate frequent itemsets. The number of
itemsets that needs to be kept increases exponentially when the minimum support becomes lower.
For FPgrowth* and PatriciaMine, if the number of frequent single items does not change much when
minimum support becomes lower, the size of FP-trees does not change much, either.

In figures 3.5 to 3.20, we see that the performance of almost all algorithms show big differences
between synthetic datasets and real datasets. Similar situations can be seen later from the exper-
imental results in Chapter 4, Chapter 5, and Chapter 6. People may ask these questions: why
are there so big differences? and what are the synthetic datasets good for? The differences stem
from the distribution differences between synthetic datasets and real datasets. When the synthetic
datasets were generated, some distributions such as Poisson distribution and binomial distribution
were used for generating a transaction. However, the real datasets used here do not follow those
distributions. All of these datasets are skewed. In some dataset such as connect, many itemsets
occur in more than 80% of the transactions. Though the real datasets are totally different from the
synthetic datasets in this thesis, we can not say that there are no real datasets that are similar to
the synthetic datasets. In other words, in real life, we still can find some real datasets that have
similar distributions to the synthetic datasets. It still makes sense to run the algorithms on both

synthetic datasets and real datasets.

Scalability

We also tested the scalability of all algorithms by running them on synthetic datasets. The number
of transactions in the datasets for Figure 3.21 and Figure 3.22 ranges from 200K to 1 million. In all
datasets, the number of items is 1000, the average transaction length is 20, the number of patterns
used as generation seeds is 5000, average pattern length is 10, and the correlation between patterns
was set as 0.25.

All algorithms ran on all datasets for minimum support 0.1%. Both runtime and memory con-
sumption were recorded.

Figure 3.21 shows the speed scalability of all algorithms. In the figure, the lines for PatriciaMine,
FPgrowth*, FPgrowth, and LCM overlap each other, which means that the four algorithms have

almost the same scalability, which is also the best scalability. Runtime increases about 4 times when

35

Runtime (s)

the size of dataset increases 5 times, while runtime of algorithms such as kDCI increases about 10

times when the transaction number increases from 200K to 1 million.

Secalability
1000

£{e= K~ «PatriciaMine
00 1 _ & - dEclat 90
800 ©|eesfifum=FPgrowth* 3 800
700 £ O Aprior 700

|-~ 4--LCm
600 H-——g—kpC! 7 600
500 ff ~=t—FP-growth 3 500
400 |] 1 a0o
300 ¢ i 3 300
200 3 200
“ M 100

0 " — L8 E) rt 3 1 e | 0
0 200 400 600 800 1000

Transaction No (K)

Figure 3.21: Scalability of runtime of Mining
ALl FT’s

Main Memory (M)

Scalability
400

— X — PatriciaMine
=~ -&— - dEclat
mnf@mmns FRGrowth*
e Apriori
~—@—kDCI
e FP-growth
-« {}--LCM

350 ¢

300 [

250

200

150 |

St . s

500 600 700
Transaction No. (K)

800

800

1000

Figure 3.22: Scalability of Memory Usage of
Mining All FT’s

Figure 3.22 gives the main memory scalability of all algorithms. In the figure, the line for the

FP-growth method overlaps the line for FPgrowth*, and the line for dEclat overlaps the line for

PatriciaMine. The figure shows that main memory consumption of FPgrowth* and FP-growth in-

creases linearly when size of datasets changes, which is not as good as the main memory consumption

of other algorithms.

From all figures of runtime, main memory consumption and scalability of all algorithms, we can

easily draw the conclusion that PatriciaMine is the best algorithm for mining all frequent itemsets

since it is one of the fastest algorithms and it is always among the algorithms that use least main

memory. FPgrowth* is also a stable algorithm and always among the fastest ones.

36

y 400

Chapter 4

Discovering Maximal Frequent

Itemsets: First Attempt

The FP-growth method uses the FP-tree structure to mine all frequent itemsets efficiently. Since
any subset of a frequent set is also frequent, it is sufficient to mine only the set of mazimal frequent
itemsets, instead of mining all frequent itemsets. In this Chapter, we study the performance of two
existing approaches, GenMax and MAFIA, for mining maximal frequent itemsets. We also introduce
a data structure, MFI-tree, for testing the maximality of a frequent itemset. Then we develop an
extension, called FPmax, of the FP-growth method. Since one cannot expect that a single approach
will be suitable for all types of data, we analyze the behavior of the three approaches GenMax,
MAFIA, and FPmax, under various types of data. We validate our conclusions through careful
experimentation with synthetic data, in which the parameters influencing the data characteristics
are easily tunable.

On the basis of these conclusions, we then predict of the performance of each of the three methods
for specific data characteristics. We test these predictions on real datasets, and find that they are

valid in most cases.

37

4.1 The MFI-Tree

Obviously, compared with FPgrowth*, extra work needs to be done by FPmax is to check if a
frequent itemset is maximal. The naive way to do this is during a post-processing step, as for
example described in [55]. In [55], an algorithm is introduced for extracting all maximal elements in
set of sets. The sets come in random order. If there are n sets, then getting all maximal sets takes
at least O(y/nlogn) time. Post-processing usually is very costly. Instead, we introduce the Mazimal
Frequent Itemset tree (MFI-tree), to keep the track of MFI's. A newly discovered frequent itemset
is inserted into the MFI-tree, unless it is a subset of an itemset already in the tree.

The MFI-tree resembles a FP-tree. Each MFI-tree has a root labeled “roof”. Children of the
root are item prefix subtrees. In a FP-tree, each node in the subtree has three fields: item-name,
count and node-link. In the MFI-tree, the count is replaced by the level of the node. The level-field
will be useful for maximality testing. All nodes with the same item-name are linked together, as
in a FP-tree. The node-link points to the next node with the same item-name. The MFI-tree also
has a header table. The header table of a MFI-tree is constructed based on the item order in the
header table of the FP-tree T constructed from the original database. Each entry in the header
table consists of two fields, item-name and head of a linked list. The head points to the first node
with the same item-name in the MFI-tree.

The construction of the MFI-tree is described in Figure 4.1.

Procedure MFLtree_construction(M F1s)
Input: MFIs: set of MFTI's, generated by FPmax
Qutput: A MFI-tree M
Method:
create the root node of M
create a header table from Ty.header
for each itemset L in MFIs do begin
sort the items in L according to the order of items in M.header
let 4= the first item in L, N = M.root
repeat
if ¢ is not the item-name of any child of N
create a new child node C for N, set C.item = 1, set C.level as current level
link C to the end of the link list for ¢ starting from M.header
let N = C, i=the next item in L
until all items in L are processed
end

Figure 4.1: Construction of a MFI-tree

To see how a MFI-tree is constructed, we take the FP-tree in Figure 2.4 as an example.

38

After the construction of the first FP-tree as in the FP-growth method, the method is called
recursively for each {requent item in the header table in Figure 2.4 (b). The FP-trees corresponding
to {c}, {e}, {f} and {a}-conditional pattern bases each contain only a single branch, and therefore
the recursion stops. But the FP-trees corresponding to {g} and {d}-conditional pattern bases
each contain multiple branches, and therefore the recursion should continue. In the following table
we summarize the {i}-conditional pattern bases for each frequent item i in Figure 2.4(b) and its

corresponding conditional FP-tree.

item | conditional pattern base | conditional FP-tree

¢ | {{gdb:1),(ab: 1)} {(&:2)}
e | {(gdb:1),(da:1)} {{d: 2)}
f | {(dab:1),(gab: 1)} {{a:2,b:2)}

g | {(d:2),@b:1),(da: 1)} | {(b:3,(d:2,a:1),(d:1,a:1)}
d [{0:2),(ab:1),(@:2} | {((@:3,b:1),b:2))

a | {(:9) {(b:3)}

b) 0

Figure 4.2 illustrates the construction of the MFI-tree for the example of Figure 2.4. In Figure 4.2,
a node z : £ means that the node is for item z and its level is £. Start from the first FP-tree T in
Figure 2.4(b), by calling FPmax(7T"). Since T" contains more than one path, a bottom-up search has
to be done. For item ¢, its conditional FP-tree only has one single path, so we get the first frequent
itemset {b,c}. Obviously this set is maximal, so it is inserted into the MFI-tree directly (Figure
4.2 (a)). Note in Figure 4.2 the header table in the MFI-tree is the same as that of the FP-tree in
Figure 2.4, constructed from the database. Similarly, for item e and f, we can get maximal frequent
itemsets {d,e} and {b,a, f}. Figure 4.2(a) shows the tree after inserting (b,¢c), (d;e) and (b,q, f).
When inserting (b, a, f), since (b, a, f) shares prefix b with (b,¢), only two new nodes for a and f
are inserted. Now for item g, from its conditional pattern base, another conditional FP-tree for g,
Ty can be constructed. T} is not a single path tree, so FPmax will be recursively called on T, it
returns the g-conditional frequent itemsets {b,d, g} and {a, g}, and since there is no link-chain for
g, they are also maximal. We then insert {g,d, b} into the MFI-tree {Figure. 4.2 (b)). Similar item
d, the {d}-conditional itemset is {b, d} and {a,d}, and by calling mazimality_checking, we determine

that {b,d} is a subset of an existing MFI, so it will not be inserted into the MFI-tree, only {a, d} is

39

inserted into the MFI-tree. Finally, no itemsets in the conditional bases for {a}, or {b} are maximal,
no new MFI’s will be inserted into the MFI-tree.

Every branch of the MFI-tree forms a MFL Thus the MFI’s in Figure 4.2 (b) are {c, b}, {b,q, f},
{b,d,g}, {e.d}, {d,a} and {a,g}.

Header Table roet:0 Header Table root:0

Head of Head of
node-tinks node-links

item item

A

0 8 oy RN o
O 0 M Qo o
°

(2) (b)

Figure 4.2: Construction of Maximal Frequent Itemset Tree

4.2 FPmax: Discovering maximal frequent itemsets

Extending the FP-growth method, we can get algorithm FPmax described in Figufe 4.3. The
procedure has a FP-tree T' as parameter. The tree has attributes: base, header. T .base contains the
itemset X, for which T is a conditional FP-tree, the attribute header contains the head table.
FPmax is also a recursive algorithm. In it, a global MFI-tree is used to keep track of all MFT’s.
In the initial call, a FP-tree is constructed from the first scan of the database. Before recursively
calling FPmax, we already know that the set containing all items in T.base and the items in the
FP-tree is not a subset of existing MFT’s. If there is only one single path in the FP-tree, this single
path together with T .base is a MFI of the database. If the FP-tree is not a single-path tree, its least
frequent item is appended to T.base, and line 6 calls function mazimality_checking to check if the
new base Y together with all frequent items in the Y UTail is subset of existing MFI’s in the global

MFI-tree. If not, FPmax will be called recursively.

Theorem 4.1 FPmaz returns all and only the mazimal frequent iternsets in the given dataset.

40

Procedure FPmax(T)
Input: T a FP-tree
Global:
M: a MFI-tree.
Output: The M that contains all MFI’s
Method:
1. if T only contains a single path P
2. insert T.base U P into M
3. else for each ¢ in the T.header do begin
4 set Y = T.base U {i};
5 Tail = {all frequent items in the ¢’s conditional pattern base}
6. if not mazimality_checking(Y U Tazl, M);
7 construct Y'’s conditional FP-tree Ty;
8 call FPmax(Ty);
9. end :

Figure 4.3: Algorithm FPmax

Proof. First of all, we prove that FPmax generates only MFI’s. Before constructing any FP-tree,
the FP-growth method [28] sorts all the items by their counts. Suppose the sorted frequent items
are i1,%2,..-,in, frequent itemsets will be mined from i,, with minimal count to 4; with the maximal
count.

For every item 7z, to get all its frequent sets, all its conditional pattern bases can be extracted from
the first FP-tree constructed from the database. These bases only contain items in {i1,42,...,%k-1},
i.e., items that precedes ix. Thus, any frequent itemsets in the bases only consists of items in
{i1,%2,...,4k—1}. From these bases, another FP-tree corresponding to i, can be constructed. We
call all MFI’s mined from this FP-tree 1,-MFD’s. Any ix-MFI cannot be subset of any MFT of items
41,12, ... yik~1 that will be generated latter because any ix-MFI contains ¢, while no MFT of items
i1,%2, ..+ ,1k~1 Can contain ix. Thus, a frequent itemset generated from a single-path FP-tree cannot
be a subset of any frequent itemset generated later, i.e., it is either maximal frequent set or a subset
of some existing MFI's. Now we prove that FPmax generates all maximal frequent itemsets. In
FPmax, if in line 2 it gives all subsets of T.base U P, and in line 6 mazimality_checking is not called,
all frequent itemsets will be generated, as in the FP-growth method. While line 2 will not lose any
MFI, and the effect of function mazimality_checking is to expunge non-maximal frequent itemsets,

all MFI’s will be preserved. Thus, FPmax will generate all MFI’s.]

41

4.3 Maximality checking

In FPmax, function mazimality_checking is called to check if Y U Tail is a subset of some MFI's in
the MFI-tree. If Y U Tail is a subset of some MFI, then any frequent itemset generated from the
FP-tree corresponding to Y could not be maximal, and thus we can stop mining MFI's for Y. By
calling marimality_checking, we do superset frequency pruning.

Note that before and after calling marimality_checking, if Y U Tail is not subset of any MFI,
we still do not know if Y U T'ail is frequent or not. By constructing the FP-tree for Y from the
conditional pattern bases of i, if the FP-tree only has a single path, we can conclude that Y U Tasl
is frequent. Since Y U Tail was not a subset of any previously discovered MFI, it is a new MFI and
will be inserted to the MFI-tree.

To do maximality testing, one possibility is to always compare a set with the MFI’s in the MFI-
tree. However, we can do better. We found that most frequent sets are subsets of the latest MFI
inserted into the MFI-tree. Therefore, each time we insert a new MFT into the MFI-tree, we keep a
copy of this most resent MFI, any new frequent set will be compared with this set first. Only if the
new set is not subset of the most recent MFI, the new set will be compared with the MFI’s in the
MFI-tree.

By using the header-table in the MFI-tree, a set S is not necessarily compared with all MFI’s in
the MFI-tree. First, S is sorted according to the order of items in header table. Suppose the sorted
S is {41,12,.-.,;}. From the header table, we find the node list for i;. For each node in the the list,
we test if S is a subset of the ancestors of the node. Note that both sets are ordered according to the
header table, so this subset test can be done in linear time. Second, the level of node 4; can be used
for saving comparison time. We test if the level of ¢; is smaller than j. If it is, the comparison stops
because there are not enough ancestors of 4; for matching the rest of S. This pruning technique is
also applied as we move up the branch and toward the front of §. The function mazimality_checking

returns false if {i1,43,...,7;.1} is not a subset of any set in the MFI-tree.

42

4.4 Data characteristics and performance

In [5], Agarwal et al. have shown that DepthProject achieves more than one order of magnitude
speedup over MaxMiner[9]. In {12], the performance numbers of MAFIA show that MAFIA out-
performs DepthProject by a factor of three to five. In [16], Gouda and Zaki claimed that MAFIA
is one of the best methods for mining a superset of all MFI’s, and that GenMax is one of the best
methods for enumerating the exact set of MFI’s.

In the present section, we wish to reach an understanding of how the data characteristics influence
the performance of MAFIA, GenMax, and our new algorithm FPmax. We first analyze the mining
time used by the three algorithms.

We can divide the mining task in two parts. The first part consists of mining a superset of
maximal frequent itemsets, and the second part is for pruning out non-maximal frequent itemsets.
For FPmax, the time resources in the first part are invested in the construction of a FP-tree to
concisely represent the database, and then extracting frequent itemsets from the FP-tree using the
FP-growth method.

In the second part of the mining task, in order to extract the maximal frequent itemsets, the
FPmax algorithm has to perform a large number of maximality tests. Suppose there are n items in
header table. Then we know there are at most .,LL"/ 2 maximal frequent itemsets. If we construct a
MFI-tree for all these MFI's, the tree has height [n/2]. In the first level, there are C’ﬁn /2]+1 Dodes,
in the second level, there are C’fn /2]+2 nodes, in the ith level, there are Ci’:n /2]+; Dodes, and in the
last level, the |n/2|th level, there are 17/2) nodes. Thus, the total number of nodes in the tree is

n/2f
> Cloars 1)
i=1
This is also an upper bound on the number of maximality tests needed in constructing the MFI-tree,
Similar observations apply to the size of the FP-tree.

In the first part of the mining task, both GenMax and MAFIA counstruct a column-wise repre-
sentation of the bitmap view of the database. To extract the frequent itemsets from the columns,
MAFIA has to compute a number of bitvector and-operations, and GenMaz does TIS intersections.
If there are n items in the dataset, in the worst case, if the length of all MFI's is n/2, by a similar
analysis as above, the total number of bitvector operations or TIS intersections could be equal to

(1). However, a dense and a sparse dataset having the same number of maximal frequent itemsets,

43

will both require the same number of bitvector operations or TIS intersections.

For the second part of the mining task, GenMax and MAFIA differ in their approaches. GenMax
extracts the maximal frequent itemsets during the TIS intersections, while MAFIA performs a post-
processing step for the extraction.

Now let’s see how the parameters of the benchmark synthetic data generator at [1] influence the

performance of the three algorithms. The adjustable parameters include
o the average size of the transactions, also called average transaction length, ATL, and

o the average size of the maximal potentially large itemsets, also called average pattern length,

APL.

We can think of the ATL as influencing the density of the dataset. The APL, on the other hand,
determines the average length of MFD’s that the dataset will contain. Thus, a long ATL generates a

dense dataset, and a long APL gives long average MFI’s. This gives us four categories of data.

1. Short ATL, short APL. In this dataset we can expect that each transaction will be fairly
short, and that the MFI’s will also be short. For FPmax, this could result in a costly bushy

FP-tree.

Now, if the minimum support is high, there might be only relatively few maximal frequent
itemsets. This means that FPmax spent a considerable time effort to construct an FP-tree,
from which only a small set of MFI's will be extracted. In this case, we can expect GenMax
and MAFIA to be more efficient, since the ATL will not influence the time computing bitvector

operations and set intersections.

However, in the case where the minimum support is low, there might be numerous maximal
frequent itemsets. Then the time FPmax invested in the FP-tree will pay off, since the size of
the output (the MFT’s represented as a MFI-tree) will also be large Now we expect FPmax to

outperform the other two algorithms.

2. Short ATL, long APL. Here we expect that the transactions in the dataset are short, while
the average length of the MFI’s is close to ATL. For FPmax, this will result in a small FP-tree.
Contrary to the first case, we can now efficiently extract the MFI-tree from the small FP-tree.

We can also extract a relatively large MFI-tree from the small FP-tree. GenMax and MAFIA

44

on the other hand, will still need to do all the bitvector operations and set intersections they
did in a dataset with short APL. Thus, we can expect that FPmax is the algorithm of choice

for data with short ATL and long APL.

. Long ATL, short APL. Now the transactions in the dataset are long. For FPmax, it will

result in a very bushy and tall FP-tree. This will require more space and time than in the case
of short ATL. Now, if the minimum support is high and we get small size MFI-tree, FPmax will
not be efficient, GenMax or MAFIA will perform better. On the other hand, if the minimum

support-is low and we have a large output, FPmax may outperform GenMax and MAFIA.

. Long ATL, long APL. For FPmax, both the FP-tree and the MFI-tree could be very large,

which means we need more time to construct the FP-tree, and we need more comparisons to
construct the MFI-tree. For this type of data, if it needs less time to post-process the superset

of MFI’s, MAFIA could be the best, otherwise, GenMax is the best.

4.4.1 Experiments on synthetic data

To test the accuracy of the analysis above, we ran three algorithms on synthetic datasets. The source

codes for MAFTA and GenMax were provided by their authors. We used the application from [1] to

generate synthetic datasets. For all datasets in this section, the number of transactions was fixed

at 100,000, and the number of items was fixed at 1000. All experiments were performed on a 1GHz

Pentium III with 512 MB of memory running RedHat Linux 7.3. All timings in the figures are CPU

time.

CPU Time (s}

10000 10000 10000 10000
1000 1000 1000
H
100 100 E 400 100
=
&

10 10 10 10
1 1 1 1
1.2 1 [+2:3 08 04 02 0 12 10 8] 4 2]

Minimum Support (%) Minimum Support (%}
Figure 4.4: ATL=20, APL=20 Figure 4.5: ATL=20, APL=100

The results of the first set of experiments are shown in Figure 4.4. We ran the algorithms on a

45

short ATL of 20, and short APL also of 20. We see that FPmax and GenMax outperform MAFIA
5-10 times. GenMax is faster than FPmax when the minimum support is high, and when minimum
support is low, FPmax is faster. For minimum support 0.1%, FPmax is 5 times faster than GenMax,
while for minimum support 1%, GenMax is only about 1.5 times faster than FPmax.

The synthetic data for the second set of experiments, displayed in Figure 4.5, has a short (20)
ATL and a long (100) APL. In this case, the performance of MAFIA and GenMax is almost the
same. FPmax is clearly the most efficient on this dataset. FPmax outperforms the other two by

factor of at least two, both for high and low minimum support.

10000 10000 10000 10000
-« &« -FPMAX
oo pne G Max
1op0 | Lot s MalA | A 1000
1000 1000
g v
H H
I = 100 106
100 100
10 10
10 10 1 i
12 10 8 4 4 2 2] a5 20 15 hiy 5 0
Minimum Support (%) Minimum Support (%}
Figure 4.6: ATL=100, APL=20 Figure 4.7: ATL=100, APL=100

Figure 4.6 shows a totally different figure for algorithms on dataset with a long ATL (100) and
a short APL (20). We can see that FPmax is slower than other algorithms for most time. On this
type of data, MAFTA or GenMax is the best for high minimum support, while FPmax tends to be
faster than other two for low minimum support.

We also ran the algorithms on the dataset with long (100} ATL and long (100) APL. On this type
of data, from Figure 4.7 we can see that MAFIA seems to be the best, although GenMax performs
well too. FPmax seems to be slow at all time even when the minimum support is low.

For the next two experiments we fixed a low minimum support of 1%.

Figure 4.8 shows the result for the datasets generated by fixing ATL to 20 and varying APL from
20 to 100. In these experiments, FPmax has better performance than the other two algorithms.
MAFIA and GenMax have the same tendency, although GenMax is faster than MAFIA.

Then we generated the second datasets by fixing APL to 20 and varying APL from 20 to 100.

Figure 4.9 show the result. We can see that FPmax is slightly faster than GenMax, while MAFIA

46

is distinctly slower than the other two algorithms.

10000 P 10000 100000 100000
8 - -FPMAX
= olt~ - MAFIA
10060 - GenMax -A 10000
1000 000
w
e g 1000 1000
£ £
100 1o
2
0 100 4 100
10 10
10 10
1 1 1 1
0 20 40 80 80 100 120] 20 40 80 B0 100 120
Average Maximal Pattern Length Average Transaciion Length
Figure 4.8: ATL=20, minimum support=1% Figure 4.9: APL=20, minimum support=1%

The results of our experiments can be summarized in Figure 4.10, which gives the best algorithm

for the various types of data.

Average Transaction Length

R,
ATL &
5% O
<% 0o
CAN 4% short | long \?\\Q, 3
% ..,_‘J\& "'.' o{‘
g2 MAFlAor Y
= ~. GenMax | GenMax .~
£ -
=
)
u] . o
2 FPMAX | X
= APL hort v FPMA,
o
] ong
2 FPMAX MAFIA or
5 GenMax
>
<

Figure 4.10: Best algorithms for different type of data.

4.4.2 Experiments on real datasets

Next, we ran the programs on four real datasets, chess, connect, mushroom, and pumsb*, which were
used in Chapter 3. These real datasets are all very dense, so many MFI’s can be mined even for
very high values of minimum support.

Figure 4.11 to Figure 4.14 show the performance of the three algorithms on these real datasets.
Figure 4.11 shows the experimental results on mushroom. Here FPmax outperforms the other
algorithms, for all levels of minimum support. In dataset mushroom, the average transaction length
is 23, and the average MFI’s length ranges from 8 to 19 for minimum support 10% to 0.1%. We can

categorize this dataset as having short ATL, and long APL.

47

100 1000 1000

00
P VB
= b z:::“ - &~ - MAFIA , ’
—&— GenMax ."
100 ¢ |-- #--FPMAX 100

CPU Time (s)
3

CPU Thma (s)

0.1

01 0.1
oot o 60 55 50 45 4 35 30

Minimum Support (%)

Hinimum Support (%)

Figure 4.11: Running FPmax, GenMax and Figure 4.12: Running FPmax, GenMax and
MAFIA on dataset mushroom MAFIA on dataset chess

The results for the chess dataset is shown in Figure 4.12. The ATL of the dataset is 37 while
the average length of MFT’s is up to 12, which means both ATL and APL are long, so FPmax is not
expected to perform well with this dataset. Also, here MAFIA needs more work in post-processing,
so GenMax is the best algorithm for mushroom dataset.

In the dataset connect, though the ATL of this dataset is 43, which is fairly long, and the average
length of the MFI’s is 9 to 21 for minimum support 90% to 10%, which also is fairly long, nevertheless
FPmax is the best algorithm for high minimum support, and GenMax is the best for low minimum
support. This result does not fit the rule in Figure 4.10. We conjecture that connect has a skewed
distribution, different from binomial or exponential distributions that are used to generate synthetic
datasets {7]. By checking the size of the FP-tree and the number of maximality tests needed in

constructing the MFI-tree, we found that they are both far smaller than those for synthetic dataset

with ATL equal to 40.

1600 1000
100 we
10
- 10 ® _a
£ £
E g
2 2
oy 4 o
1
0.1 . 2.4
a"
&
09.01 ool 0.3 0.1
- 80 Nl &0 0 40 30 20 10 35 o 25 20 15 10
Hinimum Support {%) Minimum Support (%)
Figure 4.13: Running FPmax, GenMax and Figure 4.14: Running FPmax, GenMax and
MAFIA on dataset connect MAFIA on dataset pumsb*

48

The pumsb* dataset is also skewed, long (50} ATL and long APL (average length of MFI’s is 7 to
14 for minimum support 35% to 10%). As we can see from Figure 4.14, for high minimum support,
the MAFTA is the most efficient, followed by FPmax, and then GenMax.

Based on the experiments with datasets connect and pumsb*, it appears that the predictions in
Figure 4.10 do not hold. This is because the two datasets are very skewed. Some itemsets occur in
80% of the transactions in the datasets. Though for each dataset, its average transaction length and
its average pattern length match one case in Figure 4.10, the data distribution in the dataset is still
very different from the data distribution in the corresponding synthetic dataset. However, when the
data distribution of a real dataset is similar to the data distribution of a synthetic dataset, we can

predict the fastest algorithm for the real dataset by Figure 4.10.

4.4.3 Scalability of the algorithms

To test the scalability of three algorithms, we also ran the programs on both synthetic and real
datasets, while varying the number of transactions in datasets.

For the synthetic datasets, we set ATL to 10, and APL to 4, and vary the number of transactions
from 100,000 to 1,000,000. We chose a minimum support of 0.05%, because for this level FPmax
and GenMax use almost the same amount of CPU time. Figure 4.15 shows that the mining time

increases almost linearly for all three algorithms, while MAFIA and GenMax show a steeper increase

CPU Time (s)

than FPmax.
1500 1500 500 500
L] A
e FFNAX . 450 [[T@o-reMAX e =
1250 | |~ -4 - Gentax R] 1250 o Gantiax e
- - 8 - -MAFIA "-' 400 & « MAFIA /A" 0
‘ 380 ,’) 350
1000 p) 4 1000 P /,l
' 2= & s
3 - d
750 "." 750 g 250 A/ 2%
,," 200 200
-.' 150 150
250 ’,'--' 1 250 00 100
w’
‘“___‘____‘._._‘—-—-A'~—'t“j = =
ol s deiemade % 0 o °
100K 200K 800K 400K 500K 800K 700K BOOK 800K M 1 2 3 4 5 6 7 8 2 10
Transaction No Duplioats Timas
Figure 4.15: Scalability of FPmax, GenMax Figure 4.16: Scalability of FPmax, GenMax
and MAFTA Running on Synthetic Datasets and MAFIA on Duplicated Real Datasets

The steeper increase for MAFIA and GenMax in Figure 4.15 is not accidental. For synthetic

datasets, if we increase the number of transactions and keep other parameters unchanged, we can

49

expect more similar transactions, while the number of MFI’s will not increase much. For FPmax,
adding transactions similar to the existing ones will not increase the sizes of the FP-tree and MFI-
tree much, while it does increase the cost of set intersections because the sets now become long. In
the extreme case, if we increase the dataset by adding transactions equal to those that are already
in the dataset, we can expect that the CPU time for FPmax will remain unchanged, while it will
increase for GenMax and MAFIA. Figure 4.16 shows the result on dataset which is generated by
duplicating the real dataset connect two to ten times. From the figure, we can see that the line for
FPmax is flat while the CPU time for the other two algorithms increase rapidly. From Figure 4.16
we can also see that leaving the pruning of non-maximal frequent itemsets to a post processing step,

as MAFIA does, increases the amount of work.

50

Chapter 5

Discovering Maximal Frequent

Itemsets: Second Attempt

In Chapter 4 we developed FPmax, another method that mines maximal frequent itemsets using the
FP-tree structure. In FPmax, a data structure, MFI-tree, was introduced. A global MFI-tree was
set to keep all maximal frequent itemsets. Any candidate maximal frequent itemset was compared
with the itemsets stored in the MFI-tree. The experimental results in Chapter 4 showed that FPmax
does not always outperform GenMax [16] and MAFIA [12]. In this chaptér, we extend FPmax to
FPmax* by applying FP-array technique introduced in Chapter 3. Furthermore, we present a more
efficient method to test if a frequent itemset is maximal. The performance of FPmax*, namely its

speed, main memory consumption, and scalability, is studied.

5.1 FPmax*: Mining MFI’s

In FPmax, only one global MFI-tree is constructed, a newly discovered frequent itemset is inserted
into the MFI-tree, unless it is a subset of an itemset already in the tree. However, for large datasets,
the MFI-tree can be quite large, and sometimes one itemset needs thousands of comparisons for
maximality testing. Inspired by the method maximality checking is done in [16], we developed
FPmax* method, in which for each conditional FP-tree Tx, a small MFI-tree My is created. The

tree Mx will contain all maximal itemsets in the conditional pattern base of X. To see if a local

51

MFI Y generated from a conditional FP-tree T'x is maximal, we only need to compare Y with the
itemsets in My . This achieves a significant speedup of FPmax.

We called the new method FPmax™* because we can expect that it outperforms FPmax while
using the FP-array technique. But in addition to it, FPmax* has a more efficient maximality test,
as well as a number of other optimizations.

FPmax* has two parameters, one is a FP-tree T', another one is M. Besides the two attributes
base and header, the FP-tree now has another attribute FP-array. T.FP-array contains the FP-array
Ax. T.base contains the itemset X, for which T is a conditional FP-tree, and the attribute header
contains the head table. Note that In FPmax*, the header table of Mx is constructed based on the
item order in the table of T'.

Procedure FPmaz*T, M)
Input: 7, a FP-tree

M, the MFI-tree for T.base
Output: Updated M
Method:
1. if T only contains a single path P
2. insert P into M

3. else for each i in T .header do begin

4 set Y = T.base U {i};

o. if T.FP-array is not NULL

6. Tuil={frequent items for ¢ in T.FP-array}

7 else

8. Tuail={frequent items in ¢’s conditional pattern base}
9. sort Tail in decreasing order of the items’ counts

10. . if not mazimality_checking(Y U Tail, M)

11. construct Y's conditional FP-tree Ty and its FP-array Ay;
12. initialize ¥’s conditional MFI-tree My;

13. call FPmaz*Ty, My);

14. merge My with M

15. end

Figure 5.1: Algorithm FPmax*

Figure 5.1 gives algorithm FPmax*. In the figure, T.base contains the items that form the
conditional basis of the current call. The first call will be for the FP-tree constructed from the
original database, and it will have an empty MFI-tree. Before a recursive call FPmaz*(T,M), we
already know from line 10 that the set containing T.base and the items in the current FP-tree is
not a subset of any existing MFIL. During the recursion, if there is only one single path in T, this
single path together with T.base is a MFT of the database. In line 2, the MFI is inserted into M. If

the FP-tree is not a single-path tree, then for each item ¢ in the header table, we start preparing for

52

the recursive call FPmaz*(Ty, My), for Y = T'base U {i}. The items in the header table of T" are
processed in increasing order of frequency, so that maximal frequent itemsets will be found before
any of their frequent subsets. Lines 5 to 8 use the FP-array technique, and line 10 calls function
mazimality_checking to check if Y together with all frequent items in Y’s conditional pattern base
is a subset of any existing MFI in M (thus we do superset pruning here). If mazimality_checking
return false, FPmax* will be called recursively, with (7y, My). The implementation of function
mazimality_checking will be explained shortly.

Note that before and after calling mazimality_checking, if Y U Tail is not subset of any MFI, we
still do not know whether ¥ U Tail is frequent. If, by constructing Y's conditional FP-tree Ty, we
find out that Ty only has a single path, we can conclude that ¥ U Tail is frequent. Since Y U Tazl

was not a subset of any previously discovered MFI, it is a new MFI and will be inserted into My .

5.2 Maximality checking

The function mazimality_checking works similarly as in FPmax. Except now Y U T'ail will be
compared with a smaller MFI-tree.

Unlike a FP-tree, which is not changed during the execution of the algorithm, a MFI-tree is
dynamic. At line 12, for each Y, a new MFI-tree My is initialized from the predecessor MFI-tree
M. Then after the recursive call, M is updated on line 14 to contain all newly found frequent
itemsets. In the actual implementation, we however found that it was more eflicient to update all
MFI-trees along the recursive path, instead of merging only at the current level. In other words, we
omitted line 14, and instead on line 2, P is inserted into the current M, and also into all predecessor
MFI-trees that the implementation of the recursion needs to keep in main memory in any case.

For more details, on line 12, when a MFI-tree My, for Y; = 4yiz...4; is created for next call
of FPmax*, we know that conditional FP-trees and conditional MFI-trees for Y;_; = i1¢2...4;-1,
Yio=1tyia... 4522, ..., Y1 =4, and Vg = { are all in main memory. To make My, store all already
found MFT’s that contain Y}, My, is initialized by extracting MFI's from M)/j"l. The initialization
can be done by following the linked list for i; from the header table of My,_,, and extracting the
maximal frequent itemsets containing ;. Fach such found itemset I is sorted according to the order
of items in My,’s header table (the same order as Ty,’s header table), and then inserted into My, .

On line 2 we have found a new MFI P in Ty,, so P is inserted into My,. Since Y; U P also

53

contains Yj_1,..., Y1, Y5 and the trees My, ,,..., My,, My, are all in main memory, to make these
MFI-trees consistently store all already discovered MFT's that contain their corresponding itemset,
for each k= 0,1,...,7, the MFI PU (Y, — ¥%) is inserted into the corresponding MFI-tree My, .
At the end of the execution of FPmax*, the MFI-tree My, (i.e. My) contains all MFI's mined
from the original database.
Since FPmax* is a depth-first algorithm, it is straightforward to show that the above maximality
checking is correct. Based on the correctness of the FPmax method, we can conclude that FPmax*

returns all and only the maximal frequent itemsets in a given dataset.

5.3 An optimization

In the method FPmax™*, one more optimization is used. Suppose, that at some level of the recursion,
the header table of the current FP-tree is 43,43, ...,%,. Then starting from i,,, for each item in the
header table, we may need to do the work from line 4 to line 14. If for any item, say ix, where
k < m, its maximal frequent itemset contains items i1,%s,...,%-1, i.e., all the items that have not
yet called FPmax* recursively, these recursive calls can be omitted. This is because for those items,
their tails must be subsets of {i1,12,...,%k~1}, 80 mazimality_checking(Y U Tail) would always
return true.

FPmax* also uses the memory management described in Section 3.3, for allocating and deallo-

cating space for FP-trees and MFI-trees.

5.4 Discussion

One may wonder if the space required for all the MFI-trees of a recursive branch is too large.
Actually, before the first call of FPmax*, the first FP-tree has to fit in main memory. This is also
required by the FP-growth method. The corresponding MFI-tree is initialized as empty. During
recursive calls of FPmax*, new conditional FP-trees are constructed from the first FP-tree or from
an ancestor FP-tree. From the experience of [28], we know the recursively constructed FP-trees are
relatively small. If we keep all the MFT’s in main memory, we can expect that the total size of those
FP-trees is not greater than the final size of the MFI-tree for #§. For the same reason, we can expect

that the MFI-trees constructed from ancestors are also small. During the mining, the MFI-tree for

54

 grows gradually, other small descendant MFI-trees will be constructed for recursive call and then
discarded after the call. Thus we can conclude that the total main memory requirement for running
FPmax* on a dataset is proportional to the sum of the size of the FP-tree and the MFI-tree for §.
The above discussion is relevant for the case when we keep all MFI’s in main memory throughout
the mining process. We call the approach the basic approach. Note that FPmax* is a depth-first
algorithm. This means that the FP-trees in main memory can be trimmed to give space for newly
constructed FP-trees and MFI-trees. For each item in the header table of a FP-tree, after a recursive
call of FPmax*, since no information for this item will be used in the remaining mining, all nodes
for the item can be deleted from the FP-tree. This can be done by following the linked list for the
item in the header table. At the same time, the corresponding cells for the item in the FP-array
described in Section 3.1 can also be deleted. For the same reason, in a MFI tree, after a recursive
call of FPmax™* for an item, all nodes for the item can be deleted from the tree. Thus, the size of a
FP-tree and the FP-array of the FP-tree becomes smaller and smaller; in the end of the recursion,
the size of a FP-tree is 0. The MFI-trees grow at the beginning of the recursion. Gradually, at
some point, the MFI-trees become smaller and smaller since less items are stored in the MFI-trees,
and finally, they become 0 as well. In the best case, the total main memory used by FPmax* is
approximately the size of the FP-tree for f}, which is the same as the main memory requirement for
FPgrowth*. This happens when the biggest MFI-tree constructed during the call is not greater than
the space saved by trimming the FP-trees. We call this approach the trimming approach.
Unfortunately, if we want to save main memory by the trimming approach, we can not apply
the main memory management discussed in Section 3.3. There, the main memory chunk for an
entire FP- or MFI-tree is discarded at a time, so a FP-tree, a FP-array or a MFI-tree can not be
trimmed during recursive call. Therefore, there is a trade-off between main memory and speed. A
compromise could be as follows. During a call, we do not trim the FP-trees and MFI-trees, we
let the MFI-trees grow slowly. When a MF1 is inserted, only part of the MFI is inserted into the
MFI-trees. Suppose iy is the current item, and from current call {ix} U Z is found to be a MFI,
then only Z is inserted into the MFI-tree for . We call this approach the compromise approach.
By compromise approach, the size of MFI-trees is reduced. As an example, Figure 5.2 shows the
size-reduced MFI-tree for @ associated with the dataset in Figure 2.4. Shown in Figure 4.2(b) is the

complete MFI-tree for # which has 12 nodes, while the size-reduced MFI-tree has only 6 nodes.

35

Header Table root-0

Head of
node-links

Figure 5.2: Size-reduced Maximal Frequent Itemset Tree

In the basic approach, the MFI-tree for § stores all MFI’s in D. Compared with the trimming
approach and the compromise approach, it needs the highest amount of main memory. The trimming
approach trims FI- and MFI-trees. It needs the lowest amount of main memory, but it takes the
longest CPU time. The compromise approach keeps only part of a MFI into MFI-trees. Compared
with the basic approach, the compromise approach inserts fewer nodes into MFI-trees, so it needs
less main memory and it is faster than the basic approach. Though it is still needs more main
memory than the trimming approach, since we can apply main memory management as described
in Section 3.3, we believe that it is faster than the trimming approach.

In Section 5.5, in the experiments, FPmax* is implemented by using the compromise approach.
The experimental results show that main memory requirement is drastically low for some datasets

compared with the basic approach.

5.5 Experimental evaluation

In this section, we present a performance comparison of algorithm FPmax* with other algorithms.
We first compare the performance of FPmax*, FPmax, MAFIA and GenMax, as they were compared

in Chapter 4. We then compare FPmax* with some of the best algorithms presented in FIMI'03

[21}.

5.5.1 FPmax* versus FPmax, MAFIA and GenMax

We ran the four algorithms on two synthetic datasets and two real datasets. All datasets were used

in Section 3.4.1. The two synthetic datasets are T40I10D100K and T100I20D100K. The two real

56

datasets are pumsb* and connect.

Figure 5.3 gives the result for running these algorithms on the sparse dataset T40I10D100K.

We can see that FPmax is slower than GenMax for all levels of minimum support, while FPmax*

outperforms GenMax by a factor of at least two. Figure 5.4 shows the results for the very sparse

dataset. T700I20D100K. In it, FPmax is the slowest algorithm, while FPmax* is the fastest algorithm.

10000

1000 £

CPU Time(s)
3
S

225

2 175 15 125 1 075 05 025 ¢
Minimum Support {%)

Figure 5.3: dataset T40I10D100K

T40110D100K
- 10000
—8— FPMAX
-~ © - -GenMax s
— 0 - MAFIA , P 1000
— %~ FPMAX A/' ¢

10000

CPU Time(s)

T100120D100K
— B FPMAX"
-+ O - -GenMax
1000 L] = e - MAFIA A
~ @~ FPMAX P
‘/
100 ¢
10
1] . .
12 10 8 6 4 2

Minimum Support (%)

Figure 5.4: dataset T100120D100K

10000

4 1000

4 100

Figure 5.5 shows that FPmax* is the fastest algorithm for the dense dataset pumsb*®, even though

FPmax is the slowest algorithm on this dataset for very low levels of minimum support. In Figure 5.6,

FPmax outperforms GenMax and MAFIA for high levels of minimum support, but it is slow for

very low levels. FPmax* on the other hand is about one to two orders of magnitude faster than

GenMax and MAFIA for all levels of minimum support.

1000

g

CPU Time(s)
=

Pumsb_star

Minimum Support (%)

Figure 5.5: dataset pumsb*

1000

7 100

410

CPU Time(s)

o7

100

Minimum Support (%)

Figure 5.6: dataset connect

Connect-4
1000 1600
R FPMAX:
-+ © - -GenMax A
W0k | - MARIA o3I
~ @— FPMAX _ALe
10 | A 410
1 41
01t 401
3
0.01 0.01

5.5.2 FPmax* versus other algorithms

The FIMI'2003 {2] workshop also included a contest to find the most efficient algorithms for min-
ing maximal frequent itemset. In the independent experiments conducted by the organizers, the
performance of 8 algorithms for this category, including optimized version of Apriori, MAFIA, FP-
growth and Eclat, were compared. From the experimental results [14, 15}, we can see that FPmax*
outperformed all the other algorithms submitted to the workshop for most datasets.

Since the organizers in FIMI’03 did not compare the scalability of the algorithms, and their
experimental results of memory consumption of algorithms were not published, we repeated part
of the experiments in FIMI’03. Some algorithms in FIMI'03 had apparently very bad performance.
For this reason only 4 algorithms, MAFIA [12], LCM [52], AFOPT [35], and GenMax [16], together
with FPmax* [21], were chosen and compared. FPmax* was implemented by keeping only part of
a MFI in MFI-trees, as explained in Section 5.4, to save main memory and CPU time.

In addition to these 5 algorithms, SmartMiner algorithm was included in the experiment. In-
troduced in [61], it was claimed to be an order of magnitude faster than MAFIA and GenMax,
two of the fastest algorithms for mining maximal frequent itemsets. Since the authors implemented
the algorithm in Java, we implemented SmartMiner ourselves in C++-. The performance of all 6
algorithms was compared in the following experiments.

We ran the six algorithms on the datasets used in Chapter 3, i.e., two synthetic datasets:
T20I10N1KP5KC0.25D200K and T100120N1KP5KC0.25D200K, and six real datasets: accidents,
kosarak, chess, connect, mushroom, and pumsb*,

All experiments were performed on a DELL Inspiron 8600 laptop with Pentium M, 1.6 GHz
Processor, and 1GB of memory. Both time and memory consumption of each algorithm running on
each dataset were recorded. Runtime was recorded by “time” command, and memory consumption
was recorded by “memusage”. In the figures, if there is no data for time of algorithm A running on
dataset B for some minimum support 4, it is either because A needs too much time {(longer than
30 minutes) to run on B for minimum support §, or the implementation of the A has some bugs.
There will be no memory consumption data either for A running on B for minimum support ¢ in

this case.

58

The runtime

Figure 5.7 gives the result for running 6 algorithms on the dataset T20I10N1KP5KC0.25D200K. In
the figure, FPmax* is the fastest algorithm, for both low and high minimum support. SmartMiner is
as fast as FPmax™ for high minimum support, but its runtime is almost two times of the runtime of
FPmax* for low minimum sﬁpport. Nevertheless, SmartMiner is faster than GenMax and MAFIA

an order of magnitude for low minimum support.

T2011ONTKPSKC0.25D200K T106120N1KP5KC0.25D200K
1000 1000 10000 10000
— X~ -MAFIA we -~ LLCM
-~ -4~ - GenMax i EPIMAXY
el FPMAX® =] o AFOPT a
100 }|—0—-AFOPT o 7 100 1000 | | o Smarthiner 2 {1000
——@— SmartMiner P 2
® i~ 2 ~—X—MAFIA
) =
g w0 10 100 gg- - = -G =2 100
f X:
’:"‘X/X/
1 . . S 10 10
1 075 05 0.25 4 0 e 8 7 & 5 4 3 .2
Minimum Support (%) Minimum Support (%)
Figure 5.7: Runtime of Mining Maximal FI’s Figure 5.8: Runtime of Mining Maximal FI's
on T20I10N1KP5K(C0.25D200K on T100I20N1KP5KC0.25D200K

In Figure 5.8, MAFIA is the fastest algorithm for dataset 7'100I20N1KP5KC0.25D200K. Smart-
Miner is still as fast as FPmax* for high minimum support, but slower than FPmax* for low minimum
support.

Since in T100I20N1KP5KC0.25D200K, the average transaction length and average pattern length
are pretty long, FPmax* has to construct bushy FP-trees from the dataset, which can be seen from
Figure 5.16. The constructing time and the time for traversing the FP-trees dominates the whole
mining time, especially for high minimum support. On the contrary, MAFIA does not have much
workload for high minimum support, fewer maximal frequent itemsets and candidate maximal fre-
quent itemsets will be generated. However, as shown in Figure 5.8, when the minimum support
is low, we can expect that FPmax* outperforms MAFIA because now the construction of the big
FP-tree offers a big gain by large number of maximal frequent itemsets.

Figure 5.9 to Figure 5.14 show the experimental results of running the 6 algorithms on real
datasets. In the figures, FPmax™* shows the best performance on almost all datasets, for both high
and low minimum support, benefiting from the great compactness of the FP-tree structure on dense

datasets. SmartMiner has similar performance to FPmax* when minimum support is high, and it

59

Chess
1000 1000
- <X — ‘MAFIA
- <4 - GenMax
100 k| merniffmse FPMAX* 4 100
—mmm AFOPT
z 10 ~—&—— SmartMiner 10
@
E
E
g 1 i
0.1 PEE=g 401
0.01 > 2 - - -t - L 0.01

80 80 70 80 50 40 30 20 10
Minimum Support (%)

Figure 5.9: Runtime of Mining Maximal FI’s
on Chess

Mushroom

- X — ‘MAFIA
- -f~ - GenMax
el EPMAX
O AFOPT
—8— SmartMiner
--O--LCM

Runtime (s)

LS

0.1

20

Minimum Support (%)

Figure 5.11: Runtime of Mining Maximal FI's
on Mushroom

Accidents
10000 10000
= K~ -MAFIA 3
1000 | 4 1000
I
o 100 & 3 100
E
€
3
o
10 ¢ 4 10
1 e

100 80 &0 40 20 ls]
Minimum Support (%)

Figure 5.13: Runtime of Mining Maximal FI's
on Accidents

60

Connect

1000 1000

m—¥o— MAFIA
= & - GenMax
oo EPMAX
“—f— AFOPT
@ SrnartMiner
«-0--LCM

8

Runtime (s)

3

Minimum Support (%)

Figure 5.10: Runtime of Mining Maximal FI's
on Connect

Kosarak
1000 1000
|- = maFIA
— &~ - GenMax /X 1
~—&—FPMAX" /
- 100 £ | o SmartMiner / 3 100
&
o
E
5 1
4
410
\ . . N 4

1 0.75 05

Minimum Support (%)

0.25]

Figure 5.12: Runtime of Mining Maximal FI's
on Kosarak

Pumsb_star
7000 1000
| e MAFIA
- &+ GenMax
mmlfieees FPMAX® o
100 ||~ AFOPT - 1 100
— ~—@—— SmartMiner 'A
&2
. - {3--LCM
E
g
= i0 10
1 1

55 45 35 25 15 5
Minimum Support (%)

Figure 5.14: Runtime of Mining Maximal FI's
on Pumsb*

is slower than FPmax* when minimum support is low. In Figure 5.12, there is a overlap between
the lines for the two algorithms, which means the two algorithms have almost the same speed on
the dataset. The overlap in Figure 5.14 between the lines for MAFIA and FPmax* also shows the
similar CPU time of the two algorithms on dataset Pumsh*

All experiments on both synthetic and real datasets show that the FP-array technique and the

mazimality_checking function are indeed very effective.

Memory Consumption

Another criterion of our comparison is the memory consumption of all algorithms for mining maximal

frequent itemsets.

T201ONTKP5SKC0.250200K T100120N1KPSKC0.25D200K
140 L T S
X~ MAFIA 600 800
120 |— & - GenMax xx 1 120 ~—X¥——MAFIA
s FRMAX” - 500 b |--O--LCM / 1 500
100 [0 AFOPT. - 1 100 —o—m AFOPT
= .0 -LOM g g ML e Smartiner 149
€ 80 == 180 s :]
z Y et ST S “é ... § a0 | (TEEIMAX 1 300
E & = &0 s
=
£ 4 ’40 -2 200 + Qerff--B--Fe-DO--Drccocnvn o 4 200
© r 3 =
= L A W
o BT b R Sntite . IO 100 | X 3 100
<> i x__x__x___x___x———x
0 ; : ; 0 0 : : - . .)
1 0.75 05 025 0 12 10 8 s 4 2 0
Minimum Support (%) Minimum Support (%)
Figure 5.15: Memory Consump- Figure 5.16: Memory Consump-
tion of Mining Maximal FI's on tion of Mining Maximal FIs on
T20I[10N1KP5KC0.25D200K T100I20N1KP5KC0.25D200K

Similar to the memory consumption for mining all frequent itemsets on synthetic datasets, here
FPmax* still uses much main memory for mining maximal frequent itemsets. The reason was
explained in Section 3.4.2 for figures 3.13 and 3.14.

By comparing Figure 3.13 and Figure 5.15, Figure 3.14 and Figure 5.16, we also can see that
MFI-trees comtaining all maximal frequent itemsets in T20I10NIKP5KC0.25D200K and
T100I20N1KP5KC0.25D200K are pretty small. This is consistent with the explanation of why
FPmax™* is slower than MAFIA in Figure 5.8.

AFOPT and GenMax ! use the lowest amount of main memory in Figure 5.15 and Figure 5.16,

but they are far slower than FPmax* as shown in Figure 5.7 and Figure 5.8.

1For some unknown reason, we can not run GenMax on dataset T100I20N1KP5KC0.25D200K

61

Chess
80 60
— X~ ‘MAFIA
50 [|~ -4~ - GenMax 450
e FPMAX®
_ 40 [|0 AFOPT 3] 40
£ — @ SmanMiner
E a0 [|--DO--Lom 130
E
2
c 2 | 120
o
=
110
0
10

Minimum Support (%}

Figure 5.17: Memory Consumption of Mining

Maximal FI’s on Chess

Mushroom
18
L —— X o K e X-
14 [|= XK= MAFIA
12 BT & - GenMax
g il FPMAX?
2 10 Fi—0——AFOPT
£ g ||—e@—smaniner
S --g--LCM
£ BTIITITIICR I T R aeee s
2
4
2
0 & :
20 15

Minimum Suppert (%)

Figure 5.19: Memory Consumption of Mining

Maximal FI’s on Mushroom

Accidents
250
— K— ‘MAFIA R
200 | — -& - GenMax ".’
e P A X .a
g 150 —O= AFOPT =
= 50 I | —e— SmartMiner | -0 °
g - f1--LCM
= 100 |
£
[}
s
L Y Y R e e Sl T SRy
Fape hEs R SR e ~X- —X- — X

100 80 60 40
Minimum Support (%)

20

250

200

150

50

Figure 5.21: Memory Consumption of Mining

Maximal FI'’s on Accidents

62

Connect

250
—X— MAFIA
200 b 1™ &~ + Ganblax ‘[J 1
el FPIMAX 3
- e AFOPT
i 150 | | —@—SmartMiner E]’
g - f1e-LCM s
(7]
= 100}]
=4 s
3 s
= o’
50 | N «
..
go-o--g-
ermH“xw-—xﬂ'-—g
0
100 80 60 40 20
Minimum Support (%)

o]

250

200

150

100

50

0

Figure 5.18: Memory Consumption of Mining

Maximal FT’s on Connect

Kosarak
800
e K (MAFIA
700 £l & - GenMax b S
600 | {~=—FPMAX" //]
—@— SmartMiner /
500 Hl..g--LCM / 1

Main Memory (M)
3 £
g 8

N
Q
Q

8

700

600

500

400

300

200

o

Minimum Support)

Figure 5.20: Memory Consumption of Mining

Maximal FI's on Kosarck

Pumsb_star

90

—%-— MAFIA
80 F |- -a- GenMax o--a--e 3
70 | |=llie—FPMAX* .]
o | |——e—aFOPT [a]

——8— SmanMiner
SOE|-43--10M

Main Memory (M)

Minimum Support (%}

Figure 5.22: Memory Consumption of Mining

Maximal FI's on Pumsb*

Figures 5.17 to 5.22 show the main memory consumption of all algorithms running on all datasets.
In all the figures, the lines for SmartMiner overlap the lines for FPmax* for high minimum support.
However, when the minimum support is low, SmartMiner consumes much more main memory than
FPmax*. From the figures, we can see that FPmax® uses the lowest amount of main memory in
Figure 5.18, Figure 5.20, and in Figure 5.21 for high minimum support. For other cases, FPmax™* uses
slightly more main memory than AFOPT. However, for all cases, FPmax* is faster than AFOPT.
We also notice that MAFIA always uses large amounts of main memory, with its best case is in
Figure 5.16, when both the average transaction length and the average pattern length are long. Its
runtime is also the shortest according to Figure 5.8. For most cases, GenMax consume more main
memory than FPmax*.

Another fact shown in the figures is that the memory consumption of FPmax* and GenMax
increases exponentially when the minimum support becomes very low. This can be observed, for
example, in Figure 5.17. The increase happens because the algorithms have to keep a large number
of maximal frequent itemsets in main memory, and the data structures such as MFI-tree become
very large. We can also see that when the main memory needed by the algorithms increases rapidly,

their runtime also increases very fast. The pair of Figure 5.11 and Figure 5.19 is a typical example.

Scalability

Figure 5.23 shows the speed scalability of all algorithms on synthetic datasets. All datasets were
used in Chapter 3 for testing the scalability of all algorithms for mining all frequent itemsets. The
number of transactions in the datasets ranges from 200,000 to 1,000,0600. The minimum support
was fixed as 0.1%.

Figure 5.23 shows that FPmax* is also a scalable algorithm. Runtime increases almost 5 times
when the data size increases 5 times. The figures also demonstrate that other algorithms have good
scalability. No algorithms have exponential runtime increasing when the dataset size increases.

Figure 5.24 shows that FPmax™* possesses good scalability of memory consumption as well.
Memory consumption changes from 76 megabytes to 332 megabytes when data size changes from
16 megabytes to 80 megabytes. All algorithms have similar scalability on synthetic datasets.

In conclusion, from the experimental results shown in all figures of runtime, main memory con-

sumption, and scalability of all algorithms, though FPmax* is not the fastest algorithm for some

63

Runtime (s)

Scalability
300 800
— X = MAFIA .. j
800 b1 -&— - GenMax N N 800
700 | |eenfloma FPRIAXY 3 700
600 F e AFOPT 500
<en@— Smartiner

600

Transaction No (K)

800 1600

Figure 5.23: Scalability of runtime of Mining

Maximal FI'’s

Main Memory (M)

600

500

400

Scalability

= K- ‘MAFIA

- ~f - GenMax
emeioe FPMAX"
——O~— AFOPT
~=—&—— SmartMiner
tlo-O--LCM

600

Transaction No {K)

1000

Figure 5.24: Scalability of Memory Consump-
tion of Mining Maximal FI’s

datasets and sometimes it consumes more main memory than other algorithms, overall it still has

superior performance as compared with five other excellent algorithms. This result is consistent with

the result of FIMI’03 and it proves that FPmax™* is the best algorithm for mining maximal frequent

itemsets.

64

Chapter 6

Discovering Closed Frequent

Itemsets

Closed frequent itemset is the most important category of frequent itemset. The complete set of
closed frequent itemsets in a database is smaller than the complete set of all frequent itemsets, and
it keeps the support information of all frequent itemsets. In this chapter, we present the FPclose
algorithm for mining frequent closed itemsets. It works similarly to FPmax*. Both mine frequent
patterns from FP-trees. Whereas FPmax* needs to check that a newly found frequent itemset is
maximal, FPclose needs to verify that the new frequent itemset is closed. For this we use a CFl-tree,

which is another variation of a FP-tree.

6.1 The CFI-tree and algorithm FPclose

For the same reason as in FPmax™®, a newly discovered frequent itemset can be a subset only of a
previously discovered CFIL. Similar to a MFlI-tree, a CFI-tree is related to a FP-tree and an itemset
X, and can be presented as Cx, X is called the base of the trees. The CFI-tree Cx always stores
all already found CFT's containing itemset X, and their counts. A newly found frequent itemset Y
that contains X only needs to be compared with the CFI’s in Cx. If in Cx, there is no superset of
Y with the same count as Y, ¥ is closed.

In a CFI-tree, each node in the subtree has four fields: item-name, count, node-link and level.

65

Header Table root:0:14 Header Table

Head of Head of
node-finks node-links

root:0:14

(o S ST Y c—'

nm\%&x_am-l

(®) ®

Figure 6.1: Construction of Closed Frequent Itemset Tree

Here, level is still used for subset testing, as in MFI-trees. The count field is needed because when
comparing a Y with a set Z in the tree, we are trying to verify that it is not the case that ¥ C Z,
and Y and Z have the same count. The order of the items in a CFI-tree’s header table is the same
as the order of items in header table of its corresponding FP-tree.

The insertion of a CFI into a CFI-tree is similar to the insertion of a transaction into a FP-tree,
except now the count of a node is not incremented, it is always replaced by the maximal count
up-to-date. Figure 6.1 shows some snapshots of the construction of a CFI-tree with respect to the
FP-tree in Figure 2.4(b). The item orders in two trees are the same because they are both for base
{). Note that insertions of CFI’s into the top level CFI-tree will occur only after recursive calls have
been made. In the following example, the insertions would in actuality be performed during various
stages of the execution, not in bulk as the example might suggest. In Figure 6.1, anodez : £: ¢
means that the node is for item z, its level is £ and its count is ¢. In Figure 6.1(a), after inserting
the first 6 CFI’s into the CFl-tree, then we insert (d, g) with count 3. Since {d, g) shares the prefix
d with (d, e), only node g is appended, and at the same time, the count for node d is changed from
2 to 3. The tree in part (b) of Figure 6.1 contains all CFI’s for the dataset in Figure 2.4(a).

Figure 6.2 gives algorithm FPclose. Before calling FPclose with some (T, C), we already know
from line 8 that there is no existing CFI X such that T.base C X, and 7".base and X have the same
count (this corresponds to the optimization 4 in [53]). If there is only one single path in T, the

nodes and their counts in this single path can be easily used to list the T base-local closed frequent

66

Procedure FPclose(T,C)
Input: T, a FP-tree
C, the CFI-tree for T.base
Qutput: Updated C
Method:
1. if T only contains a single path P
2. generate all CFI's from P
3. for each CFI X generated
4. if not closed.checking(X,C)
5 insert X into C
6. else for each i in T .header do begin
7. set Y = T.baseU {i};
8. if not closed.checking(Y, C)
9. if T.FP-array is not NULL

10. Tail = {frequent items for i in T.FP-array}

11. else

12. Tasl={frequent items in ¢'s conditional pattern base}
13. sort Tail in decreasing order of items’ counts

14. construet the FP-tree Ty and its FP-array Ay;
15. initialize Y’s conditional CFI-tree Cy;

16. call FPclose(Ty,Cy);

17. merge Cy with C

18. end

Figure 6.2: Algorithm FPclose

itemsets. These itemsets will be compared with the CFT’s in C. If an itemset is closed, it is inserted
into C. If the FP-tree T is not a single-path tree, we execute line 6. Lines 9 to 12 use the FP-array
technique. Lines 4 and 8 call function closed_checking(Y,C) to check if a frequent itemset ¥ is
closed. If it is, the function returns true, otherwise, false is returned. Lines 14 and 15 construct Y's
conditional FP-tree and CFI-tree. Then FPclose is called recursively for 7y and Cy.

Note that line 17 is not implemented as such. As in algorithm FPmax*, we found it more efficient
to do the insertion of lines 3-5 into all CFI-trees currently in main memory.

To list all candidate closed frequent itemsets from a FP-tree with only a single path, suppose
the path with counts is (i : ¢1,43 : ¢2,...,%p @ ¢p), Where 7; : c; means item #; has the count ¢;.
Starting from 4;, comparing the counts of every two adjacent items i; : ¢; and 441 : ¢4, in the
path, if ¢; # cj11, we list i1,199,...,7; as a candidate closed frequent itemset with count ¢;.

CFI-trees are initialized similarly to MFI-trees, described in Section 5.2. The implementation of
function closed_checking is almost the same as the implementation of function mazimality._checking,
except now we also consider the count of an itemset. Given an itemset ¥ = {i1,2,. .., 4%} with count
¢, suppose the order of the items in header table of the current CFl-tree is 41,45, ...,1;. Following

the linked list of ik, for each node in the list, first we check if its count is equal to or greater than

67

c. If it is, we then test if Y is a subset of the ancestors of that node. Here, the level of a node can
also be used for saving comparison time, as in section 5.2. The function closed_checking returuns true
only when there is no existing CFI Z in the CFI-tree such that Z is a superset of Y and the count
of Y is equal to or greater than the count of Z.

At the end of the execution of FPclose, the CFI-tree Cy contains all CFT’s mined from the original
database. The proof of correctness of FPclose is straightforward.

In FPclose, we use an optimization which was not used in CLOSET+. Suppose a FP-tree for
itemset Y has multiple paths, the count of Y is ¢, and the order of items in its header table is
11,42, . - -, im- Starting from i,,, for each item in the header table, we may need to do the work from
line 7 to line 17. If for any item, say iy, where k < m, Y U {%;,12,...,%%} is a closed itemset with
count ¢, FPclose can terminate the current call. This is because for those items, closed_checking on
line 8 would always return true.

Memory management allocating and deallocating space for FP-trees and CFl-trees is similar to
the memory management of FPgrowth* and FPmax*.

By a similar analysis as in Section 5.4, we estimate the total main memory requirement for
running FPclose on a dataset. If the tree that contains all CFI’s needs to be kept in main memory,
the algorithm needs space approximately sum of the size of the first FP-tree and its CFl-tree.
Otherwise, if we care more about the main memory of FPclose, we trim FP-trees and CFl-trees,
then the main memory requirement is approximately the size of the first FP-tree for @; if we care
more about the speed of FPclose, we also take the compromise, i.e., instead of trimming FP-trees
and CFl-trees, for each CFI, only part of it will be inserted into CFIl-trees. By this way, less
main memory will be used and the algorithm is faster than the one that keeps all complete CFI’s.
Figure 6.3 shows the size-reduced CFI-tree for §§ corresponding to the dataset in Figure 2.4. In the
CFI-tree, only 6 nodes are inserted, while in the complete CFl-tree in Figure 6.1 (b), 15 nodes are

inserted.

6.2 Performance study

One of the first attempts to use FP-trees in CFI mining was the algorithm CLOSET+ [53]. CLOSET+
searches for the best strategies for mining frequent itemsets. Data structures and data traversal

strategies are used depending on the characteristics of the dataset to be mined. The algorithm is

68

Header Table

Head of
node-links

root:0:14

0 ® 0 80 c~|

Figure 6.3: Size-reduced Closed Frequent Itemset Tree

viewed as the best algorithm for mining closed frequent itemsets.

Unfortunately, CLOSET+ was not implemented in FIMI’03 where mining closed frequent item-
sets was one of the three categories of the contest in FIMI’03. Six other algorithms were compared
in the independent experiments conducted by the organizers. In [15], the conclusion was drawn that
“If one were to pick an overall best algorithm, it would arguably be FPclose, since it either performs
the best or shows up in the runner-up spot, more times than any other algorithm”. Thus CLOSET4-
and FPclose, while both being recognized as the best, were not compared.

We got executable of CLOSET+ from [4]. We also selected 5 of the 6 algorithms compared in
FIMI'03, Charm [59], LCM [52], AFOPT [35], Apriori [10, 6, 7] and FPclose {21]. All 6 algorithms
were run on the same 8 datasets that were used in Chapter 3 and Chapter 5, i.e., two synthetic
datasets T20I10N1KP5KCO0.25D200K and T100I20N1KP5KC0.25D200K, and six real datasets: ac-
cidents, kosarak, chess, connect, mushroom, and pumsb*.

The computer used for running the algorithms is a DELL Inspiron 8600 laptop with Pentium
M, 1.6 GHz Processor, and 1GB of memory. Both time and memory consumption of each algo-
rithm running on each dataset were recorded. Command “time” recorded runtime and command
“memusage” recorded the memory consumption. In the figures, the runtime and memory consump-
tion of an algorithm A running on dataset B for some minimum support ¢ is not recorded if A needs
too much time (longer than 30 minutes) to run on B for minimum support J, or the implementation
of the A has some bugs.

In the present experiments, FPclose is implemented by keeping only part of a CFI in CFl-trees,

as explained in Section 5.4.

69

The runtime

Figure 6.4 and Figure 6.5 show the runtime of all algorithms on synthetic datasets. In Figure 6.4,
Charm, CLOSET++, and AFOPT have almost the same speed. Their lines overlap. For the two
synthetic datasets, FPclose is only slower than Apriori for high minimum support. When the

minimum support is low, FPclose becomes the fastest algorithm and Apriori becomes the slowest

algorithm.
T20MON1KP5KC0.250200K T100120N 1KPSKCO0.25D200K
1000 5 1000 10000 10000
¥
P
100 & 100 1000
g 10 3 10 ngr: 100
1 + g . 1 10 10
1 075 0.5 0.25 0 10 9 8 7 6 5 4 3 2
Minimum Support (%) Minimum Support (%)
Figure 6.4: Runtime of Mining Closed FI's on Figure 6.5: Runtime of Mining Closed ¥I's on
T20110N1KP5KC0.25D200K T100I20N1KP5KC0.25D200K

FPclose is slower than Apriori for high minimum support because FPclose spends much time to
construct a bushy and wide FP-tree while from the FP-tree only small number of closed frequent
itemsets are generated. On the contrary, Apriori only needs small size data structures to keep and
generate candidate frequent itemsets and closed frequent itemsets. When the minimum support
is low, FPclose is fast because its work on the first stage offers a big gain, many closed frequent
itemsets will be generated. While for Apriori, a lot of work has to be done to deal with large number
of candidate frequent itemsets. Figure 6.12 shows that the main memory needs by Apriori changes
drastically when minimum support becomes lower.

For real datasets, as shown in Figure 6.6 to Figure 6.11, FPclose has a very good performance.
It is the fastest algorithm in Figure 6.9, Figure 6.10 and Figure 6.11.

In Figure 6.6, FPclose is faster than LCM for high minimum support, but it is slower than LCM
when the minimum support is low. CLOSET+ is the fastest algorithm when the minimum support
is very high, but the runtime increases rapidly when the minimum support becomes low.

In Figure 6.7, CLOSET+ is the fastest algorithm. However, we also can see that its runtime

still increases very fast and we can expect that it will be slower than FPclose when the minimum

70

Chess

10000 B 10000
— X—LCM 4
1000 L[~ -& - Charm 4 1000
--®--AFOPT
100 L Qe ADIIOT 1 100
memmf Jemm Ol OSET+
€ emenlifemn FPClOSE
g 10 £ 10
£
=
® 1 1
01 {01
0.01 1 0.01

90 80 70 80 50 40 30 20
Minimum Support (%)

Figure 6.6: Runtime of Mining Closed FI's on

Chess

support becomes lower.

1000

Connect

e LCM
- -k~ - Charm
-« @ - - AFOPT
100 | |—¢—apriori

e CLOSET+
wmfffem FPCIOS R

Runtime (s)

&0 40 20
Minimum Support (%)

1000

100

Figure 6.7: Runtime of Mining Closed FT’s on

Connect

In Figure 6.8, CLOSET+ is still the fastest. Both Figure 6.7 and Figure 6.8 show that the

strategies introduced in [53] work well for datasets mushroom and connect.

Mushroom
1000 1000
— X~ -LCM 3
~— -&- - Charm
100 H.. @ - - AFOPT 100
—— Apriori
& 10 |—O=CLOSET+ 0
E eriffieene FDClOSE
£
3 1
©
0.1
0.01 - —— 0.01

25 20 15 10 5
Minimum Support (%)

Figure 6.8: Runtime of Mining Closed FI’s on

Mushroom

10000

Kesarak

1000

Runtime (s)

100

Minimum Support (%)

10000

4 1000

Figure 6.9: Runtime of Mining Closed FI's on

Kosarak

In Figure 6.9, however, CLOSET+ demonstrates the worst performance. Its runtime shows an

exponential increase when the minimum support becomes low. In the same test, FPclose is the fastest

algorithm. It is an order of magnitude faster than CLOSET+ for the lowest minimum support in

Figure 6.9. The lines for AFOPT and Apriori overlap the line for FPclose for high minimum support,

but the two algorithms are all slower than FPclose when the minimum support is low.

FPclose and CLOSET+ show similar speed when running on accidents, as indicated in Fig-

ure 6.10. However, in Figure 6.11, CLOSET+- is almost two order of magnitude slower than FPclose

for minimum support 5%. The other algorithms show similar performance on dataset accidents and

pumsh*.

Accidents Pumsb_star

10000 10000 10000 10000
- K—LCM —¥—LCM i
~ -4~ » Charm — & = Charm)
1000 L| - @ - - AFOPT £ Lo 1000 § |- - @ - - AFOPT 1 1000
mnr— ApIiOf] N &~ Apriofi
ma J e CLOSET+ — o Jemes CLOSET +
.) S
E 100 ¢ FPlose 100 g 100 FPclose 100
= = 1
5 5
4 @
10k 410 10 10
pu, i
]
1 1 1 1
100 80 60 40 20 0 50 40 30 20 10 0
Minimum Support (%) Minimum Support (%)
Figure 6.10: Runtime of Mining Closed FI's Figure 6.11: Runtime of Mining Closed FI’s
on Accidents on Pumsb*

One of the reasons why FPclose is usually faster than CLOSET+ for low minimum support is the
fact that CLOSET+ uses a global tree to store already found closed frequent itemsets. When there
are large amounts of frequent itemsets, each candidate closed frequent itemset has to be compared
with many existing itemsets. In FPclose, on the contrary, multiple CFI-trees are constructed.
Consequently, a candidate closed frequent itemset only needs to be compared with small set of

itemsets, saving lots of time.

Memory consumption

Figure 6.12 and Figure 6.13 show the peak main memory consumption of the algorithms when
running them on synthetic datasets. In Chapter 3 and Chapter 5, the main memory consumption of
FPgrowth* and FPmax* for synthetic data is high. Here, FPclose consumes a lot of main memory,
too. The reason is similar to the reason explained in both Section 3.4.2 and Section 5.5.

CLOSET+ uses the maximum amount of main memory in both figures. This is not surprising.
Besides the main memory consumed for the bushy and wide FP-trees for the synthetic datasets, it
has to keep a big tree for closedness testing as well. At the same time in FPclose, only part of each
closed frequent itemset was kept in a CFI-tree, as explained in Section 5.4.

When running all algorithms on real dataset chess, FPclose consumes the least amount of main
memory for high support, as showﬁ in Figure 6.14. However, when the minimum support becomes
low, the main memory consumption increases fast. By comparing Figure 3.15 and Figure 6.14, we
know that most space was spent on keeping the CFI-trees.

In both Figure 6.15 and Figure 6.16, FPclose uses the least amount of memory. Both figures show

72

Main Memory (V)

Main Memory (M)

T20110N1KP5KC0.25D200K T100120N1KP5KC0.250200K

600 600 900 900
“x—LcM T —y
1 o
500 [|— -4 - Charm 1 500 ao0 -0 --@--aF0pT | ¥
- ® - AFOPT 700 > e T ——Aprioi } 700
460 [|0 Apriori 3 400 600 s =—O=—CLOSET+ | .
s CL OSET4+ 2 =l FPG 0SS
] 500 | 4 500
a00 | s FPGIOSE 1 300 E‘
g 400 V’.——.__.——.——‘.'___—_—_. 1 00
=
4 200 £ 300 8 4 300
2
200 YK Y- 200
110 A M SS——— —3
0 100 e 2t SEEEE RECEE A M 1 100
i) 0 s : . : s 0
0 w o 8 7 & 5 4 3 2
Minimum Support (%) Minimum Support (%}
Figure 6.12: Memory Consumption of Mining Figure 6.13: Memory Consumption of Mining
Closed FI’s on T20110N1KP5KC0.25D200K Closed FI's on T100I20N1KP5KC0.25D200K
Chess Connact
350 350 500 500
- L CM P 450 | ¥ LCM 1 as0
300 | (m -p-- Cham 1 300 00 — &~ - Charm F 400
- @ -~ AFOPT k|- -®-- AFOPT /
250 | g Apriori 1250 __ 350 p|—0——aprior 350
20p | {m=—O==CLOSET+ 1 a0 € 300 fj==O=—CLOSET+ / 1 300
sl FPClOS 8 é‘ 250 weeeffrmees FPClOSE
150 1180 2 20
£
100 3 100 g 150
100
50 150 0
0) 0
%0 8 70 6 50 40 30 20 10
Minimum Support (%) Minimum Support (%)
Figure 6.14: Memory Consumption of Mining Figure 6.15: Memory Consumption of Mining
Closed FI's on Chess Closed F1's on Connect

73

that FP-trees and their CFI-trees have very good compactness for dataset connect and rmushroom.

In Figure 6.17 and Figure 6.18, the main memory consumption of FPclose increases slowly

compared with the increase of other algorithms. Figure 6.19 shows that FPclose consumes the least

amount of main memory and the dataset produces a large number of closed frequent itemsets when

the minimum support is low.

Mushroom

80

70 F

60 b

50

40

30

Main Memory (M)

20

— X~ LCM
~ «&~ - Charm
--® - - AFOPT
| =@~ Aprior]
[|rmm}==CL OSET+
wmefffpeme= FPol0SE

Minimum Support (%)

80

70

q 60
1 50

340

Figure 6.16: Memory Consumption of Mining
Closed FI's on Mushroom

800

700

600

Main Memory (M)

200

500

400 F

300 -

Accidents

— X 1CM
~ -4~ - Charm
(|-~ ® -~ AFOPT

csvanfifiemes FPolos 0

100 80

e = Ko =K = K

—X"

P

80 40
Minimum Support (%)

800
700
600
500
400
300

200

Figure 6.18: Memory Consumption of Mining
Closed FI's on Accidents

Main Memory (M)

Kosarak
300
K R K- = — =K
250 [[~ %~ -LCM 1 250
— &~ - Charm
200 [|- - ® -~ AFOPT 1 200
= Apriori
150 b [=L3===CLOSET+ 1 150
100 1 100
1
50 1 50
0)
1 075 05 025 0
Minimum Support (%)
Figure 6.17: Memory Consumption of Mining
Closed FI’s on Kosarak
Pumsb_star
200 < 200
180 | [—X——LCM : 1 180
160 [|74 - Charm ! 160
El--@--AFOPT] E
= 140 F { @ Apriori / 140
; 120 | {==el===CLOSET+ lF 120
% o0 £] l 100
= .
80 —sx 80
£ 1
£ w0t} * ™ ; 60

300

Minimum Support (%)

Figure 6.19: Memory Consumption of Mining
Closed FI's on Pumsb*

From figures 6.12 to 6.19, we see that FPclose almost always uses the lowest main memory.

We also see that the main memory consumption of CLOSET+ is always very high. In Figure 6.7,

CLOSET+ is faster than FPclose, while in Figure 6.15, for the minimum support 10%, CLOSET+

consumes main memory an order of magnitude higher than FPclose.

Runtime (s)

Scalability

Figure 6.20 and Figure 6.21 show the scalability of all algorithms when running them on synthetic
datasets. These datasets were used for testing the scalability of the algorithms for mining all and
maximal frequent itemsets in Chapter 3 and Chapter 5. The number of transactions in the datasets
ranges from 200,000 to 1,000,000. The minimum support was fixed as 0.1%.

All the algorithms are scalable algorithm for runtime, according to Figure 6.20. The difference

is their increasing ratio. In the figure, we can see that FPclose has the smallest ratio.

Scalability Scalability
700 700 1200 1200
K - LCM i F j — K= LCM
800 [|~ -a- - Charm 600 1000 [= -4~ - Chamm 1000
-~ @ - - AFOPT i@ - - AFOPT
500 © - 4 500 -
O Apriort £ 800 800
b |=—{ameCLOSET+ -
400 [100 g
< 5 eo0 600
300 | X 3 300 =
2 awof 400
200 | 200
. G N) T e e
~X b
o n). L 1 1 3 O 0 A 2. 1 " I 0
0 200 400 600 800 1000 1200 200 300 400 500 600 700 800 900 1000
Transaction No (K) Transaction No. {K)
Figure 6.20: Scalability of runtime of Mining Figure 6.21: Scalability of Memory Consump-
Closed FI’s tion of Mining Closed FI’s

In Figure 6.21, CLOSET+ shows the worst scalability of its main memory consumption, while
FPclose has a reasonable scalability compared with other algorithms. Main memory size increases
4 times when the size of synthetic datasets increases 5 times. AFOPT shows the best scalability.

All the experimental results in this section allows us to conclude that overall FPclose is the
best algorithm for mining closed frequent itemsets. This conclusion is consistent with the result of

FIMI03 [14].

75

Chapter 7

Mining Frequent Itemsets from

Secondary Memory

In Table 3.1, we showed size of all datasets used in the experiments of Chapter 3 to 6. By comparing
the dataset size in the table with the size of memory consumption in figures from 3.13 to 3.20, we
can see that the memory consumption of any algorithm running on any dataset could be greater
than the size of the dataset, especially when the minimum support is low. The situation is even
worse when we mine maximal or closed frequent itemsets.

Furthermore, most algorithms, such as Apriori [6, 7] and dEclat [60] work well when the main
memory is big enough to fit the whole database or/and the data structures (hash trees, FP-trees,
etc). When a database is very large or when the minimum support is very low, those algorithms do
not perform very well because they run “out of memory?”.

What is the best way to mine frequent itemsets from very large databases residing in a secondary
memory storage, such as disks? Here “very large” means that the data structures constructed from
the database for mining frequent itemsets can not fit in the available main memory. In this chapter
we address this problem. We limit the problem to mine all frequent itemsets. We first analyze the
approaches for mining frequent itemsets from disks, and introduce three algorithms. Then we present
detailed divide-and-conquer algorithm Diskmine, in which many novel optimization techniques are

used.

76

7.1 Strategies for mining frequent itemsets from disk

Basically, there are two strategies for mining frequent itemsets, the data-structures approach, and
the divide-and-conquer approach.

The data-structures approach consists of reading the database buffer by buffer, and generate
data-structures (i.e. candidate sets or FP-trees). Since the data-structures do not fit into main
memory, additional disk I/0’s are required. The number of passes and disk I/0’s required by the
approach depend on the algorithm and its data-structures. For example, if the algorithm is Apriori
[7] using a hash-tree for candidate itemsets, disk based hash-trees have to be used. Then the number
of passes for the algorithm is the same as the length of the longest frequent itemset, and the number
of disk I/O’s for the hash-trees depends on the size of the hash-trees on disk.

The basic strategy for the divide-and-conguer approach is shown in Figure 7.1. In the approach,
|D| denotes the size of the data structures used by the mining algorithm, and M is the size of available
main memory. Function mainmine is called if candidate frequent itemsets (not necessary all) can
be mined without writing the data structures used by a mining algorithm to disks. In Figure 7.1,
a very large database is decomposed into a number of smaller databases. If a “small” database is
still too large, i.e, the data structures are still too big to fit in main memory, the decomposition is
recursively continued until the data structures fit in main memory. After all small databases are
processed, all candidate frequent itemsets are combined in some way (obviously depending on the
way the decomposition was done) to get all frequent itemsets for the original database.

Procedure diskmine(D, M)

if |D| < M then
return mainmine(D)

else
decompose D into Dy, ... Dy.
return combine diskmine(Dy, M),

diskmine(Dy, M).

Figure 7.1: General divide-and-conquer algorithm for mining frequent itemsets from digk.

The efficiency of diskmine depends on the method used for mining frequent itemsets in main
memory and on the number of disk I/0’s needed in the decomposition and combination phases.
Sometimes the disk I/O is the main factor. Since the decomposition step involves 1/0, ideally

the number of recursive calls should be kept small. The faster we can obtain small decomposed

77

databases, the fewer recursive call we will need. On the other hand, if a decomposition cuts down
the size of the projected databases drastically, the trade-off might be that the combination step
becomes more complicated and might involve heavy disk 1/0.

In the following we discuss two decomposition strategies, namely decomposition by partition,
and decomposition by projection.

Partitioning is an approach in which a large database is decomposed into cells of small non-
overlapping databases. The cell-size is chosen so that all frequent itemsets in a cell can be mined
without having to store any data structures in secondary memory. However, since a cell only contains
partial frequency information of the original database, all frequent itemsets from the cell are local to
that cell of the partition, and could only be candidate frequent itemsets for the whole database. Thus
the candidate frequent itemsets mined from a cell have to be verified later to filter out false hits.
Consequently, those candidate sets have to be written to disk in order to leave space for processing
the next cell of the partition. After generating candidate frequent itemsets from all cells, another
database scan is needed to filter out all infrequent itemsets. The partition approach therefore needs
only two passes over the database, but writing and reading candidate frequent itemsets will involve
a significant number of disk I/0’s, depending on the size of the set of candidate frequent itemsets.

We can conclude that the partition approach to decomposition keeps the recursive levels down
to one, but the penalty is that the combination phase becomes expensive.

To get an easier combination phase, we adopt another decomposition strategy, which we call
projection. This approach projects the original database on several databases, each determined by
one or more frequent item(s). One advantage of this approach is that any frequent itemset mined
from a projected database is a frequent itemset in the original database. To get all frequent itemsets,
we only need to take the union of the frequent itemsets discovered in the small projected databases.
The biggest problem of the projection approach is that the total size of the projected databases
could be too large, and there could be too many disk I/Q’s for the projected databases. Thus, there
is a trade-off between the easier combination phase and possible too many disk I/0’s.

To analyze the recurrence and required disk I/0’s of the general divide-and-conquer algorithm

when the decomposition strategy is projection, let us suppose that:
- The original database size is D bytes.
- The data structure is a FP-tree.

78

- The FP-tree constructed from original database D is T, and its size is |T] bytes.

- If a conditional FP-tree T” is constructed from a FP-tree T, then |[T"] < ¢ - |T|, for some

constant ¢ < 1.

- The main memory mining method is the FP-growth method [28, 29]. Two database scans are

needed for constructing a FP-tree from a database.
- The block size is B bytes.

- The main memory available for the FP-tree is M bytes.

In the first line of the algoritltim in Figure 7.1, if T can not fit in memory, then projected databases
will be generated. We assumed that the size of the FP-tree for a projected database is ¢- |T|. If
¢ |T| < M, function mainmine can be called for the projected database, otherwise, the decomposition
goes on. At pass m, the size of the FP-tree constructed from a projected database is ¢™ - |T’|. Thus,
the number of passes needed by the divide-and-conquer projection algorithm is 1 + f[log, M/T7].
Based on our experience and the analysis in [28, 29], we can say that for all practical purposes the
number of passes will be at most two. For example, Let D = 100 Gigabytes, T" = 10 Gvigabytes,
M =1 Gigabyte, and ¢ = 10%. Then the number of passes is 1+ [log,; 230/(10 x 239)] = 2. In five
passes we can handle databases up to 100 Terabytes. Namely, we get 1+ [logg ; 22°0/(10 x 240)] = 5.

Assume that there are two passes, and that the sum of the sizes of all projected databases is
D’ After the first database scan for finding all frequent single items, the second database scan
attempts to construct a FP-tree from the database. If the main memory is not big enough, the
scan will be aborted. We assume on average half of D is read at this stage, which means 1/2- D/B
disk I/0’s. The third scan is for decomposition. Totally, there are 5/2 x D/B disk I/O’s. The
projected databases have to be written to the disks first, then later each scanned twice for building
the FP-tree. This step needs 3 x D'/B disk I/O’s. Thus, the total disk number of disk 1/O’s for the

general divide-and-conquer projection algorithm is at least
5/2-D/B+3-D'/B. (2)

Obviously, the smaller D', the better the performance.
One of the simplest projection strategies is to project the database on each frequent item, which

we call basic projection. First we need some formal definitions.

79

Definition 7.1 Let I be a set of items. By I* we will denote strings over I, such that each symbol
occurs at most once in the string. If o, B are strings, then a.3 denotles the concatenation of the
string o with the string (.

Let D be an I-database. Then fregstring(D) is the string over I, such that each frequent item

in D occurs in it exactly once, and the items are in decreasing order of frequency in D. |

As an example, consider the {a,b,¢,d, e}-database D = {{a, c,d}, {b,¢c,d,e},{a,b}, {a,c}}. If the

minimum support & = 50%, then fregstring(D) = acbhd.

Definition 7.2 Let D be an I-database, and let fregstring(D) = i1ig---ig. For g€ {1,...,k} we
define Dy; = {7 N{i1,...,i5} :4; € 7,7 € D}.
Let a € I*. We define D, inductively: D, =D, and let fregstring(Dy) = t1t2-- - ix. Then, for

jE{l,...,k}, Da.ij ={Tﬂ{‘i1,...,ij}2ij ET,TEDQ}. [

Obviously, Dy, is an {i1,...,%;}-database. The decomposition of Dy into Dy iy, - - .y Daiy 18
called the basic projection.

To illustrate the basic projection, let’s consider the above example, starting from the least
frequent item in the fregstring, we obtain Dy = {{a,c,d},{b,c,d}}, D» = {{c,b},{a,b}}, Dc =

{{a,c}, {c}.{a,c}}, and Do = {{a}, {a}, {a}}.

Definition 7.3 Leta € I*, i; € I, and let Dy.y; be an I-database. Then fregsets(, Do.i;) denotes
the subsets of I that contain i; and are frequent in Do.i; when the minimum support is 6. Usually,
we shall abstract § away, and write just fregsets(Dq.i;).]
Lemma 7.1 Let D, be an I-database, and fregstring(Dy) = 115+ ix. Then
fregsets(Dy) = U fregsets(Dq.i;)
j€{l,..k}

Proof. (C-direction). Let S € fregsets(De), and suppose i, is the item in S that is least frequent
in Dg. Since Dy, is an {iy,...,1,}-database, and transactions in D, that contain item i; are all
in Da.y, if S is frequent in D, then § must be frequent in Dyiy-

(2-direction). For any frequent itemset S € fregsets(Daq.q;), according to the definition, the support
of any itemset in D, ;; is not greater than the support of it in D,. Therefore, S must be frequent

in Dg,. B

80

In the previous example, for Dy, fregsets(Dq)={{d},{c,d}}. Note though {c} is also frequent
in Dy, it is not listed since it does not contain d. It will be listed in fregsets(D.). Similarly,
fregsets(Dy)={{b}}, fregsets(D.)={{c}, {a, c}} and fregsets(D,)={{a}}. We also can notice that Dy
and D, are not that much smaller than the original database. The upside is though that the set
of all frequent itemsets in D now simply is the union of fregsets(Dy), fregsets(Dy), fregsets(D.) and
fregsets(Dg). This means that the combination phase is a simple union.

Figure 7.2 gives a divide-and-conquer algorithm that uses basic projection. A transaction 7 in
D, will be partly inserted into Dy ;; if and only if 7 contains i;. The parallel projection algorithm
introduced in [29] is an algorithm of this kind.

Procedure basicdiskmine(Dq, M)

if Dyl £ M then
return mainmine(Dy)
else
let fregstring(Dy) = 112 - - in,
return basicdiskmine(Dg.4,, M) U
LU
basicdiskmine(Dqy, ;,, , M).

Figure 7.2: A simple divide-and-conquer algorithm for mining frequent itemsets from disk

Let’s analyze the disk I/O’s of the algorithm in Figure 7.2. As before, we assume that there
are two passes, that the data structure is a FP-tree, and that the main memory mining method is
FP-growth. If in D,, each transaction contains on the average n frequent items, each transaction
will be written to n projected databases. Thus the total length of the associated transactions in the
projected databasesis n+ (n~ 1) +--- -+ 1= n{n-+1)/2, the total size of all projected databases is
(n+1)/2-D=n/2-D.

Still there are two full database scans and a incomplete database scan for D, as explained for
formula (1). The number of total disk I/O’s is 5/2 - D/B. The projected databases have to be
written to the disks first, then later scanned twice each for building a FP-tree. This step needs at
least 3-n/2 x D/B. Thus, the total disk I/Q’s for the divide-and-conquer algorithm with basic

projection is
5/2-D/B+n-3/2-D/B (3)

The recurrence structure of algorithm basicdiskmine is shown in Figure 7.3. The reader should

ignore nodes in the shaded area at this point, they represent processing in main memory.

81

Dea Deb Dee Ded

Figure 7.3: Recurrence structure of Basic Projection

In a typical application n, the average number of frequent items could be hundreds, or thousands.
It therefore makes sense to devise a smarter projection strategy. Before we go further, we introduce

some definitions and a lemma.

Definition 7.4 Let D, be an I-database, and let fregstring(Dy) = f1.02.- - Bk, where each [3;
is a string in I*. We call §1.02. -+ .Bx a grouping of fregstring(Dy). Let f; = i5,..... b, for

je{l,...,k}. We now define Dog, =
{Tﬂ{ih,. ..,ijm},T [S Da,Tﬂ{ijl,... ,‘ijm} % @}
InDy.g;, items in B; are called master items, items in fy,...,0;~1 are called slave items. [|

For the previous example, fregstring(D,) = acbd, 8 = ac, 2 = bd gives the grouping ac.bd of

acbd. Now Dpq = {{a,c¢,d}, {b,¢,d}, {a,b}} and Dg. = {{a,c},{c}, {a},{a,c}}.

Definition 7.5 Let {a, 8} C I*, and let Dy be an [-database. Then fregsets(D, g) denotes the

subsets of I that contain of least one item in 3 and are frequent in Dy 5.]
Lemma 7.2 Let o € I*, D, be an I-database, and fregstring(D,) = 5162 Br. Then
fregsets(D,,) = U fregqsets(Dap;)

F€{1,...,k}

Proof. Straightforward from Lemma 7.1 and the definition of D, g. B

82

By following the above example, we can get fregsets(Dpg)={{d}, {b},{c,d}}, and fregsets(Dyc)=
{{c}.{a}. {a,c}}.

Based on Lemma 7.2, we can obtain a more aggressive divide-and-conquer algorithm for mining
from disks. Figure 7.4 shows the algorithm aggressivediskmine. Here, fregstring(D,) is decomposed
into several substrings §;, each of which could have more than one item. Each substring corresponds
to a projected database. A transaction 7 in D, will be partly inserted into D, g, if and only if 7
contains at least one item a such that o € §;. Since there will be fewer projected databases, there
will be fewer disk I/0’s. Compared with the algorithm in Figure 7.2, we can expect that a large
amount of disk I/0 will be saved by the algorithm in Figure 7.4.

Procedure aggressivediskmine(Dy, M)

if |Do| £ M then
return mainmine(D)
else

let fregstring(Dy) = BBz B,
return aggressivediskmine(Dy.g,, M) U

Lo U
aggressivediskmine(Dy g, , M).

Figure 7.4: A more aggressive divide-and-conquer algorithm for mining frequent itemsets from disk

Let’s analyze the recurrence and disk I/O’s of the aggressive divide-and-conquer algorithm. The
number of passes needed by the algorithm is still 1 + [log, M/T'] = 2, since grouping items does
not change the size of a FP-tree for a projected database. However, for disk I/O, suppose in
De, each transaction contains on average n frequent items, and that we can group them into k
groups of equal size. Then the n items will be written to the projected databases with total length
n/k+2-n/k+...+k-n/k = (k-+1)/2-n. Total size of all projected databases is (k+1)/2-D = k/2-D.

The total disk I/O’s for the aggressive divide-and-conquer algorithm is then

5/2-D/B+k-3/2-D/B (4)

The recurrence structure of algorithm aggressivediskmine is shown in Figure 7.5. Compared to
Figure 7.3, we can see that the part of the tree that corresponds to decomposition (the non-shaded
part) is much smaller in Figure 7.5. Although the example is very small, it exhibits the general
structure of the two trees.

If £ <« n, we can expect that the aggressive divide and conquer algorithm will significantly

83

Figure 7.5: Recurrence structure of Aggressive Projection

outperform the basic one.

7.2 Algorithm Diskmine

In this section we give the details of our divide-and-conquer algorithm for mining frequent itemsets
from secondary memory. We call the algorithm Diskmine. In the algorithm, the FP-tree is used as
data structure and the extension of the FP-growth method, FPgrowth* [21], as method for mining

frequent itemsets from a FP-tree.

7.2.1 Divide-and-conquer by aggressive projection

The algorithm Diskmine is shown in Figure 7.6. In the algorithm, D, is the original database or a
projected database, and M is the maximal size of main memory that can be used by Diskmine.
Diskmine uses the FP-tree as data structure and FPgrowth* [21] as main memory mining algo-
rithm. Since the FP-tree encodes all frequency information of the database, we can shift into main
memory mining as soon as the FP-tree fits into main memory.
Since a FP-tree usually is a significant compression of the database, our Diskmine algorithm

begins optimistically, by calling trialmainmine, which starts scanning the database and constructing

84

Procedure Diskmine(D,, M)

scan D, and compute fregstring(D,)
call trialmainmine(Dq, M)
if trialmainmine(Dy, M) aborted then
compute a grouping 518z - - - Bk of fregstring(Dy)
Decompose Dy, into Da.gs- .., Pag,
for j = 1 to k do begin
if B; is a singleton then
Diskmine(Dq.p,, M)
else
mainmine(Dq.g;)
end
else return fregsets(Dg)

Figure 7.6: Algorithm Diskmine

the FP-tree. If the tree can be successfully completed and stored in main memory, we have reached
the bottom level of the recursion, and can obtain the frequent itemsets of the database by running
FPgrowth* on the FP-tree in main memory.

Procedure triglmainmine(Dy, M)
start scanning D, and building the FP-tree T, in main memory.
if |T,| exceeds M then

return the incomplete T,

else
call FPgrowth*(T,) and return fregsets(Dy).

Figure 7.7: Trial main memory mining algorithm

If, at any time during trialmainmine we run out of main memory, we abort and return the
partially constructed FP-tree, and a pointer to where we stopped scanning the database. We then
resume processing Diskmine(Dy, M) by computing a grouping 51, . . ., Bk of fregstring(D,), and then
decomposing D, into Dy g,,. .., Da.g,. We recursively process each decomposed database Dy g;.
During the first level of the recursion, some groups 3; will consist of a single item only. If §; is a
singleton, we call Diskmine, otherwise we call mainmine directly, since we put several items in a
group only when we estimate that the corresponding FP-tree will fit into main memory.

In computing the grouping fi,...,0r we assume that transactions in a very large database
are evenly distributed, i.e., if a FP-tree is constructed from part of a database, then this FP-tree
represents the FP-tree for the whole database. In other words, if the size of the FP-tree is n for
p% of the database, then the size of the FP-tree for whole database is n/p - 100. Most of the time,
this gives an overestimation, since a FP-tree increases fast only at the beginning stage, when items

are encountered for the first time and inserted into the tree. In the later stages, the changes to the

85

FP-tree will be mostly counter updates.

Procedure mainmine(D, g)
build a modified FP-tree T, g for D, g
for each i € {f} do begin
construct the FP-tree T, ; for D, ; from T, g
call FPgrouth*(T,.;) and return fregsets(Dgy ;).
end

Figure 7.8: Main memory mining algorithm

In basicdiskmine, there is only one master item in each projected database (for D, no master
item at all), a FP-tree can be constructed without considering the master item. In Figure 7.8, since
Da.p is for multiple master items, the FP-tree constructed from D, g has to contain those master
items. However, the item order is a problem for the FP-tree, because we only want to mine all
frequent itemsets that contain master items. To solve this problem, we simply use the item order
in the partial FP-tree returned by the aborted trialmainmine(Dy). This is what we mean by a
“modified FP-tree” on the first line in the algorithm in Figure 7.8.

The entire recurrence structure of Diskmine can be seen in Figure 7.5. Compared to the basic
projection in Figure 7.3 we see that since the aggressive projection uses main memory more effective,
the decomposition phase is shorter, resulting in less 1/0.

In Figure 7.5, the shaded area shows the recursive structure of FP-growth*. Comparing with
the shaded area in Figure 7.3 which shows the recursive structure of the FP-growth method, we can
see that the main difference is the extra shaded level in Figure 7.5. This level is for the FP-trees
of groups. For each group, since the total size of all FP-trees for its master items may be greater
than the size of main memory, a “modified FP-tree” is constructed. This FP-tree will fit in main
memory. From the FP-tree, smaller FP-trees can be constructed one by one, as shown in both
figures. As an example, in Figure 7.3, basicdiskmine enters the main memory phase for instance
for the conditional database D¢ . Then FP-growth first constructs the FP-tree 7, , from D, (in
Figure 7.5, T, , is constructed from T). The tree rooted at T, , shows the recursive structure of
FP-growth, assuming for simplicity that the relative frequency remains the same in all conditional

pattern bases.
Theorem 7.1 Diskmine(D) returns fregsets(D).

Proof. The correctness of Diskmine can be derived from the correctness of the FPgrowth* method

in [21] and Lemma 7.2 in Section 7.2. In Diskmine, each item acts as master item in exactly one

86

projected database. If a projected database is only for one master item %;, the result of FPgrowth*
method or a recursive call of Diskmine will be fregsets(D;,). If a projected database is for a set
{B} of master items, it contains all frequency information associated with the master items. Since
in the FPgrowth* method, the order of the items in a FP-tree does not influence the correctness
of the FPgrowth* method, mainmine indeed returns only frequent itemsets that contain master
item(s), i.e. mainmine gives the exact value of fregsets(Dg.g). According to Lemma 7.2, algorithm

Diskmine then correctly outputs all itemsets in frequent the original database. |

7.2.2 Memory management

Given a database D, to successfully apply the FPgrowth™ method, the basic main memory require-
ment is that the size of the FP-tree T, constructed from D,, is less than the available amount M
of main memory. In addition, we need space for the descendant conditional FP-trees that will be
constructed during the recursive calls of FPgrowth*.

Suppose the main memory requirement for T, plus its descendant FP-trees is m. If M < m,
but the difference mm — M is not very big, the FPgrowth* method could still be run because the
operating system uses virtual memory. However, there could be too many page swappings which
take too much time and make FPgrowth* very slow. Therefore, given M, for a very large database
D, we have to stop the construction of the FP-tree T, and the execution of FPgrowth* method
before all physical main memory is used up.

Another problem is that we will construct a large number of FP-trees. Since there can be millions
of nodes in those FP-trees, inserting and deleting nodes is time-consuming.

In the implementation of the algorithm, we use our own main memory management for allocating
and deallocating nodes, and calculating the main memory we have already used. We first use the
method introduced in Section 3.3 to avoid freeing nodes in FP-trees one by one. Then we assume
that the main memory needed by a FP-tree is proportional to the number of nodes in the FP-trees.
We also assume that the workspace needed for calling FPgrowth*(T) method on a FP-tree is roughly
10% of the size of the FP-tree T. Here, 10% is a liberal assumption according to the experimental
result in [28]. Later in this section, a more accurate value will be given. If the size of FP-tree is

more than 0.9 - M, we conclude that M is not big enough to store whole FP-tree T,.

87

7.2.3 Applying the FP-array technique

In Diskmine, the FP-array technique is also applied to save FP-tree traversals. Furthermore, when
projected databases are generated, the FP-array technique can save a great number of disk I/0’s,

Recall that in trialmainmine, if a FP-tree can not be accommodated in main memory, the
construction stops. Suppose now we decided to stop scanning the database. Then later, after
generating all projected databases, for a projected database with only one master item, two database
scans are required to construct a FP-tree for the master item. The first scan gets all frequent items
for the master item, the second scan constructs the FP-tree. For a projected database with several
master items, though the FP-tree constructed from the database uses the modified item order (the
order from the header of the FP-tree in the previous level of the recursion), to construct new FP-
trees for the master items, two FP-tree traversals are needed. To avoid the extra scan, in Diskmine
we calculate an array for each FP-tree. When coustructing the FP-tree from D,, if it is found that
the tree can not fit in main memory, the construction of the FP-tree T,, stops, but the scan of the
database D, continues so that we finish filling the cells of the FP-array A,. Here, some extra disk
1/0’s are spent, but the payback will be that we save one database scan for each projected database.
Furthermore, finishing the scanning of D, does not require any more main memory, since the array
A, is already there.

From the FP-array, for each projected database, the count of each pair of master items and the
count of each pair of master item and slave item can be known. As an example, suppose a projected
database is only for one master item i; and slave items 41,...,%;_1. To mine all frequent itemsets,
from the line for i; in the FP-array, accurate counts for [i;,%;-1], [ij,%;-2}, ..., [¢;,11] can be easily
found. If there were no FP-array we would need an extra database scan.

With the FP-array, we can also make a projected database drastically smaller. In the definition
of Dy g;, we see that Dy g, is a database of all items in @1,...,8; Actually, by checking the array
Ag, if a slave item is found not frequently co-occurring with any master item in 8;, it is useless to
include the slave item in D, g,, because no frequent itemsets mined from Dy, g; will contain that
slave item. For the same reason, if we also find that a master item a is not frequent with any other
master item or slave item, it will not be written to Dy g, , either. However, the frequent itemset
a.a is outputted. Furthermore, if from the FP-array, we see that a master item a is only frequent

with one item (master or slave) b, frequent itemsets a.a and c.a.b are outputted directly, and item a

88

will not appear in Dy g,. Therefore, by looking through the array, we find all slave items, such that
they are not frequent with any master item in §;, and all master items, such that their number of
frequent items in {fy,..., ﬂj} is 0 or 1. When generating D, g,, all those items are removed from
the transactions we put in Dy g;.

As an example, suppose in a projected database D, the fregstring(D,) = abedefgh. We also
suppose that D, will be deeply decomposed as two projected databases. One projected database
is for group‘ abed, while the other is for group efgh. The FP-array A, is shown in Figure 7.9. If
now the minimum support is 10001, then from the FP-array, none of the item pairs are frequent.
Therefore, we don’t need to generate any projected database. We only need to output 8 frequent
itemsets, i.e., a.a to a.g with their support. If now the minimum support is 5000, then in Dq.cpgn,
according to the definition, it contains all transactions that contain e, f, g, or h. Items included
in Dy.efgn are a, b, ¢, d, e, f, g, h. However, with the existence of A,, we can see that f is not
frequent with any other items, so we just output a.f and its support directly, and in Dy efgn, item
f is not included. Furthermore, items g and h are only frequent with each other, so we can just
output frequent itemsets a.g, .k, and c.gh with their support directly. In Dgy.efgn, we remove g
and & as well. Since e is frequent with a, b, ¢ and d, we have to generate the projected database.
But now in Dy cfgn, there are only items a, b, ¢, d, and e. By FP-array technique, now the size of

Dy .efgn becomes very small.

10000
9900 | 9100
9000 | 7500 8800
8900 | 8700 8800 8900
4000 3500} 3000 2500(2000
1000 | 1000{ 1000} 2000] 2000 | 2500
1000 | 2000| 1000| 2000|3000 | 2000 |9000 l

S0 S0 R, 6 o

a b c d e /S g

Figure 7.9: The FP-array A,

7.2.4 Statistics

Algorithm Diskmine collects some statistics on the partial FP-tree T,, and the rest of database D, for

the purpose of grouping items together. Table 7.1 shows the statistics information. In the table, D,

89

is the original database or the current projected database, and fregstring(Da)=11...%;...9% .. . in.

The partial FP-tree is T, and ¢ the absolute value of the minimum support.

t(Dy) | Number of transactions in D,
Aclj, k] | Count of frequent item pair {1;,4} in Dy
) | Number of transactions used for constructing 7,
v(T,) | Number of nodes in 7,
)
)

Number of nodes in T, if we retain only nodes for items 2;,...,4;
Number of nodes in T, where a node P for item 1, is counted if

it satisfies the following conditions: 1) P is in a branch that contains i;
2)ig € {i1,...,45} 3) Aul5, k] > 6

Table 7.1; Statistics from the partial FP-tree T,

In the table, the FP-array discussed in Section 7.2.3 is also listed as statistics. Values for the
cells of the FP-array are accumulated during the construction of the partial Ty,. If trialmainmine
is aborted, the rest of the statistics is collected by scanning the remaining part of D,. Values
in v[j](7,) can also be obtained during the construction of T,. Here v[j](Ty) records the size of
the FP-tree after T, is trimmed and only contains items 4;,...,%;. Notice that »(T,) is equal to
v[n|(Ta). This is also the size of a tree that can fit in main memory. The value for u[5](T,) can be
obtained by traversing T once, it gives the size of the FP-tree Ty ;.

It might seem that collecting all this statistics is a large overhead, however, since all work is done
in main memory, it does not take much time. And the time saved for disk I/0’s is far more than

the time spent on gathering statistics.

7.2.5 Grouping items

In Figure 7.6, the fourth line computes a grouping £152 -+ Bk of fregstring(D,). Each string 8
corresponds to a group and each 8 consists of at least one item. For each 4, a new projected database
De.p will be computed from D,, then written to disk and read from disk later. Therefore, the more
groups, the more disk I/Q’s. In other words, there should be as many items in each 3 as possible.

To group items, two questions have to be answered.

1. If 8 currently only has one item ¢;, after projection, is the main memory big enough for

accommodating Ty, ;; constructed from Dg ;; and running the FPgrowth* method on Toi;?

2. If more items are put in g, after projection, is the main memory big enough for accommodating

To.p constructed from D, 5 and running FPgrowth* on T, g only for items in 87

90

Answering'the first question is pretty easy, since for each item 4;, the number ulf](T%) gives
the size of a FP-tree if the tree is constructed from the partial FP-tree T,,. Therefore u[j](T,) can
be used to estimate the size of FP-tree Toij- By the assumption that the transactions in D, are
evenly distributed and that the partial T, represents the whole FP-tree for D, the estimated size
of FP-tree Ty, is p[f](Ta) - t(Da)/t(Ta).

Before answering the second question, we introduce the cut point from which the first group can

be easily found.

Finding the cut point. Recall the order that FPgrowth* uses in mining frequent itemsets. Starting
from the least frequent item i,, all frequent itemsets that contains 7, are mined first. Then the
process is repeated for i,.1, and so on. Notice that when mining frequent itemsets for 7z, all
frequency information about ixyq,- .. ,%, is useless. Thus, though a complete FP-tree T, constructed
from D, could not fit in main memory, we can find many k’s such that the trimmed FP-tree
containing only nodes for items ig,...,¢; will fit into main memory. All frequent itemsets for
ig,-..,%1 can be then mined from one trimmed tree. We call the biggest of such k’s the cut point.
At this point, main memory is big enough for storing the FP-tree containing only ig,...,%;, and
there is also enough main memory for running FPgrowth* on the tree. Obviously, if the cut point &
can be found, items ig,...,7; can be grouped together. Only one projected database is needed for
Ty oo - s 81

There are two ways to estimate the cut point. ‘One way is to get cut point from the value
of t(D,) and #(7,) in Table 7.1. Figure 7.10 illustrates the intuition behind the cut point. In
the figure, | = t(T%), and m = t(D,). Since the partial FP-tree for t(7,) of ¢(D,) trausactions
can be accommodate in main memory, we can expect that the FP-tree containing i, ...,¢;, where
k= |n (Ty)/t(Dy)], also will fit in main memory.

The above method works well for many databases, especially for those databases whose corre-
sponding FP-trees have plenty of sharing of prefixes for items from 4, to the cut point. However, if
the FP-tree constructed from a database does not share prefixes that much, the estimation could fail,
since now the FP-tree for items from ¢; to the cut point could be too big. Thus, we have to consider
another method. In Table 7.1, v[j](T) records the size of the FP-tree after the partial FP-tree T}, is
trimmed and only contains items 4,...,¢;. Based on v[j](T) the number of nodes in the complete

FP-tree for item ¢; can be estimated as v[j[(Ty) - t{Dq)/H(Ts). Now, finding the cut point becomes

91

Figure 7.10: Cutpoint

finding the biggest £ such that v[k](Ta) t(Da)/t(Ta) < v(Ty), and vk+1)(To) t(Da) /t(Ta) > v(Ty).

Sometimes the above estimation only guarantees that the main memory is big enough for the
FP-tree which contains all items between 7; and the cut point, while it does not guarantee that
the descendant trees from that FP-tree can fit in main memory. This is because the estimation
does not consider the size of descendant trees correctly (in Section 7.2.2, we assumed that the size
of a conditional tree is 10% of its nearest ancestor tree). Actually, from u[j](T,) we can get a
more accurate estimation of the size of the biggest descendant tree. To find the cut point, we
need to find the biggest k, such that (v[k](Tw) + plf](Ta)) - t(Da)/t(Tn) < v(Ty), and (v]k +
1(Ta) + u[m)(Te)) > v(Ty), where j < k, uli}(Tn) = mazieq,.. ki (Ta), and m < k + 1,

pm}(Ta) = mazmeq,.. kor1y ulm)(Ta).

Grouping the rest of the items. Now we answer the second question, how to put more items
into a group? Here we still need u[j](7s). Starting with plcutpoint + 1](Ty), we test if ulcutpoint +
(Ta) - t(Do)/t(Te) > v(To). If not, we put next item cutpoint+2 into the group, and test if
(leutpoint + 1)(Ty) + uleutpoint + 2(Ty)) 4(Da)/t(Tn) > v(Ty). We repeatedly put next item in

fregstring(D) into the group until we reach an item 4;, such that

D7 umi(T) (Do) /H(Tn) > v(Ta).

m=cutpoint+1
Then starting from 4;, we put items into next group, until all items find its group.
Why can we put items ¢;,. .., #; together into §7 This is because even if we construct Teigs oy Loy
from the projected databases Daijy ey Doy, and put all of them into main memory, the main
memory is big enough according to the grouping condition. At this stage, Taijs- - Ty, all can be

constructed by scanning D, once. Then we mine frequent itemsets from the FP-trees. However, we

92

can do better. Obviously T, ; v+ s Lo, Overlap a lot, and the total size of the trees is definitely
greater than the size of Ty g. It also means that we can put more items into each 3, only if the
size of T, p is estimated to fit in main memory. To estimate the size of Ty g, part of T, has to be

traversed by following the links for the master items in 7y,.

7.2.6 Database projection

After all items have found their groups, the original database will be projected to small databases

according to Definition 7.4. To save disk I/O’s, three techniques can be used:

1. In a group £, if the number of master items is greater than half of the number of frequent
items (this often happens in the group that contains cut point), then D, g is not necessary
computed. To mine all frequent itemsets, T, s can be directly constructed from D, by reading
it once. This is because D4 g is not much smaller than D, while the disk I/O’ for reading

from D, once is less than the disk I/O’s for writing and reading Dq g once.

2. Since the partial tree T}, is now in main memory, it records all frequency information of those
transactions that have been read so far, when computing projected databases, the frequency
information of those transactions can be gotten from T,. Thus disk I/O’s are only spent on

reading from those transactions that did not contribute to T,.

3. As discussed in Section 7.2.3, by using the FP-array technique, in group 3;, we find all slave
items, such that they are not frequent with any master item in 3;, and all master items, such
that their number of frequent items in {f,..., 3} is 0 or 1. When computing D, 3;, all those

items are removed from new transactions in Dg, g, .

7.2.7 The disk I/0’s

Let’s re-count the disk I/0’s used in Diskmine. The first scan is still for obtaining all frequent
items in D., and it needs D/B disk I/0O’%. In the second scan we construct a partial FP-tree
T., then continue scanning the rest database for statistics. The second scan is a full scan, which
needs another D/B disk I/0’. Suppose then that k projected databases have to be computed.
According to Section 7.2, the total size of the projected databases is approximately k/2 - D. For

computing the projected databases, the frequency information in T, is reused, so only part of D,

93

is read. We assume on average half of D, is read at this stage, which means 1/2- D/B disk I/0O’s.
By using of the FP-array technique, writing and later reading & projected databases now only take
2-k/2-D/B=k-D/B disk I/O’s. Suppose all frequent itemsets can be mined from the projected

databases without going to the third level. Then the total disk I/0’s is
5/2-D/B+k-D/B (5)

Compared with formula 4, Diskmine saves at least k/2 - D/B disk I/0’s, thanks to the various

techniques used in the algorithm.

7.3 Experimental Results

In this section, we present the results from a performance comparison of Diskmine with the Parallel
Projection Algorithm in [29] and the Partitioning Algorithm introduced in [48]. The scalability of
Diskmine is also analyzed, and the accurateness of our memory size estimations are validated.

As mentioned in Section 7.2, the Parallel Projection Algorithm is a basic divide-and-conquer
algorithm, since for each item a projected database is created. For performance comparison, we
implemented Parallel Projection Algorithm, by using FP-growth as main memory method, as intro-
duced in {29]. The Partitioning Algorithm is also a divide-and-conquer algorithm. We implemented
the partitioning algorithm by using the Apriori implementation in [3]. We chose this implementation,
since it was well written and easy to adapt for our purposes.

We ran the three algorithms on both synthetic datasets and real datasets. Some synthetic
datasets have millions of transactions, and the size of the datasets ranges from several megabytes to
several hundreds gigabytes. Without loss of generality, only the results for some synthetic datasets
and a real dataset are shown here.

All experiments were performed on a 2.0GHz Pentium 4 with 256 MB of memory under Windows
XP. For Diskmine and the Parallel Projection Algorithm, the size of the main memory is given as an
input. For the Partitioning Algorithm, since it only has two database scans and each main-memory-
sized partition and all data structures for Apriori are stored into main memory, the size of main
memory is not controlled, and only the runtime is recorded.

We first compared the performance of three algorithms on synthetic dataset. Dataset T100I20D100K

was generated from the application of IBM research center [1]. The dataset has 100,000 transactions

94

and 1000 items, and occupies about 40 megabytes of memory. The average transaction length is 100,
and the average pattern length is 20. The dataset is very sparse and the FP-tree constructed from
the dataset is bushy. For Apriori, a large number of candidate frequent itemsets will be generated
from the dataset.

When running the algorithms, the main memory size was set as 128 megabytes. Figures 7.11,
7.12, 7.13 shows the experimental results. In the figures, “Basic Algorithm” represents the Parallel

Projection Algorithm, and “Aggressive Algorithm” represents the Diskmine algorithm.

Total Runtime

10000 10000
]
.0
o S i
1000 | ©-- 09 4 1000
O
Q 4
g 100 100
-
10t —Q— Partition 4 10
—&— Aggressive Projection
=« «0 - - Parailel Projection
1 el e L I I i 1 1 1

10 9 8 7 6 5 4 3 2
Minimum Support (%)

Figure 7.11: Performance of algorithms running on synthetic dataset: Runtime

In Figure 7.11 we compare the total runtime, we can see that the Partitioning Algorithm is the
slowest in the group. In the figure, there are no points for the algorithm when minimum support is
very low, since the algorithm is extremely slow and we gave up recording its runtime. The Aggressive
algorithm has the best performance. It’s more than an order of magnitude faster than the Basic
algorithm when the minimum support is high.

To see the differences of the CPU time and the time used for disk 1/0’s between the Aggressive
algorithm and the Basic algorithm, we recorded the CPU time and the time for disk I/0’s of each
algorithm separately. Figure 7.12 and Figure 7.13 shows the CPU time and the time for disk I/O’s
used by each algorithm, respectively. In Figure 7.12, as expected, we can see that the disk I/O time
of the Aggressive algorithm is orders of magnitude smaller than that of the Basic algorithm. On
the other hand, in Figure 7.13 we can see that the Basic algorithm, however, is not slower than
the Aggressive algorithm if we only compare their CPU time. In [21], where we were concerned

with main memory mining, we found that if a dataset is sparse the boosted FPgrowth* method

95

has a much better performance than the original FP-growth. The reason here the CPU time of the

Aggressive algorithm is not always less than that of Basic algorithm is that the Aggressive algorithm

has to spend CPU time on calculating statistics. However, from Figure 7.11, we also can see that the

CPU overhead used by the Aggressive algorithm now become insignificant compared to the savings

in disk I/0.

Disk VO
10000

«+ <0 - - Parallel Projaction
—~—gr— Aggressive Projsction

1000 | -+ -0 "%’

Time (s)

100

°__‘)_“o_,_o...o---o

0 9 8 7 6 5§

4 3

Minimum Support (%)

Figure 7.12: Performance of algorithms run-
ning on synthetic dataset: Time for Disk I/O’s

CPU Time
-+ 10000 1000 1000
—— Aggressive Projaction
« =<0 -+ Parallel Projaction
4 1000 100 | 100
O
o
£
=
100 10 ¢ €@ 10
0 P e s
2 10 9 8 7 6 5 4 3 2

Minimum Support (%)

Figure 7.13: Performance of algorithms run-
ning on synthetic dataset: CPU time

We then ran the algorithms on a real dataset Kosarak, which is used as a test dataset in [2]. The

dataset is about 40 megabytes. Since it is a dense dataset and its FP-tree is pretty small, we set the

main memory size as 16 megabytes for the experiments. Results are shown in Figures 7.14, 7.15,

7.16.

Time (s)

10000

1000 ¢

100

10

Runtime

—@— Partition
~— Aggressive Projection

= = <> - - Parallel Projection

05 045 04 035 03 025 0.2 0.15 0.1
Minimum Support (%)

10000

1000

4 100

10

Figure 7.14: Performance of algorithms running on real dataset: Runtime

In Figure 7.11, the Partitioning Algorithm is still the slowest.. We only recorded the runtime for

96

high minimum support. The algorithm is extremely slow when the minimum support is low. This
is because it generates too many candidate frequent itemsets. Together with the data structures,
these candidate sets use up main memory and virtual memory was used. By separating the CPU
time and the time for disk 1/0’s needed by the Aggressive algorithm and the Basic algorithm, we get
Figure 7.15 and Figure 7.16. In Figure 7.15, the time used for disk I/0O’s of the Aggressive algorithm
is still remarkably less than the time used for disk I/O’s of the Basic Algorithm. We can again
notice that in Figure 7.16 the CPU time of the Basic Algorithm is less than that of the Aggressive
algorithm. This is because Kosarak is a dense dataset so the FP-array technique does not help a

lot. In addition, calculating the statistics takes an amount of time.

Disk VO CPU time
1000 1000 100 100
- = =& « - Paraliel Projection N T
—— - Aggressive Prajection
~dir— Aggressive Projeclion
o - - %~ - Paralle! Projection

o O

2 00t 4 100 g 10 10

£ E

10 . 10 1 e 1
05 045 04 035 03 025 02 015 01 05 045 04 035 03 025 02 015 01
Minimum Support (%) Minimum Support {%)

Figure 7.15: Performance of algorithms run- Figure 7.16: Performance of algorithms run-
ning on real dataset: Time for Disk I/0’s ning on real dataset: CPU time

To test the effectiveness of the techniques for grouping items, we run Diskmine on T100I20D100K
and see how close the estimation of the FP-iree size for each group is to its real size. We still set the
main memory size as 128 megabytes, the minimum support § = 2%. When generating the projected
databases, items were grouped into 7 groups (the total number of frequent items is 826). As we can
see from Figure 7.17, in all groups, the estimated size is always slightly larger than the real size.
Compared with the Basic Algorithm, which constructs a FP-tree for each item from its projected
database, the Aggressive Algorithm almost fully uses the main memory for each group to construct
a FP-tree.

As a divide-and-conquer algorithm, one of the most important properties of Diskmine is its good
scalability. We ran Diskmine on a set of synthetic datasets. In all datasets, the item number was
set as 10000 items, the average transaction length as 100, and the average pattern length as 20.

The number of the transactions in the datasets varied from 200,000 to 2,000,000. Datasets size

97

Estimation size vs. Real size

160

Estimated size
140 BReal size

-
N
o

g

80 |

60

Memory (Megabytes)

40}

20

Figure 7.17: Estimation Accuracy

ranges from 100 megabytes to 1 gigabyte. Minimum support was set as 1.5%, and the available
main memory was 128 megabytes. Figure 7.18 shows the results. In the figure, the CPU and the
disk I/O time is always kept in a small range of acceptable values. Even for the datasets with 2
million transactions, the total runtime is less than 1000 seconds. Extrapolating from these figures
using formula (4), we can conclude that a dataset the size of the Library of Congress collection (25
Terabytes) could be mined in around 18 hours with current technology.

Scalability

700

~—a—CPU
600 [|.-&--Disk 11O e

200 400 600 800 1000 1200 1400 1600 1800 2000
NO. of Transactions (k)

Figure 7.18: Scalability of Diskmine

98

Chapter 8

Conclusions and Future Work

Data mining is known as “discovery of useful summaries of data” or “knowledge discovery”. Mining
association rules is one of the most important data mining tasks. In this thesis, we focus on the
efficient algorithms for mining frequent itemsets which is the core of mining association rules.

This chapter summarizes the work done in this thesis first, then discussions for the future work

are given.

8.1 Summary of this thesis

Mining association rule is one of the most important tasks of data mining. The key to mining
association rule is to solve the problem of mining frequent itemsets. Mining all frequent itemsets,
maximal frequent itemsets, and closed frequent itemsets are three categories of the problem.

Since a database can be very large and at the same time the main memory size is always limited,
we can not expect that the data structures for representing database and/or the data structures for
keeping itemsets always fit in memory. Thus, algorithms for mining from secondary memory are
also needed.

In this thesis, we considered the following factors for algorithms for mining frequent itemsets:
a) The number of database scans required by the algorithms; b) The data structures used in the
algorithms; ¢} Memory management of the algorithms; d) For mining maximal and closed frequent
itemsets, the efficiency of the algorithms for maximality checking and closedness testing. We selected

the FP-tree structure, a compact and efficient data structure originally proposed by J. Han et al.

99

in [28], as the main data structure used in our algorithms. Using a FP-tree requires two database

scans to mine frequent itemsets. Our contributions are as follows:

1. We introduced a novel FP-array technique that allows using FP-trees more efficiently when
mining frequent itemsets. The technique greatly reduces the time spent traversing FP-trees,

and works especially well for sparse datasets.

2. By using the FP-array technique in the FP-growth method [28], the FPgrowth* algorithm is
introduced to mine all frequent itemsets. Both our experimental results and the results of the
independent experiments conducted by the organizers of FIMI'03 [15] show that FP-growth*
is one of the best known algorithms for mining all frequent itemsets. Our experimental results

also show that FP-growth* has small main memory consumption and good scalability.

3. Similarly we developed an algorithm FPmax for mining maximal frequent itemsets. In the
algorithm, FPmax uses the FP-tree structure, as well as an effective maximality checking ap-
proach. For the maximality testing, a variation of the FP-tree, called a MFI-tree, is introduced
to keep track of all MFI's. In FPmax, a newly found frequent itemset is always compared with
MFT’s kept in a global MFI-tree. In order to understand the performance on datasets with
different characteristics, we analyzed the probable behavior of GenMax, MAFIA and FPmax.
Numerous experiments on synthetic datasets were done to validate our analysis. Experimental

results show that FPmax outperforms GenMax and MAFTA in many cases, but not all cases.

4. Extending FPmax, we elaborated the FPmax* algorithm, which applies the FP-array technique
and an efficient approach for maximality checking. In FPmax*, a newly found frequent itemset
is always compared with a small set of MFI's that are kept in a MFI-tree. FPmax* is the best
algorithm for mining maximal frequent itemsets as suggested by the organizers of FIMI'03.
Our experimental results also show that FPmax* is a scalable algorithm with very low memory

consumption.

5. For mining closed frequent itemsets we give the FPclose algorithm. In the algorithm, a CFI-
tree, another variation of a FP-tree, is used for testing the closedness of frequent itemsets.
The compactness of its data structure, the efficiency of the approach for closedness testing,

and careful implementation made FPclose the fastest algorithm in FIMI’03 {15].

100

6. We introduced several divide-and-conquer algorithms for mining frequent itemsets from sec-
ondary memory. The recurrences and disk I/O’s of all algorithms were analyzed. We then
gave a detailed divide-and-conquer algorithm which almost fully uses the limited main memory
and saves numerous number of disk I/0’. Many novel techniques are used in the algorithm
Diskmine. Experimental results show that Diskmine successfully reduces the number of disk
accesses, sometimes by orders of magnitude, and that our algorithm scales up to terabytes
of data. The experiments also validate that the estimation techniques used in Diskmine are

accurate.

8.2 Future work

Though the experimental results given in this thesis show the success of our algorithms, we still have

a lot of work to do.

¢ Experimental results in Chapter 3, 5 and 6 show that FPgrowth*, FPmax* and FPclose
consume lots of main memory, even though they are among the algorithms that have the
lowest memory consumption. Consuming too much main memory reduces the scalability of
the algorithms and makes it difficult to apply those algorithms for parallel data mining. We
notice from the experimental result in Chapter 3 that using a Patricia Trie to implement the

FP-tree data structure could be a good solution for the problem.

e Currently, there are very few efficient algorithins for mining mazimal frequent itemsets and
closed frequent itemsets from very large databases. Unlike in Diskmine, where the frequent
itemsets mined from all projected databases are globally frequent, a maximal frequent itemset
or a closed frequent itemset mined from a projected database is only locally maximal or closed.
As a challenge, a data structure, whose size may be very big, must be set for keeping all already

discovered maximal or closed frequent itemsets.

e For the work done in Chapter 7, we notice that our implementation of the partitioning al-
gorithm is based on an existing Apriori implementation, which is not necessarily highly opti-
mized. Furthermore, there are situations when there are not too many candidate itemsets in a
database, but the FP-tree constructed from the database is very big. In this situation the Par-

titioning Algorithm only needs two database scans and all frequent items can be nicely mined

101

in main memory, or with very little I/O for keeping the candidate sets in virtual memory. In
this situation Diskmine also needs two database scans, and it additionally needs to decompose
the database. Therefore, exploring whether some clever disk-based data structure would make

the partition approach scale, is another interesting direction for further research.

Data mining may involve a huge quantity of data and amount of computation. In this thesis,
we only considered about sequential mining of frequent itemsets. Parallel computing is also a
crucial component for successful large-scale mining of frequent itemsets [41, 25, 57, 42, 56, 32].
Because of the excellent properties of FPgrowth*, FPmax* and FPclose, we believe that the
combination of memory-consumption-improved FPgrowth*, Fl?max* and FPclose with parallel

computing is also a good research direction. Some work has been done in [13].

The work done in [24] shows that Apriori algorithms can also be applied to XML documents.
How to continue our work in [24] and apply the algorithms in this thesis to XML data is

another direction for our future research.

102

Bibliography

[
2]
3]
[4]
[5]

[12]

[13]

[14]

http://www.almaden.ibm.com/software/quest/Resources/index.shtml.
http://fimi.cs.helsinki.fi.
www.cs.helsinki.fi/u/goethals/softvare.
http://wuw-sal.cs.uiuc.edu/ hanj/pubs/software.htm.

R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth first generation of long patterns,
In Proceedings of the sizth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 108-118, 2000.

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in
large databases. In 1998 ACM-SIGMOD Proc. Special Interest Group on Management of
Data (ACM-SIGMOD’93), pages 207-216.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceeding of
International Conference on Very Large Data Bases, pages 487-499, Santiago, Chile, Sept.
1994.

R. Agrawal and R. Srikant. Mining sequential patterns. In International Conference on
Data Engineering (ICDE 1995), pages 3-14.

R. J. Bayardo. Efficiently mining long patterns from databases. In Proceeding of Special
Interest Group on Management of Data, pages 8593, Seattle, WA, June 1998.

C. Borgelt. FEfficient implementations of Apriori and Eclat. In Proceedings of the 1st
Workshop on Frequent Itemset Mining Implementations (FIMI'08), Melbourne, FL, Nov.
2003.

S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association
rules to correlations. In Proceeding of Special Interest Group on Management of Data, pages
265-276, Tucson, Arizona, May 1997.

D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: a maximal frequent itemset algorithm
for transactional databases. In Proceedings of the 17th International Conference on Data
Engineering, pages 443-452, Heidelberg, Germany, April 2001.

T. Eavis, G. Grahne, A. Rau-Chaplin, and J. Zhu. Parallel mining of frequent itemsets in
very large databases, in preparation.

B. Goethals and M. J. Zaki (Eds.). Proceedings of the First IEEE ICDM Workshop on
Frequent Itemset Mining Implementations (FIMI ’03). CEUR Workshop Proceedings, Vol
80 http://CEUR-WS.org/Vol-90.

103

[15]

[16]

(17]

[18]

[25]

[26]

27]

B. Goethals and M. J. Zaki. Advances in frequent itemset mining implementations: In-
troduction to FIMIO3. In Proceedings of the 1st Workshop on Frequent Itemset Mining
Implementations (FIMI'08), Melbourne, FL, Nov. 2003.

K. Gouda and M.J. Zaki. Efficiently mining maximal frequent itemsets. In Ist IEEE Inter-
national Conference on Data Mining (ICDM), pages 163-170, San Jose, November 2001.

G. Grahne, L. V. S. Lakshmanan, and X. Wang. Interactive mining of correlations - A
constraints perspective. ACM SIGMOD workshop on research issues in data mining and
knowledge discovery, pages 7-1, Philadelphia, 1999.

G. Grahne, L. V. S. Lakshmanan, and X. Wang. Efficient mining of constrained correlated
Sets. In International Conference on Data Engineering (ICDE 2000), pages 512-521 San
Diego, CA, 2000.

G. Grahne, L. V. S. Lakshmanan, X. Wang, and M. Xie. On dual mining: From patterns to
circumstances, and back. In International Conference on Data Engineering (ICDE 2001),
pages.195-204, April 2001.

G. Grahne and J. Zhu. High performance mining of maximal frequent itemsets. In Proceed-
ings of Workshop on High Performance Data Mining: Pervasive and Data Stream Mining,
San Francisco, CA, May 2003.

G. Grahne and J. Zhu. Efficiently using prefix-trees in mining frequent itemsets. In Pro-
ceedings of the 1st IEEE ICDM Workshop on Frequent Itemset Mining Implementations
(FIMI’03), Melbourne, FL, Nov. 2003.

G. Grahne and J. Zhu. Fast algorithms for frequent itemset mining using prefix-trees.
Submitted to IEEE Transactions on Knowledge and Data Mining.

G. Grahne and J. Zhu. Mining frequent itemsets from secondary memory. To appear in
IEEE International Conference on Data Mining (ICDM’04).

G. Grahne and J. Zhu. Discovering approximate keys in XML data. In Proceedings of the
2002 ACM CIKM International Conference on Information and Knowledge Management,
pages 453-460, McLean, VA, Nov. 2002.

E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association
rules. In 1997 ACM-SIGMOD Proc. Special Interest Group on Management of Data (ACM-
SIGMOD’97), pages 277-288.

J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. In
Proc. 1995 Int. Conf. Very Large Data Beases (VLDB’95), pages 420~431.

J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation of iceberg cubes with complex
measures Proc. 2001 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD01),
Santa Barbara, CA, May 2001.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In
Proceeding of Special Interest Group on Management of Data , pages 1-12, Dallas, TX, May
2000.

J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation:
A Frequent-Pattern tree approach. In Data Mining and Knowledge Discovery, Vol. 8, pages
53-87, 2004.

J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining Top-K frequent closed patterns without
minimum support. In Proc. 2002 Int. Conf. on Data Mining (ICDM’02), Maebashi, Japan,
Dec. 2002.

104

[31] M. Kamber, J. Han, and J.Y. Chiang. Metarule-guided mining of multi-dimensional associa-
tion rules using data cubes. In Proc. 1997 Int. Conf. Knowledge Discovery and Data Mining
(KDD 97), Newport Beach, CA, pp. 207-210.

[32] A. Javed and A. Khokhar. Frequent pattern mining on message passing multiprocessor
systems. To appear in Distributed and Parallel Databases, 16 (3): 321-334, November 2004.

[33] V.S. Lakshmanan, C. Leung, and R. Ng. The segment support map: Scalable mining of
frequent itemsets. In SIGKDD FExplorations Special Issue on Scalable Data Mining, Volume
2, Issue 2, pages 21-27. December 2000.

[34] L. V. S. Lakshmanan, R. Ng, J. Han, and A. Pang. Optimization of constrained frequent
set queries with 2-variable constraints. In 1999 ACM-SIGMOD Proc. Special Interest Group
on Management of Data (ACM-SIGMOD 99), pages 157-168, Philadelphia, PA, June 1999.

[35] G. Liu, H. Lu, J. X. Yu, W. Wei, and X. Xiao. AFOPT: An efficient implementation of
pattern growth approach. In Proceedings of the 1st Workshop on Frequent Itemset Mining
Implementations (FIMI'03), Melbourne, FL, Nov. 2003.

[36] B. Lent, A. Swami, and J. Widom. Clustering association rules. In Proc. 1997 Int. Conf.
Data Engineering (ICDE’97), pages 220-231, Birmingham, England, Apr. 1997.

[37] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association
rules. In Proc. AAAI94 Workshop Knowledge Discovery in Databases (KDD’94), pages
181192, Seattle, WA, July 1994.

[38] H. Mannila, H. Toivonen, and I. Verkamo. Discovery of frequent episodes in event sequences.
In Data Mining and Knowledge Discovery. Volume. 1, 3(1997), pages 259-289.

[39] R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning opti-
mizations of constrained associations rules. In 1998 ACM-SIGMOD Proc. Special Interest
Group on Management of Data (ACM-SIGMOD’98), pages 13-24, Seattle, WA, June 1998.

[40] S. Orlando, C. Lucchese, P. Palmerini, R. Perego, and F. Silvestri. kDCI: a multi-strategy
algorithm for mining frequent sets. In Proceedings of the 1st Workshop on Frequent Itemset
Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003.

[41] J. S. Park, M. 8. Chen, and P. S. Yu. An effective hash-based algorithm for mining association
rules. In 1995 ACM-SIGMOD Proc. Special Interest Group on Management of Data (ACM-
SIGMOD’95), pages 175-186.

[42] 8. Pathasarathy, M. J. Zaki, M. Ogihara, and W. Li. Parallel data mining for association
rules on shared-memory systems. In Knowledge and Information Systems, Volume 3, Number
1, pp 1-29, Feb 2001.

[43] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for
association rules. In JCDT799, Jan. 1999.

[44] J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining frequent closed
itemsets. In ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, pages 21-30, 2000.

[45] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-mine: Hyper-structure mining
of frequent patterns in large databases. In Proc. of IEEE Intl. Conference on Data Mining,
Pages 441-448, 2001.

[46] A. Pietracaprina and D. Zandolin. Mining frequent itemsets using patricia tries. In Pro-
ceedings of the 1st Workshop on Frequent Itemset Mining Implementations (FIMI’08), Mel-
bourne, FL, Nov. 2003.

105

[47] R. Rastogi and K. Shim. PUBLIC: A decision tree classifier that integrates building and
pruning. In Proceedings of the Very Large Database Conference (VLDB), New York, 1998.

[48] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association
rules in large databases. In Proceeding of Int. Conf. Very Large Data Bases , pages 432443,
1995.

[49] C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal
structures. In Proc. 1998 Int. Conf. Very Large Data Bases (VLDB’98), pages 594-605.

[50] R. Srikant and R. Agrawal. Mining generalized association rules. In Proc. 1995 Very Large
Data Base, pp 407-419.

[51] H. Toivonen. Sampling large databases for association rules. In Proceeding of Int. Conf.
Very Large Data Bases, pages 134~145, 1996

[52] T. Uno, T. Asai, Y. Uchida, and H. Arimura. LCM: An efficient algorithm for enumerating
frequent closed item sets. In Proceedings of the 1st Workshop on Freguent Itemset Mining
Implementations (FIMI'038), Melbourne, FL, Nov. 2003.

[53] J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the best strategies for mining
frequent closed itemsets. In Proc. 2008 ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining (KDD’08), Washington, D.C., Aug. 2003.

[54] K. Wang, L. Tang, J. Han, and J. Liu. Top down FP-Growth for association rule min-
ing. In Proc. of the 6th Pacific Area Conference on Knowledge Discovery and Data Mining
(PAKDD), 2002.

[55] D. Yellin. An algorithm for dynamic subset and intersection testing. In Theoretical Computer
Science, Vol. 129: 397-406, 1994.

[56] O.R. Zaiane, M. El-Hajj, and P. Lu, Fast parallel association rule mining without candidacy
generation, In IEEE International Conference on Data Mining (ICDM’01), pages 665~668,
Nov. 2001.

[57] M. J. Zaki. Parallel and distributed association mining: A survey. IEEE Concurrency 1999,
Vol.7, No. 4, pp 14-24.

[58] M. J. Zaki. Scalable algorithms for association mining. In IEEE Transactions on Knowledge
and Data Mining, 12(3):372-390, May-June 2000.

[59] M. J. Zaki and C. Hsiao. CHARM: An efficient algorithm for closed itemset mining. In
Proceeding of The 2nd SIAM International Conference on Data Mining, Arlington, April
2002.

[60] M. J. Zaki and Karam Gouda. Fast vertical mining using diffsets. In 9th International
Conference on Knowledge Discovery and Data Mining, Washington, DC, August 2003.

61] Q. Zou, W. W. Chuy, and B. Lu. SmartMiner: A depth first algorithm guided by tail
information for mining maximal frequent itemsets. In Proceeding of IEEE International
Conference on Data Mining (ICDM’02), Maebashi City, Japan, December, 2002.

[62] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: A new data clustering algorithm and
its applications. In Datae Mining end Knowledge Discovery. Volume 1(2): 141-182 (1997).

106

