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Abstract

Analysis of the Outage Probability for Wireless

Communication Systems with Multiple Antennas

Hao Shen

We present in this thesis comprehensive analysis of the outage probability for multiple-
input multiple-output (MIMO) systems over quasi static fading channels with and
without receive antenna selection. We consider two channel models in the analysis:
independent Rayleigh fading and correlated Rayleigh fading. For the independent
fading case, we assume that 1) for a given M receive antennas, the receiver selects
the best L antennas that maximize the capacity; 2) the channel state information
(CSI) is perfectly known at the receiver, but not at the transmitter; and 3) the fading
coeflicients change very slowly such that averaging with respect to these coefficients
is not possible. Under these assumptions, we derive two upper bounds on the outage
probability with receive antenna selection. The first bound is used to show that the
diversity order is maintained with antenna selection. The second bound is used to
quantify the degradation in signal-to-noise ratio (SNR) due to antenna selection. Fur-

thermore, we analyze the asymptotic behavior of the outage probability for MIMO
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systems as the number of transmit antennas tends to infinity. We extend our as-
ymptotic results to the case with receive antenna selection. For all cases, we derive
explicit expressions for the threshold for the outage probability.

For spatially correlated fading channels, in addition to the assumptions made for
the independent fading case, it it assumed that the spatial correlation is present at
both ends of the wireless communications link, and the transmit and receive corre-
- lation matrices may or may not be full rank. With these assumptions, we derive
explicit bounds for the outage probability and show that the diversity order is simply
the product of the rank of the transmit correlation matrix and the rank of the receive
correlation matrix. We also derive an expression for the degradation in SNR. due to
the presence of spatial correlation. We extend our analysis to MIMO correlated fad-
ing channels with receive antenna selection, where selection is based on maximizing
the channel capacity. We derive explicit upper bounds for the outage probability and
show that the diversity order with antenna selection is the same as that of the full
complexity system. We also derive an expression that quantifies the loss in SNR due
to antenna selection. For both channel models, we present several numerical examples

for both channels models that validate our analysis.
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Chapter 1

Introduction

1.1 Diversity and MIMO Systems

Providing reliable wireless communication has been the center of attention of the
communication community over the past few years. This stems from the fact that, in
a wireless environment, unlike other applications, achieving reliable communication
becomes much more challenging due to the possibility that received signals from
multipaths may add destructively, which, consequently, results in serious performance
degradation. It has been shown that a key technique for achieving reliable wireless
communication is to introduce some sort of diversity into the system.

Diversity comes in different forms, including time, frequency, and space diversity.
A combination of two or more types of diversity is also possible, depending on the ap-
plication. Time diversity can be achieved through employing error-correcting coding

schemes combined with interleaving such as turbo codes, which provides redundancy



to the receiver in the time domain. Frequency diversity is the case when replicas
of the transmitted signal are provided to the receiver in the form of redundancy in
the frequency domain. This is achieved when signals are transmitted on different
frequency bands separated by more than the coherence bandwidth of the channel.
Space diversity, or antenna diversity, which is the focus of this thesis, is achieved
by employing spatially separated antennas at the transmitter and/or at the receiver.
The separation requirements vary with antenna height, propagation environment and
frequency so that the subchannels are uncorrelated.

The basic idea of space diversity is that, if two or more independent subchannels
are available, these subchannels will fade in an uncorrelated manner, e.g., some sub-
channels are severely faded while others are less attenuated. This means that the
probability of all the subchannels simultaneously fade below a certain level is much
lower than the probability of any individual subchannel fades below that level. Thus,
a proper combination of the signals from different subchannels results in greatly re-
ducing the severity of fading, thereby improving the reliability of data transmission.
Another advantage of space diversity compared with time and frequency diversity
is that it does not induce any loss in bandwidth efficiency. This property is very
attractive for high data rate wireless communications applications.

The exploitation of space diversity is based on a multiple-input multiple-output
(MIMO) channel model, which employs multiple antenna elements at both the trans-
mitter and receiver. MIMO systems are now being used for third-generation cellular

systems such as wideband code-division multiple access (W-CDMA) systems and are



being considered for future high-performance modes of the IEEE 802.11 standard for
wireless local area networks.

MIMO systems offer a great increase in the spectral efficiency, which is based on
the utilization of space diversity. The data stream from a single user is demultiplexed
into N separate sub-streams. Each sub-stream is then encoded into channel symbols.
After modulation, the N parallel data streams are transmitted from the IV transmit
antennas. At the receiver, multiple receive antennas are used to separate the different
data streams. Thus, a drastic increase in the channel capacity can be achieved through
MIMO systems, as shown by Telatar [1], and Foschini and Gans [2].

A number of papers have been published recently on the MIMO systems for achiev-
ing reliable communication over wireless links. They include the early work done by
Guey et al. [3], in which they consider signal design techniques that exploit the diver-
sity provided by employing multiple antennas at the transmitter. Then Tarokh et al.
introduced in 1998 [4] a new class of codes (referred to as space-time codes) suitable
for systems equipped with multiple transmit antennas. In their paper, they develop
design guidelines for space-time codes over Rayleigh and Rician channels. They show
that the performance of space-time codes depends heavily on the number of transmit
and receive antennas employed in the system, in addition, of course, to the underlying
code.! Since their discovery, space-time codes have enjoyed a tremendous amount of
attention from the coding community, where researchers have performed considerable

work on designing codes, following Tarokh’s guidelines, that achieve maximum coding

1The performance of space-time codes (over fading channels) is characterized by two parameters:
coding and diversity gains.



and diversity gains [5]—[9)].

From another perspective, channel capacity and the outage probability of multiple-
antenna systems are studied in [10]—[12]. In [10], the authors study the limit phenom-
enon of the outage probability and outage capacity for multiple-input single-output
(MISO) systems as the number of transmit antennas goes to infinity. They compare
their results with the Shannon capacity for additive white Gaussian noise (AWGN)
channels, and show that the outage probability had a threshold phenomenon similar
to that of the AWGN case. However, the analytical approach used in [10] is based on
the complex Wishart distribution of the channel matrix, which becomes cumbersome
to extend to the more general case, i.e., an arbitrary number of receive antennas.

In [11], Wang, et al. derive analytical expressions for the probability density
function (pdf) of the random mutual information for MIMO systems. They show that
this pdf can be approximated well by a Gaussian distribution. These expressions,
however, are presented in a complicated form and thus cannot be used to analyze
the limit behavior of the outage probability. Approximating the pdf of the mutual
information by a Gaussian distribution is also reported in [12] in simple forms, with
the assumption that the number of transmit and/or receive antennas is large. In
Chapter 2, we will show how these expressions can be used to give explicit thresholds

for the outage probability.



1.2 Antenna Selection for MIMO Systems

One of the drawbacks of employing multiple antennas, however, is the associated com-
plexity. That is, the complexity that arises from employing a separate radio frequency
(RF) chain for every employed antenna, which results in a significant increase in the
implementation cost. Antenna selection has been introduced recently as a means to
alleviate this complexity, while exploiting the diversity provided by the transmit and
receive antennas [13]—[21] (and references therein). The idea behind antenna selec-
tion centers around using only a subset of the available antennas in MIMO systems,
thereby reducing the number of required RF chains to as few as the number of selected
antennas.

In [13], Molisch, et al. consider receive antenna selection based on maximizing
the channel capacity. They demonstrate that only a small loss in capacity is suffered
due to antenna selection. Efficient algorithms for performing antenna selection based
on maximizing the capacity are introduced in [14]—[16]. In [14], Gorokhov proposes
a sub-optimal selection strategy by successively eliminating the ” worst” receive an-
tennas. Based on this, in [15], Alkhansari et al. start from an empty set of selected
antennas and successively add the "best” antennas to this set, which further reduces
the computational complexity.

In [16], the authors provide analytical results on the outage probability for single-
input multiple-output (SIMO) systems where they show that the diversity order is

maintained with antenna selection. The authors extend this conclusion to MIMO



systems by using the following argument. They first show that the MIMO capacity
with antenna selection is lower bounded by the capacity of a set of parallel indepen-
dent SIMO channels, each with antenna selection. They use this result along with the
fact that a MIMO channel can be viewed as a set of parallel independent SIMO sub-
channels with maximum ratio combining (MRC) at high signal-to-noise ratio (SNR)
to conclude that the diversity order for MIMO systems is maintained with antenna
selection.

The authors show explicitly in [17] that the diversity order of the outage probabil-
ity with antenna selection over independent fading channels is the same as that of the
full complexity system. They also derive a tight upper bound on the loss in SNR in-
curred due to antenna selection. In [18] and [19], the authors consider receive antenna
selection over quasi-static fading channels, where selection is based on maximizing the
received instantaneous SNR. It is shown that the diversity order of the bit error rate
(BER) with antenna selection is similar to that of the full complexity system provided
that the underlying space-time code is full rank. When the space-time code is not full
rank, the diversity order deteriorates with antenna selection and becomes dependent
on the number of selected antennas. It is also observed in [20] that the diversity order
deteriorates with antenna selection when the underlying channel is fast fading. Other
work related to antenna selection for MIMO systems can be found in [21]—[30].

In all the above works, it is assumed that the sub-channels fade independently.
This assumption, however, is not practical, especially for systems that have poor

scattering conditions and/or insufficient spacing between adjacent antennas. In such



cases, the subchannels become correlated and this significantly degrades the channel
capacity [31]—[34]. Therefore, it is necessary to study the effect of antenna selection
on the correlated fading channels.

A widely accepted mathematical model for the correlated fading channel is pre-
sented in [35]. In deriving their model, the authors assume that the fading correlation
between two distinct transmit (receive) antennas to the same receive (transmit) an-
tenna is independent of the receive (transmit) antenna. They also assume that the
fading correlation of two distinct antenna pairs is the product of the corresponding
transmit and receive correlation.

In [36], the authors study the outage probability of MISO systems in the pres-
ence of transmit correlation. They show that the outage probability depends on the
transmission rate as well as SNR, and they devise efficient transmission strategies
when correlation is present. The authors in [37] study the pairwise error probability
(PEP) for MIMO systems in the presence of fading correlation. They show that the
diversity order of the PEP is given by the product of the rank of the transmit correla-
tion matrix and the rank of the receive correlation matrix. In [38], the authors study
the impact of joint transmit-receive correlation on the BER performance of combined
convolutional coding and orthogonal space time block coding with receive antenna
selection. They show that the diversity order with antenna selection is the same as

that of the full complexity system, i.e., no antenna selection.



1.3 Information Theory Preliminaries

In this section, we recall from information theory basic definitions that are related to

the main theme of this thesis, that is, outage probability [39].

Definition 1 The entropy H (X) of a discrete random variable X is defined by

Zp )logp (z (1.1)

where p () is the probability density function (pdf) of X.

The entropy is a measure of the average uncertainty in the random variable. If log
has base 2, the entropy is the average number of bits required to describe a random

variable.

Definition 2 The joint entropy H(X,Y) of a pair of discrete random variables

(X,Y) with a joint distribution p (x,y) is defined as

-3 pl(zy)logp(z,y). (1.2)

Definition 3 The conditional entropy H (Y|X) is defined as

H(Y]X) = ZZP z,y)log p (ylz) . (1.3)



Theorem 1 (Chain rule):
H(X,Y)=H(X)+H(Y|X).

Note that H (Y|X) # H(X]|Y). However, H(X)-H(X|Y)=H(Y)-H (Y|X).

Definition 4 The relative entropy between two probability density function p (x) and

q () is defined as

D@@—?M)@Mﬂ

The relative entropy is always non-negative and is zero if and only if p = q.

Definition 5 The mutual information Z (X;Y’) is the relative entropy between the

joint distribution and the product distribution p (z)q (z), i.e.,

1(XY) = 2 Lp (e los T

The relationship between entropy and mutual information is given by

I(X;Y) = H(X)-HX]Y)
= H(Y)-H(Y|X)
= H(X)+H(Y)=-H(X,Y)

= I(Y;X).



Definition 6 The channel capacity of a discrete memoryless channel is defined as
C=maxZ (X;Y),
p(z)

where the mazimum is taken over all possible input distributions p (z).

Channel capacity is the highest rate in bits per channel use at which information
can be sent with arbitrarily low probability of error.

In this thesis, we consider quasi-static fading channels, where the matrix of the
fading coeflicients, denoted by H, remains constant over the entire frame and changes
independently from one frame to another. Thus, Shannon capacity does not exist in
the ergodic sense. For each realization of H, the instantaneous mutual information
between the input and output of a quasi-static fading channel depends on the fad-
ing coefficients and therefore, it is a random variable, which is also referred to as
I(X;Y|H).

We assume in this thesis that the channel state information (CSI) is known at
the receiver, but not at the transmitter. Thus, to maximize the channel capacity,
the total transmit power, denoted by P, has to be distributed equally among all the
available N transmit antennas. Consequently, the instantaneous mutual information

is given by

T = log,det (IM+ %HHH)

= log,det (IN + %HHH) )

10



where p is the average SNR at each receive antenna.
When the information transmission rate, denoted by R, is higher than the instan-

taneous mutual information, an outage event occurs.

Definition 7 The outage probability is defined as the probability of an outage event,
€.,

Pout = Pr (I < R) .

1.4 Thesis Outline

The rest of the thesis is outlined as follows.

In chapter 2, we study the outage probability for MIMO systems over independent
Rayleigh fading channels with receive antenna selection. We also study the asymptotic
behavior of the outage probability with and without receive antenna selection as the
number of transmit antennas tends to infinity.

In Chapter 3, we study the outage probability for MIMO systems over spatially
correlated fading channels. We consider both the full complexity system and the
system that employs receive antenna selection.

In Chapter 4, conclusions are made and directions for future work are suggested.

1.5 Thesis Contributions

The contributions of the thesis are summarized as follows.

11



e Two upper bounds on the outage probability for MIMO systems over indepen-
dent Rayleigh channels with receive antenna selection are derived. The first
bound shows that the diversity order is maintained with antenna selection. The
second bound is used to accurately quantify the degradation in SNR with receive

antenna selection.

e A thorough investigation of the asymptotic behavior of the outage probability
as the number of transmit antennas tends to infinity is presented. Explicit
expressions are derived for the threshold for the outage probability for any

number of receive antennas and any number of selected antennas.

e An explicit upper bound on the outage probability over spatially correlated fad-
ing channels is derived. It is shown that the diversity order is the product of
the rank of the transmit correlation matrix and the rank of the receive corre-
lation matrix. Furthermore, a closed-form expression is derived to quantify the

degradation in SNR that results from the presence of correlation.

e The outage probability over correlated fading channels with receive antenna
selection is studied. To this end, an upper bound on the outage probability is
derived where it is shown that the diversity order is maintained with antenna
selection. Moreover, a closed-form expression for the loss in SNR due to antenna

selection is derived.

12



Chapter 2

Analysis of the Outage Probability

Over Independent Fading Channels

2.1 Introduction

In this chapter, we present a comprehensive performance analysis of the outage prob-
ability for MIMO systems with receive antenna selection. In our analysis, we assume
that 1) for a given number of receive antennas M, the receiver uses L out of the avail-
able M antennas where the selected antennas are those that maximize the channel
capacity; 2) the CSI is perfectly known at the receiver, but not at the transmitter;
3) the subchannel fade independently; and 4) the fading coefficients remain constant
over the entire frame and change independently from one frame to another. Under
these assumptions, we derive two upper bounds on the outage probability for any

number of selected antennas. The first bound, albeit being loose, is used to show

13



that the diversity order with antenna selection is the same as that of the full com-
plexity system. The second bound is used to accurately quantify the loss in SNR
due to antenna selection. Furthermore, we investigate the asymptotic behavior of
the outage probability for MIMO systems as the number of transmit antennas tends
to infinity. In particular, we derive explicit expressions for the threshold for these
systems with and without receive antenna selection.! Several numerical examples are
also given which validate our analysis.

The rest of the chapter is outlined as follows. In Section 2.2, we introduce the
system model. The analysis of the outage probability for MIMO systems with antenna
selection is presented in Section 2.3. The asymptotic phenomenon of the outage
probability with and without antenna selection is analyzed in Section 2.4. Several
numeral examples are discussed in Section 2.5. Finally, Section 2.6 concludes the

chapter.

2.2 System Model and Some Existing Results

2.2.1 System Model

The system under consideration models a wireless communication system equipped

with N transmit and M receive antennas. The received signal at time index k, in

1We remark that the threshold derived for MISO systems in [10] is a special case of the generalized
threshold derived in this chapter.

14
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Figure 2.1: System Model. (Independent fading channel)
vector notation, is given as
ylk] = Hx[k] + n[k]| (2.1)

where H is an M x N matrix whose (i, j) th entry, denoted by h;;, models the fading
between the ith transmit antenna and jth receive antenna, x[k] is a N x 1 vector
that represents the transmitted signal array at time k, and nlk] is a M x 1 vector
that represents the AWGN noise samples at time k. The entries of H are modeled as
independent and identically distributed (iid) complex Gaussian random variables (rvs)
with zero mean and variance 0.5 per dimension. The elements of n[k] are modeled as
iid complex Gaussian rvs with zero-mean and variance Ny/2 per dimension. We also
assume that the fading coefficients (elements of H) are constant over the entire frame
and vary independently from one frame to another, which is essentially the case for

quasi-static fading. Furthermore, we assume that the subchannels fade independently,

15



and the CSI is known exactly at the receiver, but not at the transmitter.

Since the CSI is not available at the transmitter, the transmitted power has to be
distributed equally among the transmit antennas to maximize the channel capacity.
Hence, the average SNR at each receive antenna is given by p £ P/ (NyB), where P
is the total transmitted power and B is the transmission bandwidth. Let us define
v & Ey/Ny, where E, denotes the average energy per transmitted bit. Thus, the
relationship between p and «y is given by v = p/R, where R is the information

transmission rate in bits/sec/Hz.

2.2.2 Preliminaries

The mutual information of a MIMO channel is given by [1]
- P rypH
T = log, det (IM + L HH ) , (2.2)

where ()H denotes Hermition transpose. In a full-rank system, (2.2) can be simplified

by using singular value decomposition as

M
=3 log, (1 + %/\i (HHH)) , (2.3)

16



where \; (H HE ) are the eigenvalues of HH. The joint pdf of these eigenvalues, after

being ordered according to their amplitude, is given by [1]

porder(/\la e ,/\M) = KJI/I%N (H )\iV—-M> (H()\l - )‘j)2> exp (-—- Z)\z) s

1 i>]

(2.4)
where K/ y is a normalizing factor.

When the information transmission rate is greater than the instantaneous mutual
information, an outage event occurs. In quasi-static fading, since the fading coefh-
cients are constant over the whole frame, we can not average them with an ergodic
measure. In such an event, Shannon capacity does not exist in the ergodic sense
[40]—[42]. The probability of such an event is normally referred to as outage proba-
bility. Owing to the recent work by Hochwald et al. in [12], the distribution of the
random mutual information can be viewed as Gaussian when the number of transmit
and/or receive antennas goes to infinity. (It is also a very good approximation for
even small N and M, e.g. N = M =2, see [12]). As such, for a sufficiently large N,
the mutual information is approximated as [12]?

TN (Mlogg(l—f—p),—]v‘x,il(l—ig;;)). (2.5)

This result will greatly simplify our analysis when we study the asymptotic behavior

of the mutual information later in this chapter.

21t is also reported in [11] that the mutual information can be well approximated by a Gaussian
distribution.

17



2.3 Analysis of the Outage Probability Over In-
dependent Fading Channels with Receive An-

tenna Selection

In this section we study the impact of receive antenna selection on the diversity order

of the outage probability, as well as the degradation in SNR due to antenna selection.

2.3.1 Diversity Order with Antenna Selection

Let Hg denote a matrix of size L x N formed by selecting L rows of the matrix
H. Clearly, there are (AL’I ) subsets to choose from, but the selected subset is the one
that results in maximizing the channel capacity described by (2.2) with H replaced
by H,. Note that HH SIZ, is a submatrix of HH¥., However, the eigenvalues of
HoH gl are not necessarily a subset of the eigenvalues of HH*. For convenience, we
shall assume for the rest of this chapter, unless otherwise stated, that the eigenvalues
of any matrix that we encounter are ordered from smallest to largest according to
their amplitude, e.g., A (HselHSZl) <. . <AL (Hsengl) )

When the receiver selects the best L antennas, the mutual information given by

(2.3) becomes
& p
T = Y logy (14 =X (HeaHEI) ). (2.6)
> o (147 )

Deriving a closed-form expression for the outage probability with antenna selection
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requires finding a closed-form expression for the joint pdf of the random variables
py (HselH SIZ,) for i = 1,...,L, which is unfortunately very cumbersome to obtain.
As an alternative, we first derive an explicit upper bound on the outage probability
from which one can easily see the impact of antenna selection on the diversity order.
However, this bound is very loose and thus can not be used to quantify the degradation
in SNR due to antenna selection. To this end, we later derive another tight upper
bound to quantify the SNR degradation.

From [43, p. 189], we have
n—i

) 2

M (4) + ':;)‘Hl (A)

IV

%MHM) i=1,...,n—1, 2.7)

where A; is the (n — 1) x (n — 1) principal submatrix of A obtained by deleting the
jth row and jth column from A. It is assumed in (2.7) that the eigenvalues \; for
¢ =1,...,n — 1 are nonnegative and placed in an increasing order. Applying (2.7)

to H, HY, iteratively M — L times yields

sel

L(G+M—L-1)

>

= MG —1)!
L(M ~ L)!

2 TAHM—L (HHH)
Aiers—g (HHY)

(%)

/\i (Hsengl) )\i-{—M—L (HHH)

i=1,...,L (2.8)

Thus, the outage probability, when the best L receive antennas are selected, is upper
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bounded by

L
Pset = Pr ZlogQ <1+ )\ sele )) <R)

< Pr ZlogQ( P dirn- L()HH )> <R)
< Pr|log, +% (IL{)H H)> <R>
< A

VR ) H) )
Pri{log, | 1 + =—~r— 2(HH) <R
|\ N

= Pr|(log, 1+—p—itr(HHH)><R>

NM (%)
= o (i) < () ()2
- P[] -

where tr (A) denotes the trace of A, and P(z,a) is the normalized incomplete gamma
function defined as P(z,a) = F(a fo e~le=udy, z > 0.

By using the power series expansion of P(z,a) [44, p. 262]

a_—x = z"
P(CL‘,a) =Ire Zor—(a—m, (210)

and letting x — 0, we have P(z,a) — eEsy) +1 As such, the expression in (2.9) can be

approximated at high SNR as

2R _ 1 (M\NM M
P[ = (L> . ,NM}ka (2.11)
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where

()™
0~ (NM)!

Expression (2.11) suggests that the diversity order is maintained with antenna
selection for any N, M, and L. However, this expression cannot be used to quantify
the outage probability simply because the bound is too loose. This motivates us to

derive another upper bound on the outage probability which is very tight.

2.3.2 Upper Bound on the SNR Degradation

Deriving an explicit upper bound on the SNR degradation seems very difficult to
accomplish. As an alternative, we follow the following approach to derive an upper
bound which can be evaluated numerically to accurately quantify the degradation in
SNR. First, we derive a lower bound on the outage probability for any number of
selected antennas, 1 < L < M. Second, we show that the discrepancy between the
actual outage probability and this lower bound increases with L. (This discrepancy
is zero when L = 1 and reaches its maximum when L = M.) Lastly, the final upper
bound is obtained by adding the maximum discrepancy to the lower bound, which
is essentially equivalent to shifting the lower bound to the right by the maximum
discrepancy (in dB). As we will show later, the resulting upper bound is quite tight

for any number of selected antennas.
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Lower Bound on the Outage Probability

When the best L out of M receive antennas are selected, the outage probability is

given by

P, = Pr (Zlog2 (1 + N,\ ( selHjQ)) < R) . (2.12)

i=1

For a concave function x (t), we have [43, Appendix B|

R <Z ait,-) 2 Zam (t,) N (213)

where o; > 0 and >, a; = 1. Clearly, equality holds when all ¢; are equal or when
the sum has only one term. Note that log, (1 + Jj%t) is a concave function in £. As

such, let & (t) = log, (1 + £t) and o; = 1/L. Consequently,

L
Zlog2 (1 + %/\i (Hsele}il)) < Llog, ( +57 Z X (HeHE, )
=1

1

Substituting (2.14) into (2.12) yields

p1
P > Pr <L log, <1 + Nzt’f” (Hsengt)> < R)

= Pr (tr (HHE) < (28/F - 1) %) . (2.15)

Since H o, HE e 15 @ principal submatrix of HH H_ the trace of HyqHH se; Will be less
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than (or equal to) the sum of the largest L diagonal entries in HH H, Let us assume,
without loss of generality, that the diagonal entries of HH¥ are sorted from smallest
to largest, i.e., X1.pp < Xop < -+ < Xpm, where Xi.pr denotes the ith diagonal
entry of HHH after sorting. (Note that X; for i = 1,2,... , M are Chi-square rvs

each with 2V degrees of freedom.) As such, (2.15) can be further lower bounded as

M
Pser > Pr ( > Xem < (28 -1) E) : (2.16)

i=M-L+1 p

When L = 1, equality holds in (2.16), and thus the lower bound overlaps with the

exact outage probability. Using [45, p. 9], we have

Psel = Pr (XMM< (2R—1)E

- {P((zR—U}—V-,N)] . (2.17)

Maximum Discrepancy Between the Lower Bound and the Exact Outage

Probability

It is clear that increasing the number of terms in (2.14) will lead to greater discrep-
ancies. Thus, the maximum discrepancy occurs when all the M receive antennas are
used. In this section, we derive an upper bound on this ‘maximum’ discrepancy. In
[43, p. 466], it is shown that the function f(A) = logdet (A) is strictly concave on

the convex set of positive definite Hermitian matrices A of square dimension. Armed
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with this result and that given by (2.13), we have

log det (Z a,'Ai> > Z a; log det (4;), (2.18)

where o; > 0, >, o; = 1, and the matrices A; are all positive definite Hermitian.

Let W = JI%HHH and A = I+ W where I} is the identity matrix of size M x M.

Now define
M-1 7 Wii
M M
M=1 5 Wi-14
A
N M M M M
Al —2"(,UL~ e —2—w;~“_1,i Mw,-i —i-w,-ﬂ-ﬂ -Q—w,-M )

M, M 2.19
2 Wigt1  Fr—1 (2.19)
M, *x M
2 Wim M—1 }

and let o; = 7\1/7’ where w;; represents the (i, j)th entry of W. Consequently, A =

S M a;A;. Using (2.18) and (2.19) yields

M
10g2 det (A) > Z o; 10g2 det (A,)

=1
1 & MM 1 MM 2

= =S logy |y — = 5 | (220
M; g2 (M_l)M—l 4(M_1)M_2;! .7| ( )

When N > M, (2.20) is dominated by the first term inside the log function. In such
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cases, (2.20) can be simplified as

1 < MM
log, det (4) > — log, | —————wy
0gy ae ( ) - M; 82 |:(M_1)M—1 :|

) STEN {(H )] e

Furthermore, when N > 3, the entries w;; will approach their arithmetic mean, and

M % 1 M 1
<H wii) ~ M Zwii = Mt’l” (W) . (222)

Hence, (2.21) can be further simplified as

log, det (A) > (M - 1)log, (Mj\f[_ 1) + log, (tr (W)), (2.23)

and thus the outage probability for the full complexity system can be upper bounded
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as

Pfull = Pr (10g2 det (A) < R)

IA

Pr ((M — 1) log, (%) + log, (tr (W) < R)

= Pr (tr (W) < 28 (%}—1)%1)
- P (tr (HEH) < 2" (%)M_l %)

- P <2R (M]V; 1>M—1 %,MN) . (2.24)

By combining the upper bound (given by (2.24)) and the lower bound (given by

(2.16) when L = M), it is easy to see that the maximum discrepancy (when L = M)

is given by

oR M—1\M1
g=101og10{(2R/M_1)M< 7 ) }dB. (2.25)

Upper Bound on the Outage Probability

Combining (2.16) and (2.25) yields an upper bound on the outage probability with

receive antenna selection, which is given by

Y ri o NL
Pt <Pr| > Xim < (2%F-1)—4], (2.26)

i=M—-L+1 p

3Expression (2.24) is a true upper bound when N > M. It also works very well when N < M
and for small values of NV, as we will demonstrate later.
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where § = 10¢/19. Although (2.26) is not in closed-form, it is easy to evaluate numeri-
cally and it yields a very tight upper bound on the SNR degradation for any number
of selected antennas. We remark that this upper bound is a true upper bound for
N > M > 3, as was assumed throughout the derivation that led to (2.25). However,
this upper bound still yields very accurate estimates of the SNR degradation even
when the constraints on the values of N and M are severely violated, e.g., N = 2 and

M =8.

2.4 Asymptotic Behavior of the Outage Probabil-

ity with and without Antenna Selection

2.4.1 Full Complexity System

The limit phenomenon of the outage probability for MISO systems is analyzed in [10].
In this section, we extend the results in [10] to MIMO systems, i.e., to an arbitrary
number of receive antennas, M. The analytical approach used in {10], however, is
cumbersome to extend to the more general case. Altefnatively, we use the Gaussian
approximation result for the random mutual information given by (2.5) to carry out
our analysis.

From (2.5), we can see that when N — oo, the ratio (Mp?logse) / (N(1 + p)?) —
0. As such, the pdf of the mutual information, denoted by fz(z), will shrink to a spike

at £ = Mlogy(1 + p). If the information is transmitted at rate R = M logy(1 + p),
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the outage probability, Psu = Pr(Z < R), will be recognized as the area under
the left half-lobe of the curve fr(x), which gives 0.5, as expected. In the cases when
R < Mlogy(1+4p) or R > M logy(1+p), Poys will be 0 or 1, respectively. In summary,

when N — o0, we have

Prun = < = L;:—l . (2.27)

N

1 v< 221

It is clear that the result in [10, Eq. (11)] is a special case of (2.27) when M = 1.
Thus, (2.27) reveals the limit phenomenon of the outage probability for an arbitrary

number of receive antennas, M > 1.

2.4.2 Antenna Selection System
L=1

By expressing P(z,n) for integer n as [44, pp. 262-263)

P(z,n)=1—e,-1(z)e", (2.28)
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where e,_1(z) = Sp—; 2 /k!, and having

)
0 z>1
en(TN) nooo
ezn - < % x=1 ’ (229)
1 0<z<1
\
the threshold in (2.17) can be expressed, when N — o0, as
{
2R_
0 7> 5 1
M _
Psel - ﬁ (%) v = 2RR1 . (230)
2R
\ 1 v < Rl

Eq. (2.30) suggests that the threshold when L = 1 is the same as if the receiver
is equipped with only one antenna (M = 1, see (2.27)). However, the significance of
having multiple antennas and selecting the best one of them lies in the rapid decrease

in the outage probability as a function of SNR.

L>1

Due to the law of large numbers, when N is very large, all the entries of HH? /N
tend to 0 except for the M diagonal entries, resulting in somewhat a diagonal ma-
trix. Furthermore, when N — oo, the diagonal entries of HH¥ /N all converge to
something very close to 1. In this case, all the largest L out of M diagonal entries
in HH*Y are approximately the same, and each one of them can be recognized as the

largest one out of M — L + 1 Chi-square rvs. Hence, the outage probability, when
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N — o0, can be written as

L
P H
P = Pr logy |1+ =i (Hseleel) <R)
<z=1 2( N )

N
= Pr <XM—L+1:M—L+1 < (2R/L —1) 7)

R/L_ M-L+1
= [P<——2 = 1%7_’]\,)] . (2.31)

Consequently the threshold phenomenon for the outage probability is expressed as

)
oR/L_y
0 v > =L

Paar = (1)M7F = 2o (2.32)
2R/L 1
{ 1 V<=

When L = M, (2.32) becomes (2.27), and when L = 1, (2.32) becomes (2.30),
which corroborates our result. Also, (2.32) suggests that the threshold for the case
when the receiver selects the best L out of M antennas is the same as if the receiver
is equipped with M = L antennas and is using all of them. This phenomenon can
be explained as follows. When N — oo, the fading effect is averaged out in the
space dimension, and all the M receive antennas essentially receive the same signals.
Thus, selection does not improve the performance. However, having infinite transmit

antennas is hypothetical. For a realizable N, antenna selection gives a larger diversity

order, which is NM rather than LM.
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2.5 Numerical Results

I

—— Empirical, L=4
—+— Lower bound, L=4 |]
-+- Upper bound, L=4 |
—6— Empirical, L=2

-0~ Lower bound, L=2
--Q- Upper bound, L=2 H
—A— Empirical, L=1 ]
-A— Lower bound,

=1 ]
- Upper bound, L:

1]

' 0
rho [dB]

Figure 2.2: Lower bound (2.16) and upper bound (2.26) on the outage probability,
for N=M =4, L =4 (plus sign), L = 2 (circle) and L =1 (triangle-upward).

In Fig. 2.2 ,we plot the outage probability as a function of p in dB for three
schemes: full-complexity scheme with N = M = 4 (solid), antenna selection scheme
with N = M =4, L =2 (dashed) and N = M =4, L =1 (dotted). For each of these
schemes, we also plot the lower and upper bounds presented in (2.16) and (2.26),
respectively. We observe from the figure that all curves corresponding to the same
N have the same slope, suggesting that they have the same diversity order. We also

observe from the figure that the discrepancy between the lower bound and the exact
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outage probability increases with L. When L = 1, the lower bound overlaps with the
empirical curve, which is explained by (2.17). When L = M, the discrepancy reaches
its maximum, which is upper bounded by ¢ given by (2.25). Specifically, when L = 1,
the discrepancy is 0 dB. It increases to 0.1 dB when L = 2. When L = M = 4, the
discrepancy is the maximum, which is 0.36 dB. Using (2.25), we find that ¢ is 0.47
dB. This is clearly a very tight upper bound on the discrepancy in SNR. Based on
¢, we plot the upper bound on the outage probability by shifting the lower bound
by 0.47 dB to the right. We see that the resulting upper bound is very close to the

empirical.

N=2,M=8,R=1

T T 3
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—+— Lower bound, L=8 |
-+ Upper bound, L=8 |4
—— Empirical, L=2 J
-0— Lower bound, L=2

~-0- Upper bound, L=2 H
.| =& Empirical, L=1 3
*.| &— Lower bound, L=1 |1
A Upper bound, L=1 |]

- v
=1 .
a-o 3|-\
v
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g v ]
F \
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\
\ l..
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A
\ ‘.A
v
\
\ B
1 L . +—++ b BB
12 -10 -8 6 -4 2 0 2 4

rho [dB]

Figure 2.3: Lower bound (2.16) and upper bound (2.26) on the outage probability,
for N =2,M =8, L =8 (plus sign), L =2 (circle) and L = 1 (triangle-upward).
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In Fig. 2.3, we plot the lower and upper bounds on the outage probability when
N = 2 and M = 8, which severely violates the assumptions we used in deriving
(2.21) and (2.22). When L = 8, which is the worst case, we see that the discrepancy
between the upper bound and the empirical curve is about —0.2 dB. When L = 1,
the discrepancy increases to about 0.25 dB, which is also very close to the empirical
value. This clearly suggests that the derived upper bound yields, even for extreme

cases, very close approximations for the loss in SNR due to antenna selection.
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Figure 2.4: Outage probability comparison for a full-complexity system (solid) and
antenna-selection systems: L = 2 (dashed) and L =1 (dotted).

In Fig. 2.4, we plot the outage probability as a function of p in dB for M = 4
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(solid), M =4, L = 2 (dashed) and M =4, L = 1 (dotted). For each of these schemes,
we consider three values of N, namely, N = 10, 100, and 1000. We observe from the
figure that all curves corresponding to the same N have the same slope, suggesting
that they have the same diversity order. We also observe from the figure that the
asymptotes for the above mentioned schemes are placed at p = —7.23 dB, —3.83 dB

and 0 dB, respectively, which are given by (2.27), (2.32) and (2.30), respectively.

(a) M=4,R=1
1 T T T T 1 T T T
-©~ rho=0.18
08k ~¥— rho=0.1892 [©
' W %~ rho=0.20
‘_O.Sa(s\*‘ " ” . -
5 * * * * * ¥ *
a A =
04l Asymptote(Pou‘ 0.5) |
02} 4
0 1 S 1 l 1 1 1 I
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N
(b) M=4,1=2,R=1
0.7 T T T T T T T T
~—©— rho=0.38
06 —¥— rho=0.4142 [
—7— rho=0.45
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D4F -
3
®o03f 1
02g . —
0-1<F\_9\?\F Asymptote ( P out0-128 )]
0 L ¥ v — 5z &
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N

Figure 2.5: Limit phenomenon of P, versus N for (a) R = 1,M = 4. (b) R =
L,M=4,L=2.

In Fig. 2.5, we plot the outage probability as a function of the number of transmit

antennas. We observe from Fig. 2.5(a) that if p > 0.1892, the outage probability goes
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to 0 as N — oo; if p < 0.1892, the outage probability goes to 1; and if p = 0.1892,
the outage probability will be 0.5, which confirms our result given by (2.27). Note
that the limit 0.1892 is equivalent to —7.23 dB on the log scale, which is the same
asymptote shown in Fig. 2.4 (solid line). Fig. 2.5(b) manifests a similar threshold
behavior as that presented in Fig. 2.5(a) but with antenna selection. The limit in
this figure appears at p = 0.4142, and the corresponding outage probability moves
down to 0.125, which is given by (2.32). Note that the limit 0.4142 in Fig. 2.5(b) is
equivalent to —3.83 dB on a log scale, which is consistent with the asymptote given
in Fig. 2.4 (dashed line).

Figs. 2.6 compares the limit behavior of the outage probability for the cases
M =1 and 2 when L = 1. We observe that both cases have the same asymptote,
which is placed at p = 0 dB. However, the outage probability for the M =2,L =1
case has a sharper slope compared to that of the M = 1,L = 1 case, as expected.
We also observe from the figure that the gap between the outage probabilities for the
two schemes decreases as the number of transmit antennas increases. Both curves
essentially overlap when N — oo. This suggests that having multiple antennas at the
receiver and selecting a subset of them does not help much when N — oo. It does

help, however, for practical values of V.
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Figure 2.6: Limit phenomenon of outage probability when the best antanna is selected
at the receiver, for R=1, M =1, L =1 (solid), and R=1, M =2, L =1 (dashed)
as a function of N.

2.6 Concluding Remarks

In this chapter, we studied the outage probability for MIMO systems with receive
antenna selection. We derived an upper bound on the outage probability with antenna
selection and showed that the resulting diversity order is the same as that of the full
complexity system. Motivated by the fact this upper bound is loose, we derived
another upper bound on the outage probability which can be used to accurately
quantify the loss in SNR due to antenna selection. Furthermore, we presented a

thorough investigation of the limit behavior of the outage probability for MIMO
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systems with and without receive antenna selection. In particular, we derived closed-
form expressions for the threshold for the outage probability as the number of transmit

antennas tends to infinity.
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Chapter 3

Analysis of the Outage Probability

Over Correlated Fading Channels

3.1 Introduction

In this chapter, we study the outage probability for MIMO systems in the presence
of spatial correlation at the transmitter and receiver. In our study, we adopt the
correlation channel model presented in [35]. We also assume that the channel state
information (CSI) is perfectly known at the receiver, but not at the transmitter.
Thus the transmitted power is distributed equally among the transmit antennas to
maximize the channel capacity. We derive explicit bounds for the outage probability
and show that the diversity order is the product of the ranks of the transmit and
receive correlation matrices. We also derive a closed-form expression for quantifying

the degradation in SNR due to the presence of correlation. We extend our study
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of the outage probability to MIMO correlated fading channels with receive antenna
selection where selection is based on maximizing the channel capacity. That is, for
a given M receive antennas, we assume that the receiver selects the best L antennas
that maximize the channel capacity. We derive explicit upper bounds for the outage
probability with antenna selection and show that the diversity order is the same as
that of the full complexity system. We also derive an expression that accurately
quantifies the degradation in SNR due to antenna selection. We lastly present several
numerical examples that validate our analysis.

The remainder of the chapter is outlined as follows. In Section 3.2, we introduce
the system model and review some existing results. The outage probability for MIMO
correlated fading channels is studied in Section 3.3. The outage probability for MIMO
correlated fading channels with receive antenna selection is analyzed in Section 3.4.
Several numeral examples are discussed in Section 3.5. Finally, Section 3.6 concludes

this chapter.

3.2 System Model and Preliminaries

3.2.1 System Model

The system model is depicted in Fig. 3.1, which models a wireless communication

system equipped with NV transmit antennas and M receive antennas. The received
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Figure 3.1: System Model. (Correlated fading channel)

signal at time index k, in vector notation, is given as

ylk] = Hx[k] + n[k], (3.1)

where H is defined as an M x N matrix, with the (4, j )th entry, denoted by h;;, mod-
eling the fading between the i** transmit antenna and j** receive antenna, x[k] is a
N x 1 vector representing the transmitted signal array at time k, and n[k] isa M x 1
vector representing the AWGN noise samples at time k. The entries of H are mod-
eled as complex Gaussian random variables with zero mean and unit variance. The
elements of n[k] are independent and identically distributed (iid) complex Gaussian
random variables with zero mean and variance Ny/2 per dimension. We also assume
that the fading coefficients (elements of H) are constant over the entire frame and
vary independently from one frame to another, which is essentially the case for quasi-

static fading. Furthermore, we assume that the CSI is known exactly at the receiver,
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but not at the transmitter.
When spatial correlation is present at both ends of the wireless communications

link, matrix H can be expressed as [35]

H = RY*GR}* (3.2)

where R; and R, are the transmit and receive correlation matrices, respectively, and
the entries of G are iid complex circular symmetric Gaussian random variables with
zero mean and unit variance. Let w; denote the rank of K, and w, denote the rank

of R,. It is clear that R, and R, are Hermitian matrices.

3.2.2 Mutual Information and Outage Probability

Since the CSI is not available at the transmitter, the total transmit power, denoted
by P, has to be distributed equally among the transmit antennas to maximize the

channel capacity. In this case, the mutual information of a MIMO channel is given

by [1]
T = logy det(Inr + %HHH) (3.3)

where p = P/ (NyB) is the SNR at each receive antenna, where B is transmission
bandwidth. Note that the mutual information is a random variable that is a function
of H. In quasi-static fading channels, the fading coefficients remain constant over the
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whole frame. Thus, the mutual information can not be averaged using an ergodic
measure. In this case, when the information transmission rate, denoted by R, is
greater than the instantaneous mutual information, an outage event occurs. The
probability of such an event is normally referred to as outage probability, which is

given by

Pot =Pr(Z < R). (3.4)

3.3 Outage Probability for the Full Complexity

System

3.3.1 Definitions and Simple Results

In this section, we introduce some simple results that we will need in subsequent

sections.

Definition 8 Let A = [a;;] € Ruxn. Define Ar = [pi;] € Ruxn as the indication

matriz of A where

0, A = 0
Hij = .
1, Qg5 $é 0

Lemma 2 Let Dy = [d;;] € Roxn such that d;j > 0 when i = j = k and 0 otherwise
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fork e {1,... ,n}. Also, let W = [w;j| € Cpxn. Then

det (W + Dy) > det (W)

Proof.  Using Laplace expansion by minors, the determinant of A, denoted by

det(A), can be expressed as

n

det (A) = Z (—1)i+j ai; det (Aj;),

i=1

where A;; is formed by eliminating row ¢ and column j from A. Then we have

det (W + Dy) = det (W) + (—1)* diy det (Wik)

= det (W) ~+ dgy det (Wkk) .

Since W is Hermitian, Wiy is also Hermitian. Thus, dg; det (Wy) > 0 and

det (W + D) > det (W). B

Lemma 3 Let D = [d;;] € Ruxn be a diagonal matriz with non-negative diagonal

entries, and let W = [w;;] € Cpxy be a Hermitian matriz. Then

det (W + D) > det (W) .
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Proof. Using Lemma 1 above, we have

det (W +D) = det <W+ im)

k=1
n—1

> det (W + Z Dk)
k=1

> det (W).

Theorem 4 Let D = [d;;] € Ryuxn be a diagonal matriz with non-negative diagonal

entries, and G = [g;;] € Crxn be a full rank matriz. Then
det (I, + mpGD;G?) < det (I, + GDG¥) < det (I, + npGD;G")
(3.5)

where mp and np are the smallest and largest positive diagonal entries in D, respec-

tively, I, is the m X m identity matrix and D is the indication matriz of D.

Proof. We first prove the inequality det (1,, + mpGD;G¥) < det (I,, + GDGH).
Without loss of generality, assume that rank(G) = m. Define W = G¥G. Using the

determinant identity det (I + AB) = det (I + BA) and det (AB) = det (A) - det (B),
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we have

det (Im + GDGY) = det (I, + DW)
= det (W) -det (W' + D)

= det (W) - det (W—l + mDD[ + D*) ,

where D* = D —mpDj is a diagonal matrix with non-negative diagonal entries. Ob-
viously, W= +mpDy is Hermitian. From Lemma 2, we know that
det (W™ +mpD; + D*) > det (W1 +mpDy). Since W is Hermitian, we have

det (W) > 0. Hence,

det (I, + GDGY) > det(W)-det (W' +mpDy)

= det (Im + mDGDIG’H) .

Following the same approach, one can easily show that

det (I, + GDGH) < det (I, + npGD;GH). W

Theorem 5 Let D = [d;;] € Ry« be a diagonal matriz with non-negative diagonal

entries, and let G = [gi;] € Cnxn be a full rank matriz. Then

det (I + GD;GH) = det (I, + GpGE)

= det (Lrank(p) + G5Gp) , (3.6)
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where Gp is an m X rank (D) matriz formed by eliminating the n —rank (D) all-zero

columns from GDj.

Proof. Without loss of generality, assume that d;; > 0 for 1 <1 < rank (D) and 0
otherwise, i.e., all positive values in D appear at the first rank (D) diagonal entries

and the rest are zero.! Consequently, we have

GH
I, +GD,GH = Im+[GD 0] °
0

= I+ GDGg,
and

det (I, + GD;G") = det (In + GpGp)

= det (Ira'nk(D) + GgGD) .

3.3.2 Transmit Correlation Model

To study the outage probability for MIMO correlated fading channels, we start with
a simple case, that is, when the correlation is present only at one end of the com-

munication link, i.e., R, = Ip; or R; = Iy. Since they have the same effect on the

LIf the positive values in D appear randomly along the diagonal, we can interchange rows and
columns to put them at the first rank (D) diagonal entries, which does not change the determinant.
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mutual information, we consider R, = Ips. Using singular value decomposition, we
have R, = CD;CH, where C is unitary and D; is a diagonal matrix with non-negative

diagonal entries. Consequently, the outage probability can be expressed as

— P orpgH
Pou = Pr(logydet (I + £ HH )<R)

P H ~H
log, det (L + £GOD.C7G )<R)

C

— Pr <10g2 det (IM + %GRtGH) < R)
(toga det
(togs et (

I + ]ﬁVGDtGH) < R) . (3.7)

The last line of (3.7) follows immediately from the one before it because GC and G
have the same eigenvalue distribution since C' is unitary. Denote the smallest and
largest positive diagonal entries of D, by m; and n,, respectively, and denote D, as
the indication matrix of D;. (Note that D, is deterministic.) Using Theorem 4 above,
we can bound the outage probability in (3.7) as
on
Pr (log2 det (IM + WtGDItGH) < R) < Pout
pmy H
<Pr (log2 det (IM + TGD&G ) < R) . (3.8)

Following Theorem 5, (3.8) can be simplified as

Pr (10g2 det (th + %GtHG’t) < R) < Pout

<Pr (1og2 det (Im + %G{f Gt) < R) . (3.9)
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where G; is an M x w; submatrix of GDj, formed by eliminating the N — w; all-zero
columns from GDy,.

The lower and upper bounds in (3.9) suggest that the outage probability for an
M x N fading channel with transmit correlation can be recognized as the outage
probability for an M x w; independent fading channel with a scaling of the SNR that

ranges between pm,; and pny, i.e.,

Pt = Pr <log2 det (th +Lop Gt> < R) | (.10)

where pm; < p < pn;. Obviously, the diversity order is w; M. Similarly, when only
receive correlation is present, one can easily show that the diversity order of the

outage probability is Nw,.

3.3.3 Combined Transmit and Receive Correlation

Let R, = CyD,CH and R, = C,D,CH, where C; and C, are unitary matrices, and D;
and D, are diagonal matrices with non-negative eigenvalues. The outage probability

is then given by

Powt = Pr (1og2 det (IM + ]—’\’,-HHH) < R)
= Pr(logydet (I + £ (RV?G) R, (RY?G)") < R)

= Pr(logydet (Iy + £ (D¥*G) D (DY?G)") < R).  (311)
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Denote Dj, and Dj, as the indication matrices of D, and D,, respectively. Using

Theorem 4, the outage probability in (3.11) can be bounded as

Pr (logy det (I + 2 (DY2G) Dy, (DY*G)") < R) < Pou

< Pr (logy det (I + 2 (DY2G) Dy, (DY*G)™) < R)  (312)

where m; and n; are the smallest and the largest positive diagonal entries in Dy,
respectively.
Applying Theorem 4 to (3.12) again but now with respect to D, yields

PNy
N

Pr (logy det (I + 25 D1, GD,G" Dy, ) < R) < Pou

PNy

<Pr (log2 det (IM + DITGDAGHDIT) < R) . (3.13)

where m, and n, are the smallest and the largest positive diagonal entries in D,,
respectively.
Following Theorem 5, (3.13) can be simplified as

PNy
N

Pr (1og2 det (Iw, + Gt,rGfr) < R) < Pt

Py
N

< Pr <1og2 det (Iw, + Gt,G{j’r) < R) . (3.14)

where G, is a w, X w; submatrix of D; GD,, formed by eliminating the M — w,
all-zero rows and the N — w, all-zero columns from D; GDj,. It is clear from (3.14)

that diversity order of the outage probability with transmit and receive correlation is
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WeWy.

3.3.4 Degradation in SNR due to Correlation

In this section, we derive an expression for the loss in SNR due to the presence of
correlation. At sufficiently high SNR, the instantaneous mutual information can be

approximated as

log, det (IM + Y%R,GRtGH)

f[A,- (Rr)]

1 1

LHAj(Rt) Gi,GI |, (3.15)
=1

Wr

p
~ logydet | I, +—
0g, de T+N

where A\, (A), t =1,2,... ,rank (A) are the eigenvalues of A. By comparing the last
line of (3.15) with the instantaneous mutual information for a w, X w, independent

fading channel, which is given by

log, det <1w, + ﬁGt,TG{f,)
Wy !

it is easy to see that the loss in SNR due to the presence of correlation is approximated

by

1 1

[’H Aj (Re)

wr wi

N |H
10logyq o [H,\ (R,) dB. (3.16)
i=1

As we will demonstrate later, this expression is accurate for all correlation levels and

it holds for full rank and rank deficient correlation matrices.
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3.4 Outage Probability with Receive Antenna Se-

lection

In this section, we study the outage probability for MIMO correlated fading channels
with antenna selection at the receiver. That is, the case when the receiver uses only
L out of the available M receive antennas, where 1 < L < M. Clearly, there are
(AL/I) subsets to choose from, but what we are interested in the one that results in
maximizing the channel capacity. The selected channel matrix is denoted by H,,
which is formed by selecting the L rows from H that maximize det (I L+ §HeaH ;Z,)
We first start with the case L = 1, i.e., when the receiver selects the best antenna,

and then generalize our analysis to an arbitrary number of selected antennas.

3.4.1 When the Receiver Selects the Best Antenna: L =1
Receive Correlation Model

Suppose R; = Iy, i.e., receive correlation only. Thus,

H = RY*G. (3.17)
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Let G = [gij] € Cpxy and Ri/z = [Tij] € Ryxm. Then

S TGE o TIRGE2 o TikGEN
M M M
He Ekzl T2k k1 Zk:l rokgk2 - Zkzl T2kGkN . (3.18)
Zkle TMEGK1 EkM=1 TMkGr2 Zkle TMEGEN

Denote the 5" row in H by S;, i.e.,

Zkle TikGk1 chvil TikQk2 - Zkle TikGkN | - (3'19)
Without loss of generality, let us assume that
ISUI® 2 1Sall* 2 -+ > [|Swll* (3.20)

Then the outage probability when the best receive antenna is selected can be written

as

Pse = Pr (log (1 +£ |l81||2) < R)
= (ﬁ (HS I < (2R -1) %)) : (3.21)

b
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Now we derive an expression for ||:S;|%>. Denote the (i, 7)™ entry in H by s;; where

M
Sij = Zrikgkj- (3-22)
k=1

Accordingly, ||Si||? is given as

N
2 2
IS = ) Isij]

M
o> lrallgwl?

N
j=1 k=1
M

N

= Z|Tik|2Z|gkj|2
k=1 j=1
M

= > lral* X, (3.23)
k=1

Q

where X, = Ejvz 1 |gkj|2, k =1,...,M are iid Chi-square random variables (rvs),
each with 2N degrees of freedom. The approximation used to arrive at the second
line of (3.23) is needed to simplify the analysis without which it is not possible to
proceed further in the analysis. To justify this approximation, we plot in Fig. 3.2 the
cumulative distribution function (cdf) of the random variable ||S;||* with and without
the approximation. It is evident from the figure that the difference between the cdfs
is very small, which justifies the approximation.

For notation convenience, denote ||S;||* by ¥;, for i = 1,... , M. From (3.21), we
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odf of [IS || (N=M=3, p =0.5)

—— Empirical
— — Approximation

Figure 3.2: Cumulative distribution function of ||S;||* with and without the approxi-
mation (see Eq. (3.23)).

have

Peer = Pr <ﬁ (Yi <(2f-1) ﬂ))

=1 p
N /”./fyl,...,YM (Y- ym) dyr - dym, (3.24)
o

o4



where the integration support region, denoted by @, is given by

(
Y1<(2R—1)%

=/ : (3.25)

Yu < (2R— 1)

=z

\

Denote the set of {Y; | ¢ =1,...,M} by . Since § is of rank w,, we may find a
rank w, subset of (2, denoted by © = {Yaj li=1,... ,wr}, suchthatY;,i=1,... , M
can be represented by the linear combinations of Y,,, j = 1,... ,w,. Thus, ® is

contained in the region ® where

(

Yo, <(2f-1)Z

| You, < 2f-1)7%
4

M 2
> ket [Tank]” Xie < (2R - 1) %

= g . (3.26)

M
. Zk=1 |r‘lwr’C

X< (2R-1)X

Obviously, @' is simply an expansion of ® which results from dropping off M — w,
restrictions from (3.25).

Since the set {Y},j l7=1,... ,wr} is of rank wy, there exists a subset of {X}, | k =
1,...,M}, denoted by {Xs, | j =1,... ,w,}, such that |7‘ajb,-|2 >0forj=1,...,w,.

Note that Xy > 0. Thus, by dropping off M — 1 summation terms from (3.26), ®' is
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further expanded into the region ®", which is given by

(

2 N
|ra1b1| Xbl < (2R - 1) 3
¢ll - <
‘Ta’wrbwr 2wa1‘ < (2R - 1) %
\
4
R
Xbl < (i_l)QL
|Tﬂ161|
R_
war < |(2_1)_.i&2.
\ Tawrbw'r
Since ® C ® C ®", the outage probability is upper bounded as
P = /"‘/le,...,YM Y, ---ym)dyn -+ dym
®
< / . / P o, (@1r s @) ds - - du. (3.28)
@/I

Note that X, j = 1,... ,w, are iid Chi-square rvs each with 2N degrees of

freedom. Thus, (3.28) can be simplified as

Pet < HP( )NN>

p |7'an |
@-1)n \]"”
< [P <——p ; N)] (3.29)

where ( = _mir% (Irijlz) and P (z,a) is the normalized incomplete gamma function
1'1]=
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defined by

1
= — > 0.
F(a/ 220

0

Using the power series expansion of P(x,a)

oo

a_ . —T T
P(z,a) = z°% ;m,

n

we have at high SNR

where

(3.30)

(3.31)

(3.32)

It is clear from (3.32) that the diversity order of the outage probability with receive

correlation when the best antenna is selected is Nw,, which is the same diversity order

of the full complexity system with receive correlation.
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Combined Transmit and Receive Correlation

We have shown in (3.12) that for the full complexity system with correlation being

present at both ends, the outage probability is upper bounded as

Pout < Pr (log2 det (IM + 2% (pi2G) b, (D}/2G)H) < R) .

N
(3.33)
Using Theorem 5, (3.33) can be simplified as
Py H
< —_ .
Pout < Pr (1og2 det (IM + £, H] ) < R) , (3.34)

where H, is an M X w; matrix formed by eliminating the N — w, all-zero columns
from Di/2GD1t.

Obviously, H, models an M x w, fading channel with receive correlation. Since we
only perform column operations on (3.33) to arrive at (3.34), this does not influence
the receive antenna selection. Hence, selecting the best receive antenna from H would
be equivalent to selecting the best receive antenna from H,. Using the result given

by (3.29), we can upper bound the outage probability as

P (M’Wﬂ T , (3.35)

Psel <

PG

M
where ¢ = II%LI} ( |r,-k|2) is a constant. At high SNR, the term on the right hand side
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of (3.35) can be approximated as

ng—QN)"” wr

(e - (5

—; o pnr (3.36)

The expression in (3.36) suggests that the diversity order of the outage probability for
MIMO systems with joint transmit-receive correlation when the best receive antenna

selected is wyw,, which is the same result obtained for the full complexity system.

3.4.2 When the Receiver Selects the Best L Antennas:

Obviously, the diversity of the outage probability with receive antenna selection is
lower bounded by that when only the best receive antenna is selected and upper
bounded by the performance of the full complexity system, i.e., L = M. We have
already shown that a diversity order of w;w, is achieved by selecting the best receive
antenna. Since the diversity order can not be higher than w;w,, we claim that the
full diversity is maintained with antenna selection for an arbitrary number of selected

antennas, L < M.

3.4.3 Degradation in SNR due to Antenna Selection

In this section we derive an expression for approximating the loss in SNR due to

antenna selection. For a full complexity system, the instantaneous mutual information
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can be approximated as (see (3.15))

T = log,det (IM+%R,GRtGH)

ﬁ s (R»} LH N (Re)

i1=1

~ logydet [ I, +§Vl Gt,GfT

1
w

= Zlogg 1+&

ki=1

M (GirGEL) | (3.37)

where p; is the SNR and A, (4), u = 1,2,... ,rank (A) are the eigenvalues of A.
When the best L receive antennas are selected (in terms of maximizing capacity), the

instantaneous mutual information can be approximated as

Zsee = logydet ([L + £ N (Rl/2) ,GRtGH (RI/Q)H)

Wr,sel rsel “’L
~ log,det Iwr,sel % H Ay (R sel) l]__[ A, (Ry) seleel
io=1
W, sel Wr, sel T sel
= Z log, 1+@ H A, ( sel} LH A, (Ry) /\k2 (GoaGE)) | (3.38)
ko=1 ig=1

H
where pp is the SNR, R, ;o) = (R}/ 2) z (Ry 2) is the best Hermitian submatrix of

sel

R, that has the largest determinant, and w; 4 is the rank of R, ,;. Note that

Wy, sel Wy Wy, sel /’wr
I1 M. (GeaGE) > (H Ak (Gt,,for)) . (3.39)

ka=1 k1=1
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Thus, by comparing (3.37) and (3.38), we have

1
PN
_pz < Wy i1=1
f1 ~ Wr,sel [wﬂsel

i A, (R,,se,)}

i9=1

1 ’

and, consequently,

1
D ¥ wr
p2 S p1+ 10logyg Lr [Tz s () : (all in dB).

Wr,sel [HZT:{’I )\iz (Rrr,sel)] reet

(3.40)

From (3.40), we can see that the loss in SNR due to receive antenna selection in

correlated fading channels can be approximated by

1

)]
r__th=l . dB. (3.41)

wr,sel Wr,sel m

[H Ao (R,,,sel)}

io=1

10logyg

3.5 Numerical Examples

Ezample 1. In this example, we consider full-rank R; and R, where these matrices
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are drawn from the exponential correlation model given by [34]

U A
Pt 1 piv_?'
Rt=
AT
and _ _
I .
pr 1 '
R, =
et g

with 0 < p;, pr < 1. We assume N = M = 3, R =1, and we use two values of p; and
pr, namely, 0.1 and 0.5.

We plot in Fig. 3.3 the outage probability versus p in dB for the cases N .= 3,
M =3,L=1,2 3 with p, = p, = 0.1. We also plot in the same figure as a baseline the
outage probability for the N = M = 3 case with p, = p, = 0, i.e., independent fading.
We observe from the figure that all curves have the same slope, suggesting that they
have the same diversity order, which is 9 in this case. Note also that the degradation
in SNR due to correlation for the L = 3 case is 0.06 dB at P,,; = 107°, whereas
this degradation as predicted (3.16) is 0.0582, which are very close. Moreover, the
loss in SNR due to antenna selection is 1.2 and 4.0 dB for the L = 2 and L =1

cases, respectively, whereas these losses, as predicted by (3.41), are 1.73 and 4.74 dB,
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N=M=3, p t=pr=0.1, R=1
10" ¢ T T T T T
® — L=3
F —+- L=2
- L=1
— — N=M=3,independent

5 1 ! LN 1 I

rho [dB]

Figure 3.3: Outage probability for MIMO correlated fading channels with receive
antenna selection. (Exponential correlation model with M = N = 3, p; = p, = 0.1.)

respectively (all at P,y = 1075.)

The same experiment mentioned above is repeated for the case p, = p, = 0.5
and the results are plotted in Fig. 3.4. It is clear from the figure that the diversity
order is maintained with antenna selection. Furthermore, the degradation in SNR at
P,.: = 1075 due to correlation for the L = 3 case is 1.4 dB, and its corresponding
predicted value is 1.665 dB. As for the loss in SNR due to antenna selection, the losses
are 1.09 and 4.02 dB for the L = 2 and L = 1 cases, respectively, which are very close

to their predicted values 1.07 and 3.94 dB, respectively.
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N=M=3p =p =0.5,R=1
107 T T T T T

- M=N=3,independent |]

Figure 3.4: Outage probability for MIMO correlated fading channels with receive
antenna selection. (Exponential correlation model with M = N =3, p; = p, = 0.5.)

Ezample 2:

In this example, we consider the matrices used in the previous example with
p = pr = 1. Clearly, w; = w, = 1, which means they are rank deficient. The
simulation results are plotted in Fig. 3.5. We also plot in the same figure the results
for independent fading with N = M = 1, which we use as a baseline. It is clear from
the figure that the diversity order is maintained with antenna selection. Furthermore,
the degradation is SNR due to correlation for the L = 3 case is —4.82 dB, whereas

its predicted value is ~4.77 dB (both at P, = 1072 ). This result suggests that
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N=M=3, pt=pr=1, R=1

107 T T T —

=N
[l el el
oo
- N w

, independent |-

f
[
=z
L]
=
n

30

rho [dB]

Figure 3.5: Outage probability for MIMO correlated fading channels with receive
antenna selection. (Exponential correlation model with M = N =3, p, = p, = 1.0.)

the system with correlated fading is superior to that with independent fading. This
makes sense because in the correlated fading case there are three receive antennas,
whereas there is only one receive antenna in the independent fading case. With
antenna selection, the losses at P,,; = 1073 are 1.7 and 4.8 dB for the cases L = 2,
and 1, respectively. The predicted values for these losses are 1.76 and 4.77 dB.

Erample 3:
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N=M=3, R ¢ Rr rank-deficient, R=1
10 ¢ T T

— L=3
[ —+ L=2
¢ - L=1
— — 2*2independent

15

rho [dB]

Figure 3.6: Outage probability for MIMO correlated fading channels with receive
antenna selection. (Rank-deficient fading correlation)

In this example, we use

3 1 |
1§ 3
B=R=\%13%
1 3
—521-

Clearly, w; = w, = 2. The simulation results for this case for various antenna selection
scenarios are plotted in Fig. 3.6 along with the independent fading case with N =

M = 2. The same observation is made here; that is, the diversity order is maintained
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with antenna selection. Moreover, the loss in SNR due to correlation for the L = 3
case is —0.9 dB, whereas it predicted value is —0.93 dB. For antenna selection, for
the cases L = 1, and 2, the losses are 3.8 and 0.9 dB, which are comparable to their

predicted values 4.36 and 1.38 dB, respectively.

3.6 Concluding Remarks

We studied in this chapter the outage probability for MIMO systems over spatially
correlated Rayleigh fading channels. We showed that the diversity order of the outage
probability is simply the product of the rank of the transmit correlation matrix and
the rank of the receive correlation matrix. We also studied the diversity order of the
outage probability in the face of performing antenna selection at the receiver, where
selection is based on maximizing the channel capacity. We showed that the diversity
order with antenna selection is the same as that of the full complexity system. We
also derived expressions that can be used to accurately predict the degradation in

SNR due to the presence of correlation as well as due to antenna selection.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

For independent Rayleigh fading channels, we studied the outage probability for
MIMO systems with receive antenna selection. We derived an upper bound on the
outage probability with antenna selection and showed that the resulting diversity or-
der is the same as that of the full complexity system. We also derived another upper
bound on the outage probability which is tighter. Furthermore, we presented a thor-
ough investigation of the limit behavior of the outage probability for MIMO systems
with and without receive antenna selection. In particular, we derived closed-form
expressions for the threshold for the outage probability as the number of transmit
antennas tends to infinity.

We further extended our results to MIMO systems over spatially correlated Rayleigh
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fading channels. We showed that the diversity order of the outage probability is sim-
ply the product of the rank of the transmit correlation matrix and the rank of the
receive correlation matrix. We also studied the diversity order of the outage proba-
bility in the face of performing antenna selection at the receiver, where selection is
based on maximizing the channel capacity. We showed that the diversity order with
antenna selection is the same as that of the full complexity system. We also derived
expressions that can be used to accurately predict the degradation in SNR due to the

presence of correlation as well as due to antenna selection.

4.2 Future Work

Wireless communication is one of the most practical disciplines that works with ap-
plied science. From the beginning of our research, we bear in mind that our target
is to investigate the wireless communications for real-life applications. Based on this
thought, we started our work from the simplest case - independent fading model,
and later extended to the more realistic correlated fading model. Here, we list sev-
eral immediate extensions of our research that look especially attractive for future

exploration.
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4.2.1 Asymptotic Behavior of the Outage Probability for Cor-
related Fading Channels

In Chapter 2, we studied the asymptotic behavior of the outage probability over in-
dependent fading channels. Due to the limited research time, we did not investigate
the corresponding results over correlated fading channels in Chapter 3, which is very
interesting for future research. In this case, both the transmit and the receive corre-
lation matrices should be taken into account and the resulting threshold is supposed
to be a function of the correlation coefficients. In particular, if the transmit correla-
tion matrix has finite rank, even if the number of transmit antennas tends to infinity,
threshold does not exist, since in this case the influence of fading can not be averaged

either in space or in time domain.

4.2.2 Antenna Selection at the Transmitter

When transmit antenna selection is considered, full or limited CSI will be fed back
from the receiver to the transmitter for selection purpose. If the transmitter is armed
with full CSI, it selects the best transmit antennas and waterfills the total transmit
power to these antennas according to the feedback information. However, this imposes
higher demands on the bandwidth and increases the corresponding implementation
cost. In practice, the feedback channel has a very limited capacity such that the
limited feedback information is especially attractive. In particular, the only informa-

tion fed back is the selected subset of antennas to be employed. Consequently, the
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transmitter can effectively distribute the total power on the best transmit antennas

at negligible bandwidth lost.

4.2.3 Channel Estimation Error

In real-life applications, the channel fading coefficients are estimated by inserting
pilot sequences into the transmitted signals. Assume the fading coeflicients remain
constant over the duration of a whole frame and vary independently from one frame
to another. At the beginning of each frame, orthogonal pilot sequences are sent from
transmit antennas. After receiving the pilot sequences, one technique for estimating
the CSI is the minimum mean square error (MMSE) algorithm. It has been shown
that with MMSE, the estimation error resulted from channel noise can be modeled as
a zero mean complex Gaussian random variable. It would be interesting to investigate
the sensitivity of antenna selection to channel estimation error. The error may also
happen to the control bits of the feedback channel. By knowing the error probability
of each control bit, quantifying the impact of feedback channel error on the transmit

antenna selection case is of interest as well.

4.2.4 Frequency Selective Fading Channels

In our work, we only investigated the antenna selection over flat fading channels.
However, for high data rate wireless communication systems, such as W-CDMA, the
signal duration may be small compared to the multipath spread of the channel, re-

sulting in a frequency-selective fading channel or equivalently, a temporal ISI channel.
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Hence, it is attractive, but also challenging, to study the effect of antenna selection
over frequency-selective fading channels. In this case, selection will take into account

the influence of multipath propagation, which greatly complicates the analysis.
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