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ABSTRACT
Development of a Dynamic Shortest Path Algorithm and a Traffic
Simulation Model
Arun Shankar Bhowmick
Shortest path determination in a dynamic transportation network has been a real
challenge where network traffic scenario changes continuously. The shortest path
between any two nodes in the network depends not only on the travel time of links that
constitutes the path but also on the time spent at the intersection which is a major part of
the trip time. Existing algorithms found in the literature consider only the link travel time
for the shortest path calculation between two nodes. A new algorithm is introduced in this
study that calculates the dynamic minimum trip time path between two nodes by
considering both link travel time and intersection turning delay. A macroscopic traffic
simulator is developed to simulate vehicles that use the proposed algorithm to calculate
the minimum trip time path. The trip time of guided vehicles which determine the travel
path based on en-route traffic information is compared to the trip time of unguided
vehicles which determine the travel path based on pre-trip traffic information. The guided
vehicles are assumed to be a part of a decentralized traffic management system where on-
board route guidance system allows the driver to calculate the minimum trip time path
each time they cross an intersection. A part of Montréal city road network is also
simulated to show the application of proposed path finding algorithm. From the results it
is seen that for a long distance trip the amount of trip time savings is higher because the

guided vehicles usually choose the path with less number of left turning delays.
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CHAPTER 1
INTRODUCTION

I.1. Background

Almost all networks have characteristics which vary with time. Networks like
transportation networks experience predictable rising and falling trends of utilization over
the course of a day, typically at morning and evening “peak hour™. This is particularly
true for highway networks but in urban road networks the traffic conditions are
constantly changing. One of the primary problems in a dynamic transportation network is
the determination of shortest paths. Because the state of the network is constantly
changing, the shortest path between a given origin and destination also changes with
time. This information is used not only for pre-trip route planning (based on the
assumption that the traveler is seeking the shortest path), but increasingly today in a real-
time context of route-guidance while en-route to the destination. With the scope of
Intelligent Transportation Systems (ITS) along with improved logistics and hardware
capabilities an efficient system should respond to continuously changing network
conditions and thus model the driver’s path selection for the desired destination. The real
challenge of an efficient route guidance system is to respond to the driver’s actual travel
preference and at the same time to predict the route with a realistic estimation of total
travel time required to reach to the destination. To make a reasonable estimation of trip
time several factors that affect trip time into the network might need to be considered.
Past studies indicate that minimizing turn in the travel path is an important choice for
drivers because intersection turning maneuver induces the maneuvering complexity

added to the trip and delays at intersection increases the trip time as well.



1.2. Problem Definition

For a road network, travel time on a particular link depends on the link dynamics such as

traffic flow, individual vehicle speed etc. and delays at intersection depend on the

intersection traffic signal timing cycles. Depending on the approach volume, priority is

set to the different turning volume. Due to the dynamic characteristics of the traffic, often

the vehicles experience unusual delay at the intersection which affects their trip time and

that is why shortest paths based on link travel time do not always resemble the best trip

time path as well as most preferred path of drivers. So, dynamic path information has to

be evaluated a repeated number of times with changing traffic condition along with

drivers route choice preference to determine the best trip time path between an origin-

destination pair. Existing algorithms that calculate the dynamic shortest path do not

implement these requirements at the same time whereas the combination of some well

established path search techniques can be an efficient solution for this problem domain.

This research study is intended to develop a new technique for dynamic shortest path

calculation by combining the heuristic search with bi-directional search technique and

considering interseciion turning delays with link travel time.

I.3. Objectives and Structure of the Thesis

The objectives of this study are manifold. They are as follows:

= Develop a bi-objective bi directional heuristic dynamic shortest path algorithn.

* Decvelop a macroscopic traffic simulator using cell transmission model.

* Model the presence of guided vehicles following the developed path search technique
on the road network and demonstrate its capability to model the corresponding traffic

dynamics.

£}



= Simulate different traffic scenarios to evaluate the improvement of using the new
shortest path algorithm in terms of trip time savings.

= Demonstrate the practical application of dynamic shortest path algorithm and
simulation model using Montreal road network.

The rest of the thesis is structured as follows,

Chapter 2 discusses the shortest path approach in transportation network and various

routing algorithm for static and dynamic shortest path with their implementation issues.

Chapter 3 presents the formulation of the new algorithm for dynamic shortest path

calculation with the necessary assumptions. It also presents the node search strategy and

details implementation of the algorithm.

Chapter 4 discusses the details explanation of macroscopic traffic simulation model

developed in this thesis with traffic flow dynamics.

Chapter 5 discusses the computer programs used in this thesis with the details object

oriented implementation of the traffic simulator. UML diagrams of objects used in the

simulator are also presented.

Chapter 6 discusses the results of the traffic simulator under various traffic scenarios for

hypothetical network.

Chapter 7 demonstrates the application of new algorithm and traffic simulation model to

Montreal City road network.

Chapter 8 summarizes the major conclusions of this thesis with future research directions.



CHAPTER 2

LITERATURE REVIEW
2.1, Dynamic Route Guidance
Factors such as time of day, street geometry, drivers’ experience, drivers’ behavior and
people’s daily activities affect vehicle distribution on a street network. Congestion occurs
when people rush into the street at the same time and share the same routes particularly at
bottleneck locations. By providing trip makers with information about travel options and
so allowing them to make better travel decisions, dynamic route guidance system promise
to enhance the ultilization of existing network infrastructure and to help manage
congestion. Drivers with real time traffic information will be able to avoid congested
roads and therefore will help to improve traffic flow throughout the entire road network.
In addition, by coordinating the paths of the various vehicles, the route guidance system
can inform road users about traffic network conditions (link travel time, waiting time at
intersections etc.) and suggest a path to follow from their current position to their
ultimate destination that will minimize travel time for all drivers, not just those using the
system.
2.1.1.  Past and Present Approach to Routing
As the mobility of goods and peoples has been increased in the last few decades, traffic
routing approach becomes a complicated issue to be dealt with. The major challenge for
today’s traffic network is to guide the vehicle to the destination with reduced trip travel
time. In the past, travelers had to rely only on the expected normal network condition
when planning for a particular trip. The recent development of dynamic traffic routing [7,

27, 31] are oriented to achieve both the ‘Local’ optimum and the ‘Global’ optimum



solution of this problem. The ‘Local’ optimum solution that diverts the traffic around the
point of congestion works well for normal traffic condition like off peak hour but during
the peak hours when traffic volume is very high the congestion might be shifted to
downstrecam [42]. The ‘Global’ optimum solution employs both static and dynamic
shortest path algorithm that helps drivers to take the anticipatory action regarding the
route selection decision based on the detection of upstream congestion and optimal
congestion control policies over both time and space [42].

2.1.2.  Comparison of Computer Networks and Transportation Networks
Transportation networks are the fundamental structures of transport geography associated
with the movement and storage of goods and people. Through the generalization, the
spatial distribution of a transportation network can be compared with a computer network
where the vehicular flow of transportation networks closely exhibit the behavior of
“packets” in computer networks [5, 42]. As the extent of the computer networks
increasing rapidly and recent developments in ITS [27], reflect a propensity for increased
use of sophisticated routing algorithms to optimize the mass movement of internet and
vehicular traffic. Different factors affecting the complexity of the particular routing
algorithms for a computer network can be pointed as coordination between all nodes of
the network, possibility of link and node failures and congestion [5]. It is interesting to
note that the possibility of link failures and congestion is very similar to the incidents and
traffic jams in transportation networks.

2.1.3.  Deterministic and Adaptive Route Guidance Architecture

Extensive research [14, 23, 29, 43] has been done in the last two decades in the study of

network routing architectures. Two kinds of routing architectures have been studied



particularly: the deterministic routing architecture and the adaptive routing architecture.
A deterministic routing architecture uses a fixed path for each pair of source and
destination nodes, while an adaptive routing architecture may use network information
and select an alternative path for a given pair of source and destination nodes. It has been
observed that the deterministic routing architectures, though simple and efficient, are
extremely vulnerable to the dynamic network condition. For this reason, adaptive routing
architectures have been preferred and extensively studied in the literature [14, 23].
Adaptive routing schemes can be further classified into centralized routing and
distributed or decentralized routing [14, 29, 43]. In the centralized adaptive routing
architecture, route selection function is performed at some central site like traffic
management center. In the distributed routing architecture, route selection function is
located in-vehicle or on-passenger in the delivery of multi-modal route guidance.
Decentralized or distributed scheme can be further classified into autonomous and
dynamic architecture. In the autonomous form of decentralized architecture, all route
guidance functionality is in-vehicle. Here route guidance is relegated to primarily static
route guidance applications, since there is no mechanism to systematically update the
network map database with current link travel times. In the decentralized dynamic
architecture, link-travel times are broadcast to vehicles to provide real-time estimates of
network congestion. The management center does not directly track route requests or
location/destination information from its clients (vehicles in the network). In this study,
decentralized dynamic architecture has been considered to develop the new shortest path

approach.
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2.2, Shortest Path Approaches in Transportation Networks

Network flows is a problem domain that arise in several fields including applied
mathematics, computer science, engineering, management, operation research. Shortest
path problems are among the most studied network flow optimization problems [2, 40].
The most obvious applications arise in transportation or communications, such as finding
the minimum travel time route between two nodes or between origin and destination. Due
to the nature of applications the path finding procedures in transportation network need to
be very flexible and efficient both from running time point of view and memory
requirements. Since no particular algorithm can solve all kinds of transportation network
path search problems, extensive research can be found for different implementation of
shortest path finding procedures [2, 20, 40].

2.2.1.  Basic Assumptions for Shortest Path Problems

To solve shortest path problems for a transportation network several assumptions have to

be imposed [2]. Considering a basic network G=(N,A) having |V nodes and |A

arcs
where each arc is (i, j)e A associated with an arc length (or arc cost) ¢;- The network has

two distinguished set of nodes, node s called Source and node D called Destination. The

length of the directed path is defined as sum of the lengths of arcs in the path. The

shortest path problem is to determine for every non source node ie N, a shortest length

directed path from node S to node D . The necessary assumptions are given below:

* All arc lengths are integers.

= The network contains a directed path from node S to every other node in the
network.

* The network does not contain a negative cycle.



®» The network is directed.

2.2.2,  Static Shortest Path Algorithms

Network where link costs remain constant over time is treated as static network. The
most fundamental form of static shortest path algorithm found in the literature is
Dijkstra’s [19] algorithm that finds shortest path from the source node to all other nodes
in a neiwork. Most of the researches [11, 12, 13, 20, 28, 35, 36, 47] on shortest path of
the network are based on this algorithm. The algorithm follows the forward star node
arrangements on its way to find the shortest path for a given source node. The algorithm
has been modified in various researches from its initial formulation to improve the run
time complexity using different data structure 2, 11].

2.2.3.  Dynamic Shortest Path (DSP) Algorithms

So far, discussions about the shortest path algorithms mostly dealt with the static shortest
path problems. Since the main concern is the dynamic transportation network where link
cost or specifically travel time changes along with time, the focus is on dynamic shortest
path finding techniques. In transportation application, especially in the urban network
where congestion is a huge concern, dynamic network condition must be considered to
calculate the shortest path. The dynamic shortest path problems are categorized into two
types [17]. In the first type, the static shortest paths must be recomputed due to frequent,
instantaneous and unpredictable changes in the network. The second type is the time-
dependent shortest path problem in which network characteristics change in a predictable
fashion. Such problems arise frequently in vehicular transportation, where shortest paths
are computed from anticipated future characteristics of the network for different
departure time as one travels through morning or evening “Peak Hour”. In the subsequent

section different dynamic shortest path algorithms that have been found in the literature



are presented for the nctwork given earlier. The network is said to be dynamic if the
value of network data, such as arc travel times or arc travel costs, depend upon the time at
which travel along those arcs takes place.

2.2.3.1. Programming Formulation for the DSP Algorithms

Dynamic path algorithms have been extensively investigated in the literature. Some of
the major works done can be found in [11, 12, 13, 20, 35, 36, 47]. The label setting
algorithm was proposed [20]. This gencralizes the Dijkstra’s [19] algorithm for the
shortest path from § to D described earlier. It is to be noted that this algorithm is based
upon an implicit assumption of first-in-first-out (FIFO) property also stated by [28, 35,
36]. [42] has formulated the algorithm as given below:

Let £ be the permanent label and 7; be the temporary label of the node i. P represents
the shortest travel time from origin node to i and 7; represents the upper bound of the
shortest travel time from origin to same node. The procedure is as follows:

Step I: i =S start from the origin node s
Set P=0and P; =coVj forall temporary nodes
Step2: 71, = min{’l‘j, P+ ([ij(l’,-)}
Step 3: Find min7;Vj and set P; =T;
Step 4: if j=D then stop, make the shortest path tree rooted at i otherwise, i = j
Step 5: go to step 2
The algorithm converges at most N -1 steps.
Several models considered the shortest path problems where link delay varics with time

[35, 36]. They investigated the minimum delay path finding algorithms under various

waiting constraints. Given a bi-directional network G(N,A,D) with N ={1,2.3......n}being

9



the set of nodes,Ac NxNthe set of links (with (i,k)e A) implying (k.i)e A), and

D ={d, (1)(i,k)e A} a set of time dependent link delays. o, (1) is a strictly positive function

for [0.e]time bound which describes the delay of flow over link (i,4) at time . Links are

referred to as frozen link model considering the link delay is fixed at a time when a

vehicle starts traversing the link referred to as the elastic link model when link delay

varies with time. Because there is a possibility of non-FIFO characteristics in the clastic

link model so, both the FIFO and non-FIFO conditions have been considered in this

research.

Three different network traversal policies are considered.

»  Unrestricted waiting (UW) in which unlimited waiting is allowed cverywhere along
the travel path through the network.

»  Forbidden waiting (FW) in which waiting is disallowed everywhere along the travel
path through the network

= Source waiting (SW) in which waiting is disallowed everywhere along the travel path
through the network except at the source node which permits unlimited waiting.

The dynamic shortest path problems were analyzed in [11, 12, 13] according to the

following category:

=  Fastest versus minimum cost path problems.

» Discrete versus continuous representation of time.

*  First-in-first-out (FIFO) networks versus non-FIFO networks.

= Waiting is allowed versus waiting is not allowed at nodes.

= Expected types of shortest path: One-to-all for a given departure time or all departure

times and all-to-one for all departure times.

10



* Integer versus real valued link travel times.
In these studies, the author investigated one-to-all version of the shortest path problem by
using alternative arguments and also proposed an efficient all-to-one discrete dynamic
shortest paths algorithm. They are summarized below:
Given a discrete dynamic network G(N,A,D,C) where, N ={I...n} is the set of nodes and
A={(i,j)e NxN} is the set of links. The number of links is denoted by m.
D ={d;(1(i, j)e A} is the set of time-dependent travel times and d,(r) is a discrete time-
dependent function which takes a static value after a finite number of intervals M.
S ={0.....8 1} is the st of departure time intervals, 0(i) is the set of nodes having an
outgoing link to node i and /(i) is the set of nodes having an incoming link from node i.
Formulation of the optimum functions are given below:
= One-to-all fastest path problem
Waiting at nodes is not allowed

If' f;denotes the minimum travel time from origin node § to node j leaving the origin

node at time 0. Then,

. [minjegg;ymin,; . (r +d;; (f)) Jj#S
a 0 1 =S

For node j only one path is considered that visits the previous node i at a time greater
than equal to f;.

* All-to-one for all departure times fastest path problem
A backward star formulation when no waiting is allowed was presented when, z;(r) is

the fastest travel time to destination D departing node i at time t. So, the minimum

travel times can be formulated in the following functional form

1
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The author has given a proposition that z,(r) can be set in a decreasing order of departure
time intervals.
The general time-dependent shortest path algorithm proposed in [47] is based on
Bellman’s [4] principle of optimality, which had also been followed in other studies as
discussed earlier. Considering the directed network given earlier, 4,(r) denotes the total
travel time of the current shortest path from current node i/ to node N at time t. A vector
label A, =[4;(tg) A;(tg + S )orvvrvrrns + ,(ty + MS)]is considered to store all the labels () for
every time step from the setS,, ={1g,1y + 5,1y + 28,1 +36,.......1, + M.} . Instead of scanning
all the nodes in each iteration, a list of scan eligible (SE) nodes is maintained, containing
the nodes with some potential to improve the node labels of at least one other node. The
algorithm is summarized below
Step 1:
* Create SE list and initialize it with destination node M.
* Initialize the vector labels Ay =(0,0.......0), A; = (o0, ,......... w) for i=123....N -1
Step 2:
* IfSE=0,gotostep4
Otherwise, Select first node from SE list [current node /], delete it from the list.

Scan each nodej jeI'{i} for each time step re S

A5(0)=minda; (0).dyy(0)+ Al + ()]

If at least one of the labels of node j has been improved, insert node j into

SE list.



Step 3:

= Repeat step 2.

Step 4:

* Terminate the algorithm.

On termination of the algorithm, every element of the vector label is cither an infinite
number, mcans no valid path exists between this node and destination node at the
corresponding time step, or a finite number that represents the shortest path for the same.

2.2.4.  Path Search Techniques

Algorithm run time depends mainly on how nodes of the network are expanded for
shortest path determination. Some of the major techniques [2, 24, 34, 39] arc discussed
below:

2.24.1. Labeling Techniques

Labeling algorithms are most popular and efficient algorithms for solving the shortest
path problems. The network flow studies [2] typically classify shortest path algorithms
into two groups. These are label-Setting and label-Correcting algorithms. Both the
algorithms are iterative. They assign tentative minimum cost labels to nodes at cach step
of the algorithm. Both of the algorithms proceed in a way such that these labels are
improved until the shortest path is found. But they vary in a way they update the cost
labels from step to step and how they converge toward the shortest path for the node pair.
The two problem approaches also differ in the way they implement the data structure for
execution of the algorithm. Label-Setting algorithms are much more efficient and have

much better worst case complexity bounds; on the other hand label-Correcting algorithms



are applicable to more general class of problems. In fact, label-setting algorithms are
special cases of label-correcting algorithms.

2.2.4.2. Heuristic Search

The running time complexity and finding the optimal solution are two fundamental goals
that every algorithm has to satisfy and there is a significant trade-off between these two.
So, sometimes it is suitable to choose heuristic algorithm that gives up one or both of the
goals. The heuristic search is an informed scarch strategy that uses the globally available
information to reduce the search scope and at the same finds a near optimum solution.
The most popular heuristic search used in path finding has been reported in the literature
[1, 24, 46] is A algorithm which incorporates the available network information in
directing the search ecffort towards destination. To ensure that the above function will
yield an optimum solution, one must set the lower bound of the estimating function. To
apply A" algorithm for finding shortest travel time path in the network, an admissible
estimating function is the Euclidian distance between two nodes divided by the maximum
speed (free flow speed of the link). This has been reported in previous studies [I, 24].
The heuristic search was furthered by looking ahead one extra node towards destination
and defined as “Best Neighbor heuristic search” [46]. Sparser networks that exhibited
less grid like tbpologies benefited more from this modified version of heuristic technique.
2.2.4.3. Bi-directional Search

The basic procedure of the bidirectional search is to compute the objective path from both
forward and backward search direction at the same time [18, 34, 39]. Running time of
this technique is much faster than the unidirectional search and two conditions must be

satisfied for the successful implementation of this search [46]. They are



1. Acriterion for stopping the search action.

2. A criterion for altering between the forward and backward scarches.

The search technique works by altering the forward and reverse version of Dijkstra’s [19]
algorithm. During initialization algorithm associate zero cost with Origin s and
Destination ¢ for forward and reverse search option respectively. It addition the
algorithm maintains the value of the shortest path 4 and initialize it with A= . When the
head node i and tail node jof link (i, j) is scanned by the forward and reverse scarch
then 2 is updated with o (i)+1; +d,(r) if 2 has the higher value carlier. Similar update is
done for reverse search also. The algorithm terminates when the node chosen by the
forward search is already scanned by the reverse search. The worst case complexity of
the algorithm is O(b‘” 3) where b is the branching factor and « is the depth of the shortest
path [46].

2.2.5. Multi-objective Shortest Paths

Due to the multiobjective nature of dynamic transportation problems, the multiobjective
shortest paths considering various constraints have becn studied extensively in previous
studies [3, 6, 26, 32, 33]. The multimodal urban transportation system has been modeled
for multiobjective path planning problems [33]. They have proposed a utility measure to
take into account the propensity of the trip planning satisfying multiple objectives of
minimizing total travel time, travel cost and discommodity. Various route selecting
strategies link has been given [6] (1) most direct path (2) path that minimizes use of
highway (3) path that avoids local street and (4) path that avoids highway. In the bi-
objective path search model, they have proposed a path finding algorithm which gives the

path with best trip quality considering two attributes when selecting a path. Travel time is



taken as primary search attribute and trip complexity is taken as secondary attribute to
break the ties in the objective function. They have considered the trip complexity as
turning movement complexity cost based on the angle between the links involved in the
turning maneuver and defined the solution path that produces good travel time and good
trip complexity. Trade-offs between the two objectives (travel time and trip complexity)
have been demonstrated to show route choice decision sensitivity to the different level of
demand volume.

2.2.6. A Comparative Study of Popular Shortest Path Algorithms

From the literature of the dynamic shortest path discussed so far, several conclusions can
be made:

* Most of the algorithms consider only the link travel time as for the objective function
to get the optimal solution.

= Most of the algorithms differ only through the complexity analysis and data structure
implementation.

* The bi-objective algorithm developed by [6] considers a fixed complexity cost for
turning movement which doesn’t mimic the real world scenario.

* The combination of heuristic search and bidirectional search would be an interesting
approach as they both reduce the total run time of the algorithm.

As research [22] on driver behavior has indicated that travel time is not the only factor
that dominates the route selection process, the path search algorithms need to address the
multiple objectives that can influence the driver route choice. Also, to avoid any
information bottleneck between the vehicle in the network and the central traffic

Management Center while calculating the shortest path using the real time traffic



information, the shortest path algorithm need to be very fast. Considering all these
aspects and the limitations of the existing dynamic path search algorithms, this study is
motivated to propose a dynamic path search technique which combines the heuristic
scarch with bidirectional search technique as both minimize the algorithm run time from
the basic label-setting algorithm as found in the literaturc. The search algorithm
considers the intersection turning delay as bi-objective variant which contributes a major
part of total trip travel time in an urban network to mimic the multi-objective behavior
the dynamic network.

2.3. Implementation Issues for Shortest Path Algorithm

Dealing shortest paths in a transportation networks carry various implementation issucs
that can affect both shortest path algorithm performance and analysis of the network
itself. Given the increasing size of present digital road network database, complexity of
the dynamic network problem seemingly small differences in implementation can make
huge differences in practice. The most critical shortest path implementations issues have
been found in the literature [2, 45] are:

= Network Representation

* Node selection rule/ node processing structure

= First-in-First-out (FIFO) nctwork

Network storage structure refers to the physical data model for the transportation
network. This includes the relative memory locations that allow efficient retrieval of
related information. The labeling method keeps track of which nodes are candidates for

being scanned. The decision rule/node processing structure determines which candidate



node should be scanned next. Each of this issue is very crucial to the implementation of
the particular shortest path algorithm and will be discussed in the following sections.
2.3.1.  Network Representation

Network representation or network storage structure refers to physical data model for the
transportation network. The transportation network has been defined as a system of linear
features connected at intersections and interchanges [45]. These intersections and
interchanges are called nodes. The linear feature connecting any given pair of nodes is
called an arc or link. Examples of real world networks include road networks,
telecommunication networks, and river networks, among others. How a network is
represented in a computer is vital to the performance of a particular network analysis or
traffic simulation. The trade-off of choosing a particular data structure is often between
speed and storage space. In network analysis, commonly used representations of a
network include [2, 24]

o Node-Arc Incidence Matrix

o Node-Node Adjacency Matrix

o Adjacency Lists

o Forward and Reverse Star Representation

Previous studies [2, 15, 45] have demonstrated that the Forward and Reverse Star
Representation is the most efficient among all existing network data structures for
representing a network. In the study, forward star representation has been followed to

build the network topology
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2.3.2. Different Data Structure

Node selection function is a bottleneck operation for all shortest path algorithms [2].
Efficient node selection can significantly improve the worse case complexity of an
algorithm. Different data structures have been found in the literature [2, 10, 45, 47] those
were implemented in various algorithms.

Link List: Rather than store the elements in a sequential order, it can store element in an
arbitrary fashion. All it needs is the additional information to get access that element in
the specified order of the structure. A cell is the building block of linked list. A linked list
can be viewed as a collection of cells. Each cell stores the information about the cell itself
and also a handle to the next cell in the linked list. When a cell stores handle only for the
next cell then it is called “Singly Linked List”; on the other hand if it stores handle for
both the next and previous cell then it is called “Doubly Linked List”. In transportation
network model a travel path can be seen as a linked list of path segments, where each
segment acts like a cell and stores the segment traffic information and also the
information about the next segment to follow in the particular path. Depending on the
implementation issues, travel path can be treated as singly or doubly linked list.

Queues: This storage structure holds an implicit property, while dealing with its stored
elements. It handles elements in a first-in-first-out (FIFO) manner with elements inserted
at one end (the rear/tail) and deleted from the other end (the front/head). A road segment
where overtaking is not allowed resembles the quecue structure in a way that a vehicle
leaving an intersection enters into the segment at the rear end and leaves the segment
from its front end. There is another form of queue structure where insertion can be done

at both ends but deletion take place only from the front end. This special type has been



extensively implemented into the execution of shortest path algorithm and traffic
simulation [10, 47].
Stacks: This is a special kind of storage structure, which exhibits the last-in-first-out
(LIFO) property where all insertions and deletions take place in one end. A transportation
network does not truly resemble this structure.
2.3.3.  First-in-First-out(FIFO) Network Properties
Link travel time functions sometimes behave such that vehicles exit the link in the order
in which they entered. This property is referred to as the FIFO (first in first out) condition
[12, 30, 42]. The FIFO condition, also known as the non-overtaking condition in traffic
theory [12], may be written mathematically in a variety of ways. One definition is that the
FIFO condition is valid if and only if:

Vi, jot) t+dy(e) (e + 1)+ dyle +1)
From the above relationship it can be interpreted that, as long as FIFO condition is
satisfied link exit time function is non-decreasing.
24. Discussion
In this chapter, a brief overview of the shortest path approaches for static and dynamic
transportation network along with different path search techniques has given. The related
works regarding dynamic shortest path calculation and their limitations have been
highlighted. The chapter is concluded by providing the various implementation issues in

shortest path algorithm regarding network representation and data structure.



CHAPTER 3

DYNAMIC SHORTEST PATH SEARCH ALGORITHM
3.1. Introduction
The theoretical concepts that form the basis for the development of the new minimum trip
time path algorithm are explained in this chapter. The chapter discusses the node search
strategy and search attributes for the algorithm. The step wise implementation and
algorithm pscudo code are also presented.
3.2. Theoreticai Concept
In transportation planning process, urban areas are subdivided into smaller sectors of
traffic analysis zone (TAZ) [37]. These zones are connected to each other through roads
and intersections that constitute the transportation network. Fixed facilities in a
transportation network are coded in terms of nodes, links and attributes for individual
links. Nodes represent the intersection of multiple road segments while links represent
sections of roads between intersections. Link attributes such travel times arc based on the
segment length and speed of the traffic stream on the particular road segment. Traffic
volume on the road network depends on the interzonal trip which can be defined as
movement of a passenger or a vehicle between an origin and destination (O-D) zone. A
minimum path is a path with the minimum amount of specific impedance between O-D
pair. The impedance can be travel time, travel distance, number of turns etc. A minimum
distance path between any O-D pair is a path that has a minimum distance between the
origin and destination. The minimum trip time path developed in this thesis is the path
that needs least time to go from origin to destination cumulating all link travel times and

intersection delays on the path.



3.3. Minimum Trip Time Path Algorithm

The static and dynamic shortest path algorithms discussed in chapter 2 that use the link
travel as a search attribute implements the basic Dijkstra’s [19] algorithm in the
following form:

The algorithm maintains a label ¢(i) associated with each node i that represents the upper
bound of the travel time on the shortest path from source node to that node. The
algorithm divides the network into two groups as temporary labeled and permanently
labeled for node selection option and it maintains a tree for predecessor indices pred(i)
for every node using node selection functiond(j)=d(i)+c;, where ¢; is the travel time of
link between node i and node j. Each time a node i is expanded to the adjacent node j the
label of node is updated with the selection function. If the label is found greater than the

d(j) already recorded for node then the label is kept unchanged, otherwise label «(j) is

updated to reflect the reduction in travel time to reach to the node from the origin node
and the predecessor indices pred(j) of node j is updated to node i. The process is
continued until all nodes have been expanded. Upon termination, the predecessor index
for each node is used to get the shortest path tree rooted at the origin node. The new
algorithm follows the same approach to build the path but considering the intersection
turning delays along with the link travel time. The node search strategy and details
implementation of the new algorithm are given in the subsequent section.

3.3.1. Formulation of the Algorithm

Assuming a finite directed network G=(N,4) having |V| nodes and |4] arcs where each

arc (i, j)e A is associated with an arc length I; . The network has two distinguished nodes,

node O is called origin and node D is called destination. The length of the directed path is

o
o



defined as sum of the lengths of individual arcs in the path. Let d;(r) be the non-negative

time required to travel from node i to node j departing at time 7 and m, (j) be the turning

delay associated between node i and node k through node j. It is important to note that

maneuver or turning delay for a particular node is dependent on the orientation between

the predecessor and successor of the node towards the direction of path. So, for all the

boundary nodes of the network the turning delay is considered as zero. /(i) is defined as

the total number of incoming links to node i and 0() is defincd as total number of

outgoing links from node i. The time horizon is defined as M.

3.3.2. Assumptions

The following basic assumptions are made for the algorithm.

I. The basic network is sparse grid network.

2. All the nodes resemble signalized intersections.

3. Turning or maneuvering complexity depends on the signal light delay rather than the
angle between links involved in the turning

4. Travel cost is taken as real valued link travel time and intersection turning delay.

5. The algorithm addresses onc-to-one minimum trip time path problem departing an
origin at a given time interval.

Assumption 1 can be justified as in the real world transportation networks each node is

connected with only few nodes. Assumption 2, 3, and 4 can be justified for the use case

of an urban street network.

3.3.3. Search Strategy

As the computational time is the most important factor for shortest path algorithm,

following two most important considerations must be taken care of

8]
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1. Search area for next node on the shortest path.
2. The data structure used to retrieve the previous node on the shortest path.

The search area for the next node on the shortest path depends primarily on the objectives
of the models and the type of algorithm usages. For a decentralized traffic management
systems where on board route guidance system is expected to have the capability to
calculate the fastest path for the driver. In this thesis only one-to-one shortest path
algorithm is considered where algorithm calculates the path between origin and
destination only. In a labeling algorithm, the number of visited nodes during the search is
a good measure of the optimal search area [2]. So the less number of visited or scanned
nodes indicate higher efficiency of the algorithm in terms of processing time. The number
of visited nodes depends entirely on depth « in the shortest path between two nodes and
branching factors . For “Best First Search” link Dijkstra’s [19] algorithm the number of
nodes during search is of order O(b” )[38]. So for a vast transportation network databases
this exponential growth of depth creates the computational hazard. This bottleneck can be
lessened by heuristic search technique while reducing the basic network into a simplified
one.

To optimize the scarch area for the algorithm, the geographical orientation of the origin
and destination nodes is used. This is similar to the ﬁormul approach to the navigation
problems or flow of liquid on a slope surface. Depending on the orientation of the nodes
the out degree of each node is reduced in a way that no nodes will have any outgoing link
directly opposite to both vertical and horizontal direction from origin to destination. For a
typical N#N fully connected grid network with maximum out degree of 4 the total

number ol directed links can be given by 4(N2 - N)[l]. So, the total number of links can



be reduced to ?.(N2 —N). The optimization technique can be best visualized from the

following example network.
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Figure 3.1: Coded Transportation Network
In the above coded transportation network, the total number of nodes are 25 and total
number of links are 64. So, average out degree or the branching factor of this network is
2.56. Nodes | and 20 are considered as origin and destination respectively. As the
destination node is on the south\eastern side of the origin node the base nctwork is
modified with all the nodes having outgoing links towards south and east direction only.

The modified network is shown below,
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In this network, the total number of links are 32. So, the reduction of total number links is
50%. Another important point to note that there will always be a possibility to have some
nodes with no incoming links. That means those nodes will not be considered during
algorithm run time process.

The priority data structure has been implemented in this study for node selection and path
selection strategy during algorithm run time process which is more sophisticated form of
the queue data structure discussed in chapter 2. In priority queue data structure elements

are selected depending on priority of the particular element, not in the order of their entry

into the structure.
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Figure 3.2: Modified Coded Network
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Figure 3.3: Priority Queue Data Structure

From a given node S in the above figure, t1, 12 and t3 are assumed as the required travel
times to reach the three neighbor nodes N1, N2 and N3 and t1>t3>12. To retricve the
node with minimum travel time from node S, the node NI, N2 and N3 are stored in a
priority queue by giving priority according to travel time. So for this case, upon removal
the first element of the priority queue N2 will be selected as the node requires least time
to reach.

As urban street network is a grid like network which is also an assumption for the
algorithm the estimation function for the heuristic search has been used in this study as

the Euclidian distance between two nodes divided by the free flow speed of the network



as reported in the literature [1, 46]. So, the estimation function between two nodes i and j

can be written as;

i, j)= \/(.\',. - .\‘j)2 + (y, - yj): (3.1
iy =4S (3.2)
“/'

where,
x;,y; = coordinate of node

x;,y,; = coordinatc of node j

u, = free flow speed
This estimation function ensures the lower bound of travel time thus satisfy the
admissibility property [1, 46]. So, the node selection function for any given node i can be
written as

i) = gli)+ ni) (3.3)

where,

Ai) = perceived travel time from origin to destination node

through node i

g{i) = Travel time experienced from origin node to node i

h(i) = Estimated travel time from node / destination node
The symmetrical bidirectional search combined with heuristic search has been followed
in this study. It has been implemented by altering the forward and backward search. Each
time a forward search scans an arc (i, j) such that node j has already been scanned by the
backward search, it checks if the path O-D between origin and destination is formed by

the path O-i from the forward search and path j-D from the backward search has the less
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travel time level than the travel time level of path O-D so far, then the path O-D is
updated. Same update is done for the backward scarch if the above condition is satisfied.
For the case of optimum solution domain heuristic and bidirectional search technique are
not good choices. Bidirectional search needs to explore almost twice as many nodes as a
unidirectional search [46]. For a decentralized real time traffic management system when
the vehicles look ahead for best path, each time it reaches any intersection, a near
optimum solution would be sufficient to reach the destination. So, if the optimality
constraint is relaxed a near-optimal route can be found much faster by using the
bidirectional heuristic search.

3.3.4. Description of The Algorithm

To calculate minimum “Trip Time” path for any given origin destination nodes the
algorithm is implemented through two separate steps. In the first step, a bidirectional
heuristic search algorithm calculates a list of paths with minimum link travel time
between the given nodes. In the second step, a bidirectional search algorithm calculates a
list of paths with minimum turning complexity (intersection turning maneuvering delay)
between the same pair of nodes. Then for all the paths total trip time is calculated using
simulator flow variable for that time interval and stored in a priority queue data structure.
The first path of the priority queue gives the least “Trip Time” path between the
particular origin destination pair for that time interval. It is important to note that
heuristic scarch has been only used for least travel time path calculation because it has
been assumed earlier that turning complexity is associated with traffic signal timing plans
of the intersection rather than the angle between the links. So, the estimation function to

turning complexity heuristic algorithm is not applicable.



To calculate the link travel time, the link capacity function as given in [8] has been used

in the study. The function is given below,

(IIIL‘IX

I, !
T =L |+0.|5( 4 ] (3.4)
llf

where,
Ti= Travel time required to cross the link Lj

I; = Lengthof link Lj

u, = [ree flow speed

¢ = Link flow

¢ = Maximum Link flow or capacity
Though this function ignores the interdependencies between conflicting flow streams, the
use of this simplified link performance is justifiable as a complicated function could
initiate the computational burden to the algorithm.
In making turning maneuver as an objective intersection turning delay has been chosen
which is very much similar to the maneuver complexity concept that had been introduced
in [6]. The turning delays on urban street network is not associated with the angle
between turn but rather controlled by the signal lights at intersection. This turning delay
can be extended from static scenario to real time scenario while considering the time
dependent turning delays which play an important role in trip planning and obviously
depends not only on geometry and control policies of the intersection but also on the flow
of the opposing links. The delay function used in this study for the signalized intersection
is based on the Webster’s model given in [44]. The equation gives the average delay at

the intersection. The general Webster’s model [44] is given below:
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where,

x  =Traffic volume on entering link, veh/hr

¢ =Exiting rate of traffic volume, vel/hr

r=Red time of the traffic light, in minutes

C =Cycle time of the traffic light, in minutes

d (i) =Average delay at the intersection, in minutes

i = Intersection
The equation 3.5 gives the same amount of delay for all the turning movements
corresponding to each link but in reality left turning delay is much higher than the
straight and right turning delays. In the thesis, this scenario is implemented by reducing
the capacity of left turning lane to 1/3 of the straight turning lane capacity. So obviously
the paths with less number of left turns are less complex and have less amount of delay.
On the other hand straight paths might face more congestion which result in increase in
travel time. So drivers may need to sacrifice link travel time if they do not want to wait in
the intersection and vice versa. The total travel time from origin to destination is *Trip
Time’ which combines the link travel time and intersection turning delay to give the

measure of the trip in terms of time scale. Mathematically it can be written as:

A, A,
T, = ZI', + Z(I(I.He(ul) (3.6)
=1 =]

where,

7, = Trip time on shortest path
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7, = Travel time on link Lj.
d(l.Head) =Turning delays at the intersection between link Lj; and
next link on shortest path.

A, = Total number of Links on shortest path.

As alrcady mentioned earlier, the algorithm calculates the fastest “Trip Time’ path in two
separate steps and on termination chooses the best path in terms of trip time from a
priority queue which is eventually a combination of choice sets. One of the choice sets is
denoted for time based paths where paths are generated by bidirectional heuristic search
and stored in an ascending order and the other one is denoted for the complexity based
paths where paths are-generated by bidirectional search and also stored in an ascending
order. One way is to develop the choice set by determining k-paths between the origin
and destination node. But for a real world implementation it would be unrealistic to
determine all the possible paths between nodes because it takes larger computational
effort with literally no effect for the higher ranked path in the decision making process.
The number of path would be calculated depends upon the initial best path as it is
expected that the next best path will be somewhere close to the previous best one. The k-
path is calculated by removing each link of the initial best path one by one from the
network. It is important to note that once the k™ path is found after removing a link, that
link has to be restored immediately before going to remove the next link in order to keep
network integrity. So, once the two choice sets get all the k-paths then total trip time is
calculated for all the paths and are added to a priority queue in an ascending order. The

first path of the priorily queue gives the fastest path in terms of trip time.
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3.3.5. Implementation of the Algorithm

The following data structures have been used to implement the algorithm.

OPENy: Priority queue for unsettled or unvisited nodes with least cost [time or
complexity] from origin node used for forward search. This set does not allow
duplication of node entry. As the set is sorted so, it acts like a priority queue to determine
which node to choose for the next step.

OPENy,: Priority queue for unsettled or unvisited nodes with least cost [time or
complexity] from destination node used for backward search.'This set does not allow
duplication of node entry. As the set is sorted so, it acts like a priority queue to determine
which node to choose for the next step.

CLOSEDy : Queue used in the forward search for settled or visited nodes whose least
cost [time or complexity] path is already found from the origin node.

CLOSED,, : The Queue used in the backward search for scttled or visited nodes whose
least cost [time or complexity] path is already found from the destination node.
Predecessors;: Stores the predecessor node for the current node on the least cost [time or
complexity] path during forward search.

Predecessorsy,: Stores the predecessor node for the current node on the least cost [time or
complexity] path during backward search.

Best: Stores the node where the algorithm terminates.

Path_Bank_Time: Priority queue for Least travel time path.

Path_Bank_Complexity: Priority queue for Least complex path

Path_Evaluate: Priority queue used during algorithm run time for K-path determination.



Road_Bank: Priority queue for trip time path. Priority queue contains the paths in an
ascending order from above mentioned path vector by comparing the trip time.

The algorithm can be summarized by the following steps:

Step I: Optimize network according to the orientation of the origin and destination nodes.
Step 2: Run BHSPA to compute the least travel time path between origin and destination.
Step 3: Run BHSPA by removing each link from least time path and store the path in an
ascending order.

Step 4. Run the BSPA to calculate the least complexity path between origin and
destination.

Step: 5: Run BSPA by removing each link from least path and store the new path in an
ascending order.

Step 6: For all the paths in the Travel time choice set calculate the complexity and add it
with travel time to get the total trip time.

Step 7: For all the paths in the Complexity choice set calculate the travel time and add it
with complexity to get the total trip time.

Step 8: Compare all the paths in the two choice set and order them in ascending order
according to trip time.

The network storage structure will be discussed in details in the following chapter. Here |

are the details of the algorithm according to the steps pointed earlier:
Bi-objective Bidirectional Heuristic Path Search Algorithm [BBHPSA]:

Path_Bank_Time.Add = Run BHSPA(Origin, Destination)

1. Path_Evaluate . ADD = Path_Bank_Time.FirstElement()

34



2. For all the Links in Path_Evaluate Link vector, do

3. Remove the i link from the path and from the network.
4. Path_Bank_Time.Add = Run BHSPA(Origin, Destination)
5. Restore_Network()

6. Path_Bank_Complexity.Add = Run BSPA(Origin, Destination)

7. Path_Evaluate .ADD = Path_Bank_Complexity.FirstElement()

8. For all the nodes in the Path_Evaluate Node vector, do

9. Remove the i link from the path and from the network.

10. Path_Bank_Complexity = Run BSPA(Origin, Destination)

1. Restore the network

12. For all the paths in Path_Bank_Time Path vector, do

13. Calculate Complexity for i path

14. Determine “Trip Time’ for i" path by adding Time; + Complexity;

15. For all the paths in Path_Bank_Complexity Path vector, do

16. Calculate Travel Time for i path.

17. Determine “Trip Time’ for i path by adding Complexity; + Time;

18. For all the paths in the two path vector,do

19.  Road_Bank.Add = i" path

20. Best Path = Road_Bank.FirstElement

Bidirectional heuristic algorithm for time based path (BHSPA) is the following:
» Initialization: Forward Search: Place origin node O as OPENgFirst = O and

CLOSED(=¢; set ¢(0)=0, A(0)=g(0)+1(0), set A(n)=co for neN -0
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Forward Search: Place destination node D as OPEN,,.First = D and CLOSED,, =< ; set
¢(D)=0, A(D)=g(D)+n(D), set A(n)=w for neN-D

= Jteration:

JorwardLloop :
while(OPEN | #<)
begin
Let i=OPEN ,.FirstNode
CLOSED ; = CLOSED , wi
OPEN ; =OPEN ; ni
Jor each jeB(i) do
if 2(j) > gli)+ d,-j(f)+ h(j) then A(j)= g(i)+ d; (t)+ h(/) and predeessor ()=
if (i e CLOSED ,,) Best =iy break : forwardLoo p;
backwardlLoop :
while(OPEN , =)
begin
Let i=0PEN ,.FirstNode
CLOSED, =CLOSED, i
OPEN, =0PEN, ni
Jor each je A(i)
if 2(j) > e(i)+ dy (l)+ h(f) then 2(j)= g(i)+ d; (t)+ h(}j) and predeessory ()= i;
if (i e CLOSED f) break : forwardLoo p;
break : backwardLo op;
end,;

end;

= Path Construction: For node / get path to origin node O from forward scarch
through predecessor(i) and get path to destination node D from backward scarch through
predecessory(i). The resulting path is solution path.

Bidirectional algorithm for complexity based path (BSPA) is the following:

» Initialization:Forward Search: Place origin node O as OPENpFirst = O and
CLOSED; =« ; set m(0)=0, set m(n)=w for neN -0

Backward Search: Place destination node D as OPENy,.First = D and CLOSED,, =< ; set

m(D)=0, set m(n)=co for neN - D
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= Jteration:

JorwardLloop:
while(OPEN | #)
begin
Let i=OPEN ; FirstNode
CLOSED; = CLOSED vi
OPEN, =OPEN; ni
for each je B(i) do
if (predcce.s‘.s‘mj,- (i)= Null ) m(i)=0;
if (I(j) >d(i)+ mli)then d(j)= d(i)+ m(i) and predecessor, (_j) =1
else

k = predecessor, (i)

if d ( J ) >d(i)+ my; (i) then d(j)=d(i ) + oy (i) and predecessor, (j ) =1
end if
if (ie CLOSED,) Best=i; break : forwardLoop,
backwardLoop :
w/zi/c(OPEN,, ¢<Z)

begin
Leti=OPEN,,.FirstNode
CLOSED,=CLOSED,, vi
OPEN,=0PEN, ni
Sfor each je A(i)

if (/m'decc.s'.\‘m} (i)= Null ) m(i)=0;
ifd ( J)>d(i)+ mli )1/10/1 d(j)=d i)+ m(i ) and predecessory ()=t
else

k = predecessor, (i )
if d(j)>d(i ) + 1y (i) thend ( J)=dli ) + 1y, (i) and predecessory (j)=1i;
endif
if (ie CLOSED, ) break : forwardLoop;
break : backwardLoop;,
end;

end,
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= Path Construction:For node i get path to origin node O from forward scarch through
predecessor(i) and get path to destination node D from backward search through
predecessory(i). The resulting path is solution path.

3.4. Discussion

From the implementation of the algorithm it is evident that the total time required to
reach to the destination calculated by the proposed algorithm is always more, compared
to the other algorithms for the shortest path calculation found in the literature based on
the link travel time only and also the minimum path found by those algorithms might be
different depending on the network traffic condition during travel period. But for a same
O-D pair total travel time on shortest path from other algorithms can still be compared to
the trip time on the minimum path calculated by the proposed algorithm. Traffic

simulation results on travel time comparisons are discussed in Chapters 6 and 7.



CHAPTER 4

TRAFFIC SIMULATION MODEL
4.1. Introduction
The traffic simulator developed in this thesis is based on the macroscopic simulation
model. Fundamental diagram of traffic flow is assumed to model network traffic
dynamics. The simulator is made up of three distinct phases and each phase deals with a
different aspect of the simulation model.
4.2. Simulator Scenarios
General considerations of road network, macroscopic traffic flow dynamics for the
simulator are given below.

4.2.1.  Description of the Network

1 3 E] 7
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Figure: 4.1: Coded Hypothetical Network



The test network considered for this simulator is a small urban network of 25 nodes and
64 links. All the nodes are considered as four-leg intersection and all the links are
directed towards either North-South or East-West direction. Each direction link is
assigned with a unique identification (ID) even though they connect same nodes. In this
manner the network coded for this simulator differs from the normal coded network
where both one way and two way roads between the nodes are given the same road name
instcad of giving separate names for each direction. The length taken is 1000 meter for
each link. The link cell length is calculated from the product of free flow of the traffic
stream and simulation time step. Simulation time step is considered as 6 sec for this
study. Free flow speed 60 km/h gives the distance traveled by a vehicle moving with free
flow speed in a single time step is 100 meter. So, the cell length is taken as 100 meter
means a vehicle can cross at most one single cell in one time step. So, for all I km links
the total number of cells is 10.

4.2.2. Modeling Traffic Dynamics

The macroscopic traffic model used in this study captures the evolution of traffic over
cach link of the road network without any intermediate entrances or exits, so that those
vehicles enter at one end and leave at the other end. This model is time-driven, in which
current network traffic conditions are updated every time step of the simulation step.
4.2.2.1. Modeling Concept

The relationship between the density, speed and the corresponding flow of traffic on the
roadway is assumed to follow the fundamental diagram of traffic flow [21]. The

relationships between these flow variables are given in Figure 4.2.
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Figure 4.2: Fundamental diagram of traffic flow [21]

The following interpretation can be made from the fundamental diagram:

=  When the density is zero, the flow of traffic is zero as there is no vehicle on the road

= The flow increases as the density increases.

* When the traffic density starts to increase, the flow also increases. The traffic flow
reaches maximum at certain density, after that it decreases with further increase in
density.

* The flow becomes zero at a maximum density generally referred as jam density.

Macroscopic traffic flow variables are considered as the following:

» Traffic density k(x,r), number of vehicles per unit length [veh/km]

= Traffic volume ¢(x,r), number of vehicles per unit of time [veh/h]

»  Mean traffic speed u(x,r), [km/h]
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The linear relationship between the density and speed of the traffic satisfy the continuity
equation for flow conservation [16] that defines the relationship between flow (q) and
density (k) over time and space in the following form:

Jdk  dq :
4+ 4.1
ot * ox @1

As macroscopic models are usually based on a discretization, in both space and time each

of the cell object is assumed according to Figure 4.3.
A

o
| 1
<

(e-1 Ke ue

Figure 4.3: A gencric Cell Structure
Where , A, denotes the length of cell ¢ and ¢,_, and ¢, denotes the inflow and outflow of

the cell. If the road is assumed to have N number of cells so, the link length is given by,

1=) A, (4.2)

So, for a sampling period T and for m, = 0,1,2,3.....,M where m, = discrete time step and
M = total number of discrete time step in the simulation, the flow variables for the

macroscopic can be defined as follows:
k.(r) = number of vehicles in cell ¢ at time r=m,. T divided by A
u.{r) = mean speed of vehicles in cell ¢ at time t=m,. T

q.(r) = numbers of vehicles exiting cell ¢ in the period m,.T,(m, +1)T , divided by A,



Considering time discretization and for the homogenous traffic equation 4.1 can be
writlen as

q.(0)=u(e)*k (1) (4.3)
The parabolic relationship between the speed and flow of traffic and also between the
flow and density of the traffic is assumed according to Greenshild's[21] model that is
also consistent with fundamental traffic flow diagram given in figure 4.2. The

relationship can be given by the following equation:

i

u =uf(l _ALJ 4.4)

where,

u; =free flow speed (km/h)
k; =jam density (veh/km)

4.2.2.2. Traffic Stream Characteristics

The traffic stream characteristics are assumed to follow the fundamental speed-flow
relationship. The link capacity is 1800 vph and jam density is 150 vpkm and free flow
speed is taken as 60 kmph. It is also assumed that during any time step only discrete
number of vehicle can advance from one cell to another cell. The fraction part of the
outflow number is carried over the next time step to make the number discrete. The
discrete equivalent of capacity or maximum outflow from a cell is based on the roadway
capacity 1800 vph is 3 vehicles for each time step. Considering jam density 150 vpkm the
discrete number of maximum vehicle can be present in any cell is 15 vehicles during any
time step. The minimum time headway is taken 2 seconds for all the vehicles. All cells in

the network are considered to be homogenous with respect to assumed traffic stream



characteristics. The saturation flow rate considered for all the turning movements are
given below:

Table: 4.1: Saturation Flow Rate

Turning Movement Saturation Flow Rate (veh/h)
Straight Turn 1900
Left Turn 600
Right Turn 1200

4.2.3. Signal Timing Cycles
All the signals are considered as a two phase signal and to have the fixed signal timing

=]
plans. For simplicity no coordination between these are considered. The signal timing
varies from 60 sec to 80 sec. No exclusive amber time is considered so it is included in
the green phasc of the signal. To avoid all the signal starts at the same time, signals are
activated during the loading phase of the simulation with and random initial delay.
4.2.4. Travel Demand Characteristics
All the peripheral nodes of the network are assumed as traffic zone centroids and vehicles
arc assumed 1o get into the network through these nodes. The following trip table has

been prepared with assumed traffic volumes between origins and destinations.

Table: 4.2: Origin-Destination Trip Matrix -

Node 1 2l 3] a 5 - 8- 11 . 16 - 21 10] 185} 20] - 22 23| - 24 25|Production
R 0 0 0 0 0 40 0 g ] 20 50 40| 20 35 60 Y 265

2 9 0 0 0 0 20 30 20 30 20 30 40 50 15 20 0 275

3 0 0 0 4] 0 20 30 15 50 20 20 50 40 20 60 0 325

4 0 0 0| 4] 0 20 30 40 25 10 20| 20 30 40 20 4] 255

‘5 0 0 0 0 0 0 0 0 1] 0 0 0 0 0 0 0 0

8 0 10 20 10 20 0 0 0 0 20 25 30 35 20 20 0 210

1n 0 15 25 35 45 0 0 0 0 25 20 25 15 30 40 0 275

16 0 35 30 50 60 0 4 0 4] 25 25 20 10 40 35 0 330

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 45 25 10 0 15 25 40 25 0 0 0 0 25 30 0 270

15 0 40 20 10 0 10 25 45 40 [¢] 0 0 5! 20 15 0 280

20 0 20, 70, 30 0 40 25 10 60 (4] 0 0 ) 15 10 0 305

22 0 10, 15 45 30 25 20 10 0 20 40 30 0 0 0 0 245

23 0 30, 10 35 25 45 25 20 0 20 40 15 0 Q 0 0 265

24 0 60 50 20 25 55 45 20 0 35 30 10 0 0 [¢] 0 350!

25 9 40 30 60 0 20 40 30 0 Q 0 0 0 0 0 0 220
Attraction O] 305] 295 305f 205( 310 295 250] 230) 2315] 300/ 280] 3t0] 260{ 310 0 3870
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The sample Origin-Destination trip matrix shown in Table 4.2 is used to generate traffic
into the network and all the trips are one hour trips between origin and destination nodes.
As found in Table 4.2, node 1 and node 25 the total attraction is equal to 0 denotes that
these node have incoming links and for node 5 and node 21 the total production is equal
to 0 denotes that these nodes have no outgoing links. The last row of the table represents
total trip attraction to the node and the last column of the table represents total trip
production from the node.

4.3. Simulation Structure

A macroscopic traffic simulator has been developed to model the traffic flow in networks
for performance evaluation of guided vehicles following the proposed path scarch
technique to demonstrate the possible travel time savings. This simulator is based on a
typical time update simulation technique and treats vehicles on individual basis. The
simulator includes a network generator module to build the network topology according
to the predefined road network data structure. Having an existing network, simulation is
started with a given initial network state and few number of randomly generated vehicles.
Vehicle generation, vehicle movement are periodically updated according to the given
travel demand, speed-density relationship and signal settings through an event scheduler.
The simulator consists of three main phases: Loading Phase, Update Phase and Advance
Phase. In loading phase, network data is loaded from a data file and all simulation
variables are initialized. Update phase coordinates between events like traffic generation,
intersection traffic lights and vehicle arrival into the network through the event scheduler.
Advance phase deals with traffic movement between links depending on the link traffic

condition. The interrelation between these phases is given on the flowchart, Figure 4.4.
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Figure 4.4: Traffic Simulator Flow Chart
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In the simulator, each element of the network like node, link, vehicle, traffic light is
treated as an individual object. Each of these objects has its own property to interact with
cach other during the simulation. The detailed implementations of these objects are
discussed in the next chapter.

4.3.1. Loading Phase

The loading phase consists of two sub models: Network generator sub model, Input data
sub model.

4.3.1.1. Network Generator Sub-Model

Network generator sub model is used to create the network topology on which simulator
models the traffic flow. It provides the option to create a coded network and after
building the network topology it stores the network data in a data file from where data
can be restored for any later use. The following coding approach is followed to identify

the relative orientation of all neighbor nodes relative to each node.
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Figure: 4.5: Four Leg Intersection with Incoming and Outgoing Links
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In Figure 4.5 a node object is surrounded by four node objects and connected with them
by 8 incoming and outgoing link objects. The Node object stores all four surrounding
node information regarding their position coordinates and ID, starting from north
direction by moving clockwise towards west direction. The outgoing and incoming link
information is also stored in the same fashion depending on their relative orientation with
respect to base node. In the above figure all the numbers associated with the node and
link object denotes their respective ID. So, for node I neighbor node information is given
in Table 4.3 according to the coding approach.

Table: 4.3: Node Neighbor Information

, Direction
North East South West
2 3 4 5

The outgoing and incoming link information for node 1 is given as follows:

Table: 4.4: Node Outgoing and Incoming Link Information

Link  fio oo ®oee - Direction . ot
North East South West
Outgoing | 2 3 4
Incoming 5 6 7 8

Each node object stores the total number of outgoing links as ‘Out Degree’ and total
number of incoming links as ‘In Degree’. If there is no outgoing or incoming link for any
direction ‘Null” value is stored as shown in Table A.l and Table A.2 in the appendix for
the hypothetical network given in Figure 4.1. Once the node object gets all the
surrounding node information then each of the link objects associated with the node
object is updated for their surrounding link information. Each link object stores the
starting node as ‘Head’ node and ending node as ‘Tail’ node. Depending on the

oricntation of link object with respect to its ‘Head” node, link object stores the
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surrounding link information. In Figure 4.5 for link 7, the ‘Head’ node is | and ‘Tail’
node is 4. So, with respect to ‘Head’ node 1, link 7 gets its left link as 4, straight link as |
and right link as 2. The information is given in Table 4.5.

Table: 4.5: Link Connectivity Table

Link : : . - Node ) :
. Head Tail Left Turn | Straight Turn | Right Trun
7 | 4 4 | 2

Link Connectivity approach as discussed is presented in the following flow chart:

Compare node pos &
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v
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yes
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v
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Figure 4.6: Link Connectivity Flow Chart
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Once the link connectivity is established the connectivity information is stored in a data
file for later use. The link-link connectivity data file for the hypothetical network given in
Figure 4.1 is given in appendix A.3. For any direction, if there is no link object found
then *Null" value is stored which implies that no vehicle can take any turn for that
particular direction. For link object | in the hypothetical network, this can be verified
from Table A.3 in the appendix where ‘Left Turn’ is set to ‘Null’ as there is no left turn
from the link. The link-node connectivity is developed from the link connectivity
information and stored in a data file. The link-node connectivity data file for the
hypothetical network is given in Table A.4 in the appendix.

4.3.1.2. Input Data Sub-Model

This sub model basically initializes all the variable with the user defined simulation data
from the specified data file, initiates traffic generator object according to assumed origin-
destination trip matrix to generate vehicle and initiates the simulation clock and traffic
lights with random initial delay. The random vehicle objects which have no definite
origin and destination are also inserted during the initialization of the network variable.
4.3.2. Update Phase

This phase consists of two important sub-modes, event scheduler sub-model and traffic
flow propagation sub-model.

4.3.2.1. Event Scheduler Sub-Model

Event scheduler sub model responds to the events generated by all the running objects in
the simulator. In the simulator three independent event generator objects have been used
and they are TrafficLight ,TrafficGenerator and Simclock. Each of these objects has their

own event generation scheduler. Whenever any event is due by any of these objects,



event scheduler gets the message from the objects and manages the event accordingly.
Along with these scheduler objects the sub model also checks the vehicle queue of every
link at regular intervals to check any vehicle in the queue waiting to get entry into the
link. Also when each of the guided vehicles reaches the new link, they send the message
to the scheduler to update the path information according to the current network
condition and calculate the shortest path from the current node to the destination. The
flow chart of the event scheduler sub model is given in Figure 4.7.

Place cvent in the event list

Create Virtual queue Pt Create virtual queue for intersection
»  Seclect next event from the list
¥ :
A ¢ . ‘ . ¢ -
Check virtual queuc(VQ) Gcn'crzlltf vehicle ngcrulc signal Generate In.1k arrival &
x arrival in order Light changes update sim clock

Type of vehicle

Vehicle level with
acceptable headway?

Put vehicle in VQ yes
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<
< no Is the vehicle
- M . n)
euided?
pt Generate SPT

from current node

Available green time to

no transfer to the next link?

Vcehicle stays in the existing link Transfer vehicle to the downstream link

v y

Figure 4.7: Event Scheduler Flow Chart
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TrafficLight object switches between the green and red phase according to the preset
signal cycle split and associated with each node object and run independently. The flow
chart of the TrafficLight object is as follows:

!

Get the current signal light

yes no
Change light.color = red Change light.color = green
A 4 A4
Change schedule rate = Change schedule rate =
red phase green phase

Figure 4.8: Traffic Light Scheduler Flow Chart
TrafficGenerator object generates vehicle and puts them into the link if sufficient gap is
found from the last vehicle of the link. In the simulation, vehicles are always considered
as a discrete unit so the arrival of the vehicle completes only after the vehicle gets its full
length into the link. To insert the vehicle into the link, first vehicle of the queue
associated with the origin node is checked with the last vehicle of that link at each time
step of the simulation. If there is sufficient headway available, then the insertion takes
place otherwise the vehicle remains in queue and is carried to the next time step. The
information used to calculate the headway is taken from previous time step.

TrafficGenerator flow chart is given in the Figure 4.9.
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A 4
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Figure 4.9: TrafficGenerator Flow Chart

4.3.2.2. Traffic flow propagation Sub-Model

The traffic flow propagation sub model of the simulator uses the cell transmission model
[9, 16]. According to the cell transmission model cach of the roadway is partitioned into
discrete segment and time into discrete time steps. The traffic stream characteristics
discussed earlier is assumed to satisfy this criterion of cell transmission model. For
normal traffic conditions (Uninterrupted flow conditions) all the vehicles moving with
free flow speed are expected to cross maximum one cell length in a single time step. For

a typical roadway geometry given in Figure 4.10, the equation of the flow conservation is

N
(98]



presented as follows

Scction ¢-1 Section ¢ Section ¢+1

Figure 4.10: A Typical Link Segment

Ny (t4+m)=n.(1) (4.5)
Where,
n.(t) = number of vehicles in cell ¢ at time ¢
Ny (04 my) = number of vehicles in cell c¢+/(immediate

downstream cell of ¢) at time t+m,
The equation (4.5) holds true if there is no traffic queue in the downstream cell and the
downstream cell can accommodate all the vehicles from its immediate upstream cell
satisfying the jam density conditions of traffic flow models. To model a realistic traffic
flow, congestion in the downstream cell that slows down the traffic in the upstream cell is
incorporated using two variables. They are as follows:
N.(r) = maximum number of vehicles that can be present in segment ¢ at time ¢
= product of link length and jam density of the link.

q.(r) = maximum number of vehicles that can flow in segment ¢ at time (r.r + m,)

= product of maximum capacity of the segment and simulation time step.

So, A, =u; *m, (4.6)
4 (0)= G * 1, 4.7
N(r)=k;* A, 4.8)



Where,

A. =length of the cell in meter

(]

m, = simulation update step in seconds
Guen = Maximum flow or capacity in veh/h

k; = jam density in veh/km

From flow density model discussed earlier, flow propagation and flow conservation

equations can be redefined as follows:

0, (r+ n )':min[{Nrﬂ(’) - "c+l(’)}' ‘/r(’)' s (f)' ”r(’)’ ’"('(t)] 4.9)
Loo(t+m)=0.(+m,) (4.10)
Where,

O.(r +m,) = number of vehicles leaving cell ¢ at time (1,7 +m,)
Nea(t)=n.,,(r) = maximum number of the vehicles that can be present in
segment ¢+/ at time ¢

q.(r) = maximum number of vehicles that can flow in segment ¢ at time
(t.t+m,)

e () = maximum number of vehicles that can flow in segment ¢+/ at time
(t,t +m,)

n.(r) = number of vehicles in the segment ¢ at time ¢

m.(r) = number of vehicles can cross segment ¢ at time f using the segment

current velocity.

I..1(¢+m,) = number of vehicles entering segment ¢+/ at time (r,r +m,)

¥,
9]



The flow propagation cquation (4.9) determines the number of outgoing vehicles for a
particular cell under current time step traffic conditions. Flow conservation cquation
(4.10) assures that number of vehicles entering into a downstream cell is equal to the
number of vehicles leaving from the upstream cell. For the signalized intersection, the
outflow from a head segment of any link depends on the current state of the traffic signal.
The segment outflow under traffic light conditions is given by following equations:

( ) g, if the downstream signal light state is green
1=

O if the downstream signal light state is red

The outflow from links that end at a peripheral node of the network are not restricted to
flow propagation equation because the vehicles that reach the destination are
automatically removed from the network. When advancing from one segment to another,
individual acceleration and deceleration characteristics of the vehicle are not modeled to
adjust the speed differential between the segments. This is due to the aggregate nature of
the traffic characteristics of all the vehicles in a particular segment. To model! the
congestion or traffic signal, all vehicles are assumed to be able to stop instantaneously.
4.3.3.  Advance Phase

In this phase, vehicles are advanced to the immediate next segment from their current
segment using the segment inflow and outflow information received from the update
phase. Necessary turning maneuver are also considered for the vehicles that reach the end
of the link or waiting for the traffic light. For discrete vehicle movement in this simulator,
the last variable in the equation (4.9) is always set to a whole number. In the advance
phase this variable is assigned with an integer value using the vehicle count only those
getting the full length into the new segment. For each vechicle movement the simulation

time step is divided into two parts. First time slice is used to cross the remaining distance
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of the segment from the vehicle current position using segment current speed. The second
time slice multiplied by the new segment speed gives the new position of the car into the
new segment for the current time step. In Figure 4.11, the simulation time step 7 is

divided into two vparts ; and  for segment A and segment B

——————>

B A B

t) ta

Figure 4.11: Time Division for Vehicle Transfer

respectively. Vehicle position coordinate into any segment is measured from the tail of
each segment and is calculated by multiplying the average speed of the segment with the
tyor t2 depending on the exit or entry segment.

4.3.3.1. Left Turn Movement

For the turning movements each lane of head segment is considered separately depending
on the type of turning maneuver. The straight and right turning mancuvers arc same as
normal vehicle transfer between the intermediate segments of a link because there is no
need to give any priority to any particular vehicle. For the left turning movement,
minimum time headway of 2 sec is considered and priority is given to the vehicle taking
the straight turn from the oncoming roadway link. The flow chart for left turning

movement is given below:
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Vehy = Get Link . left Vehgr = Get link2.straight
lane.first vehicle lane.first vehicle
A
Get vehy o cross time Get vehgr.cross time
[ |

Allow straight turning
from link2.first vehicle

If vehyg.cross time
< vehgr.cross time

A A
no

No left turn allowed

If (vehgy.cross time —
vehyp.cross time)>2

no

Advance the vehicle -
with Left turn No left turn allowed
I L

Figure 4.12: Flow Chart for Left Turn Movement

4.4. Discussion

The traffic simulator is intended to simulate the macroscopic traffic behavior of vehicles
on a coded network. In each time step during simulation, each of link cells of the network
update the cell traffic information like total number of vehicles, vehicle density, flow and
average speed of the traffic stream. As mentioned earlier, the simulator treats vehicles on
individual basis. Each vehicle updates its position for the next time step using the cell
traffic information and all vehicle movements are coordinated with the intersection traffic
lights. For each time step, the simulator stores the total number of vehicles running on the
network and the total number of vehicles that reached the destination in two separate

variables. Also, each vehicle stores the trip start time while entering into the network and

)]
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trip end time while exiting from network. Upon termination of the simulation, individual
vehicle travel information is released into the data file and vehicles which traveled

between the same origin-destination pair are used for travel time savings calculation.



CHAPTER 5
COMPUTER PROGRAMS
S.1.  Introduction
The object oriented implementation of the transportation network is used 1o develop the
macroscopic traffic simulator. Each feature of the network is implemented as a separate
object. Descriptions of each object, relationships to the other object and the
responsibilities to the simulator are discussed in this chapter.
5.2.  Correlation of the Problem Domain to an Object-Oriented Data Model
The successful implementation of an efficient traffic management system depends on the
capability of dynamic data processing regarding each feature of transportation network
along with both the static and dynamic traffic information. A data-model is an abstract
representation of some real-world situation or domain of interest. In this thesis, the
transportation network is correlated to an object-oriented data model which allows the
cfficient interaction between transportation network characteristics according to [25]. The
key element of an object-oriented data model is to implement structured and efficient
data structures referred to as objects. Each class in the data model is an instance of an
object. A class represents a kind of object that has the similar data representation and the
behavior that mirror the physical reality of that particular object [25, 30]. The three main
features of an object are as follows:
* Abstraction: the act of representing essential features without including the
explanations.

* Inheritance: the ability to acquire the properties of objects of other class.
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* Polymorphism: the ability to take the other form while keeping the original
structure.

The implementation of object-oriented approach is justifiable as it removes some of the
flaws encountered with the functional or procedural approach. The procedural approach
emphasizes the functionality and does not allow the structure of data whereas in the
object oriented approach, data is treated as a critical element and also is protected from
any outside functions. Moreover in case of any internal changes of the data structure,
object identity is not lost and can be implemented by a class as before by using the
features of the objects discussed before.

5.3.  Object Oriented Approach

A transportation network data model can be represented by the feature of transportation
network such as intersection, road section, vehicle, traffic lights ctc. The object oriented
approach assumes that a feature is an object having a set of properties and a set of
relationships with other objects. Topology is defined as arrangements of features of the
network and their connectivity which is one of the core concepts in defining
transportation network is imbedded in object oriented representation [41]. In the
simulator, roads in the network are modeled as link object and the intersections are
modeled as node object. Also, each link is considered as linked data structure of several
cell objects which is done to implement cell transmission model. Vehicles are considered
separate objects which are created at the origin nodes and destroyed upon reaching to the
destination node. All intersections are considered signalized where traffic lights arc also
considered as separate objects which operate through pre-time signal settings. Depending

on the flow in the link and available green time, vehicles queue up on the cell and take
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appropriate turn upon reaching the end of the link. For simplicity, no overtaking is
allowed and all the vehicles are assumed to follow the fundamental traffic flow equations.
The attributes and the functions of all the objects have been implemented in such a way
that they mimic the real world transportation network representations.

5.3.1. Java Implementation

The object oriented approach of the simulator is implemented in J AVA™. The program
is written and compiled against Sun® Microsystem’s J2SE version 1.4 java libraries. The
program is developed in Borland® JBuilder® 2005 enterprise edition. Java is chosen
because of its object oriented nature and the extensive functionality in the new collection
library is included in J2SE version 1.4.

5.4.  Class Definitions and Relationship

To show .lhe relationship between the object classes implemented in the simulator,
Unified Modeling Language (UML) diagrams of each object class are extracted from the
JBuilder® UML browser. The definitions of the UML diagram symbols using the
standard Java terminology are given below:

Table 5.1: UML Diagram Definitions

Diagram Definitions Diagram Example
Classes Structures that defines objects. A
Class Name

Class definition defines fields and

methods.

Extended Class Classes that extend (inherit from) 4&

the superclass. Also called subclass
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Diagram Definitions Diagram Example

Implementing Classes that implement the central <_I
" R |

Interface interface. |

Association/ Specialized dependencies where a <

Reverse association | reference to another class is stored.

Dependencics/ Using relationships in which a
. < ———-
Reverse change to the used object may affect >
dependencies the using object.
java.utii
Packages Collections of related classes

All the object classes of the simulator is the part of java Package refer to “roadsim”.

The following classes are implemented for the simulator:

Cell: This is the smallest building block of the road network. Each of this object is part of

link of the network. It has a fixed capacity, fixed length, link specific unique ID and a

queue. Vehicles can enter only through the tail of the cell and leave through the head of

the cell.

o Head Cell: Consists of three lanes for left, straight and right turning movements. Each
of these cells is linked to the downstream link cell through the network topology.
Movements through these lanes are coordinated with traffic signal.

o Transfer Cell: Single lane cell as vehicles only traverse through these cells from

upstream to downstream direction towards their destination.



o Tail Cell: Single lane cell. Each of these cells is linked with previous link cell through
the network topology.

The UML diagram of the Cell object class is as follows:

java.util |

Vector

roadsim I

roadsim | Cell roadsim |
| Car Ib Car
|-| Cell k RaodCanvas.Sim
I _Scheduler
| Link k
i RouteEngine I
| MacroModel }
Traffic_Generator.
I RoadCanvas g Traffic.Traffic_Gen
) erator_Task

java.util - I java.lang I

>{ Object ]

I Vector

s

Figure 5.1: UML Diagram of Cell Object Class
The sample program code for Cell object class is given in Appendix B.1
Link: This object consists of several cell objects depending on the length attribute of this
object. All the cell objects belong to a particular link object have same traffic
characteristics like capacity, speed, density and flow which also represent traffic
characteristics of the link. The link object connects two intersection objects as
Head_node and Tail_node. Each object also point to the other link object for left, straight

and right movement through Head_node. Tail cell of a link object is responsible to take
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decision whether to put vehicle in the queue or to insert into the link by checking the link

capacity. The UML diagram of the object class is as follows:

java.lang | roadsim l

Vector Constants
(Subclasses=12) [

roadsim - I
- roadsim l
roadsim |

Link
l Car I Car |
| Cell RaodCanvas.Sim
_Scheduler
| Intersection

{ RouteEngine

TrafficLight.Light_
Scheduler

MacroModel

RoadCanvas Traffic_Generator.
Traffic. Traffic_Gen

erator_Task

T s T | e R 'V?J N

[-| Link
|
|
|

TrafficLight

java.awt I
- java.utit - |

| Color }( >l| Ciase ]

m 3 Math |
| String }( ;‘l Object |
I Vector j"r

Figure 5.2: UML Diagram for Link Object Class

The sample program code for Link object class is given in Appendix B.2



Intersection: This object acts as a junction of link objects and resembles the intersection
of the real-world transportation network. Each of these objects can point at most four
intersection and link objects to mimic the real-world four-leg intersection. The movement
through any intersection is coordinated according to the TrafficLight object attached to
the intersection. Three types of intersections or nodes are considered as follows:

o Entry Node: These are the peripheral nodes through which vehicle enters into the
network according to the given travel demand. TrafficGenerator object are attached to
these nodes to create the vehicle.

o Exit Node: These are also the peripheral nodes through which vehicle exits from the
network.

o Transfer Node: These are the internal nodes of the network to simply removes the
vehicle from one link and transfer it to other link depending on the vehicle turning
movement.

The UML diagram of the Intersection object is given in the Figure5.3.
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java.lang I roadsim l

Obiject Constants
) (Subclasses=12) [

Comparable

roadsim l
l roadsim
roadsim |
Intersection

| Car I RaodCanvas.Sim
_Scheduler
l——-| Intersection l'( I
| RouteEngine
| Link K
TrafficLight.Light_
| Path | Scheduler
| RoadCanvas Traffic_Generator.
Traffic.Traffic_Gen
I RouteEngine = erator_Task
| TrafficLight ll(
1 Java.util |
I Traffic_Generator I
o
A HashMap ]

Java.awt I

| Color }(
| Point 'I(
Jjava.util
vk
| Vector l'(

Figure 5.3: UML Diagram for Intersection Object Class
The sample program code for Intersection object class is given in Appendix B.3
Car: This is the most important object of the simulator through which performance of
guided vehicles is evaluated. Three types of vehicles are considered as follows:
o Random Vehicle: These vehicles are generated randomly during the initialization

state of simulator. They have no specific origin and destination node and are not
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considered for the performance evaluation. This type of vehicle represents the drivers
who have no definite destination to reach and choose the intersection turning
maneuver randomly.

o Unguided Vehicle: It originates at the designated origin intersection and exits through
the designated destination intersection. Vehicles receive the path information for the
particular origin-destination node while entering the network and follow the path for
the entire journey. Upon reaching the destination node vehicle release the trip
information regarding total travel time, travel speed into a data file. The shortest path
calculation for this type of vehicle is performed by Dijkstra’s static shortest path
algorithm. The vehicle represents the drivers who use pre trip information for their
route choice.

o Guided Vehicle: It also originates at the designated origin intersection and exits
through the designated destination intersection. Vehicles are assumed to be equipped
with the route guidance system through which they receive the path information for
particular origin-destination each time they reach any intersection and change the
path accordingly. Upon reaching the destination intersection, vehicle releases the trip
information regarding total travel time, travel speed into a data file. The shortest path
calculation for this type of vehicle is performed by proposed dynamic shortest path
algorithm. The vehicle represents the drivers who use both pre trip and en-route
information for their route choice.

UML diagram of the Car object is as follows:
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java.long | roadsim |
Obiect Constants
(Subclasses=12) [

roadsim l
roadsim | Car m
{ Car |I< Car
| Cell Iﬁ I Link l
l Intersectiom l!( RoadCanvasSim_
schedular
| Link k
Traffic_Generator.,
| MacroModel !I< Traffic_Generator_t
ask
L
| Path k
| RoadCanvas II<
| RaodEngine I|< Java.util I
J N
l fWriter l'( A Collection |
Java.lang l
; L
l String 3
Java.util I
|5
l Random K
|5
I Vector ¥

Figure 5.4: UML Diagram for Car Object Class
The sample program code for Car object class is given in Appendix B.4
» TrafficLight: This object is attached with the intersection object and activates during
the initialization of the simulator. This object changes the green and red state according

to the pre-timed signal settings. All the vehicles objects get the trafficlight signal state
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through the link object they belong to for any particular simulation time step. UML

diagram of TrafficLight object is as follows:

java.long I roadsim |

Object Constants

(Subclasses=12) Q_‘
roadsim |
roadsim | TrafficLight
roadsim l

| Intersection k
N |
] | RoadCanvasj
| Link K
TrafficLight.Light_ java.awt
scheduler

)lj Colour I
)lj Graphics |
java.util |

)ll Paint |

L
| Random K
; |5
| Timer 5 W]
I Vector ‘Iz )II TimerTask ]

Figure 5.5: UML Diagram of TrafficLight Object
The sample program code for TrafficLight object class is given in Appendix B.5
TrafficGenerator: This object is responsible to generate the vehicle according to the given
travel demand by keeping constant time headway between the vehicle. These objects are
attached to the designated origin and destination nodes. The object generates vehicles at a
uniform rate between the origin destination pair from the according traffic volume data.
The object also keeps track of the total number of generated guided and unguided

vehicles between origin destination pair to satisfy the vehicle composition according to
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the traffic scenario being simulated. UML diagram of Trafficgenerator object class is

given as follows:

java.util |

TimerTask

roadsim |
roadsim | Traffic_Generator.Traffice_
generator_task roadsim ’

I Trafﬁc_Generalo%

Call

Intersection

Link

Path

RoadCanvas

RouteEngine

car |
|
|
|
|
|
|

o N . N2 N N4 L

>|| Object |
)j, System I

java.util - |
)II Random |
)II Vector |

Figure 5.6: UML Diagram of TrafficGenerator Object Class

The sample program code for TrafficGenerator object class is given in Appendix B.6
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= MacroModel: This object implements the macroscopic traffic flow dynamics
considered in this study. During each time step, this object determines the maximum
number of vehicles that can exit from a particular cell object by taking into consideration
the link average travel speed, density and flow for that time period. The object variables
store this information and all the vehicle objects use this information to update their
individual position into the cell for the next time step. UML diagram of this object is as

follows:

java.lang | roadsim I
(SubClassess = 12)

m_l MacroModel mm——‘
Car k | RoadCanvas.sim_Scheduler

3 Class
l Roadconvas II( T I
N|
A Math I
>‘| System l
java.util I

Random }( i Java.lang.reflect l
{ Array

java.util
{ Vector '

Figure 5.7: UML Diagram of MacroModel Object Class
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The sample program code for MacroModel object class is given in Appendix B.7

Path: This object stores the sequence of intersections (Intersection object) between any
origin-destination pair. Upon the call to the RouteEngine object by any vehicle object this
object stores the sequence of intersections on the shortest path between particular origin-

destination pair. UML diagram of the object is as follows:

java.util |
[ roadsim ]

roadsim

roadsim Path

[k [roadsim |

| Intersection Il( @

| Roadconvas }( RaodCanvas.sim_scheduler
L RouteEngine }

----- Traffic_Generator

I RouteEngine_Back }

java.util

| ArrayList }

java.lang|
)ll Object I

Figure 5.8: UML Diagram of Path Object Class
The sample program code for Path object class is given in Appendix B.8
RouteCanvas: This object is the base object that coordinates all the objects for each time
step. This object read all the input data from specified data file and all the objects are

initialized through this object. A java Timer object is incorporated as Sim_Scheduler to
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control the simulation time frame. The simulation time step is updated according to the
preset time interval and after total sampling period of the simulation the vehicle object
stores the travel data into a data file upon calling this object. UML diagram of the object

is given below:

java.util I

TimerTask

roadsim I " T
java.io |
roadsim | RoadCanvas.Sim_scheduler
}i I0Exception ]
| Roadconvas I -
)II PrintStrem l
)ll RandomAccessfile l
raodsim | -
java.lang I
Car k
| P >|| Double |
Call ¥
| I ;II Exception I
Intersection k
| F 3 Math |
Link k
I I ----)l Object I
MacroModel  k
I I >|| String |
Path k
| I >|| StringBuffer |
>1| System I
java.util |
s
el lerator l
J B
| List l
J .
A Listlerator '
|
1 Vector I

Figure 5.9: UML Diagram of RoadCanvas Object Class

The sample program code for RoadCanvas object class is given in Appendix B.9
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RouteEngine: This object is used to calculate shortest path between the given origin and
destination intersection for both the guided and unguided vehicle. The unguided vehicle
calls this object to give the shortest path using static shortest path algorithm while
entering into the network. The guided vehicle calls this object to give the shortest path
using the Bi-objective Bidirectional Heuristic Path Scarch Algorithm (BBHPSA) each
time they enter into the new link. UML diagram of the object is given below:

java.lang I roadsim |

TimerTask Constants
(Subclasses=12) [
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raodsim | roadsim I
RouteEngine
I Car k )II Car l
I Intersection }( )]l Link l
I Path }( Traffip_Generalor.
Traffic_Generator
|2 _task
I RoadCanvas €
java.lang | -
java.awt ‘
Strin k
LComparator }( ;II I0Exception I
| Map I‘( )'] PrintStrem |
I Set l': >'l RandomAccessfile |
' L
l Vector F ‘
Java.lang l
L SortedSet ll( S
){ Double |
){ Exception I
)ll String I
)'I StringBuffer I
)II System I

Figure 5.10: UML Diagram of RoutcEngine Object Class




The sample program code for RouteEngine object class is given in Appendix B.10

5.5. Summary of the Computer Programs

The object oriented implementation of the traffic simulator discussed in this chapter
corresponds to the different phases of the simulator given in previous chapter. During
loading phase, all the objects of the simulator are instantiated and variables of each object
are initialized. Network topology is built through relationship between the Cell, Link and
Intersection object. Upon initialization the simulation timer object, the vehicle object
enters in the network according to the travel demand data given earlier. In each time step
of the simulation, MacroModel object updates the traffic flow variables of each Cell
object as well as the position coordinate of the Car object. RoadCanvas object calculates
the outflow from each Cell object through the flow propagation equation given earlier.
Traffic flow variables from the previous time step are used to determine the outflow from
Cell object for current time step. Upon termination of the simulation, each Car object
which reached the destination release the trip information to data files for analytical

computation of the simulation results.
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CHAPTERS 6

RESULTS OF TRAFFIC SIMULATION MODEL
6.1. Introduction
In this chapter, simulation results from the traffic simulator under various traffic
scenarios are reported for the hypothetical network given in the previous chapter. The
analytical perspective of the results for each scenario is also discussed.
6.2. Simulation Results of Hypothetical Network
The nctwork is simulated with the assumed travel demand data given in the previous
chapter to estimate the possible travel time savings for the 11 different traffic scenarios
varied by the presence of certain percentage of guided vehicle in the traffic flect. The
simulation run is started with the traffic scenario considering that all the vehicles in the
flect arc unguided vehicle. For each of next run of the simulation, the traffic scenario is
varied by increasing the percentage of guided vehicle in the network by 10% from the
previous run. So, in the first run only the unguided vehicles and in the last run only the
guided vehicles are simulated for the respective origin-destination pair according to the
assumed trip table. Trip production and attraction for any of the nodes and total number
of trips are kept constant to compare the travel time savings between any particular pair
of nodes. For each run, the travel times of each vehicle are cumulated depending on the
total number of intersections the vehicle crossed during its course of travel rather than the
vehicle traveling between the same origin-destination pair. The accumulation of travel
time of each vehicle crossing the equal number of intersections to reach the destination

can be justified as link length is same for all the links. So, all the travel path with equal
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number of intersections have the same length. The average travel time for the vehicle
crossing the same distance is then computed as follows:

Average travel time = Cumulated travel time/ Total number of vebicles.

Route Guidance (RG) level is expressed as “Level of RG (%)” according to the percent of
guided vehicles in the network. So, Level of RG = 10 means, the amount of guided
vehicles is 10 percent of the total number of vehicles in the network. In Table 6.1, the
vehicle type composition for different traffic scenarios are given.

Table 6.1: Traffic Scenario Vehicle Composition

_ o Vehicle Percentage(%)
Scenario | Level of RG Guided | Unguided

| 4] 0 100

2 10 10 90

3 20) 20) 80

4 30 30 70

5 40 40 60

6 S0 50 50

7 60 60) 40

8 70 70 30

9 80) 80 20

10 90 90 10

11 100 100 0

The percentage of guided vehicle in each traffic scenario is varied according to the earlier
discussion given in this chapter. It is observed from the simulation that the vehicle cross
at most 6 intersections to complete the trip between any origin-destination pair in the
network. So, maximum 6 intersections on the travel path are considered from the
simulation results. In Table 6.2, simulation results of all the traffic scenarios are
presented in terms of average travel time/km according to the total number of

intersections the vehicle cross during the trip.
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Table 6.2: Simulation Results for Travel Time/km

Level of Veh Type o No of Inters_ectiqns '
RG(%) 1 2 3 B 5 6
0 Guided
Unguided 103.62 105.64 115.69 128.24 138.30 147.58
10 Guided 100.70 103.42 114.07 126.65 135.02 142,18
Unguided 102.72 105.10 115.31 128.05 137.88 147.04
20 Guided 99.56 102.75 112.72 124.85 132.54 139.75
Unguided 103.38 105.05 115.32 128.04 137.38 146.47
30 Guided 104.22 102.28 111.92 123.27 130.20 137.90
Unguided 101.33 104.75 115.07 127.65 137.21 145.93
40 Guided 102.24 101.76 110.65 121.69 127.87 136.89
Unguided 98.90 104.76 114.56 126.85 136.92 145.61
50 Guided 103.66 101.53 110.29 120.25 125.17 134.03
Unguided 98.21 104.56 114.54 126.26 136.82 145.04
60 Guided 104.66 101.03 109.84 119.44 123.08 132.47
Unguided 103.34 104.33 114.32 125.65 136.26 144.61
70 Guided 103.86 100.41 109.49 118.91 121.68 130.75
Unguided 102.26 104.10 114.07 124,32 135.55 143.61
20 Guided 101.32 100.09 108.57 118.03 121.19 129.32
Unguided 102.19 103.42 113,72 123.92 134,54 142.61
90 Guided 103.26 99.61 108.31 117.32 121.06 128.32
Unguided 103.43 103.04 112.82 122.86 133.71 141.61
100 Guided 102.08 98.77 107.81 116.84 120.72 127.03
Unguided

All the travel time values in Table 6.2 are in seconds. For each traffic scenario, the
average travel times are given for guided and unguided vehicles. The first and last row of
the above table is left blank intentionally to show that there is no guided vehicle in the
first scenario and there is no unguided vehicle in the last scenario. Form this table, at
“Level of RG=10%" a guided vehicle that cross 6 intersections to reach the destination
requires 142.18 sec to travel one kilometer distance whereas for the same number of
intersections an unguided vehicle requires average travel time of 147.04 sec. The
variations of average travel times/km given in Table 6.2 have been shown in the

following Figures 6.1 (a) to (i) for mixed traffic scenario refer to Gradual Variation of

Travel Time for mixed Traffic.
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Figure 6.1(a): Scenario 2
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Figure 6.1(b): Scenario 3
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Figure 6.1(¢): Scenario 4
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Figure 6.1(d): Scenario 5

Travel Time /km (sec’

160.00
140.00
120.00

100,00 -
80.00 -
.00 -
1000
2000 4
0.00 -+

Level of RGSOCE)

O Guided
Unguided

No of Intersections

Figure 6.1(e): Scenario 6
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Figure 6.1(f): Scenario 7
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Figure 6.1(g): Scenario 8
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Figure 6.1(h): Scenario 9
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Figure 6.1(i): Scenario 10
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In all the figures in 6.1, the gradual variations of the average travel times/km arc shown
for different composition of guided and unguided vehicles according to the different
traffic scenarios. In Figure 6.2, average travel time/km is shown for traffic scenario 1 and

traffic scenario 11.
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Figure 6.2 Variation of Travel Time for Guided and Unguided Vehicles
In Figures 6.1 and 6.2, average travel time/km are plotted against the number of
intersections on the traveled path. The horizontal axis denotes thé number of
intersections, the vehicle crossed for its trip along the traveled path and vertical axis
denotes the average travel time/km in seconds for guided and unguided vehicles into the
network. The following interpretations can be made from these figures:
= The average travel time/km for both of guided and unguided vehicles increases with
the total trip length.
* Benefits of guided vehicles in the total network traffic are relatively large for the
longer trip length or travel path with more number of intersections. This is justifiable

as the guided vehicles sclect their route based on the present traffic conditions upon



crossing the each intersection. So, for the longer routes, vehicles will get more
chances for the route selection and to achieve the reduction in travel times.
6.2.1. Estimated Trip Time Savings
Trip time savings for different traffic scenarios are calculated based on the required trip
time of the unguided vehicle in traffic scenario 1(“Level of RG=0%"). In Table 6.3, trip
times are shown for different traffic scenarios as discussed earlier.

Table 6.3: Simulation Results for Trip Time

Level of Veh Type No of Intersections
RG(%) 1 2 R) 4 5 6
0 Guided
Unguided 345 5.28 7.71 10.69 13.83 17.22
10 Guided 3.36 5.17 7.60 10.55 13.50 16.59
Unguided 342 5.25 7.69 10.67 13.79 17.15
20 Guided 3.32 5.14 7.51 10.40 13.25 16.30
Unguided 345 5.25 7.69 10.67 13.74 17.09
30 Guided 347 5.1 7.46 10.27 13.02 16.09
Unguided 3.38 5.24 7.67 10.64 13.72 17.02
40 Guided 341 5.09 7.38 10.14 12.79 15.83
Unguided 3.30 5.24 7.64 10.57 13.69 16.99
50 Guided 3.46 5.08 7.35 10.02 12.52 15.64
Unguided 3.27 5.23 7.64 10.52 13.68 16.92
60 Guided 349 5.05 7.32 9.95 12.31] 15.45
Unguided 3.44 5.22 7.62 10.47 13.63 16.87
70 Guided 3.46 5.02 7.30 9.91 12.17 15.25
Unguided 341 5.20 7.60 10.36 13.55 16.75
80 Guided 3.38 5.00 7.24 9.84 12.12 15.09
Unguided 341 5.17 7.58 10.33 13.45 16.64
90 Guided 3.44 4.98 7.22 9.78 12,11 14.97
Unguided 3.45 5.15 7.52 10.24 13.37 16.52
Guided 3.40 4.94 7.19 9.74 12.07 14.82
100 -
Unguided

In Table 6.3, all the time values are expressed in minutes and trip times are shown for
both guided and unguided vehicles. From this table, at “Level of RG=10%" a guided
vehicle that cross 6 intersections and travels 7 km on the travel path requires 16.59
minutes to reach the destination whercas for the same number of intersections an

unguided vehicle requires 17.15 minutes to reach the destination. In the following Tables
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6.4(a) and 6.4(b), trip time savings from the simulation results given in Table 6.3 are
shown for guided vehicles.

Table 6.4 (a): Trip Time Savings for Guided vehicle

Level of . ST ’ " No of Intersections

RG(%) | YT T 5 3 [ 4 5 6
0 Guided 0.00 0.00 0.00 0.00 (.00 0.00
10 Guided 5.83 6.67 6.50 7.95 19.66 37.81
20 Guided 8.12 8.67 11.87 16.95 34.59 54.80
30 Guided -1.20 10.07 15.07 24.84 48.59 67.78
4() Guided 2.77 11.64 20,17 32.73 62.60) 74.83
50 Guided -0.07 12.33 21.61 39.95 78.78 94.82
60 Guided -2.09 13.84 23.40 43.99 91.35 105.80
70 Guided -(0.48 15.69 24.80 46.66 99.75 117.80
80 Guided 4.60 16.66 28.48 51.06 102.68 127.80
90 Guided 0.72 18.08 29.51 54.62 103.44 134.80
100 Guided 3.09 20.60 31.51 56.99 105.51 143.83

Table 6.4 (b): Trip Time Savings(%) for Guided vehicle

Level of e No of Intersections

RG%) | VP T T2 T 3 [ a 5 6
0 Guided 0.00 0.00 0.00 0.00 0.00 0.00
10 Guided 2.81 2.10 1.40 .24 2.37 3.66
20 Guided 3.92 2.74 2.57 2.64 4.17 5.30
30 Guided -(.58 3.18 3.26 3.87 5.86 6.56
40 Guided 1.33 3.67 4.36 5.10 7.54 7.24
50 Guided -0.03 3.89 4.67 6.23 9.49 9.18
60 Guided -1.01 4.37 5.06 6.86 11.01 10.24
70 Guided -(0.23 4.95 5.36 7.28 12.02 11.40
80 Guided 2.22 5.26 6.15 7.96 12.37 12.37
90 Guided 0.35 5.70 6.38 8.52 12.47 13.05
100 Guided 1.49 6.50 6.81 8.89 12,72 13.92

In Table 6.4(a), the trip time savings with respect to the unguided vehicles as mentioned
earlier are shown in seconds and in Table 6.4(b), trip time savings are expressed in
percentage. The sample calculations for Table 6.4(a) and Table 6.4(b) are shown below:

From tuble. 6.3, at traffic scenario 1, average trip time required for an unguided vehicle
that cross 6 intersections on its travel path is 17.22 minutes and at “Level of RG=90%" a
guided vehicle that cross same number of intersections requires 14.97 minutes to reach

the destination. So, at “Level of RG=90%" the trip time saving is calculated as
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(17.22-14.97)* 60 =134.8 sec. The value is shown in Table 6.4(a). In Table 6.4(b), the trip
time savings for a guided vehicle is expressed as percentage of trip time of unguided
vehicle at “Level of RG=0%" and is calculated as (17.22-14.97)/17.22*100=13.05 which
denotes that, at “Level of RG=90%" a guided vchicle that cross 6 intersections on its
travel path to reach the destination needs 13.05% of less trip time compared to an
unguided vehicle at “Level of RG=0%".

In Tables 6.5(a) and 6.5(b), trip time savings from the simulation results given in Table
6.3 are shown for unguided vehicles.

Table 6.5(a): Trip Time Savings for Unguided vehicle

- Level of |’ Veh Type IR No of Intersections

- RG(%) 1. 02 3 4 5 6
0 Unguided 0.0( 0.00 0.00 0.00 0.00 0.00
10 Unguided 1.80 1.63 1.51 0.95 2.55 3.80
20 Unguided 0.47 1.77 1.49 0.99 5.54 7.77
30 Unguided 4.58 2.67 2.50 2.94 6.54 11.58
40 Unguided 9.44 2.63 4.51 6.95 8.31 13.80
50 Unguided 10.82 3.25 4.62 9,91 8.91 17.77
60 Unguided 0.57 3.94 5.50 12.95 12.22 20.77
70 Unguided 2.73 4.63 6.50 19.62 16.51 27.77
80 Unguided 2.86 6.65 1.89 21.61 22.54 34.81
90 Unguided 0.38 7.80 11.50 26.92 27.52 41.81
100 Unguided

Table 6.5(b): Trip Time Savings (%) for Unguided vehicle

.+ No of Intersections ;" " o

VehType a0

0 Unguided 0.00 0.00 0.00 0.00 0.00 0.00
10 Unguided 0.87 0.51 0.33 0.15 0.31 .37
20 Unguided 0.23 0.56 (.32 0.15 (.67 0.75
30 Unguided 2.21 0.84 .54 0.46 0.79 1.12
40 Unguided 4.56 0.83 0.97 1.08 1.00 1.34
50 Unguided 5.22 1.03 1.00 1.55 1.07 1.72
60 Unguided 0.27 1.24 1.19 2.02 1.47 2.01
70 Unguided 1.32 1.46 1.40 3.06 1.99 2.69
80 Unguided 1.38 2.10 1.70 3.37 2.72 3.37
90 Unguided 0.18 2.46 249 4.20 3.32 4.05
100 Unguided
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In Table 6.5(a), the trip time savings for unguided vehicles are shown in seconds and in
Table 6.5(b), trip time savings are expressed in percentage. The sample calculations for
Table 6.5(a) and Table 6.5(b) are shown below:

As mentioned earlier from Table 6.3, at traffic scenario | average trip time required for
an unguided vehicle that cross 6 intersections on its travel path is 17.22 minutes and at
“Level ¢f RG=90%" an unguided vehicle that cross same number of intersections requires
16.52 minutes to reach the destination. So, at “Level of RG=90%" the trip time saving is
calculate as (17.22-16.52)*60=41.81 sec. The value is shown in Table 6.5(a). In Table
6.5(b), the trip time savings for an unguided vehicle is expressed as percentage of trip
time of wunguided vehicle at “Level of RG=0%" and is calculated as
(17.22-16.52)/17.22*100=4.05 which denotes that, at “Level of RG=90%" an unguided
vehicle that cross 6 intersections on its travel path to reach the destination needs 4.05% of
less trip time compared to an unguided vehicle at “Level of RG=0%".

The variations of trip time savings in percentage for both guided and unguided vehicles

using the values from Table 6.4(b) and Table 6.5(b) arc shown graphically as follows:
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Figure 6.3: Trip Time Savings (%) Variation for Guided vehicles

87



% ¢ |
cl)

£ s 2
2

A 3
L

g 4
&

] X5
2

& °°

-I T 1 1] : T

0 20 40 60 S0 100
Level of RG(%)

Figure 6.4: Trip Time Savings (%) Variation for Unguided vehicles

In Figures 6.3 and 6.4, the horizontal axis denotes the proportion of guided vehicles and

vertical axis denotes savings in trip times expressed in percentage. All the legends shown

on the chart denote the number of intersections the vehicle crossed through their travel

path. The following interpretations can be made from these figurcs:

= For the guided vehicles, the savings increase at a higher rate in the initial level of
subscriptions of guided vehicles and at a relatively lower rate in the higher level of
subscriptions. This happens as in the initial level of RG the few guided vehicles
change their routes more - frequently to optimize their travel times by avoiding
congestion and minimizing the intersection turning delays.

= For the unguided vehicles, the savings increase at a relatively lower rate in the initial
level of subscription of guided vehicles and at a relatively higher rate in the higher
level of subscriptions. This happens as in the higher level of RG the network traffic
flow is optimized to reduce the travel times and unguided vehicles face less

congestion and intersection turning delays.
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* For a single intersection travel path, there is no influence of guided vehicles as there
is a very little chance to improve the trip time for such a short distance. The trip time
savings (%) values for single intersection travel path in Table 6.4(b) and Table 6.5(b)
and the corresponding plot in Figure 6.3 and Figure 6.4 shows the influence of guided
vehicles in trip time savings.

* The trip time savings for unguided vehicles are relatively small compared to the
guided vehicles at any level of RG.

6.2.2. Estimated Average Travel Speed

The estimated average travel speeds for all the traffic scenarios arc given in Table 6.6.

Table 6.6: Simulation Results for Average Travel Speed

Level of»‘r Veh Type : ; No of Intersections
RG(%) | | R 3 4 - 6
0 Guided 0 0 0 0 0 0
Unguided 34.74 34,08 31.12 28.07 26.03 24.39
10 Guided 35.75 34.81 31.56 28.42 26.66 25.32
Unguided 35.05 34.25 31.22 28.11 26.11 24.48
20 Guided 36.16 35.04 31.94 28.83 27.16 25.76
Unguided 34.82 34,27 31.22 28.12 26.21 24.58
30 Guided 34.54 35.20 32.17 29.20) 27.65 26.11
' Unguided 35.53 34.37 31.29 28.20 26.24 24.67
40 Guided 35.21 35.38 32.54 29.58 28.15 26.30
Unguided 36.40 34.36 31.42 28.38 26.29 24,72
50 Guided 34.73 35.46 32.64 29.94 28.76 26.86
Unguided 36.66 34.43 31.43 28.51 26.31 24.82
60 Guided 34.40 35.63 32.77 30.14 29.25 27.18
Unguided 34.84 34.51 31.49 28.65 26.42 24.89
70 Guided 34.66 35.85 32.88 30.28 29.59 27.53
Unguided 35.21 34.58 31.56 28.96 26.56 25.07
20 Guided 35.53 35.97 33.16 30.50 29.71 27.84
Unguided 35.23 34.81 31.66 29.05 26.76 25.24
90 Guided 34.86 36.14 33.24 30.69 29.74 28.05
Unguided 34.81 34.94 31.91 29.30 26.92 25.42
100 Guided 35.27 36.45 33.39 30.81 29.82 28.34
Unguided 0 0 0 0 0 0

All the values in Table 6.6 are given in km/h. For cach traffic scenario, the average travel

speed is given for both guided and unguided vehicles. The zero value in the first and last
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row of the table denotes the two traffic scenario 1 and traffic scenario 11. The speed
values are calculated from the average travel time/km value of Table 6.2. From Table 6.2,
at “Level of RG=10%" a guided vehicle that cross 6 intersections to reach the destination
requires 142.18 seconds to travel one kilometer distance. So, the average speed of the

guided vehicle in one link of 1 km is calculated as (3600/142.58)=25.32 km/h that is

shown in Table 6.6. All other values arc in the table are calculated using the same

procedure. The variations of the average travel speed are shown graphically as follows:
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Figure 6.5: Average Travel Speed Variation for Guided Vehicles
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Figure 6.6: Average Travel Speed Variation for Unguided Vehicles

In Figures 6.5 and 6.6, the horizontal axis denotes the proportion of guided vehicles and

vertical axis denotes average travel speed expressed in km/h. All the legends shown on

the chart denote the number of intersections the vehicle crossed through their travel path.

The following interpretations can be made from these figures:

* The average travel speeds for the guided vehicles are always higher than the unguided
vehicles for any level of RG.

* For the guided vehicles, the average speed increases at a higher rate in the initial level
of RG and at a relatively lower rate in the higher level of RG because of the less
congested routes.

* Like the travel time savings plots, for a single intersection travel path there is no
influence of guided vehicles as there is a very little chance to improve the travel
speed and corresponding travel time for such a short distance.

* For the unguided vehicles, the average travel speed increases at a lower rate in the

initial level of RG and at a relatively higher rate in the higher level of RG.
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6.3. Discussion

For the analysis, cleven different traffic scenarios are considered with different
compositions of guided and unguided vehicles. From the results, it is observed that the
benefits of the guided vehicles to reduce the trip time are more for longer trip distance,
because for longer distances, vehicles must cross more intersections as the intersections
are almost equally spaced in the urban street network. During the initial level of guided
vehicle subscription trip time savings rate for guided vehicles is higher as there is a
higher possibility to get a new path and thercby improve the total trip time. The
percentage of guided vehicles in the vehicle composition also influence the total trip time
for the unguided vehicles as the link traffic flow is optimized to increase the overall
network traffic flow. So, all vehicles can travel at a higher speed. The link length of the
network is larger than the typical link length of an urban network. The larger link length
- is assumed to get longer travel times, so that trip time savings can be determined as the
guided vehicle only checks the network traffic condition while entering into the link. So,
the larger link length affects the trip time savings as traffic conditions may change in a

way to provide an alternative route with less trip time.



CHAPTER 7
APPLICATION OF TRAFFIC SIMULATION MODEL TO
MONTREAL ROAD NETWORK
7.1. Introduction
A sclected road network of Montréal city is used for the application of the new algorithm.
The selected network is modeled through the traffic simulator developed in this thesis to
show the travel time savings of the guided vehicles. The traffic simulator calculates the
minimum trip time path with the new algorithm.
7.2. Selected Road Network in Montreal
To simulate the traffic on an urban road network a part of Montréal city road network
surrounded by four major arterials has been chosen as a test bed. The selected area
surrounded by Rue Jean-Talon, Boulevard Pie-IX, Rue Notre-Dame and Boulevard
Decarie, is the central part of city and also a place of major traffic activity. For simplicity,
only North-South and East-West major arterials that carry major traffic load have been
considered in the simulator. A total of 25 intersections have been identified and each
intersection is given a unique ID to distinguish from each other. Intersection
identification of the arterials is given in Table 7.1.

Table 7.1: Intersection ID for Montreal Road Network

" Road Name T £ R0 RO T A
U N i EAYTRNN R O e
O L9 S| 3 = o
ST e S R R A B A M| Mo M
Rue Jean-=Talon- =7 oo | 2 3 4 5
Av. Van Horne' S 6 7 8 9 1)
Ch. De la Cote-Ste-Catherine 11 12 13 14 15
Rue Sherbrooke - 16 17 18 19 20
Rue Notre-Dame » 21 22 23 24 25




The selected road network area and the surrounding area shown on full size Montréal
road map is given in the appendix C. The city road network is coded into links and
intersections and the distance of each link is measured. The city road map is used to
obtain the distance of each link for the selected network. The coded road network with

intersection ID and the individual link distance is shown below:
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Figure: 7.1: Coded Montreal City Network

Like the hypothetical network, all the peripheral intersections of the network are
considered as the traffic zone centriods and vehicles are assumed to enter and exit from
the network through these intersections. Since the trip data of Montréal city was not
available, the origin destination trip matrix given in chapter 4 is used for trip generation.
7.3. Results of the simulation

From the simulation results for the hypothetical network it is evident that trip time
savings for the guided vehicles that use the new dynamic path scarch algorithm for

minimum trip time path calculation is significant for longer trip distance. So, for the
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Montréal road network, only the paths having highest number of intersections among all

the possible paths of the network are considered to show the simulation results. The same

traffic scenario and the same travel demand data as discussed in the previous chapter are

used for simulation run.

7.3.1. Trip Time Savings

The origin-destination pair and the intersections of the respective arterials for each path

that are considered are shown in Table 7.2.

Table 7.2: Origin Destination for Selected Path

Path . ‘. |Origin Destination - |Starting Intersection Ending Intersection
| I 20 Jean Talon/Decarie Sherbrooke/Pie-1X
2 | 24 Jean Talon/Decarie Notre-Dame/d'lberville
3 4 21 Jean Talon/d'Ibervitle Notre-Danw/Decarie
4 10 21 Van Horne/Pie-1X Notre-Dame/Decarie
5 16 5 Sherbrooke/Decarie Jean Talon/Pic-1X
6 22 5 Notre-Dame/Cote-des-Neiges Jean Talon/Pie-1X
7 25 2 Notre-Dame/Pie-1X Jean Talon/Cote-des-Neiges
8 25 6 Notre-Dame/Pie-1X Van Horne/Decarie

For each traffic scenario, the average trip time required for a guided vehicle at different

“Level of RG(%)” between any particular origin-destination pair of Table 7.2 is given in

Table 7.3 and all values in the table are expressed in minutes.

Table 7.3: Simulation Results for Trip Time

Path’ |- Origin - | Destination | - ST Level of RG(%)

0 10 20 30 4() 50 60 70 80 90 100
1 | 20 15.61 ] 1509 1479 1449 | 14,24 ] 14.02] 13,97 ] 13.539| 1342 1331} 13.17
2 | 24 16.3 | 1597 15.69] 1547} 152 | 14.97 | 14.7 | 1457 | 1437 | 1414} 13.93
3 4 21 15421 1502 14.73§ 1445 14.16 | 13.95] 13.83 | 13.7 13.6 | 13.37 | 13.18
4 10 21 15.8 154 | 15.05] 14.7 14.5 | 14.35) 1426 14.2 | 14.12] 14.08 | 14.01
5 16 5 1647 1 1606 | 15.67 | 1536 1502 | 14.69§ 1445} 1427 1414 1402 139
6 22 5 16,55 16.2 15.8 | 1549 1507 ] 14.821 14.69 | 14.6 | 1447 1420 | 14.17
7 25 2 1597 | 1557 15.02] 14.82 ] 14.6 145 | 14421 4304 1421 140 | 14.01
8 25 [$) IS.85 [ 1542 1514 | 14.89 | 14.69 ] 14,52 | 1429 ] 14,04 ] 13,97 ] 13.69 | 13.59

From Table 7.3, at “Level of RG=10%"

the trip time required for a guided vehicle to

travel between intersection of Rue Jean-Talon/Boul. Decarie and Rue Sherbrooke/Boul.

Pie-1X is 15.09 minutes. All other values in the table denote the same interpretation for
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different “Level of RG(%)”. The trip time savings for a particular path is calculated with
respect to trip times found in traffic scenario when there is no guided vehicle in the
network at “Level of RG=0%" as shown in Table 7.3. The trip time savings results of a
guided vehicle for all the paths of Table 7.2 are given in Tables 7.4(a) and 7.4(b).

Table 7.4(a): Simulation Results for Trip Time Savings

Path { Origin | Destination | = ~Level of RG(%)

[\] 10) 20 30 40 50 00 70 80 90 100
1 | 20 0 315 | 496 | 67.7 | 826 | 95.6 | 98.5 | 121.5] 131.6 | 138.5 | 146.4
2 | 24 0 19.58 | 30.58 | 49.48 1 65.88 ] 79.58 | 95.68 | 103.5] 1159 129.6 ] 142.2
3 4 21 0 239 | 413 | 579 ] 758 | 88.2 | 952 |1 103.21109.2] 123.2] 134.2
4 10 2] 0 2403 | 45 165991 77.7 | 86.7 | 92.6 | 96.1 } 1008 103 | 107.6
5 16 5 0 24.12 | 48 60.3 | 86.7 | 106.7 ] 120.7 | 131.7 | 139.7 | 146.7 | 153.8
6 22 S () 21 45 03.8 | 887 1 103.7 1 11L7] 1167 124.8 | 135.7 | 142.6
7 25 2 i) 239 | 569 | 689 | 81.9 88 929 1 99.8 | 10581 111.9] 117.3
8 25 0 0 2525 1 42,30 57.5 | 694 | 79.5 { 93.5 | 108.6] 11251 129.5] 135

Table 7.4(b): Simulation Results for Trip Time Savings(%)

L. L Level of RG(%)

Path | Origin | Destination —0——5T—>5 T35 T a0 | 50 | 60 ] 70 | 80 ] 90 | 100
i i 20 0 | 3.36 | 5.29 | 7.23 | 8.82 [ 1020 | 1051 | 1207 | 1405 | 1478 | 15.63
2 ] % 0| 2,00 [ 3.74 | 506 | 674 | 8.14 | 9.79 | 1058 1185 | 13.25 ] 14.54
3 3 21 0 | 258 | 446 | 626 | 8.19 | 953 | 1029 1L.16] 11.80| 13.32] 13.51
3 10 21 0 [ 254 | 375 | 696 | 820 | 915 | 9.7 [ 1014 10.63 [ 10.87] 1135
5 16 5 0 [ 244 | 486 | 671 | 878 | 1080 [ 1223 1333 [ 149,014 | 14.85] 15.57
3 ) 5 0 [ 212 | 453 | 643 | 893 | 1044 | 1125 1175 | 1257 | 13.67 | 14.36
7 % 2 0| 249 [ 599 [ 7.19 | 855 | 9.18 | 9.70 | 1042 | 1104 1168 | 12.24
8 % 5 0| 2.66 | 446 | 605 | 7.30 | 836 | 9.83 | 1142 11.83 | 13.62] 19.20

The trip time saving values in Table 7.4(a) are shown in seconds and in Table 7.4(b) the
savings values are expressed in percentage. An example calculation is shown below:

As found in Table 7.3, average trip time required for an unguided vehicle between
intersection of Rue Jean-Talon/Boul. Decarie and Rue Sherbrooke/Boul. Pie-1X is 15.61
minutes. For the same origin-destination pair and at “Level of RG=90%" the average trip
time required for a guided vehicle is 13.31 minutes. So, at “Level of RG=90%" the time
savings is calculated as (15.61-13.31)*60=138.5 seconds. The valuc is shown in Table

7.4(a). In Table 7.4(b), the trip time savings for a guided vehicle is expressed as
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percentage of trip time of unguided vehicle at “Level of RG=0%" is calculated as
(15.61=13.31)/15.6*100=14.78% which denotes that, at “Level of RG=90%" a guided
vehicle traveling between intersection of Rue Jean-Talon/Boul. Decarie and Rue
Sherbrooke/Boul. Pie-IX need 14.78% of less trip time compared to an unguided vehicle
traveling between the same intersections.

The variation of trip time savings for each of the path with different traffic scenario is

shown in Figure 7.2.
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Figure 7.2: Variation of Trip Time savings according to Level of RG(%)
In the above figure, the horizontal axis denotes the proportion of guided vehicles and
vertical axis denotes savings in trip times expressed in percentage. All the legends shown
on the chart denote different path of Table 7.2. The trip time savings patterns for this
network is similar to the pattern found for the hypothetical network and for guided

vehicles the trip time savings increases at a higher rate during lower level of subscriptions
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of guided vehicles and at a relatively lower rate during the higher level of RG. This
happens in the initial level of RG as the few guided vehicles change their routes more
frequently to optimize their travel times by avoiding congested routes and minimizing the
intersection turning delays.

7.3.2. Minimum Trip Time Path Comparison

To show the improvement of the algorithm in terms of route selection decisions of the
guided vehicle, travel path between the following origin-destination pair are considered:

Table 7.5: Origin Destination for Selected Path

Path- Origin : Destination
, ID | Intersection ID Intersection
Pl 10 }Van Horne/Pie-1X 21 |Notre Dame/Decarie
P2 16 [Sherbrooke/Decarie 5 Jean Talon/Pie-1X
P3 22 [Notre-Dame/Cote-des-neige 5 JJean Talon/Pie-1X

As discussed in the previous chapter vehicles are generated through every origin node by
keeping constant time headway, so after a certain simulation time step, total number of
vehicles running on the network is same for the same demand data. So, for each of path
of Table 7.5 two vehicles that entered into the network approximately at the same traffic
volume level and travel between same origin-destination pair are selected for path
comparisons. The unguided vehicle select the travel path based on link travel time only
and the guided vehicle select the travel path based on link travel time and intersection
turning delays. The travel path between the guided and unguided vehicle for each of
origin-destination pair of Table 7.5 is compared through predicted and actual trip time.
For each vehicle, predicted travel path is calculated during the entrance of the vehicle in
the network. The path denotes the shortest travel path to reach the destination based on
network traffic condition for that time period. Predicted trip time is the time required to

travel on that particular path. Actual travel path is the path that vehicle follows to reach
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the destination and actual trip time is time difference of vehicle’s trip finish time and trip
start time. For unguided vehicle, the predicted and actual travel path is always same as
the vehicle does not have the route guidance system to check en-route network traffic
information. But actual travel path of the guided vehicle varies considerably from the
predicted travel path as the guided vehicle is simulated with the capability to Chgck the
en-route network traffic condition. The path comparisons for guided and unguided
vehicle are given as follows:

Travel Path P1:

The trip information for guided and unguided vehicle is given in Tables 7.6 and 7.7.

Table 7.6: Trip Information of Unguided Vehicle for Path P1

Link No. Predicted Travel Path ‘ Actual Travel Path .
From Node | To Node " | Distance(m) | From Node| To Node | Distance(m)
1 10 9 920 10 9 92()
2 9 8 1100 9 8 1100
3 8 7 2300 8 7 2300
4 7 12 270 7 12 270
5 12 11 760 12 11 760
6 11 16 1400 11 16 1400
7 16 21 550 16 21 550
Total - - 7300 - - 7300
Predicted Trip Time(min) Actual Trip Time(min)
10.18 17.08
Trip Time Difference(minutes)
6.9
Speed(knvh) 43.03 | 25.64
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Table 7.7: Trip Information of Guided Vehicle for Path P

Link No. Predicted Travel Path ‘ o Acu_xa]'Travel Path
From Node{ To Node | Distance(m) | From Node | - To Node | Distance(m)
] 10 9 920 10 9 920
2 9 8 1100 9 14 580
3 8 7 2300 14 19 550
4 7 6 720 19 24 790
5 6 11 240 24 23 1100
6 ] 16 1400 23 22 1350
7 16 21 550 22 2] 1740
Total - - 7230 - - 7030
Predicted Trip Time(min) Actual Trip Time(min)
14.21 15.18
Trip Time Difference(minutes)
0.97
Speed(knvh) 30.53 | 27.79

As shown in Table 7.6, though the predicted path and actual traveled path for the
unguided vehicle is same, there is a considerable difference between the predicted and
actual trip time as the predicted trip time does not include the intersection delays which is
a major part of total trip time. The traveled path contains two left turns, one from Van
Horne to Cote-des-Neiges and other one from Cote-Ste-Catherine to Decarie and one
right turn from Cote-des-Neiges to Cote-Ste-Catherine. On the other hand, the guided
“vehicle follows a completely different path with one left turn from Van Horne to Rue
¢’lberville and one right turn from Rue d’lberville to Notre-Dame. The interesting point
to be noted for the guided vehicle is that it changes the travel path from the initial
predicted path using en-route traffic and intersection turning delay information. Also the
predicted trip time is much higher than the unguided vehicle because the guided vehicle
always incorporates the intersection turning delays into minimum trip time path
calculation. As shown in Table 7.7 the initial path for the guided vehicle contains only
one left turn from Van Horne to Decarie but it follows a different path to minimize the

trip time and that is why the actual trip time does not vary too much from the predicted
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trip time and is also less than the actual trip time of the unguided vehicle. The individual
link distance of cach path shown in Table 7.6 and Table 7.7 are taken from the measured
link distance of Montréal city road network as given in Figure 7.1. The total path distance
is the sum of the individual link distances of the path. From Table 7.7, the guided vchicle
travels 7230 m and 7030 m on its predicted path and actual path respectively. The
average travel speed of the vehicle is calculated from travel path distance and the
required trip time to reach the destination. Average travel speed of the guided vehicle on
its actual travel path is calculated as follows:

Total distance on actual travel path =7030 m = 7.03 km

Actual trip time required = 15.18 minutes =0.252 h

7.03
So, average travel speed =
0.252

R4

=27.79 km/h

This number is shown in Table 7.7. All other speed values are calculated by following the
same procedure. The difference between actual and predicted trip time of the guided
vehicle is calculated as follows:

Actual trip time required = 15.18 minutes

Predicted trip time required = 14.21 minutes

So, the difference between the trip time = 15.18 -14.21 = 0.97 minute = 58.2 seconds.
The number is also shown in Table 7.7. The trip time difference of unguided vehicle is

also calculated following the same procedure as shown in Table 7.6.

101



Travel Path P2:
The trip information for guided and unguided vehicle is given in Tables 7.8 and 7.9.

Table 7.8: Trip Information of Unguided Vehicle for Path P2

" Link No. Predicted Travel Path . = .|« 00 0 7 Actual Travel Path
From Node | To Node - | Distance(in) | From Node| To Node | Distance(m)
1 16 17 1600 16 17 1600
2 17 18 1300 17 18 1300
3 18 13 550 18 13 550
4 13 8 580 13 8 580
5 8 9 1100 8 9 1100
6 9 10 920 9 10 920)
7 10 ) 760 10 5 76()
Total - - 6810 - - 6810
Predicted Trip Time(min) Actual Trip Time(min)
8.17 16
Trip Time Difference(minutes)
7.83
Speed(knvh) 50.01 | 25.54

Table 7.9: Trip Information of Guided Vehicle for Path P2

" Link No. L - Predicted Travel'Eath_" ﬂ, o B “Aclual Travel Path
L - | From Node {: To Node | Distance(m).| From Node ] - To Node . | Distance(m)
| 16 17 1600 16 17 1600
2 17 18 1300 17 12 1980
3 18 19 1100 12 7 270
4 19 20 1080 7 2 440
5 20) 15 370 2 3 2200
6 15 10 480 3 4 98()
7 10 5 760 4 5 880
Total - - 6690 - - 8350
Predicted Trip Time(imin) Actual Trip Time(min)
14.51 14.95
Trip Time Difference(minutes)
0.44
Speed(knvh) 27.66 [ 33.51

As shown in Table 7.8 unguided vehicle follows the path with two left turn, one from
Rue Sherbrooke to St-Denis and other one from Av. Van Horne to Boul. Pie-1X. The
actual time required to finish the trip is much higher than the predicted trip time. From
Table 7.9, the guided vehicle changes the predicted path which consists only of a single

left turn between Rue Sherbrooke and Boul. Pie-1X to a path that consists of one left turn
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from Rue Sherbrooke to Ch. Cote-des-Neige and one right turn from Ch. Cote-des-Neige
to Rue Jean-Talon. The difference between the predicted and actual trip time for the
guided vehicle is much less and actual trip time is less than the unguided vehicle. The
total path distance in km, average travel speed in km/h and difference between actual and
predicted trip time in minutes of the vehicle are as shown in Tables 7.8 and 7.9. They arc
calculated following the same procedure as discussed earlier for path P1.

Travel Path P3:

The trip information for guided and unguided vehicle is given in Tables 7.10 and 7.11.

Table 7.10: Trip Information of Unguided Vehicle for Path P3

Link No. | ‘ »Prcdicted Travel Path ~ ..+ Actuoal Travel Path
From Node | To Node | Distance(in) | From Node| To Node | Distance(m)
1 22 17 710 22 17 710
2 17 18 1300 17 18 1300
3 18 13 550 18 13 550
4 13 14 1000 13 14 1000
5 14 9 580 14 9 580
6 9 10 920 9 10) 920)
7 10 5 760 10 5 760
Total - - 5820 - - 5820
Predicted Trip Time(iin) Actual Trip Time(min)
8.67 16.01
Trip Time Difference(minutes)
7.34
Speed(knvh) 40.28 [ 21.81
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Table 7.11: Trip Information of Guided Vehicle for Path P3

Link No. Predicted Travel Path: _ Actual Travel Path
» - | From Node | To Node * | Distance(m) | From Node | To Node | Distance(m)
1 22 17 710 22 17 710
2 17 12 1980 17 18 1300
3 12 7 270 18 13 550
4 7 2 440 13 8 580)
5 2 3 2200 8 3 730)
6 3 4 980 3 4 980
7 4 5 880 4 5 880
Total - - 7460 - - 5730
Predicted Trip Time(min) Actual Trip Time(min)
13.6 14.19
Trip Time Dillerence(minutes)
0.59
Speed(knvh) 32.91 | 24.23

As shown in Table 7.10 unguided vehicle follows the path with two right turn one
between Ch. Cote-des-Neige and Rue Sherbrooke and other one between Rue d’lberville
and Av. Van Horne and two left turn one between Rue Sherbrooke and St-Denis and
other one between Av. Van Horne to Boul. Pie-IX. The actual time required to finish the
trip is much higher than the predicted trip time that is similar to path P1 and P2 discussed
carlier. From Table 7.11, the guided vehicle changes the initial path that consists only of
a single right turn between Ch. Cote-des-Neige and Rue Jean-Talon to a path that consists
of one left turn between Rue Sherbrooke and St-Denis and one right turn between St-
Denis and Rue Jean-Talon. The required trip time is much less than the actual trip time of
the unguided vehicle. The total path distance in km, average travel speed in kn/h and
difference between actual and predicted trip time in minutes of the vehicle are as shown

in Tables 7.10 and 7.11. They are calculated following the same procedure as discussed

carlier for path P1 and path P2.
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7.4. Discussion

From the simulation results of Montréal road network, it is found that guided vehicles
following the travel path using the new algorithm always require less trip time to reach
the destination. This reduction in trip time is substantial for a longer trip distance when
vehicles need to cross the intersection more frequently. Intersection turning delay varies
according to the intersection approach volume and the signal timing cycles. Usually left
turning delay is more than the straight and right turning delay. So, the travel path with
more left turns requires more time to reach the destination compared to the travel path
with more right turns. The new path search algorithm considers the intersection delay
along with link travel time while determining the minimum trip time path which is a
significant improvement over traditional shortest path algorithm based on travel time on
links only. This is very much evident from the three sample paths from Montréal road
network where guided vehicles always choose the path with less number of left turns and
change their path during the travel period to minimize the trip time if nceded. The
application of new path search algorithm will be significant if peak hour traffic flow is
taken into consideration when the turning delay is much higher due to the residual queue
at intersection.

The predicted trip time as defined earlier is based on the travel time and travel speed on
the links at the start of the trip. As the trip progresses, the travel time and travel speed on
the links vary. So, when the vehicle reaches at destination, the total time on the shortest
path is the actual time. The simulation results show that the actuai trip times for the
guided vehicle are reasonably close to the predicted trip times. The difference between

the actual and predicted trip time is less than I minute for the guided vehicle whereas the



difference for unguided vehicle is about to 6 to 8 minutes as shown in Tables 7.6 to 7.11.
The small difference between actual and predicted trip time of the guided vehicle
demonstrates the capability of new algorithm in better trip planning. The actual travel
speed for both of the guided and unguided vehicle varies between 20 to 34 km/h as
shown in Table 7.6 to Table 7.11 which correspond to the normally expected speeds on
urban city road network. As shown in Table 7.9, total distance of the predicted travel path
for the guided vehicle is 6690 m whereas the actual distance the vehicle travels on the
minimum trip time path is 8350 m. So, minimum trip time path of the guided vehicle is
not always the minimum travel distance path. This is because the minimum trip time path

is calculated based on traffic volumes on the road links and intersection turning delays.
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CHAPTER 8

CONCLUSIONS
8.1. Introduction
This chapter summarizes the major conclusions developed in this thesis, application to
ITS and directions of future research in this area.
8.2. Conclusions
The major conclusions of the thesis are as follows:
I. An algorithm to consider both the link travel time and intersection turning delays has
been developed to find minimum trip time path between an origin destination pair. The
new dynamic shortest path algorithm addresses the algorithm run time issue by
combining the heuristic search with bi-directional search that reduce the node search
effort and also multi-objective nature of transportation network by considering the
intersection turning delays along the link travel time. A macroscopic traffic simulator has
been developed to simulate the vehicles that use the new algorithm for route sclection.
The simulator is based on the cell transmission model that follows a set of state-space
equations and is consistent with the fundamental traffic flow theory.
2. The trip time savings for a guided vehicle is more for longer trip distance as the
guided vehicle that follows the new algorithm to calculate the minimum time path need to
cross more number of intersections to reach the destination. Presence of guided vehicles
also influences the unguided vehicle of the network by reducing the trip time as the
overall network traffic flow increases. The trip time savings increases at a higher rate for
a smaller percentage of guided vehicles because most of the vehicles use the travel path

without considering en-route traffic information.
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3. Application of the traffic simulation model to Montréal city road network
demonstrates the capability of the new algorithm to select the shortest path between an
origin-destination pair with minimum interscction turning delays. The simulation results
show that the actual trip times for the guided vehicle are reasonably close to the predicted
trip time and the difference between the actual and predicted trip is less than | minute.
The small difference between actual and predicted trip time of the guided vehicle
demonstrates the capability of new algorithm in better trip planning. The actual travel
speed for both of the guided and unguided vehicle varies between 20 to 34 km/h as
shown in Table 7.6 to Table 7.11 in Chapter 7. These travel speed values correspond to
normally expected speed on Montréal road. Another interesting finding is to be noted that
minimum trip time path of the guided vehicle is not always the minimum travel distance
path as shown in the trip information table in Chapter 7. This is because the minimum
trip time path is calculated based on traffic volumes on the road links and intersection
turning delays.

8.3. Application to Intelligent Transportation System (ITS)

Conventional traffic assignment models arc useful as a planning tool but they are not
directly applicable in modeling individual routing decision made with the aid of in-
vehicle route guidance system. So, the path search algorithm developed in this study has
an application in today’s dynamic transportation system. Network equipped with on road
traffic sensors and GPS tracking for the vehicle position coordinates can supply the real
time traffic data to the in-vehicle route guidance system. This Bi-objective Bidirectional
Heuristic path search algorithm will generate the dynamic optimum route for the driver

for a chosen origin-destination pair. With the minor modifications the algorithm can be
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implemented as a part of a centralized traffic management system where based on the
network traffic condition Traffic Management Center (TMC) would be able to predict the
minimum trip time path between all origin-destination nodes for all departure times. So,
the proposed algorithm can assist drivers in better trip planning, decision-making on
departure time, route selection and congestion avoidance.

8.4. Future Research

While the runtime of this algorithm was not the primary concern no tests were performed
for complexity analysis. But for a dynamic route guidance system all path finding
algorithms need to be very fast so, the algorithm needs to be tested on a larger network to
measure the computational efficiency. In this thesis the algorithm is proposed only to
calculate the one-to-one shortest path for a single departure time. But the algorithm needs
to be implemented to calculate one-to-all shortest paths for all departure times.
Microscopic traffic characteristics need to be considered into the traffic simulation model
to analyze the route guidance efficiency of guided vehicles in case extreme traffic

conditions like incidents, queue at intersection, spillback etc.
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APPENDIX A

Network Generation Data File

General Remarks

The following data files from Table A.l to Table A.4 are used to build the network
topology for both of the hypothetical network and selected Montreal city road Network.
During the loading phase of the simulation run, these data files are used to generate the
connectivity between the Link and the Cell object using network coding approach
discussed in chapter 4. In Table A.1,” Out Degree” refers to the total number of outgoing
links from the corresponding Node object. In Table A.2, “In Degree” refers to total

number of incoming links to the corresponding Node object. Table A.3 and Table A.4 are

discussed in chapter 4.

Table A.1. Node Outgoing Link Data file

Node North East South West Out Degree
1 Null 2 0 Null 2
2 Null 3 7 Null 2
3 Null 4 8 Null 2
4 Null 5 9 Nuli 2
5 Null Null Null Null 0
6 Null 7 11 Null 2
7 2 8 12 6 4
8 3 9 13 7 4
9 4 10 14 8 4
10 5 Null Null 9 2
11 Null 12 16 Null 2
12 7 13 17 11 4
13 8 14 18 12 4
14 9 15 19 13 4
15 10 Null Null 14 2
16 Null 17 21 Null 2
17 12 18 22 16 34
18 13 19 23 17 4
19 14 20 24 18 4
20 i5 Null Null 19 2
21 Null Null Null Null \]
22 17 Null Null 21 2
23 18 Nutl Null 22 2
24 19 Null Null 23 2
25 20 Null Null 24 2



Table A.2. Node Incoming Link Data file

North
Null
Null
Null
Null
Null

Null

11
12
13
14
Null
16
17
18
19
Null

15
Null
17
18
19
20

Null
22
23
24
25

Null

South
Null

15
Null
17
18
19
20
Null

Z oot
=AY S ST N

Null
Null
Null
Null

West
Null

Null
16
17
18
19

Null

Nuli

Null

Nul}

Null

In Degree
0

15 20 SO 6 I N6 T 6 RS SA SUNE SN 1% I (S TR SUp SUp Supy 56 T (N IR Supi SO S S S S S

—
=



Table A.3. Link-Link Connectivity Data File

Link Head Tuil Left Turm Straight Right Trun
1 1 2 Null 3 4
2 | 6 9 10 Null
3 ] 3 Null 5 0
4 2 7 12 13 14
5 3 4 Null 7 8
6 3 8 16 17 18
7 4 S Null Null Nutl
] 4 9 20 21 2
9 [ 7 1 12 13
10 ¢ 11 25 26 Null
" 7 2 Null Null 3
12 7 8 15 HYY 17
13 7 12 28 29 30
14 7 o 10 Null Null
15 8 3 Null Null N
16 8 9 19 20 21
17 8 13 32 33 34
18 8 7 13 14 I
19 9 4 Null Null 7
20 9 10 23 Null Null
21 9 14 36 a7 38
22 9 8 17 18 15
23 10 5 Null Null Null
24 10 9 21 22 19
25 I 12 27 28 29
26 B 16 41 42 Null
27 12 7 14 nl 12
28 12 13 31 32 33
29 12 17 44 45 16
30 12 1l 26 Null Null
K| 13 8 18 15 16
32 13 14 a5 30 37
33 13 18 48 49 50
34 13 12 29 30 27
35 14 9 22 19 20
36 14 15 39 Null Null
37 14 19 52 53 54
38 14 13 RX] kS 31
39 s 10 24 23 Null
40 15 14 37 RIS 35
41 16 17 43 44 45
42 16 21 Null Null Nuli
43 17 12 30 27 28

44 17 18 47 48 49
45 17 22 Null Null 58
46 17 16 42 Null Null
47 18 13 34 31 32
48 18 19 51 52 53
49 18 23 Null Null 60
50 18 17 45 46 43
sl 19 14 38 35 36
52 19 20 55 Null Null
53 19 24 Null Null 62
54 19 {8 49 50 47
55 20 1S 40 39 Null
56 20 19 53 54 51
57 22 17 40 43 44
58 2 21 Null Null Null
59 23 18 50 47 48
o0 23 22 Null 58 57
ol 24 19 54 51 52
62 24 23 Null 60 59
03 25 20 50 55 Null
04 25 24 Nuli 62 ol



Table A.4. Link-Node Connectivity Data File

Link Head Tail Left Tumn Straight Turn Right Trun
1 1 2 Null 3 7
2 1 6 7 11 Null
3 2 3 Nuil 4 8
4 2 7 8 12 )
5 3 4 Nuli 5 9
6 3 8 9 13 7
7 4 5 Null Null Null
b3 4 9 10 14 8
9 6 7 2 8 12
10 0 1 12 16 0
1l 7 2 Null Null 3
12 7 8 3 9 13
13 7 12 13 17 11
14 7 6 I Null Null
15 8 3 Nuli Null 4
16 8 9 4 10 14
17 8 13 14 18 12
18 8 7 12 6 2
19 9 4 Nul} Null 5
20 9 10 5 Null Null
21 9 14 15 19 13
22 9 8 13 7 3
23 10 5 Null Null Null
24 10 9 14 8 4
25 11 12 7 13 17
26 B} 16 17 21 Null
27 12 7 6 2 8
28 12 13 8 14 18
29 12 17 18 22 16
30 12 11 16 Nuil Null
31 13 8 7 3 9
32 13 14 9 15 19
33 13 18 19 23 17
RE 13 12 17 11 7
3s 14 9 8 4 10
36 14 15 10 Null Null
37 14 19 20 24 18
38 14 13 18 12 8
39 15 10 9 5 Nul}
40 15 14 19 13 9
41 16 17 12 18 22
42 16 21 Null Null Null
43 17 12 11 7 13
44 17 18 13 19 23
45 17 22 Null Nul} 21
46 17 16 2] Null Null
47 18 13 12 8 14
48 18 19 14 20 24
49 18 23 Null Null 22
50 18 17 22 16 12
51 19 14 13 9 15
52 19 20 15 Null Null
53 19 24 Null Null 23
54 19 18 23 17 13
55 20 15 14 10 Null
56 20 19 p2) 18 14
57 22 17 16 12 18
58 2 21 Null Null Null
59 23 18 17 13 19
60 23 22 Null 21 17
o1 24 19 18 14 20
62 24 23 Nuli 2 18
63 25 20 19 15 Null

64 25 24 Null 23 19



APPENDIX B

PrintOut of the Program Code

General Remarks

The computer programs for the traffic simulator developed in this thesis are implemented
in JAVA™ Al the programs are written and compiled against Sun® Microsystem’s J2SE
version 1.4 java libraries using Borland® JBuilder® 2005. Java package “roadsim’ for
the simulator contains total 21 java source files. The total number lines of the program in
all 21 java source files are 7,293. So, it is not possible to show the complete program.
Only the objects that are defined to develop the traffic simulator as discussed in chapter 5
are selected to show the sample program. The value shown in the bracket associated with
cach java source file in the following sections represents total number of lines in the

corresponding file. But only selected program lines are shown.
B.1: Program Code for Cell.java File (Total 167 lines)

package roadsim;
import java.util.*;

public class Cell extends Vector{
Link belongs_to;
RoadCanvas network;
int ID,link_id;
double Length;
double density; // stores the density of this Cell
double right_density,left_density,straight_density;
double speed; // stores average speed of this Cell
double running_Spd_min;
double ST_speed, LT_speed, RT_speed;// stores average ST,LT,RT speed of this Cell
double right_L_speed,left_L_speed;
double travel_time; / stores Cell travel time depending on the speed
double last_pos; // stores the last vehicle position in the cell
double T; // available movement time " applicable for head cell only"
int type; // Define Cell type: "0"=Link exit cell/first Cell,
/1" 1"=Transfer Cell; "2"= Link entry Cell



Cell next_Cell; // next Cell in the Link towards the traffic direction

Cell next_LT,next_RT; // next Cell in the Left or Right Link for the Head Cell
boolean next = false; // decides if the current Cell is the end of the Network path
boolean prev = false; // decides if the current Cell the beginning of the Network path
boolean Left_outflow_chk,Right_outflow_chk;

Cell prev_Cell; // previous Cell in the Link toward the reverse direction

Cell prev_LT,prev_RT;// previous Left and Right Cell for incoming flow

boolean LT_check = false; // check if the LT outflow is already determined

boolean RT_check = false; // check if the RT outflow is already determined

Cell parent_Cell;

Cell Right_T;

Cell Left_T;

Cell Straight_T;

double max_intlow,min_outflow; /* calculate the number of inflow or outflow vehicle
within simulation time step for the current Cell*/

int pos_out_critical,pos_It_out_critical,pos_rt_out_critical; /* determine the

no of vehicle that can satisfy the cell position criteria that is (cell.length
-2>pos>v_Length)*/

int diff_out_flow; /* diff in min out flow param from capacity and position analysis*/
double max_LT_in, max_RT_in; // max no of vehicle can take the entry from left

// and right direction

double flow; // tlow from the current properties in veh/h for cell type 1/2

double ST_flow, LT_flow, RT_flow; // flow from the current properties in veh/h

double It_max_inflow,It_min_outflow,rti_max_inflow,rt_min_outf{low; /* the number of
inflow or outflow vehicle
within simulation time step for the head current Cell to the left and right link*/

double veh_entry; // no of st veh entry from previous Cell
double lt_veh_entry,rt_veh_entry; // no of It/rt veh eniry from previous Cell

int LT_count,ST_count,RT_count; // stores total no of Left,Straight and Right
// vehicle into the Cell

Vector OUT; // temporarily stores the outgoing Vehicle
Vector LT_OUT, RT_OUT; // temporarily stores the LT & RT outgoing Vehicle

// variable for min_out_flow//

i

int veh_no_crossing; /* no of vehicles crossing the Cell in sampling period T
using the avg Cell speed. will be effective in the next time step.*/

int veh_no_LT_crossing,veh_no_RT_crossing,veh_no_ST_crossing; /* no of
/lvehicles going out to Left,Right n Straight direction from the current Cell*/



int max_veh; // maximum no of vehicles can be in the Cell

int max_possible_veh; // maximum no of possible vehicle depending on the no of
// vehicles that already in the cell

int max_veh_entrance; // max no of vehicles can cross the current Cell using

/I Cell avg speed

double flow_balance; // stores the fraction veh part to add it with the later
// time step "flow_balance" to make vehicle flow according to Cell capacity
/I (only straight dir)

double inflow_balance; // stors the fraction veh part to add it with the later
// time step "inflow_balance" to make vehicle inflow in a whole number

// constructor

double It_flow_bal,rt_flow_bal;// stores the fraction veh part to add it with
// the later time step 1t/rt "flow_bal" to make vehicle flow according to Cell
/1 capacity(only left and right dir)

double It_inflow_bal,rt_inflow_bal;/ stores the fraction veh part to add it with
// the later time step It/rt "inflow_bal" to make vehicle flow according to Cell
// capacity(only left and right dir)
public Cell(Link to_whom,int id,double length) {
belongs_to = to_whom;
ID=1id;
Length = length;
link_id = belongs_to.ID;
network = belongs_to.network;
OUT = new Vector();
LT_OUT = new Vector();
RT_OUT = new Vector();
}
public double Min(int cell_veh,double max_in,double max_next_in,int max_next,
int max_crossing)({
double[] sort_flow = new double[5];
double temp;
sort_flow[0] = (double)cell_veh;
sort_flow[1] = max_in;
sort_flow[2] = max_next_in;
sort_flow[3] = (double)max_next;
sort_{low[4] = (double)max_crossing;
for(int i=0;i<sort_{low.length;i++){
/ISystem.out.printin(sort_flow[i]+"\t");
}
for(int i=0;i<sort_flow.length;i++){
for(int j=0;j<sort_{low.length-i-1;j++){
if(sort_{low[j]>sort_{low[j+1]){



temp = sort_flow[j];
sort_flow[j] = sort_flow[j+1];
sort_flow[j+1] = temp;
}
}
}
//System.out.printIn("sorted value......"+"\r\n");
for(int i=0;i<sort_flow.length;i++){
/ISystem.out.print(sort_flow[i]+"\t");
}
return sort_flow[0];

)

C.2: Program Code for Link.java File (Total 217 lines)

package roadsim;

import java.awt.*;

import java.util.*;

public class Link extends Vector implements Constants
st e et ek st e st e et feofe ok

*rEEGeneral variabledts

sk sfesfe et fe kel ke s o ook sk e

Intersection head = null;

Intersection tail = null;

//Car vehicle;

RoadCanvas network;

boolean headLight;

boolean ActiveLight; // to determine the signal is started or not

/1 start and finish time for green and red signal

long green_Start_Time,green_End_Time,red_End_Time,red_Start_Time;
double next_timestp_greentime,next_timestp_redtime,next_timestp_move_time;
// remaining green, red and init lag time for the link

long Rem_Green_period,Rem_Red_period,Rem_init_lag;

int Green_time_stp_counter, Red_time_stp_counter;

// signal color

Color Signalcolor;

Vector vehiclequeue; // for waiting vehicle to get into the network

Vector generatedqueue; // for generating vehicle to get into the vehiclequeue
/:f::l::{::[: sfeofe oo sfe oo oo oo ofe ofe oo ofe ofe ofe sfe sfe sfe e she oo e ofe she e ohe ode oo she sfe e ofe e she o

se oo she e ofe ot ofe ofe sfe o s ofe e ofe e ofe e she she e sfe sfe ofe oo ohe oo ofe she sfesfe s e sfe oo shese e /
int ID; // unique id for each link

Link ST;

int Straight; // straight link id

Link LT;



int Left; // left link id

Link RT;

int Right; // right link id

double Length; // length of the link in meter

int cell_no;

Cell currennt_cell; // always stores task performing current cell
Intersection ST_N,LT_N,RT_N:

A ke kst ofe o s shese sl sl e e st etk stk sl sfeote ket o

String Name; // Name of the link

Vector Link_Vchicles; // stores all the vehicles on the link

/fint link_car_total; // total number of vehicles in the link

int leading_veh_cell_id; // stores the Cell ID of the leading Car in the link
int available_from,; // stores the cell ID after which random vehicle can be
// inserted for the particular link

boolean availability; // checks if random vehicle insertion is possible

int no_of_lane; // no of lane in the Link

double density; // traffic density veh/km

double j_density; // jam density for this Link veh/km

double Capacity; // Link capacity veh/h

double FFS; // free flow speed of the Link

double TTime; // Link travel time cumulative of all the Cell travel time
double last_veh_pos; // stores the position of the last vehicle in the link
double L'T_Delay,ST_Delay,RT_Delay; // turning delay of the link

/ sfesheode she ofe ofe ofe spe e she ofe e ofe sfe e de oo oo oo she she e she ofe ofe ofe e sfe e ofe s s sdeshe she g e
BRI fe sfe she ofeshesfeohesfeofe
sfe oo sfe ofe ofe ofe sfe sfe sfe ok fe e o shesfesfe sheshe she st s sfeshesgege :l:/

int no_of_veh_passed;

//boolean green_Active;

// constructors

public Link(int id, int left_id, int straight_id, int right_id) {

ID =id;
Straight = straight_id;
Left = left_id;
Right = right_id;

}

public Link(int id){
ID =id;

}

public Link(int id, Intersection T, Intersection H, double len){
ID = id;
head = H;



tail =T,
Length = len;
no_of_lane = 2;
Link_Vehicles = new Vector();
}
public void Cell_arrange(Link currnt_link,double lenzth){
int no;
double CELL_L =Math.round ((currnt_link.FFS*[000*currnt_link.network.T)/3600);
double remainder = length%CELL_L;
if(remainder>0){
no = (int)((length-remainder)/CELL_L);
Jelse{
no = (int)(length/CELL_L);
}
this.cell_no = no; // stores the number of cells for the current Link
for(int i=0;i<no;i++){
if(i == 0){
// for the first cell the length might be higher than the regular Cell
// length
this.addCell(new Cell(this,i+!,CELL_L+remainder));
currennt_cell = (Cell) this.elementAt(i);
/[System.out.printIn("Link: "+currnt_link.ID+" cell: "+currennt_cell.ID+
/" len: "+currennt_cell.Length);
Jelse{
this.addCell(new Cell(this,i+!,CELL_L));
currennt_cell = (Cell) this.element At(i);
/ISystem.out.printIn("Link: "+currnt_link.ID+" cell: "+currennt_cell.ID+
/" len: "+currennt_cell.Length);
}
}

C.3: Program Code for Intersection.java File (Total 80 lines)

package roadsim;
import java.awt.*;
import java.util.*;

public class Intersection implements Constants,Comparable{
int ID; // unique id for each intersection
/1 location coordinate of the intersection
Point loc = new Point();
int outnum,innum; // number of incoming and outgoing link from the node
int mir_outnum, mir_innum; // miiror of the previous variables to be used in
// the algorithm
int k_path_innum,k_path_outnum,k_path_inmum_dummy,k_path_outnum_du mmy;
int[] outgoing; // stores outgoing node
int[] incoming; // stores incoming node



int[] outgoing_K_path; // stores outgoing node info for K_path iteration
int[] incoming_K_path; // stores incoming node info for K_path iteration
int[] outgoing_k_path_dummy;
int[] incoming_k_path_dummy;
// stores surrounding intersections in a clockwise fashion starting from North
Intersection North,East,South,West;
// stores outgoing Links in a clockwise fashion starting from North
Link North_O,East_O,South_O,West_O;
//Link North_L,East_L,South_L,West_L;
/lstores incoming Links in a clockwise fashion starting from North
Link North_I,East_I,South_I,West_I;
//Link North_B,East_B,South_B,West_B;
int type; // 1 = enrty node, 2 = entry and exit node, 3 = cxit node, 4 = transfer node
RoadCanvas network;
TrafficLight light;
int Signalcount; // no of times signal changes
int CycleCount; // no of times signal runs
Color NorthSouth,EastWest;
long init_lag; // initial lag time for signal starting time
long Green_phase = 35;
long Red_phase = 25;
long LightPeriod;
long period; // traffic generator interval period
Vector VehicleQueue; // for waiting vehicle to get into the network
Map Reached_destination;
public Intersection(int id) {
ID =id;
outgoing = new int{[NIGHB_SIZE];
outgoing_K_path = new intfNIGHB_SIZE];
outgoing_k_path_dummy = new int[NIGHB_SIZE];
incoming = new int[NIGHB_SIZE];
incoming_K_path = new int[NIGHB_SIZE];
incoming_k_path_dummy = new int{NIGHB_SIZE];
for(int i = 0;i<NIGHB_SIZE;i++){
outgoing[i] = 0;
outnum = 0;
incoming[i] = 0;
innum = 0;
}
light = new TrafficLight(this, 1);
Reached_destination = new HashMap();
}
/* Compare two cities by name. */
public int compareTo(Object n){
return compareTo((Intersection) n);

!



public int compareTo(Intersection c){
return this.ID - ¢.ID;
J
}
C 4: Program Code for Car.java File (Total 228 lines)
package roadsim;

import java.util.*;
import java.lang.*;

P

RoadCanvas network;
MacroModel model;
RouteEngine PathDoctor;
Random ran = new Random();
double ran_dir;

Y

int ID; // unique car id

Link belongs_to; // denotes passing Link

Cell Running_cell; // current running Cell

Cell next_Cell; // next cell on the current Link

int Running_Cell_ID; // current running Cell id

int Cell_order; // stores the position in the Cell

Link last; // denotes passed link

Link next; // denotes the next link that vehicle will take the entry
Intersection leaving_{rom, going_towards, Origin, Destination;

boolean link_end = false; // check if the car reaches at the end of the link

Intersection next_intersection;

boolean reach_intersection; /* event trigger variable for each vehicle when

thet reach the intersection®/

double new_pos,dummy_new_pos; /* relative position of the car in the link measured
from

the tail coordinate of that particular link for the next time step.*/

double old_pos; /* relative position of the car in the link measured from

the tail coordinate of that particular link for the current time step.*/

double last_stp_pos; /* the position of the car at the end the of last time

step*/

double Rem_Celldist_cross_time; // time taken by the vehicle to cross the

// remaining distance



double Rem_cross_time_ana; // will be used turning calculation

double Next_Cell_balance_time; // remaining time from the Sampling period that
/I will determine the vehicle position in the next Cell

boolean dir_decision = false; // checks if the direction is already decided

String Turning;

fWriter info_file;

[Pt e sfe e s sese sk e s ek sk et

double headway;
Car leading_Car; // leading Car of this one
Car following_Car; // following Car of this one
int type; // Define Car type: "1"=Leading, "2"=Following
int category; // "0"=random; "1"=mid-level; "2"=high-level
double trip_start_time; // stores the trip start time for the vehicle
double trip_finish_time; // stores the trip finish time for the vehicle
double dist_traveled; // stores the total distance the vehicle traveled
double trip_Time;
double link_TTime;
double Total_link_time;
/:I: o sfe e ok e sfe oo she ofe e oo sfe e sfeshe sfe sheshe shese s ook
w444 Path variable®##*
she ste sfe oo sfeshe s sfe s sfe ke e sfe sl she sk e e ofesfe e sfeshecke /
Path Init_Path; // initial expected route between origin and destination
Path temp_Route; // keeps track all the temp route checked frm
Path Traveled_path; // traveled path from origin to destination
Path Path_to_follow; // stores the new path calculated from each intersection
// each intersection
Vector Path; // keeps track the travel path
Vector Link_TT; // stroes travel path link crossing time
// constructor
public Car(Link curr_L,Cell cur_cell,int id) {
belongs_to = curr_L;
ID =id;
Traveled_path = new Path();
Traveled_path.addElement(curr_L.tail);
//Path = new Vector();
//Path.addElement(curr_L);
Running_cell = cur_cell;
Running_Cell_ID = cur_cell.ID;
this.network = belongs_to.network;
this.PathDoctor = new RouteEngine(this.network,this);
Link_TT = new Vector();
}
public Car(Intersection origin,Intersection destination,int id){
Origin = origin;



Destination = destination;

ID = id;

Traveled_path = new Path();
Traveled_path.addElement(origin);
Path_to_follow = new Path();

info_file = new fWriter(Integer.toString(
this.ID)+".txt",Vehicle_Path_Heading);
Link_TT = new Vector();

}
C.5: Program Code for TrafficLight.java File (Total 315 lines)

package roadsim;
// import required lib
import java.awt.*;
import java.util.*;
import java.util. Timer;
import java.util.Random.*;
import java.awt.Graphics;
public class TrafficLight implements Constants
int Type; // determine the signal type (moderate/heavy)
int Cycle; // cycle timings
int GREEN,RED,AMBER;
Intersection belongs_to; // intersection to which this is belongs to
Vector Intersections,Links;
Link curr_L;
int North_B,South_B,East_B,West_B; // incoming link direction
// Ex. --North_B>>> towards North direction
boolean active; // activate the light
boolean greenState,redState; // state of the trafficlight for the Link
Timer Light,;
boolean lightColor;
Light_scheduler Light_set;
Random generateColor = new Random();
int ran_num,;
public TrafficLight(Intersection belongs_to_int ,int type) {
belongs_to = belongs_to_int;

Type = type;
if(Type==1)

Cycle = MODERATE;
else

Cycle = HEAVY;
Light = new Timer();
Light_set = new Light_scheduler();
}
public void initializeLight(){
ran_num = gencrateColor.nextInt(10)%2;



if(ran_num==0){
lightColor = true;
Jelsef
lightColor = false;
}
/[System.out.printIn(ran_num);
if(lightColor){
belongs_to.NorthSouth = Color.green;
if(belongs_to.North_I != null){
belongs_to.North_I.Signalcolor = belongs_to.NorthSouth;
belongs_to.North_IheadLight = truc;
belongs_to.North_IL ActiveLight = false;
}
if(belongs_to.South_I != null){
belongs_to.South_I.Signalcolor = belongs_to.NorthSouth;
belongs_to.South_ILheadLight = true;
belongs_to.South_I.ActiveLight = false;
)
belongs_to.EastWest = Color.red;
if(belongs_to.East_I != null){
belongs_to.East_I.Signalcolor = belongs_to.EastWest;
belongs_to.East_I.headLight = false;
belongs_to.East_I. ActiveLight = false;
}
if(belongs_to.West_I != null){
belongs_to.West_lL.Signalcolor = belongs_to.EastWest;
belongs_to.West_I.headLight = false;
belongs_to.West_I. ActiveLight = false;
}
Jelse
belongs_to.NorthSouth = Color.red;
if(belongs_to.North_I != null){
belongs_to.North_I.Signalcolor = belongs_to.NorthSouth;
belongs_to.North_IheadLight = false;
belongs_to.North_I ActiveLight = false;
}
if(belongs_to.South_I != null){
belongs_to.South_I.Signalcolor = belongs_to.NorthSouth;
belongs_to.South_I.headLight = false;
belongs_to.South_I. ActiveLight = false;
}
belongs_to.EastWest = Color.green;
if(belongs_to.East_I !'= null){
belongs_to.East_I.Signalcolor = belongs_to.EastWest;
belongs_to.East_I.headLight = true;
belongs_to.East_I. ActiveLight = false;



}

if(belongs_to.West_I = null){
belongs_to.West_I.Signalcolor = belongs_to.EastWest;
belongs_to.West_LheadLight = true;
belongs_to.West_lL ActiveLight = false;

}

}
}

C.6: Program Code for TrafficGenerator.java File (Total 212 lines)

package roadsim;
import java.util.*;
public class Traffic_Generator extends Timer implements Constants|
RoadCanvas network;
boolean car_unguided; // chk whether the number of unguided vehicles is
/I inserted already
boolean car_guided; // chk whether the number of guided vehicles is inserted
// already .
Random ran = new Random();
double ran_decide;
long delay;
int no_guided_veh,no_unguided_veh,tno_guided_veh,tno_unguided_vch,counter;
int next_car_type;
int Prod_trip;
Intersection origin,destination;
Traffic_Generator_task generating_task;
Traffic_Generator(Intersection Start, Intersection End, int trips,RoadCanvas child) {
network = child;
Prod_trip = trips;
if(Prod_trip != 0){
delay = 3600/trips;
Jelse{
delay = 0;
}
~ origin = Start;
destination = End;
generating_task = new Traftic_Generator_task(origin,destination,this);
/[System.out.println("Origin: "+origin.ID+" Destination: "+destination.ID+
/I" delay: "+ delay);
}
C.7: Program Code for MacroModel.java File (Total 601 lines)

package roadsim;
import java.util.*;
import java.lang.*;



public class MacroModel implements Constants {
/! define class variable
RoadCanvas belongs_to;
Random rgen = new Random();
int init_car_num,link_id;
int link_cell_total; // stores total number of cells in the link
int link_car_total; // stores current no of cars into the link
Link Running_link; // the link which particular car belongs to
Cell Current_cell;
int car[]{] = new int[200][2];
Car Vehicle;

public MacroModel(RoadCanvas network) {
belongs_to = network;
}
public void generate_init_veh(){
init_car_num = belongs_to.LINKNUM?#*3;
/l changing the car[][] array size according to the init_car_num vasiable

car = (int[][Dresize Array(car,init_car_num);
/ISystem.out.printin("links: "+belongs_to. LINKNUM-+" init: "+init_car_num+" car
"+car.length);
for(int i=0;i<init_car_num;i++){
// col 1 stores car ID, col 2 stores the link ID on which the
// vehicle running in
car[i][0] = i+];
/ISystem.out.printin(i);
link_id = rgen.nextInt(belongs_to.LINKNUM)+1;
car[i][ 1] = link_id;
//System.out.printin("link id: "+car[i][1]);
Running_link = (Link) belongs_to.links.elementAt(link_id-1);
link_cell_total = Running_link.size();
//System.out.printin(Running_link.ID+"st: "+Running_link.Straight);
if(Running_link.Link_Vehicles.size()==0){
Running_link.availability = next_cell(0,link_cell_total,Running_link);
Jelse{
Running_link.availability = next_cell(Running_link.available_from,
link_cell_total,Running_link);
}

//System.out.printIn("link: "+Running_link.ID+" next cell: "+
//Running_link.available_from);
if(Running_link.availability){
Current_cell = (Cell) Running_link.clementAt
(Running_link.available_from);
this.belongs_to.Vehicles.addElement(new Car(Running_link,Current_cell,
this.belongs_to.Vehicles.size()+1));



//System.out.printIn(this.belongs_to.Vehicles.size()+" {sfs"+i);
Current_cell.addCar((Car)this.belongs_to.Vehicles.clementAt(
this.belongs_to.Vehicles.size()-1));
Vehicle = (Car) Current_cell.clementAt(0);
/1 assigning vehicle category
Vehicle.category = 0;
// order in the cell
Vehicle.Cell_order = Current_cell.indexOf(Vehicle);
/1 position in the cell
Vehicle.old_pos = next_pos(Current_cell.Length);
Running_link.Link_Vehicles.addElement(Vehicle);
/[System.out.printin(Running_link.Vehicles.size());
// make Vehicle Linkage for each Link
for(int j=0;j<Running_link.Link_Vehicles.size();j++){
if(j==0){
Vehicle = (Car)Running_link.Link_Vehicles.clementAt(j);
Vehicle.type = [;
Vehicle.leading_Car = null;
if(Running_link.Link_Vehicles.size()>1){
Vehicle.lollowing_Car = (Car)Running_link.Link_Vehicles.element At(j+1);
}
}else if(j==Running_link.Link_Vehicles.size()-1) {
Vehicle = (Car)Running_link.Link_Vehicles.clement At(j);
Vehicle.type = 2;
Vehicle.leading_Car = (Car) Running_link.Link_Vehicles.elementAt(j-1);
Jelse{
Vehicle = (Car)Running_link.Link_Vehicles.elementAt(j);
Vehicle.type = 2;
Vehicle.leading_Car = (Car) Running_link.Link_Vehicles.clementAt(j-1);
Vehicle.following_Car = (Car) Running_link.Link_Vehicles.clementAt(j+1);
}
}

C.8: Program Code for Path.java File (Total 50 lines)

package roadsim;
import java.util.*;
public class Path extends Vector{
/:l: sfe sfeshe she oo ofe ohe oo g ofe oo sfe ofe ofe sde oo sfe ok sfe she e sh oo ofe oo ofe s e ofe
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RoadCanvas Network;
Car belongs_to;
Intersection Origin,Destination;



double travel_time;
double manuver_complexity;
double trip_quality;
ArrayList Bookmark_Info;
int ID;
// constructor
public Path(Intersection origin, Intersection destination) {
Origin = origin;
Destination = destination;
Bookmark_Info = new ArrayList();
}
public Path(){
try {
jbInit();
}
catch (Exception ¢x) {
ex.printStackTrace();

}
)

/* Compare two paths by attributes. */
public int compareTo(Object n){
return compareTo((Path) n);

}

private void jbInit() throws Exception {
}
/*public int compareTo(Path ¢){
return this.ID - c.ID;
e/
}
C.9: Program Code for RoadCanvas.java File (Total 2878 lines)

package roadsim,;

import java.awt.*;

import java.io.*;

import java.util.*;

import java.util. Timer;

import java.util.List;

import java.awt.Graphics;

import java.lang.*;

public class RoadCanvas extends Canvas implements Constants{
Roadframe parent;
/**double buffering® s/
Image offscreen;



Dimension offscreensize;
Graphics offgraphics;

[k re 'd(l -W ]‘i (et ek

fReader readNode; // read intersection coordinate
fReader readLink; // read link coordinate
fReader readFS; // read FS link description
fReader readOut;

fReader readln;

fReader read_OD;

fWriter writeFSL;

fWriter write_Vehicles;

fWriter write_Signals;

fWriter write_pos; // test

fWriter write_veh_path;

fWriter write_OutPut_TTime;

[FEFEREstoring network elements sty

Vector intersections;// = new Vector(); // intersections vector
Vector links;// = new Vector(); // links vector

Vector Vehicles; // holds all the vehicle in the network
Vector Reached_Vehicles;

Vector traffic_generators;

Map File_writers;

Map Origin_Destination;

Map Vehicle_Depot;

/R network drawing variable# st/

boolean new_Net = false;

Intersection curr_n = null; // node for which identifying the surrounding
Intersection neigh_n = null; // surroundings of the curr_n
int curr_n_id,neigh_n_id, direction;

boolean drawlink = false;

boolean linkout = false;

boolean linkin = false;

boolean roadpaint = false;

boolean drawLights = false;

boolean init_Lights;

boolean update_lights = false;

boolean HEADLIGHT, ACTIVELIGHT;

final int T = Sim_Time_Stp; // Sampling Period

int NODENUM,LINKNUM;

int linkcounter = 0;

int TOTAL_VEHICLE;

Link curr_] = null;



MacroModel model;

Car vehicle; // scanning properties for individual Car obj

Cell segment; // scanning properties for individual Cell obj

RouteEngine PathFinder;

RouteEngine_Back Path_back;

Random ran = new Random();

Timer scheduler; // Main timer for the simulatioin

Sim_scheduler schedular_task; // stores simulation TimerTask class

Timer GenerateTraffic; / Main timer for vehicle generation into the network

/MMrafficgenerator traffic_generator_task; // stores the scheduling task class for
/I traffic generation

int[][] OD_Matrix;

int K; // stores simulation time step

long[] Steptimebank; // stores starting time of each time step in millsec
long init_vehicle_start_time; // starting time for all the init_veh
long currenttimebound; // stores the time in millsec of the last time step
long GREEN_Start,RED_start, GREEN_end,RED_end;
private final Comparator Node_ID_Comparator = new Comparator(){
public int compare(Object left, Object right){
Intersection nl = (Intersection)left;
Intersection n2 = (Intersection)right;
int id_Left =nl.ID;
int id_Right = n2.1D;
if (id_Left > id_Right){
return +1;
} else if (id_Left < id_Right){
return -1;
}
else {// equal
//System.out.printIn("comparing..................... ");
return nl.compareTo(n2);
}
}
b ]
/l the Node_Set of peripherial nodes to input vehicle
private final SortedSet North_West_Set;
private final SortedSet South_West_Set;
List O_D_Input_List;
List North_West;
List South_East;
Vector GeneratorLink;

double gap=0; // gap between the vehicles in the cell
Car last_vehicle; // the last vehicle in the cell
double last_pos; // position of the last vehicle in the cell



double temp_pos;

public RoadCanvas(Roadframe child) {
parent = child;
this.setBackground(Color.darkGray);
interscctions = new Vector();
links = new Vector();
Vehicles = new Vector();
Reached_Vehicles = new Vector();
traffic_generators = new Vector();
model = new MacroModel(this);
PathFinder = new RouteEngine(this);
Path_back = new RouteEngine_Back(this);
scheduler = new Timer();
GenerateTraffic = new Timer();
ran = new Randomy();
Steptimebank = new long[T*Total_Time_Stp];
schedular_task = new Sim_scheduler();
North_West = new ArrayList();
North_West_Set = new TreeSet(Node_ID_Comparator);
South_East = new ArrayList();
South_West_Set = new TreeSet(Node_ID_Comparator);
O_D_Input_List = new ArrayList();
read_OD = new {Reader(F_OD_Matrix,this);
GeneratorLink = new Vector();
/[File_writers = new HashMap();
Vehicle_Depot = new HashMap();
Origin_Destination = new HashMap();
writeFSL = new fWriter(FLinkFile,fsfHeading);
write_Vehicles = new [Writer(F_vehicles_output,VehiclesHeading);
write_Signals = new {Writer(F_signal_output,SignalHeading);
write_pos = new fWriter(F_veh_pos,Vehicles_pos_Heading);
write_OutPut_TTime = new (Writer(FOutPut_TTime,OutPut_TTime_Heading);

}
C.10: Program Code for RouteEngine.java File (Total 681 lines)

package roadsim;

import java.util.*;

import java.util.List;

import java.io.*;

[k

public class RouteEngine implements Constants{
RoadCanvas parent;
Car belongs_to;
// the set of settled nodes(CLOSE LIST), the nodes whose shortest distances
// from the source have been found
int K_path; // the shortest path no



Vector Path_bank_time = new Vector(); // all the possible path stored
Vector Path_bank_complexity = new Vector();
Path Travel_path;
private final Set CLOSENodes_F = new HashSet(); // forward dir
private final Set CLOSENodes_B = new HashSet(); // backward dir
private final Set CLOSENodes_com = new HashSet();
private final Vector BFS_Clsoe_F = new Vector();
private final Vector BFS_Clsoe_B = new Vector();
private final Vector BFS_Open_F = new Vector();
private final Vector BFS_Open_B = new Vector();
// best estimate of the shortest time from the source in forward dir
private final Map shortestTimes_F = new HashMap();
/1 best estimate of the least manuver complexity from the source in backward dir
private final Map shortestTimes_B = new HashMap();
private final Map LeastComplexity = new HashMap();
/I @stores the best heuristic shortest time to reach to destination node
// from each node
private final Map heuristic_shortestTimes_F = new HashMap();
/I @stores the best heuristic shortest time to reach to destination node
// from each node
private final Map heuristic_shortest Times_B = new HashMap();
// previous node on the shortest path from the source in forward dir
private final Map predecessors_F = new HashMap();
// previous node on the shortest path from the source in backward dir
private final Map predecessors_B = new HashMap();
// stores the prodecessor of each node on the shortest path from the source
private final Map prodecessors = new HashMap();
/*This comparator orders nodes according to their shortest ttime,
in ascending fashion.*/
private Path RunBidirectional(Intersection origin, Intersection destination){
Path tempPath = new Path();
Path lowest = new Path();
Intersection Node_eva;
/[Algorithm = algorithm; // define the Algorithm type
Path Bidirectional_Path = new Path();
boolean forpass = false;
boolean backpass = false;
Origin_F = origin;
Destination_F = destination;
Origin_B = destination;
Destination_B = origin;
initialize_F(Origin_F,Destination_F);
initialize_B(Origin_B,Destination_B);
Intersection forward = origin;
Intersection backward = destination;
lowest.clear();



out:
while((forward = extractMin_F())!=null){
/ISystem.out.printIn(((Intersection)forward).ID);
markSettled_F(forward);
relaxneighbours_Forward(forward);
if(CLOSENodes_F.contains(forward)&& CLOSENodes_B.contains(forward)){
forpass = true;
break out;
)
//System.out.printin("adding...");
in:
while((backward = extractMin_B())!= null){
//System.out.printIn(((Intersection)backward).ID);
markSecttled_B(backward);
relaxneighbours_Backward(backward);
/ISystem.out.printIn("breaking.......... ")
if(CLOSENodes_B.contains(backward) && CLOSENodes_F.contains(backward)){
backpass = true;
break out;
}
break in;
}
}
if(forpass){
tempPath.clear();
tempPath.travel_time = 0;
tempPath.addAll(getShortestpath_For(forward));
tempPath.travel_time += getShortestTime_F(forward);
tempPath.addAll(getShortestpath_back(forward));
tempPath.remove(forward);
tempPath.travel_time += getShortestTime_B(forward);
// adding initial path to the path bank
lowest = tempPath;
//System.out.printin(lowest.travel_time);
//Bidirectioal _Path_Bank.add(tempPath);
/1 check if there is anyother shortest path
for(Iterator i = CLOSENodes_F.iterator();i.hasNext();){
tempPath = new Path();
Node_eva =(Intersection) i.next();
tempPath.addAll(getShortestpath_For(Node_eva));
tempPath.travel_time += round(getShortestTime_F(Node_eva),2);
tempPath.addAll(getShortestpath_back(Node_eva));
tempPath.remove(Node_eva);,
tempPath.travel _time += round(getShortestTime_B(Node_eva),2);
//System.out.printIn("old: "+lowest.travel_time+" new: "+tempPath.travel_time);
//Bidirectioal _Path_Bank.add(tempPath);



if(round(lowest.travel_time,2)>round(tempPath.travel_time,2)){
lowest = tempPath;
J
}

/%System.out.printin("new travel time_F: "+lowest.travel_time);
for(int i=0;i<lowest.size();i++){
Intersection temp = (Intersection)lowest.clementAt(i);
System.out.printin("node: "+temp.ID);
X
Jelsef
tempPath.clear();
tempPath.travel_time = 0;
tempPath.addAll(getShortestpath_For(backward));
tempPath.travel_time += getShortestTime_F(forward);
tempPath.addAll(getShortestpath_back(forward));
tempPath.remove(forward);
tempPath.travel _time += getShortest Time_B(backward);
// adding initial path to the path bank
lowest = tempPath;
//System.out.printin(lowest.travel_time);
//Bidirectioal_Path_Bank.add(tempPath);
// check if there is anyother shortest path
for(Iterator i = CLOSENodes_B.iterator();i.hasNext();){
tempPath = new Path();
Node_eva =(Intersection) i.next();
tempPath.addAll(getShortestpath_For(Node_eva));
tempPath.travel_time += round(getShortestTime_F(Node_eva),2);
tempPath.addAll(getShortestpath_back(Node_eva));
tempPath.remove(Node_eva);
tempPath.travel_time += round(getShortestTime_B(Node_eva),2);
//Bidirectioal_Path_Bank.add(tempPath);
if(lowest.travel_time>tempPath.travel_time){
lowest = tempPath;
)
}
/*System.out.printin("new travel time_B: "+lowest.travel_time);
for(int i=0;i<lowest.size();i++){
Intersection temp = (Intersection)lowest.eclementAt(i);
System.out.println("node: "+temp.ID);
¥l
}
K_path+=1;
if(K_path == 1){
/1 add all the nodes of the best path for k_shortest path evaluation
//System.out.printin("adding............. ")
Collections.reverse(lowest);



Path_evaluate.add All(lowest);
Collections.reverse(lowest);
}
//System.out.printIn("pinku"+tempPath.travel _time);
/for(int i=0;i<Bidirectional_Path.size();i++){
//System.out.println(((Intersection)Bidirectional_Path.elementAt(i)).ID);
1}
/*for(int i = Osi<parent.intersections.size();i++){
Intersection temp = (Intersection)parent.intersections.elementAt(i);
System.out.printin(temp.ID+" "+ temp.mir_innum);
X
/[Collections.reverse(lowest);
//System.out.printIn("k_path: "+K_path+
return lowest;
}
private Path RunDijkstra(Intersection origin,Intersection destination){
Origin_F = origin,;
Destination_F = destination;
r*¥if(Path_Exists_F(origin,destination)){
System.out.println("Possible............ ")
Jelsef
System.out.println("ImPossible............ ")
X
if(destination.k_path_inmum_dummy != 0){
initialize_F(origin,destination);
// the current node
Intersection i;
while ((i = extractMin_F()) != null){
/l destination reached, stop
lfassert lisSettled(i);
if (1 == destination) {

" on

+ lowest.travel_time);

break;
}
markSettled_F(i);
relaxneighbours_Forward(i);
}
K_path+=1;
return getShortestpath_For(destination);
Jelse{
//System.out.println("returning null...");
return null;

}



APPENDIX C

Full Size Montreal Map Showing Selected Road Network

General Remarks

The Montréal city road network as discussed in Chapter 7 is given in this appendix. The
selected road network and the surrounding area of the network are taken from the full
size Montréal road map. All the arterials selected for the network as given in Table 7.1 in
Chapter 7 are shown on the map. All the numbers shown on the attached map correspond
to the intersection ID in Table 7.1 from the same chapter. Each of the link length between
the selected arterials shown in Figure 7.1 in Chapter 7 is measured from the attached map

using map scale.



NOTE TO USERS

Oversize maps and charts are microfilmed in sections in the
following manner:

LEFT TO RIGHT, TOP TO BOTTOM, WITH SMALL
OVERLAPS

This reproduction is the best copy available.
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