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ABSTRACT

Fast and Robust Global Motion Estimation in Video Object Segmentation
Bin Qi

To meet the growing requirements of different video applications such as video surveil-
lance or coding, many video processing techniques have been deveioped to analyze and
represent video sequences. Video object segmentation is an object-based video process-
ing technique which aims to detect semantically meaningful components, i.e., objects, in a
video sequence. In case the video sequence contains global (camera) motion, global motion
estimation is required to compensate the camera motion before segmentation.

This thesis studies methods to automatically segment moving objects in the presence
of camera motion without user interaction. It proposes a fast and robust global motion
estimation method oriented to video object segmentation. In addition, it integrates this
method into 2 modular scheme to segment objects in the presence of camera motion. This
video object segmentation scheme consists of three main steps: global motion detection,
global motion estimation and compensation, and object segmentation. The object segmen-
tation is based on: change (motion)} detection, temporal adaptation, and edge adaptation.
Some improvements are proposed in each part of the object segmentation.

The proposed methods aim af four goals: automatically adapt to camera motion, robust
{insensitive) to noise and artifacts, temporally stable segmented objects and low compu-
tational cost. The proposed methods are reliable which was confirmed by experimenting
on more than 10 indoor and outdoor video shots both with and without camera motion.
Simulation resulis show that the proposed GME method achieves more satisfactory results

than the reference methods. For object segmentation, encouraging results are also achieved.
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Chapter 1

Introduction

The demand of visual information has increased tremendously in everyday life and in pro-
fessional area. For example, Statistics Canada show that Canadians spend an average of
21.6 hours per week watching television in 2002 [2]. Video games and internet movie have
become increasingly popular among younger generations. Video conferencing takes place
around the different parts of the world.k Besides, there will be a growing need for this infor-
mation in the future, e.g., video retrieval will allow us to efficiently search for various types of
video documents of interest to ourselves. To meet the requirements of these different video
applications, various video processing techniques have developed to analyze and represent
video. Recently, content-based video processing is becoming increasingly important.

This thesis proposes a fast and robust method for content-based video processing. This
method aims at estimating camera motion to facilitate object segmentation. Furthermore,
this method is integrated into a modular object segmentation scheme. This thesis proposes
some improvements within this scheme. Several standard video sequences, both with and

without camera motion are used to test this scheme.

1.1 Background

A video is a sequence of two dimensional (2D) images projected from a dynamic three di-

mensional (3D) scene onto the image plane of a video camera [39]. A video sequence usually



Introduction 2

contains thousands of shots. A shot is a (finite) sequence of images recorded contiguously
(usually without viewpoint change} and represents a continuous, in time and space, action
or event driven by moving objects. In the remainder of this thesis, the term video refers
0 a video shot. The objective of video processing is to represent the video with a reduced
amount of data that contains important information. The question is: which information

is important?

To answer the above question, one has to take the consideration of the characteristics of
human visual system (HVS). For example, HVS attracts more to moving objects and their
features than to still objects and the background. More precisely, HVS focuses on high-
level features (e.g., object, event) more than low-level features (e.g., shape, texture) [39].
Thus important information is objects and motion. The development of video processing
field also proves this assumption {3]: In MPEG-1 and MPEG-2, coding is low-level pixel
or block based. In MPEG-4, the content-based concept is imported. In video surveillance,
object-based video processing aims to meet the requirement of detecting objects and their

behavior automatically.

Video object segmentation (VOS) is a challenging problem because of the complex
content in natural video scene, e.g., objects are rarely composed of only one homogeneous
characteristic, either in motion, color or luminance. For instance, a human body can wear
clothes of different colors and walk with different moving parts. Furthermore, noises such
as shadow or luminance change also affect the correct segmentation. Another scenario to be
considered is that the video sequence contains a moving camera where the main issue is how
to separate moving objects from the changing background. In addition, many applications

have real-time requirement (e.g., videophone), an efficient and reliable method for VOS is
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very desirable.
VOS becomes a very active research field in video processing, not only because of its

importance, but also because of its difficulty.

1.2 Motivation

The ideal goal of VOS is to identify the semantically meaningful components of a video frame
and group the pixels belonging to such components [1]. The MPEG-4 standard [3] introduces
the new content-based concept and framework but leaves algorithms for the segmentation
of video into separate video objects as an open topic. Many different VOS methods have
been presented in the literature [15]- [27]. Some of them use computational intensive tech-
niques to achieve accurate results. Without real-time consideration, a content-based video
representation approach could lose its applicability. Many of the efficient methods can not
handle complicated situations (e.g., moving camera).

Since motion plays an important role in video, VOS is closely related to another problem,
motion estimation. In general, motion can be classified as global motion and local motion.
The term global motion (GM) is used in this thesis to describe the apparent 2D motion
introduced by camera motion. It can be parameterized by a motion model. The process to
estimate these parameters is known as global motion estimation (GME). GME is usually
followed by other tools, such as global motion compensation (GMC).

GME has many applications, such as sprite generation, video coding, scene construction
and VOS. Depending on different applications, the objective of GME is also different. The
objective of GME for video coding is to remove the GM redundancy resulting in high

coding efficiency. This technique can be found in MPEG-4 verification model (VM) [3].
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In that model, block-based motion estimation and compensation are employed to explore
the temporal redundancies of the video content. Each macro-block is selected to use GMC
or local motion compensation (LMC) depending on the sum of absolute difference (SAD)
associated with GME or local motion estimation (LME). Usually, the one with less SAD is
chosen. In applications of VOS, the objective of GME followed by GMC is to estimate and
compensate CM, and then extract the objects based on the motion compensated previous
frame and the carrent frame. Thus, the results of GME in VOS must be accurate. Fig. 1.1
shows some examples of motion compensation and segmentation results. To demonstrate
the accuracy of GME, the absolute difference frame between the current frame and the
motion compensated previous frame is included in Fig. 1.1. (Note that the difference frames
are brightened four times for visual attention.) Comparing Fig. 1.1 (d) and (g); (e) and
(h), we can see that an accurate GME result can be used to successfully separate the
background and the objects, giving a satisfactory object mask; while an inaccurate result
still contains some background information and the objects are difficult to detect based on
this result. Furthermore, in video coding, even if GMC fails, LMC can be used to maintain
the high coding quality. While LMC is avoided in VOS because we aim at compensating

the background motion and retaining the objects.

After a survey in the literature, we found that most GME methods focus on video coding.
In this case, the computed motion need not resemble the frue motion of frame points as
long as some minimum bit rate is achieved (for a given video quality) [40]. Meanwhile, most
VOS methods either assume that there is no GM or directly adopt a coding-oriented GME

method.

Computational complexity is always a challenge in GME. More accuracy usually means
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(a) Previous frame. (b) Current frame.

.
.

(¢) Accurate motion (d) Difference frame (e) Segmented frame
gompensa’ced previous between (b) and (c). from (d).
rame.

i %’?{/

(£ Inaccurate motion (g) Difference frame (h) Segmented frame
compensated previous between (b) and (f). from (g).
frame. '

Figure 1.1: Examples of motion compensation and segmentation results. Comparing
(d) and (g); (e) and (h), it can be seen that accurate GME can successfully compensate
the background differences, resulting satisfactory object mask; while inaccurate GME still
remains some background residuals, and the segmented object is not accurate.
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extra computational burden. Some GME techniques have to sacrifice certain quality to gain

the speed which might not be suitable for VOS.

1.3 Overview of the Proposed Methods

The objective of this thesis is to study methods which can automatically segment moving
objects in the presence of GM without user interaction. This thesis proposes a GME method
oriented to VOS. In addition, it integrates this GME method into a VOS scheme. Some
improvements are proposed in this scheme (see section 1.4). Simulations of the VOS scheme
should result in temporally stable moving objects for various ranges of video sequences
containing different contexts.

The proposed methods in the VOS scheme are oriented to the following requirements:
1. automatically adapt to GM.

2. robust (insensitive) to noise, artifacts and clutter.

3. stable segmented objects over time.

4. low computational cost.

To achieve these requirements, the VOS scheme consists of three parts: global mo-
tion detection, global motion estimation and compensation, and object segmentation (See

Fig. 1.2).

e Global motion detection GM detection aims at detecting the existence of GM
(usually caused by a moving camera) between the current frame [, at time instant
n and the previcus frame [, 1. A fast and noise robust GM detection technique is

presented.
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Figure 1.2: Block diagram of the proposed method. [, is the current frame at time instant
n, In—1 is the previous frame at time instant n — 1, I ; is the GM compensated previous
frame, and B, is a binary frame of the segmented objects.

e Global motion estimation and compensation If GM is detected, a fast and
robust GME and GMC method is applied to obtain the compensated frame I},_;.
This GME method is based on hierarchical differential approach!. A combination of
3-step search and motion vector (MV) prediction is proposed for initial estimate. Two
robust estimators are also proposed: to estimate GM in the first frame and to reject

outliers using objects information.

e Object segmentation The VOS scheme is based on change detection either between
I, and I,_; (if there is no GM) or between [, and I}_, (if there is GM). A noise
robust binarization method [28] is adopted for thresholding the detected changes.
An improved thresholding technique is proposed to handle sequences with heavily
cluttered background. A new temporal adaptation technique is used to stabilize the
segmented results over time. Some post processing tools are used to remove artifacts
and clutter and to complete the objects. Finally, edge detection and warping is added

to get precise object boundaries.

18ee section 2.5 for the details of this approach.



Introduction 8

During each part, computational cost is of a concern to achieve the efficiency of the
whole method. Furthermore, noise and artifacts adaptation is achieved at each processing

level.

1.4 Contributions Overview

The following list states which parts of this thesis are original to the knowledge of the author

at the time the proposed methods of this thesis have beeen developed:

e a fast and noise robust GM detection method which detects GM without estimating

the GM parameters.
o a fast and robust GME method oriented to VOS using

1. a combination of 3-step search and MV prediction for initial estimate,
2. residual information from the previous frame for robust estimation, and

3. a new robust estimator considering the neighborhood.
e improved segmentation methods as follows:

1. an improved morphological double thresholding technique to remove background
clutters,
2. a new temporal adaptation technigue to obtain stable results, and

3. a new edge warping technique to improve the accuracy at object boundaries.

In addition, various reference methods of GME and VOS were studied, implemented, and
their performance analyzed to compare with the proposed methods. An objective perfor-

mance measure [38]? is also co-implemented to objectively measure the performance of both

?See appendix A for the details of this measurement.
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the reference and the proposed methods.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 discusses related work to
GME and proposes a GM estimation method and a GM detection method. Chapter 3
introduces related work to VOS and presents the VOS scheme used and the improvements
in this scheme. Chapter 4 contains the simulation results and discussions. Chapter 5
concludes this thesis. Appendix A explains an objective performance measure for VOS [38].
Appendix B summarizes the abbreviations used in this thesis. Appendix C contains a
publication related to Chapter 2 of this thesis. List of Figures and Tables are included at
the end of the thesis. Note that related work to GM detection, GME, and VOS are given

in the related chapters: section 2.3.1, section 2.1, and section 3.1, respectively.



Chapter 2

Global Motion Estimation for Object Segmentation

This chapter proposes a fast and robust GME method which is oriented to VOS. This
method combines some basic GME principles for video coding and adds several improve-
ments for VOS. Furthermore, this method is adaptive to different kinds of camera motion

and to different size (CIF/SIF/PAL) of video sequences.

This chapter is organized as follows. Section 2.1 reviews general approaches in GME.
Section 2.2 introduces several motion models for GME. Section 2.3 proposes a new GM de-
tection technique. Section 2.4 explains one reference GME method [8]. Section 2.5 explains
the other reference GME method [9]. Section 2.6 presents the proposed GME method.

Section 2.7 introduces bilinear GMC technique. Section 2.8 summarizes the chapter.

2.1 Related Work

GME is one of the most widely used methods in video processing. Many approaches have
been developed. Broadly, GME can be classified into three categories: phase correlation
approach [4, 5], background matching approach [6, 7, 8], hierarchical differential approach [9,
10, 11].

Phase correlation approach assumes that there is a global translation between con-

secutive frames at the block level. Frames are first transformed from spatial domain to

10
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frequency domain using Fourier transform, then take the advantage of Fourier shift theo-
rem; the translation part between two frames can be identified. The advantages of using
phase correlation are its fractional-pel accuracy and its insensitivity to illumination changes
compared to displaced frame difference {DFD) based method [39]. The limitation of this
approach is that the translational model is not always suitable for general video sequences.
A complement can be found in [5] where phase correlation is used as coarse estimation

followed by a refinement in spatial domain.

Background matching approach is proposed in [6, 7, 8]. This approach is based on block
match algorithm (BMA)!, but generalized to the whole background. In [7], motion vec-
tors for each block are firstly found using BMA. Then four global motion parameters are
estimated based on these vectors. If the Euclidean distance between two matching points
derived using BMA and GME respectively is beyond a threshold, then this block is consid-
ered as foreground block and will be eliminated. After that, feature points are selected from
the remaining blocks. Finally, eight GM parameters are refined using the selected feature
points. In [8], a confidence measure is assigned to refine the motion parameters obtained
from the same BMA algorithm. The confidence measure assignment combines cornerness
measure (using Plessy corner detector) and distinctness measure (using SUSAN edge de-
tector) as a weighting function for each block. The author states that it can successfully
assign low weight to outliers’ blocks. Background matching approach is easy to implement,
but it may lose some detail information since it is block based. Another disadvantage for

this approach is that BMA is a time consuming task.

Hierarchical differential approach [9, 10, 11] is an efficient and effective tool for GME

*See section 2.4 for the details of BMA.
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which is suggested in MPEG-4 frame work [3]. Hierarchical implementation can handle
large search range and speed up computations. In hierarchical differential approach, a
frame pyramid is built using spatial pre-filtering (e.g. Gaussian) and sub-sampling. The
computation starts at the top level with an initial estimation. Then, iterative GM parameter
optimization (e.g., gradient descent method) is performed to refine the estimation until a
convergence criterion is met. The result is projected onto the lower level of the pyramid
and the parameter optimization is repeated. This loop is continued until the bottom of the
pyramid is reached®. Since GME is a computational intensive task, many efforts focus on
accelerating the computational speed. [10, 11] are modified faster versions of [9]. In [10],
history GM information is used as predictors instead of traditional N-step search in initial
motion estimate (see section 2.5.2). In [11], several improvements are proposed such as

motion edge selection, residual-block based outliers’ rejection and adaptive weight function.

Hierarchical differential approach has many advantages, such as its large search range
and fast convergence. This thesis proposes a fast and robust GME method based on hierar-
chical differential approach. The proposed method consists of three steps: frame pyramid
construction, initial motion estimate, iterative motion parameter optimization using gra-
dient descent method. Contributions of the proposed GME method are: 1) fast initial
estimate using a combination of 3-step search [12] and motion vector prediction [10], 2)
robust estimation® using residual information from the previous frame, 3} a new robust
estimator considering the neighborhood to eliminate outliers. Compared to the reference
methods [8] and [9], the proposed method is more accurate and more efficient. Another

distinctive difference between the proposed method and coding-oriented GME methods is

2Gection 2.5 will explain the details of this method.
3See section 2.5.4 for the definition of robust estimation.
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that it is oriented to the requirement of video object segmentation.

2.2 Motion Models and Estimation Criteria

2.2.1 Motien models for GME

The purpose of a motion model is to describe the motion between consecutive frames of
a real video sequence. Using a parametric model, we are able to estimate the parameters
of the parametric model and reconstruct the frame that is an approximation of the real
world [39]. In GME, one single model applies to the whole frame. There are different
parametric models used to estimate GM. Depending on selected model, we can represent
the real world with more or less detail and precision.

Usually, an 8-parameter perspective model (Eq. 2.1) is sufficient for GME [9].

o (ao + a1z; + a2ys)
(agz; + arz; + 1)
r_ (as + agz; + asy;)

— 2.1
Y (agz; +azz; + 1) (2.1)

where (z;,y;) denotes the i'® pixel in the current frame, (z/,y]) denotes the corresponding
pixel in the previous frame, and a = (ag, a1, ag, a3, a4, a5, a5, a7) are the GM parameters.

Furthermore, several simplified models can be derived from Eq. 2.1 [9]:

e G-parameter affine model
Tl = qg + a3 + ay
i O 144 2¥Yi (22)
Y; = a3 -+ 4% + asyy

e 4-parameter translation-zoom-rotation model

3:: = ag + a17; + a9y (2.3)
Y; = 03 — aeZi + a1y

e 3-parameter translation-zoom model

g’ji = (I + alx' \
i ' (2.4)
2
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e 2-parameter translation model

&’Cg:a@%‘%
Vo ,
Y, =a1 T ¥

In this thesis, 6-parameter affine model (Eq. 2.2) is selected since the projected 2D

motion of most camera motions can be described by this model [39].

2.2.2 Estimation criteria

The model discussed needs to be incorporated into an estimation criterion. Most of the crite-
ria arise from the constant-intensity assumption. Since motion is estimated (and observed
by the human eye) based on the variations of intensity and/or color, we can reasonably
assume that the intensity remains constant along a motion trajectory [40]. Upon this as-
sumption, a difference error e; between the intensity value of the current frame I, at time
instant n and the motion compensated previous frame I],_, is defined in Eq. 2.6. And the
estimation criterion is defined to minimize the estimation error, which is either the sum of
square differences (SSD) (Eq. 2.7) or the sum of absolute differences (SAD) (Eq. 2.8). The

summation in Eq. 2.7 and Eq. 2.8 is carried out over the number of pixels N in the frame.

ei = In_1(zl,u) — In{@i, 1) 26)
N
i=1

N
SAD =3 "|eil (2.8)
=1
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2.9 Global Motion Detection

2.3.1 Related work

GM should only be estimated and compensated if & GM has been detected. To detect GM,
the method in [26] estimates 8-perspective GM parameters (Eq. 2.1). If the absolute value
of one of the estimated motion parameters ap, (a1 — 1), a9, a3, a4, (a5 — 1), a6, and a7 is
greater than 2.5, then GM is detected. This detector is not very reliable since it will fail if

GME fails. Furthermore, it is not efficient since GME is a time consuming task.

2.3.2 Proposed GM defection technique

In this section, a fast and noise-robust GM detection technique is presented. This technique
can detect GM without estimating the GM parameters.

First, the binarization method [28] including change detection and thresholding is ap-
plied between the current frame and the previous frame. Then the obtained binary frame
is divided into nine equal blocks (see Fig. 2.1). In each block, the number of white pixels
is counted. If this number is greater than 15% of the total pixels in this block, this block
is considered as a moving block b,,. If there is GM during consecutive frames, the moving
blocks are distributed throughout the whole frame; otherwise the moving blocks are concen-
trated at the location where objects are moving. After observation of real video sequences,
we found that objects are most likely to stay in the center of the frame, sometimes they
are moving into one side of the frame. Thus, different weights wy,,¢ € 1,2,---,9 is assigned
to each block according to its position (see Fig. 2.1}. The highest weight is assigned to
the blocks where the GM is most likely to occur, while the lowest weight is assigned to the

center block where objects motion is most likely to occur. Finally, the sum of weighted
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moving blocks b, is calculated for each frame using the following equation:

9
3 0 : Ny, < 15%xN, o
= , : ;T 2¢
bs p wbz X b;g bz { 1 . ]\wa > 15%XN5 { 9)

where N is the total number of pixels in each block, N, is the number of white pixels
in each block. Simulations show that if we set up a threshold ¢ > 10 for b;, GM can be

successfully detected.

4 24
2 1 2
4 2 4

Figure 2.1: Kernel for GM detection with different weights.

In case the sequence is noisy, the noise might interfere with the results. For example, a
noisy sequence with a still background may cause the binary frame to contain moving blocks
in background areas, misleading that the background is moving. Since the binarization
method [28] uses a spatial average filter to adapt to noise, the following solution is proposed
to handle GM detection in case of noisy sequences. First, the noise estimation method [13]
is used to estimate the noise standard deviation or the peak signal-to-noise ratio (PSNR,,)

of a frame. Then the window size W; of the spatial average filter is adjusted as follows:

W; = ks/PSN R, (2.10)

where k, is set 120 through experiments in this thesis. Finally, W is rounded to an odd

integer.
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2.2.3 Resulls

Table 2.1 shows the GM detection results of noisy Hall test sequences (no GM) using
different Wy of the spatial average filter according to Eq. 2.10. The average value of by for
the whole sequence as well as the percentage of the false detection are presented in Table 2.1.
The percentage of the false detection is the percentage of GM falsely detected frames for
the sequence without GM and vice versa. It can be seen that if we fix the window size of
the spatial average filter as 3 x 3 (the regular size in [28]), the false detection is higher in
noisy sequence with PSNR,, = 25dB. However, after we adjust the window size of spatial

average filter according to Eq. 2.10, the percentage of false detection is reduced to 0.

[ PSNR, [ W; | average by l false detection mteJ

45dB | 3 x3 0.08 0%

30dB | 3x3 0.08 0%

25dB [ 3x3 2.6 0.05%
5x5 0.07 0%

Table 2.1: Results of GM detection for noisy Hall sequences.

Table 2.2 gives sample results using the proposed GM detection technique. It can be
seen that the proposed method has a good performance to detect GM. To compare our
GM detector, we have applied the GM detector in [26]. The detector in [26] fails to detect
little GM. For example, for Coastguard test sequence, the proposed method has 0% false
detection compared to 83% in [26]. The average computational time for the proposed GM

detection method is 0.09 sec/frame for the CIF/SIF sequences and 0.22 sec/frame for the

PAL sequences. It is about 8 times faster than [26].
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{ sequence name i PSNR,  W; { average b, | false detection rate | with/no GM %
Miss_america 45dB | 3x 3 0.68 0% no GM
Survey 42dB | 3x 3 3.73 0.04% no GM
3cars 44dB 13 x3 4.97 0% no GM
Hall 45dB | 3x3 0.08 0% no GM
30dB [ 3x3 0.08 0%
25dB | 5x5 0.07 0%
Stefan 50dB | 3x3 18.92 0.02% with GM
Coastguard 37dB [ 3x3 16.88 ' 0% with GM
Marble 4548 I x3 20.90 0% with GM
Tennis 4548 3 %3 14.16 0.09% with GM
Flowergarden 52dB | 3x 3 20.05 0% with GM
30dB 3x3 19.28 0%
25dB Exb 17.51 0%

Table 2.2: Sample results of the proposed GM detection.
2.3.4 Discussion

"To make the proposed GM detection technique more generic, we can apply it every k frames

for online process. For offline process, detect the mean value of k frames is more reliable.

2.4 A Background Matching GME method - Reference Method 1

This section summarizes a GME method using background matching approach [8] that

consists of four steps (see Fig. 2.2):
1. Estimate block-based motion vectors using block match algorithm (BMA).
2. Estimate initial GM parameters.
3. Assign confidence measure to each vector.
4. Tteratively refine GM parameters by removing error vectors.

BMA is a motion estimation algorithm that works as follows: First, both the current

and the previous frame are divided into non-overlapping small regions, called blocks. Then
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Previous frame L | Current frame
Find motion vector
{(BMA)
Initial global motion Assign confidence
estimate measure o each vecior

r_l

2 Remove error veclors

v
Refine global motion
parameters

- Stopping Criteria

Yes

Global motion parameters

Figure 2.2: Block diagram of the reference GME method [8].

a motion vector (MV) is found for each block in the current frame which is the displacement
vector between the spatial positions of this block and its matching block in the previous
frame. The matching criterion is the minimization of the sum of absolute difference SAD,

as in Eq. 2.11 between these two blocks [39].

Ny
SADy = leil, e = In1(a}, 1) — In{zi, 1) (2.11)

i=1

where NV, is the total number of pixels in each block.
In [8], the block size is 8 x 8 pixels (IV = 64 in Eq. 2.11), and the total number of block
is Ny, = (Rows x Cols}/64. Fig. 2.3 shows an example result of MV field using BMA. After

the MVs for each block are obtained, initial GME is executed using a 6-parameter affine
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model as follows:

Vp(Zims Ym) = G0 + 01Tm + G2Ym (2.12)
7 N '
’Uy(ﬂjm, Ym) = 03 + G4Tm + A5Ym ’

where (@, Ym) denotes the position of m block. vg(xm,ym),vg{zm,ym} denote the es-
timated horizontal and vertical MVs respectively. a = {(ag, 01,09, a3, a4, a5) are the GM

parameters.

.

L e

A s

.

/ /é/j/
.
(a) Previous frame. (b) Current frame. (c) MV field.

Figure 2.3: An example result of MV field using BMA.

From Fig. 2.3(c) we can see that the MV field contains local and error vectors which will
bias the GME results. To remove those error vectors, a confidence measure algorithm is
assigned to each vector. This algorithm consists of two detectors: Plessy corner detector [31]
for cornerness value C,,, and SUSAN edge detector [32] for distinctness value Ly, of each

block. Then the confidence measure is defined as follows:

(C + ALp)
Wy = 2.13)
™" (Craz + ALmaz) 213)
where

Cingz = max{Cr), Lmaz = max(Ly) m=1,..., Ny (2.14)

and X is a coefficient to normalize C), and L,, to the same level.
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Let vg{Tm, Ym )y Vy{@Tm, Ym) denote the BMA result of the horizontal and vertical MVs
for m'® block, respectively. The GM parameters are refined iteratively by minimizing the
following estimation criterion:
Nps,
2

E{a}: {U/m( ?fx($maym} a,(xmaymﬁ f{’by(zrnym> 'U Tmaym)] } (2'15>

m=1

2.5 A Hierarchical Differential GME Method - Reference Method 2

In this section, a GME method using hierarchical differential approach [9] is explained. It

consists of the following three steps (see Fig. 2.4):
1. Construct the low-pass frame pyramid using down-sampled Gaussian filter.

2. Estimate the initial motion parameters at the top level of the pyramid using 3-step

search matching.

3. Execute gradient descent method from the top to bottom level of the pyramid to

optimize the estimate result.

2.5.1 Hierarchical representation to build the frame pyramid

Hierarchical representation, or multi-resolution representation, is a widely used strategy in
image processing. Using this representation, the original frame is rebuilt like a pyramid
(see Fig. 2.5). The bottom level is the original frame. Then the resolution is reduced by
half, both horizontally and vertically, between successive levels. Before reducing, a low-pass
filter {e.g., Gaussian filter) is employed here to reduce the noise and smooth the output

frame. After the frame pyramid has been built, the estimation starts at the top (coarsest)
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Figure 2.4: Block diagram of the reference method [9].

level and progress to the next finer level until it reaches the bottom level. The result from

the previous coarser level will be projected to the current level as an initial solution.

The advantages of using the hierarchical approach are twofold [39]. First, detail informa-
tion at a finer resolution may interfere with the estimation; therefore, the result obtained at
the coarsest level is more likely to be close to the true solution. By projecting of this result
to the next finer level and repeating this till the finest level, the final result is also more

likely to be close to the true solution. Second, if we define a search range R for searching
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4 14Y

B
2

Figure 2.5: Illustration of the structure of an frame pyramid.

the corresponding pixels at the finest level, the search range scales down to R/ 2L-1 at the
coarsest level with an L-level pyramid. Furthermore, since the projection of the result from
the previous coarser level provides a good start, the searching iterations can be reduced at
the current level. Therefore, the total number of operations is smaller than that required

by directly searching at the finest level, and the computation is speeded up.

2.5.2 Initial motion estimate

After the down-sampled frame pyramid has been built, an initial motion estimate is executed
at the top level of the pyramid. At this initial stage, the result need not be accurate but
must assure the convergence of the subsequent gradient descent algorithm. So [9] assumes
that there is only translational camera motion, and the 2-parameter translation motion
model (Eq. 2.5) is applied at the top level of the pyramid. A 3-step search [12] is adopted
to obtain this initial estimate.

Fig. 2.6 shows how this search works. At the first step, the search range is four and
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Figure 2.6: An example of 3-step search method [12]. The search ranges are four, two,
one at each step, and the matching vectors are [4,4], [0,2], [-1,1] at each step. The final
matching vector is [3,7].

the most matching vector is found in this range. Then, the search range is down to two
at the second step. Finally, the search range is down to one pixel at the last step and the
final matching MV is found. Only 25 trial vectors are used here but can cover a maximum
displacement of £7 pixels at the top pyramid level corresponding to £28 pixels at the
bottom level. In most cases, this range is large enough to cover the camera motion between

two consecutive frames. So it is a practical technique.

2.5.2 Gradient descent method

After initial motion parameters are estimated, the next step is to adapt the motion param-

eters a = (ag .. .ax) by minimizing SSD. Define
N
BE(a)=S8D =) e (2.16)
=1

Next, take some particular point P as the origin of the coordinate system with coordinates

a, then the function E{a) in Eq. 2.16 can be approximated by its Taylor series [44]:
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, OF 1 o*E
B@) = BRI+ go ot 50 fagg vt
k ’ .l ‘

. 1
wE(P)~d-a—§——Z;a'D~a (2.17)

where d is an N vector whose components are the partial derivative of E(a}. D isan N x N

Hessian matrix whose components are the second partial derivative matrix of F{a).

&°FE
d=-VE D= .
VE(a)lp, Sarden lp (2.18)
From Eq. 2.17, the gradient of E can be easily calculated as:
VE@%:§E§5@32=D.3~d (2.19)

Using Newton’s method to search for the zero of the gradient of the function near the
current point, we set VE = 0 in Eq. 2.19 to determine the updated point [44].

Because the 6-parameter affine motion model in Eq. 2.2 depends nonlinearly on a, the
minimization must proceed iteratively until meeting the stopping criterion. This procedure

is achieved by using the following gradient descent method iteratively.

altl =at 4+ D1.d=al+da (2.20)

“+1 and a® denote the motion parameters at £ and ¢ + 1 iterations respectively, da

where a
is the update term of a.

The gradient of F{a) in Eq. 2.16 with respect to the parameters a, which will be zero

at the F(a) minimum, has components

VE(a):b-E;=2Zei%—;— k=0,1,...,5 (2.21)
=1 "
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Tsking an additional partial derivative gives

521"7 N 35@' Je; 8262‘ o aei 865
=9 e e 2 D e e 2.22
30};36&5 ;’ 8&,@ Efag “ 3@55&k g 3@;; 8{:@ ( >
It is conventional to remove the factors of 2 by defining
N
i 8F Je;
e = — (2.23)
P 2 Bay, ; © Jday, (2.23)
i 82E al 5‘ei Bei

= o 2.

Gk 2 da 8@1 3ak Bal ( 24)

Making [a] = %D in BEq. 2.20, the updated term da can be rewritten as the set of linear

equations.

> awda = By ' (2.25)

i=1

Using singular value decomposition (SVD) [44], the increments da; can be solved. Then it
is added to the current set of parameters to get the next approximation (see equation 2.20).
The stopping criterion is defined as meeting one of the following two conditions, de-

pending on which one comes earlier:
e The iteration reaches its maximum Ny,

e The update term is smaller than a preset threshold. There are two thresholds used
here: threshold e; for the update of the translation parameters ag and a3, and thresh-

old &g for the update of the remaining parameters.

In [9], Ninaz = 32, €1 = 0.1, and e = 0.001. The gradient descent starts at top level of
the frame pyramid, and then continues in a top-down approach. At each level, the iteration
will stop if a stopping criterion is met. The projection of the motion parameters from the

current level onto the next one is performed by multiplying the translation parameters ag
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and a3 by two, and remaining the others unchanged. The final motion parameters are

obtained after the procedure stops at the bottom level.

2.5.4 Robust estimation

One conflict in GME is that there is only one GM model applied to the whole frame, but
not all the pixels in that frame experience the same GM. Therefore, those pixels which
have local motion will cause big S8 and bias the estimate of GM parameters. Robust
estimation aims at solving this problem. The term robust has various definitions, but in
general, refers to a statistical estimator, it means “insensitive to small departures from the
idealized assumptions for which the estimator is optimized” [45]. The world small here is
interpreted as fractionally large departures for a small number of data points, leading to
the notion of outlier points. The basic idea of robust estimation in GME is to identify the
pixels that are not undergoing the GM as outliers, and the remaining pixels as inliers [39].
Then the outliers will be eliminated from the next iteration, and only the inliers will be
used for the rest of the estimation. In [9], a modified robust estimator, so-called #runcated
quadratic function is used. First, all {le;],1 <4 < N} (N is the total number of the pixels in
the frame) are sorted in descending order. Then the threshold e, is defined so as to exclude
the top p% (5 < p < 15 suggested by [9]) of the sorted |e;|s. A pixel ¢ is classified as an
inlier if |e;| < e5. So the Eqg. 2.7 is modified as:

lei <ep
lesl > ep

o2

N
SSD =Y pled, ple) =1 § (2.26)
g==1

The truncated quadratic function is used only within the gradient descent part of the

algorithm; it is not applied in the initial estimate. The threshold e, is initialized as a
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reasonably big number (no |e;]s excluded) and is updated after the first iteration at each

level.

2.6 Proposed GME Method

Although the reference GME method 2 [9] performs well in several video sequences , some

disadvantages and weaknesses are as follows:

e 3-step search has two limitations in initial motion estimate: first, it can not predict
the MV correctly if the true MV is out of the search range. Second, this pixel-based

searching and matching algorithm is still time consuming.

e The robust estimator which excludes the p% of the largest |e;|s (section 2.5.4) some-

times mis-classifies the outlier pixels as inliers or vice versa.
e Temporal information is not sufficiently used between consecutive GME results.

e High computational complexity for real-time video applications.

In this section, a fast and robust GME method is proposed to improve those disadvan-
tages. This method uses hierarchical differential approach based on reference method 2 [9].
The block diagram of the proposed method is presented in Fig. 2.7. It consists of three
steps: frame pyramid counstruction, initial motion estimate, iterative motion parameter

optimization using gradient descent method. Improvements are addressed as follows:
1. Using MV predictor [10] combined with 3-step search [12] for fast initial motion esti-

mate (see section 2.6.1).

2. Using residual information from the previous frames (except for the first frame) to

classify the outliers for robust estimation (see section 2.6.2).
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3. Since there is no residual information available for the first frame, to improve the accu-
racy of the GME for the first frame, outlier elimination is considered in neighborhcod

instead of at each individual pixel (see section 2.6.3).
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Figure 2.7: Block diagram of the proposed GME method.
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%2.6.1 A fast initial motion estimate combining 3-step search and MV predie-

tion

Due to the limitations of 3-step search, we select a more efficient method called MV pre-
diction [10] as a substitution.

Originally, there are six candidates used as motion predictors in [10]: zero MV, past MV,
acceleration MV, long-term average MV, historical minimum MV, and historical maximum
MYV. Besides, these predictors can be combined to generate new predictors. So there are 36
predictors for 6-parameter affine motion model. Our simulation results show that the first
four MVs are sufficient and are chosen in the proposed method to reduce the computational

complexity. The definitions of each of them are stated below:

zero MV : U0 = 0
past MV : 6past = 67@‘1

. i, L, S 2.2
acceleration MV : Uycceleration = 2Un—1 — Up—g (2.27)

long-term average MV : Uzperage = —% Z?zl Ui

To further reduce the computational complexity, the selection of the predictor is executed
in two steps [10]. First, assuming there is only translational motion (see Eq. 2.5), the MV
with the minimum SAD from all candidate MVs is selected and fixed. Then, the rest of
the components of candidate MVs are selected again using the same approach. In this way,
the complexity is equivalent to computing the SAD of 8 predictors instead of 24.

We need six frames to obtain all those MVs in Eq. 2.27. So the 3-step search [12] is
still kept as the initial motion estimate for the first siz frames. From the seventh frame on,
we use the MV prediction method [10]. Note that this combination is different from [10],
where it did not address this problem.

There are several reasons why we chose MV prediction instead of 3-step search. First of

all, camera motion is usually continuous over time, thus it is possible to predict MV using
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history information. Second, six components of the motion parameters can be predicted
instead of two, which is more accurate when camera motion is more complex. Third, the
MYV prediction is applied both in initial estimate and the gradient descent method, which
makes it more robust. Finally, it is faster.

Fig. 2.8 shows an example of the binarization compared results between the reference
method [9] and the one using MV prediction. From Fig. 2.8, it can be seen that the binarized

result is improved.

(a) Reference method 2 [9]. (b) Using MV prediction.

Figure 2.8: Binarization compared results between the reference method 2 [9] and the one
using MV prediction. Object pixels are set white, and background pixels are set black.

2.6.2 Using residual (object) information for robust estimation

Since GME is a pre-process for VOS, binary residual frame B, will be obtained after GME
and GMC (see section 3.4). Assuming that the background motion is successfully compen-
sated after GMC, the residual information between the current frame I, and the motion
compensated previous frame 7/, _; should contain the objects and the newly appeared back-
ground. This information is derived by applying a binarization method [28] which consists
of change detection to obtain the difference frame D), between I, and I),_, and thresholding

of D, to obtain B, (see section 3.4).Then B, is used to eliminate outliers when estimating
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motion parameters of the next frame. To prevent misclassification, the pixels in B, are

further grouped into blocks before it is used for GME as follows:

1. The binary frame B, is segmented into small blocks. The size of the block w, depends
on the frame size. We set 8x8 for CIF/SIF frame, and 12x12 for PAL frame in all
simulations. The number of pixels belonging to the ob jects‘ (marked as white in By,) in
each block is calculated. The top h% of the blocks with most white pixels are selected

as candidate outlier blocks. 20 < A < 40 and is set 30 in this thesis by experimenting.
9. If a candidate block is a boundary block, it is labeléd as an outlier block.

3. If a block is not at boundary and has more than three candidate blocks in its 8-

neighborhood, it is labeled as an outlier block.

4. If after the previous steps, a candidate block has at least one outlier block in its

8-neighborhood, it is labeled as an outlier block.

The reason we preserve the boundary blocks is that these blocks are most likely newly
appeared background and can not find the coordinate pixels in the previous frame, thus it
should not participate in the GME. Then Eq. 2.7 is modified to:

N 2
[ Bn._g i, Ys =
SSD = "ples), ples) = { o Bn_?gmi zg ., (2.28)

where Bpn_1{#;,y;) is the i pixel in B,_;.
Fig. 2.9 shows the results of creating blocks for the Ferrari test sequence {frame 22}. In
Fig. 2.9, white blocks are the object blocks as well as newly appeared background blocks

which will be excluded for GME. It can be seen that outliers are successfully extracted.



Global Motion Estimation R

(a) Binary frame. {b) Making into blocks.

Figure 2.9: Making into blocks using binary frame.

To not propagate estimate errors if the GME of the previous frame fails (e.g., the total
number of the outlier blocks changes drastically), the residual information from the last

successful GMC is used instead as follows:

Oy = an - Pn~11/Pn—1

If (04> to)
Bp = Bp-1; an = an-1;
P, =03F,+0.7P, 1

(2.29)

with Oy, the outlier difference, P, (Py—_1), the number of the outlier blocks in By (Bp-1),
an (an-1), the GM parameters of I, ({,—1), and 0.4 <ip < 1.

There are two advantages of using residual information for robust estimate. First, if the
GMC of the previous frame does not fail, the residual information correctly contains pixels
which are not undergoing GM. Using this information to eliminate outliers is closer to the
truth than a statistical estimator. Second, since this residual information is used for VOS,
there is no extra computational cost involved. Even if applying this method to video coding
or other applications, it ig still efficient since the binarization method we applied is fast.

Fig. 2.10 shows an example of the binarization compared results between the reference
method [8] and the one using residual information for robust estimation. From Fig. 2.10, it

can be seen that the binarized result is improved.
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(a) Using robust es- (b) Using residual in-
timator in reference formation for robust
method 2 [9]. estimation.

Figure 2.10: Binarization compared results between the robust estimator in reference
method 2 [9] and the one using residual information.

2.6.3 Robust estimation for the first GM compensated frame

The estimation method in Section 2.6.2 can not be applied for the first GM compensated
frame I since there is no previous residual information available. Robust estimate in I is,
however, of significant importance for algorithm convergence. We improved the scheme in
Eq. 2.26 as follows: instead of considering the pixels in the difference frame individually,
neighboring pixels are also considered when eliminating the outliers. A pixel ¢ is classified
as an inlier only if: a) |e;] < ep, and b) it has m; neighbors (m; > 6) in its 8-neighborhood

Ws(i) with le;] < ey, § € Ws(4). Therefore, the Eq. 2.26 is further modified to:

N 2
es €; § Ami > 6
SSD = Zp(ei), plei) = { @2 lo’ciizerweie %

t=]

(2.30)

Fig. 2.11 shows the compared binarization results between [9] and the proposed method

using Eq. 2.30. As can be seen, better binarization results can be achieved.
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Figure 2.11:  Binarization compared results of Ferrori, Coastguard, Stefan, Marble, Car,
and Tennis test sequences for the first frame using robust estimator with (right column)
and without (left column) considering the neighborhood pixels.
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2.7 Global Motion Compensation

36

After the GM parameters are obtained, the predicted frame I/, can be obtained from

the previous frame F,_; using these parameters. This prediction technique is called global

motion compensation {(GMC). As shown in Fig. 2.12, the predicted value I'{z,y) at the

location (z, y) in the I}, _, is copied from the pixel value at (z/,y') in the I,,_;, where (&', ¢/) is

calculated using GM parameters using the assumed motion model. Since the displacements

%',y are real numbers, an interpolation technique is applied to predict the intensity value

at {(z',7/). Bilinear interpolation is the most widely used interpolation technique [40], and

is also adopted in both the reference methods [9, 8] and the proposed method.

.y

& tn-1

(IXLY'D) (XT+1,Iy'D)
it -
! :
= x.y) =
Lo 1

XL T+1) X1+, IyT+1)

{(a) Calculate the displacement
of (x,y) using GM parameters.

{b) Four nearest neighbors con-
sidered in bilinear interpolation.

Figure 2.12: Global motion compensation using bilinear interpolation.

Let [-] denotes the value floor to the nearest integer (see Fig. 2.12),

where

'z, y)

= ofI{[Z], /] + (1 — e)BI{[z"] + L [y'])
+a(l - B)I([=

Lil+1)

+ (1 - a1+ LY+ 1)

(2.31)

(2.32)
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According to the Eq. 2.31, each estimated pixel in the output frame is a weighted combi-

nation of its four nearest neighbors in the input frame.

2.8 Summary

GME is an important step in video processing. Efficient and robust GME method is still
a challenge. This chapter has proposed a fast and robust GME method. This method is
designed for VOS since it aims at successfully compensating the background and extracting
the objects. However, it also can be generalized to other applications. The proposed GME
method consists of three steps: frame pyramid construction, initial motion estimation, GM
parameter optimization using gradient descent method. Contributions of the proposed
method are: 1) using a combination of 3-step search and MV prediction for initial motion
estimate, 2) using residual information from previous frame for robust estimation, 3) a
new robust estimator considering the neighborhood. A fast and noise robust GM detection

technique is also proposed in this chapter.



Chapter 3

Object Segmentation Based on Global-Motion Compensation

The objective of this chapter is to integrate the proposed GME method into a VOS scheme
and to improve selected modules of this scheme to achieve good segmentation. This scheme
is based on change detection in GM compensated frame differences from sequences with
GM.

This chapter is organized as follows. Section 3.1 reviews related works. Section 3.3
gives an overview of the VOS scheme used. Section 3.4 explains a noise-robust change de-
tection method [28] and proposes an improved morphological double thresholding method.
Section 3.5 introduces a new temporal adaptation technique. Section 3.6 explains the struc-
ture of the post processing. Section 3.7 introduces edge adaptation and proposes a new edge

warping technique. Section 3.8 summarizes the chapter.

3.1 Related Work

Since VOS is still an open problem, many techniques are being developed. Depending on
whether a user controls the segmentation process or not, these techniques can be classi-
fied into two categories: supervised and unsupervised approaches. In supervised segmenta-
tion [15, 16, 17], also called semi-automatic segmentation, user assistance is needed to define
the interested objects in at least some key frames. Supervised segmentation should identify

both moving and still objects. Unsupervised segmentation [18]- [28], also called automatic
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segmentation, can extract objects without user assistance. At present, automatic VOS is
mainly limited to identify moving objects. This is sufficient in most cases though, since in

many applications we are more inferested in moving objects [28].

According to the primary segmentation criteria, segmentation algorithms again can be
broadly classified into two approaches: one is based on spatial-temporal homogeneity [16]-
[21] and the other is based on change detection [22]- [28]. The major steps of spatial-
temporal-homogeneity-based approach can be summarized as follows. First, the original
frame is partitioned into homogeneous regions based on some spatial features. Several
techniques are available for this purpose, for example, recursive shortést spanning tree
(RSST) [27], K-medians [20], and watershed [19, 21]. Watershed algorithm attracts more
attention recently because of its simple implementation and precise results compared to the
other algorithms. After that, either user assistance [16, 17] or motion estimation [18, 19]
is processed to obtain the object regions. In motion estimation, the MV of each region is
estimated and regions with similar MVs are merged together. Motion segmentation is not
reliable due to aperture and occlusion problems. Some erroneous MVs could have a negative
effect on the segmentation resuits [21]. Therefore, a model-matching technique [17, 21] is
further introduced after the object regions are obtained at the initial stage (e.g., the first
frame). Those object regions are labeled as an initial object model. Then in the following
frames, the objects are tracked based on the best match with the object model from the

previous frame, and the model is also updated.

In change detection based approach [22}- [28], first, the moving objects are detected
from frame difference of either two successive frames [22, 23, 24] or the current frame and

the background frame [25, 28]. Then, a boundary-fine-tuning process based on spatial or
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temporal information is applied to obtain accurate results. Luminance edge information
is the most popular feature used to correct object boundaries [22, 23, 24]. Several draw-
backs exist in traditional change detection based approach. First, noise in the background
region (e.g., shadow, artifact) can cause detection ervors. In [25, 27}, shadow detection and
elimination techniques are introduced to reduce the shadow effect. In [28], a memory-based
change detection along with an artifact-adaptive thresholding method is proposed to adapt
to noisy sequences. Second, the result of the frame difference is not consistent if the speed
of the object changes significantly in the sequences, causing unstable segmentation results.
In [25, 28], the frame differences are calculated between the current and background frames,
resulting in more stable objects. But this technique needs the background frame available

throughout the whole sequence.

Spatial-temporal homogeneity based approach has promising results at object bound-
aries. But it sometimes needs user assistance, which might not be suitable for certain
kinds of applications. Model-matching assumes that the shape of the objects does not
change dramatically from frame to frame. It has difficulty in dealing with a large non-
rigid object movement [24]. Furthermore, any objects that appear after the first frame can
not be detected since there is no matching model for them [21]. Change detection based
segmentation enables automatic detection of any moving objects (including the new ap-
pearance and the one with a large nonrigid movement) without user assistance. Because
motion information plays the most important role to distinguish moving objects from the
background, this approach should be more efficient than the spatial-temporal homogeneity
based approach. Algorithms in spatial-temporal homogeneity based approach spend large

computational power in processing the background when partitioning the whole frame into



Object Segmentation 41

spatial homogeneous regions in the first step.

3.2 Amn Analysis Model-based Segmentation Scheme (Reference Scheme)

This section introduces a generic VOS system [27] which is based on [26]. This system,
called COST 211 Analysis Model {AM), is presented by the European-Algorithmic Group

211 which is a forum and research network on video analysis (see Fig. 3.1).

~»4  Color segmentation

I+ Py |
I ' GME & GMC | Scene cut detection
n = -
9
| Local motion analysis j— X ¥ vy o
i Rule processor T
—
P . J )
Change detection @
-—» o]
N Shadow detection 7 le

Figure 3.1: Block diagram of the reference VOS method.

e GME & GMC This module estimates GM between two consecutive frames using

an affine motion model. GMC is achieved by bilinear interpolation.

e Scene cut detection This module detects a scene cut if the background mean square
error (MSE) between two consecutive frames is greater than a threshold. Then all

parameters are reset to their initial values.

e Change detection The algorithm for this change detection module is subdivided into
three steps [26]: computation of the initial change detection mask (CDM), relaxation
of the initial CDM for spatial homogeneity, and temporal coherency of the object

shapes.
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e Shadow detection This module generates a binary mask of moving cast shadows
using the method presented in [35]. Then, pixels which are detected as moving cast

shadows are deleted from the change detection mask.

e Local motion analysis This module estimates a dense displacement vector field by

the hierarchical block matching algorithm.

e Color segmentation In this module, the current frame is first simplified using & non-
linear diffusion filter[36]. This filter generates a simplified image with sharp bound-
aries. Then color segmentation is used on the simplified image to get a desired number

of regions.

e Rule processor This module processes some rules to merge the results of the above
modules. Each region in color segmentation is proceeded using these rules to decide

if it belongs to foreground or background in the final object mask.

3.3 Overview of the VOS Scheme used
The VOS scheme used consists of the following steps (see Fig. 3.2 and Fig. 3.3):

e GME & GMC The GME & GMC method proposed in chapter 2 is applied to the

current frame I, and previous frame [,,_1.

e change detection (binarization) A noise-robust change detection method [28] in-
cluding thresholding is adopted. This method reduces object noise in the binarized
frame Bp.. To further remove background clutters, an improved morphological double

thresholding is applied.
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in: Current frame

In1: Previous frame

I'n1: GM compensated previous frame
Dn: Change detected difference frame
By.: Change detected binary frame
B, Temporal adapted binary frame
By, Post processed binary frame

E..: Spatial edge frame

Enm: Morphological edge detected frame
B,: Current binary object mask

Br-1: Previous binary object mask

Figure 3.2: Block diagram of the VOS scheme used {cf. Fig: 3.3).

e temporal adaptation A new temporal adaptation technique is used to stabilize the

segmented results.

e post processing This module includes small region removal, morphological closing,

hole filling and gap filling to construct the ohjects.

o edge adaptation An edge adaptation technique which consists of edge detection and

edge warping is applied to improve the accuracy at object boundaries.
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Fig. 3.3 shows example results of each step in the VOS scheme used.

Contributions of the VOS scheme used are: 1) an improved morphological double thresh-
olding technique to remove the background residual clutters and to enhance the presence of
the objects, 2} a new temporal adaptation technique to stabilize the segmentation results,

and 3) a new edge warping technique to improve the accuracy at object boundaries.

3.4 Change Detection

Generally, change detection is followed by thresholding in VOS. Change detection aims at
finding which pixels of a frame have changed and group them into objects. Thresholding
further separates objects from a background, or discriminating objects from other objects
that have distinct gray levels [28]. In this thesis, we construct a basic scheme of change
detection and thresholding [28] and morphological double thresholding for heavily cluttered

background.

3.4.1 Basic scheme of change detection [28]

Fig. 3.4 shows the block diagram of the basic change detection method [28]. In the block
diagram, [, indicates the current frame, I]_, indicates the previous frame (or the mo-
tion compensated previous frame in case of GM). D, and i, indicate the change detected

difference frame and the derived threshold respectively. Let
Di(zs, 1) = CD(La(mi, 93) — L1 (%3, 44)) (3.1)

where (z;,4;) denotes the position of the 5** pixel, I,(w;, 1), I\_1(%i, 1), and Du(zi, u)

ith pixel in I, I, and Dy respectively. CD is the change

are the intensity values of the

detection operator includes a spatial average filter and a spatial MAX filter {see Fig. 3.4).
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Ferrari (fr.4) hall (fr.282) hall {fr.221) survey (fr.156)

(b) Temporal adaptation Bp;.

(c) Post processing By,.

(d) Edge adaptation B,.

Figure 3.3: Example results of each step in the VOS scheme used (cf. Fig. 3.2).
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averaging fiiter filter
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Figure 3.4: Block diagram of the binarization method [28].

Assume either no GM or GM is compensated, and the global illumination remains more
or less constant between the frames. Then the pixel locations where D, differs from zero
indicate regions “changed” as a result of local object motion. The binary frame B, is then
defined as:

1: Dp(zi,yi) >ty

Bre(wi, yi) = { 0: otherwise (3.2)

where Bye(xi, i) denotes the value of 3¢ pixel in B,,, and is called a segmentation label
field, which is equal to “1” for changed regions and “0” otherwise. ¢, is a threshold estimated
based on [28]. This non-parametric thresholding method uses both global (block-based) and

local (block-histogram-based) decision criteria. It is also adapted to the estimated noise.

Since, the change detection method in [28] was tested mainly in video sequences without
camers motion, minor changes are made as follows to cooperate with the situation where
camera motion is compensated: Because of possible errors in GME and GMC, the difference
frame D, includes more artifacts than the one without camera motion. Therefore, stronger
spatial filter is necessary, instead of using 3 x 3 window for average filter in [28], 2 5 x 5

window is applied in this thesis. Note that the window size of MAX filter remains 3 x 3.

ig. 3.5 shows an example result of this change detection method. We can see that the

object is successfully separated from the background.
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(a) Simple difference. (b) Change detection. (¢} Thresholding.

Figure 3.5: An example result of change detection [28] in case of GM.
3.4.2 Morphological double thresholding

In some applications, the background is heavily cluttered due to the sensor noise, illumi-
nation change, and residual of GME and GMC (in case of GM). To further remove these
background residual clutters and to enhance the presence of the objects, an improved mor-
phological double thresholding is proposed which is based on [29]. The method [29] consists

of three steps:

1. Apply thresholding to the change detected frame D;, using threshold ¢masx t0 obtain

the mask binary frame By,s, (Fig. 3.6 (2)):

1: Dplzi,yi) >t
Brmask (i, yi) = { 0. otgir;?;i ek (3.3)

2. Apply thresholding to the same change detected frame D, using threshold fparker
(tmarker > tmask) to obtain the marker binary frame Brarker (Fig. 3.6 (b)):

1: Dplxy,u >t
Bmarker (xi, y7> - { 0: Ot?li?"i;]g’;S)e morker (34)

3. Apply morphological reconstruction [30] between B, and Bperger to Obtain the

reconstructed binary frame B, (Fig. 3.6 {c)). The reconstruction extracts the union
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of the connecited components of B,.,., which contains at least one pixel of B .
mask marker

By = U Bask <3’5)
Bmarkeranask?éG

(a) Mask frame Bk (by Marker  frame (¢) Morphological re-
Binarker- constructed frame Bj..

Figure 3.6: Tllustration of double thresholding using morphological reconstruction [30].

The proposed improvements to the method [29] are as follows. In [29], the threshold
tmask 1 a fixed value and tygrker = tmask + Tre, Where Tp is a constant. The morphological
reconstruction is applied between the mask frame and the marker frame and the resulting
number of detections d (white regions) which includes both true targets and false alarms
is counted. If d > 4 x T0 (TO is the number of objects expected), tarker is increased by
T, again and the morphological reconstruction is applied between the mask frame and the
updated marker frame. This process is repeated until d < 4 X T0 or Lyngrker can not be
increased any more.

This process has several disadvantages. First, the expected number of objects 70 is
unknown before the objects are successfully segmented. Second, using the resulting number
of detections d as & stopping criterion is not reliable. Third, using a fixed value as £,
is not generic. Finally, it is not efficient since iterative morphological reconstruction is

computed repetitively.
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In this thesis, an improved morphological double thresholding method is proposed. Com-

pared to [29], the improvements are addressed as follows:

© sk = @ X f. The thresholding function in [28] is applied on D, to derive the

threshold #;, (see Eq. 3.2). 0.4 < o < 0.8 and is set 0.65 in this thesis.
o tomarker = B X th. 1.2 < 5 < 1.6 and is set 1.4 in this thesis.

e The morphological reconstruction is executed only once between the mask frame and

the marker frame using fmast and tmarker derived above.

Fig. 3.7(a) and (c) show two example results of [29] where the objects are not complete.
Results of the proposed improvements are in Fig. 3.7(b) and (d).

Fig. 3.8 shows some comparison results between the basic thresholding [28] and the
proposed morphological double thresholding. Fig. 3.8 (a) has residual background clutters
from GME and GMC while Fig. 3.8 (c) contains background clutters due to the illuminant
change. As can be seen in Fig. 3.8 (b) and (d), after applying double thresholding, some
clutters are removed. However, the objects are preserved. Note that morphological double
thresholding needs extra computational cost for morphological reconstruction (about 0.03

sec/frame for CIF format sequences).

3.5 Temporal Adaptation

The results of the binary frame B, is not stable for some frames due to the following

reasons:

e When the frames have complex contents {e.g., fast and complicated camera motion),

the Emitation of GME and GMC causes By, to contain background information and
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(a) (b)

(c) (d)
Double thresholding [29]. Improved version.

Figure 3.7: Comparison of results of double thresholding between [29] and the proposed
improvements.

give erronecus objects.

e When the objects move slightly during two successive frames, the limitation of change

detection causes By, to contain only partial object information.

To compensate the above weaknesses and get more stable results, temporal information
is introduced to adapt B, Several temporal adaptation techniques can be found in the
literature. For example, in [26] and [27], a memory buffer MEM is built for each pixel.
The current binary frame is updated by adding pixels which were also labeled as changed
in one of the last L frames, where I denotes the depth of the buffer adapted with the

motion vectors and the size of the objects (see Eq. 3.6). This temporal adaptation is
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(a) (b)

(c) (d)
Basic thresholding [28]. Double thresholding.

Figure 3.8: Comparison of results of basic thresholding [28] and improved double thresh-
olding.

theoretically reasonable. However, after experimenting, we found that the memory depth
L is very sensitive. It often enlarges the objects by misadding the previous object pixels to
the current object mask. Also, it may misclassify the noisy pixels as objects if one of the

last L frames contains noisy pixels.

iy : Bnc(gjé, 'y’i) =1

2 Tiu) =
MEM (z;,y;) = { max{0, MEM (z;,yi) — 1) : Bgaelay, yi) =0

(3.6)

We propose a new temporal adaptation technique that is based on the object-tracking
principle to stabilize the binary results. This adaptation is based on the observation that
the objects can be tracked throughout the consecutive frames while noises and artifacts are

randomly appear and can not be tracked. The proposed temporal adaptation consists of
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three steps.
Pirst, a buffer MEM for each pixel is built and initislized as 0. MEM is updated in

each frame as follows:

1
o (3.7)

fl

MEM(z;, ) = { MEM (zi, ) + 1 : Bnc<$i?yi\>s =
7

max(0, MEM (z;, %) — 1)  Brelzi, wi
In Eq. 3.7, the value of each pixel for M EM is incremented by one if the pixel is set white in
the binary frame B, and is decreased by one when it is set black in B, until the value in
M EM decreases to zero. If a pixel is set white in B, for consecutive frames, the coordinate
value in M EM will increase to a certain large value. Therefore, using this buffer MEM, we
can detect the newly appeared object or the recently moving object. Note that this buffer
MEM is different from [26, 27] (see Eq. 3.7 and Eq. 3.6).

Second, the previous binary object frame B, is virtually morphological dilated and

eroded m times respectively, resulting in dilated frame By, , and eroded frame B,,_,.

-1

Third, the temporally adapted frame By, is obtained by Eq. 3.8 which states that: 1)
the region within the eroded frame B,,_, is assumed to be object pixels; 2) if the pixel is set
white in Bpe within By _,, it will be set white in the adapted frame Byy; 3) if the value in
MEM is greater than g frames, the corresponding pixel will also be set as an object pixel.
1 < ¢ < 10, where ¢ = 2 in this thesis which is a compromise between false detection and
delay in object detection; and 4) if the pixel meets none of the above conditions, it will set
black in By;.

Ben_1($iayi) =1

Bdn—l(wia yt) =1nN Bnc{xiv yz) =1
MEM(ghyl) > 4q

otherwise

Bus(wi, yi) = { (3.8)

[ O T

where By, (%, y:) and B, _, (x;,y;)denoctes the value of i*® pixel in the dilated and eroded

frame of B,_1, respectively.
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Theoretically, the number m of dilation and erosion should be adapted to the motion of
the object. Since motion estimation is a time consuming task, for the reason of efficiency,
m is approximated to five in CIF/SIF format and nine in PAL formas. Simulation results

show that unless the objects move very fast, these numbers are suitable.

Fig. 3.9 shows two examples of temporal adaptation. Fig. 3.9 (a) contains background
noise while Fig. 3.9 (c) contains part of the object. From Fig. 3.9 (b) and (d) it can be seen
that they are well adapted. Fig. 3.10 shows two comparison results between [26] and the
proposed temporal adaptation. It can be seen that [26] contains more noisy pixels than the

proposed technique.

(b)

{c) (d)

Before temporal adaptation. After temporal adaptation.

Figure 3.9: Comparison of results before and after temporal adaptation.
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(2) (®

{c) (d)
Temporal adaptation [26]. Proposed temporal adaptation.

Figure 3.10: Comparison of results between [26] and the proposed temporal adaptation.

3.6 Post Processing

Binary image post processing tools [42] can be used for post processing to remove artifacts
or clutter and to complete the object regions in By;. Artifacts or clutter can be removed by
small region removal. Morphological closing is the most popular operator to construct the
objects. However, it has limitation when the objects are over segmented. In this case, other
processing tools can be used such as gap filling. The disadvantage of gap filling is that it
can connect objects when they are close. After experimenting several post processing tools,

we choose the following method (see Fig. 3.11}:

e Region counting and small region removal
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Figure 3.11: Post processing of By;.

— Count the region number N, in temporal adapted frame Bj,; with the size S,

greater than a threshold ¢, (30 < £, < 150).
— Remove from By, the regions with size 5, <4, .

— Store the number of the regions in the first segmented frame as N,.; and update

Nyey every I frames (I is set to the frame rate in this thesis).

e Gap filling If N, > 2 X Ny, count the number g of black pixels (the gap) between
two consecutive white pixels in both horizontal and vertical directions of B,;. Fill the
gap with white pixels if g is less than a threshold t,. 8 < ¢, < 32 where ¢, should

ideally depends on the object and frame size.

e Morphological closing If NV, < 2 X N,.;, apply morphological closing m times with
window size 3 x 3. m depends on the frame size. It is set up as five for CIF/SIF

format and nine for PAL format.

e Hole filling [42] Fill the holes inside the objects. Holes are identified first by inverting
the frame (replacing white with black and vice versa}, then by labeling the regions
that do not touch any border of the frame as the original holes. After the pixels of

the holes are added back to the original frame, the holes are successfully filled.
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3.7 FEdge Adaptation

After the previous steps, the resulting frame By, is coarse at object boundaries, especially
at non-rigid parts where object boundaries are complicated. To get more accurate segmen-
tation results, the edge adaptation technique is often used for this purpose. In [26] and [27],
edge adaptation consists of the following steps: First (edgé detection), Sobel edge detector
is used to obtain the luminance edges of the current frame. In second (edge selection), the
luminance edges are selected within two limits: the outer limit is the contour of the twice
dilated object mask, the inner limit is set to siz pixel. Third (edge warping), within these
limits, every border pixel of the object mask is Warp-ed to the nearest luminance edge, if
a luminance edge is found within an adaptation radius R around that border pixel. This
edge adaptation technique has two disadvantages: First, using the adaptation radius £ may
have problems finding the correct luminance edges. Besides, the computational cost will
increase significantly with the increase of the radius R. Second, using object mask for edge
selection is not reliable if the object mask is far away from the correct object boundaries.
Furthermore, it is a implicit step since the adaptation is processed within a search range R.

In this section, we propose an edge adaptation technique to adapt By, to spatial lumi-
nance edge of the current frame J,,. This edge adaptation technique consists of two steps:

edge detection and edge warping (see Fig. 3.2).
3.7.1 Edge detection

Spatial edge detection

There are many spatial edge detection methods developed, including gradient-based meth-

ods (i.e., Kirsch, Sobel, Canny), and Laplacian-based methods (i.e., Laplacian of Gaussian,
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Difference of Gaussian) [42]. Canny edge detector [33] is considered to have the best per-
formance to date, however, it is not clear how to set the thresholds properly. Besides, it
is computationally intensive. After doing some experiments and comparisons, Sobel opera-
tor [42] is selected in this thesis for edge detection due to its efficiency. We found that the
results are not subjectively degraded compared to the one using Canny edge detector (see
Fig. 3.12{a} and Fig. 3.12(b)).

In the Sobel operator, first, the horizontal gradient frame I, and vertical gradient frame

I, of I, are obtained by convolution of I, with the masks S, and Sy as follows:

I, =I1,85;, I,=1,®8, (3.9)
where
-1 0 1 -1 -2 -1
Sy=1-2 0 2}, Sy = g O 0 (3.10)
1 0 1 1 2 1

Then spatial edge frame F,. (see Fig. 3.12(b)) is obtained using Eq. 3.11.

1: En(-%', yz) > te

Enlzi,y;) = \/fmg(xi,yi) +I§(37@':?7’i) = { 0 otherwise (3.11)

where Epo{zi,y;) is the value of i** pixel at position (x;, ;) in Ene, and 1, is a threshold for

binarization obtained by applying the thresholding method [28] to the current frame I,.

Morphological edge detection

Let E,. denote the spatial edge frame. FE,,, denocte the morphological edge frame of the
object mask By, The edge frame E,;, of B,; is detected using the morphological binary

detection in [14]. An example result of this binary detection is shown in Fig. 3.12(c).



Object Segmentation 58

(a) Spatial edge frame using (b) Spatial edge frame using (¢} Morphological edge
Canny operator. Sobel operator. frame B, [14].

Figure 3.12: An example result of edge detection.
3.7.2 Edge warping

In image processing, warping is originally used to relocate the points in aerial photographs,
where the image is geometrically distorted due to the plane position [42). We use this
concept to adjust the object boundaries where every border pixel (Epnm (s, ;) = 1) of the
object mask By, is warped to the nearest edge pixel in the spatial object edge frame En,,
if there exists such a spatial object edge pixel within a search range. Instead of using the
radius R as a search range in [26], we propose a different approach that is more reliable and

more efficient. The warping process counsists of the following steps:

e Let p; be an edge pixel in E,,,. Find the direction §; of p; out of the eight directions

as in Fig. 3.13.
e Define a search range, Ry, centered at p; as follows:

— I 84 € {61, 89, 63, 04}, Rg is perpendicular to &,.

~ If 64 € {65, 66, 67, O3}, Ry lies in both horizontal and vertical directions.

e Let p; be an edge pixel in E,,. Find whether there is a p; € Rg and p; # p;. I there
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Current pixel Adjacent pixels

Figure 3.13: Different edge directions for edge warping.

exists more than one p; within Ry, chose the one with the Euclidean distance closest

to p; along the search range.
e Warp p; to p; as follows:

— If p; is white in By, then p; is assumed to be inside an object and all pixels at
the line segment [p;, p;) connecting p; and p; in By, are set black (where p; is

set black and p; white).

— If p; is black in By, then p; is assumed to be outside an object and all pixels at
the line segment [p;, p;] connecting p; and p; in Byy are set white (where p; and

p; are both set white).

The size of the search range Ry depends on the frame size. In this thesis, it is set to 10
pixels for CIF (SIF) format and 20 pixels for PAL format.
The proposed technique has three advantages compared to [26]. First, using the direction

of the border pixels to define the search range can enhance the possibility of finding the



Object Segmentation G0

correct luminance edge. Second, since the search range is changed from & circle to one {or
two) line, the number of searches is reduced. Thus it is faster than [26]. Third, it uses no
edge selection and thus it avoids missing luminance edges. Fig. 3.14 shows two examples
of edge adaptation. When the luminance edge is detected, the boundary of the object is

accurately adapted.

(a) (b)

{c) (d)
Before edge adaptation. After edge adaptation.

Figure 3.14: Comparison of results before and after edge adaptation. See the boundary of
the left side mirror of the car in (a) (b), and the boundary of the human body in {(c} (d}.
2.8 Summary

VOS is one of the most challenging topics in digital video processing. A large variety of

methods have been developed. This chapter has integrated the proposed GME method into
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a VOS scheme and improved selected modules of this scheme to achieve good segmentation.
The scheme used consists of the following steps: GME & GMC, change detection, temporal
adaptation, post processing and edge adaptation. Improvements of this scheme are: 1) an
improved morphological double thresholding technique to remove the background residual
clutters and to enhance the presence of the objects, 2) a new temporal adaptation technique
to stabilize the segmentation results, 3} a new edge warping fechnique to improve the

accuracy at object boundaries.



Chapter 4

Results and Discussions

This chapter presents and discusses the results of the proposed GME method (Chapter 2)
and the VOS scheme used (Chapter 3}. To evaluate the performance of the method and the
scheme, several standard test sequences are tested with or without GM. Simulation results
are compared to the reference methods subjectively and objectively.

This chapter is organized as follows. Section 4.1 lists the test video sequences. Sec-
tion 4.2 presents the results of the proposed GME method. Section 4.3 presents the results

of the VOS scheme used. Section 4.4 summarizes the chapter.

4.1 Test Sequences

Simulations are carried out using several standard test sequences (video shots) with or

without camera motion as follows:

4.1.1 'Test seguences with GM

e Coastguard (Fig. 4.1(a)) This 352x288 CIF sequence has 300 frames. It contains two
ships driving in opposite directions with mainly translational camera motion. Note
that the moving ships also cause the water motion which may interfere with the GME

and the VOS.

62
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e Ferrari {Fig. 4.1(b)) This CIF sequence has 70 frames. It contains a car moving
fast with complex camera motion. Furthermore, there is dust behind the car which

complicates the GME.

e Stefan {Fig. 4.1(c)) This CIF sequence has 300 frames. It contains a tennis player and
inconsistent but fast camera motion, which is difficult to predict. It also has many

local motions in the audience region.

e Marble (Fig. 4.1(d)) This 512x256 test sequence has 30 frames. It contains a polyhe-

dral scene with a slightly moving marbled block and moving camera.

e BBCcar (Fig. 4.1(e)) This 720x576 interlaced PAL test sequence has 60 frames. It
contains a fast moving jeep with a pan and slight rotate camera motion. There are

moving tree leaves at the up-right corner of this sequence.

e Tennis (Fig. 4.1(f)) This interlaced PAL test sequence has 38 frames with camera

zoom in a player playing table tennis’.

4.1.2 Test sequences without GM

o Survey (Fig. 4.2(a)) This 320x240 SIF sequence has 1000 frames. It is an outdoor
sequence with a still background. It contains several pedestrians walking on the street,
entering and leaving the scene. Because this sequence is originally recorded with an
analog NTSC-based camera and reconstructed to SIF format, interlace artifacts are

presented in the constructed frames.

IThe whole sequence contains three shots. We only select the one with GM.
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(a) Coastguard. (b} Ferrari. {(c}) Stefan.

(d) Marble. (e) BBCcar. (f) Tennis.

Figure 4.1: Test sequences with GM.

o Jcars (Fig. 4.2(b)) This SIF sequence has 66 frames. It is an outdoor sequence with a
still background. It contains a traffic intersection with several vehicles and pedestrians

moving.

e Hall (Fig. 4.2(c)) This CIF sequence has 300 frames. It it an indoor scene with
shadows and illuminant changes and a still background. Two persons enter the scene

and one leaves afterward.

e Stair (Fig. 4.2(d)) This CIF sequence has 1475 frames. It it an indoor noisy scene
with shadows, and illuminant changes and a still background. The scene contains two
doors and parts of the stairs. The first person enters the back door, goes o the front
door and exits. Then he returns and exits from the back door. The second person

comes down the stairs, goes to the back door, and to the front door and exits. Then
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(a) Survey. {(b) 3cars.

(¢) Hall () Stasr.

Figure 4.2: Test sequences without GM.

he returns and goes up the stairs.

4.2 Results of the Proposed GME

Simulations of the GME are carried out using the standard test sequences Coastguard,
Ferrari, Stefan, Marble, BBCcar, and Tennis. The proposed method is compared to the

reference method 1 in [8] and the reference method 2 in [9].

4,2,1 Subjective GME resulis

Fig. 4.3 to Fig. 4.14 show the comparison results of the proposed GME method, the reference
methods 1 [8] and 2 [9]. In these figures, the absulute difference frames between the current

frame 7, and the motion compensated previous frame I}, (see Eq. 4.1) and the binarized
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object frames (see chapter 3) are presented to show the affect of using different GME
methods on VOS. For the purpose of visual attention, the difference frames are brightened

four times. As can be scen, the proposed GME method achieves better subjective resuits.

Dn(xi’ yz) = if;hﬂ:f;a y;) - z—n(xzvy’a); (4‘1)

To further test the performance of the proposed method, we conducted an initial subjective
test where we asked two experts and two non-experts to evaluate the segmentation cutput.
We showed them three frames in sequential order: original frame, proposed segmented
frame, reference segmented frame [9]. This was repeated for all the frames in the test
sequences. The results of this test are presented in Table 4.1. It shows that the average

improvement of the proposed method is 39% compared to the reference method 2 [9].

rsequence name I better l similar [ worse I improved |
Coastguard | 198(frame) | 93(frame) | 9(frame) | 189(frame)
3000(frame) 66% 31% 3% 63%
Ferrari 53(frame) | 16(frame) | 2(frame) | 5i(frame)
70({frame) 76% 23% 3% 73%
Stefan 105(frame) | 192(frame) | 3(frame) | 102(frame)
300(frame) 35% 64% 1% 34%
Racecar 27(frame) | 28(frame) | 12(frame) | 15(frame)
67(frame) 40% 42% 18% 22%
BBCcar 2(frame) | 58(frame) | O(frame) | 2(frame)
60{frame) 3% 97% 0% 3%

Table 4.1: Statistical subjective comparison results between the proposed method and the
reference method. Here, “better”, “similar”, “worse” means the results of the proposed
method are better, similar or worse than the reference method 2 {9]; “improved” means the
overall improvements of the proposed method compared to the reference method 2 [9].

4.2.2 Objective GME resulis

To evaluate the GME objectively, we use three criterion: the mean absolute error (MAE),

the consistency of the segment, and the computational complexity.
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MAE between the current frame J, and GM compensated previous frame 7,_; (Eq. 4.2)
is measured and compared to objectively compare the proposed GME method and the

reference GME method 1 {8] and 2 [9], .
1 \
MAE = ——SAD == Z c= I () — D{es, u) (4.2

where NV is the number of the pixels for the whole frame.

Fig. 4.15 and Fig. 4.16 show the objective comparison of the MAE results for each test
sequences. As can be seen, the proposed GME method has lower MAE than both the
reference methods [9, 8].

Since the size of the objects is temporally consistent in a video shot, the percentage of the
segmented object pixels should change gradually throughout the sequence.Fig. 4.17 shows
the comparison percentage of object pixels through each test sequence. In Fig. 4.17 and
Fig. 4.18, the proposed method shows more stable result than both the reference methods [9,
8] overall, which confirms the observation of the subjective results in section 4.2.1.

Since GME is a time-consuming task, efficiency is another important criterion in evalua-
tion of the different methods. The average computational time per frame for each sequence
using different methods are compared in Fig. 4.19. It shows that the proposed method is
about 1.5 time faster than the reference method 2 [9] and 2.5 time faster than the reference

method 1 [8] using the C program language under a Sparc-Sun-Solaris 2.8 1010MHz system.
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Proose mthd Referencemeod 2 Ref ence meth 1

Io15H
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Figure 4.3: GME compared results of the difference frames of Coasiguard test sequence
among the proposed method, the reference method 2 [9] and the reference method 1 [8].
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Proposed ethod - Relerence method ~ Reference method 1

A wre iy M

Iog2

Figure 4.4: GME compared results of the binarized object frames of Fig. 4.3. The waves
of the water interfere with GME of the reference methods, while the results of the proposed
method remain stable.
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Pose ethd eferene etho ‘ - ference ethl

B

Figure 4.5: GME compared results of the difference frames of Ferrari test sequence among
the proposed method, the reference method 2 [9] and the reference method 1 [8].
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Figure 4.6: GME compared results of the binarized object frames of Fig. 4.5. In this
sequence, the object motion is dominant in some frames. This makes the reference method
fail to identify the outliers, while the proposed method does not have this problem.
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Proposed method Reference method 1

Reference method 2

1915 4

Figure 4.7: GME compared results of the difference frames of Stefan test sequence among
the proposed method, the reference method 2 [9] and the reference method 1 [8].
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Proposed method

Iz18

Figure 4.8: GME compared results of the binarized object frames of Fig. 4.7. This difficult
sequence contains lots of local motions in the audience area (see the top part of the frames)
which interfere with the GME. But the proposed method still perforins better than the
reference methods.
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Figure 4.9: GME compared results of the difference frames of Marble test sequence among
the proposed method, the reference method 2 [9] and the reference method 1 [8].
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Prope method Reference method 2 Reference method 1

Tposh

Figure 4.10: GME compared results of the binarized object frames of Fig. 4.9. This
sequence contains high texture in the background which requires accurate GME and GMC.
The proposed method performs better than the reference methods in compensating the GM.
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Proposed method Reference method 2 Reference method 1

Figure 4.11: GME compared results of the difference frames of BBCcar test sequence
among the proposed method, the reference method 2 [9] and the reference method 1 [8].

Proposed method

Figure 4.12: GME compared results of the binarized object frames of Fig. 4.11. The
proposed method shows better results to compensate the shake of the tree leaves (see the
top-left corner of the frame).
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Proposed method Reference m ] Refere: thod

Tp3118

Figure 4.13: GME compared results of the difference frames of Tennis test sequence among
the proposed method, the reference method 2 [9] and the reference method 1 [8].

roposed method

Reference method 2 Reference method 1
e B , " ,

e

Figure 4.14: GME compared results of the binarized object frames of Fig. 4.13. This
sequence contains camera zooming in to the object which is difficult for GME. The proposed
method has the best performance compared to the reference methods.
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Figure 4.15: Objective GME compared results of MAE among the proposed method, the
reference method 2 [9] and the reference method 1 [8]. In Coasiguard sequence, there is
a sudden tilt of camera motion during frame 70 causing relatively large MAE, while the
proposed method shows stable MAE. In Ferrari, the proposed method has better subjective
results compared to both the reference methods. However, they show similiar MAE in this
figure. A discussion about this can be found in section 4.2.3. In Stefan, the camera moves
very fast after frame 180. The reference methods have difficulties in estimating GME
accurateﬁi én this situation, resulting in large MAE; while the proposed method remains
stable MAE.
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Figure 4.16: Objective GME compared results of MAE among the proposed method, the
reference method 2 [9] and the reference method 1 [8] (continued). In marble sequence, the
proposed method has the smallest MAE throughout the whole sequence. In BBCcar, the
proposed method has almost the same MAE as the reference method 2. However, in frame
9, the reference method 2 fails in GME, while the proposed method succeeds. In Tennis,
the proposed method has significently lower MAE for the first frame compared to both the
reference methods because of the proposed robust estimator applied for the first frame.
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Figure 4.17: Compared results of the percentage of object pixels among the proposed
GME method, the reference method 2 [9] and the reference method 1 [8]. Compared to
both the reference methods, the proposed method achieves more stable results for each test
sequences.
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Pigure 4.18: Compared results of the percentage of object pixels among the proposed GME
method, the reference method 2 [9] and the reference method 1 [8] (continued). Compared
to both the reference methods, the proposed method achieves more stable results for each
test sequences.
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Figure 4.19: Compared GME computational time for the proposed GME method, the
reference method 2 [9] and the reference method 1 [8]. The proposed method is more
efficient than both the reference methods.
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4,2.%3 Discussions

This section has presented the simulation results of the proposed GME method. Both
subjective and objective results show that the proposed method is more robust, faster, and
more suitable for object segmentation than the reference methods. Several discussions are

addressed ss follows:

e The evaluation of using MAE is not always suitable for the VOS oriented GME method
because we want background motion to be compensated but leave the objects as
residuals. Since the objects are often in the center of the frame, the prediction error
can be calculated at the four corners of the frame (see Fig. 4.20). In this thesis, the
corners are chosen to be the rectangles and the size of each rectangle is 0.25Rows x
0.25C0ls. Fig. 4.21 shows the comparison corner MAE (CMAE) results of Ferrari test
sequence. Compare Fig. 4.21 and Fig. 4.15, it can be seen that the proposed method

has similar MAE but less CMAE than the reference methods.

e For interlaced test sequences, we tested several deinterlacing methods, but the results
are not satisfactory and significantly affect GME. Thus, at present, we skip every

other field when processing an interlaced test sequence.

e The proposed GME method is oriented to object segmentation. However, it has the
potential extension for the other applications {e.g., video coding}. Further experiments

can be executed for its evaluation on this issue.
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Figure 4.20: Calculate the prediction error at the four corners of the frame.

4.3 BResulis of the VOS scheme used

Simulation results of the VOS scheme used are carried out using standard test sequences
Scars, Survey, Hall, Stair, Coastgquard, Ferrari, Stefan, BBCcar, and Tennis. The first four

are sequences without GM. The rest of the sequences include GM.

4.3.1 Subjective results

Fig. 4.22 to Fig. 4.27 show the subjective VOS results of randomly selected frames from
test sequence Jcars, Survey, Coastguard, Ferrari, BBCear, and Tennis. We can see that
the results are satisfactory in most cases. Fig. 4.28 to Fig. 4.30 show the comparison VOS
results of randomly selected frames between the scheme used and the reference scheme [27].
1t can be seen that the VOS scheme used contains less noises and artifacts than the reference

scheme.

4.3.2 Objective resultls

We measure the performance of the VOS scheme used objectively using the objective mea-

sure presented in [38] where the inputs are the original frames and the binary object frames.
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Figure 4.21: GME compared results of MAE and CMAE.

As stated in [38], there are three statistics calculated independently for performance mea-
surement: spatial color contrast along object boundary, temporal color histogram difference,
and motion difference along object boundary. These features can also be combined to give
an overall score {normalized to one). The lower the score, the better the performance of

the VOS2,

Fig. 4.31 shows the comparison VOS measurements for Hall test sequence among the

scheme used, the reference scheme (27}, and the ground truth (i.e., manually segmented
3 L i’ Y M y

?See appendix A for the details of this measure.
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results). The scheme used has a lower score than the reference scheme and closer perfor-
mance to the ground truth . Fig. 4.32 shows the comparison VOS measurements for Stair
test sequence between the scheme used and the reference scheme [27]. The scheme used
also here shows a lower score than the reference scheme. Fig. 4.33 shows objectively VOS
measurements for test sequences with GM. It can be seen that the overall scores for all the

test sequences are temporally stable.

Table 4.2 shows the computational time for each test sequences. The average VOS
computational time per frame is 0.32 second for CIF/SIF test sequences and 0.78 second
for PAL test sequences under multitasking Sparc-Sun-Solaris 2.8 1010MHz. The average
computational time per frame of the whole process is 0.78 second for CIF /SIF test sequences

and 2.18 second for PAL test sequences with GM.

I sequence name l GME computational time/frame { VOS computational time/frame ‘

Coastguard (CIF) 0.48s 0.27s
Ferrari (CIF) 0.50s 0.29s
Stefan (CIF) 0.50s 0.30s

Hall (CIF) No GM 0.48s
3cars (SIF) No GM 0.28s
Survey (SIF) No GM 0.30s
BBCcar (PAL) 1.0s 0.81s
Tennis (PAL) 1.8 0.75s

Table 4.2: Computational time for each test sequence.

4.3.3 Discussions

This section has presented the simulation results of the VOS scheme used. Both subjective
and objective results show that the scheme used has satisfactory results for test sequences

with and without GM. Several discussions are addressed as follows:
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e The VOS scheme used has satisfied performance for noisy background. However, it
can not extract the complete objects when the motion of the objects can hardly be
detected (see frame 162 and 202 in Fig. 4.28). Better solutions may use object tracking

and matching.
e The two thresholds for double thresholding can be better adapted through more tests.

e Post processing used in this thesis may connect close objects due to the gap filling

method. Thus an adaptive gap filling is needed.

e If the sequence contains continuous complicated camera motion and can not be finely
compensated, it will effect the segmentation results (see Fig 4.27 where the tennis

table is not finely compensated ).

4.4 Summary

This chapter has presented the simulation results of the proposed GME method and the
VOS scheme used. Both subjective and objective results are presented and compared to the
reference methods. Several discussions are also addressed. It shows that the proposed GME
method is more robust, faster, and more suitable for VOS than the reference methods [9, 8].
The VOS scheme used is efficient and noise-adaptive that achieves satisfactory results for

several standard test sequences with and without GM.
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(a) frame 2 (b) frame 12

(g) frame 62 (h) frame 65

Figure 4.22: Randomly selected segmentation results of Scars test sequence (no GM). The
multi-objects are successfully segmented.
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{a) frame 2 ) (b} frame 122

(c) frame 322

{g) frame 722 (h) frame 922

Figure 4.23: Randomly selected segmentation results of Survey test sequence (no GM). The
objects are successfully detected. However, in some frames, the objects are not complete
(see frame 122) due to the difficulty of detecting slightly moving objects.
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(b) frame 42

/’/ 7
o

.

(c) frame 82 (d) frame 122

-

7

(f) frame 202

(g) frame 242 (h) frame 282

Figure 4.24: Randomly selected segmentation results of Coastguard test sequence (with
GM). The overall segmentation results are satisfied for this sequence.
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(a) frame 2 (b} frame 11

e

(c) frame 20 (d) frame 29

{g) frame 56 {(h) frame 65

Figure 4.25: Randomly selected segmentation results of Ferrari test sequence (with GM).
The results are satisfied except that there are some occlusions in the last few frames, This
is because part of the vehicles can hardly be detected in both change detection and edge
detection.
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(a) frame 3

(b) frame 11

(c) frame 19

(d) frame 27

(e) frame 35

(f) frame 43

(g) frame 51

Figure 4.26: Randomly selected segmentation results of BBCcar test sequence (with GM).

(h) frame 59

The results are satisfied and stable for this sequence.
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(c) frame 11 (d) frame 15
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(e} frame 19 (f) frame 23

Lo
(g) frame 27 (h) frame 31

Figure 4.27: Randomly selected segmentation results of Tennis test sequence (with GM).
This sequence also contains residual from GME.
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Original Frame Scheme used  Reference scheme
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Figure 4.28: Randomly selected VOS compared results of Hell test sequence (no
GM)between the scheme used and the reference scheme [27]. The scheme used has compat-
ible results to the reference method. However, both methods encounter problems to detect
slightly moving objects.
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Figure 4.28:

Original Frame

Scheme used

Randomly selected VOS compared results of Stair test sequence (no GM)

between the scheme used and the reference scheme [27]. The scheme used has less artifacts
than the reference method for this sequence (see Frame 200, 950, and 1040). Also the
scheme used has better performance to preserve small objects than the reference method

(see Frame 600).
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Figure 4.30: Randomly selected VOS compared results of Stefan test sequence (with GM)
between the scheme used and the reference scheme [27]. The segmentation results of the
scheme used are better than the reference method because of the accurate GME and GMC
as well as the noise-robust change detection.
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Figure 4.31:  Objective performance measure of Hall test sequence using the reference
scheme [27], the scheme used, and the ground truth. The scheme used Has a lower score
than the reference scheme which mdzcates that the scheme used has better performance
than the reference scheme. Note that the scheme used also has closer performance than the
reference scheme to the ground trut
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Chapter 5

Conclusion

5.1 Summary

Most object segmentation methods either assume that there is no GM or directly adopt a
coding-oriented GME method to estimate the GM. However, the objective of GME in video
coding is different from the one in object segmentation. This thesis has proposed a fast and
robust GME method oriented to object segmentation. Furthermore, this GME method has
been integrated into a modular object segmentation scheme. This thesis has proposed some
improvements (see section 5.2) within this scheme.

The proposed methods aim at four goals: 1) automatically adapt to GM, 2) robust
(insensitive) to noise and clutter, 3) stable segmented objects over time, and 4) low compu-
tational cost. This thesis has approached these goals through the detection, estimation and
compensation GM, through the adaptation to noise and reduction of clutter, through the
combination of temporal and spatial information, and through modularity of the proposed
methods.

The proposed methods (GM detection, GME, and VOS) provide a response of 0.32
second per frame for CIF/SIF video sequences without GM, and 1.0 second per frame with
GM on a multitasking Sparc-Sun-Solaris 2.8 1010MHz without specialized hardware. The
reliability of the proposed methods have been demonstrated by experimenting on more than

10 indoor and cutdoor video shots containing a total of 6371 frames including sequences with
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and without GM. Both subjective and objective simulation results show that the proposed

GME method is more efficient and can achieve better results than the reference methods.

For object segmentation, encoursging results were alsc achieved.
?

5.2 List of Contributions
Contributions of this thesis are:

e 3 fast and noise-robust GM detection technique which can detect GM without es-
timating the GM parameters. The proposed GM detection method first applies a
change detection method [28] between the current and the previous frame. Then the
binary frame is divided into nine equal blocks and the sum of the weighted number
of blocks with the white pixels beyond a threshold is calculated. To adapt to the
noisy sequences, the window size of the spatial average filter for change detection is

adjusted with the PSNR of the sequence.

e a fast and robust GME method oriented to VOS. This method combines basic GME
principles for video coding and adds several improvements for VOS. Contributions in

this part include:

1. a combination of 3-step search and MV prediction for initial motion estimate.
The traditional 3-step search for initial motion estimate is applied for the first
six frames of the processed video sequences. For the rest of the frames, a fast

MYV prediction technique is applied instead.

2. using residual {object} information from the previous frame for robust estima-

tion. This residual information is used to eliminate outliers when estimating GM
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parameters of the next frame. Note that since this residual information is reused

for VOS, there is no computational cost involved.

3. a new robust estimator considering the neighborhood for the first compensaied
frame to improve the accuracy of the GME result since there is no residual

information available at that time.

e improvements to a VOS scheme based on change detection using GM compensated

frame difference. The improvements in this scheme are:

1. an improved morphological double thresholding technique to remove the back-
ground residual clutters and to enhance the presence of the objects. This tech-
nigue obtains two binary frames using two thresholds obtained from a noise-
robust thresholding method [28]. Then morphological reconstruction is applied

to simplify the frame.

2. a new temporal adaptation technique to obtain more stable object results. First,
a buffer is built and updated in each frame to detect the newly appeared objects.
Then the adaptation ranges are set up as the dilated and eroded previous cbject
frame. The adaptation is processed using the buffer information as well as the

adaptation ranges.

3. a new edge adaptation technigue to improve the accuracy at object boundaries.
This task consists of two steps: edge detection, and edge warping. First, spatial
luminance edge of the current frame as well as the binary edge of the object mask
is detected. Then every binary edge pixel is warped to the nearest luminance

edge pixel within an adaptive search range.
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5.3 Conclusion

The conclusion of this thesis is drawn in this section and is divided into three parts: global
motion detection, global motion estimation and video object segmentation:

Global »motiun detection

In the proposed scheme, GM detection is a condition to decide whether or not GME is
necessary for the processed sequence. Applying GME conditionally using the proposed fast
GM detection method can speed up the computational time significantly. It also avoids
possibly estimating errors imported by GME in case no GM is available.

Global motion estimation

e An accurate GME result is a critical step for a successful object segmentation. The
proposed GME method is the most important contribution in this thesis since it
achieves satisfactory results that outperform the reference methods. A paper based
on this method was submitted and is accepted for publication by a prestigious IEEE
conference on video and image processing (see appendix B). The proposed GME
method contains three contributions. The first one lies in the initial estimation to
speed up computational time and to improve the results. However, it is the two pro-
posed robust estimators that contribute the most to achieve the major improvements.
This is becaunse these two robust estimators can identify the object pixels and reject

these pixels as outliers for GME.

e The proposed GME method is designed for VOS since it aims at successfully com-

pensating the background and extracting the objects using the remaining differences
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between the current and the compensated frames. While in video coding, the com-
puted motion need not resemble the frue motion of frame points as long as some

minimum bit rate is achieved.

@ The objects may not be detected even if the background is successfully compensated
if the motion of the objects is very small {see the results of Marble test sequence in
Fig. 4.9 and Fig. 4.10). Unless other information is added, this change detection based

scheme can not handle these situations.
Video object segmentation

e The VOS scheme used consists of several other modules except GME and GMC.
Some of these modules are proposed as part of this thesis; others are adopted as is to

construct the whole scheme. Each of the modules used is analyzed as follows:

~ The change detection method [28] used performs well in reducing the noises and
artifacts because of the spatial averaging filter and the MAX filter applied to the
difference frames. The proposed double thresholding technique has visual im-
provements compared to the basic thresholding, especially when the background

is heavily cluttered.

— The proposed temporal adaptation technigue improves the results by two strate-
gies: first, it uses a buffer to identify the newly appeared objects from the clutter.
Second, it attempts to track the objects by applying morphological dilation and
erosion to the previous objects. The benefit of using this module is to stabilize
the segmentation results. Since it adapts well for the test sequences, it can be

considered as the most significant improvement in the VOS scheme.
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— The methods used for post processing of the binary frame are not adaptive as
they may connect district objects. Further resolution in adaptive methods is

needed.

— The purpose of adding an edge adaptation module is to improve the accuracy
at object boundaries. More accurate edge detection in the gray-level frame is

needed (e.g., using other edge detector than Sobel).

e The VOS scheme used is modular. Some parameters can be adjusted according to the

characteristics of the processed video sequences.

e The VOS scheme is not designed for a specific application. However, due to its
efficiency and robustness, it can be applied in real-time video applications such as

video surveillance, video editing and video coding.

5.4 Possible Extensions

There are a number of issues to be considered to enhance the performance of the proposed

methods:

e Change detection methods have a common difficulty in detecting complete objects
when the objects slightly move. Adaptive solution lies in combining other features,

such as spatial information or object matching.

e Post processing {gap filling and morphological closing) techniques used in this thesis
may connect close objects. Applying them adaptively using extra conditions may
solve this problem. For example, a conditional morphological dilation and erosion

technique is presented in [13].
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o Many edge detectors are proposed in the literature with different pros and cons. Other
edge detectors can be tested and applied instead of Sobel edge detector. For example,

Roberts edge detector may have better performance in eliminating shadows.

e With an accurate de-interlacing method for interlaced sequences, the proposed method

can be conducted using consecutive fields instead of every other field.

e Since GME and VOS interact in this thesis, better integration between these two

methods would help achieve better overall results.
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Appendix A

Objective Performance Measure for VOS [38]

The performances of an object segmentation algorithm are mainly evaluated subjectively. Few ob-
jective measures exist and no standard objective measure is available. In the last years, objective
measures to YOS are an active filed of research in video processing. To evaluate the object segmen-
tation using the proposed GME method, the objective measure in [38] was used. In this section,
details of this method are given. As stated in [38], there are three statistical features calculated in-
dependently for performance measure: spatial color contrast along object boundary, temporal color
histogram difference, and motion difference along object boundary.

e Spatial color contrast along object boundary
Assuming that object boundaries are coincided with color boundaries, if the objects are suc-
cessfully segmented, there should be a color difference between the pixels that along the
segmented object boundaries. To measure this difference, first, a set of probe pixels are estab-
lished by drawing normal lines of length L astride the segmented object boundaries at equal
intervals (see Fig. A). Then the color probes are defined as M x M regions centered at the two
ends P! and P§ of each normal line (see Fig. A). The measure of color difference is calculated

as follows:
1 &
< =1 = — 1) < .
0 > dcolm‘ 1 Kt, ; 5color(7f) = 1 (A 1)
5colo1' (7‘) = HCD — 'C"I'J'l (A2)

V3 x 2552

where K is the total number of normal lines, C} and C} denote the average color calculated
in the M x M region of each pair of the probe pixels P! and P}. L = M = 3 in [38].

The worst score of deoior is 1 and it decreases as the color difference along object boundaries
increases.

Figure A.1: Probe pixels along the object boundaries [38].

e Temporal color histogram difference
Assuming that the color histogram of the objects is temporally stationary, and this histogram is
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different from the color histogram of the background, the difference between this histogram H;
at time ¢ and H,.y at a reference time should represent the stabilization of the segmentation.
A x? metric is used to calculate this difference as follows:

B rHG)-raHres O
Lej=1 " H:()THrer (3)

0 < dpisr = 4 <1 (A.3)
= Ghist f‘JHt LN Hyet - \ }
oo

ij\r}fmf 1 R

r1= 4%/ Na, LR (A4)
B - B

Na, =Y Hi(j), Ne,, =Y Hees(d) (A.5)
g=1 j=1

where B indicates the number of bins in the histogram.

The best score of dp;s is O when there is no histogram difference between the segmented
objects at time t and the one at a reference time, and it increases as the histogram difference
increases.

¢ Motion difference along object boundary
Assuming that the object boundaries are coincided with motion boundaries, if the objects
are successfully segmented, there should be a motion difference between the pixels along the
segmented object boundaries. To measure this motion difference, the same geometry of the
probes used for measuring the color difference is adopted (see Fig. A). However, the parameters
are adjusted to L = 5 and M = 3 in [38]. The measure of motion difference is calculated as

follows:
§e .
il 5'm,o ion
0 _<_ dmotion =1- ;El'}?tt—(z)' S 1 (Aﬁ)
Dim Wi
Gmotion(t) = d{vV},v}) - w; (A7)
0<w; = R@Y)-R(vt) <1 (A.8)

where v, v} denote the average motion vectors calculated in the M x M region of each pair
of the probe pixels P! and P}. d(v},v}) is the distance between these two average motion
vectors, which is defined as:

Hi i

__EQLE’L}_!) <1 (A.9)

0 < d(uf ) = 1~ eap(—1%

and o is set 1 in [38]. R(.) denotes the reliability of the motion vector v*, and is defined as:

i nin2
B(7) = eop( 1=y ey

lite) =<l + P (A.10)

where b° denotes the backward motion vector at location p* + v* in frame ¢ + 1; ¢(.) denotes
the color intensity, and the parameters o, and o, are chosen as 5 and 16 in [38].

The worst score of dporion 18 1 and it decreases as the motion difference along object boundaries
increases.

¢ Combined measurement Furthermore, these features can also be combined to give an

overall score as in Eq. A.11. The parameters p1, u2, and us can set adaptively as far as the

sum 43 + o + ua is restricted to be one. The lower the score d, the better the performance
of the VOS.

d = pideotor + ﬂ?dhést + ,UBdetion (All}
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Publication

Based on the proposed GME method presented in Chapter 2 the following paper was submitted
and accepted for publication at a prestigious IEEE conference: Bin Qi and Aishy Amer, "Robust
and Fast Global Motion Estimation Oriented to Video Object Segmentation™, IEEE Internationsal
Conference on Image Processing (ICIP), Genoa, Italy, 11-14 September 2005.
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Appendix C

Abbreviations
2D Two Dimensional
3D Three Dimensional
HVS Human Visual System
VOP Video Ohject Plane
VGS Video Object Segmentation
GM Global Motion
GME Global Motion Estimation
GMC Global Motion Compensation
VM Verification Modesl
AM Analysis Model
LME Local Motion Estimation
LMC Local Motion Compensation
SAD Sum Absolute Difference
SSD Surn Square Difference
MV Motion Vector
BMA Block Matching Algorithm
SVD Singular Value Decomposition
PSNR Peak Signal to Noise Ratio
MSE Mean Square Error
MAE Mean Absoclute Error
CMAPE  Corner Mean Absolute Error
CDM Change Detection Mask
RSST Recursive Shortest Spanning Tree
CIF Common Intermediate Format
QCIF Quarter Common Intermediate Format
SIF Source Input Format
PAL Phase Alternate Line
MPEG Moving Picture Experts Group
DED Displaced Frame Difference
CD Change Dstection
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