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ABSTRACT

AN ADAPTIVE M-ALGORITHM
BASED CONVOLUTIONAL
DECODER

Seyed Ali Gorji Zadeh

The Viterbi algorithm is one of the most popular convolutional decoders. This algorithm
suffers from the high complexity in the decoding of the long constraint length codes. The
M-algorithm is a simplified Viterbi algorithm and it is practical for the decoding of the long
constraint length codes but it suffers from catastrophic error caused by the correct path loss
in the algorithm. In this thesis we propose two different ways of the correct path recovery

based on M-algorithm convolutional decoder.

The first method is called Ancestor Based Survivor Decision in M-algorithm
Convolutional Decoder. We propose a survivor decision not only based on the path metric
but also based on the path ancestor metric. This algorithm has been designed for the
systems with an abrupt noise. Simulation results for the Additive White Gaussian Noise
(AWGN) channel will show slightly improved error pérformance in some cases since the

AWGN does not act as abrupt noise.

For the AWGN channels we propose another method which is called Adaptive M-
algorithm Based Convolutional Decoder. In this method, we suggest using small number of
survivors for most of the decoding attempfs and we use higher number of survivors only in
case of error decoding. The Cyclic Redundancy Check (CRC) error detection code is used

to detect if the frame is an erronecous frame. Monte-Carlo simulation for the AWGN



channel shows that in most of the cases the error performance of the proposed algorithm

outperforms the Viterbi algorithm or the conventional M-algorithm error performance.
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Chapter 1

INTRODUCTION

In 1948, Shannon [1] in a landmark paper showed that, using a proper channel coding for
the information, the errors induced by a noisy channel can be reduced to any desired level
as long as the rate of the information transmission over the channel is less than the capacity
of the channel. This capacity of the channel for the Additive White Gaussian channel is

defined by the formula below.

S
C=W10g2(l+ﬁj (1.0



where W is the bandwidth of the channel in Hertz, §is the signal power and N =WN,is

the variance of the Gaussian noise of the channel.

1.1 Error Control Codes

Since Shannon’s work much effort has been performed to find encoding and
decoding algorithms which can control the error of the communication systems in noisy
environments. The coding system designed for the purpose of error control of the
information is called channel coding. In the channel encoding, redundant information is
added to the original source data, to enable the decoder to estimate the original data from
the noisy received data from the channel. A simplified model of the channel coded system

for digital communications is shown in Figure 1-1.

Transmitter Receiver
Noise
Unboded Encodad Noisy Decoded
Data Data __Data Data
Digital ™ -
oo K Channel [ N }::M\ Channel & Digital
S(?fr?es ¥ Encoder | LC J Decoder Data 8ink
it

MNeisy Channel

Figure 1-1 Simplified model of a channel coded system.

As it is seen in Figure 1-1 the digital data from the data source is sent to the channel

encoder and the encoded data are sent to the receiver through a noisy channel. In the



receiver channel decoder estimates the original sent data from the received data using the

redundant information added in the channel encoder.

1.2 Types of Channel Codes

There are two structurally different types of channel codes which are common in today’s

applications: Block Codes and Convolutional Codes.

In a block code the information sequence is divided into blocks of & information bits
or symbols. A block of & information symbols is represented by a k-tuple u= (ug, uj,..., Ux.1)
and it is called a message. For the binary symbols, the total number of different messages
will be 2*. The block encoder transforms each message u independently into an s-tuple v =
(ve, Vi, ..., vu1) Of discrete symbols which is called a codeword. Hence, corresponding to
the number of messages, there are 2° different possible codewords at the output of the
encoder. This set of the 2* n-tuple codewords is called (#, k) block code and the ratio R = k/
n is called code rate. Code rate can be interpreted as the number of information symbols
entering the encoder per each transmitted symbol from the encoder output. Since in the
block code each n-symbol output is codeword depends only on the corresponding &-symbol
input of the encoder, the encoder is memoryless and it can be implemented with a

combinational logic circuit [2].

In a binary code, both the message and the codeword are binary. In a binary code,
when &£ < n, n — k redundant bits are added to number of the message bits to form the »-
tuple codeword. These redundant bits enable the code to combat the channel noise. How to

use the redundant information to provide a reliable transmission is art of code designing.



The encoder of a convolutional code transforms information sequence u consisting of
k-symbol blocks to the encoded sequence v of n-symbols blocks. However, in the
convolutional encoder, each n-symbol encoded block, not only depends on the
corresponding k-symbol at the same time but also on K previous message blocks.
Therefore, the encoder has a memory order of K. The set of the all possible encoded
sequences forms the code. The ratio R = k£ / n is called the code rate of the convolutional
code. Since the encoder contains memory, it should be implemented by a sequential logic

circuit.

In a binary convolutional code where input and output symbols are binary, when
k <nor R <1, the redundant bits have been added to the code sequence for combating the
channel noise. In the convolutional encoders typically », k are small integers and more
redundancy is added by increasing the memory order or K while n, k£ have been holding
fixed and as a result R is fixed. How to use the memory to achieve a reliable transmission

over the noisy channel is the art of the convolutional code designer.

As mentioned above, unlike the block coding where blocks of information bits are
mapped to the blocks of code symbols, in the convolutional coding a sequence of
information bits is continuously mapped to a sequence of encoded symbols. This mapping
is very structural and it can be argued that convolutional coding can offer a larger coding
gain than block coding with the same complexity. Therefore, we will concentrate more on

the convolutional codes here.



1.3 Convolutional Code and Convolutional Decoders

One of the differences between convolutional codes and block codes is that in
convolutional codes, encoder contains memory and the block of 7 encoder outputs at any
given time unit is not only dependent on the block of & inputs of that time, but also it
depends on the K other previous input blocks. Usually a convolutional code is shown
with a triple of (», k£, K). In convolutional encoder, blocks of n-outputs generated from
blocks of k-input in a linear sequential circuit with memory with the length of K.
Typically, n, k are small integers and £ < »n , while, K is memory order of the
convolutional code and for obtaining low error probabilities it should be taken a large

number.

From the introduction of convolutional codes by Elias [3] in 1955 different decoding
schemes have been proposed for the decoding of the convolutional codes. Sequential
decoding by Wozencraft [3] and threshold decoding by Massey [5] introduced before
Viterbi decoding algorithm [6]. Viterbi algorithm that is a maximum likelihood decoding
scheme could be easily implemented for codes with small memory. Viterbi decoding
algorithm together with improved versions of sequential decoding, led to applications of
the convolutional codes in space and satellite communications in the 1970s. In the next

section we will describe the encoding mechanism of convolutional codes.

Although the Viterbi algorithm is a very popular convolutional decoding algorithm
and it is an Maximum Likelihood (ML) optimum decoder, it suffers from the high
complexity in the decoding of the long constraint length codes. On the other hand, we

know that for obtaining lower error rates in the decoding of the convolutional codes, we



need to increase the constraint length of the employed code. Therefore, we should find

simpler decoding algorithms for the decoding of the longer constraint length codes.

Due to the low complexity of the simplified Viterbi algorithms or the reduced state
trellis decoding algorithms, they are practical for the decoding of the long constraint length
codes. The M-algorithm is one of the reduced state trellis decoder, but M-algorithm suffers

from catastrophic error caused by the correct path loss in the algorithm.

In this thesis we will study the methods of the correct path recovery based on the M-

algorithm convolutional decoder.

1.4 Organization of the Thesis

Chapter 2 presents introduction to the Convolutional codes and their importance in
communication systems. Also some different representations of the convolutional
encoders like the trellis and the state diagram is brought in this chapter. Then, the
maximum likelihood decoding of the convolutional codes and the concept of the Viterbi
algorithm as a Maximum Likelihood algorithm will be addressed. Stack algorithm and M-
algorithm will also be briefly explained. In Chapter 3, the Cyclic Redundancy Check
(CRC) Codes will be briefly introduced and it will be shown how easily they can be
implemented. In Chapter 4, the procedure of decoding in the M-algorithm convolutional
decoder will be explained and also the catastrophic error caused by the correct path loss, in
the reduced state trellis decoders and the M-algorithm will be introduced. Then two
different sources of noise causing the correct path loss will be addressed and a survivor
decision scheme in the M-algorithm to avoid the correct path loss caused by the abrupt

noise will be proposed. Then the proposed algorithm is simulated for the Additive White



Gaussian Noise channel. In Chapter 5, the Adaptive M-algorithm Convolutional Decoder
will be proposed. In this algorithm the number of survivors of the M-algorithm is
increased only when an error in the decoded frame is detected. CRC error detection codes
are used for the error check of the decoded frames. Simulation results for the
communication channel with AWGN, and the convolutional codes with the different
lengths, combined with the different CRC code lengths, will show the error performance
and the complexity of the proposed algorithm. Finally, Chapter 6 will be conclusion of the

thesis.



Chapter 2

CONVOLUTIONAL CODES AND THEIR
DECODING METHODS

In a communication system when information is transmitted to the receiver side, it is
corrupted by the channel noise. This causes error in the received data. To correct these
errors, redundant bits are added to the data bits. These redundant bits should be selected in
a way that can be exploited efficiently to correct the errors. Channel coding uses this
controlled redundancy to detect and correct errors. The error control coding method is

chosen based on the system requirements and the nature of the channel.



Channel codes can be divided into linear and non-linear. A code is called linear when
the set of code vectors is a vector space; otherwise it is non-linear {6]. A code can also be
binary or non-binary. When the linear code is a block code the k bit message u is
multiplied by the generator matrix G to generate the codeword v. However in
convolutional codes the codeword can be simply generated using a finite state machine [6].
The weight of a codeword is equal to the number of its non zero elements. For example the

weight of (000 1 0 1 0) is two. The minimum distance d_;, of a code is the minimum

number of bits that must change in any codeword to produce another codeword. The
greater the minimum distance, the more powerful the code can be. The Hamming distance
(also known as the distance) between two codewords is defined to be the number of
elements that are different between them. For example, the Hamming distance between (0

100)and (111 0) is two.

Shannon proved [1] that each channel has a capacity of C, that cannot be surpassed
regardless of how good the code is. He also proved that as long as the transmitted
information rate, R, is less than the channel capacity, there exists some code that makes the
probability of error tend to zero. Recently some codes, e.g., turbo code [8] and low density
parity check (LDPC) code [14] codes have been shown to approach the capacity of several

channels, using techniques such as soft decision iterative decoding and code concatenation.

2.1 Convolutional Codes

A convolutional code is represented by three parameters of (n,k,K) where K is called

the constraint length and is defined as



K =Max m; +1 2-D

where m;is the number of shift registers (memories) in i™ input branch. The

convolutional encoder takes & input bits and outputs » bits by modulo-2 addition of the
input information bits and the contents of the shift registers. If the information sequence
appears in the output, the code is called systematic; otherwise it is called a non-
systematic code. The convolutional code can be with or without feedback. The encoder of
a convolutional code with k=2 and n=3 is shown in Figure 2-1. The encoded data is
usually divided to blocks of fixed length, before transmission. Sometimes after each
block, K -1 zero bits are appended to reset the memory. These bits are called tailing bits

[7]. If no tail biting [7] is used, the code rate is:

r=E
n

Using tail-biting slightly reduces the code rate [7].

e

Figure 2-1 The encoder of a convolutional code with K=2 and
n=3.

10



The convolutional encoder can be represented in different ways including: generator
representation, tree diagram representation, trellis diagram representation, and state
diagram representation. Since these representations will be used in the sequel, we briefly

describe each of them.

For simplicity we consider the (2,1,3) convolutional encoder of Figure 2-2. The

generator representation of a (n,k,K) code consists of a set of generator polynomials

{g;(D)},1Si<k1<j<n, where g;(D) represents the connection of i" input to j*

output. For the convolutional encoder of Figure 2-2:

g (D)=1+D+D? 2-2)

g12(D)=1+D? (2-3)

where operator D shows the delay. The generator polynomials can be represented as
binary sequences for simplicity. For example (2-2) and (2-3) can be simply shown as

g =111, g, =101. Whenk =1, g;; to g, canbe shownas g, tog, .

The tree diagram representation shows all possible encoded sequences on a tree. Let
the solid line shows input bit 0 and a dashed line show an input bitl. The tree diagram of
convolutional code of Figure 2-2 is shown in Figure 2-3. Parameter ¢ shows time unit and
the digits on each branch represent the output values corresponding to the input bit. Having
the input sequence, the output sequence can be found from the tree diagram. For example
let the input sequence to the encoder of Figure 2-2 be 1001, then from Figure 2-3 we see
that the output sequence is 11101111.

11



The convolutional encoder can be also represented using different states of shift
registers. For example in Figure 2-2 each shift register can take values 0 or 1, thus 4
different states exist. The state diagram shows the transitions from one state to the other as
well as the corresponding outputs. The state diagram of convolutional encoder of Figure
2-2 is shown in Figure 2-4. For example from Figure 2-4 we observe that an input bit of 1

leads to a transition from state 00 to 10 and the output sequence is 11.

A trellis diagram is redrawing of the state diagram, considering the effect of time.
Trellis diagram of encoder of Figure 2-2 is shown in Figure 2-5. Usually we assume that

the encoding begins from state 00 as shown in Figure 2-5.

» D

x®

_—)

Figure 2-2 Encoder of a (2,1,3) convolutional code.

12



00 S S S
1 ¢
!___11 l
60 |__0_}_...__._
1 1
: 1 ¢
0 0
| e — —_ - =
I 0 1 ’
IR S U R
g 0

|

|

|

|

|

|

1 11 [
L = =

t=10 t=1 1= 2 1=

Figure 2-4 State diagram of encoder of Figure 2-2.
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Figure 2-5 Trellis diagram related to the encoder of Figure 2-2.

2.2 Decoding of Convolutional Codes

Since each convolutionally encoded output information at time ¢ is dependant on input
information at time ¢ - m to ¢, output information symbols are dependant on each other.
Consequently, for achieving a good decoding algorithm of convolutionally encoded data
we should consider the dependency of the sequence of output. Sequence decoding is a
method that takes into account the dependency of the sequence of encoded data.
Therefore we bring forth a brief overview of different sequence detection and decoding

algorithms.

A sequence detection algorithm is an algorithm that tries to select the best sequence if

information symbols based on some criterion. Often, the criterion is maximum likelihood
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(ML) but there are some additional conditions in sequence detecting algorithm. We can

classify different families of sequence decoding into three classes.

1. Breadth-first algorithms
2. Depth-first algorithms
3. List-decoders

We will discuss these algorithms separately.

2.2.1 Breadth-first algorithms

In this algorithm, the number of operations is fixed for all information symbols and each
step of trellis advancing; a fixed number of operations is performed. This class of
algorithms contains many algorithms. Search Algorithm or SA(B,C) [8] is one of the
biggest families in this class. In SA(B,C), the total states S of a trellis is divided into C
non-overlapping sets. Out of the S/C paths in each set, B paths kept for trellis advancing
and in this decision, previous information of the path and path memory is used. Aulin
provided that this family of convolutional decoders can be Maximum Likelihood (ML)
optimum for give values of B, C [8]. As mentioned above, this family of algorithms is

very big and some special cases of this family are as below:

1- The Viterbi Algorithm: SA(1,S).

2- The Decision Feedback Algorithm: SA(1,1). Where, only the best path is kept for
each trellis advancing.

3- The M-Algorithm: SA(M,1). In this algorithm the best M < § paths at each trellis
advancing step are kept.

4- The Reduced-State Sequence Detection (RSSD) Algorithm: SA(1,C). Where all S
states are grouped in C sets and the best path for each set is kept.
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2.2.2 Depth-First algorithms

In depth-first algorithms the number of operations for each symbol decoding is
significantly depending on the channel conditions and unlike the breadth first algorithm is

not a fix number.

Depth-first algorithms also usually called Sequential Decoding Algorithms. Big
advantage of these algorithms is that their complexity unlike the breadth-first algorithms
does not increase exponentially with the constraint length of the convolutional code. Due to
this fact, application of sequential decoding algorithms for higher constraint length codes is
practically possible. Disadvantage of the depth-first algorithms is that they have time
varying complexity depending on the channel condition. Another disadvantage is that these
algorithms are not ML optimum. However, it can be shown that they can be asymptotically

ML optimum (when signal to noise ratio goes to infinity).

Depth-first algorithms are code-tree based decoding algorithms unlike the breadth-
first algorithms which are trellis based decoding algorithms. They are called depth-first
since in these algorithms; we search through the depth of tree branches to find the best
path. In our branch search if we reach to a state that does not fulfill out preset metric
criterion (its metric is not good enough), we backtrack and start branch searching to find
the best path. Consequently it is possible that we need to compare sequences of different

lengths. There are two main sequential decoding algorithms.

= Fano algorithm [9]: This algorithm essentially requires no storage memory. In this
algorithm the decoder examines a séquence from one staring node of the code-tree
to one ending node and it never jumps between the nodes.

» Stack algorithm or ZJ algorithm: This algorithm was proposed by Zigangirov [10]
and Jelinek [11] and it keeps a stack of the node sorted based on their metrics. In

each step only the top node is extended and replaced with its successors in the
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stack and again stack is sorted based on the metrics. Therefore decoder never
revisits any node, but needs more memory and also sorting increases the

complexity of the system.

2.2.3 List decoding

Indeed, list decoding is an algorithm that is similar to breadth-first algorithms from one

aspect and similar to depth-first algorithms from other aspects.

In some applications like concatenated coding or Automatic Repeat Request (ARQ)
system; not only the best path but also some other next paths might be necessary. For
example for concatenated codes, it is usually very complex to decode the joint codes at one
step. Therefore suboptimal decoding is used at the first steps and by passing the
information between the encoders, we approach the optimal sequence in some steps. In this
case, access to some possible sequences suggested by the inner decoder, usually enables the
outer decoder and the total system to provide improved error performance. In ARQ systems
usually there is a Cyclic Redundancy Check (CRC) code that checks the decoded sequence
and if any error detected, it asks for retransmission. However, if we have kept the second
most likely sequence of the decoder, we can check this sequence with CRC code. If it was
not the correct sequence, we can check up to the next B (the number of most possible
sequences kept in the decoder) sequences and continue this procedure to find the correct

decoded sequence or ask for retransmission.

Viterbi list algorithm is the most frequently used List decoding algorithm. In this
algorithm, in east step of decoding, B most likely paths are kept and the out put of the
algorithm is a list of B sequences ordered in decreasing probability. Therefore, we ca know

this algorithm one of the SA (B, S) algorithms. Different variations of Viterbi list algorithm
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exist depending on that if we like to take all the B sequences as output of decoder or just
one of them as the decoder output [12]. If we take only one output of the decoder as our

output, the algorithm is called M-algorithm that is SA (M, 1).

2.3 Maximum Likelihood Decoding of Convolutional Codes, Viterbi
Algorithm

We assume that the N bit codeword of a convolutional code, v', is transmitted over a
discrete memoryless channel (DMC) [15] and call the channel output as vector r. The
optimal decoder is a decoder that searches among all possible codewords for a vector v

that maximizes Pr(v|r). This decoding rule is called the maximum a posterior probability

(MAP) rule. From the Bays’ rule [16]:

Pr(r | v) Pr(v)

Pr(vir)= Pr(r)

(2-4)

If all codewords are equi-probable, the MAP rule can be simplified as maximizing

Pr(r|v) that is called the maximum likelihood (ML) decoding rule. Since the channel is

memoryless:

P [v) =TT Pr(s | v) 2-5)

where v; and 7; show the i ” element of v and r respectively. Now let us define a metric

M(x,v) as follows:
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M(r,v)=1logPr(r|v) (2-6)

Substituting (2-5) in (2-6) leads to:

M) =3 M(51v,) @-7)

i=1

It seems that the maximum likelihood decoder has to search among all 2V available
paths on the trellis, for the path that maximizes (2-7). But Viterbi showed that this is not
necessary [6]. He showed that the decoding complexity can be considerably reduced by
comparing the metrics in each state, rejecting the paths that has the smaller metric, and

continuing the search only for surviving paths.

Let us describe the main idea of Viterbi algorithm using an example. Assume that
city A is connected to city B with the roads as shown in Figure 2-6. The length of each road
(in kilometers) is represented in figure. We wish to find the way from A to B which has the
minimum length. Consider three different paths from A to F and their lengths as follows:
ACF 80 km, AF 100 km, and ADF 70 km. Since ACF is longer than ADF, any path from
A to B that begins with ACF is longer than a path that begins with ADF and continues the

same as the former path from F to B.
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Figure 2-6 An example of Viterbi algorithm

Thus ACF cannot survive and is rejected. AF is rejected for the same reason. The
same comparisons in nodes H, I and B leads to rejecting other paths and finding the
minimum length path as ADGIB. The rejected paths are shown by dashed lines. Notice that
if one wants to compute the distance of all 72 existing paths from A to B and then find the
minimum length path, 71 comparisons are required. But using the Viterbi algorithm only
10 comparisons (3 in F, 2 in H, 2 in I, and 3 in B) and smaller number of additions are

needed.

The above example shows the key concept behind the Viterbi algorithm for
convolutional codes. Consider the trellis diagram of the convolutional code. The Viterbi
algorithm for decoding a received vector performs as follows. In each time node # for each
state S;, compare the metrics of all paths that input this state (2 paths for binary code) by
adding the metric of previous state to the metric of current branch. Then reject all paths

except one surviving path that has the maximum metric and extend the search to the next
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time node, only for this surviving path. Define the new metric of S; as the metric of this

surviving path. If the metrics of two paths are equal, one path can be rejected randomly.

2.3.1 Hard Decision Decoding

Assume the sequence v is transmitted over a binary symmetric channel, i.e. a channel

which flips each bit with probability p<0.5 [7]. This is equivalent to transmitting v

over an arbitrary symmetric channel and then quantizing the channel output to one bit. If

the Hamming distance between v and the received vector r is shown by d

Pr(r |v) = p’(1-p)" ¢ (2-8)

Then using (2-6):

M(r,v) = Nlog(1- p)—dlog 1-p (2-9)
P

Therefore in hard decision decoding the decoded codeword is the codeword that has the
minimum Hamming distance from the received vector. This vector can be found by

running Viterbi algorithm on the corresponding trellis.
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2.3.2 Soft Decision Decoding

Now assume the codeword v is transmitted over a memoryless additive white Gaussian

noise (AWGN) channel, i.e.:

Pr(r; |v,) = s exp(-( ~v)? 120%)  (2-10)

V2za?

where o is the variance of the noise. Using (2-6), (2-7), and (2-10):

M) =—log\2n0® - Sr-v)?  (2-11)

20° ;0

Notice that ﬁ (r; —vp? 18 the Euclidean distance between r and v. Thus in this case the

i=1
decoded codeword is the codeword that has the minimum Euclidean distance from the
received vector. This vector can be found by running Viterbi algorithm on the

corresponding trellis.

2.4 Stack Algorithm

Viterbi algorithm suggests an exponential increase of computational complexity by
increasing the code constraint length. This makes it unsuitable for the codes with a
relatively large constraint length, e.g. K =15. Also Viterbi decoding is independent of the
level of noise, i.e. regardless of whether the channel noise is light or the channel is very

noisy, a fixed amount of computations are needed to find the maximum likelihood path.
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This drawback makes Viterbi decoding unsuitable for the channels with a light noise.
Considering the above mentioned drawbacks, different tree based search algorithm are
introduced to reduce the number of computations for large constraint length codes and/or
light noise channels. These algorithms are generally called sequential decoding
algorithms. Stack algorithm [10], [11], Fano algorithm [9], ... are special cases of

sequential decoding algorithms.

While in Viterbi decoding, metrics of the paths of the same length are compared with
each other, in sequential decoding the length of compared paths may be different.
Therefore the metric must be redefined to take the effect of path length in account. The
most common metric for sequential decoding is the Fano metric [7] and is defined as

follows:

Pr(x; | v;)
M7 |v;) = log—+—~— 2-12
(7; | v;) =log ) (2-12)
where R is the code rate. Using (2-7) and (2-12):
M(x|v) = logPr(r; | v,) + 3 (log ——~ R) (2-13)
i i Pr(r;)

The first term in (2-13) is the metric for the Viterbi algorithm and the second term

changes by the sequence length. For a BSC with transition probability of p:

log2p—-R r#EV; (2-14)

M [v) = {10g2(l—p)—R "
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Assume that one wishes to decode a received message of length N . Consider the tree
diagram of code up to level N . The stack algorithm work as follows. A stack of different
paths with maximum metric is kept in storage. The stack is ordered such that the path with
maximum metric is on top. For this path, the search is extended to 2* paths of the next
levels. These paths are called the successors of the top path. The top path is deleted and its
successors are inserted in the stack. The stack is rearranged and the procedure is repeated

until the top path of the stack reaches the last level of the tree. Different steps of the stack

algorithm can be shown as follows [7]:

Stack Algorithm:
» Initialization: Load the stack with the origin node of the tree with metric of zero.
» Repeat until the top path in the stack reaches a terminal node of the tree

e Compute the metric of the successors of the top path

e Delete the top path and insert its successors in the stack

e Rearrange the stack in order of decreasing metric values.

* Qutput the top path and stop.

2.5 M-Algorithm

M-algorithm [17] performs the same as Viterbi algorithm with the difference that in each

step only M states with the largest metrics are kept and the search is extended to the next
level, only for these M states. Since each states yield 2% (2 for the binary codes) states at

the next level, at most 2% x M states are available for the next level. Among these levels,
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again M levels with the maximum metrics are chosen and algorithm continues. The
complexity of the M-algorithm is a function of M. Since algorithm only keeps M states, it
is possible that all vestiges of the correct path are lost. In this case the algorithm cannot
track the correct path any more. This event is called correct path loss and it causes
catastrophic error. To obtain a good error performance of the M-algorithm the correct
path recovery schemes should be provided that is the objective of the chapters 4 and 5 of
the thesis. Since we need an error detection code in our correct path recovery algorithm
of the chapter 5, we bring forth the basic information about the Cyclic Redundancy

Check codes in the next chapter.

2.6 Summary

In this chapter we introduced the Convolutional codes and their importance in the
communication systems. Also we brought forth some different representations of the
convolutional encoders like the trellis and the state diagram. Then, we explained the
different sequence decoding methods. Later on, the maximum likelihood decoding of the
convolutional codes and the concept of the Viterbi algorithm as a Maximum Likelihood
algorithm was talked about. Also the concept of hard decision and soft decision in the
decoding was mentioned. As an alternative way of decoding, stack algorithm was briefly
explained next and as the final step M-algorithm was introduced as a reduced state Viterbi
algorithm and the correct path loss event in the M-algorithm as a catastrophic error also

was introduced.
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Chapter 3

CRC ERROR DETECTION CODES

One of the most popular methods of error detection for digital signals is the Cyclic
Redundancy Check (CRC) coding [18], [19]. We explain the basic idea behind the CRC

codes and explain how easily they can be implemented in this chapter.

3.1 CRC Codes: the Concept and the Implementation

The basic idea behind CRCs is to treat the message string as a single » bit binary word

v, and divide it by a & bit keyword s that is known to both the transmitter and the receiver.
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The remainder r constitutes the check word for the given message. The transmitter sends
both the message string and the check word, and the receiver can then check the data by
repeating the calculation, dividing v by s and verifying that the remainder is r. The novel
aspect of the CRC process is that it uses a simplified form of arithmetic, which we will
explain by an example, in order to perform the division. This method of checking for
errors is obviously not foolproof, because there are many different message strings that
give a remainder of r when divided by s. In fact, about one out of every 2 randomly
selected strings will give any specific remainder. Thus, if our message string is garbled in
transmission, there is a probability (about 27, assuming the corrupted message is
random) that the garbled version would agree with the check word. In such case the error
would be undetected. By making & large enough, this probability can become small
enough. The rest of this discussion will consist simply of refining this basic idea to

optimize its effectiveness.

When discussing CRCs it is customary to present the keyword s in the form of a
generator polynomial with coefficients equal to the corresponding bit of the binary
description of s. For example, suppose we want our CRC to use the keyword s=37. This
number in binary basis is 100101, and can be expressed as a polynomial X* + X*>+1. In
order to implement a CRC based on this polynomial, the transmitter and the receiver must
have agreed in advance that this is the keyword they intend to use. So, for the sake of
discussion, let us say we have agreed to use the generator polynomial 100101. Note that the
remainder of any word divided by a 6-bit word will contain no more than 5 bits, thus our
CRC words based on the polynomial 100101 will always fit into 5 bits. A CRC system
based on this polynomial would be called a 5-bit CRC. In general, a polynomial with £ bits
leads to a k-1 bit CRC. Now suppose one wants to send a message consisting of the string

of bits v = 00101100010101110100011. Using the agreed keyword 100101, he simply
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divides v by s to form the remainder r, which will constitute the CRC check word. A

worksheet for the entire computation is shown below:

100101 100101100010101110100011

100101
00100101
100101
0000000101110
100101
00101110
100101
00101100
100101
00100111
100101

000010 remainder = CRC

Our CRC word is simply the remainder, i.e., the result of the last 6-bit exclusive OR
operation. Of course, the leading bit of this result is always 0, so we really only need the
last five bits. This is why a 6-bit keyword leads to a 5-bit CRC. In this case, the CRC

word for this message string is 00010, so when the message word v is transmitted, the
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corresponding CRC word of 00010 is also sent along with it. When the receiver receives
the corrupted message it repeats the above calculation on v with the agreed generator
polynomial s and verifies that the resulting remainder agrees with the CRC word included

in transmission.

What has just been done is a perfectly fine CRC calculation, and many actual
implementations work exactly that way, but there is one potential drawback in this method.
As one can see, the computation described above totally ignores any number of zeros ahead
of the first non-zero (one) bit in the message. It so happens that many data strings in real
applications are likely to begin with a long series of zeros, so it is a little bothersome that
the algorithm is not working very hard in such cases. To avoid this problem, we can agree
in advance that before computing our 4-bit CRC we will always begin by exclusive OR ing
the leading m < k bits of the message string with a string of m ones. With this convention
(which of course must be agreed by the transmitter and the receiver in advance) our

previous example would be evaluated as follows

00101100010101110100011 <-- QOriginal message string
11111 <-- "Fix" the leading bits
11010100010101110100011 <-- "Fixed" message string
100101
0100000
100101
000101001

100101
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00110001
100101

0101000
100101

00110111
100101

0100101
100101

0000000100011
100101

000110 remainder = CRC

So with the "leading zero fix" convention, the 5-bit CRC word for this message string
based on the generator polynomial 100101 is 00110. People sometimes use various table-
lookup routines to speed up the divisions, but that does not alter the basic computation or
change the result. In addition, people sometimes agree to various non-standard
conventions, such as interpreting the bits in reverse order, but the essential computation is
still the same. (Of course, it is crucial for the transmitter and receiver to agree in advance

on any unusual conventions they intend to observe.)

Now that we have seen how to compute CRCs for a given key polynomial, it is
natural to wonder whether some key polynomials work better (i.e., give more robust
"checks") than others. From one point of view the answer is obviously yes, because the

larger our keyword, the less likely it is that corrupted data will be undetected. By
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appending an k-bit CRC to our message string we are increasing the total number of

possible strings by a factor of 2*, but we are not increasing the degrees of freedom, since

each message string has a unique CRC word. Therefore, we have established a situation in
which only 7 out of 2* total strings (message plus CRC) is valid. Notice that if we append
our CRC word to the message word, the result is a multiple of our generator polynomial
[19]. Therefore, of all possible combined strings, only multiples of the generator
polynomial are valid. Thus, if we assume that any corruption of our data affects our string
in a completely random way, i.e., such that the corrupted string is totally uncorrelated with
the original string, then the probability of a corrupted string being undetected is 27 . For

example a 16-bit CRC has a probability 27'° =1.5x107 of failing to detect an error in the

data, and a 32-bit CRC has a probability of 27> =2.3x107" of failing to detect an error.

Since most digital systems are designed around blocks of 8-bit words (called
"bytes"), it is most preferred to find keywords whose lengths are a multiple of 8 bits. The
two most common lengths in practice are 16-bit and 32-bit CRCs (so the corresponding
generator polynomials have 17 and 33 bits respectively). A few specific polynomials have
come into widespread use. For 16-bit CRCs one of the most popular keywords is
10001000000100001, and for 32-bit CRCs one of the most popular keywords is
100000100110000010001110110110111. The 16-bit polynomial is known as the "X25
standard", and the 32-bit polynomial is the "Ethernet standard", and both are widely used in

all sorts of applications. (Another common 16-bit key polynomial familiar to many modem
/ operators is 11000000000000101, which is the basis of the "CRC-16" protocol.) These
polynomials are certainly not unique in being suitable for CRC calculations, but it is
probably a good idea to use one of the established standards, to take advantage of all the

experience accumulated over many years of use.
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Although we agree to use the standard keywords, we may still be curious to know
how these particular polynomials were chosen. Notice that it is possible that one could use
just about any polynomial of a certain degree and achieves most of the error detection
benefits of the standard polynomials. For example, any &-bit CRC will certainly catch any
single "burst" of m<k consecutive "flipped bits" basically because a smaller polynomial
cannot be a multiple of a larger polynomial. Also, we can ensure the detection of any odd
number of erroneous bits simply by using a generator polynomial that is a multiple of the
"parity polynomial", which is X +1. A polynomial of our simplified kind is a multiple of
X +1 if and only if it has an even number of terms. It is interesting to note that the
standard 16-bit polynomials both include this parity check, but the standard 32-bit CRC
does not. It might seem that this represents a shortcoming of the 32-bit standard, but it
really does not, because the inclusion of a parity check comes at the cost of some other
desirable characteristics. In particular, much emphasis has been placed on the detection of
two separated single-bit errors, and the standard CRC polynomials were basically chosen to

be as robust as possible in detecting such double-errors. The basic error word e
representing two erroneous bits separated by j bits is of the form X/ +1 or equivalently,
X/ —1. Also, an error e superimposed on the message v will be undetectable if and only if
e is a multiple of the key polynomial s. Therefore, if we choose a key that is not a divisor
of any polynomial of the form X’ +1 for j=1,2,...,m, then we are assured of detecting any
occurrence of precisely two erroneous bits that occur within m places of each other. For this
purpose we can use a primitive polynomial [7]. For example, suppose that we want to

ensure detection of two bits within 31 places of each other. Let us factor the error

polynomial X' +1 into its irreducible components [7]

X7 +1 = (X+1)
X7+ X +XP+X + 1)
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XX XX+ )

HXTH X+ X7+ X+ 1)

HXP+ X+ 1)

HXTH XXX )

X7+ X7+ 1)

Aside from the parity factor X+, these are all primitive polynomials, representing

primitive roots of X + I, so they cannot be divisors of any polynomial of the form X’ + I
for any j less than 31. Notice that X >+ X *+]1 is the generator polynomial 100101 for the 5-

bit CRC in our first example.

Another way of looking at CRC codes is via recurrence formulas. For example, the
polynomial X >+ X ?+1 corresponds to the recurrence relation s[n] = (s[n-2] + s[n-5])

modulo 2. Beginning with the initial values 00001 this recurrence yields

| --> cycle repeats
0000100101100111110001101110101 00001
Notice that the sequence repeats with a period of 31, which is another consequence of
the fact that X *+ X ?+1 is primitive. It can also be observed that the sets of five consecutive
bits run through all the numbers from 1 to 31 before repeating. In contrast, the polynomial
X3+ X2+1 corresponds to the recurrence s[n] = (s[n-4}+ s[n-5]) modulo 2, and gives the

sequence

|--> cycle repeats
000010001100101011111 00001

Notice that this recurrence has a period of 21, which implies that the polynomial X -+

X +1 dividesX*+1. On the other hand, X °+ X+I can be factored as
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(X*+ X +1)(X*+X*+1), and both of these factors dividle X*'+1. Therefore, the

polynomial X°+ X +1 gives a less robust CRC than X° + X +1 from the standpoint of
maximizing the distance by which two erroneous bits must be separated in order to go

undetected. On the other hand, there are error patterns that would be detected by

X’ + X +1 but would not be detected by X° + X% +1.

As noted previously, any &-bit CRC increases the space of all strings by a factor of
2%, s0 a completely arbitrary error pattern really is not less likely to be detected by a poor
polynomial than by a good one. The distinction between good and bad generators is based
on the premise that the most likely error patterns in real life are not entirely random, but are
most likely to consist of a very small number of bits (e.g., one or two) very close together.
To protect against this kind of corruption, we need a generator that maximizes the number
of bits that must be "flipped"” to reach from one formally valid string to another. We can
certainly cover all 1-bit errors, and with a suitable choice of generators we can effectively
cover virtually all 2-bit errors. Whether this particular failure mode deserves the attention it
has received is debatable. If our typical data corruption event flips dozens of bits, then the

fact that we can cover all 2-bit errors seems less important.

3.2 Summary

In this chapter we briefly introduced the Cyclic Redundancy Check (CRC) Codes. We
explained the characteristics of the CRC codes and introduced some common CRC codes
in the currently used communication systems. It is also was shown that how easy the

CRC codes can be implemented just using some XOR operations.
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Chapter 4

ANCESTOR BASED SURVIVOR DECISION IN
THE M-ALGORITHM CONVOLUTIONAL
DECODER

As mentioned in last chapters, Viterbi algorithm is one of the most widely used algorithms
for decoding of the convolutional codes. In this algorithm all the possible paths in the trellis
are examined and the most likely path is determined as the sent code sequence. Since the
number of possible paths increases exponentially with the constraint length K of the
convolutional code, this algorithm is not a practical algorithm for long constraint length

codes.
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4.1 M-algorithm Decoding Procedure

The procedure of decoding in M-algorithm decoder has been depicted in Figure 4-2. Using

the simple example of Figure 4-2, we will show how the M-algorithm is performed.

We consider the convolutional code with constraint length K=2 and generator

sequences as g/=7 (111) and g2=5 (101). Figure 4.2 shows the encoder of this code.

Convolutional code

Rate : R=%2 C
Constraint length=2 n1
g1=7 (111) >
g2=5 (101)
NARY
r@\
A
n X n-1 X n-2
» D >
NARY
\? Cr2

Figure 4-1 Encoder of Convolutional Code Rate 1/2 and

Constranint length = 2.

Y

As Figure 4-2 shows, the procedure of decoding in M-algorithm can be divided in the

following steps.
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Start from Node C

Extend each node

Keep only the best
incoming path to each
node and truncate other
paths (Viterbi effect
implementation)

f the number of nodes is
reater than or equal to

Yes
Keep only the best Order nodes based on
incoming path to each their path
node and truncate other metric(Euclidian
paths (Viterbi effect distance for soft
implementation) decision)

Extend only M nodes
with the best path
metric and discard

other nodes

No

f the sequence length is
equal to path memory

Decide on the first
symbol of the best
path as the sent
symbol

Figure 4-2 M-algorithm decoding procedure.
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S00

S10

01

S11

» Showing the discarded incoming path to each node based on the Viterbi algorithm concept.

——— Showing the kept incoming path to each node based on the Viterbi algorithm concept.

Figure 4-3 In Viterbi algorithm only one best incoming path to

each node is kept.

Start from the first node: The algorithm starts with one single node and
the number of nodes is increased while going to the next depth of
decoding (each step of trellis advancing is corresponding to one more
depth of the algorithm). Step » = 0 in Figure 4-3 shows the starting

point from one single node.

Extend each node: The existing nodes are extended in each step of
trellis advancing. If the code is binary, each node is extended to two

nodes. Figure 4-3 shows an extension of each node.
Keep only one incoming path to each node: Based on the concept

behind the Viterbi algorithm, we know if we keep only one incoming

path to each node of the ftrellis; still we will have a Maximum
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Likelihood optimum algorithm. In Figure 4-3 the dotted lines are the

branches of those paths which should be discarded in this stage.

Repeat step 2, 3 until we have at least M nodes: Before we have M
nodes or paths, we can extend all nodes without any limitation. In
Figure 4-4 we see that until depth n=1 we don’t need to discard any

node or path until this step, the existing paths are not higher than M=2.

Order all nodes and paths (each node has just one incoming path):
Nodes are ordered based on the whole sequence, Euclidian (Soft
decision) or Hamming (Hard decision) distance of their paths from the
received sequence. This step provides us with the necessary

measurement for node and path survivor decision in the next steps.

If the decoder path memory is full, decide on the first symbol of the
best path as the received symbol: Like Viterbi algorithm, here we have
a maximum path memory L which is usually at least 5 times as long as
the constraint length of the code. We store the received sequence as
well as the survived paths of length L. If the path memory is full, and
we want to add one more symbol to the sequence, we have to remove
one of the oldest symbols from the memory. This oldest symbol is our
decided symbol for this step of trellis decoding. For example, if our
path memory length is L=10, at time »=10 we should decide the first
received symbol and at the time #»=11 we will decide for the second

symbol and so on for the next symbols. In this example we have M=2
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and L=10 at time »=10 there are two survived paths. We take the fist
symbol of the path with the better distance metric as the decoded

symbol.

Code Constraint Length : K=2
M-algorithm: M=2

S00

$10

S11

————— »  Showing the discarded paths based on the Viterbi algorithm concept

———  Showing the discarded paths in M-algorithm based on their path metric

—} Showing the survived paths in the M-algorithm

Figure 4-4 M-algorithm convolutional decoder does not keep all
the paths in each step of trellis advancing

7- Extend only M nodes with the best path metric and discard other nodes:
Since in the M-algorithm only M nodes can survive in each step, we
select the most likely M paths from the existing paths and extend their
corresponding nodes. Given that our nodes are already ordered, we can

select the first (best) M nodes and discard other nodes. In Figure 4-5 it
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is seen that only 2 nodes survive in each step and other nodes are

discarded in this example. .

Survived Nodes and Paths

n=0 n=1 n=2 n= n=4 n=5 n=g n=7
S00 300N 00N [ 3y
P @ >0 o O P00
/

§10

S01

st (1) an (11

Discarded Nodes and Paths /

————— »  Showing the discarded paths based on the Viterbi algorithm concept
————  Showing the discarded paths in M-algorithm based on their path metric

ey Showing the survived paths in the M-algorithm

Figure 4-5 In the M-algorithm the nodes with the worst metrics
arc discarded.

8- Keep only the best incoming path and (Viterbi effect implementation):
This step is like step 3 and is performed in every trellis advancing.
9- Go back to step S5, and continue the procedure from step 5 for every

step of decoding.
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4.2 The Error Performance of the M-algorithm

Unlike the Viterbi algorithm, the application of the M-algorithm convolutional decoders for
higher constraint length codes is practical since the decoding complexity does not depend
on the code constraint length. In the M-algorithm, M numbers of the paths in each step of
the trellis advancing survive. M or the number of survivors of the M-algorithm does on one
hand have a direct effect on the probability of error in the system and on the other hand it
determines the complexity of the decoder. If M increases the algorithm will be more like
Viterbi algorithm and it can have a better performance with a maximum likelihood
algorithms. Meanwhile, increasing M will increase the number of checked nodes for each
symbol decoding and then the complexity of the system will be increased. Consequently a
trade off between the complexity of the system, and the error performance of the system

will decide the value of M.

4.2.1 Correct Path Loss in M-algorithm

Since in the M-algorithm we don’t keep all possible paths in each step of trellis advancing;
it is possible that the correct path does not have a good metric in one step and it is discarded

in that step. In this case correct path loss happens.

If the correct path loss happens; as long as the correct path has not been recovered,
the decoder is in error decoding state and its decoded stream is in erroneous state. This
event dramatically increases the bit error probability of the system, if the correct path is not

recovered shortly.
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The probability of the correct path recovery for convolutional codes decreases while

d Sree

or constraint length of the code increases. It is due to this fact that the ratio of the
number of survivors to the total number of possible paths is less in this case and therefore,
the probability that the correct path is again located in the group of survived paths is lower.
Then again, we know that the codes with higher constraint length have better error
performance. Considering the previously mentioned facts, a good coding system uses long

constraint length codes while simultaneously being equipped with the techniques of correct

path recovery and prevention.

4.2.2 Correct Path Recovery Methods

As previously mentioned, correct path loss has a dramatic effect on the bit error probability
of the M-algorithm convolutional decoder. It is preferable to ensure correct path loss is

prevented. If correct path loss prevention was not possible, that it is recovered quickly..

The error event and the error propagation due to correct path loss can be controlled
by organizing the data in frames and blocks of data with known starting or tail states and
bit structure by using special recovery techniques [20]. However, in these techniques
having the starting state know itself is an extra complication and although these algorithms
might achieve a better error event probability, their bit error probability without a very

good recovery scheme is still poor.

Another recovery method is the so called Adaptive Viterbi Algorithm or AVA which
was proposed by F. Chan and David Haccoun [21]. This algorithm can recover the correct
path after a few trellis levels. However, in this algorithm for obtaining an error performance

like the Viterbi algorithm the value of M is increased to half of the total number of paths in
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the Viterbi algorithm which is a high value and makes the decoding procedure very

complex.

The simple method of data framing is a very common method for correct path
recovery. When the data framing technique is used, data bits are sent fame by frame. In this
case if the correct path loss happens, the stream of errors will not go beyond the end of
each frame and the error event finishes at the end of the frame. Although data framing is
very useful in many applications, in many other applications it is not sufficient. It is clear
that even if data framing is used, still each error event results in many erroneous bits mostly
to the end of the frame. This event degrades the overall bit error probability of the
communication system. Therefore, the probability of an error event should be kept as low

as possible.

In the M-algorithm, the number of survivors is increased to keep the error event
probability as low as possible. However, increasing the number of survivors leads to higher
complexity of the system and should be avoided if it is possible. Therefore, algorithms
which avoid correct path loss or recover the lost path without increasing the complexity of

the system are desirable.

4.3 Sources of the Correct Path Loss

For avoiding correct path loss, we should know what causes it. Here we explain two
different causes of the correct path loss. Then we will be able to design correct path loss

avoidance schemes for different sources of correct path loss.
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In M-algorithm, that is a trellis based convolutional decoder, in every step of trellis
advancing only M paths survive and all other paths are discarded. In the conventional M-
algorithm, Hamming (hard decision) or Euclidian distance (soft decision) of each path from
the received sequence of data is used to determine which path should survive and which

one should be discarded.

If we assume that the correct path is lost at the step # of the trellis, it means that at
step n-1 and other steps before it, the correct path has been among the survivor paths and if
we had kept all the successors of the correct path in the trellis, we would have not lost it.
Here we consider the possible reasons of discarding the correct path in going from step »-/

to n.

In the M-algorithm, the M paths with better distance metric are kept and the others
are discarded. Therefore correct path loss at step » means that the correct path metric from
step n-1 to n has been affected by such deterioration that it has left the group of survivor

paths. There can be two types of system noise that cause this event.

4.3.1 Abrupt Noise

The first type of noise that can cause correct path loss is abrupt noise. This kind of noise is
induced to the system in short period. However, in that short period it has high values and
consequently causes severe impact on the system. If such a noise happens, even if the
correct path has an excellent metric in step #-1, it might become severely affected by this
noise and in step n, it has such a deteriorated metric that even it is not among the M best

surviving paths.
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Different short term interferences in the communications like the noise in fading

channels or shot noise can be of examples of this kind of noise.

4.3.2 Accumulated Noise

The second type of noise that might cause correct path loss is accumulated noise. This
noise can deteriorate the correct path metric gradually. The accumulated effect of noise can
be so high that in the n™ step, correct path metric can be worse than at least M other
survivor paths and it is discarded. In this case, the correct path has been vulnerable to be
lost from steps before step » and it can be lost in step » even with a rather low value noise

induced in the transition from step n-1 to ».

4.4 Ancestor Based Survivor Decision in M-algorithm Convolutional

Decoders

Here we propose a scheme for correct path recovery in the case of abrupt noise. We call

this scheme “Ancestor Based Survivor Decision in M-algorithm Convolutional Decoders”.

Before explaining the proposed scheme, we will use an example to briefly show how

abruptly induces noise causes correct path loss.

Figure 4-6 shows an example of an ordered graph based on the path metrics. The
paths and the nodes with better metrics have been located in the upper part of the graph.
The M-algorithm decoder used here has a number of survivor of M = 4. In this example, an

abrupt noise affects the sequence of data between time n-/ and n. Affected by that, the
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order of the correct path metric at time 7 turns to the 6™ metric from the fist one at time »-1.
In this example the survivor decision is made only on the basis of the current-metric of
each path. Since M=4, only 4 paths with the best metric survive in each step and
consequently the correct path that has the 6™ place at time » will be discarded leading to the

correct path loss event.

Abruptly Induced
Noise
Correct Path

. - l n n+1 n+2
1% best metric state (1) M ON O )
% 2" best metric state @“9\“ ’ "‘ 2
i:':, 3" pest metric state ~ (B==\ . ©). 0\ I ©)
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Correct Path Loss Event

Figure 4-6 Correct path loss event in the M-algorithm in the
presence of abrupt noise.

Our proposed scheme of survivor decision tries to reduce the correct path loss caused

by this abrupt noise.

Let’s consider the example of Figure 4-6 and assume that the correct path has had the
best path metric at step n-1. Also, we know that the correct path in step » should also be a
successor of the correct path in step #-1. Now if in step »n, we keep all successors of the best

metric path of the step »-1, surely we have kept the correct path regardless of the abrupt
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noise between steps n-1 and . In this case, abrupt noise has not been able to affect our
system. We take advantage of this fact, and proposed our survivor decision scheme based

on it.

We explain the proposed scheme by an example. Figure 4-7 shows an example like
example of Figure 4-6. In this example two groups of paths survive in each step. Not only a
group of paths with the best metric survive, but also another group of paths which does not
have very good metrics but have fathers with very good path metrics survive. This group of
survivors has been selected as survivor to avoid the correct path loss caused by abrupt
noise. Hence, we can say that in this algorithm the total number of survivors is divided into
two groups. The first group includes the nodes with good ancestor metrics and the
remaining number of the survivors out of the total M number is selected from the paths

with the currently best metrics.

In this example, as it is shown in Figure 4-7, correct path in step » is not discarded
and it will recover its good metric order and correct path loss that would happen in the

conventional M-algorithm that is not happening now.
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Figure 4-7 Correct path loss event in the Ancestor Based
Survivor Decision M-algorithm in the presence of abrupt noise

In this example, we made two assumptions that should be taken into account for

generalization of the algorithm.

The first assumption is that the correct path is the first rank metric or the best metric
in step n-1. This does not always happen in real systems. Therefore, if we keep not only all
the successors of the best path in step n-1, but also keep all successors of the next order
paths in step n-1, the correct path will survive in step # if it is a successor of the next order
nodes in step #-1. However, we should keep in mind that the number of survivors is limited
and we cannot allocate all spaces to the ancestor-best paths (the survivor paths which their

ancestors have been the best in their own time).
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Another assumption in our example is that that the effect of abrupt noise will be
diminished after one step and the correct path metric can recover its metric in one step and
join back the group of high rank paths. Again, this is not always the case. In this case, if
we keep all successors of the further ancestors like grand father or higher level ancestors,
we can give enough time to the abrupt noise affected correct path to recover its position
among the high rank paths. No need to re-mention that still we should consider the

limitation of the number of survivors in this case.

To briefly summarize this algorithm we can say that in this algorithm, two different
categories of paths survive. One group is the group of paths with the best ancestor metrics
and the other group is the group of the best metric paths. The higher number of ancestor-
best metric group members helps to avoid correct path loss due to the abrupt noise and
higher number of the best-metric paths helps to keep far the system from the path loss
caused by the accumulated noise. However, jointly increasing these numbers increases the
complexity of the system and a trade-off between these two numbers and also the

complexity of the system is needed.

In the next section we will show an implementing procedure of this algorithm and

explain the complexity of the proposed algor.ithm.

4.4.1 Implementing Procedure of the Ancestor Based Survivor Decision M-

algorithm

Before starting the algorithm we should indicate the following numbers:

1- M: The total number of survivor paths in M-algorithm.
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2- P: The number of the ancestor based survivor paths.

3- L: The generation level of the ancestor from the current step in which all of its

successors should be kept at the current step.

For every survivor decision, we keep M paths. Out of this M numbers P paths are
selected based on their L” generation ancestor metric and M-P other paths selected from
the paths with currently best metrics. Therefore, in each step of the trellis advancing we
need to know two parameters. The first one is the path metric of each node and second is

the order of its L” generation ancestor.

If we store the metric rank of the nodes in each step and keep it for L other steps, we
can use it when it is necessary, in the time that survivor decision for its L* successor is
performed. Therefore we can say that this algorithm can be implemented like the
conventional M-algorithm but in this algorithm we need a storage memory for each node to
store the rank of the 1 to L” generation ancestors of the node. Calculation of the rank is
performed in the conventional M-algorithm also, and only it should be stored for the
proposed algorithm. Hence, there is no need to process more than the conventional M-
algorithm since in the conventional M-algorithm for every survivor decision, nodes are
ordered and we can store the rank of every node and use it while deciding the survivors of
its L” generation successors. Therefore, we can say that the proposed algorithm needs only

more memory to be implemented.

The amount of memory is dependent on the effective level L of the ancestors on the
survivor decision. In the next section we will illustrate the simulation result of some special

cases and explain how the proposed algorithm can be implemented.
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4.4.2 Simulation and Numerical Results

We consider M-algorithm convolutional decoder in the presence of Additive White
Gaussian Noise or AWGN. As previously explained the proposed algorithm is expected to
offer better performance in the presence of abrupt noise and the performance of the
algorithm in the presence of this kind of noise can be studied in future works on the

algorithm.

Monte Carlo simulation is performed to check the error performance of the system.

Different combinations of the following parameters are possible.

¢ M: Survivor number of M-algorithm.

K: Constraint length of the convolutional code.
® R: Code rate of the convolutional code.

F: Number of bits in each frame.

P: Number of survivor nodes based on their ancestors metric.

e L: Shows that the L” ancestor metric should be taken into account for ancestor-
best metric survivor decision.

In our simulation we use the following parameters.

e M=64: Meaning we keep 64 paths in each step of trellis advancing.

e KI=9 K2=15: Two convolutional codes of the rate of R=1/2 and the constraint
lengths of K1=9, K2=15 from codes with maximum free distance introduced in

[22] are employed.

KI1=9, dg..~12, Encoder Polynomials = [561,753].
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K2=15, dj.. =18, Encoder Polynomials = [63057, 44735].
e [=512: Frame length of F'= 512 bits is selected for all of our simulations.

o PJ=0, P2=2, P3=8, P4=16 are the different number of ancestor-best survivor

paths that we examine in our simulations.

o [I1=0,L2=1 are the values we select for simulation. L = 0 means that we use
the conventional M-algorithm without considering ancestor metrics and L = 1
meaning that the only ancestor considered for survivor decision is the ancestor

level 1, that is the father node.

For Survivor decision in each step of the trellis advancing the following procedure is

followed:

1- P paths with the best L” generation ancestor metric are flagged as the survivor paths.

2- All paths are ordered based on their path metric and their rank is stored, to be used

by their successors.

3- M-P other paths which have the best metric among the current paths are also flagged

as survivor by flagging from the start of the ordered paths.
4- The flagged paths are extended to the next step.

Bit Error Probability and Frame Error Probability for the aforementioned values of L,

P and K are shown respectively in Figure 4-8 and Figure 4-9.
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In both Figure 4-8 and Figure 4-9 we see that there are some cases where the error

performance in the proposed algorithm, is slightly better than the conventional M-

algorithm scheme. For example, both Bit error performance and Frame error performance

of the system at E,/Ny= 3.5dB for the case of P=16, L=1 is slightly better than other cases.
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If we observe Figure 4-8 we see that the code with K=9 offers better error

performance than the code of K=15. It is due to this fact that error event in longer constraint
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length codes is longer because they have higher minimum distance and correct path
recovery takes more time for them. Nevertheless, if we consider Figure 4-9, we will see
that the code with =15 has better Frame error performance than the code with K=9. It is

because the longer code has a better minimum distance.

However, it is clearly shown that all the error performances of different P, L are very
close to each other. It can be due to this fact that AWGN does not have effect of abrupt
noise. Therefore, if we want to have a good error performance for the AWGN channel, we

need to look for other ways of correct path loss recovery.

In the next chapter we introduce another reduced complexity trellis based
convolutional decoder that uses the M-algorithm iteratively and changes the number of

survivor adaptively based on the coding system error.
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4.5 Summary

In this chapter, we explained the procedure of decoding in the M-algorithm
convolutional decoder and also introduced the catastrophic error caused by the correct path
loss, in the reduced state trellis decoders and the M-algorithm. Then we introduced abruptly
induced and accumulated noise and their different effects as the sources of correct path
loss. To avoid the correct path loss caused by the abrupt noise, we proposed an algorithm
for survivor decision in the M-algorithm. Simulation results illustrated the proposed
algorithm has slightly better performance in some cases, than the conventional M-
algorithm in the presence of AWGN. However, since the algorithm has been designed for
the systems with the abrupt noise, we didn’t see a high increase in the error performance
for AWGN channel. Therefore, we will introduce another reduced state trellis decoding

algorithm that can have better performance in the presence of AWGN in the next chapter.

57



Chapter 5

ADAPTIVE M-ALGORITHM CONVOLUTIONAL
DECODER

In the previous chapter, we noticed that although M-algorithm can be employed in the
decoding of long constraint length convolutional codes with a low complexity, it also can
lead to a poor bit error performance if the correct path loss happens. Thus, we can say that
instead of decreasing the probability of error, the high minimum distance of the long

constraint length codes, increases error sequence length and as a result, the bit error rate of

the system.
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Therefore, if we want to use M-algorithm, we should prevent correct path loss or
provide algorithms of correct path recovery. Increasing the number of survivors or M in the

M-algorithm can decrease the probability of the correct path loss.

In the currently used M-algorithm for decoding the convolutional codes, the number
of survivors is fixed for the whole process of decoding. Even if data framing is used to
decrease the length of the error event caused by the correct path loss, a fixed number of
survivors is used for the M-algorithm for all frames. In this scheme, if we increase the
number of survivors to reduce the probability of correct path loss, we have increased the

complexity of the system for all the frames.

On the other hand we know that in most of the applications, even with a low value of
M, the probability of correct pass loss is very small. This characteristic of the system can be
employed to reduce its complexity. Hence, if we can provide a scheme that keeps small
number of survivors in most of the cases, and in the case of correct path event it uses a
higher number of survivors, we can tremendously decrease the complexity of the decoding

system.

Based on this idea we propose Adaptive M-algorithm Convolutional Decoder.

5.1 Adaptive M-algorithm Convolutional Decoder

In the conventional M-algorithm, each frame is decoded once with a fixed value of M. Due
to the fact that increasing the value of M decreases the probability of correct path loss, M is
taken as high as possible and it increases the complexity of the decoder. On the other hand,
it is known that in most of the applications, the correct path is among the best metric paths

and even with lower values of M, most of the time correct path loss does not happen.
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Taking advantage of this fact, if we can mostly decode with a small value of M and only
use big values of M when it is necessary, we can decrease the complexity of the decoding

system [23].

We propose a scheme that is based on this idea. In this scheme, we decode each
frame with an initial small value of M. If the M-algorithm with that small value of M can
decode the frame correctly, we continue decoding of the next frames using the same value
of M. Otherwise, if M-algorithm cannot decode the frame correctly, other iterations of
decoding with higher values of M is performed for the same frame. This process can be

repeated every time that error happens.

Therefore, in this method, higher values of M and a more complex decoding process

is used only if it is necessary. As a result the average complexity of the system is low.

Further iterations of the decoding with a higher number of survivors are performed if
the system is informed of erroneous decoding in the last round of decoding. Therefore, an
error detection mechanism should be included in the decoding system. Since all of our
efforts are to reduce the complexity of the decoder, the additional error detection process

should not add a significant complexity to the system.

5.1.1 Error Detection Algorithm

Considering the fact that the error detection process should be a powerful and meanwhile
low complexity mechanism, Cyclic Redundancy Check Codes (CRC) which was explained

in Chapter 3 is selected for error detection purpose.
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CRC bits calculated for each frame of data and are added to the end of the frame,
then, encoding in a convolutional encoder is taken place and after transmission over the
channel. In the receiver the frame is convolutionally decoded and then the decoded frame is

checked by its CRC bits to make sure if an error free frame has been received.

Indeed, CRC bits are the remainder r of the division of the frame of data of Wby a
known number of d. This remainder of » along with the frame data of /¥ is sent to the
receiver. In the receiver the received frame of data is divided by d and the remainder is
compared with the received CRC bits. If no error has been occurred in the received bits, the

remainders will be the same and otherwise they will be different.

Obviously CRC error detection is not foolproof, because there are many different
message strings that give a remainder of » when divided by 4. In fact, about one out of
every d randomly selected string will give any specific remainder. Thus, if our message
string is distorted in transmission, there is a chance (about //d, assuming the corrupted
message is random) that the CRC bits agree with the distorted frame of data. In such a case
the error will remain unde’tected. Nevertheless, by making d large enough, the chances of a
random error going undetected can be made extremely small. However, we should consider
this fact that longer CRC bits decreases signal to noise ratio of the system and slightly

increases the complexity of the system and can lead to increase in the probability of error.

In the next section, we introduce our proposed coding system.

5.2 The Proposed System Model

The proposed system model is depicted as Figure 5-1. This figure shows the encoding and

decoding algorithm of the Transmitter and the Receiver.
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Figure 5-1 The Proposed System Model.
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5.2.1 Transmitter Side

To be able to detect the error, CRC bits are added to each frame of sent data. Therefore, in
the transmitter at the first step the Data frame passes through a CRC encoder and this
encoder generates CRC bits for frame of data and adds them to the frame. The new frame
consists of CRC and information bits. This CRC added frame, in this stage is encoded by a
convolutional encoder. The convolutionally encoded data is sent to the receiver through the
communications channel. In our discussions, we consider this channel an Additive White

Gaussian Channel or AWGN.

5.2.2 Receiver Side

At the receiver side, the noisy frame is received from the channel. This frame at the first
step is decoded by an M-Algorithm convolutional decoder. The M number of survivors of
the M-Algorithm is set to a predefined small initial value. Then the convolutionally
decoded frame is passes through the CRC error detection module to check for any possible
error. If no error is detected, the decoding process on the frame is accomplished and the
process of decoding for the next frame is started. However, if any error is detected in the
frame in this stage, the number of survivors of the M-algorithm is increased and another
iteration of decoding is performed on the frame with the new M of the M-Algorithm

convolutional decoder.

This process can be repeated if the error happens again. Since the value of M is
increased every time that the decoding is repeated for a frame, the number of survivors
might become too high for very noisy frames and as a result decoding complexity increased

unexpectedly. To avoid too high values of M a predefined maximum value of M as M, is
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selected. If M reaches M,,,, and still error in the decoded frame is detected, the frame is left
and labeled as error frame and no more effort for its decoding is performed. Although this
limit on M can introduce some errors to our system, it prevents the system going through
long time consuming loops of decoding with high values of M. Hence, a trade-off between
the probability of error from one side, and the complexity and time consumption of the

decoding system from the other side, leads to the appropriate value of the M,,4.

5.3 CRC Code Selection

As mentioned before, CRC bit are added to the frame of data in the transmitter to provide
the necessary information for error detection in the receiver side. Hence, error detection
capability of the applied CRC code should be powerful enough for the desired probability

of error.

It has been shown in [24] and [25] that if all the error patterns are considered equally likely,

a CRC code of length r can detect the below types of errors in the frame.

1- All single-bit errors.

2- All double-bit errors as long as the generator G(x) of the CRC code has a factor of x.

3- Any odd number of errors, as long as the generator G of the CRC code has a factor of

x+1.

4- Any burst error of length less than 7.
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5- With probability of greater thanl-1/2, all burst errors with the length of greater than

r+1.

Therefore we can say that the upper bound of the probability of undetected error of a
CRC code with length of is 1/2" or 2 7.

Table 5-1 Some Common CRC Codes, Their Generator
Polynomials and Their Undetected Error Upper Bound.

Generator
CRC Undetected
CRC Name Length ) Error
0 Polynomial Upper
Bound(1/2)
CRC-12 12 X+ +xt+x+1 2.4 E-4
CRC-16 16 0+ xP +x? +1 1.5E-5
CRC-CCITT 16 K+ x X +1 1.5 E-S
32 + 26 + 23 + 22 + 16 + 12 + 11
CRC-32 32 roraowowxomxewa 2.3 E-10
x0T+ Fxt i+ x+1

Based on the above mentioned facts, for different desirable probability of errors, we
should select the appropriate CRC code. As it is shown in Table 5-1 CRC-16 and CRC-
CCITT which both have length of » =16 have less than 1.5 E-5 probability of undetected
error that is a good value for many of applications. However, if we want to use
convolutional codes with longer constraint length and as a result less probability of errors,
we have to use longer and stronger CRC codes. A common long CRC code that is used in

most of the very low error applications like in PKZip, Ethernet, AALS (ATM Adaptation
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Layer 5), FDDI (Fiber Distributed Data Interface), the IEEE-802 LAN/MAN standard is
CRC-32 which can provide probability of undetected error of less than 2.3 E-10.

Now by performing Monte-Carlo simulation we show the error performance of the

system and also its complexity.

5.4 Simulation and Numerical Results

In this part we perform Monte-Carlo simulation and compare the effect of different

parameters of the system like on the performance of the system.

We compare different convolutional codes which all have been selected from the
optimum minimum distance codes introduced in [22]. Table 5-2 is showing some of the

codes we use in our simulations.

Table 5-2 Rate 1/2 Optimum Distance Codes introduced in [22].

K Code Rate Generatots Minimum
(RB) Distance (d,m)

5 Y, 23, 35 7

7 v, 133, 171 10

% v 561, 753 12

1 Y, 3345, 3613 14

15 v, 63057, 44735 18

The starting value of M is set to 2 for all different constraint length codes and every
time that we encounter an error, we double the value of M. The maximum possible M,,,, for

the code with constraint length K can be 2 ' that is all number of paths. When M= M,
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= 2%-" the algorithm is acting like Viterbi algorithm and all the nodes of the trellis are

survive and used for decoding.

In general we can say that if My, =2

~! ,our algorithm tries to use reduced state
Viterbi algorithm at the first rounds of decoding but if it could not decode the frame
correctly with the small values of M, it finally uses the Viterbi algorithm and keeps all

possible paths in each step of trellis advancing.

For all of the codes used in our simulations we use My, =2 “ "' except the K=15
code. In this case since M, =2 ¥ ' = 2'* =16384 is a very high value and this number of
survivors dramatically increases the complexity of the M-algorithm decoder, we use a
smaller value of M, =1024 and some simulation also performed for the M., =16384. For
the case that M, =1024 we never reach to the Viterbi performance of the code K =15 and
if it cannot decode the frame correctly, it just leaves the frame as error for the sake of lower

complexity.
Two different frame lengths of L=512, L =102 are examined in our simulations.

For error detection purpose, CRC codes with length 16 and 32 are selected. CRC-
CCITT-16-bit and CRC-32 which have been introduced in [19] are very common in
communication purposes and we employ them in our simulations. As it has been shown in
Table 5-1 each of these CRC codes have different error correction capabilities and each of

them can be useful for different Error performance areas and different frame lengths.

For the error performance study of the system we compare the Frame Error Rate and
also the Bit Error Rate of the coding system over Additive White Gaussian Noise (AWGN)

Channel. In our simulations the code length of the used convolutional code is one of the
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codes of the Table 5-2. In each following section we will bring forth the simulation results

for specific parameters. Also in all of our simulations we use soft decision decoding.

5.4.1 Frame Length: 102 Bits, CRC Code: CCITT-16

Figure 5-2 shows the Frame Error Rate for convolutional codes with K=5, 7, 9, 11,
15. Iterative M-algorithm decoding scheme is used with initial A/=2 and for different codes
different M,,,, are selected. CRC- CCITT-16-bit has been used for error detection of all of
the codes of Figure 5-2. We know that this code provides an undetected error probability of

equal or less than 1.5E-5.

We also have shown in the Figure 5-3 the complexity of the algorithm based on the
average number of survivors for each frame. For calculation of the average number of
survivors, we add all the number of survivors of different decoding tries and it will be the
total number of survivors for that frame. Then, we take the average of this number on the
all decoded frames in our simulation. For example, if for a frame we start the decoding
process with M=2 and the frame is not decoded correctly and we use the M-algorithm again
with M=4 and this time the frame is decoded correctly, the total number of survivor for this

frame is M,,~2+4=6.
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Frame Emor Probability, Frame Length 102, Rate ;: R=1/2, CRC-CCITT16
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Figure 5-2 Frame Error Rate for the convolutional code with
rate R=1/2 and CRC-CCITT 16 Bit and the frame length of 102
bits for different constraint lengths and number of survivors.

In Figure 5-2 we notice that the probability of error of the Adaptive M-algorithm of
the codes with K=9, 11, 15 is much better than the Viterbi algorithm decoding of the codes
with K=5, 7, 9. This performance improvement happens while the number of the survivors

in the adaptive algorithm is less than the number of survivors of Viterbi algorithm with
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K=9, 7 in E}/Ny of 3dB and higher. Also the number of survivors for the adaptive M-
algorithm is even less than the Viterbi algorithm with K=5 for Ey/Ny of 3.5dB and greater.

The number of survivors for the adaptive M-algorithm is also much less than the
conventional M-algorithm. In the conventional M-algorithm the number of survivors is
fixed and for having the same error performance as the adaptive M-algorithm, M should be
equal to the M, for the conventional M-algorithm and hence the average number of
survivors is also equal to M. In Figure 5-3 we see that for the adaptive M-algorithm the
average number of survivors especially for higher Ey/Ny is much less than M,,, or the

average number of survivors in the conventional M-algorithm.

It is also shown that although the M, for the code with K=9 is 256 (which is equal
to the Viterbi algorithm for this K), the frame error rate of the adaptive algorithm is worse
that the Viterbi algorithm. The reason is that in the adaptive algorithm, we add the CRC
bits t the frame and consequently the energy assigned to each coded Bit is decreased. For
the frame with length 102 and CRC with length 16, the actual Ey/N, is decrease
corresponding to the ratio of the Frame length before CRC to the Frame length after CRC
that here is 102/ (102+16). This value is equal to “/0*log (102/118) dB” that is about
0.65dB.

If we look at our simulation results we see that the difference between the adaptive
M-algorithm and the Viterbi algorithm for k=9 in Figure 5-2 is about 0.65dB that we are

expecting.
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Average Number of Survivors

ﬁverage Number of Sunivors, Frame Length 102, Rate : R=1/2, CRC-CCITT16
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Figure 5-3 The Average Number of Survivor for the frame
length of 102 bits and CRC CCITT- 16 Bit.
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Although in the communication systems that data is sent and received in the frame
format, the frame Error Rate is the main assessment for the error performance of the
system, knowing the Bit Error Rate of still contains useful information. Figure 5-4 shows
the Bit Error Rate of the codes with the length of k=5, 7, 9, 11, 15. Still we see that the
adaptive algorithms outperform Viterbi algorithm and conventional M-algorithm in higher
values of Ey/Ny. For lower E;/N) the codes with longer constraint length don’t offer better
bit error performance this is because in this area, Signal to Noise ratio is very low and none
of the codes can prevent correct path loss and when correct path loss happens its recovery
is more difficult in longer constraint length codes since they have higher dj.. and it leads to

higher Bit Error Probability in for longer constraint length codes.

Also another reason for the poor performance of the adaptive algorithm in the lower
E/Ny area is that since we add CRC bits to the frames of data in the adaptive algorithm, we
decrease the energy assigned to the each sent Bit and in lower areas of the E,/N; energy is a
critical parameter for good performance and then this decrease in the energy caused by
CRC bits degrades the error performance of the adaptive M-algorithm in very low areas of
the Ep/Np.

It is also seen that for Ey/Ny = 5dB, the frame error rate of the code with K=15 is
approaching the other codes. This can be because of this fact that in this area Frame error
rate is very low and the applied CRC- CCITT-16-bit does not have the capability of

detecting some of the happened errors in this area.
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Bit Error Rate

Bit Error Probability, Frame Length 102, Rate : R=1/2, CRC-CCITT16
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Figure 5-4 Bit Error Rate for the convolutional code with rate
R=1/2 and CRC-CCITT 16 Bit and the frame length of 102 bits
for different constraint lengths and number of survivors.
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5.4.2 Frame Length: 512 Bits, CRC Code: CCITT-16

We have also studied the performance of our proposed adaptive M-algorithm

convolutional decoder for decoding of the longer frame lengths.

The frame length that we have used for this purpose is L=512. In this case the energy
decrease in the data bits due to CRC bits is smaller that the Frame with Length L=102 and
then we expect that the performance improvement of the adaptive M-algorithm even be

better than the shorter frame case.

Figure 5-5 shows the Frame Error Probability of the coding system when the frame
length is 512 bits. It is seen that codes with longer constraint lengths outperform the shorter
codes. However, we see that the probability of frame error even for the code with K= 15 is
approaching the other codes for Ep/N; = 5 and expectedly for higher Signal to Noise Ratios.
This limitation is imposed by the CRC error detection code. Since we use CRC-CCITT-16
for the purpose of error detection and its ability of error detection is limited, we see that for
very low error areas, even longer convolutional codes cannot be helpful unless we use a

more powerful CRC error detection code.

Figure 5-6 shows the Average Number of Survivors of the employed cases. It is seen
that all of the codes have almost the same number of survivors for the E,/Ny of 3.5dB or
greater than that. Therefore we notice that with the fixed complexity (as a function of
number of survivors) we can obtain much better performance from our Adaptive M-

algorithms than the conventional M-algorithm or Viterbi algorithm.

Figure 5-7 sows the simulation results of the Bit Error Rate of the coding system. It is
seen that the bit error rate of the longer codes is not always superior to the shorter codes. It

is because the frame length is longer than the previous simulations and in the shorter
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convolutional codes the correct path might be recovered before the end of the frame but it
is not the case for the longer codes therefore each error event or correct path loss causes
more number of erroncous bits for longer convolutional codes and the bit error

performance of the longer codes is degraded for longer constraint length codes.

—4— K=§, M=2-18
] —+— K=5, Viterbi, M=16

—D- K=11, M=2-1024
—0 - K=15, M=2-1024

Frame Emor Rate

I ]

i 1
2 25 3 35 4 45 5
EB/NO(dB)

Figure 5-5 Frame Error Rate for the convolutional code with rate
R=1/2 and CRC-CCITT 16 Bit and the frame length of 512 bits
for different constraint lengths and number of survivors.
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Average Number of Survivors

éAverage Number of Sunivors, Frame Length 512, Rate : R=1/2, CRC-CCITT16
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Figure 5-6 The Average Number of Survivors for the
convolutional code with rate R=1/2 and CRC-CCITT 16 Bit and
the frame length of 512.
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Bit Error Rate

Bit Error Probability, Frame Length 512, Rate : R=1/2, CRC-CCITT16
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Figure 5-7 Bit Error Rate for the convolutional code with rate
R=1/2 and CRC-CCITT 16 Bit and the frame length of 512 for
different constraint lengths and number of survivors.
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5.4.3 Frame Length: 102 Bits, CRC Code: 32 Bits Length

In this section we show the simulation results when we employ the previously mentioned
CRC 32 Bits. Figure 5-8 shows the Frame Error Rate of the Adaptive M-algorithm for
K=9, 11 and we compare them with the Viterbi algorithm for K= 5, 7, 9.

As it is seen, in this case since length of the CRC code is rather long in comparison
with the length of the frame, the bits of the CRC added frame have twice the CRC-16 Bits
case lower energy than the frame without CRC bits added. This is almost equal 1.2dB and
as a result this CRC code does not let the adaptive algorithm outperforms the Viterbi
algorithm for the code with K=9.

However, still the adaptive M-algorithm scheme with a lower number of survivors
has better frame error rate than Viterbi algorithm or the conventional M-algorithm schemes
for the convolutional code of the constraint length of K=5 in the region of Ey/Ny equal or
greater than 4dB. As we know the number of survivors for the Viterbi algorithm or the

conventional M-algorithm for K=5 is 24 =16 and

Figure 5-9 shows that the adaptive M-algorithm with k=9 and K=11 have less
average number of survivors than 16 when Ej/Nj is respectively greater 3.8dB and 4.25dB
and meanwhile they have better frame error performance than the Viterbi algorithm

decoding of the code with the constraint length of K=5.

For the Bit Error Performance of the system as shown in Figure 5-10 the adaptive M-
algorithm cannot improve the performance of the system even compared to the Viterbi
algorithm decoding of the code with the length of K=5 and that is due to the rather long
length of the CRC 32 Bits code to the Frame Length.
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Frame Error Rate

Frame Error Probability, Frame Length 102, Rate : R=1/2, CRC-CCITT32
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Figure 5-8 Frame Error Rate for the convolutional code with
rate R=1/2 and CRC 32 Bit and the frame length of 102 bits for
different constraint lengths and number of survivors.
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Average Number of Survivors

Awverage Number of Sunvivors, Frame Length 102, Rate : R=1/2, CRC-32
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Figure 5-9 Average Number of Survivors for the convolutional
code with rate R=1/2 and CRC 32 Bit and the frame length of
102 bits for different constraint lengths and number of survivors.
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Bit Error Rate

—+ - K=5, Viterbi, M=16
—e— K=7, Viterbi M=64
—[F - K=9, M=2-256
—O - K=11, M=2-1024
—E— K=9, Viterbi M=256

[

T TTTET

Figure 5-10 Bit Error Rate for the convolutional code with rate
R=1/2 and CRC 32 Bit and the frame length of 102 bits for
different constraint lengths and number of survivors.
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5.4.4 Frame Length: 512 Bits, CRC Code: 32 Bits Length

As shown in the previous section, CRC-32 Bits is too long for the frame of data with
shorter length. We have also seen that for very low probability of error areas, CRC-16 Bits
is not powerful enough and if we want to obtain lower probability of errors, we have to use
longer CRC codes. In this section we show the simulation results of the decoding of the

frames of 512 bits and CRC-32Bits.

Frame/Bit Error Probability, Frame Length 512, Rate : R=1/2, CRC-32
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Figure 5-11 Frame/Bit Error Rate for the convolutional code
with rate R=1/2 and CRC 32 Bit and the frame length of 512 bits
for different constraint lengths and number of survivors.

82



Figure 5-11 shows the Frame Error Rate and the Bit Error Rate of the decoding of the
frames of 512 bits. It is obviously seen that the codes with longer constraint lengths offer
better probability of errors. For both of the Bit Error Rate and Frame Error Rate it is the

case.

Figure 5-12 also shows the number of survivors of adaptive M-algorithm for the
decoding of the convolutional code with the constraint length of K=11. It is seen that the
employed algorithm uses even fewer number of survivors than the Viterbi algorithm with

code of length K=5 for E}/N, higher than 4dB.
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Figure 5-12 Average Number of Survivors for the convolutional
code with rate R=1/2 and CRC 32 Bit and the frame length of
512 bits for convolutional code of length 11.
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5.4.5 Comparison between Effect of the CRC-32 and the CRC-16 Codes on
the Frame Lengths of 512 Bits

It is worth noting to compare CRC-32 and CRC-16 in one figure. Figure 5-13 shows the
Frame error Rate of the system wheﬁ CRC-16 and CRC-32 is used for error detection
purpose. As it is shown, the error performance of the longer CRC code is superior to the
shorter CRC when long constraint length codes have been employed as the convolutional
code. The code with K = 11 has the best frame error performance in the area of higher than
3.5dB of Ey/Ny.

Figure 5-14 shows the number of survivors for the different used codes. The code
with longer constraint length has higher average number of survivors than the other codes
and it is because in that code the probability of error is very small and since we use a very
powerful error detection code, most of the errors are detected and the decoding is repeated
for the frame containing the error. Although this repetition can decrease the probability of
error, it increases the average number of survivors. However, in higher E;/N; areas, still
the average number of survivors for the adaptive M-algorithm is even fewer than Viterbi

algorithm or the conventional M-algorithm offering the worse probability of error.
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Frame Error Rate

Frame Error Probability, Frame Length 512, Rate : R=1/2, CRC-32 ,CRC-CCITT16
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Figure 5-13 The Frame Error Rate for the convolutional code
with rate R=1/2 and CRC 32/16 Bit and the frame length of 512
bits.
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Average Number of Survivors
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Figure 5-14 Average Number of Survivors for the convolutional
code with rate R=1/2 and CRC 32/16 Bit and the frame length of
512 bits.
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5.5 Summary

In this chapter we explained that for decreasing the probability of the correct path loss we
can increase the number of survivors in the M-algorithm. Based on this characteristic of the
M-algorithm that in most of the times even with smaller number of survivors, the correct
path loss does not happen; we introduced the adaptive M-algorithm Convolutional decoder.
In this algorithm we increase the number of survivors only when an error in the decoded
frame is detected. CRC error detection codes are used for the error check of the decoded

frames.

We proposed our coding system model and then presented the simulation results.
Simulation was performed assuming that the communication channel is AWGN channel
and convolutional codes with different lengths combined with different CRC code length
were compared to each other. It was shown that in most of the cases the proposed M-
algorithm Based Convolutional Decoder outperforms the Viterbi algorithm or the
conventional M-algorithm. The complexity of the system in terms of the average number
of survivors also was compared for the different cases. It showed that the new algorithm
can be implemented with less complexity in comparison with the Viterbi algorithm or the

conventional M-algorithm which have the same error performance.
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Chapter 6

CONCLUSION

We conclude our thesis with a brief summary of what was brought forth in the previous

chapters and then very short suggestions wrap up the thesis.

6.1 Summary

There are different algorithms for decoding of the encoded sequences. The Viterbi
algorithm is one of the most popular convolutional decoders. Although this algorithm is an
ML optimum decoder, it suffers from the high complexity in the decoding of long

constraint length codes. On the other hand, we know that for obtaining lower error rates in
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the convolutional codes, we need to increase the constraint length of the employed code.
Therefore, we should find simpler decoding algorithms for the decoding of the longer

constraint length codes.

Due to the low complexity of the simplified Viterbi algorithms or the reduced state
trellis decoding algorithms, they are practical for the decoding of long constraint length
codes. M-algorithm is one of the reduced state trellis decoders, but it suffers from
catastrophic error caused by the correct path loss in the algorithm. In this thesis we
proposed two different ways of correct path recovery based on M-algorithm convolutional

decoder.

The first method is called Ancestor Based Survivor Decision in M-algorithm
Convolutional Decoder. This method has been designed for the cases that an abrupt noise
degrades the metric of the correct path suddenly. In this case, knowing that the ancestor of
the path has been the correct path in its time, if we keep all the successors of that ancestor,
we certainly have kept the correct path. We explained the algorithm of decoding for the
proposed method and also simulated it for the AWGN channel. Simulation results showed
only slightly improved error performance in some cases. It was mostly for the reason that
the AWGN does not act as abrupt noise. As a result we decided to find a method applicable

for the AWGN channel that is our second proposed method.

The second proposed method is called Adaptive M-algorithm Based Convolutional
Decoder. This method takes advantage of the low probability of correct path loss. Even
using a small number of survivors, the probability of correct path loss is very small;
therefore, we suggest using a small number of survivors for most of the decoding attempts,
and we use a higher number of survivors only in case of error decoding. The CRC error

detection code is used to detect whether the frame is an erroneous one or not.
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A coding system based on the combination of a convolutional code and a CRC code was
proposed and simulation results also were presented. Simulation was performed assuming
that the communication channel is AWGN channel. Convolutional codes of different
constraint lengths combined with CRC codes of different lengths were compared to each
other. It was shown that in most of the cases the proposed M-algorithm Based
Convolutional Decoder outperforms the Viterbi algorithm or the conventional M-
algorithm. The complexity of the system in terms of the average number of survivors also
was compared for the different cases, and it was shown that for the same error
performance, the new algorithm can be implemented with less complexity in comparison

with the Viterbi algorithm or the conventional M-algorithm.

6.2 Suggested Future Research

The future research based on this thesis can be performed in two parts. The first part
is the analysis and study of the application of the Ancestor-Based Survivor Decision in the
M-algorithm Convolutional Decoder for different abrupt noise environments, like the
fading channel or the shot noise. Since the design of this algorithm is for this kind of noise,
it is expected that in these kinds of environments we obtain better error performance from

the proposed method.

Also other research can be done on the Adaptive M-algorithm Based Convolutional
Decoder. One of these research can be on the analysis and study of the number of attempts
for the decoding of each frame that can lead to the comparison of the algorithm with the
sequential decoding algorithms. Also other works on the complexity reduction of the

algorithm in the sorting can be useful, since sorting in M-algorithm can increase its
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complexity. As a result if its complexity is reduced, then the complexity of the whole

coding system is reduced.

9



[1]

[2]

[3]

[4]

(3]

[6]

[7]

(8]

9]

BIBLIOGRAPHY

C. E. Shannon, “A Mathematical Theory of Communication,” The Bell Labs
Technical Journal, vol. 27, pp. 379-457, 623, 656, July-October, 1948.

S.Lin and D.Costello, Error Control Coding: Fundamentals and Applications,
Upper Saddle River, NJ: Pearson Prentice-Hall, 2004.

P, Elias, “ Coding for Noisy Channels,” IRE Conv. Rec., Part 4, pp. 33-47, 1955.

J. M. Wozencraft and B. Reiffen, Sequential Decoding, MIT Press, Cambridge,
Mass., 1961.

J. L. Massey, threshold Decoding, MIT Press, Cambridge, Mass., 1963.

A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Trans. Inform. Theory, vol. IT-13, no. 2, pp. 260-269,
Apr. 1967.

S.Lin and D.Costello, Error Control Coding: Fundamentals and Applications,
Englewood Cliffs, NJ: Prentice-Hall, 1983.

T.M. Aulin, “Breadth-first maximum likelihood sequence detection: basics” IEEE

Trans. Commun., Volume 47, Issue 2 pp. 208 - 216, Feb. 1999.

R. M. Fano, “A Heuristic Discussion of Probabilistic Decoding,” [EEE Trans.
Inform. Theory, IT-9, pp. 64-74, April 1963.

92



[10] K. Zigangirov, “Some sequential Decoding Procedures,” Probl. Peredachi Inf,, 2,
pp. 13-25, 1966.

[11] F. Jelinek, “A Fast Sequential Decoding Algorithm Using a Stack,” IBM J. Res.
And Dev., 13, pp. 675-685, Nov. 1969.

[12] N. Seshadri, C E. W. Sundberg, “List Viterbi decoding algorithms with
applications,” IEEE Transactions on Communications, pp. 313-323, Vol. 42, No.
21314, February/March/April 1994.

[13] C. Berrou, A. Glavieux, and P. Thitimajshima, ‘Near Shannon limit error-correcting
coding and decoding: Turbo-codes. 1,” in Proc. Int. Conf. Commun., ICC 93, pp.
1064-1070, May 1993.

[14] T.J. Richardson, M.A. Shokrollahi, and R.L. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans. Inform. Theory,
vol. 47, Issue: 2, pp. 619 — 637, Feb 2001.

[15] J. Proakis, Digital Communications, McGraw-Hill, 2001.

[16] A. Populis, Probability, Random Variable and Stochastic Process, Mc. Graw-Hill,
1991.

[17] J. B. Anderson, and S. Mohan, Source and Channel Coding: An Algorithmic
Approach , Kluwer Academic Publishers:London,pp.297-306, 1991.

[18] A. S. Tannenbaum. Computer Networks. Prentice Hall, Englewood Cliffs, NJ USA,
3rd edition, 1996.

93



[19] William Stallings, Data and Computer Communications, 6/e, Prentice Hall, 1999;
7/e, Pearson Prentice Hall, 2004.

[20] C. F. Lin, “A truncated Viterbi algorithm approach to trellis codes,” Ph.D.
dissertation, Dep. Elect. Eng., Rensselaer Polytechnic Inst., Troy, NY, Sept. 1986.

[21] F. Chan and D. Haccoun, “Adaptive Viterbi decoding of convolutional codes over

memoryless channels,” IEEE Trans. Commun., vol. 45, pp. 1389-1400, Nov. 1997.

[22] P. Frenger, P. Orten, and T. Ottosson, “Convolutional codes with optimum distance

spectrum,” IEEE Commun. Lett., vol. 3, pp. 317-319, Nov. 1999.

[23] Seyed Ali Gorji Zadeh, Mohammad Reza Soleymani, “An Adaptive M-Algorithm
Convolutional Decoder,” in Proceedings of the IEEE Vehicular Technology
Conference, Fall 2005, Dallas, Texas.

[24] Peterson, W.W. and Brown, D.T. “Cyclic Codes for Error Detection.” Proceedings
of the IRE, January 1961, pp. 228-235.

[25] Tanenbaum, Andrew S. Computer Networks, Second Edition. Prentice Hall, 1988.

94



