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Abstract

Lenstra’s Factoring Method
with Elliptic Curves

Xun He

Suppose that we want to factorize an integer N. We can use Lenstra’s method,
which is based on elliptic curves over finite fields, to find the smallest non-trivial prime
factor p of N. The success of Lenstra’s algorithm depends on the probability to find
an elliptic curve over the finite field with p elements such that the number of points
on the curve doesn’t have large prime factor. One advantage of Lenstra’s algorithm
is that we can try different curves to increase the success probability. Lenstra’s
algorithm has sub-exponential running time.

In this thesis, we study Lenstra’s algorithm and an implementation due to
Brent, which has reduced the theoretical running time, under certain circumstances.
We state their success conditions, success probabilities and running times, and discuss
the relevant proofs. We also use PARI to implement this algorithm with Lenstra’s and
Brent’s methods, do some tests, and collect some data which verify the theoretical

results.
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Chapter 1

Introduction

The problem of factoring an integer N is generally changed to the problem of
finding a non-trivial prime factor p of N. The simplest method is to try to divide V
by all numbers up to v/N, but this approach is impractical since it has exponential
running time. The best algorithms known today are the Quadratic Sieve and the
Number Field Sieve, and they have sub-exponential running time. The Quadratic
Sieve has running time L(N)**°®) where L(z) = exp (/Iog zloglogz). It is believed
(but still unproved) that there exists no polynomial time algorithms on classical
computer ! | and that the sub-exponential running time algorithms are in some sense
the best possible.

We study in this thesis a factorization method due to H. Lenstra, which uses
elliptic curves. It has running time L(p)v2+°() where p is the smallest prime factor
of N. Then, this algorithm is faster where N has a “small” prime factor, a feature

which is unique to Lenstra’s algorithm.

'Tf we use quantum computer to replace classical computer, we can factorize an integer N in

polynomial running time with a certain algorithm [14].



Let = be an integer. If z has only small prime factors, then z is called a smooth
number (see Section 4.1 for a more precise definition). If G, is certain Abelian group
related to p, then the smoothness of the order of G, can be used in factorizing N.
Number theorists invented several such factoring methods.

Pollard’s “p—1” method [12] uses the multiplicative group Zy = {1,...,p— 1}.
If N has a prime factor p such that p — 1 (the order of Z;) only has small prime
factors, then N can be factorized. If there doesn’t exist such a prime factor p of N,

then Pollard’s “p — 1” method will fail.

Lenstra’s method [10], which uses E(Zj), the group of points of an elliptic curve
over Z,, is an improvement following Pollard’s idea. E(Z,) is also an Abelian group
with order N, = #E(Z,). Let p be a prime factor of N. If we can find a certain elliptic
curve such that N, has only small prime factors, then we can factorize N (under some
additional mild conditions). The success probability of Lenstra’s method is higher
than Pollard’s “p—1” method, since there are approximately 4[,/p]+1 different values
of N, for a given p, and we can try many different groups E(Z,).

Lenstra defined a pseudo-group law on E(Zy) (“Pseudo” means the addition
cannot always give an element in the set. See Section 4.2 for a detail definition).
Unlike the group law on E(Z,), the pseudo-addition with two points on E(Zy) is not
always successful. When it fails, it will give a non-trivial prime factor of N. At the
beginning, we fix a bound w and a number k£ which does not have prime factor > w.
And then we perform a TRIAL, which means a choice of a random curve E(Zy) with
a point P on E and the computation of kP (pseudo-adding P for k times). If N, does
not have prime factor larger than w, and Np|k, then the computation of kP is very
likely to fail and consequently N will be factorized. Otherwise the algorithm has to

choose another different curve E(Zy) and to do another trial.



Brent’s method [1] is a variation on the implementation of Lenstra’s algorithm.
In Lenstra’s algorithm, a trial fails when computing @) = kP is successful. However
that computation is regarded as the first phase of a TRIAL in Brent’s implementation.
If it fails, the algorithm will try to find two multiples of @, @1 = (z1,y1), Q2 = (%2, ¥2),
such that x; — z9 has a non-trivial common factor with V. That is regarded as the
second phase of a trial in Brent’s implementation. If it still fails, then we have to
go to next trial. Brent’s implementation can be faster than Lenstra’s method under

certain circumstances (see Chapter 5).

In this thesis, we study Lenstra’s algorithm and Brent’s method. Some back-
ground knowledge on elliptic curves is provided in Chapter 2. And all the theoretical
tools about factoring methods are assembled in Chapter 3. Chapter 4 is concerned
with Lenstra’s method, and Chapter 5 with Brent’s implementation of Lenstra’s
method. We state their success conditions, success probabilities and running times,
and give the relevant proofs. Finally we used PARI to implement this algorithm with
Lenstra’s and Brent’s methods, did some tests, and collected some data. The results,

which verify the theory, are in Chapter 6.



Chapter 2

Background

2.1 Important symbols
This section is just a list of all important symbols in this paper.

&, O, > If there exists C > 0 and ng > 0 such that 0 < f(n) < Cg(n) whenn > ng, -

then we say f(n) < g(n), f(n) =0(g(n)), or g(n) > f(n).
x: If f(n) < g(n) and f(n) > g(n) at the same time, then we say f(n) < g(n).

o: If lim fin) _ 0, then we say f(n) =o(g(n)).

n—oo g(n)
R: R is a ring.
P%(R): P2(R) is the projective plane over R.
K, K*: K is a field. K* is the set of units in K. K* = K — {0}.
K: K is the algebraic closure of K.
P2(K): P?(K) is the projective plane over K.
P and [X,Y, Z]: P is a point on P*(K). [X,Y, Z] are the coordinates of P in K.



E and O: E is an elliptic curve over K. If Char(K) # 2,3, then E has the form
Y2z = 23 + az2® + b2® with a,b € K, and it can be represented by an ordered pair

(a,b). O is the point at infinity on an elliptic curve.

Z,: 7y, is the field with p elements.
E(Z,) and N,: E(Z,) is the set of all rational points on an elliptic curve over Zj.
If p is a prime number > 3, then the curve can be represented by an ordered pair

(a,b) € Z2. N, denotes the number of elements in the group E(Zp).

{E:E(Zy)}: {E: E(Z,)} is the set of all elliptic curves E over Z,.

{E : E(Zy)}/~z,: {E : E(Z,)}/~z, is the set of all isomorphic classes of elliptic
curves E over Z,.

{E : N, € 8}/az,: Sis a set of integers. {E : N, € S}/~z, is the set of those
isomorphic classes with N, € S.

#{E : E(Zy)}/=z,: #{E : E(Zp)}/~z, is the weighted cardinality of the set {E :
E(Z,)}/=z, with weight (#AutE)™".

N: N is the positive integer that we want to factorize.
p and ¢: p, g are two distinct prime factors of N. p is the smallest one (We assume

that p is at least 5).

Zp: Zy is the ring of integers modulo N.
E(Zy) and Vy: E(Zy) is the set of all rational points on an elliptic curve over Zy.
The curve can be represented by an ordered pair (a,b) € Z%. Vy is a subset of

E(Zy).

E(Z,) and P,: E(Z,) is the reduced curve E(Zy) modulo p. If (a,b) represents
E(Zy), then E(Z,) is represented by (@,b) with @ = a (mod p), and b= b (mod p).



B, is the reduction of the point P modulo p. If P = [X,Y,Z], then P, = [X
(mod p), Y (mod p), Z (mod p)].
E(Z,;) and P;: Similarly, E(Z,) is the reduced curve E(Zy) modulo ¢, and F, is the

reduction of P modulo g.

2.2 Elliptic curves

Definition. Weierstrass equation.

Let K be a field. The equation
Y2Z+aXYZ+a3YZ? = X3+ a5 X*Z + as X Z* + a6 Z°

with all coefficients € K, is called a Weierstrass equation over K. If the characteristic
of K is not 2 or 3, then this equation can be changed into the canonical form (See
[15] , p.10-11)

v’z = 2® + ax2® + b2

In this article, we only discuss the situation with Char(K) # 2 or 3.

Definition. Elliptic curve.

A Weierstrass equation y?z = 1% + az2? + b2% (4a3 + 27b* # 0) over K, deter-
mines an elliptic curve E in the projective plane P?(K), which contains all the points
[X,Y, Z] where X,Y, Z is a solution of the equation. E can then be represented by
an ordered pair (a,b). Suppose that P = [X,Y, Z] where Z # 0 is a point on E, then

P can be also represented by an ordered pair (z,y) with z = X/Z and y = Y/Z.



Definition. The point at infinity.
If Z =0 then X3 = 0 and hence X =0. So O = [0, 1,0] is the only point on E

with Z = 0. We call it the point at infinity.

Definition. Rational points.
Let P = [X,Y,Z] be a point on P%(K). Let K* = K — {0}. If there exists
X € K* such that AX,\Y,\Z € K, then we say P is a rational point over K. E(K)

denotes the set of all rational points (over K) on E.

Definition. Group structure on E(K).
Let the point O be the zero, “—” be the opposite operation, and “+” be the

addition operation. We can define an Abelian group structure on E(K) as follows:

Rule. Group law on F.

1. opposite. Let P be a point on E. Its opposite “—P” is defined as:

(i) If P = O, let “—P” be the point O.

(ii) If P # O, take a line L passing through P and O. If L is the tangent line at P,
then let “~P” be the point P. If L intersects E at the third point P’, then let “~P”
be the point P’

Suppose that P = (z,y), then the formula of “—P” is —P = (z, —y).

2. addition. Let P,Q be two points on E. The addition “P + Q)" is defined as:



(i) If P=0O,let “P+ Q" be the point Q. If Q = O, let “P + " be the point P.

(i) If P # O, Q # O, take a line L passing through P and @. If L passes through
O, then let “P + @” be the point O. If L intersects E at the third point R, then let
“P+ ()7 be the point “—R”, the opposite of R.

Suppose that P = (z1,11) # O, Q = (22, %2) # O, P # —Q, P+ Q = (z3,y3), then
(x3,y3) can be calculated as follows:

23 = A% — 11 — T3, Y3 = A(T1 — T3) — y1, where

A= (y2 —y1)/(x2 — x1), when z; # zo,

A= (322 + a)/(2y,), when z; = z,.

Remark. Elliptic curves over R.

Let R be a ring. Since a non-zero element in R is not necessarily invertible, a
point [X,Y,Z] € P?(R) cannot be always changed into an ordered pair (x,y) with
z = X/Z and y = Y/Z. Hence, we cannot put such an Abelian group structure on

E(R) as what we defined on E(K) above.

Remark. Elliptic curves over finite fields.
If K is a finite field, then E(K) is a finite group. The number of curves over K

is also finite. When K = Z,, we have:

Proposition 2.1. The number of all elliptic curves E over Z, is

#{E: E(Zp)} =p"—p.



Proof. There are exactly p? pairs (a,b) € Zzz,. And the elliptic curves over Z,, are the
pairs (a,b) € Z2 with 4a® + 276% # 0. So, it is enough to prove that there are exactly

p pairs (a, b) with 4a® + 27b% = 0.

For every ¢ € Zy, let a = ;3c2 and b = 2¢3. Then 4a3 + 276> = 0. Conversely,
for every pair (a,b) € Z2 with 4a® + 276% = 0, we have:

(i) If a = 0, then b= 0. Let ¢ = 0, then a = -3¢, b = 2¢%.

(ii) If @ # 0, then b # 0, 4a® = —27b%, a = —3(—3b/(2a))?, and b = 2(—3b/(2a))3.
Let ¢ = —3b/(2a), then we also have a = —3¢?, b = 2¢3.

So a,b can be written as a = —3c?, b = 2¢® for some ¢ € Z, in all cases.

Since ¢ can take exactly p distinct values, there are exactly p pairs (a,b) with

4a3 + 27b% = 0. Hence, #{E : E(Z,)} = p* — p. a



Chapter 3

Counting elliptic curves

3.1 Isomorphism classes

Definition. Isomorphism of elliptic curves.

Let E,; and E, ,, be two elliptic curves. We use an order pair (z,y) to represent
a point on an elliptic curve. Let K* = K — {0}. If there exists a certain unit u € K*
such that o’ = u*a, b’ = u®b, and for each point (z,y) on E, the point (u’z,u%y) is a

%z, u3y) is called a K-isomorphism from F

point on E’, then the map ¢ : (z,y) — (u
to E.
If F’ is K-isomorphic to E, and E’ is the same curve as E (a’ = a, V/ = b), then

we call the map ¢ : E +— E an automorphism. The set of all K-automorphisms from

E to E is denoted by AutkE.

Remark. In the following, we will use a unit v € K* to represent a K-isomorphisms

10



mapping E,; to some curve E, ,, with o/ = u*a and b’ = u®b, since the representation
is unique. If K is finite, then the number of K-isomorphisms mapping F to a certain

curve is #K*.

Since we only discuss the situation with K = Z, (p is prime) in this chapter,

we just denote Autz, E by AutE.

Lemma 3.1. AutE can be calculated as follows:

(i) If a,b # 0, then AutE = {1, -1} and #AutE = 2.

(i) When a=0,b#0, if p=1 (mod 3), then there exists ¢ € Z, generating AutE
and #AutE = 6, else AutE = {1, -1} and #AutE = 2.

(ili) When b =10, a #0, if p=1 (mod 4), then there exists i € Z, generating AutE

and #AutE = 4, else AutE = {1,—-1} and #AwE = 2.

Proof. (i) If a,b # 0, let w € AutE. Then a = u*a, b = uh. And u* =1, u =1,

since a,b # 0. So u? = ub/ut =1, and u = £1.

(i) If a = 0, b # 0, let g be a generator of Z;. Then g?"' =1 (mod p).

If p=1 (mod 3), then g®»~1/6 will be an element of order 6 in Z;. Let g = g»~1/6,
then a = p%a = 0, b= ¢%. So o € AutE, and g, 0%, ¢, 0%, 0®, 0®(= 1) are all elements
in AutF. Hence p generates AutE and #AutF = 6.

If p =2 (mod 3), then 64 (p — 1). So there doesn’t exist an element of order 6 or 3

in Z7, and u® = 1 means u® = 1. Hence AwtE = {1, -1} and #AutE = 2.

11



(iii) If a # 0, b = 0, the proof is similar to (ii). O

-1
Proposition 3.2. For an elliptic curve E over Z,, there are P distinct curves
#AutE
over Z, which are Zy-isomorphic to E.
Proof. Let E,; be a curve Z,-isomorphic to E,, and {vi,...,vun} are all different

Z,-isomorphisms from E to E'. Then a = (v;/vi)*a, b= (v;/v1)%, fori =1...m. So

(vi/v1) € AwtE, and (v;/v1) # (vj/v1) if © # j. That means m < #AutE.

Let’s take any v € AutE, then v;u must be in {vy,...,v}. So #AutE < m. That
means #AutE = m. A distinct curve £’ which is Z,-isomorphic to E corresponds to

#AutE different Z,-isomorphisms.

Since there are #Z;, = p—1 different Z,-isomorphisms mapping E to a certain curve,

p—1
#HAutE’

the number of distinct curves over Z, which are Z,-isomorphic to E is

Definition. Isomorphism classes.
It is not difficult to see that isomorphism is an equivalence relation on the set
{E : E(Z,)}. Then, we can divide this set into isomorphism classes. The set of

Z,-elliptic curves up to Z,-isomorphism is denoted by {E : E(Z,)}/~z,.

12



Notation. The weighted cardinality.
We denote by #{E : E(Zp)}/~z, the weighted cardinality of the set {E :

E(Z,)}/=~z, with weight (#AutE)™!, ie.

#4EB: BZ)} oz, = 3 5
E

where E ranges over all elements in the set {E : E(Z,)}/~z,.

Proposition 3.3. #'{E: E(Z,)}/~z, = p-

p—1
#AutE

E. Summing that over {E : E(Zy)}/~z,, we have

Proof. By Proposition 3.2, there are distinct curves Zy-isomorphic to a curve

S A~ #{E: E(Z,)

E
So, by Proposition 2.1,
1
"NE : E(Z,)} ~z, = —
#{ ( P)}/—-Zp ;#AUtE

_#HEEZ)) _p-p_
p—1 p—1

Proposition 3.4. Suppose that p > 5. Let t = #{E : E(Z,)}/~z,, thent = 2p +6,

2p+2,2p+4, 2p, forp=1,5,7,11 (mod 12), respectively.

Proof. p can be only congruent to 1,5,7 or 11 (mod 12}, since p is an odd prime

number > 5.

13



If p=11 (mod 12), then p # 1 (mod 3), p # 1 (mod 4). By Lemma 3.1, we have

#AutE = 2, for each class in {E: E(Zp)}/«z,. So,

t 1
LI S t=9p.
5 ;#AutE p = t=2p

If p=1 (mod 12), then p = 1 (mod 3), p = 1 (mod 4). By Lemma 3.1, we have
p — 1 curves with a = 0, b # 0 and #AutE = 6. By Proposition 3.2, we know there
are Pg—l distinct curves isomorphic to a curve with #AutE = 6. Hence, there are 6
classes with #AutE = 6. Similarly, there are 4 classes with #AutFE = 4. That means

there are t — 10 classes with #AutE = 2. So,

t—10 4 6 1
—5— +Z+g_;—#AutE_p4=>t_2p+6.

By the same arguments, we can also prove ¢ = 2p + 4 when p = 7 (mod 12), and

t=2p+2 when p=5 (mod 12). 0

3.2 Kronecker class numbers

Definition. Discriminant and fundamental discriminant.
An integer A is a discriminant, if there exists an order O of an imaginary
quadratic field K such that A =Disc(0). If A =Disc(Ok) and Ok is the maximal

order of K, then A is called a fundamental discriminant.

14



Theorem 3.5. If A < 0 is a discriminant, then A = 0 or 1 (mod 4). If it is also
a fundamental discriminant, then A = 1 (mod 4) and A is square free, or A = 0

(mod 4) and A/4 is square free. (See [11] , p.32-33)

Definition. Class number.

Suppose that O is an order of an imaginary quadratic field K. Let A, B be
two ideals of . If there exists a,b € O such that a4 = bB, then we can define
an equivalence relation: A ~ B. There are only finitely many equivalence classes of
ideals under ~, and the number of equivalence classes is called the class number of

an order O.

Suppose that A is the discriminant of a certain O which is an order of an
imaginary quadratic field K. We denote the class number of O by h(A), and the
number of units in O by w(A).

Definition. Kronecker class number.

Kronecker class number H(A) is defined by

h(A/d?
o

where the summation ranges over those positive integers d where A/d? is a discrimi-
nant.

There exists f such that Ag = A/f? is a fundamental discriminant. f is called

the conductor of A. The d’s are exactly the positive divisors of f.

15



Example. Suppose that A = —36, calculate H(A).

A is the discriminant of O = Z[3i] C Q[i] = K. Then,

_ h(=36)  h(—4)
H(=36) = w(=36) " w(=4) "

Ay = —4 is the discriminant of Ok = Z[i] (fundamental discriminant).

The conductor of A is f = 3.

Definition. Legendre symbol.
Suppose that p is a prime number > 2. The Legendre symbol (g) is defined
by:
(1) If p|d, then (%) =0.
(2) If pt d, then
d

(a) (5) = 1, when d is a quadratic residue modulo p;

(b) (g) = —~1, when d is not a quadratic residue modulo p.

Definition. Jacobi symbol.

]

Suppose that n is an odd number > 1 and n = p'pg?---p& with py,...,p,

a\° d
(p—r) where (p_i)

primes. The Jacobi symbol (%) is defined by (%) = (%) L

(¢=1...r) are Legendre symbols.

Definition. Kronecker symbol.

16



Suppose that A is a discriminant and n is a positive integer. We define the
Kronecker symbol (%) by:
(1) If ged (A, n) > 1, then (2) =0.
(2) If n =1, then (£) = L.
(3) If n =2 and A is odd, then (%) is equal to Jacobi symbol (!i_l)
(4) If n is odd prime, then (2) is the Legendre symbol.

(5)Ifn = p§'ps? - - - per with py, . . ., p, prime, then ( ) is defined by (%) (A)el e (—4—> ”

P

where (p%) (¢ =1...r) are Kronecker symbols.

Theorem 3.6. Kronecker symbol is multiplicative. (E%;) = (;ﬁ—) (%) (See [3] ,

p.37-40)

The following functions are also multiplicative.
x(n): x(n) = (£) is the quadratic character associated to A.
Xo(n): xo(n) = (f) is the quadratic character associated to Ag.

xa(n): x4(n) = (A{I & ) is the quadratic character associated to A/d?.

Definition. L-series.

Suppose that A is a fixed discriminant and x is associated to A. Then the
function L(s,x) = Y .-, n *x(n) is called an L-series. Using properties of x(n), we
can show it converges for Re(s) > 1.

Suppose that n is factorized as n = p}'p5? - - - per. Since x(n) is multiplicative,

a term n~°x(n) in the L-series can be written as

n~x(n) = (p7°x(1))™ - (p3°x(P2))* -+ (07X (0r))”
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And it is also a term in the expanded sum formula of the following product

II {1 + (7*x(0) + (0~*x(®))* + - ] .

P

Formalizing this argument, we can prove:

Theorem 3.7. If s is a real number > 1, then L-series L(s, x) converges, and it has

a form of product (Euler product):

) =110 -rx®)]"

where p ranges over all prime numbers.

Lemma 3.8. L-series L(1,x) can be written as

L(LX) = L(LXO) ' H[l - l_IXO(l)] ’

us

where | ranges over the primes diving f.

Proof. Let s be a real number > 1, Then we have L(s,x) = [[,[1 —p~*x(p)] " (by
Theorem 3.7).

Suppose that ! is a prime number, f is the conductor of A, and Ay = A/f?%) then
x (1) can be calculated as

() I L1 £, then x(2) = xo(0), since (3) = (£) (&), and (£) =1;

(ii) If I| f, then x(I) = 0.

18



Hence we have

Lis,x) =1 - 1*x%®] " - [I 1 - x@®] ™

uf if

=TI -r*%m]

uf

=L(s,x0) - [J [1 = ""x0(®)]

us

Take limit s — 1 on both sides, then we finish the proof. |

The following theorem is called Dirichlet’s class number formula (See [3] , p.49).

Theorem 3.9. Suppose that A < 0 is a discriminant of a certain O which is an
order of an imaginary quadratic field K. Let h(A) be the class number of O, and

w(A) be the number of units in O, then

— = L(1,x) .

We need the above theorem to prove Lemma 3.10.

Lemma 3.10. Kronecker class number H(A) has an L-series formula as

a(8) = Y22 1(10) - 6(0),

where
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Proof. Using Dirichlet’s class number formula and Lemma 3.8, we have

) =3 (A/d2 Z‘/—

Ad) L(1, xa)

dlf dif

Lemma 3.11. Suppose that ¥(f) is defined as in previous lemma. If ged (m,n) =1,

then (mn) = Y(m)y(n).

Proof. Take a term ¢ in the expanded sum formula of ¢(mn). Suppose that

SRS

S

then there exists dj, ds such that d = dids, ged (dy,n) =1, ged (m,dy) = 1. Let

:__H [1~1x0(l andtg——Hl—l_XO(l)]

Lig 2z

then ¢; is a term in 1(m), ty is a term in ¥(n), and ¢ = t1ta.

Conversely, take a term ¢; in the expanded sum formula of (m), and a term ¢,

in the expanded sum formula of 1(n). Suppose that

£ = ;1 [101-1"%®], and t, = d%H [1— 1% ()] -

g E
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Let d = dldz, t= tltz, then

t= [1-1""%0)] ,

::1H

3
p":

and ¢ is a term in ¥(mn).

So we have ¥(mn) = ¢¥(m)(n). O

We denote by ¢(n) the Euler function, which is defined as the number of positive

integers s where s < n and ged(s, n)= 1. Then we can give a bound for ¢(f).

Lemma 3.12. 1 < 9(f) < (f/¢(f))*-
Proof. Suppose that [ is prime, then we can calculate %(I*) (k > 0) as

1

v =32 | T[ (1 -1 x00)
dji* o4
d
k-1
1 1
=0
k k-1
v !l x) 1
; T ; i
|1 11

If xo(l) = 1, then 9 (I¥) = 1.

If xo(l) = 0, then $(I%) = (I — I%)/(I — 1).

If x0(!) = —1, then ¥(*) = (I — 217% + 1) /(1 — 1).

In any case, 1 < 9(*) < (1+1)/(1-1).

From the definition of Euler ¢(n)-function, it is easy to see that ¢(I%) = I¥~1(] — 1).

Then we have

(/o)) =12/l = 1),
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1<p(IF) < (1+1)/-1) < (F/0(F))? .
According to Lemma 3.11, it is also true for any conductor f:

1<9(f) < (f/8(f))* O

To get an upper bound for H(A), we need the following two theorems. Theorem
3.13 can be found in [7] (Theorem 328), and Theorem 3.14 can be found in [13]
(Kapitel IV, Lemma 8.1).

Theorem 3.13. (f/¢(f))* = O((loglog f)?).

Theorem 3.14. L(1, x0) = O(log |Ao|).

An upper bound for H(A) is:

Proposition 3.15. There ezists a positive constant ¢y such that

B

H(A) < L(1,x0) - (f/¢(F))?* < e1- V=A-log|A| - (loglog |A])? .

27
Proof. From Lemmas 3.10, 3.12, and Theorems 3.13, 3.14, the proposition immedi-

ately follows. O

To get a lower bound for H(A), we need the following theorem which can be
found in [13] (Kapitel IV, Section 6, Satz 6.6 and the arguments following from Section
8, eq. (8.26)).

Theorem 3.16. There exists a positive constant cz such that for any integer z > 1

there exists A* < —4 with the property that

L(1,x0) > I—EL, if |Qo| < z, and Ag # A* .
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A lower bound for H(A) is:

Proposition 3.17. There exists a positive constant cg such that for each integer

z > 1 there exists A* < —4 such that

V-4 -L(1,x0) 12> /=2

H(A) >
(8) 2 27 ~ logz

i

for all A with |Ao| < z and A £ A*.

Proof. From Lemmas 3.10, 3.12, and Theorem 3.16, the proposition immediately

follows. O

3.3 Counting isomorphic classes

3.3.1 Distribution of the cardinalities N,

Theorem 3.18. (Hasse, see [15], p.91)

Let N, denote the number of points on E(Zy), thenp+1—2,/p < N, <p+1+4+2,/p.

Theorem 3.19. (Deuring, see [4])

Suppose that p > 3, p prime, t is an integer with |t| < 2,/p, and s =p+ 1 —t, then
#{E: Ny =s}/az, = H(t? — 4p),
where H(0) denotes the Kronecker class number.

Using the above theorems, we can calculate #'{E : N € S}/~z, as
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Lemma 3.20. Suppose that S is a set of integers satisfying the hypotheses of Deur-

ing’s theorem, then we have
#{E: N, € S}/az, =Y _ H(t* ~ 4p),
t
where the summation ranges over all numbers t withp+1—t € S.

Proof. 1t immediately follows from Hasse’s theorem and Deuring’s theorem. O

When § is a set of integers s with |s — (p + 1)] < 2,/p, we can calculate an
upper bound for #{E : N, € S}/~z, (Proposition 3.21).

Proposition 3.21. There exists a positive constant cy such that
#{E: Ny € §}/az, < cy-#S-/p-logp- (loglogp)*
where S is a set of integers s with |s — (p+1)| < 2,/p.
Proof. Let A = t? — 4p, then |A| < 4p. By Proposition 3.15, we have:
H(#* — 4p) < c1 - v/4p — 12 - log |t* — 4p| - (loglog [* — 4p|)?

<1+ /4p - log(4p) - (loglog(4p))* .

From Lemma 3.20, the proposition immediately follows. (|

When S is a set of integers s with |s — (p + 1)| < \/p, we can calculate a lower
bound for #{E : N, € 8}/~z, (Proposition 3.22).
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Proposition 3.22. There exists a positive constant cs such that

#{E: Ny € S}/az, > cs- (#5 —2) - VB/(08D)
where S is a set of integers s with |s — (p+ 1)| < /p.

Proof. Let A = t* — 4p, then |A| > 3p. Let z = 4p, then |Ay| < z. By Proposition

3.17, we know that there exists A* < —4 such that

H(£ - 4p) > c31/4p — £2/(log 4p) > c3/3p/(log 4p) ,

except when Ay = A*.

To make the inequality valid, we need to exclude the elements in S with Ay = A*.

Suppose that s is such an element, and t = p+1 — 5, A =2 — 4dp, Ay = A*.

Let a,a be the 2 roots of equation X2 — tX + p = 0, then they will be in the
ring of integer of Q[v/A] = Q[v/A*¥]. a,& should be irreducible since p = aa&. They
can be determined up to conjugation and sign, since A* < —4 and the only units are
{1,—1}. Hence t = o + & is determined up to sign. There are at most two integers
t with Ag = A*. And there are at least (#S — 2) elements in the set S which can
make the inequality valid.

From Lemma 3.20, the proposition immediately follows. a
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3.3.2 Divisibility of the cardinalities N,

Let | be a fixed prime. We want to estimate the number of curves such that

N, # 0 (mod [). The following two theorems are proven in [10] using modular curves.

Theorem 3.23. #{E: N, =0 (mod l)}/~z, = p/(l - 1) + O(l/p),

when | prime and p Z 1 (mod [).
Theorem 3.24. #/{E : N, =0 (mod l)}/=z, =p-1/(1* — 1) + O(l/D),

when | prime and p =1 (mod [).

Using the above theorems, we can give bounds for #'{E : N, # 0 (mod I)}/~z,
(Proposition 3.25).

Proposition 3.25. There exists a positive constant cg such that
#{E:N,#0 (mod[)}/ez, > cep .

Since #'{E : E(Zy)}/~z, = p, we can also change the above formula into the following

form: There exists a positive constant ¢ such that
#{E:N,=0 (mod l)}/az, < cgp.

Proof. We need to consider the following 3 situations:

(1) 1 < ¢74/p for a suitable positive constant cz.

If p=1 (mod !), then | > 2, and the coefficient of p is I/(I? — 1) < 2/3.
If p# 1 (mod ), then [ > 3, and the coefficient of p is 1/(l — 1) < 2/3.

When [ increases, the coefficient of p decreases. But [ is bounded. So the coeflicient
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of p should be bounded in a range. We can say, there exists a positive constant cf

such that #'{E : N, =0 (mod l)}/~z, < cgp.

(ii) p > cg and | > cy(log p)(loglog p)? for suitable positive constants cg, cg.

Let S be the set of integers s with |s — (p+ 1)] < 2,/p and s = 0 (mod I). Since
0 € 8, it contains at least one element. And the number of other elements should be
[4\/p/1]. So, the cardinality of S is 1+ [4,/p/l}. If \/p/l > O(1), then #S = O(,/p/).
If \/p/l = O(1), then #S = O(1). So, in any situation, we have #S = O(,/p/1).
Applying Proposition 3.21, we have:

#{E : N, € S}/az, < cs- #S - /p(log p)(loglog p)?

< ey O(yp/l) - /P - 1/cog < O(p) - ca/co.

That means there exists a positive constant c; such that

#{E : Ny =0 (mod [)}/~z, < cgp.

(iii) the remaining cases, p < cs or ¢c7,/p < I < co(log p)(loglog p)2.

If p is fixed, we have:

#{E : Np = p}/az, = H(1 - 4p) > 0, and

#{E : N, =p+ 1}/~g, = H(—4p) > 0, by Deuring’s formula.

So there are elliptic curves Ey, Ey over Z,, with #E4(Z,) = p, #E»(Z,) = p+1. Since
p, p+ 1 cannot be multiples of [ at the same time, we have

#{E: N, Z0 (mod I)}/=z, > 0.
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But p is bounded. So, we can see that there exists a positive constant ¢g such that

#{E : Ny #0 (mod 1)}/az, > csp. |

3.4 Counting triples (a,z,y) in Z3

Definition. Suppose that S is a set of integers. We denote by Mg the number of

triples (a,z,y) in Z3, where b = y* — 2% — az, 40 + 270* # 0, and N, € S.

Clearly, Ms is equal to the number of quadruples (a,b,z,y) € Zg where (z,y)

is a point on elliptic curve E,3(Zp) and N, € S.

p—1
#AWE
distinct curves. And each curve has #F — 1 points distinct from the point at infinity.
(p—1)H#E-1)

#AWE

For each isomorphism class E in the set {E : N, € S§}/xz,, it includes

So, one class corresponds to quadruples (a, b, z,y). Thus Mg can

be estimated as

N (-D#E-1)
Ms = zE: #AutE

> (0~ D0~ 2VP) X Z5ep

> p* #{E: N, € S}/, ,

where the sum ranges over those isomorphic classes with N, € S.

Proposition 3.26. There exists a positive constant ¢ip such that

Ms > cio - (#8 —2) - p**/(log p),

where S s a set of integers s with |s — (p+1)| < /p.
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Proof. We have Ms > p* - #'{E : N, € §}/~z,, and

#{E : N, € §}/xz, > c5- (#5 - 2) - /p/(logp)

(by Proposition 3.22). So the proposition immediately follows. a

Proposition 3.27. Let [l be a fired prime. There exists a positive constant c11 such
that

Ms > cnp?,
where S is a set of integers s with s Z 0 (mod ).

Proof. We have Ms > p* - #{E : N, € §}/«z,, and
#{E: Ny € S}/~z, > cop

(by Proposition 3.25). So the proposition immediately follows. O
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Chapter 4

Lenstra’s algorithm

4.1 A conjecture about smooth numbers

Suppose that n;(z) denotes the i*" largest prime factor of integer z. Suppose
that & > 1. The symbol U;(z,z'/*) denotes the number of integers s € [1,] such
that n;(s) < z'/®. We define

\Pi 1/a
pi(a) = lim —(m—’;—l ;

which is the probability that an integer between 1 and z has its i*" largest prime

factor < zl/e,

Definition. (w)-smooth numbers.
Let z be an integer. Fix a bound w. If x doesn’t have prime factor larger than

w, then we say z is a (w)-smooth number.
Let the function p(a) = p;(@). Let z > 0 be a real number. Then the function
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p(a) is concerned with the distribution of (z'/®)-smooth integers in the interval [1, z].

The following theorem [2] gives an estimation of p(a).

Theorem 4.1. Ife > 0 is arbitrary and 3 < a < (1 —¢)logz/loglog z, then

p(o) = exp{—a(loga + o(log a))}

as r — OQ.

Inspired from the above theorem, Lenstra has given the following conjecture in
[10].
Conjecture 4.2. Let s be a random integer in the interval (p+1—,/p,p+1+ /D).
Then the probability that s has all its prime factors < p'/® is approzimately p(a),

when p — ©0.

Suppose that L(p) = exp (\/log plog log p), and u is a positive number such

that L(p)* = p¥/*. If we use L(p)* to replace p'/® in the above formula, then we have

1 logp
o= —y)—
u\/ loglogp
a(loga + olog a)) = (1/(2u) +o(1))/log plog log » ,
pla) = L(p)™/C+e@

From the above result, we can get the following conjecture:

Conjecture 4.3. Let s be a random integer in the interval (p +1 — \/p,p + 1+
VD). Then the probability that s has all its prime factors < L(p)* is approzimately

L(p)~V@+o() " yyhen p — oo.
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4.2 Pseudo-group Vy

Definition. Pseudo-group, pseudo-add.
Suppose that G is a set and “+” is the operation on G. Let P, () are two
elements in G. If P 4 @ cannot always give an element R = P+ () in G, then we say

G is a pseudo-group and “+” is called pseudo-add.

Suppose that [X,Y, Z] is a point on E(Zy). If Z =0, then [X,Y, Z] = [0,Y,0]
cannot be always changed into [0, 1, 0], since Y is not necessarily invertible. So E(Zy)
includes more than one points with Z = 0. For the same reason, if Z # 0, then
[X,Y, Z] cannot be always changed into [z,y,1], and E(Zy) includes points with
Z #0,Z # 1. Hence we just take a subset of E(Zy) as

Vv ={lz,y,1] € E:z,y € Zn, ¥’ =2+ az + b} U {0 =[0,1,0]} .

Remark. With the above definiton, we can use an ordered pair (z,y) to represent a
point [z,y,1] in Vy, and give the following pseudo-group law on Vi, similar to the

group law on E(Zy).

Rule. Pseudo-group law on Vy.

Suppose that P,Q € Vy, R=P+ Q.

1. fP=0,then R=Q. If Q =0, then R = P.

2. If P,Q # O, then suppose that P = (z1,¥%1), @ = (z2,y2). We have the following

possibilities (1)-(5):
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(1) Compute d; = ged(zy — 22, N). If 1 < dy < N, then stop and give a non-
trivial factor of N.

(2) If dy =1, let R = (x3,y3), and (z3,ys) is calculated as

x3 = A2 — 2 — Ty, Y3 = Mx1 — T3) — y1, where X\ = (yo — y1)/(x2 — T1).

(3) If dy = N, then compute dy = ged(yr + y2, N). If 1 < dp < N, then stop
and give a non-trivial factor of N.

(4) If dy = 1, let R = (z3,y3), and (z3,ys) is calculated as

T3 = A2 — 1 — 29, Y3 = M(x1 — T3) — y1, where A = (3z% + a)/(v1 + v2)-

(5) If dy = N, let R=0.

Adding two points is not always successful. It either gives a non-trivial factor
of N, or gives a point R = P 4+ @ € V. Therefore Vy is a pseudo-group and “+” is

pseudo-add. Lenstra’s method [10] just uses the property of the pseudo-addition on

Vi to factorize V.

4.3 Basic idea

Let p be the smallest prime factor of N. Suppose that w and w' are two fixed

bounds, and k is a (w)-smooth number with the additional property
k=HPfi , with p; prime, p; <w, pf <w' =p+14+2y/p.

We randomly choose an elliptic curve E(Zy): y2z = 23+ az2?+b23(a,b € Zy), take a
random point P = (z,y) on Vu, and compute kP (add P for k times). If N, is also a
(w)-smooth number and N, |k, then the computation is likely to fail and consequently

N will be factorized (see the proposition below).
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The above action is called a TRIAL in Lenstra’s algorithm.

Notation. Suppose that point P = [X,Y, Z], then P, = [X (mod p),Y (mod p), Z
(mod p)] is called the reduction of P modulo p. And ord(P,) is the order of the point

P, in the group E(Z,).

The following proposition exhibits precise conditions under which the algorithm

will be successful.

Proposition 4.4. Let k be as before. Suppose that N,p,q,a,z,y,b, k satisfy condi-
tions (i) and (ii):

(i) Let p (p > 5) be the smallest prime factor of N. Let @ = a (mod p), and b = b
(mod p) be such that 4a° +27b* # 0 (mod p). Suppose that N, is a {w)-smooth num-
ber, and that Np|k.

(ii) Let q (@ # p) be another prime factor of N. Let & = a (mod ¢q), and b=1b
(mod q) be such that 4a% + 2762 # 0 (mod ¢). Suppose that | is the largest prime
number dividing ord(P,), which is the order of P,, and that 1 { #E(Z,).

Then computing kP is successful in finding a non-trivial divisor of N.

Proof. Suppose that e(l) is the largest integer such that 1°®|ord(Pp). Since ord(P,)|Np,
and N, |k, we have that [ < w, and 1V < /.

Put ko = ([]p*) - 1°O~1, with p; prime, p; <1 —1, pf* < w'. From the definition of
ko and k, we see that ko|k and kol|k. If kP is successfully calculated, then it is also

true for ko P and kylP.
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Now it is enough to prove that kyP and kolP cannot both be defined. And conse-

quently kP cannot be defined.

Assume that kP and kglP can both be defined. From the definition of kg, it follows

that ko # 0 (mod ord(P,)) and kol = 0 (mod ord(Fp)), and then
koP, # Oy, but kolP, = O,
We assume that kgl P exists. So
(kolP)p = Op => kolP = O = (kolP)q = Og == kol - P, = O, .

Since | t #E(Z,), we must have ko P, = O,.

We assume that ko P exists. So
(koP)q = 04 = koP = O = (koP)p = Op = koP, = O, .

However, it contradicts what we proved before. Therefore, kg P and kol P cannot both

be defined, and the calculation of kP fails. The algorithm will report success. O

4.4 Algorithm analysis

4.4.1 Success probability

Suppose that IV, p, ¢, w are defined as in previous section.
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Definition. The set S(w).
S(w) is the set of integers s where s is a (w)-smooth number, and |s — (p + 1)| <

VP If p > 5, then #S(w) > 3.

Definition. (Probability f(w).)

Let f(w) be the probability that a random integer in the interval (p+1—./p,p+

#5(w)

1+ /p) has all its prime factors < w. Then f(w) = WESE

Definition. The set Tj.
Fix s € S(w). Then Ty is the set of triples (a,§,7) € Z3 with #E, (Zp) = s,

and 4a® 4 2782 # 0, where 8 = n? — €3 — af.

Definition. The set Uy,.
Fix s € S(w) and (o, &,7) € Ts. Let lag, denote the largest prime divisor of the
order of the point [{,7,1] € E,g(Z,). Then Uy, is the set of triples (o, &', 1) € Z3

with loen t #Ew 5(Zy), and 4o® + 2762 # 0, where ' =9 — 8 — /€.

Definition. The set V eparerry-
Fix s € S(w), (,&,m) € T, and (¢/,&,1) € Usen. Then Vigparery is the set
of triples (a,z,y) € Z3; where (a (mod p),z (mod p),y (mod p)) = (a,&,7), and (a

(mod g),z (mod ¢),y (meod q)) = (¢/, &', 7).

In practice, we randomly choose a triple (a,z,y) € Z3, in every trial, and

3 — az. This gives the curve E,;(Zy) with a point P = (z,y) on

calculate b =y? — x
E. Suppose that M is the number of triples (a,z,y) € Z3, which satisfy conditions

(i) and (ii). The following proposition gives an estimation of M/N3.
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Proposition 4.5. There exists a positive constant cio such that

M cnfw)
N3~ logp

Proof. Take a triple (a,z,y) € Z3 in a certain set Vognargny. Clearly (a, z,y) satisfies

conditions (i) and (ii). Then we have:

M > Z Z Z #Vagna’f’n’ .

sES(w) (avgyn)eTS (a,vE,mI)EUaﬁn
Since each set Vyepaeny has cardinality N3/(pg)?, we have
M 1
W Zpa 2. 2. #Uan
3 < 3.3 n
N TP ) wémer,

By Proposition 3.27 and the definition of Uy, we have
#Uoen > c11¢°, and

M _ca
W2 D #T,.
s€S(w)

By Proposition 3.26 and the definition of Ty, we have
Psesa #Ls 2 co(#S(w) — 2)p%/*/log p, and

_J\£ > C10C11 ) #S(’LU) -2 > C10C11 ) #S(’LU) -2
N3~ logp /D ~ logp 2[Dl+1

Since #S(w) > 3, we have #S(w) — 2 > #S(w)/3.
Thus, the proposition immediately follows. O
From the above theorem, we know the success probability of performing one

logp
f(w)

trial is M/N3 > f(w)/logp. Hence we just let h = be the number of trials in

Lenstra’s algorithm.
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4.4.2 The optimal running time

Definition. The unit of running time.

In this section, a unit of running time is the time of performing a pseudo-
addition on Vyy. An inverse operation modulo N (T~! (mod N)) needs O(log® N) bit
operations (See [8] , p.18). Since the dominating time of a pseudo-addition on ,VN
is one or two inverse operations modulo N, a unit of running time corresponds to

O(log® N) bit operations.

Using the repeated squaring algorithm, we can compute kP in O(logk) units

of running time, and this is the dominating time of one trial. So, the total time of

Lenstra’s algorithm is O(hlog k).

Since k = [[p§*, with p; prime, p; < w, pi* < w’' =p+ 1+ 2,/p, we have

logk < wlog (p) < wlogp .

1 2
Since h = loﬂ we have hlogk <« wos P

fw) f(w)

time, we can choose a proper value of w such that w/f(w) is minimal. And we need

. If we want to get the optimal running

the conjecture in section 4.1 .

Suppose that N, p are as defined in previous section. Replacing w = L(p)* into

the formula of f(w), we have f(L(p)*) = L(p)~V/@W+°M for p — co. Then,

w L(p)u o o

If w/f(w) is minimal, then 1/(2u) 4+ u should be minimal, and

1 ' -1
<%+u) =0 = 55 +1=0 <= u=1/v2.
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Hence, the conjectural optimal choice for w and 1/f(w) are
w=L(p)/**0  and 1/f(w) = L(p)'VHD,
for p — oo. Let w = p'/*, then p(a) = L(p) Y/ @)+e@) = [(p)=1/v2+e(l), Since
h = ;,O(iwl; = L(p)V?*°W | we can use
h=1/sa)

as the parameter in our implementation.

Under the conjecture, we get the optimal running time of Lenstra’s algorithm

hlogk = O (wlogp/p(a)) = L(p)’>+W.
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Chapter 5

Brent’s implementation

5.1 A conjecture about smooth numbers

Suppose that @ > 1 and 8 € [1,a]. The symbol ¥(z,z*/* /%) denotes the
number of integers s € [1, ] such that n;(s) < 2% and ny(s) < z'/*. We define

1/a ,.0B/a
w(e, B) = lim ‘_I’_(x’xz—’x) ’

LT—+00

which is the probability that an integer between 1 and z has its first largest prime

factor < z#/®, and its second largest prime factor < zl/e,

Definition. (w,w?)-smooth numbers.
Let z be an integer. Fix a bound w. If w = 2'/* for some a > 1, then let
B € [1,a]. If the second largest prime factor of z is < w, and the first largest prime

factor of z is < wP, then z is called a (w, wP)-smooth number.
Let z > 0 be a real number. Then the function u(a, () is concerned with
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the distribution of (z!/®, z8/®)-smooth integers in the interval [1, z].

theorems, proven in [9], gives some relations between p and u.

Theorem 5.1. For 8 = a, we have

oa—1

) = ) = [ Ay

or equivalently under the change of variable t = (1 — u)a,

L p(l-ue)

U

e e) = ple) = [

o

Theorem 5.2. For 8 =2, we have

e pf(1 —wa)

u(a,2) = ple) = [

[s7

Theorem 5.3. For 1 < 3 < a, we have

U

5/'1 —ua a—1
o) = o) = [ A=)y, / LOWS

1/a

From Theorem 5.3 , we get
Corollary 5.4. Suppose that § is fized, and 1 < 3 < 2, then
(e, B)/p(a) = O(a(aloga)’™!) , when a — oo .

Proof. Using Theorem 5.3 , we have

o) = pla)+ [ Lat

a-f a—t
1 a—1
> pla) + 5 /a L p(t)dt

a—0+1

1 1 [/«
> pla) + 5 / = / oyt
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Since ap(a) = / p(t)dt, when a > 1 (see [6]), we have

a—1
a—f+1 o

g Pla—B+1)—3ple).

= (aloga)?(1 + o(1)), when 0 < 8 < a (see [6]), we have

@, B) 2 p(a) +

pla — B)
p(a)

Since

(@) = pla) + =5 (alog o) p(e) — Go(e)

and the proposition immediately follows. a

As we did in chapter 4, we will use p(a, §) to measure the probability that N,
is (p'/?, P/ “)-smooth. The following conjecture is a precise reformulation of the ideas

of Brent [1].

Conjecture 5.5. Let s be a random integer in the interval (p+1—/p,p+ 1+ /D).

Then the probability that s is a (p*/*, p®/*)-smooth integer is u(c, B), when p — oo.

5.2 Birthday Paradox

What is the probability that at least two people in a group of r people will have
the same birthday? This problem is called “Birthday Paradox”. It can be rephrased
as the probability of picking the same elements twice when choosing 7 elements in a

set of ¢ elements.

Notation. PE(r,t). Let PE(r,t) denote the probability that no element is picked

twice, when picking r elements in a set of ¢ elements.

Proposition 5.6. PE(r,t) = (1—¢t)(1—-2¢t7Y)...[1 = (r = 1)t7}].
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Proof. Suppose that A;,..., A, are the r elements and A4; # A; if ¢ # j.

For the element Aj, there are t possible choices.

Fix A;. For the element A,, there are ¢t — 1 possible choices, since Ay # Aj;.
Similarly, if we fix Ay,..., A (s < r), then there are t — s + 1 possible choices for the
element A,,;. Hence, for elements A;, ..., A,, there are t(t — 1)(t = 2)...(t —r +1)

possible choices. Then

tE—1)(t—2)...(t—r+1)
tr '

PE(r,t) =

The proposition immediately follows. |

Ezxample. If ¢ = 365, and r = 23, then the probability of at least 2 people among r

people having the same birthday is 1—-PE(23, 365) > 1/2.

Remark. PE(r,t) has an approximation e~""~1)/2¢ (See [5], p.33).

Proposition 5.7. Suppose that B = e "=D/2t_ thep

_p 3
E—~——#<<~:,withe< !

0< 6(t—r+1)2°

5.3 Basic idea

Brent’s method [1] is based on Lenstra’s algorithm, but it uses a two-phase
way to implement it. In Lenstra’s algorithm, a trial means choosing a random curve

with a point on it and computing £P. But in Brent’s implementation, a trial has two
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phases and that is the first phase. The second phase will be performed when the first
fails. If both phases fail, then the trial is declared to fail.

Definition. Equivalence.

Suppose that R, S # O are two points in Vy with R = (z1,%1) and S = (z2, y2).
Let p be a prime dividing N, R, be the reduction of R modulo p, and S, be the
reduction of S modulo p. If R, = £S5, then we say that R is p-equivalent to S,
denoted by R ~, S. If R and S are in the same equivalence class, then we can

factorize N by computing ged (N, (z1 — z3)).

Suppose that the first phase of a trial fails in Brent’s method, then we have
a point @ = kP. Suppose that @y is the reduction of ¢ modulo p, and ord(Qp)
is the order of Q. We notice that ord(Qp) =ord(Fp)/ged(k,ord(Pp)). clearly, Qp
is likely a point of smaller order than average. That means it is relatively easy to
find two equivalent points from some multiples of @, since there are ¢ = [ord(Q,)/2]
equivalence classes in the set of all multiples of Q. Thé idea of Brent’s method is just

based on this fact.

The second phase of a trial in Brent’s method is to randomly generate r mul-
tiples of Q, say 1@, ..., ¢.Q for some positive integers ¢;. If there exists two points
¢:@ and ¢;Q such that ¢;Q ~ ¢;Q (1 <i < j <r), then N can be factorized.

Using the answer of the “Birthday Paradox” problem, we have: the probability
that there exists two equivalent points ¢;Q and ¢;Q (1 < ¢ < j < r) out of r
randomly chosen points ¢;Q, ..., ¢-Q in all points with ¢ equivalence classes, is equal

to 1-PE(r,t).
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Suppose that E is the curve which we randomly choose in the first phase,
and w, k are fixed parameters. Suppose that w = p/* and 1 < 8 < a. Let

r = [(w?log2)!/?] + 1. Then the success conditions are:

Theorem 5.8. If N, is a (w, w?)-smooth number, then Brent’s implementation will

be successful with a probability higher than 1/2.

Proof. Let N, = - ](V]’\’[ 3 Since N, is (w,w”)-smooth, we have N} is (w)-smooth.
1\+V¥p

From the definition of &, we know N, |k.

Since N, { k, @ = kP can be calculated, and the first phase fails. But Np|(k-n1(N,)),
therefore n; (V) is the order of @,.
Since 2t < ord(Q,), we have 2t < ny(N,) < wP. Then e~(""D*/w’ 5 o=r(r=1)/2¢ Byt

e~=D*v" — 1/9 since r = (wflog2)/? +1. So
1/2 > e-—r(r—l)/2t.

Since e™"(""1/2 i5 an approximation of PE(r,t) and e "0""1/2 > PE(r,t), we have
1/2 > PE(r,t). Hence 1-PE(r,t), the probability of finding two equivalent points,

will be higher than 1/2. O

Let w = p/*, w? = pP/®, Using the conjecture in section 5.1 , we can assume
that the success probability of one trial is u(a, §), and the number of trials which the

algorithm needs is 1/u(a, §).
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5.4 Algorithm analysis

In section 5.1, we mentioned that we need to find two equivalent points ¢;() and
¢;Q. However, we don’t know exactly the values of ¢,j. So, Brent suggested a way

that we multiply all terms (z; — z;) (1 < ¢ < j <) together. We let D be

r—1 r
D=]] I (& — ;) (mod N).
i=1 j=i+1

Then, computing ged (N, D) can also factorize N.

The second phase can be divided into the following steps:
1. Generate r points, and get x1,...,z,.

Let the running time of stepl be wg, then wy; =O(r) units of running time.

2. Compute D.

It includes O(r?) multiplications modulo N. A multiplication modulo N (AB (mod N))
needs O(log® N) bit operations (See [8] , p.7). So, a multiplication modulo N needs
O(1/log N) units of running time. Let the running time of step2 be ws,, then

way =0(r?/log N) units of running time.

3. Compute ged (N, D).
Let the running time of step3 be wo3, then wys =O(log® N) =O(1) units of running

time.

Let the running time of the first phase be w;. Since wq; & was, Waz K Weg, We

just need to compare w; and way. From chapter 4, we know w; =0(log k) =O(w log p).
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If Wy K Wy, then
2
r*/log N < wlogp
wP < wlogplog N

(8 - 1)logw < loglogp + loglog N

<1+ loglog N +loglogp
log w
loglog N
So,whenl< <1+ %8 08 10;15% logp, we get a speedup of Brent’s method over
Lenstra’s, which is
l/lu‘(aaﬁ) =0 In o
/) ~ \(alha))
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Chapter 6

Experiments

6.1 Parameters for implementation

We choose a prime number p ~ 10'°, and another prime number ¢ ~ 10%°. Let
N = pq be the number used in our simulation. Then N ~ 10%. From chapter 4, we
have the parameter k as k = [] p;*, with p; prime, p; < w, pi* < p+1+2,/p. However
our computer cannot finish running the program in an acceptable time, since it is too

large. So we change it to
k=]1pf with p; prime, p; <w, pf' <w.

According to our experience, this change will not decrease the success probability too

much, but the algorithm runs faster.

We don’t know the exact size of p at the beginning. So we must choose a value

v to estimate p. Since w = L(p)/V2+°W) we can just let

w=exp (VioguTogIog ).
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Suppose that w = p!/®, then h = 1/p(a) = L(p)*/v2+(), So we can let
h=w

in practice.

6.2 The size of v

From previous section, we see that the parameters w, w' and h all depend on v.
This experiment is designed to verify the effect on the running efficiency of different
sizes of v. It includes the following steps 1-3:
1. Use PARI to implement Lenstra’s algorithm. (please see A.1.1)
2. Fix a certain value of v, run the algorithm for 10 times.

3. Select different v and repeat step2 again.

We set h as the maximal number of trials, and a variable ¢ with initial value 1.
If one trial fails, the value of ¢ is increased by 1. When ¢ becomes > A, the algorithm
stops and declares that the factorization has failed. Therefore, ¢ records the observed

value of the number of trials needed for successfully factorizing V.

When v has lower order than p, the algorithm will not always succeed, since k
and h are too small. Suppose that there are s times among 10 times such that the

algorithm is successful. We record s for every choice of v. The result is as follows:

v |108[2-10%|4-108 6-108> 8-10% | 10° | 3-10° | 7-10°

s/10 | 0.1 | 0.2 0.3 0.4 06 (08| 09 0.9

Let s/10 denote the success probability (under specified choice of v). From the above
result, we see that v shouldn’t be chosen too small, otherwise it may not keep the

success probability at a reasonable level.
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When v has the same or higher order than p, basically it will succeed. But ¢
has a different value in each of the 10 trials. (please see A.1.2) So we take the average

value as ¢ = (3_t)/10. The result is as follows:

v 10%0 101 10'2 1013 104 101
s 10 10 10 10 10 10
w 408 601 873 1252 1776 2493

t 74.3 51.5 31.7 31.7 271 20.5

wt | 30314.4 | 30951.5 | 27674.1 | 39688.4 | 48129.6 | 51106.5

We can use wit to estimate the observed running time. It seems to have a relatively

stable value. When v increases, the observed running time also slowly increases.

6.3 The observed speedup

Let’s review the conclusion in Chapter 5 in which we found that Brent’s method
has a speedup of p(a)/ (e, B) over Lenstra’s. Since p(a)/u(e, 8) = O (Ina/(alna)?),
this experiment is designed to compare the observed value of the speedup and In a/(aIn @)?.

It includes the following steps 1-4:

1. Use PARI to program the algorithm using Brent’s implementation. (please see
A.2.1) We set value h as the maximal times of trial, and variables t;, t; with initial
values 1.

(1.1) If one trial fails, the values of ¢4, t; are both increased by 1. When ¢, exceeds
h, the algorithm stops and declares that the factorization has failed.

(1.2) If it succeeds in the second phase of a certain trial, we still let the program

continue to run. But only the first phase will be executed in a trial after that time,
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and only the value of #; will be increased.

(1.3) If it succeeds in the first phase of a certain trial, then we just stop the program.

Clearly, t1, t5 record the observed values of the number of trials needed in Lenstra’s

algorithm (Chapter 4) and in Brent’s implementation (Chapter 5), respectively.

2. Choose parameters.

(2.1) The values of N and p used in our simulation are the same as in previous
section: N ~ 103, p ~ 1019,

(2.2) v (the estimation of p) is fixed to 100. So we take h = w = 408 (please see the

result in previous section).

(2.3) Since w = p/* = L(p)/V*MD, we can get a = O(y/2logp/loglogp). In

practice, we let a = 1/2logv/ loglog v.
3. Fix a certain value of 3, run the algorithm for 10 times.
4. Select different § and repeat step3 again.

Since t; and ¢, have different values in each of the 10 trials (please see A.2.2),
we take the average value as t; = (3. ¢1)/10 and 3 = (3 t3)/10. Then, for a fixed
value of 3, s = {3/t can be regarded as the observed value of the speedup of Brent’s
method over Lenstra’s. And we calculate d = Ina/(alna)? for every value of 8. So

we can compare s and d. The result is as follows:
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B8 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1
to | 126 | 13.9 | 198 | 236 | 23.6 | 23.6 | 27.7 | 32.8 | 35.7

ty | 743 | 743 | T43 | 743 | 743 | 743 | T43 | 743 | 743
s | 0.170 | 0.187 | 0.266 | 0.318 | 0.318 | 0.318 | 0.373 | 0.441 | 0.480

d |0.060 | 0.070 | 0.083 | 0.098 | 0.115 | 0.136 | 0.160 | 0.188 | 0.222
s/d | 2.833 | 2.671 | 3.205 | 3.245 | 2.765 | 2.338 | 2.331 | 2.346 | 2.162

The average value of s/d is 2.655. It looks approximately like a constant. Thus, we

conjecture that s and d have the same order.
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Appendix A

PARI Programs

A.1 Program 1

A.1.1 codes

These are the codes for generating n which is ~ 10%°.
p0 = 10710; pl = precprime(p0); p2 = nextprime(p0);
if (p0-pl <= p2-p0, p = pl, p = p2);

q0 = 10°20; ql = precprime(q0); g2 = nextprime(q0);
if (q0-q1 <= q2-q0, q = ql, q = q2);

n = pxq;

These are the codes for v = 10'0. If v takes a different value, the codes are simi-
lar.

v = 10"10;

w = ceil(exp(sqrt( log(v)*log(log(v))/2 ))); h = w;
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write(” c:\\recordl.txt”, " ###,");

EZn = vector(5,Vi,0);

P = vector(2,Vi,0);

Q = vector(2,Vi,0);

t=1;

while (t <= h,
a = Mod(random(n),n);
x = Mod(random(n),n);
y = Mod(random(n),n);
b = yky - XkxX*X ~ a%¥X;
EZn[4] = a; EZn[5] = b;
P[1] = x; P[2] =;

write(”c:\ \recordl.txt”, t ”,”);

PARI function "elladd” is for adding two points, and ”ellpow” is for adding a points
for a given number of times. If they can’t be done, PARI system will exit from the

program and display an error message which gives a non-trivial prime factor of n.

forprime (pi = 2, w,
e_i = floor(log(w)/log(p-i));
for (i=1, e,

Q = ellpow(EZn, P, pi); P = Q

);

t=t+1
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A.1.2 results

When v = 101°, ¢ = {71,101, 33, 66, 205, 39, 10, 58, 136, 24}. So = 74.3.
When v = 10, ¢ = {42, 29,84, 17, 33,50, 16,171, 34,39}. So f = 51.5.
When v = 1012, ¢ = {42,23,6,84,17, 33,50, 16,9, 37}. So ¥ = 31.7.
When v = 103, ¢ = {42,23,6,84, 17, 33,50, 16,9, 37}. So ¥ = 31.7.
When v = 101, ¢ = {42,23,6,1,83,4,13,33,50, 16}. So ¥ = 27.1.

When v = 10, ¢ = {6,36,23,4,2,1,83,4,13,33}. So £ = 20.5.

A.2 Program 2

A.2.1 codes

The codes for generating n which is ~ 103 are the same as in Program 1.

These are the codes for § = 1.5. If § takes a different value, the codes are simi-
lar.

v = 10710;

w = ceil(exp(sqrt( log(v)*log(log(v))/2 ))); h = w;
r = ceil(sqrt( log(2)*w"1.5 ));
write(”c:\\record2.txt”, " H#H##);

EZn = vector(5,Vi,0);

P = vector(2,Vi,0);

Q = vector(2,Vi,0);

QO = vector(2,Vi,0);

X_Q = vector(r,Vi,0);

t=1;
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flagl = 0;

while (t <= h,
a = Mod(random(n),n);
x = Mod(random(n),n);
y = Mod(random(n),n);
b = y¥y - XKX*X - axX;
EZn[4] = a; EZn[5] = b;
Pl] = x; P[2] = y;

write(” c:\\record2.txt”, t ”,”);

forprime (p4i = 2, w,
e_i = floor(log(w)/log(p-i));
for (i=1, e,

Q = ellpow(EZn, P, p.i); P =Q

For the second phase, a randomly generated array ”rc¢” of values 0 and 1 is set in

advance. In each time the program will take a value from "rc¢”. If the value is 0,

¢Gi+1Q = ¢iQ + ¢Q. If the value is 1, ;11 Q = ¢:Q + ¢:Q + Q.

if (flagl==0,
Q0 = Q; X-Q[1] = QO[1};
d=Mod(1, n);

write(”c:\ \record2.txt”, 7s*,” );
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for (i=2, T,

1 = component(Q[2] + Q[2],2);

if (ged(n,l)!=1, flagl = 1;break );

P = elladd(EZn, Q, Q);

if (rcli]==0, Q=P);

if (refi]==1,
if (P[1]==QO][1}, 1 = component(P[2] + Q0[2],2) );
if (P[1]'=Q0[1], | = component(P[1] - Q0[1],2) );
if (ged(n,])!=1, flagl = 1;break );
Q = elladd(EZn, P, Q0)

);
X Q[i] = Q[1);
for (j=1, i-1,
1 = component(X_Q[i] - X-Q[j],2);
if (ged(n,l)!=1, flagl = 1;break )
);
if (flag==1, break)
)
);
t=t+1

A.2.2 results

Even if 8 is different, the values of ¢; remain the same, since v is fixed. ¢ =

{71,101, 33, 66,205, 39, 10, 58,136,24}. So ¢; = 74.3.
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When 8 = 1.1, t, = {71,84,33,44,9, 39, 10, 38,5,24}. So f; = 35.7.
When 8 = 1.2, t, = {42,84,33,44,9,39,10,38,5,24}. So f, = 32.8.
When 8 = 1.3, t, = {42, 62, 33,44,9, 10, 10, 38,5, 24}. So £, = 27.7.
When 8 = 1.4, t, = {4,62,33,44,9,10, 10,35, 5,24}. So {5 = 23.6.
When 8 = 1.5, t, = {4, 62, 33,44,9, 10, 10, 35, 5, 24}. So &5 = 23.6.
When 8 = 1.6, t, = {4, 62, 33,44,9, 10, 10, 35, 5,24}. So {5 = 23.6.
When 8 = 1.7, t» = {4,28,33,40,9, 10, 10, 35,5, 24}. So f, = 19.8.
When 3 = 1.8, ¢, = {4,28,33,9,9,4,10,35,5,2}. So f = 13.9.
When 8 = 1.9, t, = {4,28,20,9,9,4,10,35,5,2}. So f, = 12.6.
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