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ABSTRACT

A High Performance Real-time Packet Capturing Architecture for
Network Management Systems

Amitava Biswas

In a network management system, software sensors (agents) collect system information
and notify the central control system utilizing UDP/IP packets. When the network suffers
a failure, the packet receiver encounters a flood of messages from a large number of
agents. In such a situation, the receiver has to capture all these messages and process
them in real-time. The thesis addresses this problem about how to design and develop a
receiver that can capture large volume of packets while consuming minimum CPU
resources. Linux network stack, contemporary related research work and some high
capacity packet capturing solutions like NAPI and PFRING were studied to expose their
limitations. Issues that limit the performance of these architectures have been identified
and addressed in this thesis. Based on this analysis, a few design principles have been
identified which can be applied to design and implement a high capacity, efficient packet
capturing solution. An architecture, "DMA ring", that embodies these principles has been
designed and implemented with commodity hardware and software components. The
performance of this architecture has been tested on Redhat 8, a general purpose OS and
RTAI 3.1 on Linux 2.4.24, a hard real-time platform. Its performance was compared with
that of Linux, NAPI and PFRING. The results obtained from the experimental studies

demonstrate that DMA ring outperforms these existing solutions. This study has also
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demonstrated that a user space network processing solution will consume less CPU
resources and may be quite effective under heavy network load, if appropriately

designed.
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Chapter 1: Introduction

1.1 Background

Real-time event data acquisition is a challenging problem in network management,
scientific applications, industrial controls and system monitoring domain. High
performance systems are needed to successfully collect and process large amount of data
within short bounded time. Real-time data about the target system needs to be collected
to manage or control it. Multiple sensors are often deployed in the system to collect this
data. Sensor data can be collected either by synchronous polling or by event driven
asynchronous method. Polling involves poll request communication traffic and higher
data collection latency. The central system has to wait for the sensors to respond to each
poll request made, so the data collection latency is aggregate of all the individual sensor
latencies plus the additional poll request communication latencies. Multiple threads to
overlap polling and response handling, can bring in only limited improvements in
latency. Therefore, for real-time data collection, asynchronous, event driven strategy is
preferred over synchronous poll method for its lower data communication traffic and data
collection latency. In such systems, the sensors notify the central control system in case
there is deviation in the target system's state. The control system analyzes and process the

received notifications send by the sensors and takes control action in real-time.

Despite its inherent efficiency, the event driven data collection strategy has a potential
drawback. When the target system rapidly changes its state, many sensors simultaneously
send a flood of notifications to the central system. For complex systems like ship, turbine,
particle accelerators and communication networks, the incoming event and aggregate
data rate is quite high, though data content in individual events from each sensor source

may be small [1,2,3,4]. The task load of handling all these events in real-time under such



circumstances may be quite high. For an asynchronous real-time data collection
application, the key challenge is to engineer a system that can accept very high event and
data rate in real-time. This multiple data source (sensor) and single sink (data aggregators
and processors) scenario demands a data collection system, which has enough throughput
capacity to handle high event and data rate. Collection and processing of events and data
have to be completed within a bounded time to allow tighter control loops and to realize

better control system response.

1.2 Data acquisition problem: system requirements
1.2.1 Remote data collection by IP networks

Standard IP based data networks are often employed for remote data collection, as IP
packets are routable across network segments over large geographical distance. IP
networks has been successfully used as event data collection pipe in particle accelerator,
radio telescope, network management and network security (packet sniffing, network
intrusion and attack detection) applications [5,6,7,8,9,10]. There are two transport
protocol choices - TCP and UDP, for IP data collection networks (DCN). For real-time
applications, UDP is chosen over TCP to carry the notifications because UDP has low
transmit latency as it does not need connection setup time as in TCP. UDP achieves better
real time transmit-receive response, higher throughput and better relative signal to noise
ratio compared to TCP under similar packet loss scenarios [6,11]. Additional application
level protocol may be used over UDP depending on the application. However such

UDP/IP scheme pose its own challenges in regards to real-time data collection.



1.2.2 Packet capturing problem. Requirements of system monitoring applications

A typical example of such application is a centralized Network Management System

(NMS) for managing a target network (Fig. 1.1).

Fig. 1.1: A centralized Network Management System

. Central NMS Manager
Data Collection Sensor
. Network data
Target e AN hY > Packet Data
network I/ \\ \\ » Receiver correlator
---------------------- >
-l ) )
N
Control
actions

MA: Monitoring Agents

Although a centralized architecture has associated scalability limitations [12] but it is still
preferred over distributed or hierarchical NMS when an automated real-time fault
management system is deployed. All fault event or alarm data have to be gathered at a
central place to correlate alarms, process them to detect/predict faults, perform root cause
analysis and localize faults across network domains using artificial intelligence or other
statistical techniques [13,14]. The target network is monitored by agents (software
sensors) which send notifications or alarm messages to the central network manager
application. Monitoring agents send SNMP traps (alarm messages) over UDP/IP through
this data collection network. Information useful to predict faults are found in the alarm
messages that arrive shortly (<1 sec) before the fault events happen [14]. The
prediction/detection, diagnostic, fault localization processing are computationally
intensive and takes time [14,15]. With lower packet receiving latency, more time is
available for these computation intensive operations. Therefore the alarm notification

receiving should be performed as fast possible [15], preferably within few milliseconds



or less, and more CPU time should be left aside for these computation intensive
processing. Therefore packet receiving and delivery mechanism should cause minimum

CPU utilization.

Network fault events occur in bursts. A single causal fault in a network resource may
cause faults in related resources, symptoms may be amplified by various protocol
mechanisms and faults may propagate among related resources across domain boundaries
[16]. Hence a single causal fault event may generate an avalanche of fault events within a
short interval, this phenomena manifests itself as a strong temporal correlation between
fault events [17]. Therefore under serious target network failure condition, the network
management system will receive a flood of alarm message packets from several network
monitoring agents (sensors) [4]. There are at least two dimensions in this problem
scenario. This situation pose a scalability problem at the centralized NMS as lot of
packets have to be captured and processed within a short duration. Secondly, these alarm
packets may be lost in the data collection network before it is delivered for analysis
[6,18]. Too many packets arriving simultaneously at a network segment leads to network
congestion. Studies have shown that congestion leads to packet losses [18,19]. On the
other hand if the packet receiver of the NMS can not cope up with the incoming packet
rate then packets also get dropped [20,21]. Such packet drops in the data collection
network or at the packet receiver causes information loss, which manifests as noise in the
system [6]. This noise deteriorates the precision of fault prediction, detection or
localization. Thus ideally all packets have to be captured without any loss to reliably
analyze, detect, identify or predict network faults. Efficient real-time algorithms can
address the scalability problem at the processing level. But an efficient packet capturing
solution is required to capture all packets from a network segment, extract all data and

deliver them to this efficient real-time algorithm.



There are other applications, which require similar efficient packet capturing
mechanisms. Network intrusion detection system (NIDS) is one, which needs a
mechanism to capture packets arriving at high rates while utilizing minimum CPU
resources. Network monitoring sensors taps all the packets flowing through the network
segment, scan the packet payload data, applies several pattern detection rules to detect
anomalous packet content or behavior which may suggest network security breach,
intrusion or attacks [8,9,10]. The sensor is the likely bottleneck in a NIDS. The packet
receiving and detection processing in the sensor has to be done at a very high rate, which
should match the maximum traffic rate of the monitored network segment. The detection
processing is computation intensive because the number of pattern detection rules
required for acceptable level of accuracy may be quite high. More detection rules implies
better accuracy, however more rules means less throughput or possibility of more packet
loss for given sensor architecture. Again packet loss may degrade the accuracy of the
sensor [8]. Hence packet capturing in the sensor should be completed in the shortest
possible time leaving aside more CPU resources for detection\tasks to improve the sensor
throughput. Mobile and handheld devices with low power processors, which have to
handle high speed network connections for real-time multimedia applications also require

similar packet capturing or network 1/O processing solution.

1.3 Objectives, scope and contributions of the thesis

The primary objective of this work was to design and implement a high performance
packet capturing solution suitable for NMS and NIDS applications. Design and
implementation of a suitable architecture on a low power uniprocessor system was the
primary focus. Under certain cases, such packet capturing solution can be also applied in

the network devices to increase their bottleneck capacity and reduce congestion. The



other purpose was to identify all the issues that limit the packet capturing performance in

a receiver system and explore all available solutions.

Available literatures [20,21] indicate that the packet capturing performance is limited by
the receiver system capacity. A receiver system is composed of various components like
network interface card (NIC), the host hardware, NIC driver, operating system, and the
network protocol stack. This thesis analyzed the problem of packet capturing in Linux
Operating System and identified the issues that limit the capacity of the NIC driver,
Linux network stack, existing Linux based packet capturing solutions - NAPI and
PFRING. Linux was chosen for a variety of reasons: its importance in research
community; its open source status; its constantly improving nature; and for its
commercial potential. Linux is the fastest growing operating system especially in the
embedded and mobile system domain [22,23]. Many network routers run on Linux OS.
Linux supports a wide variety of network interface cards, hardware devices and
platforms, it has proven track record for stability, reliability and performance and
provides a rich set of OS services compared to other general purpose or specialized OS or
RTOS like QNX, VxWorks, etc. Moreover real-time support for Linux have started
emerging, a variety of alternate options exists today, which can support the real-time
applications developed for Linux. In some cases only a minimum effort may be required
to port these applications from Linux to real-time versions of Linux. A real-time platform
has distinct advantages when real-time data acquisition is concerned. Versions of Linux,
suitable for low power processors, embedded, handheld and mobile systems are also
getting available. Hence it is worthwhile to explore this problem on this OS. To increase
the conspicuity of the problems, all explorations were carried out on a modest PII
333Mhz system, but conclusions that were drawn based on the observations are still valid

for a high speed (Ghz) hardware.



Based on the analysis of Linux, NAPI and PFRING, a set of performance enhancing
design strategies for a soft and hard real-time packet capturing system were proposed.
These design concepts were applied to engineer an efficient hybrid interrupt-polling
packet capturing architecture. This architecture was implemented for Redhat 8 Linux
(2.4.18 kernel), a general purpose operating system (GPOS) and for RTAI 3.1 on Linux
2.4.24, which is a hard real-time platform. Redhat 8 was chosen because it has lower

scheduler latencies compared to vanilla Linux kernels.

The performance of this proposed architecture was measured and was compared against
NAPI, PFRING and Linux's network stack. The performance measurements
demonstrated the superiof performance of the engineered architecture over the
Contemporary Solutions. The proposed architecture is packaged in two components - a
modified NIC driver and an user space polling driver component. This user space driver
is generic can be used with any network interface hardware and may be also used with
real-time data acquisition cards. A user space network driver is unconventional, but it
demonstrated its advantage over kernel space drivers. The proposed solution depends on
commodity PCI network interface card (NIC) features and not tied to any specific NIC.
An available NIC driver was modified to implement the solution. The key modifications
were packaged into two functions, which are very similar to two analogous existing
Linux kernel API functions. Other NIC drivers can be modified using these two functions

with minimum effort.

1.4 Thesis organization
This thesis is organized as follows:

Chapter 2, Analysis of Packet Capturing Problem provides theoretical understanding of
the problem. The location of bottleneck in a data collection network is identified and

abstract models of different forms of receiver architectures are introduced. The



relationship between different architectural parameters and performance elements are
analyzed and presented. This chapter also discuses the opportunities and hurdles for
performance improvements and possible approaches to implement a packet capturing

solution.

Chapter 3, Limitations of Linux Network Processing Architecture documents the anatomy
of the Linux network stack and identifies specific underlying factors that limits its packet

receiving performance.

Chapter 4, Contemporary Solutions classifies various existing ideas, solutions and
software components that address some of the underlying limitations of Linux.
Advantages and limitations of these available artifacts are deliberated to identify the

prospective candidates that can be adopted.

Chapter 5, Design Principles and Proposed Architecture propose specific design and
implementation principles to conceive a high performance packet capturing employing
available software artifacts. A high performance architecture, which is founded on these
concepts, is presented. The rational behind the design, implementation aspects and

operation of this architecture is also discussed.

Chapter 6, Performance Evaluation: Measurement Techniques, Instrumentation and
Experimental Setup describes the instrumentation techniques and performance test setups
employed to appraise and compare performance of the proposed architectures and various

other packet capturing solutions.

Chapter 7, Performance Evaluation Results and Comparison collates the observations

and summarizes the findings from the test data.

Chapter 8, Related Work and Contributions discuss some related works and clarifies the

contributions and limitations of the present work in background of these existing works.



Chapter 2: Analysis of Packet Capturing Problem

In a large centralized NMS, the Data Collection Network (DCN) which collects data from
the sensors, is generally implemented on a WAN/MAN or a LAN with multiple network
segments. It consists of multiple active and passive components like routers, switches,
bridges, concentrators, media etc. Packet loss under network congestion takes place due
to bottlenecks in these network components. The following sections identify the network
components that are most likely to cause packet losses under congestion and ascertain the
underlying factors that cause bottlenecks in these components. Abstract models of
different forms of packet receiving architecture and their attributes that define their

performance are also discussed.

2.1 Packet loss in IP networks : analysis and causal factors

Small packets (size < 500Bytes) have small wire transit times, hence they have lower
inter packet periods and manifest highest possible packet rates. As packet loss due to
network congestion and receiver limitations are associated with high packet rates, so it is
the small packet that pose the problem. Most of the subsequent discussions in this thesis
are focused on the small packet scenario. To address the packet loss problem, it is
imperative to locate the packet loss hotspots in the network and identify the causal factors

behind them.
2.1.1 Locations of packet loss

UDP, the real-time alarm message transport in a NMS, is often found to be unreliable as
it drops packets. Actually, packet loss in the underlying IP protocol layer is the reason
behind UDP packet drops. This happens because UDP has no mechanism (lacks flow
control) to provide reliability against IP packet loss, unlike TCP. Packet losses in the

network can happen anywhere in the transmitter network interface hardware,



transmission links, the routing/ switching devices, receiver network interface hardware or

at the receiver OS kernel (Fig. 2.1).

Fig. 2.1: Possible locations of packet loss
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Packet losses in data link network interface and host hardware layers are negligible, bit
error rates are in the order of 10™* [24]. For this given bit error rate the packet loss rates
will be in order of 107 or less for IP networks, because a packet may consist of 10* bits,
and error in any one bit will cause packet discarding at the receiver. Packet losses are
predominantly due to receiver host limitations and packet drops at the routing devices.
Though IP packet loss obeys Poisson statistics over finer time granularity (i.e. loss
instances are independent to each other) [6], but often these losses occur in bursts over
larger time range [18,19] due to congestion in the network. UDP losses have similar
behavior [18,19]. UDP flow rate is determined by the transmitter speed. Even if the
receiver's throughput cannot match the transmitter's send rate, the UDP receiver does not
provide feedback to the transmitter to reduce the transmission rate. Thus the receiver gets
overwhelmed either by a single powerful, or by multiple low power senders [20,21]. For
a given UDP transmitter-receiver pair, UDP packet loss starts happening beyond a certain

packet rate (no loss capacity) and after that it increases proportionally with packet rate
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[20]. Such behavior strongly suggests that sender overflows the receiver's buffer before
the receiver's host processor can accept and clear away all the data from the buffer.

Similar opinion has also been voiced by other researchers [20,21].

2.1.2 Factors behind packet loss

Receiver may loose packets if the number of packets accumulating in the buffer builds up
monotonically and consistently leading to receiver buffer overflow. Even though there
may not be consistent packet accumulation, but still packets may be lost due to transient
overflow in the buffer. Consistent packet build up happens if the receiver's packet
processing capacity is not high enough or its processing response time is not low enough
to match the packet arrival rate. On the other hand transient overflows happen due to
transient delays in receiver's packet processing task invocation and/or completion.
Transient overflows may occur even if the receiver may have sufficient capacity to
handle a certain packet arrival rate, however likelihood of such transient overflow
generally increase with the packet arrival rate. In the next few paragraphs examine both

transient and non transient aspects of this dynamics.

The model below (Fig. 2.2, Eqn. 2.1 to 2.4) explains the empirical relationship, at an
aggregate level, between the receiver behavior - packet loss, output packet rate, CPU
utilization, and the causal factors - high packet processing response time and low CPU

speed.

Fig. 2.2 : The queuing model of the receiver
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For a given uniprocessor system with a finite receive buffer size (Fig. 2.2), the packet
loss, 11055 (@ fraction), depends on the packet arrival rate, ryr (packets per second), and
receiver's processing ability, which is represented by system response time, t.s (seconds)

(Eqn. 2.1).

1
Packet Loss  7ioss =(1— PR ) when 7, 2—
tres rarr tres

. ......Eqn.2.1.

1
=0 when 1, <—

res

Higher processing ability results in lower system response time. When the arrival rate is
greater than the maximum processing rate possible, the buffer overflows, leading to
packet loss. The maximum processing rate is determined by how fast (t.s) the system

completes processing of each packet.

The receiver output rate, rou, (packet per second) can be derived from packet loss and
incoming packet rate (Eqn.2.2).

1

OutPUt paCket rate Vour = Fioss *r, arr when Vorr 2 ;_

res

veee.Eqn.2.2.

= Vo when 7, <—

res

The receiver's CPU utilization, ncpy (a fraction) depends on the receiving task response

and packet arrival rate (Eqn. 2.3).

1
CPU utilization nCPU = tres *r, arr + UBG when Tarr = ;_
e e eee...BQN 2.3,

~1 when 71, <—

res

where 7, is the CPU utilization due to other background tasks.
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When the arrival rate, ray, is higher than the system's capacity, the system has no slack
CPU time to process additional packets, CPU utilization hits 100% and the buffer

overflows.

Response time of the receiving task depends on receiver's CPU power (Eqn. 2.4)

represented by its speed (Mhz).

karc
Response time 7.~ —h Eqn. 2.4.
Scry

where "karch" is a constant for a given packet receiving architecture, scpy is the CPU
speed in Mhz
Lower response time improves packet loss and CPU utilization performance of the

receiver, this can be achieved by improving the architecture (which lowers the Kareh)-

Transient overflow in receiver buffer may happen if the packet processing task is delayed
and packets are not cleared within certain time. This transient delay in invocation and/ or

completion of packet processing task is represented by the jitter in its response time.

Therefore along with all these (Eqn. 2.1 to 2.4), the variance or "jitter" of the task
response time, trs, also determines the system's packet loss performance. Even for a small
average task response figure, a large "jitter" in the task response will deteriorate the
system performance. Packets arriving at the receiver get queued up in the receiver buffer
(Fig. 2.3). Even though the average receiver processing rate, 1/t may match the arrival
rate, Iy, but still there would be a finite queue length greater than one due to jitter in the
response time, ts. The upper bound of the system performances, i.e. the potential
capacity of the system is determined by these equations (Eqn. 2.1 to 2.4) whereas the

system jitter behavior defines the actual performance, which is far worse.
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Fig. 2.3: Backlog packet queue in the receiver buffer
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The jitter in the response time may be represented as an error in the response time, "g",
which manifests as a random variable when observed across time. For any given time "t"
the queue length of the backlog packet queue, "l;" is the number of backlog packets. This
random variable "I;" is given as -

I =(t

+€)*ra ..................

res rr

When the receiver buffer has a size greater than one, it contains the transient effect of
jitter to some extent. It averages the random effect of the processing task response jitter
over certain period of time. But if this jitter is too high it's effect cannot be contained by
the finite receiver buffer. The receiver buffer will overflow when the queue length, "1;"
shoots up above the buffer size. When the queue fills up and subsequent packets have to
be dropped. A larger buffer lowers the likelihood of buffer overflow. However, for a
given finite buffer size, the receiver buffer may sometimes overflow if "e" is not
restricted. This means that if worst case task response is not bounded, the receiver buffer

may overflow resulting in packet loss.

The jitter in task response will significantly limit the capacity of the receiver system. If
the task response jitter is high, the buffer can overflow even though the average task

response may be quite low and may match the packet arrival rate, ry;. The system may be

14



correctly designed on basis of the average response, but the realizable no loss capacity
will be much lower due to this jitter. Thus along with improving the average task
response figures, it is also important to address their jitter figures. The task response jitter
can be minimized by employing a real-time platform at the receiver. It is also evident
from this relationship that likely hood of buffer overflow increases with higher incoming

packet rate.

2.2 Need for high performance receiver

Network routing devices also drop packets in case of congestion due to buffer overflow
[18,24]. Thus UDP's unreliability problem is the general manifestation of device buffer
overflow problem due to receiver capacity limitation. A high performance receiver that
can receive all the packets without dropping them even at high worst case packet rates, is

a solution for packet loss or network congestion problem.

Some NICs and switching/routing devices offer "hardware flow control" feature. The
host computer can notify the NIC about its overloaded condition, in response the NIC
will notify the network switching/routing device to reduce its send rate. Though this
hardware level flow control may appear to reduce the packet arrival rate and packet loss
at the receiver, but it may increase congestion and packet loss at the intermediate sender
in a multi-hop network. So this cannot be a viable solution for a WAN or multiple

segment LAN with multiple intermediate senders.

On the other hand, a solution, which can improve the no loss packet capturing capacity of
the receiver, can be sometimes applied on the switching/routing devices to augment the
performance of the data collection network. Therefore, the key issue is how to engineer
receiver systems that can receive high packet rates without any packet loss and suffer
minimum packet loss at higher packet rates. Ideally the receiver system should deliver the

received packets in minimum time and keep as much CPU resource as possible for useful
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event data processing. Conserving CPU resources is all the more important when CPU

resources are scarce, especially in embedded systems and network devices.

2.3 Receiver performance parameters and architecture attributes
2.3.1 Definition of performance

Given the application requirement, the performance of a receiver system can be defined

as a combination of four basic key elements -

e No loss capacity: The maximum tolerable packet rate, at which there is no

packet loss.

Packet loss percentage at higher packet rates: Loss as a percentage of total

packets that has arrived.

Packet delivery latency: Time taken to deliver the packet to the application.

CPU utilization: CPU resources consumed by packet capturing tasks.

High no loss capacity, low packet loss percentage, low packet delivery latency and low
CPU utilization are desirable features in a packet capturing system. The CPU resources
that are left over from the packet capturing tasks are available for the event data
processing application. As this application should get maximum CPU resources possible,
so the CPU utilization figure is a measure of CPU wastage from the application
viewpoint. For all practical purposes, delivery latency is same as the system response
time in an uniprocessor system. The no loss capacity is represented in (kilo) packets per
second (kpps or pps), packet loss is represented as a percentage of the total packets send,
packet delivery latency is represented in micro seconds (u sec) and CPU utilization is
represented as a percentage of the total CPU resources (time) available. The upper bound

of the no loss capacity is defined by the Eqn. 2.1 and 2.3. But the actual no loss capacity
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is much lower than that and it is determined by the system response jitter. Similarly the
actual packet loss percentage is also defined by the jitter behavior. The actual loss is
higher than the figure obtained from Eqn. 2.1. The average packet delivery latency is
given by Eqn. 2.4, however the actual values will be largely determined by the system
response jitter "€". By definition, CPU utilization is computed over longer time interval,
thus it is not so much affected by jitter, hence the actual average is still given by Eqn. 2.3.
A higher system response jitter means worse actual performance figures for no loss

capacity, packet loss percentage and packet delivery latency.

2.3.2 Performance improvement approaches

System performance can be improved by two ways. Upper bound of the performance
elements can be raised by an appropriate choice of architecture. Raising the upper bound
figures improves the actual figures. On the other hand, limiting the system response jitter
improves the actual performance figures themselves even if the upper bound figures are

not raised. Preferably, both improvement approaches should be pursued.

In general, these four performance elements are not always positively co-related, though
it may appear so in the first glance from Eqn. 2.1 to 2.4. Only for certain event driven
architectures, these elements are positively co-related. In such cases, any design
improvement that reduces the delivery latency will also reduce CPU utilization, limit
packet loss and improve throughput without any need to make design tradeoffs. However
for alternate architectures, which are not event driven, each of these four elements have to
be individually improved by appropriately choosing proper architectural parameters. In
some cases a design feature might improve a performance element, but may worsen
another element, so design tradeofts may be involved. The next sub-section discuss how
architectural parameters play an important role in defining these performance elements

for various architectural forms.

17



2.3.3 Architecture parameters that affect performance

By appropriate choice of architectural form and attributes it is possible to improve the
receiver's performance elements individually and strike a balance between them. Next

few paragraphs present the effect of the architecture's attributes on performance elements.

The packet receive processing may be carried out in different layers of the protocol stack
by multiple task threads, like task 1 and 2 (Fig. 2.4). Henceforth task threads are termed
as "tasks". There are various alternate possibilities to schedule these tasks. Scheduling of
these tasks may be synchronized either with the packet arrival events or with the system
clock. The architectures whose tasks are synchronized to the system clock are termed as
synchronous architectures and the ones whose tasks are driven by packet arrival interrupt
events are labeled as asynchronous architectures. The interim buffer between these tasks

holds the semi-processed packets.

Asynchronous_architectures: For interrupt driven architectures the packet processing

tasks are triggered by packet arrival events, i.e. interrupts from the network interface

card. Task 1 is invoked by the packet arrival event, task 2 is invoked by task 1 (Fig 2.4).

Fig. 2.4: Interrupt driven asynchronous architecture
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If the task 1 and 2 are scheduled to execute alternately, then the interim buffer is not
required, however it is shown here to generalize the analysis. The packet delivery latency

is aggregate of the response of the tasks, tr; and tres2, plus the time required to switch
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between the tasks (context switching time tcs;2) and some background scheduler and OS

overhead, ties g as in Eqn.2.6.

Packet delivery latency — =1,,, = (o) t Ly Flesin) Tl weneres Eqn. 2.6.

The packet loss percentage is governed by Eqn. 2.1.

No loss capacity is the packet arrival rate at which the CPU utilization hits 100%, this is

given by -

s 1-
No loss capacity =7, 1000 = —QLI(C——ULGA ............ Eqn. 2.7.

arch

The CPU utilization for a given arrival rate, ry is given by -

1
Nepy =@ res1 Tlcsioa +tres,2)* Yo +15; When 7, S<—
tr@s
ee.....BEqn. 2.8.
-1 | B
= when 7, 27—

res

The jitter in the task response is given by -

E=& 1 + g(,'S’]—Z + gres,Q + grgs’BG ..................

res,

Where €1 €res2 » €cs,12 and &espc are the jitter in response time of task 1, 2 and
the context switch time.

This jitter adversely affects the packet delivery latency performance. Eqn. 2.5 governs the

likelihood of the input buffer overflow for this architecture (Fig 2.4).

Any engineering effort to reduce task response and context switch times will improve all

the four performance elements, because of the simple inter-relationship between them
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(Egn. 2.1, 2.6 to 2.8). In addition to this form with interleaved task scheduling, an
interrupt driven architecture with batch scheduling is also possible but it is not discussed

here.

Synchronous _architectures: Alternate architectural forms are possible where tasks

invocation do not depend on the packet arrival event. Tasks maintain synchronism among

themselves and with the system clock.

Fig. 2.5: Batch processing, synchronous architecture
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For such architectures, as a design choice, task 1 and task 2 may not be scheduled
alternately in an interleaved fashion, but a "n" tasks of type 1 may be scheduled together
in a batch followed by a batch of "n" tasks of type 2 (Fig 2.5). The interim buffer should
have sufficient capacity to hold at least "n" packets. In that case, an interim buffer is
required between these two task layers to hold the semi-processed data. For this

arrangement the average CPU utilization is given by -

1
Lesima when 7, S— |
77CPU = (tres,l + + tres,2 ) * rarr + 77BG tres . .Eqn. 210
—1 1
when 7, 2 T

res

The context switching time tcs 1.2 is substantial, so the CPU utilization can be reduced

significantly by simply choosing a higher value of "n", which amortizes the context
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switching overhead over many packets. This also improves the packet loss and
throughput capacity. However a higher value of "n" will deteriorate the worst-case packet

deliver latency, which is given by -

— Bt 2 F Nt eeeaeecacees
=n (tres,l + tres,Z) + tCS,l—Z + tres,BG

The jitter in the task response is governed by Eqn. 2.9 which adversely affects the packet
delivery latency performance. Eqn. 2.5 also governs the likelihood of the input buffer
overflow for this architecture (Fig. 2.5). In addition to this form with batch scheduling, a
polling architecture with interleaved scheduling is also possible but it is not discussed

here.

For both architectures, the interim buffer can also overflow if the scheduler does not
ensure execution balance between the "producer" and "consumer” tasks. Task 1 that
performs the first stage of protocol processing is a "producer". Whereas, task 2, that
receives the interim data is a "consumer". To avoid piling up of data anywhere in the
network stack, both task 1 and 2 tasks should be balanced (1:1 execution ratio) against
each other. If the producer tasks have higher task priority, then in case of rapid arrival of
packets and under CPU resource constraint only "producer" tasks will run and
"consumer" tasks will starve. Thus the producer will pile up data causing interim buffer
overflow and loss of subsequent packets, i.e. no more packets will be stored. If
"consumer" tasks have higher execution priority then buffer overflow problem can be
avoided. The higher priority consumer task tries to execute but it blocks if there are no
packets in the interim buffer. Once the consumer blocks then the low priority producer
task gets a chance to execute and place packets in the interim buffer. Once there is

packets in the interim buffer the high priority producer becomes "runnable" and takes the
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CPU to process/consume the packet. Thus this priority scheme enforces interleaved task

scheduling which ensures 1:1 execution balance.

Thus, along with architectural form, the scheduling policy and task priorities also govern
the performance of the architectures. Though there may be favorable vor adverse cross
effects for every design choice made, but it is possible to improve these four performance
elements. Therefore each of these four performance parameters have to be concurrently
addressed in the design. There can be several other design approaches to improve
receiver performance. Simply increasing the CPU speed is the most costly option and not
an elegant solution. Reducing or completely eliminating the context switching time,
reducing its impact on CPU utilization in case it cannot be completely eliminated,
reducing task response times by re-designing/ simplifying the tasks are some alternative

approaches to improve these four performance parameters.

2.4 Performance improvement: opportunities, constraints and design approaches
2.4.1 Improvement opportunities

There is enough opportunity to improve the packet receiving performance in existing
commodity systems. The host hardware generally have sufficient capacity to handle high
packet rates. For example a PII 333Mhz system is sufficient for a 100Mbps network. The
two key bottlenecks in host hardware are memory and I/0O bus. The throughput of the
DMA transfer is around 118 MByte per sec over PCI 1/O bus [25,26,27,28], whereas the
memory bandwidth is the FSB clock speed multiplied by the data bus width, which is 66
Mhz * 4 Byte = 264 MBytes per sec for a PII 333 Mhz CPU. At least two memory
accesses are required for any data processing task, one access to read the raw data,
another access to write the processed data back in the memory. So the throughput of the
data processing task running on this hardware is memory bandwidth divided by two,

which is 264/2 = 132 Mbytes per sec which is larger than 118Mbytes per sec. Therefore
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the limiting throughput in the host is 118Mbytes per sec. For a 100Mbps Ethernet NIC,
the line speed is 100/ 8 = 12.5Mbytes per sec which is fraction of the host CPU data path
throughput. This shows that the host hardware's data path has enough throughput capacity
to handle this data rate. This also means that it is the inefficiency of the software
components that limit the host's receiving capacity. An inefficient software will increase
the frequency of memory access from the minimum requirement of two to a higher value
"n", hence the data processing throughput drops from 118 to (264 / n) Mbytes per sec (n

>2).

Theoretically it is possible to deliver packets within few microseconds, but even the
fastest system take around 100 microseconds or more to deliver. For the two most used
transport protocols used, TCP and UDP, the receive side processing can be completed by
few instructions. TCP processing involves around 30 RISC instructions, IP processing
requires 25 and demux (delivery to correct socket) operation needs 10 instructions [29].
For simpler stateless UDP/IP protocol combination, the necessary processing could be
completed by 16 "C" statements. For a 333Mhz PII processor, execution of these 16
statements takes only 0.746 microsecond without benefit of cache. DMA transfer
invalidates the cache locations of the received packets so cache hits are not possible for
memory access to these locations. On the other hand, receive processing for UDP/IP in
Linux kernel (Redhat 8) on the same processor takes 25 to 100 microseconds, depending
on the size of packet payload. Even on a faster 2.2Ghz dual Itanium (IA64) server with
622Mhz dual memory bus and 10Gbps 133 Mhz PCI-X Ethernet card, the total packet
delivery latency (hardware + software) was 100 microsecond for a 1500 byte packet [30].
With regards to receive side packet delivery latency, this large gap between what is
possible (fraction of microsecond) and what is realized (100 microseconds) presents the

opportunity for performance improvement.
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2.4.2 Constraints

However several constraints exists in the design space which restricts realization of such
promise. Hardware and operating system (OS) organization in these machines have been
matured over the years keeping in mind the performance requirements of several services

in addition to receiving network data (Fig. 2.6, more details in Chapter 3).

Fig. 2.6: System organization
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The choice of organization of PCI I/O bus, the bridge between 1/0 bus and the system
bus (FSB), hardware interrupt delivery mechanism (PIC), software interrupt handling
mechanism in the OS kernel, interrupt service routines (ISR) in the network device
driver, protocol stack in OS kernel, socket read and payload delivery semantics, process
management in OS, is responsible behind this apparent gap between the possibility and
the realized performance. These system components are not optimized for only network

data receiving, many of them are optimized for other operations, some are designed to
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reduce development and life cycle costs by component standardization, modularization

and layering.

Over and above these, real-time performance limitations of OS and hardware platform
may be significant hurdles towards realization of superior performance. A general
purpose OS (GPOS) may not guarantee the task completion within bounded time. Such
OS may result high task response jitters under heavy system load which may lead to
buffer overflows. Some hardware may have similar real-time performance limitations.
These platforms may severely restrict complete realization of a solution's true capacity

and full achievement of the improvement potential.

2.4.3 Solution approach

It may be possible to engineer an optimum system from scratch, which can reach the
packet receive performance limits and yet satisfy the bare minimum performance
requirements for other services. But, cost of developing, deploying and life cycle
management for such a radically engineered system will be prohibitively large. On the
other hand, there exists enough scope to re-engineer key software system components
within the present hardware and software system organization to reclaim enough receive
performance. An appropriately conservative design approach to leverage existing OS and
hardware components makes such improvements deployable at low costs with the
available commodity off the shelf hardware and software. Therefore packaging and
modularizing the improvements within as few components as possible is also critical as

the performance gain itself.

By designing within the existing stable architectural framework, it is easier to avoid
deteriorating performance of other services during an attempt to improve receive
performance. By conforming to existing OS framework, much design efforts can be

avoided which would have been otherwise required to guarantee bare minimum
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performance of other necessary services. With such approach, it is possible to choose the
best from the available alternative components and OS kernels. This approach also brings
in the collateral advantage of having options to choose and seamlessly employ
contemporary and future OS developments that delivers direct or indirect benefits to the
receiving performance. Fortunately new solutions are available which address many

limitations of the standard platforms.

In the present work, such re-engineering possibilities in specific key software
components are explored, which avoids modifying the OS kernel or any hardware
components. Such discreet component re-engineering approach saved design efforts but
yielded significant performance gains. A mix of developed, modified and readily
available off the shelf hardware and software components were employed to engineer a
high performance packet capturing solution. The NIC driver was modified and an
additional component in the user space was adopted. This avoided patching and re-
compilation of the OS kernel or the costly hardware, firmware development cycle. The
modification of the driver was limited to very specific well defined zones in the NIC
driver. Even these zones are fairly generic in a NIC driver. In addition to this, packaging
more intricate modifications are packaged into two functions which are analogous to
existing kernel API functions. This reduced the cost of design comprehension and

modification.
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Chapter 3: Limitations of Linux Network Processing
Architecture
Many underlying platform and implementation specific factors determine the
architectural attributes, which in turn defines the receiver performance. To identify these
underlying factors for the chosen platform, i.e. Linux, its packet receiving architecture
needs to be studied. The following sections present the anatomy of the Linux network
stack and its packet receiving operation. Based on the analysis of the architecture and its

operation, specific factors that undermine its packet receiving performance are identified.

3.1 Linux network processing architecture
3.1.1 System components

Receiving data packets over the IP network requires a few hardware and software
components: a network interface card (NIC) hardware with embedded firmware; the host
computer hardware; the Linux OS (kernel core & protocol stack) and the network card
driver software; and finally the application software which consumes the data packets and

carries out the event data processing (Fig. 3.1).

Fig. 3.1: Components for network receiving
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The NIC receives the packets from the rest of the network over the data link, which can
either be Ethernet, FDDI, ATM etc. The network media (CAT 5 copper or optical fiber)
physically connects the NIC to the rest of the network. The NIC implements the data link
layer of the ISO/OSI framework. The NIC sits on the PCI or PCI-X slot of the host
hardware and communicates with the host CPU over the PCI/PCI-X bus. The NIC driver
initializes and manages the NIC hardware, it also receives the data packets from the NIC
and delivers them to the Linux protocol stack for network processing. The protocol stack,
which handles the protocol processing, is part of the Linux OS. The Linux OS and the
driver software run on the host computer hardware. The application, siting on top of the
Linux, receives packet data from the network stack and then carries out the application

specific event data processing.

3.1.2 Packet receiving operation

Network stack is implemented as pile of protocol processing layers. These layers
implement ARP, ICMP, UDP, IP protocol processing operations. The software
architecture for network processing in Linux, is derived from the Unix model. The
network stack delivers data packet to the application through a socket mechanism. The
simplified packet receiving path for Linux for later 2.4 and 2.6 kernels is presented in

Fig. 3.2 (next page). The receiving operation is described in the following paragraph.

The application runs as a user space (Linux process) task, this task tries to read from the
socket buffer and blocks if there is no packet to read. After the packet arrives in the
network interface card's FIFO receive buffer, the PCI bus master network interface card
(NIC) transfers the packet by direct memory access (DMA) to the kernel DMA memory
(operation no. 1, Fig. 3.2) and interrupts the host processor. Along with making the DMA

transfer the NIC's DMA engine invalidates the cache location corresponding to the
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memory address where it transferred the packet. This ensures that the host CPU does not

process the stale cached data instead of fresh packet.

Fig. 3.2: Packet receiving operation in Linux
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As a response to the interrupt, the host processor runs an interrupt service routine (ISR).

This ISR task moves the packet from the DMA memory to a packet queue implemented

in regular kernel memory (operation no. 2, Fig. 3.2). This data movement is performed

either by data copy operation for small packets or by passing memory address (pointers)
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for large packets. When packets are transferred by passing pointers, new memory buffers
known as "packet buffers" are allocated to receive new packets. As a part of the
allocation process, the DMA address of these packet buffers are computed ("DMA
mapping") and these DMA addresses are placed in the descriptor address locations from
where the NIC DMA engine can access them. NIC access these descriptor address
locations to ascertain the addresses of the packet buffers where it can make the DMA

transfers.

In 2.4/2.6 Linux kernels, after transferring the packet, the ISR raises a softirq, this softirq
task is scheduled to run immediately after the ISR task completes (returns). The softirq
task picks up the packet from the packet queue and performs the protocol processing to
extract the data payload (operation 3, Fig. 3.2). The protocol processing and packet
filtering operation alone involves more than eight levels of complex nested function calls

and couple of "hook" mechanisms, implemented by function pointers.

After all these processing and filtering operations, the softirq task inserts the processed
packet in a queue (socket buffer) and notifies the scheduler to wakeup the blocked user
process. The packet is copied to user space memory as the blocked socket read function
call returns (operation no. 4, Fig. 3.2). The packet buffers, whose data has already been
transferred to the user space, are dissolved and the memory is freed. The socket read
system call from the user space is quite complex and involves more than eight nested

function calls. After waking up, the user space task processes the event data.

The size of the NIC receive FIFO buffer depends on the NIC, it may range from 2 KB to
8KB. The size of the DMA buffer depends on the NIC driver code. Typically it is
provisioned to hold 32 to 128 packets. The default packet queue size is 300 packets and
the default socket buffer size is 64KB. The ISR task has the highest priority, the softirq

task has higher priority than any user space task even though the user space task may
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have highest POSIX priority like RT FIFO/RR priority = 99. Under this priority scheme,
under very high packet arrival rate, many ISRs may execute even before a single softirq
task may get the opportunity to complete, likewise under moderately high packet rates
many softirq tasks may execute even before the user task may get the chance to start.
Therefore this scheme may pile up packets in the packet queue or the socket buffer and

may overflow them due to heavy incoming network traffic.

3.1.3 System task model

The receiving operation tasks are presented in abstract form in Fig. 3.3.

Fig. 3.3: 2.4, 2.6 Linux architecture
(3 tasks, 1 copy, 1 memory allocation)
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The Linux network architecture comprises of three layers - NIC driver, protocol
processing and socket layer. The receiving mechanism employs three task threads, which

run on the host CPU in three different contexts - ISR, softirq (kernel) and user space. It
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uses three buffers - DMA, packet queue and socket buffer. The operation involves one
memory allocation during packet transfer from DMA buffer to packet queue and one
copy during data transfer from kernel to user memory. The firmware task and DMA

operation, do not utilize host CPU time so these are not counted in our analysis.

3.2 Receiver performance limitations and causal factors

Its network receiving architecture is not suitable for processing high event rates. UDP
packet losses are common in Linux at high packet rates [20,21]. There are two reasons
behind packet losses - high average task response time and high task response jitter, both
of which can independently cause packet losses. There are substantial inefficiencies in
Linux network processing architecture, which result higher average task response times
and manifest as lower average throughput. On the other hand Linux being a non real-time
operating system (RTOS) do not guarantee the bounded behavior of these task response
times which also results packet losses (Eqn. 2.5). Next few sub-sections present an
analysis of the task response times and identify the causal factors behind their high

average and jitter figures.

3.2.1 Analysis of the system response and its jitter

The anatomy of the receiver response time for each packet is presented in Fig. 3.4.

Fig. 3.4: Event processing response time
(Redhat 8, PII 333Mhz 3C905B-TX, 64B UDP/IP)
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The receiver response time is the aggregate of the "packet delivery latency" of the kernel
and the event data processing response time of the application task running in the user
space. The "packet delivery latency" is the time taken by the kernel to deliver the packet
data to the user space application. It is aggregate of: the interrupt latency, interrupt
service routine (ISR) response, context switching time between ISR and protocol
processing softirq task, the protocol processing response, and the context switching time
between protocol processing task and the user space application task. The "jitters" figures
are actual observations which represent the order of latencies under heavy interrupt load
(under high packet rates) for a Dell PII 333Mhz, machine with 3C905B-TX (3Com) NIC
for 64 byte UDP /IP packet receiving on Redhat 8 Linux. Redhat 8 runs on a customized

2.4.18 kernel. The "Avg." indicates the average response time figures for the same.

The interrupt latency is the time between, when an interrupt is raised and when its ISR

start executing. It is the aggregate of the time taken by the programmable interrupt
controller (PIC) to dispatch the interrupt to the CPU, the response of the CPU hardware
to accept this interrupt and the response of the OS kernel interrupt dispatcher to start the
interrupt service routine (ISR). This may be also viewed as a context switching time
between the NIC firmware task which transfers the packets to DMA buffer and the ISR
which picks up the packets. The order of this response is around 5 micro seconds or
more. Generally, the jitter is order of 15 micro seconds, which is primarily due to the host
hardware. However some long "critical section" path in Linux kernel might disable the
interrupts and execute for a longer time, which may cause very high interrupt latency.
Interrupts are disabled for this critical section execution time and are not reported to the
CPU till the interrupts are enabled. In 2.6 preemptable kernels many of these long critical
sections have been broken down to multiple smaller paths. Critical sections of 50
microseconds have been reported for 2.6 kernels [32]. A few interrupt latency jitters in

order of 250 to 365 microseconds was observed in Redhat 8 (custom 2.4.18) on PII
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333Mhz Dell desktop. Interrupt latency jitter increases with interrupt load (interrupt rate)

on the system [32].

The ISR execution time is the time taken by the ISR task to move packets from DMA

buffer to the packet queue. For example, this time is around 8 microseconds for the

"3¢59x" NIC driver, that came along with Redhat 8. The ISR code is packaged as a part

of NIC driver. High ISR response jitters up to 665 microseconds on a PII 333Mhz with

Redhat 8 was observed. These high jitters happen because the NIC ISR may be

preempted by other types of ISRs, for example, a hard disk ISR invoked in response to

hard disk interrupts. Multiple levels of nested ISR execution may be possible under heavy

network load and heavy disk activity. Such nesting of ISRs stretches the response times

of NIC ISR (Fig. 3.5).

Fig. 3.5: NIC ISR response jitter due to nested ISR execution
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The NIC ISR may be preempted by another interrupt which invokes ISR2 (Fig. 3.5).

ISR2 may be again preempted by another type of interrupt, and so on. On the return path

the remaining portions of the ISRs execute in the reverse order, as they are unstacked.

This sort of ISR nesting stretches the ISR response time.
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Hard disk/VGA/AGP ISRs may preempt NIC ISR. The hard disk/VGA/AGP ISRs may
take significant amount of time to set up hardware resources for bulk DMA transfers

before they yield the CPU back to the preempted NIC ISR.

The context switching (CS) time between the ISR and the corresponding packet

processing softirq task is due to the kernel scheduler latency and response times of other
high priority pending softirg/ kernel tasks which may execute before the softirq can get
the CPU. When the ISR yields CPU back to the scheduler, the scheduler checks for
pending softirgs, their order of priorities, and runs other pending high priority softirq
tasks before it initiates the pending softirq task raised by the NIC ISR. Generally only
NIC operation involves frequent softirq tasks, so execution of other high priority softirgs
are not very frequent. The average context switching time between NIC ISR and the
network softirq is around 1 to 2 micro second, though there may be jitters due to
execution of other high priority softirq tasks in some cases. Jitter in the total time spent in
ISR execution and context switching increases with interrupt load (interrupt rate) on the

system [32].

The protocol processing time is the time needed by the softirq task to execute all the

protocol processing steps on a packet. It may have high jitters as it may be preempted by
an ISR anytime. The same causal factors, i.e. heavy network traffic, hard disk,
VGA/AGP or other DMA operations are behind high jitter in the protocol processing task

response.

The kernel to user space context switching time between the protocol processing softirq

task and the blocked user process task is primarily due to scheduler latency and response
time of all ISRs, other pending high priority kernel/ user space tasks and softirgs. Even
the highest priority (RT RR/FIFO priority = 99) user space tasks have lower priority than

softirq tasks. All pending softirq tasks have to complete before any user task can run.

35



This context switching time is also known as "user space latency". This time has severe
jitters due to low kernel system clock rate (HZ value) and due to the lack of fine grained
kernel preemptability. The HZ value is in order of only 100Hz to 1000Hz. 2.4 Linux
kernels are not preemptable and for vanilla 2.4 kernels the HZ value is 100. The main
source tree maintained by Linus Torvalds and stored in www.kernel.org are termed as
vanilla kernels. 2.6 kernels are preemptable with high granularity. Vanilla 2.6 has a HZ
value of 1000. Redhat 8 has a HZ value of 512. A 2.4 Linux scheduler has to wait till the
next system clock tick or wait for another task (high priority kernel/ user task or softirq or
ISR) to voluntary yield the CPU. Once CPU is available the blocked user task can be
scheduled. On the other hand a 2.6 Linux scheduler waits for the next system clock tick
or the next preemption point. Both these two events happens earlier than voluntary CPU
yielding, thus a 2.6 kernel is observed to manifest lower user space latency than vanilla
2.4 kernels in general [32]. However no guarantees can be given about which kernels -
2.4 or 2.6 have lower worst case latencies, because all the paths in Linux kernels and
device drivers that cause these large worst case latencies are yet to be identified and
improved upon in later 2.6 versions. These long paths exist since earlier versions of 2.4

Linux.

Worst case user space latency jitter in order of 300 milli second or more has been
reported for Redhat 8 at high interrupt load [33]. For vanilla 2.4 kernels the average
scheduler latency is in order of 10 to 50 milliseconds where as worst case latency can be
greater than 200 milli second [34]. For all Linux kernels, likelihood of higher latencies
sharply increases with interrupt load [32]. Higher interrupt rates can be due to higher
network load or computations which generate hard disk activities or asynchronous

interrupt driven data acquisition over 1/0 bus (PCl/ ISA).

The aggregate kernel time is the combined response time for the network softirq and the

scheduler latency. The average value of this time is in order of 25 to 90 microsecond,
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depending on the packet payload size for Redhat 8 on PII 333Mhz Dell desktop.
Processing bigger packets take more time due to data copy operations involved. These
data copy execution times increase proportionally with packet payload sizes. For a 64
byte packet, a jitter of around 4435 microsecond was observed on Redhat 8 for the
combined protocol processing softirq response and user space latency. Therefore the time
taken to deliver packets to the user space, can be anything between 40 microseconds to

over 5000 microseconds from the instant it was DMA transferred by the NIC.

The user space event data processing execution times depends on the nature of the

application and it is independent of the Linux kernel behavior, though its response time
will suffer from the non real-time nature of the Linux OS. This happens because even the
highest priority real-time user space task may be frequently preempted by the ISRs and
softirq tasks when the system is loaded by high interrupt rates, due to heavy disk or
network I/O. Interrupt based I/O and non real-time nature of the Linux are the factors

behind such system response jitters.

In addition to the above pure software driven factors, hardware actions may also cause
response jitters. VGA/AGP video card and hard disk operations in the background may
also introduce jitters in ISR, softirq, context switching and user space task response
times. These bus-mastering devices operate independently and their operations are not
synchronized with the host CPU. These operations cause bulk data traffic over PCI and
FSB bus by DMA operation (Fig. 3.6, next page) which are notorious for locking the I/O

and system (FSB) bus and hogging time.

Bulk DMA transfer operations lock the PCI and FSB bus away from other CPU
transactions till a number of PCI DMA cycles are completed. Setting up a PCI DMA
transfer takes time, so there is a tendency to do as much transfer as possible (and result

maximum PCI and FSB bus lock up) in a single setup cycle to amortize the set up cost
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over many data byte transfers. Even though DMA transfer does not involve CPU time
directly, but bulk DMA transfers do take time on the FSB, which may stall the CPU.
CPU may have to wait for the access to FSB for memory operations in case of cache
misses. Though the north bridge chip have internal buffers (4 level deep) for FSB, PCI
and AGP ports and are designed to reduce waiting times due to FSB and PCI bus
contentions, but still PCI DMA operations can cause CPU stalls under heavy processing
loads. Memory access may increase by 50 % and task execution/response time increase

300 % by these PCI DMA operations [35].

Fig. 3.6: Hardware system organization
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Energy savings features of the CPU and other hardware may also introduce response

jitters. CPU frequency step down, power management (ACPI, APM) in BIOS etc.
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introduces uncertainty in execution times. Some newer, low cost motherboards have poor

real-time behavior.

3.2.2 Problems behind lower system throughput

High task execution times are the primary causes behind the high average task response
times and lower system throughput. For Unix OS variants the average packet receiving
response times have two components - fixed component (per packet cost) and data
dependent or "data touching" component, which is proportional to the data payload size
(per byte cost) [41]. Table 3.1 presents the approximate contributions of different layers
and operations in the network processing response time for small packets (< 200 Byte) in

Ultrix OS on a DEC Station 5000/200 system with 100Mbps FDDI [36].

Table 3.1: Factors behind packet processing response for Ultrix

Layers Time % of Operations % of
spent total total
NIC Driver layer/ 57 psec. 21 % Data copy 11 %
Interrupt servicing
UDP/IP Protocol 102 psec. 39 % Checksum 9.2%
Layers
Socket layer (kernel- 104 psec. 40 % Protocol processing and 354 %
to-user-space border error check.
crossing) Operating system 11.1%
Total 263 psec. | 100 % Memory allocation. 16.6 %
Other 16.6 %
(Derived from the data in the original paper) Total 100 %

Some of these operations in Table 3.1 can take place in multiple layers, for example data
copy operation takes place in NIC driver and socket layer. Ultrix's network processing
architecture is similar to that of Linux's, so the corresponding figures for Linux are

expected to be similar. The estimated latency for NIC driver, protocol and socket layer
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execution are : 21%, 39% and 40% of the total. Around 20 % time is spent in data

touching operations like data copy and checksum, which constitutes per byte costs.

The issues that limit the network processing throughput [38] are -

High interrupt servicing overhead : This is a per packet processing cost. This is

different than interrupt latency, though the OS interrupt dispatcher execution time
constitutes a part of both interrupt latency and interrupt servicing overhead. This
overhead includes the time consumed in context switching, storing retrieving process

states, memory cache and TLB purging due to process preemptions.

For high packet arrival rates the host processor is overwhelmed by constantly
servicing the interrupts, having no time for performing any other useful operations on
the arrived packets, as result system throughput drops. Significantly high interrupt
service overhead is one cause behind the "receive livelock" phenomena [39] which
even troubles the fastest Ghz processors. Interrupt servicing may claim upto 30% of
the total CPU time for a 2.4Ghz P4 CPU [40]. Due to livelock phenomena, for a PII
333Mhz system with Redhat 8 (Fig. 3.7), the throughput starts dropping if the input
packet rate is increased beyond 30 kilo packets per seconds (kpps).

Fig. 3.7: Receive livelock in Linux kernel.
(Redhat 8, PII 333Mhz with 3C905B-TX)
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Beyond 60 kpps the kernel is too overloaded and starves the user space task
completely and as result the throughput drops to near zero. Interrupts also deteriorate

performance by increasing cache thrashing and cache misses.

Data copy and memory allocation costs: Due to high aggregate incoming data rate,

the copying of data between DMA area to regular kernel memory and subsequent
copy and delivery from kernel to user space, takes significant CPU time. These data
copy operations affect the NIC's interrupt service routine response and kernel's socket
layer response times. Around 11 % of the total processing time may be spend in data
copy operations during network processing (Table 1). The checksum operation is
taken care of by the contemporary NICs so it is not an issue anymore. The memory
bandwidth being the main hardware bottleneck, it limits the network processing
throughput and allows less time for event data processing in the user space [40].

Thus, this factor remains the biggest contributor to per byte processing cost.

Instead of copying data, when some NIC drivers, pass memory address (pointers) to
transfer packets from NIC DMA region to the packet queue new memory buffers
("packet buffers") are allocated and DMA mapped to receive new packets (section
3.1.2). Provisioning new memory buffers is another costly operation, which consumes

significant amount of CPU time, around 16.6 % of total (Table 3.1).

Redundant protocol processing in network stack in the kernel : Linux being a general

purpose operating system, it has lot more protocol processing steps than needed for
real-time data acquisition. So for our application many of these protocol processing
steps are unnecessary and can be done away with. Even the structured layering of
network stacks may be avoided to save on execution time [38]. These factors

primarily contribute to the per packet cost and may constitute around 39 % of the
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total network processing time (Table 3.1). Therefore, avoiding many of these layers

can reclaim significant amount of CPU time.

Kernel-to-user-space border crossing costs : The task that consumes the arriving

event data usually runs as a process in the user space. The kernel carries out the
protocol processing and delivers the packet to this user process. Therefore packet
receiving and delivery involves two border crossings - a border crossing for data and
a border crossing for the control. Border crossing for data involves a data copy from
kernel to user space, whereas border crossing for control involves a system call from
user space, a context switch and the return path for the system call made. The
response time for all these operations together can be significant and can be as high as
40 % of the total processing time (Table 3.1). The border crossing response time

contribute to the per packet cost.

Buffer overflow problem: Packet losses occur when packets are dropped due to buffer

overflow. Buffer overflow may occur due to variety of reasons. Three primary causes
behind buffer overflow are - (i) the lack of execution balance between "producer" and
"consumer" tasks, (ii) the jitter in "consumer" task response and (iii) jitter in the

context switching time between the "producer" and "consumer" task

There are three "producer-consumer" pairs - softirg-user space tasks, ISR-softirq
tasks and NIC firmware-ISR tasks. Between these "producer-consumer” pair, there is
DMA, packet queue or socket buffer to hold the semi-processed packet / data. In case
of the ISR-softirq "producer-consumer” pair, the ISR has higher task priority over
softirq tasks. So the finite sized packet queue can overflow under heavy packet arrival

load.

Data bits arriving at the NIC are streamed into NIC's onboard FIFO buffer. Once all

the bits of a packet have successfully arrived and if space is available in the DMA
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buffer, then these packets are immediately DMA transferred from NIC's FIFO buffer
to the host's DMA buffer (Fig. 3.2). If no DMA buffer space is available then NIC
cannot offload its FIFO buffer, as a result the FIFO buffer can get filled up. Once
NIC's FIFO buffer gets filled up, the NIC drops bits of subsequent packets. As DMA
buffer overflow cause the NIC's FIFO buffer overflow, so this packet dropping

phenomenon is simply termed as DMA buffer overflow in subsequent discussions.

NIC firmware task is not within the control of developers, so NIC firmware task and
ISR execution cannot be balanced. Jitter in ISR response may cause the DMA buffer
to overflow. Higher interrupt latency jitter will delay the invocation of ISR consumer

task, this might result in DMA buffer overflow if its size is small.

Similarly, jitter in user space task response may cause socket buffer overflows as the
socket buffer has a limited size of 64 Kbytes by default. In addition to this, jitter in
kernel-to-user-space context switching times may delay in starting user space task, as
a result the socket buffer may also overflow. Such overflow may start happening at

lower packet rates, even before the softirq task may start starving the user space task.

In a given receiver for small sized packets, the order of overflow precedence is:
packet queue and DMA buffer. This means the packet queue overflows at lower
packet rate before the socket buffer can overflow and DMA buffer overflows at a
much higher packet rate. Socket buffer overflow may not be observed at all. For
smaller packets of 64Bytes, the packet queue overflows before the socket buffer
capacity is breached, this is because 300* 64 Byte capacity of packet queue is less
than 64 KByte capacity of the socket buffer. For very large packet sizes the socket
buffer can overflow before the packet buffer overflows. In that case, the order of

overflow precedence is: socket buffer, packet queue and DMA buffer.
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Packet counters were placed in the Redhat 8 packet receive path to estimate the

location and extent of packet loss (Fig. 3.8, next page).

Packet counter placed in the ISR measured the packets received in the DMA buffer

and counter placed in the user space task measured the packets received at the socket

buffer. All packets that reach DMA buffer enters the kernel and all packets that reach

socket buffer enter user space. The packet loss patterns are presented below, which

demonstrate the buffer overflow phenomena (Table 3.2, next page).

Fig 3.8: Packet loss measurement instrumentation for Linux

Packets being
DMA transferred
by NIC to host
memory

Counter placed to

count packets
received in DMA

V

Counters placed to
count packets received
in socket buffer

v

DMA Packet Socket User
buffer queue buffer space task
Packets dropped by Packets dropped
NIC due to DMA due to packet

buffer overflow

queue overflow

Table 3.2: Effect of DMA buffer size on Linux throughput

DMA Packets rate Packet received Packet received
buffer size | 200,000 64Byte packets | in DMA buffer in socket buffer
(100 %) (% of 200,000) (% of 200,000)
32 143 kpps 2779 ( 1.4%) 499 (0.25%)
(Default) 147 kpps 376 (0.19%) 376 (0.19%)
128 143 kpps 200,000 (100%) 903 (0.45%)
147 kpps 1089 ( 0.55%) 671 (0.34%)
512 143 kpps 200,000 (100%) 763 (0.38%)
147 kpps 52,790 ( 26%) 742 (0.37%)
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From the above table it is evident that when the DMA buffer size is 32, the default
size in 3Com905B-TX NIC driver, then the DMA buffer overflows at a packet rate of
143 kpps. Only 2779 packets out of 200,000 are stored in DMA buffer, rest are
discarded by the NIC, and out of 2779 packets only 499 reach the user space, rest are
discarded in kernel due to packet queue overflow. If the DMA buffer size is increased
to 128 or 512, dramatic improvements in packet availability is observed in DMA
buffer. For 143 kpps, a DMA buffer size of 128 is sufficient to store all incoming
packets (100%). A size of 512 improves the packet availability form 0.19% to 26%
for a packet rate of 147 kpps. A bigger DMA buffer also improves the packet
availability in the user space. However due to limited packet queue size not all
packets can reach user space for high arrival rates. Packet loss due to DMA buffer

overflow increases with packet rate for all DMA buffer sizes.

3.3 Solution requirements
3.3.1 Task balancing is a challenge

The solution space, which can address the previously mentioned problems is constricted,
not all common sense approaches will work. Balancing the three "producer-consumer”
pairs to improve the overall throughput is difficult. For a given CPU and architecture it
may be possible to balance these tasks by tuning the buffer sizes, but such optimization is
likely to fail for a different CPU speed as all the latencies and their jitters involved may

not scale down proportionately with CPU speed.

3.3.2 Increasing buffer sizes is not solution

DMA and socket buffers can be over provisioned, their sizes can be increased to get a
lower packet loss, but increasing packet queue size is not a viable option. Increasing

packet queue size actually deteriorates performance by aggravating the livelock
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phenomena. A larger packet queue will allow more packets to enter the kernel, this will
increase the kernel task load and starve the user space task. In such situation, the socket

buffer will not be cleared and it will overflow to result more packet losses than earlier.

To gain a small improvement in the packet loss performance the DMA and socket buffers
may require disproportionately large over provisioning. Such large over provisioning of
kernel memory have multiple adverse performance implications. All the memory used in
a real-time system have to be pinned down in the RAM so that they are not swapped out
to the hard disk by the Linux memory manager. DMA buffer memory also needs to be
pinned down so that NIC can successfully make DMA transfers. Reserving very large
pinned down kernel memory for the buffers may force eviction of other virtual addresses
to disk swap space. Though kernel space memory also remain pinned so kernel tasks will
not suffer in general, but parts of other OS related tasks, for example, X terminal
operation may be carried out in process context which may use non pinned memory.
Nevertheless, there is limit on how much total memory can be pinned without slowing

down the system by too many "page faults".

Pinning large memory segments raises frequency of "page faults". "Page faults"
exceptions arise when a memory segment has been swapped out to the disk and it is not
available in the RAM when demanded. In case of such exceptions, the memory is brought
back from the disk swap space on to the RAM. Such "page faults" introduce task
response jitters and the disk I/O interrupts further amplifies this jitter in the system

response. Such system activity also increases cache thrashing.

With large buffer memory, the virtual memory manager will have to make large memory
strides for any operation, which increases cache misses. Present hardware architectures
allows augmenting of RAM but Level 1 and Level 2 cache cannot be increased at will.

Thus even though more RAM may be added but without proportionate increase in cache
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sizes the performance will deteriorate when large memory is utilized. Thus over
provisioning the system by simply increasing the buffer sizes is very expensive and not

an elegant solution.

A large kernel to user space context switching time jitter is the cause behind the socket
buffer overflow, a large socket buffer can only mask this problem. If the root cause, i.e.
high context switching time jitter, is not addressed then this will anyway cause large
jitters in packet delivery latency. Thus this problem will still hit the other performance

elements, if not the packet loss performance.

An approach, which will improve the efficiency of the packet receiving operations by
minimizing both: the average response time and the response time jitter, will be a real
solution. However this approach has to fit well with the rest of the Linux architecture
mechanisms and bring a balanced improvements in all the four system performance

elements.

3.4 Summary

Poor packet receiving performance of Linux is primarily due to its design. Linux is
designed to provide multiple services to multiple users fairly. Therefore the interrupt and
packet receiving mechanisms are shared resources placed inside the kernel. To have a
faster interrupt service routine, the packet receiving task is split into two parts - a quick
portion to be handled as an ISR and a time consuming portion to be handled as softirq
task. Whereas the application specific event data processing task had to be implemented
as the user space task thread. Linux did not guarantee resources required to complete
packet receiving tasks in bounded time or their scheduling sequence. This multiple thread
scheme without real-time task scheduling gave rise to jittery task response, context

switching times and the need for multiple interim buffers between the threads.
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Fig. 3.9 summarizes the causes behind poor packet receive performance in Linux. The
leaves in the right most side represent Linux's limitations. The causes behind high packet
delivery latency jitters is not included explicitly because those causal factors are anyway

exposed from analysis of the other three performance elements.
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Chapter 4: Contemporary Solutions

Some of the limitations of Linux that undermine the performance of its packet receiving
architecture, have been addressed as general OS problems. Real-time support for Linux
provides features that can address the response jitter problems. In addition to these, some
solutions have been proposed to improve the packet receiving performance in Linux.
Thus the solution space that address these problems consists of four segments -
(i)improvements in Linux as general purpose operating system (GPOS), (ii) real-time
support for Linux, (iii) some miscellaneous performance improvement schemes that do
not fall in earlier two categories and (iv) complete solutions to receive packets arriving at
high rate. But even these approaches have limitations, and do not address all the problems
identified in the previous chapters. Next few sections discuss these artifacts along with
their limitations. These were considered relevant for packet capturing in a NMS /NIIDS
application. Some of these suitable artifacts, that can be utilized to design a high
performance packet receiving architecture, are selected. There are other related works
which cannot be categorized as solutions in their present forms, these are discussed later

in Chapter 8.

4.1 Operating system improvements
4.1.1 Avoiding data copy operations

Data copy reduction has been addressed in Unix variants by using shared memory
between different network stack layers within kernel and between kernel and user space.
This is known as "zero copy" approach in the literature [38,42,43,44,45,46]. Instead of
memory copy only the address of memory locations are exchanged between kernel layers

and kernel to user space (pointer passing).
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Superior performance of zero copy TCP processing on Sun SPARC and other platforms
has been demonstrated [45,46]. By page re-mapping memory is shared between kernel
and user space and the kernel to user space. Linux uses similar shared memory between
kernel and user space in some of its device drivers which involve bulk data I/O. These
works primarily improved performance of very large packets (>1500B ATM packets) but

they did not address the per packet costs which hit the performance of small packets.

The available literatures demonstrated benefits of "zero-copy" approaches in reducing
CPU utilization and improving throughput at higher packet payloads. However
performance improvements are visible only at higher payload sizes and some

implementations [42,43,44] deteriorated performance at lower packet sizes (Fig. 4.1).

Fig. 4.1: Performance limitations of zero copy implementations
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Unix and Linux packet processing has both per packet and per byte processing costs,
therefore the response time locus slopes upwards as packet size increases [42]. These
zero copy implementations [42,43,44] raised the fixed per packet cost component of the
response time. But per byte cost component is low for zero copy architectures, therefore
its response time locus is a flatter line. Zero copy mechanism only made sense when the
packet size was beyond a threshold, the "copy break packet size", which is between 200

and 500 Bytes for various implementations and platforms [42,43,44, 3¢59x Linux driver].
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Due to this reason, NIC drivers copied smaller packets from DMA buffer to the kernel
memory and made zero copy transfers when the packet size was greater than the "copy

break size".

Poor performance for lower packet sizes is not intrinsic to zero copy mechanism, but it
resulted from the manner the zero copy scheme was implemented. For each zero copy
transfer cycle, full sized (1500 byte for IP) memory buffers are allocated in real-time to
receive subsequent packets. Allocating memory for maximum packet sizes requires some
fixed amount of time, which offsets the benefits received from avoiding copy mechanism.
At lower packet sizes the benefit of zero copy is smaller whereas cost of full packet sized
memory allocation are incurred. Therefore the net benefit realizable from zero copy is
negative at smaller packet sizes. This limitation can be avoided if a large circular buffer is
constructed at set up time, and if this buffer is allowed to be the staging area for the
protocol processing layers. A large circular buffer will avoid the need for buffer transfers

across various layers, and hence avert memory allocation in real-time.

Apparently an alternate solution to avoid memory allocation is to recycle packet buffers.
In this scheme, the packet buffers will not dissolved in the socket layer after transferring
the data to user space, but they will be returned to a empty packet buffer pool. Whenever
a packet buffer is required in the NIC layer, it is taken out of the pool instead of
allocating afresh. A real-time network stack named RTnet implemented this logic [47]. In
fact, a bigger circular buffer actually clubs both the DMA buffer and the pool in a

common structure.
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4.1.2 Minimizing scheduling latencies

Some popular low scheduling latency solutions are - preemptable kernels, O(1)
schedulers, low latency kernel patches and higher operating system clock rate (HZ value).

Many of these have been implemented in 2.6 kernels.

Kernel preemption is achieved by two approaches [48]. In the first approach, preemption
logic is placed with specific kernel locks, kernel get preempted every time the lock is
released. As these locks are used throughout the kernel, so preemption points gets
automatically deployed at various points in the kernel. In the second one, explicit
preemption points are manually added at various places in the kernel which correspond to
long kernel execution paths. The location of these long paths are often determined based
on experimental observations on Linux's real-time behavior. Though these approaches
improved the average and median latencies, but these approaches failed to remove all the
worst case latencies due to long critical section paths. Even after implementing these
approaches, worst case latencies greater than 500 microsecond still remained in the 2.6
kernels for Intel Celeron 650Mhz CPU [32]. For the same CPU, vanilla 2.4 Linux kernel

resulted 4446 microsecond preemption latency.

4.1.3 Managing border crossing costs

Response times of system calls made from user space can be reduced if CPU registers are
utilized in the system call mechanism. In 2.6 kernels such mechanisms reduced the
system call response time by a factor of 2 for Intel P4 CPUs [49]. Border crossing
involves system calls, therefore the border crossing costs can be lowered by employing

2.6 kernels.
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4.2 Real-time support for Linux
4.2.1 Managing jitters in interrupt latency and ISR response

High interrupt latency jitters are caused due to interventions from Linux kernel's critical
sections, which disable the interrupts when they execute. These critical sections are
associated with specific kernel locks. In the process of making Linux kernel preemptable
in 2.6, developers re-engineered these big granular locks to smaller ones. But there is no
guarantee that these "lock breaking" approaches exhaustively removed all the long
critical section paths. Still some difficult to find long critical sections may exist in 2.6

preemptable kernels, which may manifest occasionally.

ISR response jitters due to nested ISR execution phenomena may be reduced by
appropriate interrupt prioritization scheme. A prioritization scheme will shield a high
priority ISR from being preempted by a lower priority ISR. Normally Linux does not
implement multiple levels of interrupt prioritization. Only two priority levels, "fast" and
"slow", are offered by Linux. These levels are defined for an interrupt when its ISR is
setup with or without SA_ INTERRUPT flag. Fast ISRs are executed with all interrupts
disabled, whereas slow ISRs execute with interrupts enabled. Any new interrupt with a
"fast" ISR can preempt a currently running "slow" ISR. But a fast ISR may not preempt
another fast ISR, whereas slow ISRs may only preempt other slow ISRs. System timer
(e.g. PIT) and hard disk interrupts are handled by fast ISRs. NIC, some floppy disk and
VGA ISRs are defined as slow type. Some ISRs that preempt NIC ISR, can take longer
time to execute therefore a NIC ISR is vulnerable to response jitters. This two level
prioritization scheme is implemented at the software level by masking interrupts at the
CPU. The order of precedence for external interrupt (IRQO0-15) reporting, defined by the
legacy 8259 chip based PIC hardware organization is a different mechanism. This IRQ

reporting precedence only defines which interrupt request will be first reported to the
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CPU when multiple IRQs are triggered simultaneously at the PIC. Generally the order of

precedence are IRQ 0,1,8,9,10,11,12,13,14,15,3,4,5,6,7.

This two level interrupt priority scheme of Linux, is not enough to avoid NIC interrupt
latency and ISR response jitters. System timer interrupts (e.g PIT) should have higher
priority, NIC interrupt should have a priority level lower than system timer devices. Hard
disk, video card and other I/O device interrupts should have a priority lower than that of
the NIC. Thus this scheme will require at least three or more levels of priorities. The PIC
hardware can be programmed to implement multiple levels of priority for all the
interrupts. This prioritization scheme can be implemented over and above PIC's interrupt
request precedence and should replace Linux's two level interrupt priority system. With
such interrupt prioritization, only a high priority interrupt's ISR can preempt a low
priority interrupt's ISR. This protects the high priority interrupt's ISR from preemption by
a low priority ISR. The interrupts involved in real-time tasks can be granted higher

priority to decrease their vulnerability from preemption and improve their response.

A solution, "real-time interrupt (RTirq) patch" [50,51] implements such interrupt
prioritization by programming IO-APIC chip and provides kernel locks with multiple
priorities and usage rules. But this solution has limitations. This requires kernel re-
compilation, which is a complex process. This solution is packaged as a kernel patch for
vanilla Linux 2.4.23 and 2.6.2 to 2.6.5 kernels. Applicability of the available patches is
limited to certain versions of Linux kernels, not all versions of 2.4 and 2.6 vanilla kernels
can be patched. Many kernel compilation options do not compile with this patch. This
means, users may have to forego many useful kernel features to use this solution in its
present state. For example, these patches cannot be complied for multiprocessor SMP
systems. This solution is yet to be verified to work successfully on a wide variety of
motherboards. This solution is hardware specific, it leverages the IO-APIC chip features

and interrupt hardware organization. Patches are not yet available for wide variety of
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CPU, as covered by Linux. Only Intel x86, AMD Athlon, etc. have been reported to work
on a limited set of motherboards having a certain kinds of interrupt hardware
organization and motherboard chipsets. Finally, the patch for 2.4.23 vanilla kernel only
supports legacy interrupt system organization, where IRQ0-15 are type XT-PIC, i.e. the
interrupt type that are not routed through IO-APIC. Interrupts that are routed through 10-
APIC are not covered. However this solution do have some advantages, the average and
worst case interrupt latency performance of this solution is claimed to be better than other
co-kernel (e.g. Adeos) and threaded ISR solutions. "Real-time interrupt's" response time
approaches the hardware response times for a given hardware as claimed in one email
from its developer. This solution enforces prioritization even in cases when multiple
interrupts arrive at the PIC simultaneously and due to the PIC organization, a low priority

interrupt may arrive at the CPU before a high priority interrupt.

The problem concerning un-deterministic interrupt latency and ISR jitters have also been
addressed by other, hardware independent approaches. RTLinux is one such approach

that implements a co-kernel layer sitting between Linux and the hardware (Fig. 4.2) [48].

Fig. 4.2: Shielding real-time interrupts by co-kernel
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The co-kernel hosts the hard real-time ISRs and tasks that need shielding from Linux's

intervention, outside Linux domain. The co-kernel also hosts Linux. The "software PIC"
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in the co-kernel layér determines dispatch order of interrupts to the real-time task and
Linux, irrespective of Linux's critical sections and interrupt enable/disable status. The
software PIC implements its own interrupt priority rules. Thus the real-time task/ISR is
protected from Linux's interventions. The co-kernel is implemented to be portable across
different hardware. RTAI based on Linux is another similar co-kernel approach which
utilizes Adeos [48]. The limitations of co-kernel approaches are discussed later under

section 4.2.2.

Other than RTAI, Adeos nanokernel is another distinct hardware independent approach
(Fig. 4.3), which can shield the real-time interrupts from Linux kernel's critical sections.
By shielding from Linux's interventions, the jitters in interrupt latencies and ISR response

times for high priority interrupts can be bounded.

Fig 4.3: Shielding real-time interrupts by Adeos layer
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Adeos layer sits between client domains and the hardware [52]. Linux can be one of the
client domains, real-time ISR, tasks, schedulers or co-kernels can be other domains.
Unlike RTLinux and RTAI co-kernels, Adeos does not include a real-time scheduler. The

interrupt priority is also realized by a different mechanism. Adeos layer intercepts any
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hardware manipulations made by the client domains. On the other hand, it intercepts the
events raised by the hardware. When an interrupt is raised, the Adeos layer intercepts it
and passes it to the first high priority domain. This domain executes whatever tasks it
intends to execute as a response to this interrupt and then it notifies the Adeos layer. The
Adeos layer then passes this interrupt to the second high priority domain and so on. A
domain may terminate the interrupt at its level, so that the interrupt is not passed to next
lower priority domains, or it may choose to ignore the interrupt, so that Adeos may
quickly send the interrupt to the next one. Each domain may have its own interrupt
handlers or ISRs. A domain may choose to serialize the interrupt handling, it may stall
the interrupts at its level till the handling of the current interrupt is completed. A lower
priority domain may be preempted by a higher priority domain if an interrupt is reported

at the higher priority domain.

Any hard real-time task, like network processing which should be shielded from Linux's
critical sections and interrupt preemptions, can be placed in a higher priority domain
compared to Linux. The hard real-time timer tasks can be the highest priority domain.
Linux may have its own soft real-time system timer tasks in addition to these hard real-
time timers. The hard real-time timer task domain may ignore NIC or other interrupts,
which are passed over to the network processing and Linux domain. The network
processing domain may terminate the NIC interrupt at its level, whereas ignores other I/O
interrupts. When a network processing task is in progress, the network processing domain
may stall a newly arrived I/O interrupt at its level, and it will only release that interrupt to
Linux when the current network processing task is over. Thus effectively the client
domains can acquire distinct multiple level of priorities in regards to interrupt handling to

manifest bounded task latencies.

Adeos approach has some disadvantages. The average interrupt latency is in the order of

30 microseconds even though the jitter is low. This figure of 30 microsecond is on the
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higher side. Adeos only manages ISR response time jitters, not interrupt latency jitters.
Adeos may not guarantee that a high priority ISR will start executing first when multiple
interrupts occur simultaneously. The PIC organization may define a different interrupt
reporting precedence. Thus when multiple interrupts are raised simultaneously at the PIC,
a low priority interrupt, as defined by Adeos, may supercede a high Adeos priority
interrupt, for e.g. IRQ9 will be reported earlier than IRQ5, even though IRQ5 should
have higher effective priority in Adeos. In that case Adeos will run the ISR
corresponding to IRQ9 first while the ISR of IRQ5 has to wait. However the interrupt
latency of IRQS in such cases is bounded by the execution time of ISR for IRQ9. The
execution times of ISRs are typically in the order of 10 microseconds, so the order of
interrupt latency jitter is not much, at least one order smaller than the 250 microsecond

interrupt latency jitter in case of Linux.

Priorities to ISRs can also be granted by threaded ISR approach as in TimeSys's Linux
variant [48]. ISRs are dispatched as schedulable threads, therefore ISRs can have multiple
levels of priorities and even lower priorities than hard real-time tasks. So high priority
ISRs and hard real-time tasks can be protected from preemption by low priority ISRs.
Mutex can serialize execution of these threaded ISRs wherever needed. However thread
dispatch time will add up to the interrupt latency and thus the performance of this
approach can never match the performance of "real-time interrupt (RTirq) patch".

TimeSys Linux has its own proprietary kernel.

4.2.2 Improving response of real-time packet receiving tasks

Though Linux is not a RTOS, but attempts have been made to bound the worst case
response times of tasks within Linux. Section 4.1.2 and 4.1.3 presented some approaches
that also improve response of Linux domain tasks. But these approaches only reduce

average response times but do not bound their jitters. Other than these, real-time variants
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of Linux have emerged and real-time service support that can work along with Linux,

have been proposed.

As Linux kernel does not have a real-time scheduler, so a dual or co-kernel approach has
been proposed (Fig. 4.2, previous sub-section). In addition to the Linux kernel, another
kernel with a real-time scheduler runs in such architectures. This real-time scheduler runs
the whole Linux kernel as an idle task, only when no hard real-time task is runnable.
Linux scheduler sitting within the Linux kernel schedules Linux domain tasks as it would
normally do. Tasks within Linux domain maintain their relative priorities within
themselves. The Linux kernel is modified to accommodate the co-kernel. The co-kernel
may be loaded as an "Loadable Kernel Modules" (LKM) during startup from Linux
environment. Real-time ISR and task codes are packaged and loaded as LKMs. The hard
real-time tasks are run by the co-kernel's real-time scheduler, outside Linux domain and
beyond the scope of Linux scheduler. The real-time co- kernel does not provide other
extensive services as Linux, so it has a small foot print. These are also known as "micro”

or "nano" kernels. RTLinux and RTAI are examples of such dual kernel approach.

Management of Linux's kernel preemptability and long critical section paths are not
exhaustive, and they are sensitive to operating system evolution and driver performance.
In the process of evolution, new long critical section path may be introduced
inadvertently. Moreover device drivers are not part of core kernel, and not so well written
drivers may be deployed which may introduce long critical section paths. So it is quite
difficult to manage the real-time performance of Linux with those approaches as
presented in section 4.1.2. In such scenario the co-kernel and Adeos approach have a
distinct practical advantage. These approaches guarantee real-time system behavior with

Linux irrespective of Linux's intrinsic non real-time behavior.
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However all co-kernel approaches have practical limitations. The hard real-time tasks and
ISRs have to run outside Linux domain. Run time system function call to Linux cannot be
made from hard real-time tasks. In general, run time process related services like memory
protections etc., from Linux is not be available. These put severe constraints in the design
space. To develop a real-time application, hard real-time and soft or non real-time tasks
need to be clearly identified and segregated. The non real-time components can be
developed to run under Linux, whereas hard real-time components have to be developed
without utilizing Linux system APIs. This segregation becomes challenging for a
complex application where lots of interaction between real-time and non real-time tasks
are expected. Inter-task communications between real-time and non real-time tasks across
Linux and co-kernel domain borders are quite complex and severely limits the
performance of such design. Exhaustive support for inter-task communication and
interactions may not be always available for the co-kernel used. Memory protection may
not be available for the hard real-time tasks, so designers have to take precautions and

manage memory access themselves.

However some of these limitations are addressed by approaches like LXRT for RTAI
[53]. LXRT-RTAI supports hard real-time tasks in Linux user space. This means the hard
real-time tasks can enjoy the memory protection offered by Linux and can be run as a
user space process from within Linux domain. A more extensive real-time POSIX
support is available which ease development. However RTAI documentation warns that
performance of LXRT-RTAI in terms of lower CPU utilization may not be so good [54].
PSDD on RTLinux (FSMLabs) and LynxOS (Lynux works) are other possible Linux

based options which support hard real-time tasks in user space [55,56].

Real-time response of Linux tasks in multiprocessor systems can be improved by
dedicating specific CPUs for real-time tasks, while shielding them from interference from

non real-time activities like asynchronous I/O related ISRs and kernel critical sections

61



[33]. Concurrent Computer Corporation achieved worst case real-time response in order
of 107 milliseconds in their shielded CPU RedHawk Linux (based on 2.4.21 kernel)
compared to Redhat 8's worst case response of 323 milliseconds. This approach has
limitations, it requires multiprocessor systems and a modified kernel, which may not be

as cheap as Redhat or freeware vanilla Linux kernels and low latency patches.

All the real-time support for Linux may be computation intensive, which means
determinism in task response time may be obtained at the cost of getting a much higher
average response time. However this tradeoff is worthwhile to avoid buffer overflows at

high packet rates under high CPU utilization scenarios.

4.3 Miscellaneous schemes
4.3.1 Avoiding interrupt service overhead

The interrupt overhead issue have been addressed in past by different approaches. Some
NICs provide interrupt mitigation. The NIC issues a single interrupt for a group of
packets instead for every packet received. This reduces frequency of interrupts and the
interrupt overheads. Interrupt mitigation feature is not offered by all NICs. Moreover the
NICs with this features do not adaptively mitigate interrupts based on CPU load situation.
Mitigation will start only when packet rate is above a threshold. A NIC which can
provide enough mitigation for a high speed CPU with no other system load, may fail to
be effective for a slower CPU or for a CPU which has other task loads, unless an adaptive
intelligence is executed in the host (packaged in the NIC driver). Moreover this approach

will result in higher average packet delivery latencies.

Synchronous polling based operation instead of asynchronous interrupts has been
proposed to tackle high interrupt loads at higher packet rates. In polling mode, the CPU

checks the DMA buffer or NIC's shared memory frequently, if there are available
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packets, then it processes them. With this strategy the interrupts and the associated
overheads are avoided, thus reducing CPU utilization. However such savings come at a
cost. Arrival of a packet may not detected till the next poll cycle, and thus its processing
may be delayed by the poll period time in worst case. Polling increases the worst case

packet delivery latency and may increase average latency.

As a solution to this limitation, a "hybrid interrupt-polling" scheme, have been proposed,
implemented and studied for 10 Mbps networks [57]. The hybrid receiver operates in
interrupt mode at lower packet rates but switches to polling mode at higher packet rates.
In general, the decision when to switch, can be either decided adaptively at run time or
can be pre-determined. Run time adaptive algorithms to decide when to switch between
synchronous and asynchronous modes have been implemented and observed [57]. In this
approach, the polling period is also adjusted based on the recent packet rate trends,
adjusting polling period takes time as timer have to be reprogrammed every time.
Therefore this approach may actually realize lower CPU time saving if the timer
reprogramming is significantly expensive. The periodicity of packets on a 100Mbps
network may be as high as 6 microseconds for smaller packet sizes (< 64 bytes). Software
kernel timers in Linux do not have microsecond level resolution due to high scheduler
latency, therefore they are not suitable for 100Mbps network operation. Using a hardware
timer to pace the polling at the rate similar to the expected packet rate, is out of question.
At present there is no other known general and tractable event dispatch mechanism in
Linux other than interrupt mechanism. So hardware timer events can be only dispatched
to the software domain by interrupts. These timer events will cause as much interrupt
servicing overheads as the NIC interrupts themselves, so this cannot be a solution.
However it will be interesting problem to study how CPU based LAPIC timer or TSC
events may be dispatched smoothly to the software domain without causing much

turbulence as the normal interrupt mechanism.
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Significant portion of interrupt overhead is due to the interrupt latency. The PIC hardware
performance is behind the interrupt latency. Interrupt latency does not scale down
proportionally with CPU speed. Therefore, for a slower CPU, the polling overhead may
be higher than the interrupt latency overhead. In such cases polling may not be beneficial

to reduce the interrupt overheads.

4.3.2 Adopting efficient protocol processing

Some literatures argue the benefits of monolithic architecture for integrated and
simplified protocol processing to improve the response time [38,58]. Run time flexibility
associated with layering may be lost in such de-layering approaches. Ability to insert
various packet filters and additional protocol stacks at run time becomes difficult.
However for pure data acquisition applications such flexibility is generally not required.
Therefore instead of Linux kernel's protocol processing stack, a simplified custom

protocol processing stage may be employed to save significant CPU time.

4.3.3 Reducing jitters due to hardware factors

DMA bus mastering controllers of individual devices can be programmed to reduce the
bus locking times. All DMA controllers provides programmable interface to achieve that.
This approach requires knowledge of device hardware to carry out modifications in all
device drivers. This may not be a very practical approach. The lack of device hardware
documentation may limit implementation of this approach in practice. Energy savings
features (APM, ACPI) can be turned off in the BIOS and during kernel compilation to
improve the hardware response times. New motherboards, which are notorious for their
un-deterministic response, may be avoided. Lists of suitable hardware are often available
with the RTOS vendors. Choice of motherboards may severely restrict exploitation of

fastest Ghz processors in real-time applications.
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4.4 Alternative packet processing architectures

To allow packet processing in case of high packet arrival rate a few solutions have been

proposed after release of 2.4 kernels. Most notable among them are NAPI and PFRING.

These are discussed in subsequent sub-sections.

4.4.1 NAPI

New API (NAPI) utilizes polling based approach in high packet arrival situation [59].

NAPI is part of the vanilla Linux kernel from version 2.4.20 onwards. It was also back

ported to version 2.4.18 to be included in Redhat 8. NAPI mechanism (Fig. 4.4) was

designed to avoid interrupt overheads, to reduce CPU utilization and leave more time for

user space event data processing task.

Fig. 4.4: NAPI
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At high packet arrival rates, the NAPI engine polls the DMA region, picks up the packets
and performs protocol processing at regular intervals. Instead of the softirq task as in
Linux, the NAPI poll engine task processes the packets through the kernel network stack.
The NAPI poll engine task finally delivers the processed packets to the socket buffer and
wakes up the waiting user space "consumer" task. At high packet rates the NAPI poll
engine runs as a Linux kernel thread (ksoftirqd) which has lower priority than any high
priority real-time user space "consumer” task. Under high packet arrival rate the NAPI
mechanism uses two task threads which run on host CPU in two different contexts -
ksoftirqd (kernel) and user space. It employs two buffers - DMA region buffer and socket
buffer. The mechanism also involves one memory allocation during packet transfer from
DMA buffer to packet queue and one copy during data transfer from kernel to user

memory.

In NAPI, the NIC driver is different. As the first packet arrives and raises an interrupt, the
first instance of ISR disables the interrupt and invokes the NAPI poll engine. NAPI poll
engine runs as a softirq task to perform the polling, after the ISR returns. During
execution of this softirq task, new packets might arrive though they do not raise any
interrupts as interrupt has been disabled by the first ISR. The NAPI version of the NIC
driver implements a function to access DMA memory and pick up packets. Kernel's
NAPI poll engine calls this function to pick up and process packets. If all packets have
been processed and no packets are pending, then the NAPI poll engine enables interrupt
and shuts itself down. There is a limit (budget) on maximum number of packets that can
be processed by the softirq task in a single NAPI poll cycle. With this budget and the
time limit, it is intended that the poll engine should not run for a long time and starve the
user space task under high packet arrival rates. If there are still some pending packets,
then another softirq request is raised by the current softirq task. This next round of softirg

processing is supposed to handle the remaining packets.
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The softirq logic is designed in such a way that if too many softirq requests are raised
within a short time, then instead of invoking another softirq, the softirq tasks are
offloaded to be handled by a low priority "softirqd" thread by lazy invocation strategy.
Therefore at high packet rate situation, the NAPI poll engine runs as softirqd thread. The
low priority softirqd kernel task runs when CPU has no other higher priority user space or
kernel tasks to execute. Thus effectively, the "producer" NAPI poll engine task can
remain balanced with any high priority real-time user space task. Therefore, if a high
priority real-time user space task runs in a tight loop to clear away the socket buffer, then
the socket buffer overflow can be avoided. As NAPI uses one less task compared to plain
Linux kernel network processing, so the ISR to softirq context switching time is avoided.
The packet queue is absent, so managing its overflow is not an issue. Without interrupts,

interrupt overheads are avoided.

But NAPI has limitations, it does not address the issue of time lost due to memory
allocation, data copy, unnecessary protocol processing and context switching when the
packets cross the kernel-to-user-space border. NAPI does not address issues of jitter in
interrupt latency and kernel-to-user-space context switch. The NAPI NIC drivers are
modified form of original Linux NIC drivers, so they still have the inefficiencies

associated with run time memory allocations.

Over and above the above mentioned limitations, NAPI was also observed to have a very
basic limitation quite similar to plain Linux network processing. NAPI was designed to
avoid livelock arising out of interrupt based operations, but an experimental study
verified that NAPI still suffers from livelock problem. Fig. 4.5, next page, presents the
interrupt coalescing/ mitigation effect of NAPIL. The ratio between number of interrupts
raised and packets received is low when NAPI polling operates. NAPI polling starts at a
packet rate of 22 kilo packets per second (kpps) when this ratio starts dropping from 1.0

(Fig. 4.5).
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Fig. 4.5: Interrupt to packet ratio for NAPI
at different packet rates

0.8

0.6

0.4

0.2 |

Interrupt to packet ratio

0 - T r a = —>¢

0 20 40 60 80 100 120 140 160
Input packet rate, kpps

Fig. 4.6: Livelock phenomena in NAPI
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It is evident from Fig. 4.6, that livelock phenomena commence at packet rate of 30 kpps
therefore the output packet rate starts dropping. Only when the packet rate is greater than
60 kpps, the interrupt rates drops significantly and packet output rate starts improving.
NAPI polling only kicks in at a very high packet rate, whereas, livelock phenomena
commence at a much lower packet rate for a slower CPU. If NAPI polling operation was
made to commence at lower interrupt rate or if it had the intelligence to monitor the CPU
load and decide when to start the polling operation then this problem could have been

avoided. This same limitation also manifests a wider transition band (22 to 85 kpps),
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when NAPI makes transition from interrupt driven operation to sustained polling

operation.

The limitation lies in the design of the NAPI logic, "softirq" and "softirqd" tasks. NAPI
polling happens too fast and as enough packets do not arrive within the small poll period
so polling is not sustained. Performance loss takes place due to frequent startup and
shutdown of the poll engine because each switchover between interrupt and polling
modes involves high penalty due to interrupt enable-disable, softirq and softird
invocation overheads. The throughput does not improve above a certain level even when
NAPI polling fully operates above a packet rate of 84 Kpps (Fig. 4.6). This is due to
inefficiencies associated with memory allocation in the NIC driver layer, unnecessary
protocol processing in kernel, data copy and context switching in socket layer. Due to

these limitations, NAPI cannot be an effective solution to the livelock problem.

To study and expose these problems, packet losses were measured at various locations
inside the NAPI architecture. Fig. 4.7 presents the instrumentation employed to measure

the extent and location of packet losses.

Fig. 4.7: Packet loss measurement instrumentation for NAPI
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The packet losses measured are presented in Table 4.1.

Table 4.1: Effect of DMA buffer size on NAPI throughput

DMA buffer Packets rate. Packet received | Packet received
size 200,000 64Byte packets | in DMA buffer. | in user space.
(100 %) (% of 200,000) (% of 200,000)
128 84 kpps 183,563 (92 %) | 105,199 (52 %)
(Default) 147 kpps 104,539 (52%) | 63,477 (32%)
512 84 kpps 200,000 (100%) 24,848 (12%)
147 kpps 177,040 ( 89%) 3993 (2%)

In NAPI, at high packet rates, both DMA and socket buffers overflow (Table 4.1). For
default DMA buffer size of 128, at 84 kpps only 92% of packets are available in DMA
buffer, rest of the packets are discarded by the NIC. Packet loss due to DMA buffer
overflow also increases with packet rate. For a DMA buffer size of 128, the packet
availability in DMA buffer drops from 92% to 52% as the arrival rate increase from 84
kpps to 147 kpps. Socket buffer overflows are also evident at packet rates 84 kpps and
higher. For default DMA buffer size of 128, out of 183,563 packets available in the DMA
buffer, only 105,199 reached the socket buffer and user space, rest were discarded by the
kernel due to socket buffer overflow. The loss increased at higher packet rates. For DMA
buffer size of 512, 12 % packets reached socket buffer and user space at 84 kpps, while

only 2 % reached at 147 kpps.

Increasing DMA buffer size to avoid packet loss at NIC, is not a viable option. A bigger
DMA buffer improves the packet availability in DMA buffer, but have significant
unfavorable impact on the overall system throughput. Increasing the DMA buffer size
from default 128 to 512 completely avoids the packet loss arising from DMA buffer
overflow for an arrival rate of 84 kpps. The packet availability in DMA buffer improves

from 92 % to 100% in this case. Though a larger DMA buffer size allows more packets to
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enter kernel region, but less packets actually reach to the user space. For 84 kpps arrival
rate, an increase of DMA buffer size from 128 to 512 allows 100% packets to enter the
kernel but packet arrival at user space falls from 52% to 12%. Similar phenomenon is
also observed at 147 kpps. This happens because the CPU gets overloaded by more
protocol processing tasks at higher arrival rates and starves the user space task which is
supposed to clear away the socket buffer. Other than this, the 2.6 Linux kernel may also
suffer from route cache overflows if too many packets enter kernel within a short time
[60]. Therefore even though a smaller DMA buffer can overflow, a smaller default DMA
size for NAPI is well justified. It serves the same gate keeping function as the packet
queue in case of plain Linux. Smaller DMA buffer size actually improves system

throughput by limiting the intensity of livelock phenomena.

This demonstrates that there is limited latitude to completely avoid packet loss by simply
increasing the DMA buffer size. Linux allows limited latitude to increase the socket
buffer size, but that may not be enough to completely check socket buffer overflow.
Large socket buffer only masks the symptom but does not address the root cause, i.e. high
jitter in the kernel to user space context switching time. Provisioning a very large kernel
memory has its costs and such masking approach does not reduce high packet delivery
latency jitter caused by the context switching time jitter. Consequently a different

approach is needed to avoid packet loss.
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4.4.2 PFRING

One recent high packet rate capturing solution "PFRING" [39] for vanilla Linux 2.4 and
2.6 kernels addressed some limitations of the Linux and NAPI, but not all of them. The
decision to use polling based approach instead of interrupts is left to the NIC driver

implementation, therefore PFRING may be used without or with NAPI (Fig. 4.8 and 4.9).

Fig. 4.8: PFRING Fig. 4.9: PFRING with NAPI
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PFRING avoids the packet queue and protocol processing in the kernel network stack and
employs a bigger socket buffer (allows 4096 packets). In case of PFRING without NAPI,
the ISR task moves the packets from the DMA region to the large socket buffer called
PFRING. With NAPI, softirq or softirqd task does this job. Based on the application

requirement the protocol processing may be implemented in the user space. Under high
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arrival rate the PFRING approach without NAPI mechanism (Fig. 4.8) employs two task
threads which run on host CPU in two different contexts - ISR (kernel) and user space.
The PFRING architecture with NAPI (Fig. 4.9) also employs two task threads from two
contexts - softirqd and user space. Both architectures employs two buffers - DMA buffer
and PFRING socket buffer. Both the mechanisms involve one copy and one memory

allocation operation.

In PFRING without NAPI, the NIC driver is same as in case of plain Linux network
processing. The Linux kernel is patched to incorporate the PFRING mechanism. When a
packet arrives, after moving the packet from DMA buffer to PFRING socket buffer, the
ISR task wakes up the blocked user space task. No protocol processing is carried out in
the kernel. The PFRING buffer memory is mapped to the user space by Linux's mmap
mechanism. This memory sharing between kernel and user space avoids the need for an

additional data copy operation when data cross the kernel to user space border.

For PFRING with NAPI, the same NAPI NIC driver is employed. The NAPI poll task
transfers a batch of pending packets from DMA buffer to PFRING socket buffer and then
wakes up the user space task at the end of each poll cycle. The NAPI mechanism in
PFRING architecture operates in the same way as it would in case of NAPI alone. Similar
to PFRING, this architecture avoids kernel protocol processing and data copy between

kernel and user space.

PFRING solves only some problems associated with Linux and NAPI. Unlike Linux,
PFRING architectures do not employ packet queue, thus avoids its overflow. Unlike
Linux and NAPI, PFRING architectures save time by avoiding redundant protocol

processing.

The PFRING architectures employed "real-time interrupt (RTirq) patch" to manage the

interrupt latency jitter [39]. It is not clear how this RTirq patch can contribute in any
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general hardware, because if the NIC interrupt is routed through legacy 8259 chip based
PIC, there is no way that the NIC interrupt can be guaranteed distinct high real-time
priority compared to all other interrupts. If all interrupts IRQ 0 to 15 are routed through
legacy PIC system then they cannot be assigned distinct priorities [50]. RTirq patch for
2.4.23 Linux was able to assign distinct high priority to only LAPIC interrupt so far in
most systems. Generally LAPIC timer interrupt is not routed through legacy PIC system.
Perhaps the developer of PFRING employed a hardware where all interrupts were routed
through I0-APIC, therefore he got some benefit under that special case. Nevertheless as
the developer of PFRING suggested using RTirq in their publication, it was similarly

employed in the experimental setup.

Though PFRING architectures perform better than NAPI and Linux [38], but they have
limitation. In PFRING architectures, the two tasks and two buffers will have associated
task balancing and overflow issues along with data copy, memory allocation, task context
switching and border crossing inefficiencies. PFRING without NAPI will suffer from ISR
to user space task context switching times in real-time. Whereas, PFRING with NAPI
will suffer from high NAPI polling overheads. As a result this architecture may manifest
livelock phenomenon similar to NAPI at lower and medium packet rates. However
severity of the livelock in PFRING with NAPI will be less than in NAPI alone. In
addition to this, there is performance loss due to softirq/ softirqd to user space context
switching times in case of PFRING with NAPI. For PFRING the context switch is
between ISR to user space task. PFRING architectures did not address the problem of
high kernel to user space context switching time jitter. The effects of this jitter is only
partially masked by the bigger socket buffer (4096 entries). The large socket buffer only
decreases the likelihood of overflow event, but the high context switch time jitter still

manifests as a very high packet delivery latency jitter.
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In PFRING architectures DMA and PFRING socket buffers remain vulnerable. At high
packet arrival rates, under CPU constraints both the DMA buffer and PFRING socket
buffer overflows. This limitation was verified by analyzing the packet loss data (Table 4)
which was gathered by using similar instrumentation, as presented in Fig. 4.7, in the

previous section.

Table 4.2: Effect of DMA buffer size on PFRING throughput

DMA Packet rate. Packet received in DMA Packet received in user
buffer size | 200,000 64Byte buffer. (% of 200,000) space. (% of 200,000)
packets Without With NAPI Without With
(100 %) NAPI NAPI NAPI
84 kpps 200,000 - 118,439 -
32 (100%) (59%)
143 kpps 436 - 436 -
(0.22%) (0.22%)
84 kpps 200,000 194,096 122,983 186,982
128 (100%) (97%) (61%) (93%)
143 kpps 2092 196,514 2092 196,514
(1%) (98%) (1%) (98%)
84 kpps 200,000 198,846 111,355 163,611
512 (100%) (99%) (55%) (82%)
143 kpps 200,000 198,859 24,535 198,859
(100%) (99%) (12%) (99%)

With a DMA buffer size of 32, without NAPI, at 84 kpps, all the packets (100%) sent are
available in DMA buffer, however only 59% packets reach the user space. The socket
buffer is the only buffer after DMA buffer, which is overflowing. Similar socket buffer
overflow happens for all sizes of DMA buffer without NAPI for an arrival rate of 84
kpps. It is suspected that this overflow is primarily due to combined effect of higher jitter
in kernel-to-user-space context switch times, high interrupt overhead and lack of balance
between the ISR and user space task. The ISR producer task has higher priority and so it
starves out the user space consumer task under high interrupt load. As a result, the user

space consumer tasks are not initiated early enough to clear away the socket buffer.

75



NAPI certainly reduces the socket buffer overflow. With NAPI, whatever packets are
stored DMA buffer, most of them are successfully reach the socket buffer. For a DMA
buffer size of 512, 198,859 packets are available in DMA buffer, the same amount
successfully reach the user space via socket buffer. The transferring efficiency is different
at lower arrival rates. NAPI polling consumes less CPU resources than plain kernel,
therefore NAPI leaves aside more CPU time for the user space task to run and
successfully pull out more packets from the socket buffer. However NAPI could not
entirely prevent socket buffer overflow. For DMA buffer size of 128, at an arrival rate of
84 kpps, out of 194,096 packet available in the DMA buffer, only 186,982 reaches user

space.

DMA memory buffer overflow at NIC driver level is not completely addressed in the
PFRING approach. Smaller DMA buffers (sizes of 32, 128) overflows at higher arrival
rates (143 kpps) for both with and without NAPIL. However NAPI seemed to reduce
DMA buffer overflow in some cases. For DMA buffer size of 128, for packet rate of 143
kpps, the availability of packets in DMA buffer increases drastically from 1% to 98% due
to NAPL. In other cases the packet availability in DMA buffer with NAPI was slightly
less than 100%, however this may not be due to unfavorable effects of NAPI on DMA

buffer overflow in those cases.

By simply increasing DMA buffer size, packet loss cannot be avoided in PFRING
architectures. DMA buffer overflow cannot be completely avoided even with a bigger
DMA buffer size. Without NAPI, the packet availability at DMA buffer is only 1% for
DMA buffer size of 128, at a packet rate of 143 kpps. Similarly with NAPI, the packet
availability at DMA buffer is less than 100% for DMA buffer size of 512 and 128, at a

packet rate of 84 and 143 kpps.
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Allocating more kernel memory for a larger (>4096) PFRING socket buffer for full sized
IP packets (1500 bytes) may have degrading effects on the system (section 3.3.2). So it
may not be prudent to simply increase PFRING socket buffer size to avoid packet loss.
Moreover this approach do not reduce the packet delivery latency. This means, a different

solution is needed to avoid or minimize packet losses.

4.5 Summary

Table 4.3 summarizes the requirements and the solutions offered / claimed. From this
table it is evident that there are no available solutions for buffer overflow and low
performance due to memory allocation operations in NIC ISR in Linux. Not all solutions
that are offered or claimed can be deployed for packet receiving due to their inherent
limitations. Table 4.4 presents the subset of these solutions that are deployable under

wide variety of circumstances.

Interrupt mitigation feature is not found in all NICs so cannot be deployed. Only a
modified and simplified form of "hybrid interrupt-polling" approach can be deployed for
high speed network on present Linux and hardware platforms. Adaptable polling period
cannot be implemented. NAPI and PFRING have poor performance under CPU resource
constraints or low power CPU, so they cannot be deployed in NMS, NIDS, mobile or

embedded systems.

"Real-time interrupt (RTirq) patch”" [50,51] cannot be deployed for its limitations (section
4.2.1). Real-time Linux support like RTAI which is available for a wide variety of Linux
kernels, is fit for a wide variety of circumstances. Choice of Linux kernels is not
constrained by RTAI Possibly, RTAI can be made to work along with many other kernel
patches. RTAI also supports user space hard real-time tasks. As RTAI is a mature and
evolving freeware, so a large user community, technical discussion and support forums

exist, unlike commercial endeavor like RTLinux. RTAI includes Adeos in later versions.
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Lower scheduling latency benefits of 2.6 kernels can only be obtained if 2.6 kernels are
chosen. It may not be possible to modify all the device drivers, to tune their DMA

controllers, as that is effort intensive task.

It is to be noted that there are no readily available or deployable solutions in Linux for the
following problems: High protocol processing time, memory allocation in ISR, DMA

buffer, packet queue and socket buffer overflow.
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Chapter 5: Design Principles and Proposed Architecture

Linux was designed to provide multiple services fairly to multiple users. This design
objective indirectly led to a poor performing packet receiving architecture in Linux.
Fairness among services and servicing multiple users are not design priorities in NMS or
NIDS applications. Without such constraining requirements, it is possible to design a
high performance packet receiving solution within the present Linux OS framework.
Many of the existing components, solutions and approaches can be reused to minimize
the design effort. The next section presents some design principles for a high
performance architecture. The subsequent sections present the design, implementation
and operation of a high performance packet receiving architecture which is based on

these design principles.

5.1 Design principles and rationale

Performance of a packet capturing system can be improved: by raising the upper bounds
of the four performance elements, (the potential capacity); and by improving their
realizations (actual figures) by limiting the system response jitter (section 2.3.1). The
potential capacity of the system can be improved: by choosing an appropriate
architectural form; by adopting a suitable task scheduling policy and by reengineering
certain performance hotspots. Whereas, system response jitter can be reduced by limiting
the interrupt load on the OS and/or by employing a soft or hard real-time platform. Based
on our study of Linux and other available solutions, the following principles were
identified that materialize these performance improvement approaches. These are as

follows:

e Employ simple hybrid interrupt polling mechanism with fixed low frequency

polling. Drive the polling period by hardware periodic timer.
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Switch between interrupt and polling modes based on the expected packet arrival
rates. If the expected packet arrival is larger than a threshold then switch to

polling mode, if it is less, then switch to interrupt mode.

Employ a single task thread to carry out the packet receiving and event processing
operation. If the NMS or NIDS application reside in the user space, then employ a

real-time high priority user space thread to carry out these tasks.

Employ a minimal integrated protocol processing instead of kernel's layered

protocol stack.

Employ a shared staging area for all packet processing work. Given the system's
response jitter, choose a right size for the staging area so that it does not overflow.
A big common staging area will avoid the need for data copy or buffer transfer
(explicit zero copy)‘ operations across layers/domains and the packet buffer

allocation in real-time.

Employ an operating system which either provides soft or hard real-time support
for user space task or have bounded task response jitter within the operational

range.

The hybrid polling mechanism will ensure that, for lower packet arrival rates, the receiver

will work asynchronously with interrupts and manifest a low packet delivery latency. At

high packet arrival rate, the synchronous polling mechanism will avoid CPU resource

wastage due to high interrupt service overheads. The reclaimed CPU time can be utilized

for useful data processing activities. Fixed polling period avoids the need to program the

timer in real-time, hence CPU resources are also conserved. The timer needs to be set

only once when the polling is started. High resolution, sub millisecond level software

timers are not available in Linux and other similar OS kernels. So a hardware timer is
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required to get microsecond level periodicity, to serve the 100Mbps or 1Gbps networks.
Using a hardware timer instead of Linux kernel's software timer also makes the polling
engine less vulnerable to high kernel scheduling latencies and jitters. The hardware timer
delivers events to the OS kernel by interrupt mechanism. Low polling rate achieves two
purposes. A slower CPU or a system with CPU resource constraints cannot handle
hardware timers events at a rate greater than 40 Khz due to high interrupt service
overheads, hence a low timer periodicity has to be adopted. A low polling rate causes a
lower interrupt load, hence the OS can maintain its soft real-time response behavior at
lower interrupt rates. In addition to this, infrequent polling limits the effect of polling
overhead. The timer ISR delivers the timer interrupt event to the poll engine and invokes
the polling cycle. The polling engine may be implemented in the user space. So each
polling invocation has an associated overhead due to interrupt servicing and context
switching between timer ISR and polling engine task. If the polling frequency is lower
than the packet arrival rate, then multiple packets can be serviced in a single poll cycle.
This amortizes the polling overhead over many packets and minimizes the effect of
polling overhead. With polling, the effects of jitters in interrupt latency or ISR are also
avoided, however the causal factors behind these jitters may still cause jitters in the user

space task.

Using a single thread avoids the need of interim buffer and the context switching times
between multiple tasks. This makes the architecture simple and amenable to scaling
unlike Linux, NAPI and PFRING. If rest of the application is in user space then this
single thread should reside in user space and should also execute the application.
Simplified integrated protocol processing operations should be implemented in user space
and carried out under this single user space thread. Generally it is preferred that the

applications are executed in user space. User space application development is faster and
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easier. Furthermore, user space applications allow the whole system to be more secure

and stable due to user space memory protection privilege.

Minimal integrated protocol processing avoids redundant protocol processing operations
and avoids the layered architecture. De-layering reduces the need for interfaces between
the layers and the associated function call overheads. A monolithic architecture also
allows a single staging area for all protocol processing operations. A single staging area
avoids the need to transfer data across layers either by data copy or by buffer exchange

(explicit zero copy) implemented by memory address or pointer copying.

A single staging area would require that the DMA buffer be shared with user space and
be made the staging area. The DMA buffer should be big enough to contain the effect of
task response jitters and avoid buffer overflow. Mapping DMA memory area to user
space avoids the data copy operations between NIC layer to kernel and subsequently
kernel to user space. Thus this scheme implicitly implements the zero copy mechanism
without having to transfer packets and replenish the buffer by allocating memory in real-

time.

By collapsing all the network receiving tasks into a single thread, the entire problem is
contained to a manageable issue of a single task jitter. The problem concerning user
space task response jitter is addressed by reducing the interrupt load on the system or by
choosing an appropriate OS. Some design decisions at the application level improve the
real-time behavior of the OS. Avoiding interrupt based operation minimizes interrupt
load in the system which drastically reduces response jitters. Minimizing CPU usage also
leaves more CPU time to handle transient overloads in a better manner, this also reduce
the jitters. However this problem can be best addressed at the OS level, not by a solution

at the application level. Therefore an OS with better real-time response is needed.
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5.2 System requirements

A packet capturing system should satisfy the following basic functional requirements:

e High "no packet loss" capacity.

e Low packet loss percentage at packet rates greater than no packet loss

capacity.
o Low packet delivery latency.

e Minimum CPU utilization and leave more CPU resources for event data

processing tasks in the application.

In addition to these, the packet capturing system should preferably satisfy the following

non-functional requirements or goals:

e Robustness.
e Minimum modifications in the OS or the hardware.
¢ Implementation with commodity, easy availability, off the shelf components.

e Portability across variety of hardware and software platforms.

Low life cycle (deployment and maintenance) costs.

The following section presents an architecture that satisfies the above requirements.

5.3 Proposed architecture
5.3.1 Task model

The task model for the proposed high performance packet receiving architecture, "DMA

ring", is presented in Fig. 5.1, next page. This architecture, employs a single buffer - the
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DMA buffer. This DMA buffer is actually a large circular queue, thus the architecture

and DMA buffer both are called "DMA ring".

Fig 5.1: Task model of the proposed architecture (DMA ring)
(1 task, 0 copy)

Function for application
specific processing

""""""""""""""""""""""""""""""""" /?Ca 11s
Protocol stack Single
with polling user
engine aeospace b User
""""""""""" task ) domain
thread
Read
. Mapped
memory
DMA ring . 0S
....... : Kernel
DMA NIC
¢ firmware
...... k
NIC tasl

The NIC firmware task places packets in the queue and the receiving task picks them.
The synchronization between the NIC firmware task thread and the receiving task thread
is simple. For every packet slot in the DMA ring there is a status flag, a single 32 bit
integer which indicates whether the packet slot is empty of filled. The NIC firmware task
sets this integer after completing the DMA transfer for the corresponding packet. If the
host task thread finds this integer set, then it knows that the corresponding slot is filled.
The host task then processes the packet residing in the corresponding packet slot. The
firmware task does not place packet in DMA ring if there is no vacant slot, whereas

receiving task does not execute if all slots are empty. 32 bit memory access is an atomic
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operation in 32 bit hardware and the cache location for this status flag is invalidated
whenever it is set by the NIC firmware task. Therefore this mechanism achieves all the
synchronization that is needed. This architecture involves no copy operation. The DMA
buffer memory is mapped in the process/ user space to share it between NIC, kernel and
user space. Under high network load (high packet rate) situations, it utilizes a single task
thread that runs on host CPU in the user space context. This single user space thread
performs all the operations needed to receive the packets and executes the poll engine.
This task thread also runs the application that consumes the event data carried by the
packet. The polling engine calls the application function. Using a single domain thread
avoids context switching between task threads. This form of architecture reduces both per
packet and per byte cost components of the system response time and can address most of
the limitations of the Linux, PFRING and NAPI. This architecture only serves a single

packet capturing user process, which is sufficient for the NMS or NIDS application.

5.3.2 Overview of implementation on Linux

The detailed architecture with all its components is presented in Fig. 5.2, next page. The
whole architecture is packaged in three components - (i) a Loadable Kernel Module
(LKM) which would replace Linux kernel's existing NIC driver, (ii) a user space driver
and (iii) an event data processing function. The event data processing or application
function depends on the specific application. The user space driver interacts with the
LKM through the standard ioctl() system call mechanism available in Linux. To conform
to the OS framework, all codes that either interacts with hardware directly or with exploit
any shareable kernel resources are made part of the kernel and packaged in the LKM.
These user defined kernel space function may be invoked from user space via ioctl()
system call. Two parameter can be passed in an ioctl() system call. One parameter can be

used to distinctly identify which particular kernel function to call, the second parameter
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can be the argument for the function called. The ioctl counterpart in LKM, implements a

switch conditional structure which tests the first argument and switches control to the

appropriate case statement block.

Fig. 5.2: Proposed DMA ring architecture
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Each case statement block implements a specific user defined function. Thus ioctl
implements an easy to use form of user defined system call mechanism. The hardware or
kernel resources that are to be controlled or utilized from user space, are exposed through
this ioctl mechanism. Next few paragraphs describe these three components and their

functioning.

Loadable Kernel Module : The NIC specific and hardware related codes are kept in the

LKM. The LKM takes advantage of the rich set of standard Linux kernel API to set up
the NIC hardware and DMA ring. This sub-system includes the code to: (i) define LKM
components; (ii) setup the NIC hardware and allocate software resources; (iii) setup the
DMA ring; (iv) configure and start the NIC for operation; (v) map DMA ring to the user
space; (vi) ioctl function codes that enables the polling timer; (vii) ioctl function code that
enables the NIC interrupt; (viii) the interrupt service routine (ISR) for NIC interrupt; and
(ix) ISR for polling timer interrupt. The LKM also includes the DMA ring, which is setup

in the kernel memory.

The user space driver is very generic, simple and portable component that can work with

any NIC or host architecture. This component calls the application function. It includes -
(i) code to request mapping of the DMA ring in user space; (ii) the polling engine; and

(iii) the code for the minimal protocol processing embedded within the polling engine.

Event data processing/application function: For efficiency the application specific event

data processing function can be implemented as an inline function or as a code
embedded within the user space driver. This function can also be hooked to the polling

engine by means of function pointers.

The existing Linux NIC driver for the chosen NIC hardware was modified to implement

the required LKM. To deploy this architecture, the NIC driver is simply loaded in
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memory instead of the existing NIC driver and the user space driver is executed from

user space. No other modification in OS or in the hardware is needed.

5.3.3 Implementation details

All the codes were developed in "C" and compiled by GNU compiler ("gcc" version 3.2)
that came with Redhat 8. The LKM included code segments that defines all the standard
components of the LKM. It implements the initialization (constructor), exit (destructor),

and other Unix file operations.

LKM and setup operations

Linux NIC drivers generally do not provide any mechanism to interface with the user
space threads, so a mechanism was added to provide user space access to the kernel NIC
driver. This was achieved by declaring/ setting up a miscellaneous device and
implementing the device operations in the LKM. This miscellaneous device is exposed to
the user space as a Unix file with a distinct file node identification. The kernel module/
driver can be accessed from user space though this file or device node identification.
Functions like ioctl, mmap open and release counterparts define the implementations for
the file/device operations inside the LKM. The ioctl() operations as depicted in section
5.3.2 are included in these implementations. The module initialization code registers the
device node identification with the OS, whereas the exit code de-registers it. The LKM is
registered as "miscdevice" having major inode number equal to 10 and minor number as
240, which is generally unused and available. Details about the modifications carried out

on the existing NIC driver are presented later, in section 5.6.

The code that set ups the NIC hardware performs a series of setup tasks to initialize the
NIC hardware and allocate software resources to manage the NIC hardware, according to

the following sequence:
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The LKM inserts itself, as the driver for the NIC, to a link list maintained by the
OS. This is accomplished by pci_module_init() kernel API call. Once it is inserted

the OS can utilize the driver.

Wakes up the NIC hardware and assigns an interrupt line (IRQ) and enables the
NIC by pci_enable device() API call.

Allocate memory resources, i.e. data structures to manage a Ethernet device, by

alloc_etherdev() API call.
Allocates I/O ports for the NIC by request region() API call.

Enables NIC's DMA controller and configures the same by pci_set_master() and

pci_write_config_byte() calls.

Sets up the ISRs for NIC and hardware timer interrupts. The periodic polling
timer is implemented by Motorola's MC146818 based real time clock (RTC) chip

available on Intel x86 motherboards.

Sets up the data structure in the host memory for constructing the DMA ring. The

DMA ring consists of two parts, the descriptor ring and packet buffers (Fig. 5.3).

Fig. 5.3: DMA ring data structure
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The descriptor ring is a chain of descriptor elements. Each descriptor element
points to a contiguous memory segment, the packet buffer, which holds the packet
data. The NIC places the packet in the packet buffer by DMA transfer, so the
packet buffer belongs to the DMA portion of the host memory. The descriptor
part holds the addresses and status information about the locations which actually
contain the packet data. The descriptor elements provide the target host memory
addresses to the NIC so that the NIC can make DMA transfer to those locations.
The descriptor ring is constructed as part of NIC hardware initialization task. The
packet buffers are allocated later when the NIC is started up for operation. Fig.

5.4 explains the descriptor details and its functioning.

Fig. 5.4: Data structure for the receive descriptor ring
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Each descriptor element comprises of four fields. The "next" field is a pointer

which points to the next descriptor element, bit 0-12 of the "status" field indicate
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the length of the packet in bytes which is transferred by the NIC to the host
memory, "address" field points to the location of the corresponding packet buffer
in host memory DMA region, and the "length" field stores the length of the packet
buffer in host memory. The "next" field of the last descriptor item points to the
first descriptor item, so that the end is wrapped around to form a ring. The
consecutive descriptor elements are in a contiguous memory segment so that NIC
can iterate over them with small memory strides. Smaller memory strides
minimize DMA address cycles and the PCI and FSB bus holdup during burst

DMA transfers.

Once the descriptor ring is constructed, and the address of the entry point of the
ring is transferred to the "up list pointer register" in NIC's onboard memory. The
NIC can get the entry point on the ring, iterate over the ring, fetch the descriptors
from the host memory address, extract the address of the target location in the
host memory and make DMA transfers to the target location. This data structure
and mode of operation allows the flexibility to choose any DMA ring size. The

addresses of the locations are true physical addresses, not virtual addresses.

The LKM sets up a watchdog timer, configures the media and media access
protocol (MAC) parameters for the NIC by programming its EEPROM and
reserves resources for the receiver FIFO buffer on the NIC hardware. It also

initializes the receiver descriptor ring by resetting all the "status" fields.

Configures and enables the NIC features like packet check-summing.

The DMA buffer is implemented as a circular queue in form of a ring. This circular DMA

buffer is shared between kernel and user space by memory re-mapping, so that once the

NIC firmware task places packets in the buffer then the user space polling engine can

directly access the data placed in the DMA memory to process it. The user space
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"consumer" thread picks up the packets from this circular queue without synchronizing
with the NIC firmware "producer" task. The user space thread operates a read pointer on
the circular queue to mark the current packet for pick up and processing. Once the user
space gets the entry point on the circular queue it sets up the read pointer and thereafter it

simply increments the read pointer and iterate over the mapped DMA ring.

The packet buffers of DMA ring is setup during the NIC activation. The LKM utilizes a
new function, dev_alloc_skb from page() to allocate a group of contiguous memory
pages and constructs packet buffers from these memory pages. Another new function,
dev_kfree skb from pages() dissolves the packet buffer and frees up the memory pages.
These two library functions were developed as part of the present work and can be reused
to implement the LKM for other NICs. These two functions are analogous to existing
Linux kernel API functions, dev_alloc_skb() and dev_kfree skb(), which are used to
allocate and free memory during construction and destruction of the packet buffers,

"sk_buff".

When this new function dev_alloc_skb from page() is called, it allocates a cluster of
contiguous memory pages, puts them in a pool, and then constructs a single packet buffer
from the first available page in the pool and returns it. In subsequent function calls,
packet buffers are constructed from the pages available in the pool and returned. If the
pool gets exhausted then a new cluster of contiguous pages are allocated in the pool. The
memory pages were also pinned in the memory by SetPageReserved() Linux kernel AP1
function call, so that the Linux memory manager do not swap out these pages to the disk.
Pinning the DMA memory is required for successful DMA ring operations. A Linux
memory page is 4096 bytes long physically contiguous memory segment. Many memory
management operations takes place with page level granularity. This function is different
from the existing API function - dev_alloc_skb(), which allocates a contiguous memory

segment from any available pages, therefore do not ensure that consecutive packet
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buffers are always placed contiguously within a page. Grouping packet buffers in pages is

necessary to map them in the user space and disable their swapping to disk. Mapping and
disabling page swap is performed by per page basis, whereas memory is allocated with
byte level granularity. So this new memory allocation function was necessary. Putting all
packet buffer in contiguous memory may also improve the cache hits and the CPU's
translation look ahead buffer (TLB) efficiency. The other new function,
dev kfree skb from pages() dissolves the packet buffer and frees up the page when all

packet buffer from that page has been dissolved.

Very high interrupt latency and high jitter in kernel-to-user-space context switch times
cause DMA region buffer overflows in case of vanilla Linux 2.4 kernels. If Redhat 8 is
used as the OS, a bigger DMA ring has to be implemented which accommodates at least
1024 packet buffers. Smaller DMA buffers can be used when a Linux based RTOS is

used or when hard real-time support is available for Linux.

The DMA buffer sharing across kernel to user space border is achieved by a standard
Linux (and Unix) mechanism, the mmap() system call. Both kernel and user space
threads address memory by virtual memory addresses. The OS and the CPU carries out
the virtual to physical memory address translation whenever memory is accessed.
Normally the kernel and user space virtual memory addresses are mapped to two
exclusive physical memory segments. But for memory sharing, a certain portion of
physical memory which has already been mapped as kernel virtual addresses may be
remapped as a segment of user space virtual addresses. To share memory, the user space
thread makes a request by mmap() system call. In response, the kernel level mmap
counterpart re-maps the requested number of pages to the user space by using
remap page range() kernel API function call. The LKM implements the kernel
counterpart of the mmap() function. This function remaps the kernel memory pages to

contiguous user space virtual addresses.
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The polling engine

Wait queue is a Linux mechanism to block tasks and wake them up in future. A task is
inserted in the wait queue when it is blocked and taken out when unblocked. A wait
queue is constructed by DECLARE_WAIT QUEUE_HEAD() kernel API macro call. A
current task thread blocks itself by making wait_event interruptible() Linux kernel API
function call. This function blocks the current task thread only when a NIC or timer
interrupt event has not yet happened, if an interrupt event has already happened then the
current task does not block and the function returns immediately. The boolean variable
that keeps track of the interrupt event is set in by the ISR. This variable is explicitly reset
in the LKM's ioctl code to re-arm the mechanism, when the wait_event interruptible()
function returns. The blocked task residing in the wait queue is unblocked or waked up
by wake up interruptible sync() kernel API function call. A separate task thread, which
is currently running, wakes up the Dblocked task by calling this
wake up_interruptible sync() function. The waked up task is scheduled to run after the
waking task thread exits. Upon waking up, the wait _event interruptible() function, that

was responsible for blocking the task, returns.

The polling engine is heart of the architecture. The flowchart for the polling engine logic
is presented in Fig. 5.5, next page. The top portion of the poll engine logic, above the
dotted line, is implemented in the user space driver, and bottom portion is implemented in
the LKM. The portions of the polling engine that directly interact with the hardware or

kernel software resources run in the kernel space.

When there is no packet to process, the poll engine blocks itself to yield the CPU, instead
of spinning in loops and wasting CPU time. The polling engine exploits the kernel's wait
queue mechanism to block and wake up tasks. The polling engine runs in an endless loop.

To block itself, the user space polling engine thread makes an ioctl() system call. When
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these ioctl calls are made from the user space, the ioctl counterparts in the LKM are
executed in the same process context under which the ioctl was called. Therefore the user

space thread can enter the kernel space by calling an ioctl() function.

Fig. 5.5: Poll engine logic
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The ioctl function that blocks to wait for the NIC interrupt is called from user space with
the first argument defined as an integer constant which corresponds to "wait for NIC
interrupt”. The ioctl function that blocks and wait for timer interrupt is similarly called
with its first parameter defined as "wait for timer interrupt”. The ioctl counterpart in the
LKM blocks the current thread, the user space thread, in a wait queue by making

wait_event_interruptible() call.

The blocked user space thread is woken up either by the periodic RTC timer interrupt or
by a NIC interrupt event. The ISRs which run in response to the interrupt events actually
wake up the blocked user space thread by wake up interruptible sync() call. The ioctl
call returns to the user space when the user space thread is woken up. The polling engine
decides whether to block and wait for a NIC interrupt event or to block and wait for the

RTC timer interrupt event.

The NIC raises interrupt as soon as it completes DMA transfer of a packet to the host
memory. In every ISR cycle the NIC interrupt is disabled. This interrupt is enabled later
by the polling engine thread when it shuts down. The NIC interrupt in the ISR are
disabled and enabled by directly programming the NIC hardware I/O ports. Before

exiting, the NIC ISR wakes up the user space thread that runs the polling engine.

The periodic polling task is paced by hardware RTC timer interrupts. The RTC timer ISR
reads the RTC register and then simply wakes up the user space thread and exits. The
RTC register have to be read to keep the periodic timer running and generating interrupts.
This is a specific and unwanted feature (for this situation) of Motorola's MC146818

based RTC which is available on every Intel x86 motherboards.

Other than blocking and waking on an event, these ioctl codes also interacts with the NIC
and RTC hardware to enable NIC interrupt and the polling timer. The code that enables

the NIC interrupt is inside LKM's ioctl implementation for "wait for NIC interrupt". This
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part of the ioctl implementation also disables the RTC timer before enabling the NIC
interrupt (Fig. 5.5). The NIC interrupt is enabled by directly programming its 1/O ports.
The code that enables the RTC timer interrupt is part of ioctl implementation for "wait for
timer interrupt". The RTC timer is enabled or disabled by programming its I/O ports.
More details of these LKM ioctl implementations are explained, in the following

paragraphs.

A fixed low value polling frequency is adopted. A polling period can be chosen, which is
in same order as the packet delivery latency of Linux architecture on a given hardware.
For example, a polling frequency of 8192 Hz or a poll period of 122 microsecond was
chosen for PII 333Mhz CPU which has a network processing latency of 40 to 120
microsecond in Linux. The polling engine runs as a high priority real-time user space task
(RT FIFO, priority = 99). The process virtual memory is locked in the RAM so that none

is swapped out to disk to deteriorate real-time response of this task.
The polling engine logic is presented as pseudo code in Fig. 5.6 and the LKM ioctl logic

is in Fig.5.7.

Fig. 5.6: User space polling engine logic Fig. 5.7: LKM ioctl logic

Carry out set up tasks;
Get circular queue entry point;
Set up the read pointer;

While (true) {
if (packets present) {
perform protocol processing of packet;
call function for event data processing;
increment read pointer;
3
else{
compute arrival rate;
if (arrival rate > threshold) {
ioctl (wait for polling timer interrupt);
3
else {
ioctl (wait for NIC interrupt);

}

ioctl (command) §{
switch(command) {

case "wait for polling timer interrupt":

if (timer is not enabled) {
enable polling timer;

}
sleep in wait queue;

break;

case "wait for NIC interrupt":
if (timer is enabled)
disable polling timer;
enable NIC interrupt;
sleep in wait queue;
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After the circular queue and the read pointer have been set up, the user space program
control enter the poll engine loop (Fig. 5.6). At the entry point of the loop the DMA
buffer is checked for presence of packets, if packets are available then they are processed
to extract the data payload. After completion of protocol processing, the event data
processing function is called to work upon the extracted data. The extraction of payload
from packets does not imply removing the data from its present staging area, but insertion

of appropriate pointers in the data area of the existing packet buffer structure.

The hybrid poll engine operates in interrupt mode when it expects low packet arrival rates
and switches to polling operation when it expects higher packet arrival rates. In every
poll cycle, after completion of the event data processing task the expected arrival rate is
forecasted. Packet arrival rate is a random variable, so future packet rates cannot
determined with certainty but they can only be predicted. This forecasted packet rate is
weighed in favor of most recent arrival rates. If the forecasted rate is below a certain
threshold then the poll engine blocks itself and waits for the NIC interrupt. If it is above
the threshold then the polling engine blocks and waits for the hardware timer interrupt
which invokes the polling cycle. This threshold is set to be equal to the fixed poll period.
To block and wait for the NIC and timer interrupts, the poll engine makes corresponding

ioctl call to the LKM as described earlier.

The ioctl code in the LKM, that corresponds to "wait for NIC interrupt", disables the
timer if it is enabled, then it enables the NIC interrupt and finally it places the current
thread in a wait queue to block it (Fig. 5.7). This thread is woken up by the next NIC ISR
execution. On waking up, the waked up thread returns the ioctl function call made by the

poll engine and the poll engine continues with the next iteration of its endless loop.

The ioctl code in the LKM, which corresponds to "wait for RTC interrupt", checks

whether the hardware timer is enabled or not, and if it is already enabled, then it places
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the current thread in the wait queue to block it (Fig. 5.7). If the hardware timer was not
enabled, then the ioctl code enables it before blocking the current thread. When the next
timer interrupt invokes the timer ISR, the timer ISR wakes up the sleeping thread. This
thread then returns the ioctl function call back to the polling engine, so that the polling

engine can proceed with the next iteration of the poll loop.

The polling engine may not switch over to polling mode immediately after getting first
few rapidly arriving packets. The polling engine observes a sufficient number of packet
arrivals, and if it is convinced that the average packet arrival rate is indeed high, only
then it switches to polling mode. Similarly the polling engine takes the decision to fall
back to interrupt based operation only after some time has elapsed from the instant the
packets arrival slows down. This inertia is implemented in the polling engine as a part of
the algorithm which computes the average arrival rate. Mode switching is quite expensive
and this behavior avoids frequent switching between modes due to overall system jitter.

This strategy conserves the CPU.

3.3.4 Forecasting packet arrival rate

In a hybrid interrupt-polling architecture, sharp and correct mode transition is the key to
better performance. A sharp mode transition means that the architecture should switch
modes within a narrow packet rate band. Sharp mode transition is achieved by threshold
based mode switching. Correct mode transition means immunity to noise. Inter-packet
period is a random variable. Time to time, a group of packets may arrive in a closely
packed bunch even though the average and most likely inter-packet period may be large.
This transient phenomena might misguide the system into frequent mode switching, thus
this phenomena is considered as noise. Frequent mode switching wastes CPU resources
hence it is undesirable. The system should be immune to packet rate transients but should

recognize a more permanent increase in packet rate. Only if sufficient number of packets
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have arrived with low inter-packet period then the system should quickly switch to
polling mode. The packet rate forecasting mechanism implements all these desirable
system behaviors. The subsequent paragraph presents the implementation details of the

forecasting mechanism.

Packet arrival rate can be also represented by its reciprocal, the inter-packet period. All
comparisons and computations in the system are carried out with this inter-packet period
representation. Measurement of time between two consecutive packet arrival events gives
the inter-packet period. It is impossible to determine the exact moment of a packet arrival
in a practical system which suffers from event delivery latencies or which sometimes
operate in polling mode. Therefore in lieu of determining the exact moment of packet
arrival, the time when a packet is detected in DMA buffer is noted and utilized for
estimating inter-packet period. Intel Pentium CPUs provide a counter register which
gives the CPU clock cycle count. Time period between two intervals is estimated by
computing the difference between the register readings corresponding to beginning and

end of the interval and then dividing the difference by the CPU clock frequency.

A polling or packet processing task cycle is either initiated by NIC interrupt or a timer
interrupt. Packets may be detected and processed in a processing cycle or may not be
detected in the current cycle. A processing cycle in which packets are detected and
processed is an "active" cycle. More than one packets may be detected and processed in
an active cycle. The time period between completion of the last "active" processing cycle
and the current "active" one gives an estimate of the total inter-packet period for a group
of packets which are detected and processed in the current cycle. So the most recent
average inter-packet time can be estimated by dividing this measured time interval by the
number of packets processed in the current active cycle. As more than one packets can be
processed in the current cycle so a moving average effect is implicit in this computation.

This is explained in the following paragraphs with Fig.5.8.
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Fig. 5.8: Estimation of current packet rate
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The most current inter-packet period "T¢,," is given by -

C -C
T, = (€ " idkid ) whenn> 0
S cpu n
.......... Egn.5.1
cC _ -C
— ( curr prev ) When n — O
Scpu

where -
Ceurr is the current CPU clock count

Cprev 1s the CPU clock count of the previous active processing cycle
scpu is the CPU speed

"n" is the number of packets processed in the current cycle

The Ceur and Cprey terms represents the time instants in terms of CPU clock cycle count.

The packet rate forecast is biased to most recent arrival rate. The most recent rate

estimate is based on sufficient number of inter-packet period observations. If sufficient
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number of observation is not yet available then the forecast is made based on long term
historical trend. Thus the inter-packet period forecast expression contains both - historical
inter-packet period and the most recent inter-packet period terms. The rationale behind
the estimation method is, that a future inter-packet period has a stronger correlation with
the most recent arrival rate and depends weakly on older historical values. Therefore the
most recent packet arrival rates give better estimate about the arrival rate of immediate
future. If the recent inter-packet period estimate is based on detection of a sufficiently
larger number of packets in the current active cycle, then the most recent inter-packet
period estimate itself can be considered as a good forecast. If the number of packets
processed in the current active cycle is small so that they do not form a good sample size,
then the weighted average of most recent inter-packet period and the average of past
inter-packet periods forms an alternative forecast. These computations are expressed by

the following equations.

The predicted inter-period rate Tprq is given by a weighted average expression -

T =a*T +(1—a)Tp ............................... Eqn 5.2

pred curr rev

where Ty is the inter-packet period forecasted in the previous cycle

The term, Tprey, carries information about the historical packet arrival rates. This term has
been computed by moving average method. Thus the prediction of expected inter-packet

period is based upon a combination of weighted average and moving average methods.

The weight "a" of the weighted average expression can be varied depending on "n", the
number of packets processed in the current active cycle. This variable weight scheme

implements noise rejection and correct mode switching behavior.
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The weight "a" is defined as -

a =1 whenn>n,
=,  Whenm> N3N e Eqn 5.3
=&, whenn>n

where o) <ay <1, o; and o are fractional constants and ny, n; integer constants

Due to jitter in task response times and packet arrival rates, "n", the number of packets
processed is a random variable. When more packet arrive between two active cycles, the
sample size is larger, then more confidence can be placed on the most current inter-period
estimate, that, it represents the current inter-packet period. The level of this confidence
may be increased if the most current inter-packet period is based on larger number of
packets, therefore a larger value of "a", i.e. a; may be chosen. This scheme manifests an
inertial behavior against frequent mode switching. The inertial behavior can be optimized
by choosing different combinations of a4, d, n; and n;. These are settable parameters.

Fig. 5.9 presents the polling engine code that predicts the packet arrival rate.

Fig. 5.9: Pseudo code for forecasting packet arrival rate

While (true) {
if (packets present) do packet and data processing tasks;
else{
get current CPU clock count;
time elapsed since last active cycle = (current clock count- previous cycle clock count)/CPU speed ;

if (packets processed > 0)
current packet period = time elapsed since last active cycle / packets processed;

else
current packet period = time elapsed since last active cycle;

if (packets processed < nl) alpha = alphal;
else if (packets processed < n2) alpha = alpha2;
else alpha = 1;

predicted packet period = alpha * current packet period + (1-alpha) previous packet period;
previous packet period = predicted packet period;

if (predicted period < threshold) ioctl (wait for polling timer interrupt);
else ioctl (wait for NIC interrupt);

}

105




5.3.5 Settable parameters

The implementation provides for several compile time settable parameters in the LKM:
page cluster size during page allocation for DMA ring; packet buffer size, that defines the
maximum packet size that can be received; and size of DMA ring. The run time settable
parameter in the user space drivers are: polling rate; packet rate threshold at which the
system would switch its mode of operation; and the prediction algorithm parameters - a4,

oy , np and n;.

A larger page cluster size will allocate larger clusters of contiguous pages which will
increase the extent of contiguousness in the DMA buffer. The IP packet buffer sizes
(1500 and 9000 Bytes) do not align with Linux memory page (4096 Bytes) boundaries.
So some memory is wasted if too small cluster size is chosen. To reduce this memory
wastage a bigger cluster is preferable. On the other hand bigger clusters are difficult to
allocate, DMA ring allocation failures are more likely with bigger cluster sizes. The
memory page contiguousness may have other favorable or unfavorable effects in the
memory management system, which may affect the performance of the system as whole.
Study of these effects is beyond the scope of the present work, but this settable

parameters provides flexibility for such study and optimization (if relevant).

Packet buffer size setting determines the size of the biggest packet that can be received.
Maximum size requirement for fast 100 Mbps Ethernet is 1500 Bytes, for gigabit
Ethernet it is 9000 Bytes. This settable parameter allows customization of the architecture
for such applications. Most of the UDP/IP packet sizes are generally within 600 Bytes for
NMS applications or for normal user traffic [36,37]. NIDS application will need the
maximum packet buffer size. Provisioning bigger packets means reserving and pinning
larger kernel memory, which adversely affects the system performance unless a larger

memory support in kernel is available along with larger RAM.
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A larger DMA ring is necessary to mask adverse effect of jitters in task response and
context switching times if a Linux kernel without real-time support is used. A larger
buffer reduces the likelihood of buffer overflow. A larger buffer also allocates a larger
memory which may adversely affect the system performance beyond a certain level. The
settable parameter provides flexibility to set the optimum buffer size for a given OS

kernel and hardware.

The polling rate determines the worst case packet delivery latency and the CPU
utilization. For a GPOS like Linux it also indirectly affects the task response time and
polling period jitters. Higher polling rate improves the average packet delivery latency
performance to certain extent. DMA buffer is checked for packets more frequently, so
packet idle time is lower. However higher polling rate increases the CPU utilization
sharply due to increased timer interrupt servicing and polling overheads. Higher interrupt
load due to higher polling rate also adversely affects the real-time performance of the
system, it increases jitter in task response and polling period which result higher jitter in
packet delivery latency. So for a given CPU speed, a tradeoff has to be made to decide
the polling rate. A settable polling rate allows the required flexibility to study these

effects and arrive at the optimum figure for a given OS kernel and hardware.

The threshold at which the polling engine makes a transition from interrupt based
operation to polling mode and back, is generally kept same as the polling rate, to get a
smoother transition between operation modes. However if required the system may be
forced to work either entirely in interruﬁt or polling mode. A settable threshold allows
this flexibility. A very high packet rate threshold forces the system to work in interrupt
mode, whereas a very low threshold forces the system to work in polling mode all the
time irrespective of the packet arrival rate. Such flexibility is useful to study the system

behavior and performance.
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The prediction algorithm parameters - a; , o, , n; and n; determine the inertial response
behavior of the polling engine during mode switching. Higher a; and a, values implies
stronger bias towards most recent packet arrival rate, therefore makes the system more
responsive to changes in arrival rate. It is assumed that packet traffic has stronger auto
correlation over a smaller time window. The number of packets processed is a random
variable, therefore a higher n, and n; values will reduce the likelihood of the events when
"n" can actually cross these limits n, and nj;, and when higher values of a; and o, can
have an impact. These settable parameters provide flexibility to optimize the inertial
behavior and system performance. Ascertaining the impact of these pafameters on system

performance is beyond the scope of the present study.

5.3.6 Start up and run time operations

A device node with a distinct name has to be created from the user shell with a "mknod"
command for major number 10 and minor number 240. The LKM registers itself with
with the OS by these major and minor numbers. Instead of the Linux NIC driver the
LKM is loaded in the memory by "insmod" command. After this the LKM waits for the
user space driver to start up and make requests by ioctl function calls. User space driver
is started by specifying a distinct device inode as a command line parameter. This device
name links the user space driver to the LKM. As soon as the user space driver is loaded,
it opens up an ioctl interface to communicate with the LKM using the device inode. After
initialization, the user space thread makes a mmap() request to the LKM to map the DMA
buffer in the user space. After maping the DMA buffer, the polling engine is started. The
polling engine examines the DMA ring and upon finding it empty it makes an "wait for
NIC interrupt”" type ioctl call to the LKM. The corresponding ioctl call blocks in the

LKM and the current user process (the polling engine task) thread is put to sleep in a wait
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queue. The system is now ready to receive packets, it will wake up whenever a packet

arrives. A timing diagram associated with run time operation is presented in Fig. 5.10.

Fig. 5.10: DMA ring operation
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When the first packet arrives (Fig. 5.10), the NIC transfers this packet asynchronously to
the DMA ring and raises an interrupt. The NIC ISR disables the NIC interrupt and wakes

up the blocked "wait for NIC interrupt" type ioctl. The user space thread is waked up and
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ioctl call returns to user space. If no more packets arrive by the time the user space thread
finishes processing this single packet, the user space thread computes that the inter-
packet period is higher than the threshold so it makes a "wait for NIC interrupt" type ioctl
call. The ioctl counterpart in LKM enables the NIC interrupt and then blocks the current
user space thread till the next NIC interrupt. The next NIC interrupt wakes up the user
space thread and the ioctl call returns to user space. In the mean time more packets may
arrive and may be transferred to the DMA ring by the NIC, but no more interrupts will be
raised. The waked up polling task finds these packets and process them. If there are no
pending packets in the mapped DMA ring, the polling engine computes the expected
inter-packet period. Due to the inertia the polling engine might still decide not to switch
mode and still call the "wait for NIC interrupt" type ioctl which enables the NIC
interrupt. So there might be another NIC interrupt arriving leading to another interrupt

driven processing cycle.

If sufficient number of packets have arrived rapidly and if the expected inter-packet
period is lower than the inter-packet threshold, then the polling engine decides that this
time it has to switch mode and calls the ioctl of type "wait for polling timer interrupt”.
The corresponding ioctl code in the LKM first checks whether a polling timer is already
running or not. As the polling timer has not been activated earlier, therefore it starts the
periodic polling timer. Once the periodic polling timer is started the ioctl blocks itself in

the same waiting queue as before.

Now onwards the NIC interrupts are not raised though packets may keep on arriving in
the DMA ring. Periodically timer interrupts arrive, and the timer ISR wakes up the
sleeping user process and the polling engine. Upon waking up the polling engine process
the packets available in the DMA ring. As the packets continue arriving at high rate, so
the polling engine decides to continue in polling mode and calls "wait for polling timer

interrupt" type ioctl.
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If the arrival rate is high then the polling operation is continued in the same manner as
described above, else, the polling engine makes a "wait for NIC interrupt” type ioctl call
to the LKM to initiate interrupt based operation (not shown in Fig. 5.10). The
corresponding LKM ioctl code stops the polling timer, enables the NIC interrupt and then

blocks in the same wait queue till the NIC raises another interrupt.

5.4 Implementation choices and rationale

Some aspects of the architecture can be implemented by alternative means. The most
important implementation decision is the choice of OS. Other aspects are: choice of
hardware timer; method to disable and enable interrupt; memory sharing mechanism; task
blocking and unblocking mechanism; choice of algorithm to predict packet arrival rate
and decide switching between interrupt and polling modes; placement of application
specific processing code; and measurement of time. Implementation methods, which

improved performance, reduced development effort or improved portability, were chosen.

DMA ring is vulnerable to high interrupt latency and kernel-to-user-space context
switching times. These latencies will delay the user space polling task, which clears the
DMA buffer. Bigger DMA ring size may only retard the buffer overflow to higher packet
rates, but it will not solve the problem. Jitter in vanilla 2.4 kernels are too high therefore

none of the vanilla 2.4 kernels are suitable.

Other probable OS candidates are: Redhat 8 (custom 2.4.18) Linux kernel, 2.6
preemptable kernels, Linux based RTOS which support hard real-time in user space, like
PSDD with RTLinux (FSMLabs), LynxOS (Lynux works) and hard user space real-time
support for Linux like RTAI-LXRT. 2.6 kernels are claimed to have bounded jitters [32],
hence appears to be promising. DMA ring architectures works with 2.6 kernels, but all
aspects of the performance have not be explored in details in the present work due to

paucity of time. RTLinux and LynxOS have their own proprietary kernels and therefore
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were too constraining, so those were not explored. However suitability of Redhat 8 and

RTAI-LXRT were explored and are presented in the next few paragraphs.

Redhat 8 kernel have smaller task response jitters within the given operation range
therefore could be used with the proposed architecture. Jitter in Redhat 8 was within
certain limits because the system was never loaded with high interrupt rates irrespective
of the packet rate. RTC and PIT timer interrupts were the only two sources of periodic
interrupts. PIT interrupt rate was only 512 Hz, whereas the RTC time interrupt rate was
8192 Hz. The normal background aperiodic interrupts due to hard disk, AGP display
card, mouse and keyboard activity was never high enough to cause any problem. The
intrinsic efficiency of the DMA ring architecture saved quite an amount of CPU time,

which handled any situation of high transient loads quite successfully, if there were any.

The jitter behavior of Redhat 8 Linux was quantified to ensure the performance of the
proposed architecture operating on it. Jitter in the timer period in user space can represent
the extent of these jitters in a given OS. To measure this the DMA ring architecture was
run with a very high packet rate, (148 kpps). Therefore the test scenario was an extreme
case of actual production situation. The frequency distribution of observed polling

period, for 10° samples, on a PII 333Mhz system is presented in Fig. 5.11.

Fig. 5.11: Jitter of timer periodicity in Redhat 8
(RTC timer period 122 microsec, Redhat 8, PIII 333Mhz)
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The RTC polling timer frequency was 8192 Khz, thus the periodicity was 122
microseconds. The observed worst case period was 2345 microseconds. Therefore the
maximum packet arrival rate possible on a 100 Mbps network for 64 Byte packets is
100*10%/(64*8) = 195 kpps. The corresponding inter-packet arrival rate is 1/195 = 5
microsecond. Number of packets that can accumulate in the DMA buffer due to worst
case jitter is 2345/5 = 469 packets. So a DMA buffer size of 1024 is sufficient to contain

the effects of this jitter.

In practice a DMA buffer size of 1024 or 2048 (safety factor of 4) would be used. A
DMA ring size of 2048 allowed receiving of over four billion packets without any loss
over an 8 hour continuous operation at 148 kpps packet rate with Redhat 8. The KDE
GUI and the power saving features on the motherboard was kept on. This stress test

further confirmed the suitability of Redhat 8.

Similar experiments with user space hard real-time periodic task on RTAI-LXRT yielded
the better results (Fig. 5.12). The timer period was set at 122 microsecond, whereas the
observed worst case period was 185 microsecond. Under such situation the maximum
number packets that can accumulate in the DMA buffer is 185/5 = 37, which does not

overflow a DMA buffer size of 64.

Fig. 5.12: Jitter of timer periodicity in LXRT
(Timer period 122 microsec, RTAI-LXRT with
2.4.24 vanilla kernel, PIII 333Mhz)
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Other than RTC, other hardware timers are also available, like LAPIC timer, available in
every CPU and the I0-APIC timer in P3 and P4 architectures. Programming these APIC
timers requires more effort hence for validation purpose RTC timer was used which is
comparatively simple to program. Some NIC also have programmable timers, but reliable
operations of these timers is doubtful especially when the NIC gets loaded with high

packet arrival rates.

Interrupt masking sti(), cli() operations in the CPU were not considered to disable-enable
interrupts. Because masking in the CPU would allow the interrupts to enter the PIC
system and strain it. Compared to interrupt masking at the CPU, interrupt disable-
enabling at the source hardware is better approach when multiprocessor hardware is used
because there is no contention about which CPU's interrupt has to be masked. An
interrupt can also be enabled or disabled by programming the LAPIC in case of
uniprocessor system or I0-APIC in multiprocessor system. LAPIC and IO-APIC routes
interrupts in these systems, however programming the APIC correctly requires more
effort than programming NIC I/O ports. However using the APIC to disable-enable
interrupt makes the implementation more generic across different NICs, but it is also
difficult to make the code portable across different types of motherboards (without
redundant codes that determine the PIC organization). This is because interrupt is routed
differently in different motherboards. Some boards use LAPIC, some use I0-APIC to
route interrupts. Interrupt disabling-enabling in 8259 based PIC chips are slow
operations, response is greater than 2 microsecond, whereas programming the NIC
employs two 1/O operations, a read and a write, which takes around 1 microsecond to

complete.

Instead of re-mapping kernel memory to user space an alternative possible method may
be to share the user space memory with the kernel. This possibility has not ascertained

due to time limitation.
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Instead of using ioctl system call and wait-queue mechanism to block and unblock task,
poll() function call to the LKM device node could have been made. A poll() system call
on a device blocks if there is no data available to read in the device memory, and the
poll() call returns when some data is available. But this poll() mechanism was not chosen
as it deteriorates performance. Poll() mechanism involves signaling to wake up tasks,
which is complex and consumes CPU cycles. Performance test result, presented in
chapter 7, also demonstrated that ioctl system call along with wait-queue yielded better

performance than poll() mechanism.

A modified form of the algorithm presented in [57] could have been used instead of the
implemented algorithm. However that algorithm did not favor more recent estimates to
predict the packet arrival rate. Therefore that algorithm was not chosen. Another
motivation was to employ a new method and see its performance, though study of that

algorithm is not within scope of the thesis.

To get superior performance the event data processing function may be embedded within
the poll engine loop or defined as an inline function to avoid the function call overheads.
Standard Linux/Unix system call, gettimeofday() and kernel API call do_ gettimeofday()
are not used to measure time because these are inaccurate, they do not have sub-
microsecond granularity and consumes lot of CPU cycles. On the other hand CPU clock
cycle counter provides nano-second level time measurement precision and consumes only
a few CPU cycles. Older Intel CPUs (P3, P2) are 32 bit ones, so instead of full 64 bits,
only lower 32 bits of the clock cycle counter value was used in the calculation to avoid

expensive 64 bit maths.
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5.5 Implementation in LXRT
5.5.1 About LXRT

Implementation of the proposed architecture is better appreciated with some
understanding about how LXRT and RTAI operate. RTAI or "Real-Time Application
Interface”" is not a full-fledged RTOS. RTAI just provides real-time services in any
vanilla Linux platform. The RTAI API is essentially meant for the kernel level tasks. In
RTAI, any task that has to run in hard real-time has to be a kernel task that is coded as
loadable kernel module (LKM). LXRT is a separate module which sits on top of RTAI
and vanilla Linux to extend the RTAI services in user space (Fig. 5.13). Therefore with

LXRT in place, a user space task can also enjoy hard real-time privileges.

Fig. 5.13: System architecture with RTAI-LXRT
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LXRT expose most of the RTAI kernel services in user space. The corresponding LXRT
API functions have similar name as their RTAI API counterparts, but their prototypes

may be different. These services somewhat resembles to POSIX and RTLinux's real-time
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APIs. When a real-time task is defined in user space, by a LXRT API function call
"rt_task init()", the LXRT module creates a corresponding real-time task counterpart in
the RTAI domain which is scheduled by the real-time RTAI scheduler. This real-time
task counterpart executes all the services in RTAI kernel domain on behalf of the user
space task. LXRT also provides mechanism to share data structures across kernel-user

space border.

LXRT is employed because the polling engine and data processing tasks can be deployed
as a Linux process and still be run as a hard real-time task. With LXRT the hard real-time
task do not need to be segregated from the rest of the application and put in the kernel as
a LKM. This hard real-time user space task is not a Linux user space task in strict sense,
it is a LXRT task which simple enjoys the Linux user space memory protection
privileges. It is not scheduled by Linux scheduler but handled by RTAI scheduler in
conjunction with LXRT. The code is developed, compiled and loaded in memory from
Linux as a Linux process. Once loaded, this task is migrated from Linux domain to
RTAI-LXRT domain. The task execution thread calls a special LXRT API function
"rt make hard real time()" to request this migration. This scheme has an apparent
limitation. Once the task has been migrated and it cannot call any function which leads to
a Linux system call and yet maintain its hard real-time status. If it ever makes such a call
then the task migrates back to Linux's soft real-time domain. So this essentially means
that the hard real-time LXRT task has to do without Linux system calls and functions
which lead to a system call. This is a fair tradeoff, because even in Linux real-time tasks
one has to avoid system calls as they lead to poor performance. In any case the proposed
"DMA ring" architecture is designed to operate without making any system calls during

runtime.

In other Linux based real-time platforms where hard real-time support is not available in

user space, the hard real-time tasks had to be separated out from rest of the application,
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they have to be developed as kernel tasks and have to be packaged as a LKM. In a
complex applications, segregation of tasks and components and managing the interaction
between real-time and non real-time components severely constricts and clutters the
design space. With user space support like LXRT these hurdles are removed to a great
extent. High degree of segregation is not required and LXRT services are available that

ease the real-time and non real-time task interactions.

5.5.2 Specific changes required for porting to LXRT

The LKM and user space components are similar to those of Redhat 8 implementation,
with only few implementation differences. In the user space component the "wait for NIC
interrupt" and "wait for RTC interrupt” type ioctl() system calls cannot be used, they are
replaced by two LXRT API calls to achieve the block and wait for NIC interrupt or timed
wakeup events. There could be many choices among the LXRT API that could achieve

this same purpose, however not all lead to superior performance.

In the LKM, instead of using the Linux ISR, ISR for RTAI have to be used for NIC and
RTC timer interrupts. These basic ISR codes for NIC and RTC interrupts remains the
same as in Redhat 8, only registration procedure and their prototypes are different.
Instead of registering the ISRs with Linux, they are registered with RTAI kernel by
calling the "rt_request global irq()" RTAI API function. After registering the ISRs, they
are enabled in the PIC hardware by calling "rt_startup_irq()" and "rt_enable irq()" RTAI
API functions for each ISR registered. In each ISR code, the interrupt have to be
acknowledged by calling "rt_ack irq()" RTAI API function in addition to normal
acknowledging procedure for the NIC and RTC hardware. This "rt_ack irq()" has to be
called at the exit of the ISR. The NIC and RTC interrupts are only to be handled by the
RTAI domain therefore these interrupts are not released to Linux. Just for information,

interrupts are not passed on to Linux domain unless an explicit 'rt_pend linux irg()"
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RTAI API function call is made. These ISRs wake up the blocked LXRT. There are few
implementation choices available to achieve this, but not all of them yield good
performance.

5.5.3 Implementation choices in LXRT and rationale

Pacing the poll engine: The polling engine task runs as a periodic task when polling is

enabled, but it runs as a aperiodic task when running in interrupt mode. The polling
engine task needs to frequently switch back and forth between periodic and aperiodic
modes very quickly without bounded time (Fig. 5.14). To service 100 Mbps network, this
switching has to complete within few microseconds, a larger switching time will increase

the task response jitter and will require bigger DMA buffer.
Fig. 5.14: Poll engine task switching
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Four alternatives were considered to implement this mechanism. In LXRT, a task can be
defined as periodic by calling the "rt_task make periodic()" LXRT API function. Once
the task is made periodic it will run with the predefined periodicity. No mechanism could
be found to stop and start this periodic task at will. No API could be found that can turn
the periodic task back to aperiodic mode. However theoretically this task can be stopped
if the timer itself can be modulated to start and stop at will (Fig. 5.14). As the timer
drives the periodic task, so it is hopped that this strategy can indirectly control the task.

Modulating the timer can be achieved by two ways: either by explicitly starting and
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stopping the periodic timer or by using a single shot timer. LXRT API functions are
available to start/stop a periodic timer or to employ a single shot timer instead of a

periodic one.

The RTAI kernel for uniprocessors is timed by 8254 chip based programmable interrupt
timer (PIT). Programming this PIT as a single shot timer is costly, it involves an
overhead of 15 to 20% of the time period [61]. Running the timer as monoshot mode was
not explored. Stopping this timer caused preemption of the current task for 10
milliseconds, which is unacceptable. A probable explanation for this phenomenon is

presented below.

The RTAI co-kernel for uniprocessors is clocked by PIT, which is shared between RTAI
and Linux. When the RTAI native kernel timer is set for 122 microsecond periodicity, the
RTAI programs the PIT with 122 microsecond. RTAI receives these 122 microsecond
interrupts and release them to Linux at 100 Hz rate (approximately). When the RTAI
native kernel timer is stopped, the current task thread is preempted and the PIT is
programmed back to 100HZ mode. The current task is again waked up at the next
scheduling point which happens at the next PIT interrupt event, only after 10 millisecond.
For RTAI co-kernels for SMP architectures, the native kernel timers are implemented by
LAPIC timers, hence this phenomenon may not manifest in that case and perhaps the

periodic timer can be modulated.

Due to this phenomenon, the third option of using "rt_sleep()" LXRT API function was
chosen. In this scheme the task is not defined as periodic, the timer is run in periodic
mode with periodicity of 122 microsecond. When the polling task needs to block and
wait for the next timer period, it calls the "rt_sleep()" function with a sleep time of 122
microsecond. So after 122 microsecond the polling task wakes up again to execute the

next polling cycle. This sleep function blocks the current thread until the sleep time is
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elapsed, the logic is similar to Unix/Linux sleep mechanism. But "rt_sleep()" has far
lower jitter than Unix/Linux sleep due to its real-time nature. This "rt_sleep()"

mechanism yielded a little more jitter than the LXRT periodic task jitter (Fig.5.15).

Fig. 5.15: LXRT timer jitter comparison
(Timer period 122 microsec, RTAI-LXRT on PIII 333Mhz)
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Though "rt sleep()" mechanism introduce higher jitters, but still it had to be chosen
rather than declaring the polling task as periodic. This allowed the switching of the

polling task between periodic and aperiodic modes at will.

The fourth option was to employ the RTC timer interrupts to pace the polling engine.
DMA ring operation with RTC timer based polling was also implemented on LXRT to

compare its performance against the "rt_sleep()" mechanism.

Waking up poll engine on NIC interrupt event: The NIC interrupt ISR needs to wakeup

the blocked LXRT task. The blocking and waking up of LXRT task can be achieved by
two alternate mechanisms. LXRT provides a semaphore, known as RTFIFO semaphore,
which can be shared between the user space and RTAI kernel space. A task can take this

semaphore only if it is free, if the semaphore has already been taken by another task, then
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the requesting task blocks till the requested semaphore is freed up by the other task. The
requesting task unblocks when the semaphore is available. This binary semaphore is
created with an initial value "0", which means semaphore has unavailable status. The
LXRT polling task requests for the semaphore and blocks itself by making a
"rtf sem wait()" LXRT API call. When an NIC interrupt arrives the ISR makes a
"rtf_sem_post()" call to release the semaphore, i.e. change the semaphore value to "1". As

a result the LXRT task wakes up.

An alternate way to achieve this same blocking waking up operation is to use task
suspend-resume mechanism. In this scheme the LXRT task suspends itself by making
"rt_task suspend()" LXRT API call with its own task id as the argument. When a NIC
interrupt arrives, the ISR resumes the blocked LXRT task by calling "rt_task resume()"
RTAI API function. The task id is registered with the LXRT so that the same task id is

available in both kernel and user space.

Usage of RTFIFO semaphore was suggested in the RTAI documentation code examples,
this scheme works fine as long as the interrupt rate is low, however it fails under high
operation cycle rate above 6.5 kHz for the given PIl 333Mhz hardware. Therefore the
suspend-resume scheme was used in the present work. The RTC timer interrupt ISR also

wakes up the LXRT task by similar suspend-resume mechanism.

5.6 Modifications carried out in the existing NIC driver

The existing Linux NIC driver was modified to implement the required LKM for Redhat
8 and this LKM was then ported to RTAI-LXRT. All Linux PCI NIC drivers follow a
similar pattern in code organization and operations, so the modifications can be localized
within few specific well defined areas in the driver code and the modifications steps can
be defined. The existing code for PCI resource, network media and NIC hardware

management was retained as it is. These portions embody the NIC hardware specific
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knowledge. No modifications are carried within these codes. These required

modifications are generic and applicable to all PCI NICs. Modification of the existing

driver allows reuse of the existing open source code. This avoids the need for knowing

the NIC hardware specifics and developing the code to manage the NIC hardware from

scratch. This saves substantial design and development effort. Other NIC driver can be

similarly modified if these NICs are to be used to implement the proposed architecture.

5.6.1 Modifications for Redhat 8 implementation

A few new code segments are added in the existing module structure which are marked

by "new". The code for the following operations were added in the following twelve

arcas:

@)

(i)

(iif)

(iv)

W)

Data structure declarations: All additional data structures required to

implement the LKM are added.

Module initialization code: Access to RTC timer ports are setup along with
the ISR for the RTC timer interrupt. The miscellancous device is also

registered here.

Module exit and clean up code: RTC ports and interrupt are released and

miscellaneous device is de-registered.

Device setup: Allocate memory for the miscellaneous device data-structure,
compute memory requirement for entire descriptor ring in term of whole
memory pages, reserve and pin memory pages for descriptor ring, and create

the descriptor ring.

Device initialization: Allocate memory for packet buffers in contiguous
memory segments, pin those memory pages, setup/map these packet buffers

for DMA transfer.
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(vi)  Device shutdown: Unmap DMA region, unpin and free the memory pages

allocated to packet buffers.

(vil) Miscellaneous device "open" implementation (new): Increments the device

usage counter.

(viii) Miscellaneous device "mmap" implementation (new): Maps the memory

pages hosting descriptor ring and the packet buffers to user space.

(ix)  Miscellaneous device "close" implementation (new): Decrements the device

usage counter.

(x) Miscellaneous device "ioctl" implementation (new): The two ioctl functions
corresponding to "wait for NIC interrupt" and "wait for RTC interrupt" are

implemented.

(xi)  Interrupt sub-routine for NIC: Generally packet receiving is implemented as a
function which is called from the ISR. This single function call in the ISR
code is replaced by two or three statements to disable the NIC interrupt and to

wake up the blocked user space thread.

(xii) Interrupt sub-routine for RTC timer (new): RTC timer register is read to
enable it for next interrupt (RTC specific feature) and blocked user space

thread is woken up.

The more intricate modifications like packet buffer allocation and freeing operations
were packaged inside the two library functions - dev_alloc skb from page() and

dev_kfree skb from pages().
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5.6.2 Modifications for LXRT implementation

The NIC driver developed for the DMA ring architecture for Redhat 8 was ported to

work with RTAI-LXRT by making the following minor modifications:

(1) Module initialization code: Instead of setting up the NIC and RTC timer

interrupts for Linux, these ISRs are setup for RTAL

(i)  Module exit and clean up code: NIC and RTC timer interrupts are released

from RTAL

(iii)  Interrupt sub-routine for NIC: The prototype of the existing Linux ISR is
simple changed to the prototype for RTAI ISR, the internal code remains the

same.

(iv)  Interrupt sub-routine for RTC timer (new): Only the prototype is changed

from Linux ISR format to RTAI ISR format, internal code remains as it is.

5.7 Performance analysis and limitations

Fig. 5.16 presents the operations of the DMA ring architecture in case of high packet
arrival rate.

Fig. 5.16: DMA ring operation at high packet rate
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For high packet arrival rates when the DMA ring architecture operates in polling mode,
the invocation to a polling cycle and exit from it involves a system call return and a
system call invocation respectively for every poll cycle. The time spent in the system call
is the polling overhead. The total execution time for DMA ring is aggregate of the time

spent in packet processing and the time wasted in polling overheads.

DMA ring architecture has simple form with a single task thread, therefore the CPU
utilization is largely governed by Eqn. 2.3, section 2.1.2. For a given packet rate and

polling rate the CPU utilization is given by -

=toon * fron top * for v o Eqn. 5.4

where - tpoy is the polling cycle overhead in seconds, i.e. time required to invoke
and shutdown each poll cycle.

fpon is the polling frequency.

tpp is the time required to process each packet.
fpr is the incoming packet rate.

neg is CPU utilization due to background tasks.

CPU utilization increase with incoming packet rate. Till the CPU utilization hits 100 %,
the architecture can tolerate higher packet rates without any loss. The packet rate which
causes 100% CPU utilization is considered as the upper bound of no loss capacity. This is
given by -

_ V=06 —teon * frar . Egn. 5.5

tpp

The average packet delivery latency is given by the special case of Eqn. 2.6, section
2.3.3, where there is only one task. However the jitter in task response time and context
switching time will affect the packet loss and no loss throughput capacity, these would be
much worse than those given by Eqn. 2.1, section 2.1.2. Jitters in task response and

context switching times deteriorates the no loss capacity and aggravates the packet loss

126



even the system may have enough capacity. So performance will be poorer in case of
Redhat 8 compared to RTAI-LXRT, as Redhat 8 has higher task response jitter. DMA
ring architecture has simple form, it has a single task thread, hence the architecture is

scalable, i.e. the system dynamics will scale linearly with the CPU and network speed.

5.8 Summary

Unlike NAPI and PFRING, "DMA ring" employs additional strategies to avoid the
following problems: data copy operation; memory allocation operation; frequent context
switching between ISR, softirq and user space contexts; problem of buffer overflow
arising out of smaller buffer size and lack of execution balance between tasks; and high
kernel-to-user-space borders crossing costs. It also minimized the effects of high interrupt

servicing overheads.

The differentiating features of DMA ring are - low fixed polling rate (polling overheads
amortized over many packets), less context switching, minimal protocol processing, no
border crossing for data, no copy, no memory allocation operation, simplified
computation to decide operation mode (polling or interrupt), no need for task balancing
and simple buffer overflow management (simply increase the DMA buffer size).
Appropriate implementation choices are as important as the architectural design to gain

superior performance.
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Chapter 6: Performance Evaluation: Measurement
Techniques, Instrumentation and Experimental Setup

The performance of the proposed and existing architectures have to be studied and
compared against specific benchmarks. Performance evaluation and comparison criteria
are based on robustness, system resource requirements and the four performance
elements previously described (section 2.3.1). To evaluate and compare performances,
measurement of certain variables are required. This involves limited amount of non-
invasive instrumentation (from kernel's point of view) on the architectures. The next few
sections explain the rationale behind the performance evaluation framework, the

instrumentation required and the test setups.

6.1 Evaluation criteria and rationale

Only run time performance aspects of the operations are covered by the four basic key
performance elements: no loss throughput capacity; packet loss percentage; packet
delivery latency; and CPU utilization. The rationale for choosing these four had been
discussed in Chapter 2. In addition to these, memory requirements and robustness aspects
of the architectures also have to be considered. Some of these architectures reserve
significant amount of memory during setup time, which is not available for other
purposes. The amount of reserved memory indicates the memory requirement of the

architecture.

In the present context, robustness is defined as the ability of the system to perform even
in the presence of other non-network tasks. If CPU resources are available then even the
heaviest data processing task should successfully complete irrespective of the amount of
pending non-network task. The event data processing task in the user space has real-time

high priority (RT FIFO priority = 99) in all these architectures, so any other low priority
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user space tasks will not compete with this task for CPU resources. Only high priority
kernel tasks or ISRs can preempt this user space task and steal CPU resources. In Linux,
NAPI and PFRING, the kernel or ISR tasks involved in network processing will get
preempted by other non-network ISRs. These other non-network kernel tasks and ISRs

will cause higher packet delivery latency jitter and packet loss in worst case.

Computation intensive tasks are generally caused by applications which run as user space
task with non-real-time priority. Therefore these do not compete with high real-time
priority network processing tasks (user space/ kernel /ISR). High priority background
kernel tasks run by OS for system management are comparatively infrequent. The non-
networking tasks which can preempt the networking tasks (user space/ kernel /ISR) are
mostly due to interrupts involved with asynchronous I/O activity. Interrupt based I/O
affects the packet receiving architectures most. Therefore it is important to note the
effects of these non-networking asynchronous I/O on the performance of these

architectures.

Under robustness criteria, packet loss due to transient non-networking I/O are only
considered. This is justified because a packet capturing system is expected to run on a
dedicated system, which provides no other services. This system is not expected to have
heavy average non-networking 1/O activity as in a file server. However any system is
expected to have some transient I/O due to hard disk or GUI activities. Availability of
spare CPU resources plays an important role in masking these performance degrading
effects of transient I/Os. If more spare CPU resources are available then the architectures
are in a better position to endure these transient non-networking I/O tasks. Robustness in
any architecture may be obtained by leaving spare CPU resources to handle transient
overloads. However one would like to allocate as much as CPU resources possible for
event data processing tasks rather than leave them spare. So robustness of an architecture

has to be ascertained along with CPU availability for event data processing. An
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architecture which is intrinsically robust and which does not get affected by non-
networking I/0, will allow more CPU resources for event data processing tasks.
Therefore in an intrinsically robust architecture a higher fraction of free CPU resources is
actually available for event data processing without risk of packet loss due to overload by
transient 1/0 activities. Effect of non-networking transient I/O on packet delivery latency
is not considered separately as one measure itself can reasonably represent the robustness

aspect.

Transient I/O may be caused due to GUI (mouse, keyboard) and hard disk activities.
These transient I/Os demand significant CPU resource, result high hard disk interrupts,
DMA, AGP, PCI bus activities and associated bus locking. In a robust architecture these
transient I/O due to user activity should not cause significant packet loss. In addition to
this, a robust architecture should also allow higher amount of data processing per packet

without causing any packet loss.

There are two aspects related to robustness that has to be measured - (1) maximum event
data processing load that the system can bear and (ii) robustness of the system against
transients at this maximum load. All the free CPU resources as shown by the CPU
utilization profile of the DMA ring may not be available for use, some portion of the
CPU has to be left aside to buffer the transient overloads. Transient overloads cause task
response jitters which can be masked by larger DMA buffer size. So for a given DMA
buffer size, how much CPU resources can actually be used for event data processing task
without causing packet loss is first ascertained. Then to establish the robustness aspect,
transient overloads are created, by GUI and hard disk activities like mouse clicking,
console switching, launching programs, browsing /dev and other directories on hard disk
in rapid succession, while the system is bombarded by highest possible packet rate. If
there is no packet loss then the system is considered to have passed the test. This pass-fail

test is carried under two conditions - with minimal event data processing load and with
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maximum tolerable event processing load which soak up a significant fraction of the
available CPU resources. For a given packet rate, the event data processing load can be
either minimal or heavy depending on the amount of data processing carried out per
packet. This test establishes how much CPU resources is actually available for the data

processing work for a packet receiving architecture.
To sum up, the performances of the existing solutions and the proposed architecture is
evaluated against the following seven criteria -

(i) maximum tolerable packet rate with no packet loss (no loss capacity),

(i) system throughput and packet loss percentage at packet rates higher than no

loss capacity,
(iii) CPU utilization at various packet rates,
(iv) packet delivery latency at various packet rates,
(v) memory requirement,

(vi) maximum CPU resources that can be utilized for event data processing

without causing any packet loss.

(vii) ability to withstand transient I/0 loads and jitters even under large event

data processing load.

6.2 Variables to measure, required instrumentation and test methodology

To evaluate an architecture against the seven performance criteria (section 6.1), the

following variables have to be measured -
e packet loss

e CPU utilization
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e packet delivery latency
e memory requirement

e maximum amount of free CPU resources that can be used for event data

processing.

6.2.1 Detection, measurement of packet loss and system throughput

The extent of packet loss is represented as a percentage of total number of packets
arriving at the NIC. This percentage is computed for each 1 million packets arrived. A
sample size of 1 million packets is big enough to represent a realistic average packet loss
behavior. A large sample size also manifests a lower variance in the packet loss

observations.

To measure aggregate packet drops, counting number of packets received at the receiver
end is sufficient. However to observe the patterns in packet loss, a more elaborate
mechanism is employed. To note these patterns, each packet is stamped with an unique
sequence number by the packet sender. The sequence numbers of the consecutive packets
form a series of monotonically increasing consecutive integers. After receiving the
packets, the packet sequence numbers are checked to detect and count the absent
sequence numbers. From the series of packet sequence numbers extracted at the receiver
end, the bursty behavior of packet drops or packet reordering can be observed. The length

and instance of the loss bursts and extent of packet reordering can be computed.

In an ideal case with no packet loss or reordering, the received packets will deliver a
series of monotonically increasing consecutive packet sequence numbers. In such cases,
the absence of a sequence number in this monotonic series indicates a packet drop. At the
receiver end, the sequence number is extracted from the packet data payload and

compared with the sequence number extracted from the previous packet. If the difference
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in the consecutive sequence number is greater than one, then a drop in packet is
acknowledged. The number of packets dropped in this case is estimated as the difference
of the two consecutive sequence numbers minus one. The aggregate of all drops gives the
total packet drop, whose percentage may be computed for a given amount of packets

send.

Reordering of packets may happen when packets travel across multiple network segments
through multiple routers over redundant links or when a multi-processor hardware
platform is involved in the receiving side. Multi-processor systems may run multiple
concurrent threads on multiple CPUs to carry out receiving processing and may deliver
packets out of order. However the present work focuses on the performance of software
components on a low power uni-processor, hence the tests setups employed only uni-
processor platforms and single passive network link without any routing device. The
packet loss due to data link or hardware bus errors are negligible (~107° or less) so for all
practical purposes the number of packets arriving at the receiver is equal to the number of
packets send and packets suffer no reordering in transit or at the receiver (section 2.1.1).
Therefore this method to detect and measure packet loss is valid for the given problem

context. This same setup can also be used to study packet reordering in networks.

For all the tests UDP/IP packets were used and UDP data payload carried the packet
sequence number. The packet generator, which sends packets, was implemented with a
modified "pktgen" module that came with Redhat 8. This module was modified to
generate and inject packet sequence numbers in the UDP payload. Newer versions of
"pktgen" modules, which are packaged with 2.6 kernels or available from the web were
not used, though they incorporated packet sequence number feature. The readily available
newer versions of "pktgen" modules consume more CPU resources and may not yield
high packet rates. This "pktgen" module can be configured to send a specific number of

packets with a specified inter-packet period. The inter-packet period determines the
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packet rate for a given CPU and OS platform on which this module runs. It is also
possible to configure the module to generate a continuous stream of packets and specify
other protocol and packet parameters like packet length, source, destination ports, IP
address and MAC identifiers. The packet loss detection and measurement code which

executed on the receiver, was implemented in the user space for all cases.

To measure packet loss profile of a given architecture, the receiver system is bombarded
with 1 million packets at high packet rates and the packet loss percentage is noted for
each packet rate. The maximum packet rate which gives no loss (0%) indicates the
maximum tolerable packet rate or no loss capacity of the system (first criteria, section
6.1). The packet loss profile at packet rates higher than the no loss capacity indicates the
packet loss behavior of the system. (second criteria, section 6.1). The output packet rate
for a given input packet rate can be obtained by multiplying input packet rate with the
percentage of packets received. The system throughput profile is obtained by plotting

output rate against the input packet rates.

6.2.2 Measurement of CPU utilization

CPU utilization is measured as a percentage of the total available CPU time, averaged
(moving average) across a specific time period. Available CPU time is the resource
available for the user space tasks, so it is less than total CPU resource/time minus the
time taken by kernel tasks. CPU utilization is a random variable but manifests a lower
variance if a wider moving average window is chosen. To measure CPU utilization a tool
named "cyclesoak”, downloaded from the web, was used. This tool runs a lowest priority
idle task in the user space, which loops continuously. The system measures the number of
loops possible per unit time. This tool is first calibrated by running it under no network
load condition with no other user space tasks or non-essential service daemons running.

During calibration the tool notes the number of loops possible at no load ("N"). By
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running this tool on the same system at the time when an architecture is processing
packets, the number of loops under load ("n") is measured. The remaining CPU time
under load is available from the ratio - number of loops under load divided by number of
loops under no load. The actual CPU utilization by the packet receiver is given by one
minus this ratio. A lower "n" means higher CPU resource consumption or utilization by
the architecture. The tool displays the system load as a percentage (1-n/N)*100 every few
seconds, a parameter which was set to 2 seconds. 2 seconds provides a wide moving
average window and yields a smaller variance between CPU utilization observations.
Popular Linux/ Unix tools like "top" was not used, as it does not give accurate results as

"cyclesoak".

These architectures do not work on the same base OS platform, hence there may be
variations in the CPU utilization due to OS factors. Before measuring the CPU utilization
of the architectures, the "cyclesoak" tool was first calibrated for the respective platforms,
but not against a single common platform. Therefore these CPU utilization figures have
to be normalized against a common base to allow comparison. This normalization is
carried out against the most efficient platform which allows the highest no load loop

count.

6.2.3 Measurement of packet delivery latency

Packet delivery latency for the software architecture is defined as the time period
between the instant when a packet is DMA transferred to the host memory and when it is
delivered to the user space after necessary protocol processing. It is represented in micro
seconds. Packet delivery latency does not include delays in the NIC hardware.
Determining this latency accurately and deterministically is a challenge, it can either be
measured with a limited degree of accuracy or its statistics can only be estimated. The

variance or jitter in the observed latency is significant, so rather than the individual
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packet delivery latency values, their statistics is of interests in the present work. The
latency statistics are represented as a tuple - the average latency and the 98™ percentile
for a sample size of 10°. There are multiple ways to estimates these statistics - from
observed samples, by analytical estimation or a combination of both. Experimental
packet delivery latency data can be obtained if the packet DMA transfer event can be
ascertained deterministically. For polling based packet receiving operations, it is
impossible to determine the exact moment when a packet is transferred to the host
memory, whereas for interrupt based operations recording the packet arrival time requires

special instrumentation.

For Linux, PFRING and interrupt operation

For interrupt driven architectures like Linux and PFRING, the packet delivery latency
comprises of delays due to interrupt latency, the ISR response time, the time spent in
kernel task execution, if any, and the kernel-to-user space context switching time (Fig.

6.1).

Fig. 6.1: Packet delivery latency measurement in interrupt based architectures
(Redhat 8, PII 333Mhz, 3C905B-TX, 64B UDP/IP)
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The kernel task in Fig. 6.1 is shown in dotted line because PFRING does not have any
kernel task other than ISR, whereas it exists in Linux. The challenge of estimating packet
delivery latency lies in measuring the interrupt latency delay component accurately. The
interrupt latency comprises of delays due to IRQ dispatch though the PIC hardware and

OS's interrupt dispatcher code response time which delays the ISR invocation (Fig. 6.1).

Invasive procedures like inserting instrumentation code in the kernel requires tampering
the kernel source code and kernel re-compilation, therefore it is not preferred. The packet
delivery to user space event is synchronous and can be determined easily without
invasive instrumentation. A simple time recording probe put in the user space gives the
time when a packet reaches the user space (Fig. 6.1). On the other hand it is impossible to
determine the exact time when a packet is DMA transferred or when the NIC raises the
interrupt. Only the instant when an ISR is invoked can be determined fairly accurately
with non-invasive instrumentation like putting a time recording probe in the ISR, in the
NIC driver code (Fig. 6.1). Invasive instrumentation strategies like putting a time
recording probe in the interrupt dispatcher code of the OS can only account the response
time of the OS interrupt dispatcher but not the delays in the PIC hardware. Delays due to
IRQ dispatch though the PIC hardware can be accounted only if instrumentation support
is available in the NIC hardware. Some NICs provide instrumentation support to measure
interrupt latency with limited degree of accuracy. In the present work the instrumentation
support available in the NIC (3Com's 3C905B-TX) hardware was exploited to measure

the entire interrupt latency without any invasive instrumentation.

A 8 bit counter was available in the NIC which starts counting from zero after the NIC
raises an interrupt to indicate that DMA transfer of a packet has been completed. The
counter increments every 3.2 microsecond. The host can read this counter to ascertain the
instant when the DMA transfer was completed. However this approach has two

limitations. The time of interrupt event can be determined with an accuracy of +1.6
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microseconds at best. The host has to read the counter before (2%-1)¥32 = 816
microsecond has elapsed, as the counter is only 8 bit wide. This upper limit of 816
microsecond puts severe limitations on when this counter can be read. Interrupt latencies
have worst case jitters in order of 365 microseconds, ISR response jitters are in order of
665 microseconds, whereas user space latencies (kernel execution and kernel to user
space context switching time) are in order of 4000 microsecond or more. So this means
that the reading of the counter has to be performed at the beginning of the ISR without
delaying any further (Fig. 6.2). The code to read the NIC counter can be placed in two
ways with respect to the other time recording probe P1 (option I and II, Fig. 6.2). This is
discussed in details in the following paragraphs. The kernel task in Fig. 6.2 is marked by
dotted line because PFRING does not have any kernel task other than ISR, whereas it
exists in Linux.

Fig. 6.2: Placement of probes in interrupt based architectures
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Reading the NIC counter at the beginning of ISR does not allow inclusion of ISR, kernel
task response times, and the kernel to user space context switching times in the
measurement and thus these have to measured separately. The aggregate of these times
can be measured by putting two time probes, P1 and P2, as in Fig. 6.2. Probe P1 records
the event when the ISR was invoked and probe P2 marks the event when the packet is
delivered. The difference of these two recorded times gives the aggregate kernel time, i.e.
the aggregate of ISR response, kernel response and kernel to user space context switching
times. The packet delivery latency can be computed by adding these two observed time

differences - the interrupt latency and the aggregate kernel time.

The placement of NIC counter reader and probe P1 can be done in two ways, option |
and II in Fig. 6.2. In option I, the probe P1 is placed before the probe which records the
NIC counter value. In option II, P1 is placed after this NIC counter reader. Let At be the
difference between the time recorded by probe P1 and the time represented by NIC
counter. Under scheme, option I, this small time interval At is counted twice, it is
included once in the interrupt latency measurement, and again in the aggregate kernel
time measurement. Whereas the scheme, option II, overlooks it completely, it is neither
counted in the interrupt latency measurement nor in the aggregate kernel time
measurement. At is a small enough interval to ignore in most cases, unless the ISR gets
preempted during that interval. There is fair amount of possibility that the NIC ISR may
get preempted by another ISR and this time interval At may stretch to 600 microsecond or
more (experimental observation). For worst case scenario analysis of these real-time
receivers it is better to count this interval twice rather than ignoring it completely, so

instrumentation option I is chosen.

There is some likely hood that the ISR may be preempted as soon as it starts, and this
preemption might happen even before the NIC counter is read. Both events, i.e. an

extremely long interrupt latency of 300 microsecond and a long ISR preemption even
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before the NIC counter is read, may happen one after another for the same interrupt
event. An ISR preemption of over 600 microsecond may be possible. Thus theoretically,
the total time of these two events may stretch over 900 microseconds, so such occurrence
may cause the NIC counter to overflow. However such occurrence is extremely unlikely,
no such occurrence was ever observed during any experiments even under heavy
interrupt load over large sample sizes. In worst case the ISR latency plus At remained
bounded within 665 microsecond (experimental observation), so the NIC counter does
not overflow and it can be deployed successfully. So option I is a valid instrumentation

method.

The time recording probes, P1 and P2 are simple assembly instruction ("asm"
declaration) within the "C" code to record the lower 32 bit of Intel Pentium CPU clock
cycle counter value. The time interval (microseconds) between two time recording probes
is obtained by dividing the difference of the counter values by the CPU clock speed
(Mhz).

This instrumentation scheme generates two sample data sets - one for the interrupt
latency, another for the aggregate kernel time. The packet delivery latency is the total of
interrupt latency and the aggregate kernel time. Interrupt latency is independent of
aggregate kernel time. Therefore the packet delivery latency statistics can be computed

from the interrupt latency and aggregate kernel time statistics.

Thus the expected (average) value of the packet delivery latency is given by -

= /‘llL + luresp'CS ............................... (Eqn 61)

where -
i is the expected value of the interrupt latency and

Wresp-cs 1S the expected value of the aggregate kernel time.
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The 98" percentile of the packet delivery latency is given by -

where -

=l gt tresp 05,99 eiieeeeneiiiienenean,

trL, 99 1S the 99™ percentile of the interrupt latency and

tresp-Cs, 99 1S the ggth percentile of the aggregate kernel time.

The statistics - i, Hresp-Css i, 99 and tresp-cs, 99 are computed from observed samples with

1 million sample size. All these statistics were computed from the same sample space of

1 million packet arrivals. Once these statistics are available the statistics of the packet

delivery latency can be estimated from these utilizing the Eqn. 6.1 and 6.2.

The instrumentation architecture for Linux and PFRING is presented in Fig. 6.3.

Path of data
packet

aggregate kernel time sample collection

User space

= Latency |

............................................. >| computation and I

........................ > | data logger

Time recorder
probe P2

Kernel layer

NIC driver

Time recorder
probe P1

NIC counter
reader

Network
Media

NIC

Host Hardware

Fig. 6.3: Instrumentation architecture for interrupt latency and
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The architecture consists of two class of components - probes and a centralized
computational and data logging component. The probes either read the NIC counter or
collect event time and supply these information to the centralized component. The probes
are embedded in suitable locations which facilitate the collection of the required data. For
this case the NIC counter reader and probe P1 that notes the ISR invocation event time
are placed at the beginning of NIC interrupt's ISR as mentioned in Fig. 6.2, option I. The
probe P2 that records the packet delivery event time is placed in the user space, it
executes as soon as the datagram socket "recvfrom()" call returns. The computational
component receives the NIC counter value, computes the interrupt latency, receives the
time values from P1 and P2, computes the difference of time received from probe P1 and
P2, constructs the frequency distribution of these two latency/time variables: interrupt
latency, aggregate kernel time, and then logs them in the memory in real-time. Once one
million sample have been collected the data logger writes the summary statistics on a disk
file. The probe P2 and the centralized component execute on the same user space thread

that reads the datagram socket in a tight loop.

The NIC counter reader and probe P1 placed in the ISR injects their values in the packet's
data payload. When the packet reach the user space, the centralized component extract
these two values from the packet's data payload. By utilizing the packets to carry the
instrumentation data flow across the kernel-to-user space border, the effects of
instrumentation on the system was minimized. This scheme consumed a very small
fraction of CPU resources and did not affect the measured variables significantly. These
are test packets carrying no valuable data, hence this mechanism could be used without
any problem. Probe P2 directly reports its value to the central component, as both are

within same user space thread.

142



For DMA ring and other polling operation

For hybrid architectures like DMA ring, the packet delivery latency during the interrupt
mode operation is estimated in same manner as in interrupt driven architectures, whereas
during polling operation, it is estimated analytically. A practical hybrid system may
operate both in interrupt and polling mode for certain range of input packet rates. For
those packet rates, the packet delivery latency statistics are estimated by both the
methods, and then the highest values from the two sets are accepted as a conservative

estimate.

During polling operations the packet delivery latency samples cannot be determined from
experimental data. There is no interrupt to mark the packet transfer event. However the
statistics of this latency can be analytically estimated based on the observed polling
period statistics. Invocation of polling cycle and packet arrival are independent events,
therefore with respect to the polling time frame the packet arrival event is random.
Polling is synchronous with system reference time frame, but packet arrival event is
asynchronous to it. In such scenario, with a system reference time frame, the packet
delivery latency is a random variable which is uniformly distributed between "0" and "T",
the polling period, with expected value being "T/2" (Fig. 6.4). In worst case, a packet will
have to wait for time "T", till the next polling cycle to get processed and delivered to the

user space. The 99™ percentile for such a uniform distribution is given by 0.99*T.

Fig. 6.4: Probability density function for packet arrival event
with respect to system time frame

Probability density P(t)

172 0.99*T T Time "t"

143



For practical systems the polling period "T" itself is an independent random variable with
significant jitter. So the 98™ percentile for packet delivery latency in practical polling

system is given by -
= (.99 * (99" percentile of polling period) .............. (Eqn 6.3)

because these two random variable are independent and (0.99 * 0.99) = 0.98, which

corresponds to g percentile.

The average/expected packet delivery latency statistics is given by -
Hr (Eqn 6.4)

where pr is the expected value of the polling period.

The expected value and 99™ percentile of the polling period can be estimated from the
observed polling period samples. For a given set of polling period statistics, the expected
value and 98™ percentile statistics of packet delivery latency can be computed using Eqn.

6.3 and 6.4.

For NAPI and PFRING with NAPI

For both NAPI architectures, the packet delivery latency during the interrupt mode
operation is estimated in the same manner as for Linux or PFRING, where as during
polling operation it is estimated analytically as done for DMA ring. For packet rates
when NAPI architectures operate both in polling and interrupt mode, the packet delivery
latency statistics are estimated by both the methods, and then the highest values are

accepted.

However as NAPI polling is measured at kernel so the packet delivery latency jitter in the

user space is given by the polling period latency jitter plus the aggregate kernel time
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jitter. Thus for NAPI polling the expected (average) value of the packet delivery latency

is given by -

_Hpotipra
- 2 + :u resp—CS

where - Wpolprd 1S the expected value of the NAPI poll period measured in kernel and

resp-cs is the expected value of the aggregate of kernel kernel time.

The 98™ percentile of the packet delivery latency is approximately given by -

= tp()llprd 99 + tresp —CS8,99 iiiiiiiieeriieireeaaes (Eqn 66)

where - tpoiiprg, 99 1S the gg'h percentile of the NAPI poll period and

tresp-Cs, 99 1S the 99th percentile of the aggregate kernel time.

The instrumentation architecture for measuring poll period in DMA ring, NAPI and

PFRING with NAPI is presented in Fig. 6.5, next page. The probes, P3 and P4, collect

the polling cycle invocation event time and report to the central component. The central
component computes the time difference between two consecutive polling cycle
invocation event to get the polling period sample. After sufficient number of samples has
been collected the logger writes the summary statistics to a disk file. Probe P3 marks the
packet delivery event at user space in NAPI, PFRING with NAPI and DMA ring. In
DMA ring, the difference between two consecutive P3 time measurements gives the
DMA ring polling period. For DMA ring architectures the polling engine is run by a user
space thread, hence probe P3 is embedded inside the user space polling engine (Fig. 6.5)
to record the polling period in the user space. In this case, P3 directly sends data to the

central component, as both are within same user space thread.
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Fig. 6.5: Instrumentation architecture for polling period
sample collection
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Probe P4 is only used in NAPI and PFRING with NAPI, the difference between two

consecutive P4 time measurements gives the NAPI polling period. For NAPI
architectures, the polling engine is run by a kernel thread which invokes the packet
handling function implemented in the NIC driver. Therefore the probe P4 is embedded at
the beginning of that specific function inside the NIC driver (Fig. 6.5) to note the polling
period in the kernel space. The time data from P4 is piggybacked on the packet data
payload as in case of packet delivery latency data collection in Fig. 6.3, for similar
reasons. For NAPI architectures, the difference of time recorded by P3 and P4 gives the

aggregate kernel time when the NAPI polling is sustained.
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6.2.4 Ascertaining memory requirement

Some architectures require significant amount of reserved memory to provision large
buffers. The NIC driver for all these architectures have very similar codes. So only buffer
memory requirements are accounted, run time or stack requirements are not considered.
Compared to the small difference in run time or stack memory requirements for various
architectures the difference in buffer memory requirements is the dominant
differentiating factor when memory requirement is concerned. This justifies the adopted

memory accounting policy for comparison purpose.

Accounting of memory requirement do not involve any instrumentation, only the buffer
sizes used in the architectures are noted. The memory requirement is computed by
multiplying largest packet buffer size with the DMA buffer, packet queue, socket buffer
sizes. Largest packet size possible under Fast Ethernet (100Mbps) is 1500 bytes, and for
Gigabit Ethernet (1Gbps) is 9000 bytes. For the present problem context, largest fast
Ethernet packet size of 1500 Bytes was assumed, and each packet buffer on the DMA
buffer in all the architectures were provisioned for 1536 Bytes. The extra 36 byte space
was allowed to align the IP payload to 32 bit boundary in memory. DMA buffer is
allocated in the setup time, and does not vary with system load. Whereas packet queue
and socket buffer is allocated on demand during run time. Kernel packet queue and
socket buffer memory requirements were also accounted as applicable. The worst case
requirement of kernel packet queue and socket buffer memory is accounted in the present

analysis.

6.2.5 Assessing maximum available CPU resources and robustness

To simulate a heavier per packet data processing load, a looping code segment which
multiplies two bi-dimensional matrices of double sized floating point numbers, was

employed. By varying the loop size a variable event data processing load was simulated.
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A range of loop sizes were tried out to identify the maximum event data processing load
which a given architecture can bear. The CPU utilization for the maximum tolerable load
was noted. This maximum load is represented as total or additional CPU utilization

figures.

Once the maximum load was identified, then the robustness test was carried out at
maximum packet rate for no load and maximum tolerable load conditions. Transient
loads were simulated by GUI and hard disk activities. To simulate transient high jitter the
video power shutdown feature of the motherboard was employed. When there is no user
activity on the system, the system shuts down the video power after some time. When
either keyboard or mouse is used the video power and video operation is restored. The
restoration of power cause sufficiently large jitter. This test can verify endurance of an

architecture against large system response jitters.

6.3 Test setups

To study and compare performances of the architectures, seven receiver test setups and
one packet generator setup was arranged. The packet generator and receiver setups were

connected with each other by a cross-over CAT 5 cable (Fig. 6.6).

Fig. 6.6: Hardware setup for the performance tests
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The CAT 5 cable being a passive component, therefore there is no packet loss or packet

re-ordering in transit.

The packet generator is implemented with the modified "pktgen" module (section 6.2.1).
The packet generator setup ran on Redhat 8 on a PIII 866 Mhz, 256 MB Compaq desktop
with a 3Com905B-TX 100 Mbps NIC. The packet generator was capable of generating
64 Byte UDP packets at the rate of 148,000 packets per second (148 kpps) which
consumed 75 % of the line speed. Due to various protocol overheads only 75 % of the
line speed is available for data transfers at this low packet sizes (64 bytes). Other
researches achieved 1488 kpps with 1 Gbps Ethernet networks for similar small packets
[62] with other packet generators. So it seems that the setup packet generator covered the

entire possible operating range.

All the seven receiver setups ran on PII 333Mhz 192MB RAM Dell desktop with a
3Com905B-TX 100 Mbps NIC. The same hardware were used for all the seven receivers.
The rationale for using these slower CPUs is presented in the next section. The receiver
architectures and the OS kernels were loaded on separate hard disks (HDD1 to 3) and
these hard disks were switched as required. All the receivers ran along with the same
Redhat 8 KDE GUI on their respective OS kernels. Most of the service daemons which
normally run a Redhat 8 system were shutdown except a few essentials like "syslog",
"xinetd", "autofs", "random" and "network". These daemons are essential for system
management, logging and operations. For all receiver setups the same default kernel and
network settings were maintained. All the kernel versions were very close to each other -
Linux version 2.4.18 (Redhat 8), 2.4.23 (PFRING) and 2.4.24 (RTAI-LXRT). So the
differences in CPU utilization were mainly due to differences in system clock rate (HZ
value), differences in packet receiving architectures and due to scheduler differences like
presence of real-time scheduler (in case of RTAI) or presence of low latency schedulers

(in case of Redhat 8). Even these differences were properly accounted for during data
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analysis. Redhat 8 KDE GUI provided a base background non-networking transient load
on the OS and facilitated interactions with the experimental setups. This base transient
loading was maintained to verify the robustness of the architectures for all operational

conditions for all tests.

The first receiver setup uses plain BSD datagram socket to receive the arriving UDP

packets. A user space POSIX thread with high real-time priority (RT FIFO, priority = 99)
runs in a very tight loop to read this datagram socket, to extract the packet sequence
number and identify any packet loss. This setup runs on Redhat 8 kernel (customized
2.4.18 Linux kernel with 512 Hz system clock and low latency patches). The NIC driver
module ("3C59x") for 3C905B-TX card that came along with Redhat 8 was used. This

setup is dubbed as "Linux".

The second setup uses PFRING socket on a patched 2.4.23 Linux kernel. The vanilla

2.4.23 kernel is patched with PFRING and "RTirq" patch as suggested by the PFRING
designer [39]. NAPI is not used. A user space posix thread with high real-time priority
(RT FIFO priority = 99) runs in a very tight loop to: read the PFRING socket, parse the
received packets to get the UDP payload meant for a specific destination IP and port,
extract the packet sequence number and detect any loss of packets. The PFRING had
4096 slots. The NIC driver module ("3C59x") for 3C905B-TX card that came along with

Redhat 8 was used. This setup is nicknamed as "PFRING".

The third setup runs a NAPI NIC driver on Redhat 8 (modified Linux 2.4.18) kernel. This

driver was obtained by patching the Redhat 8 NIC ("3C59x") driver with a patch
downloaded from web. The NAPI operation of this patched driver was verified and
validated before using it. The same user space code as used in the "Linux" setup, is
employed to read the datagram socket. This third setup tests the performance of NAPI

architecture. The third setup is termed as "NAPI".
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The fourth setup uses the same NAPI NIC driver as in case of "NAPI", and a similar

PFRING socket on patched 2.4.23 Linux kernel as in case of "PFRING". The receiving
code is the same as used in the "PFRING" setup. Thus this fourth setup implements

PFRING with NAPI. The fourth setup is named as "PFRING + NAPI" or "PFRING with

NAPI".

The fifth setup uses the proposed solution, DMA ring, on Redhat 8 kernel. A user space

posix thread with high real-time priority (RT FIFO priority = 99) runs the poll engine.
The received packets are parsed for a specific destination IP, port, sequence number and
packet loss was detected. The DMA buffer accommodated 2048 packets. The NIC driver
employed by this setup was especially developed to implement the DMA ring

architecture. This driver was modified version of the "3c59x" driver which came along

with Redhat 8 kernel (section 5.6.1). This setup is titled as "DMA ring on RH8" or

"DMA ring on Redhat §".

The sixth setup uses the proposed solution, DMA ring, on vanilla 2.4.24 Linux kernel

(which was patched for RTAI 3.1) along with RTAI version 3.1 with LXRT enabled. A
user space POSIX thread with high real-time priority (RT FIFO priority = 99) executed
the poll engine. The poll engine was paced by RTAI kernel timer which is driven by the
8254 chip based programmable interval timer (PIT) interrupts. The user space protocol
layers was similar to the one implemented for "DMA ring on Redhat 8". The driver used
in this setup was ported version of the driver developed for "DMA ring on RH8" setup
(section 5.6.2). The DMA buffer size was kept at 64. This setup is titled as "DMA ring on

LXRT with PIT (8254) timer".

The seventh setup was similar to the sixth "DMA ring on LXRT with PIT timer" setup in

most aspects. The only difference being, instead of employing the PIT based RTAI kernel

timer, the polling is paced by Motorola's MC146818 based real time clock (RTC)
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interrupts. This setup was used to study the performance difference when an external
hardware timer is used instead of RTAI kernel timer. This setup is called as "DMA ring

on LXRT with RTC timer".

For profiling packet loss and CPU utilization behavior the above setups were used. To
collect data to estimate packet delivery latency, additional instrumentation were

employed as discussed in section 6.2.3.

6.4 Operating range

All the studies were carried out on 100Mbps network, with packet size of 64 bytes and
1024 bytes and packet rate up to 148 kpps. For the given slow CPU (333Mhz) these
packet rates are considered quite high. Packet rates higher than 148 kpps will require a
network line speeds higher than 100Mbps, but that was considered outside the scope of

present work.

The CPU speed (333Mhz) is in the same order of network speed (100Mbps). The
conclusion drawn about the architectures with PII 333Mhz CPU and 100Mbps network
will remain valid for higher speed CPUs operating with a high speed network. These
architectures will similarly perform on faster present generation 4Ghz systems with
1Gbps Ethernet. The ratio of 4 Ghz CPU speed to 1 Gbps network speed is in same order
as in case of 333Mhz CPU and 100Mbps Ethernet. On the other hand, tests on a slower
CPU helped to assess the applicability of these architectures under resource constraints or

in embedded systems.

6.5 Summery

To evaluate performance of all the architectures, seven evaluation criteria were
employed. This involved measurements of several variables and their statistics. To collect

these performance data, several instrumentation and analysis techniques were employed
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to minimize the extent of invasion and adverse measurement effects on the target
systems. Readily available tools were adopted and adapted to rig up the test setups. The

next chapter discusses and analyzes the result obtained from the experimental setups.
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Chapter 7: Performance Evaluation Results and Comparison

The performance of the proposed DMA ring architecture is evaluated against specific
benchmarks and then compared with those of Linux, NAPI and PFRING. These
performance studies demonstrate how the design principles contribute to the superior
performance of DMA ring. In addition to performance comparisons, the DMA ring
architecture is characterized from performance viewpoint and its limitations are
discussed. Limitations of the DMA ring architecture arise from the shortcoming of the
underlying general purpose OS (GPOS). As a solution, a real-time platform is suggested
instead of a GPOS like Redhat. Performance of DMA ring on a real-time platform,
RTAI-LXRT (version 3.1) with vanilla 2.4.24 Linux is compared with the performance
of DMA ring on Redhat 8. This comparison establishes that these few remaining
performance issues can be taken care off by an underlying real-time platform. The

subsequent sections present and discuss the performance results in details.

7.1 Normalization

These architectures run on a variety of OS platforms with different system clock rates
(HZ value), therefore the variations of CPU utilization due to OS factors needs to be
quantified and accounted for when CPU utilization of different architectures are
compared and conclusions are drawn from them. Table 7.1 presents the no load loop

counts measured by the "cyclesoak" tool for the three OS utilized (section 6.2.2).

Table 7.1: CPU utilization normalization chart

Platform No load loops (N) | Difference with max. N
Linux 2.4.24, RTAI ver 3.1 with LXRT 158,818 per sec. 0%

Redhat 8 155,389 per sec. +2.2%
Linux 2.4.23 (with RTirq and PFRING) 156,954 per sec. +1.2 %
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From table 7.1 it is evident that the no load loop count varies by a very small percentage.
Therefore the normalization is approximated by simply adding another 2.2 and 1.2 points
to the observed CPU utilization percentage figures for Redhat 8§ and Linux 2.4.23
respectively. All the CPU utilization percentage figures presented henceforth are

normalized figures (normalized against the base - Linux 2.4.24 with RTAI-LXRT).

7.2 Performance profiles and comparison

The DMA ring architecture is compared with Linux, NAPI and PFRING against five
criteria - (i) maximum tolerable packet rate with no packet loss (no loss capacity),
(ii)system throughput and packet loss percentage at packet rates which are higher than the
no loss capacity, (iii) CPU utilization at various packet rates, (iv) packet delivery latency

at various packet rates and (v) memory requirement.

7.2.1 Packet loss and system throughput profile

Packet losses in all these architectures occur in bursts, and the burst length also increases
with packet rate. Both these patterns indicate loss behavior due to buffer overflow. The
packet loss behavior of Linux, NAPI, PFRING, PFRING with NAPI and DMA ring at

different packet rates for 64 byte UDP packets are presented in Fig. 7.1.

Fig. 7.1 : Packet loss performance profile
(64 Byte UDP packets)
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Smaller 64 byte packets allow highest possible packet rates, which causes greater packet
loss, hence results with smaller packets are presented to bring out the worst case

behavior.
From Fig. 7.1, the maximum tolerable packet rates which results 0% loss can be

identified for these architectures. These are tabulated below in Table 7.2.

Table 7.2: No loss capacity profile

Rank Architecture No loss capacity
1 DMA ring on Redhat 8 | No loss (>148 kpps)
2 PFRING 84 kpps
3 Linux 29 kpps
4 PFRING + NAPI 22 kpps
4 NAPI 22 kpps

The architectures are ranked in decreasing order of performance, rank 1 indicates the best
one. PFRING with NAPI gave a very small loss of 0.02 % at 29 kpps, which does not

appear well in the Fig. 7.1.

NAPI actually performs slightly worse than Linux, NAPI starts loosing packets after 22
kpps, whereas Linux loose packets after 29 kpps. When no loss capacity is considered,
PFRING performs better without NAPI. No loss capacity of PFRING is 84 kpps, whereas
for PFRING with NAPI it is 22 kpps. However PFRING with NAPI gives lower average
loss at higher packet rates (above 84 kpps) compared to NAPI, when NAPI polling is
sustained. DMA ring is found to be superior compared to all these existing solutions in
respect to no packet loss capacity. DMA ring does not loose any packets within this
operating range (< 148 kpps). Even with larger packets of 1024 bytes, DMA ring
architecture does not suffer any packet loss at packet rate of 12.15 kpps (= 99.54 Mbps)
which is highest possible packet rate possible for 100Mbps Ethernet. This data is not

shown in Fig 7.1.
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Interrupt based architectures, Linux and PFRING makes a rapid transition from no loss
zone to the failure zone, when the packet loss rates shoots up towards 100 %. On the
other hand, NAPI based architectures - NAPI and PFRING with NAPI makes a
comeback once the NAPI polling is sustained, the packet loss rates for these two
architectures starts dropping down after 30 kpps. In fact, beyond 84 kpps, PFRING with
NAPI makes a better recovery compared to only NAPL. PFRING with NAPI suffer lower
packet losses at higher packet rates. This is because PFRING with NAPI avoids
unnecessary protocol processing in the kernel network stack. The PFRING architecture
was proposed with NAPI based on similar observations at high packet rates [39].
However sustained NAPI polling starts too late, only after 60 kpps and it does not aid in

avoiding packet loss at the lower packet rate range between 22 and 60 kpps.

The system throughput, derived from the loss behavior is presented in Fig. 7.2.

Fig. 7.2: System throughput performance profile
(64 Byte UDP packets)

140 |

120 -

100 -

80 -

60 -

Output, kpps

Input packet rate, kpps

—o— Plain Linux -—¢— NAP -+ PFRING - PFRING+NAP! —&-— DMA ring on RH8

157



All the loci lying below y = x diagonal line with 45° slope, indicates lower than ideal
throughput and some packet losses. The point from which a line breaks off from the
diagonal line indicates the no loss capacity for that architecture. Only DMA ring shows
ideal throughput, its locus aligns with the y = x line. PFRING with NAPI is the next best
one which follows the y = x line more closely than others. PFRING breaks off at a much
higher packet rate, after 84 kpps and falls down towards "x" axis, which indicates a
higher no loss capacity but a lower throughput at packets rates higher than its no loss
capacity. When the average throughout of the entire range is considered (regardless of the
packet loss at any specific packet rate), then the architectures can be ranked in the
following order (best to worst) - DMA ring (perfect), PFRING with NAPI, PFRING,

NAPIL Linux.

In addition to Fig. 7.2, the packet loss percentages for these architectures at three packet
rates - 42 kpps, 59 kpps and 148 kpps are tabulated below (Table 7.3) for easy
comparison. These three packet rates are above the no loss capacity of NAPI, PFRING,
PFRING with NAPIL This table gives similar information as Fig. 7.1 and 7.2. The

architectures are ranked in decreasing order of performance.

Table 7.3: Packet loss comparison

Rank Architecture Packet loss percentages at high packet rate
42 kpps 59 kpps 148 kpps
1 DMA ring on Redhat 8 0% 0% 0%
2 PFRING + NAPI 0.02 % 16.5 % 29.39 %
3 PFRING 0% 0% 99.5 %
4 NAPI 89.9 % 93 % 70.7 %
5 Linux 34 % 99 % 99.7 %

If some packet losses are tolerated at high packet rates, only then, PFRING with NAPI

gives an acceptable performance.
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7.2.2 CPU utilization profile

Fig. 7.3 and 7.4 presents CPU utilization for Linux, NAPI, PFRING, PFRING with NAPI
and DMA ring for 64 Byte UDP packets for different packet rates. Fig. 7.4 magnifies the
plot for the packet rate range below 35 kpps. Smaller 64 Byte packets allow highest

possible packet rates, which causes greater CPU utilization due to high per packet costs.

Hence results with smaller packets show worst case behavior.

Fig. 7.3: CPU utilization profile
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Fig. 7.4: CPU utilization profile at lower packet rates
(64 Byte UDP packets)
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At all packet rates DMA ring consumes less than 28% CPU time whereas all other
architectures hit 100% beyond 40 kpps and still cannot capture all the packets (Fig. 7.1
and 7.3). For all packet rate, DMA ring consumes the least CPU resources among all
these architectures. NAPI polling cycle overheads are higher compared to Linux's
interrupt servicing overheads due to additional operations (interrupt disable-enable,
polling invocation) per cycle. This shows up as higher CPU utilization and higher packet
losses in case of NAPI compared to those for Linux (Fig. 7.1, 7.3). The two PFRING
architectures, PFRING and PFRING with NAPI have lower CPU utilization and packet
losses compared to Linux and NAPI (Fig. 7.1, 7.2, 7.4), due to two reasons. Firstly,
PFRING architectures implement a minimal integrated protocol processing compared to
the kernel's inefficient layered protocol stack used in Linux and NAPI. Secondly, they do
not employ the kernel thread and suffer from the associated context switching
inefficiency. PFRING with NAPI consumes more CPU resources than PFRING due to
NAPI's inefficiencies. CPU utilization of DMA ring remains same even for bigger
packets (1024 bytes) because it implements DMA buffer sharing instead of traditional
zero copy. This aspect is demonstrated later in Fig. 7.19, section 7.3.3. At very high
packet rates, beyond 140 kpps, PFRING architecture seems to have collapsed (Fig. 7.3).
The reason for this is not analyzed in the present study, but apparently it has something to

do with high interrupt servicing overhead and high interrupt latency.

DMA ring is found to be superior in both respects -lower CPU utilization and no packet
loss. This demonstrates the advantage of using - low fixed polling rate paced by hardware
timer, single user space task to avoid context switching, minimal protocol processing and
employing a single staging area (shared DMA buffer without explicit zero copy transfer
and memory allocation). The individual contributions of each of these performance

enhancing strategies are presented later in section 7.3.
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7.2.3 Packet delivery latency profile

Table 7.4 compares the estimated average and 98" percentile statistics (10° samples) for

packet delivery latencies of various architectures at different packet rates.

Table 7.4: Packet delivery latency profile
(for 64 Byte packets, figures in psec)

Rank | Architecture | Statistics | 2kpps | Skpps | 18.5kpps | 59kpps | 84kpps |148kpps
1 |DMAringon |Avg. 14 14 61 61 61 61
Redhat 8 o8t 25 21 131 136 136 136
2 [PFRING Avg. 18 18 18 155730 | 240608
9™ 38 38 38 170658 | 266081
3 |PFRING+ |Avg. 17 35 608 | 2718378 | 4655819
NAPI 98 38 18 18 |12474085| 12722675
4 [NAPI Avg. 37 58 189 | 5269274 | 6728832
9g8™ 58 58 78 |12711075| 12788045
5 |Linux Avg. 37 37 38
98" 58 58 78

The DMA ring operates in interrupt mode below 8.333 kpps packet rate and above it,
DMA ring operates in polling mode. So for packet rates below 8.333 kpps, the packet
delivery latency statistics are estimated by using Eqn. 6.1 and 6.2 and employing the
associated instrumentation, as depicted in Fig. 6.3, in section 6.2.3. For packets rate
above 8.333 kpps, Eqn 6.3 and 6.4 were used and corresponding instrumentation as in
Fig. 6.5 was employed. The DMA ring polling statistics collected under worst case
loading, i.e. at 148 kpps was utilized to conservatively estimate the figures in the range
59 to 148 kpps. The statistics of the other two hybrid interrupt-polling architecture, NAPI
and PFRING with NAPI were similarly estimated utilizing Eqn. 6.1, 6.2, 6.5 and 6.6 and
employing both the instrumentation architectures as in Fig. 6.3 and 6.5. Statistics for
Linux and PFRING are estimated by the method for interrupt operation (Eqn 6.1 and 6.2,

Fig. 6.3). Linux is considered to successfully operate below 22 kpps, and NAPI and
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PFRING architectures are considered to successfully operate below 148 kpps, hence

some slots in the Table 7.4, corresponding to high packet rates, are empty.

At low packet rates (below 8 kpps) DMA ring has the lowest packet delivery latency. For
this range the architectures can be ranked in decreasing order of packet delivery latency
performances as - DMA ring, PFRING, PFRING with NAPI, Linux and NAPI. NAPI
suffer from small additional latencies due to interrupt disable-enable and polling cycle

invocation and shutdown overheads.

In the packet range between 8 and 22 kpps, PFRING appears to be the best, Linux comes
second, DMA ring is the third, NAPI is fourth and PFRING with NAPI is the last. NAPI
actually increases the delivery latency jitter and PFRING with NAPI also suffer from it.
Between 8 and 22 kpps, for both NAPI architectures in this packet rate range, the average
expected latency value is higher than the 98" percentile. This indicates a very high worst
case jitter. At high packet rates, above 22 kpps, the jitter in NAPI, PFRING and PFRING
with NAPI explodes, but jitter in DMA ring are contained as the polling is paced by

hardware timer, rather than a jittery software kernel timer.

Considering the entire range of packet rates, DMA ring appears to be the best, except for
a narrow band between 8 kpps and 22 kpps, where it scores third position. At packets
rates above 5 kpps, NAPI introduces severe jitter in the latency, whereas DMA ring
shows stable and better behavior all throughout. NAPI actually deteriorates PFRING
performance at lower packet rates, so PFRING should not be used with NAPI when

mission critical packet capturing is involved.

An actual feel of the packet delivery latency statistics can be obtained by observing the
frequency distribution histogram envelopes for interrupt latency and aggregate ISR,
kernel task response and kernel to user space context switch times for these architectures.

Only the frequency distribution envelope which is obtained by connecting the height of
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the frequency bars at the time value mid points, is presented. Henceforth the terms
"frequency distribution" and "distribution" are used to mean the frequency distribution

envelope. All sample sizes were 1 million. Frequency is presented in log scale (0 to 6).

For Linux

Fig. 7.5 presents the frequency distribution of the interrupt latency measured at 18.5 kpps
on Redhat 8 on the receiver hardware (PII 333Mhz, Dell desktop). This distribution is
applicable even for NAPI and DMA ring in Redhat 8 on the same hardware. The
distribution has a very sharp profile with the 99™ percentile at 11.2 microseconds. The

worst case interrupt latency observed is 364.8 microsecond (maximum "x" axis value).

Fig. 7.5: Frequency distribution of interrupt latency for Linux
(Redhat 8 on PII 333 Mhz)
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Fig. 7.6 presents the frequency distribution for the aggregate kernel time (ISR, kernel
response plus kernel to user space context switch time) measured at 18.5 kpps on
Redhat8. This distribution has a very sharp profile with the 99" percentile at 70

microseconds. The worst case aggregate kernel time is 2080 microsecond at 18.5 kpps.
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However if power saving feature is enabled in the hardware, the worst case latency could

be over 8000 microsecond.

Fig. 7.6: Aggregate kernel time frequency distribution for Linux
(Redhat 8 on PII 333 Mhz)
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For NAPI

At packet rate below 40 kpps, when NAPI polling is not sustained, the interrupt latency
and aggregate kernel time distributions will be similar to Fig. 7.5 and 7.6. Only the
average aggregate kernel time will be few microseconds larger due to additional interrupt
disable-enable and polling cycle overheads. For higher packet rates when the NAPI
polling is sustained the packet delivery latency distribution is governed by the polling
period distribution instead of interrupt latency distribution. The polling period
distribution for Redhat 8 at 84 kpps is presented in Fig. 7.7 (next page). The distribution
has two sharp modes at 125 and 1825 microseconds, and 99™ percentile at 1840
microseconds. The primary mode is at least 10 times higher than the secondary mode.

The worst case polling period jitter is 2620 microsecond.
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Fig. 7.7: Frequency distribution of poll period for NAPI
(Redhat 8 on PII 333Mhz)

84 kpps packet rate

A
il
AN

o 1 l1 T l T LELI L) ¥ =
0 1000 1500 2000 2
Poll period, micro sec

-
T

500

Log of Frequency
N w
1\\__}\
T

I
T

A part of the aggregate kernel time distribution is presented in Fig. 7.8 for the same

scenario.

Fig. 7.8: Frequency distribution of the aggregate

kernel time for NAPI
(Redhat 8 on PII 333 Mhz)
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The distribution continues well beyond 1,800,000 microsecond. The distribution has a
flat profile. The worst case aggregate kernel time is 6,728,566 microsecond at 84 kpps.

This high value of worst case aggregate kernel time indicates user space task starvation
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even though the low priority "softirqd" thread for NAPI polling is supposed to avoid that.
As the aggregate kernel time latency jitters are several order larger than the polling period
jitters, so the aggregate kernel time distribution determines the shape of the packet
delivery latency distribution. It is evident that the packet delivery latency distribution will

have a flatter / uniform profile due to flat profile of aggregate kernel time.

For PFRING

Fig. 7.9 presents the frequency distribution of the interrupt latency measured for PFRING
at 84 kpps. This distribution is also applicable even for PFRING with NAPIL The
distribution has a very sharp profile with the 99™ percentile at 12.8 microseconds. The

worst case interrupt latency observed is 25.6 microsecond.

Fig. 7.9: Interrupt latency frequency distribution
(Linux 2.4.23 with PFRING and RTirq patch on PII 333 Mhz)
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A part of the aggregate kernel time distribution for PFRING at 84 kpps is presented in

Fig. 7.10 (next page).
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Fig. 7.10: Frequency distribution of the aggregate kernel
time for PFRING
(Linux 2.4.23 with PFRING and RTirq patch on PII 333 Mhz)
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It is evident from this figure that PFRING have high aggregate kernel time jitter. The
distribution is skewed towards higher latency values, there is moderately sharp mode
around 2,57,500 microsecond. The worst case aggregate kernel time is 2,67,960
microsecond at 84 kpps. As the aggregate kernel time latency jitters are several order
larger than the interrupt latency jitters, so the aggregate kernel time distribution
determines the shape of the packet delivery latency distribution. Therefore the packet
delivery latency .distribution will also be skewed towards the higher end due to the
skewed aggregate kernel time distribution. The mode of aggregate kernel time defines the

mode of the packet delivery latency.

For PFRING with NAPI

At packet rate below 40 kpps when NAPI polling is not sustained, the interrupt latency
and aggregate kernel time distributions are similar to Fig. 7.9 and 7.10 for PFRING with
NAPI. For higher packet rates when the NAPI polling is sustained the packet delivery

latency distribution is governed by the polling period distribution instead of interrupt
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latency distribution. The polling period distribution at packets rates at 84 kpps and

beyond, is similar to as in Fig. 7.7. The aggregate kernel time distribution for PFRING

with NAPI at 84 kpps and beyond, is presented in Fig. 7.11.

Fig. 7.11: Frequency distribution of the
aggregate kernel time for PFRING with NAPI
(Linux 2.4.23 with PFRING and RTirq patch, NAPI NIC
driver on PII 333 Mhz)
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This distribution is skewed toward lower latency values, it has a moderately sharp mode
below 100,000 microsecond, but rest of the portion has a flat profile with worst case
latency at 11,970,280 microsecond. NAPI introduces additional aggregate kernel jitter
when NAPI polling operates with PFRING, due to CPU starvation in user space tasks.
The worst case jitter for PFRING with NAPI is 11,970,280 micro second, whereas for
NAPI alone is 6,728,566, and for PFRING alone is 267,960. As the aggregate kernel time
latency jitters are several order larger than the NAPI polling period jitters, so the
aggregate kernel time distribution determines the shape of the packet delivery latency.

Therefore the packet delivery latency is skewed towards latency values lower than

100,000 microseconds.
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Even though the worst case packet delivery latency is higher in PFRING with NAPI
compared to PFRING alone, but the packet loss is less in PFRING with NAPL This two
phenomena are not incongruent because the central tendency (mode) of the latency
distribution determines the average packet loss not the worst case latency. Though the
worst case latency in case of PFRING with NAPI might be higher, but its mode is lower
compared to PFRING. For PFRING, the mode is skewed towards the higher latency
value, at around 2,57,500 microsecond (Fig 7.10). Whereas, in case of NAPI with
PFRING, the mode of packet delivery latency distribution is skewed towards lower

latency values, below 100,000 microsecond (Fig. 7.11).

For DMA ring on Redhat 8

At packet rate below 8 kpps when DMA ring operates in interrupt mode, the interrupt
latency and aggregate kernel time distributions similar to Fig. 7.5 and 7.6. For higher
packet rates when the DMA ring operates in polling mode, then the packet delivery
latency is governed by the polling period distribution. The polling period distribution for
DMA ring on Redhat 8 at 148 kpps packet rate (worst load scenario) is presented in Fig.

7.12.

Fig. 7.12: Frequency distribution of poll period

for DMA ring
(Redhat 8 on PII 333Mhz)
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The profile is very sharp with a single mode at 125 microsecond and the worst case
latency at 2345 microsecond. If video power saving feature is enabled, then the observed

worst case poll period is 8195 microsecond.

7.2.4 Memory requirement profile

On the basis of memory utilization criteria, the architectures are ranked as in Table 7.5, in
decreasing order of performance i.e. on increasing order of memory resource utilization.
The memory accounting policy as depicted in section 6.2.4 was adopted. Linux and NAPI
use less memory than DMA ring and PFRING architectures. DMA ring requires nearly

half the memory than that required by PFRING architectures.

Table 7.5: Memory requirement profile

Rank | Architecture | DMA buffer | Kernel packet queue Total memory
size (Bytes) | and socket buffer size requirement
(Bytes) (Bytes)

1 NAPI 128*1536 65536 262144

2 Linux 32*1536 300%1536 + 65536 575488

3 DMA ring on 2048*1536 3145728
Redhat 8

4 PFRING 32*1536 4096*1536 6340608

5 PFRING + 128*1536 4096*1536 6488064
NAPI

7.2.5 Robustness of DMA ring architecture on Redhat 8

Only robustness of DMA ring architecture on Redhat 8 were profiled, other architectures
were not tested for robustness as they did not pass the basic no loss capacity requirement
within the observation range (<148 kpps). Table 7.6 presents the maximum tolerable data

processing load (conservative estimate) for two DMA ring sizes, 1024 and 2048. The
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robustness aspect of DMA ring with these two ring sizes is presented in Table 7.7 for

loaded and unloaded condition.

Table 7.6: Maximum usable CPU resources for DMA ring on Redhat 8

Architecture Maximum tolerable event data processing load at 148 kpps
(as the percentage of additional CPU utilization)

DMA ring size 1024

25%

DMA ring size 2048

70 %

At 148 kpps packet rate, the DMA ring architecture alone consumed 26% CPU for both

ring sizes. With additional data processing load, the CPU utilization goes up above 26%.

A load which cause total 51 % CPU utilization, is tolerable when ring size is 1024. This

(51-26 =) 25% additional CPU load is caused by the data processing load over and above

26 % CPU consumed by the packet receiver. A ring size of 2048 is more robust, as it

allows a higher data processing load (corresponding to total 96% CPU utilization). A

DMA ring size of 2048 allows additional 70% CPU utilization, which is a significant

portion of the remaining free CPU. Once the maximum tolerable load for these two

architectures were ascertained, these architectures were tested for robustness (Table 7.7).

Table 7.7: Robustness of DMA ring on Redhat 8

Test DMA ring on Redhat 8
DMA ring size = 1024 DMA ring size = 2048
No load 51 % No load 96 %
Loaded Loaded
GUI activity - rapid mouse clicks, mouse Pass Pass Pass Pass
movement, switching consoles.
Hard disk activity - Launching programs, Pass Pass Pass Pass
browsing /dev and other directories.
VGA monitor shutdown due to power Fails Fails Pass Pass
saving (APM) feature.
Stress testing at 148 kpps, for 1 billion Pass Pass Pass Pass

packets.
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Although power saving feature is supposed to be disabled in a real-time packet receiver,
but this feature was used to simulate transient worst case jitters. DMA architecture with
ring size of 1024 failed in this test. This receiver lost packet whenever the system
reactivated the AGP system. This happened probably because the host I/O bridge was
locked for more than usual time during display reactivation (Fig. 3.6). Ring size of 2048
tolerated all these transient loads and it even withstood an overnight (> 8 hours)
continuous operation with full 148 kpps load. So a ring size of 2048 is recommended

whenever Redhat 8 is used.

7.3 Contribution of the design and implementation strategies

A combination of design and implementation strategies were behind superior
performance of DMA ring architecture. The following sections present how these factors

contributed to performance improvements and how much they contributed.

7.3.1 Benefit of polling

Polling alone can lower CPU utilization. But in addition to this fundamental advantage, a
couple of better design and implementation choices were behind the superior
performance of DMA ring. The transition from interrupt to polling could be sharply
defined and controlled in DMA ring, therefore the polling operation could be further
optimized by choosing an appropriate transition point. In DMA ring, polling was
performed at a fixed low rate to amortize the polling overhead over many packets instead
of an adaptive polling strategy as used or suggested in other implementations [39,57].
DMA ring implemented polling in user space which also helped to avoid high kernel to

user space context switching time jitters which NAPI suffers from.

Fig. 7.13 and 7.14 illustrates how polling in DMA ring lowers CPU utilization. By setting

the interrupt-polling threshold to zero the DMA ring architecture was forced to work only
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in interrupt mode, which is termed as "DMA ring (intr)". The CPU utilization for normal
polling "DMA ring" is compared to that of "DMA ring (intr)" in Fig. 7.13. So this study
compares the same DMA ring with and without polling. From Fig. 7.13 it is evident that
the CPU utilization for DMA ring with polling is lower for packet rates higher than 13
kpps. Polling reduce the CPU utilization once it is sustained. At packet rates below 5
kpps, both architectures work without polling hence have similar CPU utilization. The
point on the packet rate axis, when polling is sustained is evident from Fig. 7.14.

Fig. 7.13: Benefit of polling on CPU utilization
(DMA ring, on Redhat 8 on PII 33Mhz)
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Fig. 7.14 presents the interrupt to packet ratio for DMA ring to illustrate the mode
transition. The interrupt to packet ratio drops sharply at higher packet rates beyond 7
kpps, due to the interrupt mitigation effect of the hybrid polling mechanism. In a small
band, between 7 to 10 kpps, where the hybrid architecture makes a transition from
interrupt to polling mode the CPU utilization rises due to additional overheads incurred in
switching the polling timer on and off repeatedly. Once polling is sustained beyond 13
kpps the timer remains switched on, and the architecture starts consuming lower CPU
resources (Fig. 7.13). Due to sharp transition, this high CPU utilization region is very
limited in case of DMA ring. Once polling sustains beyond 10 kpps, the CPU utilization
nearly flat lines to a much lower value, less than 27%, whereas for interrupt operation it

rises steeply above 50% in direct proportion to incoming packet rate (Fig . 7.13).

Fig. 7.15 compares the interrupt mitigation effect and mode transition of DMA ring with
that of NAPI. This figure presents the interrupt to packet ratio for these architectures for

the entire packet rate range (< 148 kpps).

Fig. 7.15 : Mode transition in DMA ring and NAPI: A comparison
(Redhat 8, PII 333Mhz)
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In DMA ring, the transition between operation modes are more sharply defined, and can
be controlled externally. DMA ring was able to make the transition to polling mode
within a narrow band of 7 to 10 kpps, where as for NAPI this happens between 53 to 85
kpps. The transition threshold is set to a low value around 8.3 kpps for DMA ring to
optimize the performance, therefore the sustained polling could begin at lower packet
rates. DMA ring started polling when its CPU utilization was still low at 28 % (Fig. 7.3),
whereas NAPI sustained its polling only above 85 kpps. Long before that, at 29 kpps
NAPI was already overload (100% CPU utilization, Fig. 7.3) and was dropping packets

(Fig. 7.1).

Packet delivery latency jitter and in-kernel packet processing jitter are synonymous in all
architectures. It is evident from Fig. 7.7 and 7.12 that the polling period jitter for DMA
ring and NAPI are in same order. For NAPI, the packet delivery latency jitter is the total
of NAPI polling period jitter and the aggregate kernel time jitter (Eqn. 6.5, 6.6).
Aggregate kernel time jitter is very high in case of NAPI (Fig. 7.8). On the other hand for
DMA ring the packet delivery latency/ processing jitter is solely governed by the polling
period jitter because the polling is executed in the user space and the packets are
available directly in the mapped DMA buffer in user space. Due to user space polling,
DMA ring has much lower packet processing jitter compared to NAPIL. Due to lower
packet processing jitter, buffer overflow and packet losses are avoided in DMA ring. A

lower processing jitter also means a lower packet delivery jitter in case of DMA ring.

Due to lower poll frequency in DMA ring, more packets are processed per polling cycle,
therefore high polling overheads are amortized over multiple packets. Table 7.8 presents

the ratio of packets to polling cycle for DMA ring on Redhat 8 at high packet rates.
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Table 7.8: Packets processed per polling cycle

Packet rate Number of Number of polling Number of packets
kpps packets received cycle invoked processed per polling cycle
59 1000,000 136831 7.31
84 1000,000 96946 10.32
106 1000,000 76898 13.0
142 1000,000 57299 17.45
148 1000,000 55105 18.15

It is evident from Table 7.8 that multiple packets are processed in each polling cycle at
higher packet rates. Amortization of the cost of polling over multiple packets is

demonstrated in the next paragraph.

Average polling cycle invocation time and packet processing time can be estimated from
the dependency of CPU utilization on polling rate and packet rate (Fig. 7.16, 7.17). Fig.
7.16 gives the relationship between CPU utilization and polling rate at 15.6 kpps packet

rate. Fig. 7.17 gives the relationship between CPU utilization and packet rate for 8.192

Khz polling rate.
Fig. 7.16: CPU utilization vs. polling rate Fig. 7.17: CPU utilization vs. packet rate
(15.6 kpps, DMA ring on Redhat 8, PII 333Mhz) (8.192kHz polling, DMA ring on Redhat 8, PII 333Mhz)
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By regression the dependency of CPU utilization on polling and packet rates is obtained,

which is -

N=16.323 * 10° * fpo + 0.746 * 10° * fpz + 0.03158 ........... Eqn. 7.1

where - 1 is the CPU utilization, presented as a fraction
fponn is the polling frequency in Hz.
frr is the incoming packet rate packets per second.

Comparing this relationship, Eqn 7.1 with Eqn. 5.4 of section 5.7, one gets the average
polling overhead as 16.323 micro second, and the average packet processing time as
0.746 microsecond per packet and CPU utilization due to background tasks as 3.158 %.
Just for information, the time required to process a packet with benefit of cache hits is
0.295 microsecond. During normal processing operation there is no benefit of cache hits

as the cache locations for a packet are invalidated after each DMA transfer.

At 148 kpps packet rate, this high amount of polling overhead (16.323 micro second) is
amortized over 18 packets (Table 7.8) to yield a lower per packet average of 16.323/18 =
0.91 micro second. Thus at 148 kpps, the per packet average response time is 0.91 +
0.746 = 1.656 microsecond. These overheads corresponds to a maximum packet
processing capacity potential of 1119 kpps as given by Eqn. 5.5. Actual system capacity
will be far less due to task response jitters. Instead of using fixed low rate polling, if the
architecture is run in interrupt mode, then this high polling overhead of 16.323
microseconds would have got included to each packet processing response time. Instead
of 1.656 microsecond the response would have been 16.323 + 0.746 = 17.069
microsecond, which corresponds to a maximum packet processing potential of 58 kpps.
This would have deteriorated the CPU utilization and packet loss performance

substantially.
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7.3.2 Benefit of lower context switching frequency, integrated protocol processing,

efficient border crossing, and no memory allocation

To analyze the contributions of these design and implementation strategies, a set of
special test setups were employed. In these receiver setups the DMA ring is forced to

operate in three modes -
e with interrupts -"DMA ring(intr)"
e with interrupts and packet copy -"DMA ring(intr, copy)

e with interrupts, packet copy and real-time memory allocation - "DMA ring(intr,

copy, alloc)"

By setting the interrupt-polling threshold to a very high rate, the DMA ring architecture
was forced to work only in interrupt mode, which is termed as "DMA ring (intr)"
operation. In "DMA ring (intr, copy)" mode, a packet was copied to a separate staging
packet buffer to complete the protocol processing. This added an additional copy
operation for each packets received. The amount of data copied depended on packet
length, so for 64 byte packets the performance loss would be less than that for bigger
packets. The staging packet buffer on which a new packet is copied is reused for different
packets. This common staging packet buffer is allocated during setup time. This "DMA
ring (intr, copy)" mode is also forced to operate with interrupts. In "DMA ring (intr,
copy, alloc)" mode, in addition to the interrupt and copy operation, a new packet buffer is
allocated and de-allocated in the kernel along with DMA mapping and un-mapping. This
simulates similar run time behavior of memory allocation in NIC driver layer and de-
allocation in the socket layer. The protocol processing is carried out in the same manner

in all these three modes as in normal DMA ring.
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Fig. 7.18 compares the CPU utilization of these three modes against Linux and PFRING,

to illustrate the contribution of each factor behind higher CPU utilization for 64 Byte

packets.
Fig. 7.18: CPU utilization profile for different operation
modes
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Unlike Linux, PFRING does not employ softirq task for protocol processing. PFRING
performs the minimal integrated protocol processing in the user space. Therefore
PFRING has the advantage of avoiding redundant protocol processing and an extra
context switching and over Linux. Linux suffer two context switches - one from ISR to
softirq, and the second from softirq to user space task. Whereas PFRING suffers only one

- ISR to user space. This is illustrated by a lower CPU utilization for PFRING compared
to Linux (Fig. 7.18).

PFRING employed poll() function call to block itself and wait for the packet. Whereas
DMA ring uses ioctl() function call to enter the kernel followed by a

wait_event interruptible() kernel API call to block itself. Lower CPU utilization of
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"DMA ring(intr, copy, alloc)" compared to PFRING (Fig. 7.18) demonstrates the
advantage of an efficient border crossing interface, i.e. ioctl() along

wait_event_interruptible() over poll() function call, as used in PFRING [39].

Lower CPU utilization for "DMA ring(intr, copy)" compared to "DMA ring(intr, copy,
alloc)" shows the performance gain achieved (Fig. 7.18) by avoiding run time memory
allocation as used in the existing NIC drivers for Linux, NAPI, PFRING and PFRING
with NAPI. The cost of run time memory allocation-deallocation and DMA mapping-

unmapping is moderate, hence the additional CPU utilization due to these are not large.

With 64 Byte packets, the effect of copy is small, hence there is little difference in CPU
utilization between "DMA ring (intr, copy)" and "DMA ring (intr)" (Fig. 7.18). All these
three modes, Linux and PFRING have similar disadvantages when interrupt overhead is

concerned as all of them operates with interrupts.

For a given packet rate, from the difference in CPU utilization of these cases, the positive
effect of less context switching, integrated protocol processing, efficient border crossing,

and run time memory allocation avoidance can be quantified.

7.3.3 Benefit of shared staging area

Fig. 7.19, next page, presents benefit of shared staging area (DMA buffer) by comparing
the CPU utilization performance of Linux, PFRING and DMA ring for 64 Byte and 1024
Byte packets. Only a smaller packet rate range is covered (<12 kpps) which corresponds
to 100Mbps line speed for 1024 Byte packets. CPU utilization for PFRING and Linux is
higher for 1024 Byte packets due to per byte processing costs. Whereas, the performance
of DMA ring is same for both 64 and 1024 Bytes at all packet rates because DMA ring
does not have any per byte cost component associated with copy operations. Sharing of

staging area (DMA buffer) in DMA ring also does not penalize the performance at
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smaller packet sizes unlike traditional zero copy implementations [42,43,44], therefore

sharing of staging area has an advantage.

Fig. 7.19: Effect of packet size on CPU utilization for Linux,
PFRING and DMA ring: Benefit of shared staging area
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7.3.4 Summary

The relative contributions of various performance enhancing design and implementation
strategies are summarized in Fig. 7.20. The contributions are quantified from Fig. 7.18
and Fig. 7.19. These factors are independent of each other hence their cumulative effect
can be considered to be the aggregate of the individual effects. Fig. 7.20 presents the
scenarios for both 64 and 1024 Byte packets at 12 kpps. The impact of DMA buffer
sharing is higher in case of the larger packets as more time is saved by not having to copy
or transfer large data buffers. For both packet sizes, the impact of minimal integrated
protocol processing, context switch avoidance (indicated together as "integrated
processing” in Fig. 7.20), efficient border crossing and fixed low rate polling is
significant, these reclaims significant CPU time at all packet sizes. DMA buffer sharing

gives additional significant advantage only if the packet sizes are large.
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Fig. 7.20: Relative contribution of various performance
improvement strategies to reduce CPU utilization (at 12 kpps)
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7.4 Limitations of DMA ring on Redhat 8

Though the DMA ring architecture on Redhat 8 shows promising CPU utilization, packet
loss and packet delivery latency performance, but it falls short in terms of memory
utilization compared to Linux and NAPL It requires more than ten times additional
memory compared to Linux and NAPI (Table 7.5). Memory requirement can be reduced
by choosing a smaller ring size but this also reduces robustness. Though the packet
delivery latency is far better than the other architectures, but still the worst case packet
delivery latency is large enough (2345 micro second) to make it unsuitable for many hard
real-time applications. These two aspects - high memory requirement and worst case
packet delivery latency are interrelated. Worst case task response jitter defines the buffer
requirement and the memory utilization. These limitations are not inherent to DMA ring.
In the next section the performance of DMA ring on a real-time platform is presented to

demonstrate that this limitation can be managed by adopting a real-time platform.
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7.5 Performance of DMA ring on real-time platform

RTAI version 3.1 with LXRT on Linux 2.4.24 is chosen as the real-time platform. This
platform guarantees bounded task response jitter, therefore a small DMA buffer size of
64 was sufficient to tackle highest packet rate and yet manifest the best robustness. Both,
"DMA ring on LXRT with PIT" and "DMA ring on LXRT with RTC" employs a DMA
buffer size of 64 bytes. These two architecture manifest all the superior performances
figures as "DMA ring on Redhat 8", like no packet loss, low CPU utilization and in
addition it yields very low packet delivery latency jitter. The next sub-sections also
demonstrate that reduction of memory utilization and packet delivery latency jitter is

achieved without any extra cost. As there is no packet loss so that profile is skipped.

7.5.1 CPU utilization profile

Fig. 7.21 and 7.22 presents CPU utilization for "DMA ring on Redhat 8", "DMA ring on
LXRT with PIT (8254) timer" and "DMA ring on LXRT with RTC timer". Fig. 7.22
presents the same plot for the packet rate range below 35 kpps. Smaller 64 byte packets
allow highest possible packet rates, hence expose worst case behaviors.

Fig. 7.21: CPU utilization profile of DMA ring architectures
(64 Byte UDP packets)
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Fig. 7.22: CPU utilization profile of DMA ring

architectures at lower packet rates
(64 Byte UDP packets)
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The shapes of the CPU utilization profiles of DMA ring on LXRT are similar to that on
Redhat 8. At lower packet rates when the DMA ring operates in interrupt mode, the CPU
utilization of "DMA ring on LXRT with PIT (8254) timer" is slightly higher than other
two architectures. This is because the PIT timer is operational as soon as the system
starts, even when the system is not operating in polling mode. Some CPU resource is
consumed by the RTAI co-kernel to service these PIT timer interrupts. Interrupt rate of
PIT timer is set at 8.192 kHz which is sufficiently high to cause additional 3 to 4 % CPU
utilization. In other two architectures, "DMA ring on LXRT with RTC timer" and "DMA
ring on Redhat 8", the RTC timer, do not start till the packet rate cross the 8.333 kpps
threshold. These architectures do not implement the PIT timer running at 122
microsecond periodicity, hence they do not have additional CPU utilization due to high
frequency PIT timer interrupts. That explains 3 to 4 % higher CPU consumption in case

of "DMA ring on LXRT with PIT (8254) timer" compared to other two architectures at

range below 8 kpps.
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On the other hand RTC timer in case of "DMA ring on Redhat 8" and "DMA ring on
LXRT with RTC timer" starts beyond 8.333 kpps packet rate and cause additional 5 to
6% CPU consumption due to RTC interrupt servicing. From these figures it is evident
that "DMA ring on LXRT with PIT (8254) timer" is the most efficient one when the
entire operation range is considered. This establish that RTAI kernel timer is a better
implementation choice compared to RTC timer. At all packet rates the "DMA ring on

LXRT with PIT (8254) timer" consumes less than 17% of the CPU resources.

"DMA ring on Redhat 8" and "DMA ring on LXRT with RTC timer" are very similar,
both uses RTC timer interrupts to pace the polling. Comparing the CPU utilization of
these two, it can be concluded that CPU utilization does not deteriorate on using RTAI-

LXRT over Linux.

7.5.2 Packet delivery latency profile

Table 7.9 compares the estimated average, 98" percentile and worst case statistics for
packet delivery latencies of various DMA ring architectures at different packet rates (10°

samples).

Table 7.9: Packet delivery latency profile for DMA ring architecture
(for 64 Byte packets, figures in psec)

Rank Architecture Statistics | 2kpps | Skpps | 18.5kpps | 59kpps |148kpps
1. |DMA ring on LXRT |Avg. 144 | 144 | 614 614 | 614
with RTC timer  [ogm 192 | 224 | 1361 | 1361 | 136.1
Worst case | 44.8 44.8 172.5 172.5 172.5
2. |DMA ring on LXRT|Avg. 144 | 144 | 614 614 | 614
tViVIiItlerIT(SZM) 98 192 | 224 | 1411 | 1411 | 1411
Worstcase| 41.6 | 44.8 | 1825 | 1825 | 1825
3. |DMA ring on Avg. 14 14 61 61 61
Redhat 8 9g™ 25 21 131 136 136
Worst case 50 123 1935 2345 2345
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For LXRT architectures the packet delivery latencies during interrupt operations could be
directly measured by reading the NIC counter in user space (section 6.2.3), as these
latencies were bounded within 183 microsecond. The poll period were measured by the

same method as in "DMA ring on Redhat 8".
LXRT improves the worst case behavior by bounding the jitter, therefore for both LXRT

architectures the jitter is low. But nothing can be concluded with sufficient confidence,

about which LXRT architecture has lower packet delivery latency.

An actual feel of the packet delivery latency statistics can be obtained by observing the
frequency distribution histograms for packet delivery latency and polling period jitter for
these architectures.

Fig. 7.23 presents the frequency distribution of the packet delivery latency measured at 5
kpps packet rate on LXRT on the same receiver hardware (PII 333Mhz, Dell desktop).
This same distribution is applicable for both LXRT architectures. The worst case

interrupt latency observed is 44.8 microsecond.

Fig. 7.23: Frequency distribution of packet delivery latency in LXRT
(122 p sec timer period, for RTAI 3.1 with Linux 2.4.24 on PII 333 Mhz)
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Fig. 7.24 presents the poll period of "DMA ring on LXRT with PIT(8254) timer" relative
to that of "DMA ring on Redhat 8". The poll period for LXRT with PIT timer is bounded

between 60 and 185 microseconds whereas for Redhat 8, it is distributed between 59 and

2345 microseconds.

Fig. 7.24: Frequency distribution of DMA ring poll period
in Redhat 8 and LXRT
(for RTAI 3.1 with Linux 2.4.24 on PII 333 Mhz, Dell desktop)
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Fig. 7.25 compares the polling period distribution for "DMA ring on LXRT with PIT"
with that of "DMA ring on LXRT with RTC" at 148 kpps (worst load scenario).
Distribution for RTAI kernel timer based on PIT and RTC timer are very similar with
worst case jitter of around 185 microseconds for both. The profile is distributed
uniformly on both sides of the timer period at 122 microsecond. This comparison shows
that in RTAI co-kernel for uni-processors, both schemes: polling paced by native RTAI
timer (i.e. PIT in this case) and polling by an external hardware timer (i.e. the RTC timer

in this case), yields similar advantage when jitter is concerned. This may not be the case
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in RTAI co-kernels for SMP architectures, where native RTAI timers are differently
implemented and may yield lower jitters than PIT and RTC.
Fig. 7.25: Frequency distribution of polling period

paced by PIT and RTC timer in LXRT
(for RTAI 3.1 with Linux 2.4.24 on PII 333 Mhz, Dell desktop)
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7.5.3 Memory requirement profile

On basis of memory utilization criteria, the architectures can be ranked as in Table 7.10
in decreasing order of performance i.e. on increasing order of memory resource
utilization. Each packet buffer on the DMA ring in all the architectures were provisioned
with 1536 Bytes (section 6.2.3). Both the LXRT architectures, i.e. "DMA ring on LXRT
with PIT" and "DMA ring on LXRT with RTC" have same memory requirements, so
both of them are represented by a single entry, "DMA ring on LXRT", in Table 7.10.
DMA ring on LXRT does not require any socket buffer, hence with only 64 entries in the

DMA buffer, it requires the least memory resource compared with Linux and NAPL.
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Table 7.10: Memory utilization of DMA ring on LXRT and Redhat 8
compared with other low memory architectures

Rank | Architecture | DMA buffer | Kernel packet queue Total memory
size (Bytes) | and socket buffer size requirement
(Bytes) (Bytes)

1 DMA ring on 64*1536 - 98304
LXRT

2 NAPI 128*1536 65536 262144
Linux 32*1536 300*%1536 + 65536 575488
DMA ring on 2048*1536 - 3145728
Redhat 8

7.5.4 Robustness

"DMA ring on LXRT with PIT timer" with DMA ring size of 64 can tolerate an
additional load of more than 70%. With this load it pass all the robustness tests which

"DMA ring on Redhat 8" passed, as depicted in section 7.2.5.

By using LXRT the DMA buffer size requirement is reduced, without sacrificing the
robustness and other performance aspects. So it can be concluded that the apparent

weakness of "DMA ring on Redhat 8" has been effectively addressed by LXRT.

7.6 Comparison of overheads in LXRT and Redhat 8

Average polling cycle invocation overhead for "DMA ring on LXRT with PIT" can be
estimated from the dependency of CPU utilization on polling rate and packet rate, as
done at the end of section 7.3.1. By regression, the dependency of CPU utilization on

polling and packet rates is obtained as -

N =8.128 * 10" * fpo + 0.746 * 100 * fop + 0.01 ........... Eqn. 7.2

where - 1 is the CPU utilization, presented as a fraction
fpon 1s the polling frequency in Hz.
fpr is the incoming packet rate packets per second.
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Comparing this relationship with Eqn. 5.4 of section 5.7, the average polling overhead is
estimated as 8.128 microsecond. The average packet processing time is still the same
0.746 microsecond per packet as in Eqn. 7.1. The CPU utilization due to background
tasks is only 1.0 % in LXRT whereas the same for Redhat 8 was 3.2 %. The polling
overhead (8.128 microsecond) in LXRT is half of that in case of the Redhat 8
implementation (16.323 microsecond). This shows that RTAI's interrupt servicing and
the rt_sleep() function call used to block and wait for the next polling period is more
efficient than Linux's interrupt servicing, ioctl() and wait event interruptible()
mechanisms. The CPU utilization due to back ground kernel tasks in LXRT is one third
of that in case of Redhat 8. This may indicate that the RTAI scheduler is more efficient
that the Redhat 8 Linux scheduler. So RTAI on Linux 2.4.24 may be a better choice in all

respects compared to Redhat 8.

7.7 Summary

The key findings from the performance studies can be summarized as following -

Packet loss in receiver is primarily due to buffer overflow.

e Low fixed rate polling yields better performance even though polling overhead may

be quite high. This strategy amortizes polling overhead over many packets.

e Threshold based mode switching in a hybrid-interrupt-polling scheme allows
optimization of the polling operation. Performance loss due to frequent mode

switching is avoided.

e Reduced context switching, integrated minimal protocol processing, efficient border
crossing, using a common staging area to avoid run time memory allocation and copy

operation improves performance of a packet receiving architecture.
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e The proposed "DMA ring" architecture has superior performance compared to

existing solutions - NAPI, PFRING and Linux networking stack in terms of

significantly lower CPU utilization, lower packet delivery latency and robustness

(Table 7.11).

Table 7.11: Superior performance of DMA ring:

Comparison with best of class solutions.

Performance Measure DMA ring on DMA ring on Contemporary
LXRT (PIT) Redhat 8 (RTC) best of class
No loss capacity > 148 kpps > 148 kpps PFRING
84 kpps
Loss at 148 kpps 0% 0% PFRING + NAPI
29.40%
CPU utilization <17 % <28 % All 100%
CPU available for event >70 % 70% All 0%
Processing tasks
Packet delivery latency Avg =61 Avg=61 PFRING
(micro sec) at 84 kpps 98th = 136 98th = 136 Avg =240608
Worst case =172 | Worst case = 2345 98th = 266081
Worst case = 267985
Memory requirement 98304 3145728 NAPI
(Bytes) 262144
Robustness: can handle Pass Pass No competing
continuous load over not a single loss not a single loss solution is available
1 billion packets

e Minimizing protocol processing, efficient border crossing and polling can yield

significant benefits at all packet rates. Shared DMA buffer render additional benefit

only if the packet size is quite large.

e There is some cost associated with memory allocation, but it is not too high.

e If DMA ring is used on a GPOS like Redhat 8, then it requires more memory,

however if it is implemented on a real-time platform, this weakness is addressed.
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DMA ring on a real-time platform use the least amount of memory even less than half

of what Linux networking stack requires.

DMA ring on a real-time platform also bounds the worst case packet delivery latency

to a small value.

It is possible to optimize performance of DMA ring on a real-time platform by
utilizing the native kernel timer to pace the polling instead of using external hardware
timer interrupts. Choosing suspend-resume for task blocking and unblocking yields

better DMA ring performance.

Using a real-time platform with an additional kernel itself does not deteriorate the
CPU performance of the system. There is no cost of implementing such real-time

platform in the present problem context.
In fact, the RTAI scheduler may be more efficient than Redhat 8 Linux scheduler.

NAPI has the worst no loss packet capacity, it also deteriorates this performance

aspect of "PFRING with NAPI" architecture.

NAPI introduces high packet delivery jitters at high packet rates, it depreciates this

performance aspect of the "PFRING with NAPI" architecture.

NAPI suffer from livelock phenomena even though it was designed as a solution
against it. This was because the NAPI polling is sustained only at very high packet
rates, and because NAPI wastes much CPU resources due to frequent context

switching, high polling overheads and kernel protocol stack inefficiencies.

Even though NAPI was designed to employ low priority softirqd tasks to reduce CPU
starvation of user space tasks, but user space tasks still starved. NAPI fails in both the

design goals - livelock and user space starvation.
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In spite of these limitations of NAPI, it reduces packet losses in case of PFRING.
PFRING with NAPI has far better throughput and lower packet loss compared to

PFRING alone.
PFRING collapses at very high packet rate.

A user space mechanism can be better or as good as a kernel mechanism for network

I/0 processing if certain design pre-cautions are taken.
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Chapter 8: Related Work and Contributions

The artifacts, as discussed in Chapter 4, could be readily deployed with off the shelf
components to rig up a packet capturing solution. Other than those solutions, many other
related research works are also available. These related works provide interesting insights
and concepts. Some of these ideas are embodied as custom hardware or software
components, therefore they cannot be readily deployed with off the shelf components in
their present form. Some propositions either do not provide features to implement a
required packet capturing architecture or they do not provide any special advantage in the
present problem context. Hence these works were not classified as solutions under
chapter 4. One interesting real-time networking stack, RTnet is described, even though it
cannot be employed to solve the packet capturing problem in a general context.
Nevertheless an analysis of RTnet is presented to demonstrate that its performance is

expected to be worse than that of DMA ring.

However, the ideas behind these contributions are worth assimilating. They aid in
perceiving the position of the proposed DAM ring architecture in the concept space.
These related works are briefly described in the following section. With this given
background, the contributions of this thesis are presented. The differentiating features of

the DMA ring are discussed and compared against these related works.
8.1 Related works covering aspects of network receiving performance
The existing literature may be classified under the following five categories:

8.1.1 Approaches to tackle interrupt servicing overheads

To accept interrupts at a high rate, operating system's role to deliver an event may be

reduced [63]. The network interface can be brought closer to the CPU by reorganizing the
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hardware. Instead of the usual scheme of raising interrupts request, dispatching them
through OS and invoking the ISR, the network interface can directly deliver the network
event notification to the user process without involving the OS. The network interface
will manipulate the process state bits in the memory to force a running thread to preempt
the current process. The network interface will also modify the state of a blocked thread,
which was waiting for a network event, to make it runnable. This architecture can be
implemented on a simultaneous multi threading (SMT) processors to hide the latencies
and context switching involved in interrupt servicing. No performance results or

implementation were presented.

"Bursty scheduling" of interrupt loads has been proposed to manage high interrupt rates
in case of embedded systems [64]. The logic behind "bursty scheduling" is quite similar
to DMA ring polling, interrupt is disabled if the interrupt rate is higher than a threshold
and events are serviced in a group to amortize the event servicing overhead over many
task cycles. This work presented very good performance results for a implementation
based on a embedded system OS running on an extremely low power embedded CPU
(4Mhz) with 10kHz interrupt rates. This work was implemented on a custom embedded

system hardware, it is not applicable for Intel x86 PC architecture in its present form.

"Clocked interrupt" scheme to handle network events avoids the high interrupt overheads
[65]. This scheme is actually similar to DMA ring polling, only the difference being,
"clocked interrupt" is paced by software kernel timer. Therefore it is expected to suffer
from high jitters due to OS limitations. This scheme was implemented on a modified AIX
kernel on HP9000/700 hardware with "Afterburner" ATM/SONET network adapter. The
AIX OS kernel was modified to increase the system clock rate from the standard 100 HZ
value. The researchers opted for data copy instead of zero copy I/O. The researchers
maintained that cost of zero copy packet buffer transfers are larger than cost of data copy.

They studied ATM/SONET NICs with large message and packet sizes. They observed
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that packet buffer transfer between network layers require stripping the DMA mapping
from the individual packet buffers which are transferred out of the DMA butfer. When
this packet buffer is replaced by a new one then DMA mapping of this fresh packet buffer
have to be made. They observed that DMA mapping and tear down is costly compared to

data copy mechanism, hence they opted for data copy.

The reality in Linux, on Intel x86 architectures with PCI NICs is different. First of all,
individual packet buffers allocation and de-allocation is not required if a common staging
area is employed for DMA transfer and protocol processing (section 5.1). Secondly, for
PCI devices in Linux, the DMA mapping and stripping is straightforward and not very
costly (Fig. 7.18, 7.20). DMA mapping simply means flushing the cache and computing
the true physical address of the first location of the contiguous memory segment. These
can be achieved by a few processor instructions for all packet sizes. Hence these

arguments does not hold true for Linux on Inter x86 hardware with PCI NICs.

8.1.2 Optimized network processing

A work [37] on Myrinet NIC (not Ethernet) addressed the task balancing and buffer
requirement issue in an interrupt driven multi layered network processing architecture.
This work further optimized an available user level direct access network API, the Fast
Message (FM) library for Myrinet. By forcing interleaved scheduling of task threads in
different layers, the requirement of any intermediate buffer was entirely avoided. To
avoid message losses it implemented flow control with the FM protocol primitives to
match the sending rate with receiver capacity. A common staging area was used for all
processing layers. To improve performance with large message sizes, it pipelined
processing of incomplete messages in the receiver, i.e. the receiver starts processing of

the received message fragments even though all the message fragments have not yet
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arrived. This work did not address the kernel to user space border crossing costs.

Performance improvement with these strategies were established with experimental data.

RTnet, a real-time network stack also implemented many other optimizations, this is

separately covered later under section 8.1.5.

8.1.3 User space network access

Some work has been done to support direct access of network devices from user space
without involving the OS. At least two complete user space driver development kits are
available for Linux PCI NICs which claims to facilitate complete user space driver

development.

Gelato project offers a library to implement an interrupt handler as real-time thread in the
user space along with other PCI and DMA resource management APIs [66]. Another
elaborate library, known as "User-Space Driver Development Kit" (USDDK) is available
for similar purpose [67]. Both these libraries use mmap feature of Linux to avoid data
copy during kernel to user space border crossing. These works were primarily proposed
to avoid the high development costs associated with kernel module development. No
published work was found that compared performance of user space drivers developed

with these libraries, against the performance of kernel drivers.

USDDK library did not allow enough flexibility to easily implement the DMA ring
architecture, rather it was worthwhile to implement DMA ring using native Linux kernel
APIL. Gelato project library was not explored as Linux kernel API was found suitable
enough for the job. Not much driver development work was involved which could benefit
from these libraries. Most of the work involved modifying and porting the existing NIC
kernel driver and developing the user space polling logic. These libraries have no especial

proposition to make in these two areas.
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uDAPL (user direct access programming library) is a Linux library developed for
InfiBand Architecture adapters for cluster systems [68]. Fast access to shared remote
distributed memory and messaging between cluster nodes can be carried out from user
space using these API. The event dispatch to user space is either carried out by polling or
by interrupts. This work also compared the performance of a user space driver developed
utilizing this library with that of a kernel driver. The user space driver performs worse
than the kernel driver with interrupt based operation. This work is not for IP network.

This library cannot be used in UDP/IP context.

A publication on Linux user space hard disk driver is available [69]. The performance of
this user space driver was poorer than the kernel driver, but they were comparable, the
throughput was within 75% and the CPU utilization percentage was only additional 2 to 8
% for different data rates. This work argued the benefit of a small driver code footprint to
result higher cache hits. This work did not address the problem how an user space driver
resource can be effectively shared by multiple users and what would be its performance
in such multi user environment. Multi user environment will mean multiple processes and
threads and higher inter process interactions. All these are expected to deteriorate the

performance significantly.

All these works on user space drivers give an idea that if development support or libraries
arc available then low cost user space drivers can be developed. The performance
comparisons indicate that additional design strategies are needed to improve the

performance of these user space drivers and add a multi-user interface to it.

8.1.4 Enhanced network interface cards

Network interface cards can be enhanced to provide interfaces for user space access by
multiple users. A work proposed and implemented a NIC interface for user level

drivers/applications for cluster networks (CLAN) [70]. The interface is suitable for
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multiple user applications accessing the same NIC hardware to perform remote memory
operations on other cluster nodes across the CLAN. This work involved
developing/modifying the NIC firmware. The modified NIC firmware carried out many
interface management tasks, the host CPU need not undertake them and this saved host
CPU cycles. This work claimed to reduce the number of real-time system calls. The
proposed NIC interface demonstrated better performance compared to another gigabit
NIC interface, VIA on Giganet cLAN, in terms of higher throughput and lower CPU

utilization.

"Lazy receiver processing" approach optimizes the network stack operation by offloading
the packet de-multiplexing task to the NIC [71]. This work was implemented on 4.4 BSD
Unix on SPARC with ATM adapter. Separate DMA buffers are maintained for each
socket opened. The NIC examines the packet's destination port and places the packet in
the appropriate DMA buffer. If a socket buffer is full then the NIC drops the packet. This
saves the host CPU from unnecessary protocol processing in the kernel in case there is no
socket to receive the packet. In case of normal BSD Unix (or Linux) kernels, packets are
dropped in the socket layer after much wasteful processing in the lower stack layers. In
addition to demux task offloading to NIC, the kernel stack is modified so that protocol
processing is carried out on demand by the user task thread when it enters the kernel.
Both these strategies improved the throughput capacity. This approach required OS

kernel and NIC firmware modification.

In addition to executing interface management tasks on the NIC, some protocol
processing tasks can be offloaded on the NIC hardware, which can save additional host
CPU cycles [72]. The source code of the Aleton Gigabit Ethernet NIC firmware is openly
shared by its manufacturer. So the researchers took this opportunity to develop a
firmware for this NIC to implement an interface between the NIC and user space driver

which by passes the OS kernel completely. The DMA to and from the user space were
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carried out without involving the OS kernel. The higher throughput, lower packet
delivery latency and CPU utilization of this scheme was very promising. However it is

not clear how this scheme can work with multiple users.

Another work [73] implemented an adaptive interrupt mitigation in Myrinet NIC. This is
also a kind of hybrid interrupt-polling system. The NIC implements a monoshot timer,
and the host implements an interrupt enable-disable flag and a packet counter in its DMA
memory. When a packet arrives, the NIC makes DMA transfer, raises an interrupt and
starts the monoshot timer. If another packet arrives within the timer period then the NIC
makes DMA transfer but does not raise an interrupt. For very high packet arrival rate the
interrupt rate is limited to a mitigated interrupt rate given by the reciprocal of the timer
period. Interrupts are generated only periodically even though packets may arrive very
fast. This scheme adapts itself to the host's processing capacity and may raise the
mitigated rate if the NIC observes that the host is able to quickly process the pending
packets. This is implemented by a packet counter. The host CPU increments the counter
for every packet processed. NIC polls the counter frequently to monitor the progress of
packet processing on the host. This polling rate is governed by the same monoshot timer.
If the NIC finds that host has already processed all the pending packets then the NIC
cancels the timer, thereby allowing an interrupt to be raised earlier when the next packet
arrives. This allows more frequent interrupts if the host can process them faster. To
completely disable interrupts the host turns off the interrupt enable-disable flag. The NIC
polls this flag along with the packet counter, and if the flag is off, the NIC does not raise
any interrupt till this flag is again turned on by the host. The NIC periodically downloads
the values of this flag and the packet counter from host memory by DMA transfer to

examine them.

A very comprehensive treatment of multi user, user level NIC interfacing has been

carried out in a D.Sc. thesis [74]. All aspects of hardware and software architectures in
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the host and NIC side has been addressed. This work involved NIC chip design,
fabrication, PCI NIC hardware, driver development and testing. This work proposed a
NIC interface suitable for direct user space access in a multi user environment. All

implementations involving enhanced NIC need custom NIC hardware.

8.1.5 Real-time networking stack

A real-time networking stack is available for RTAI on Linux. The protocol stack is
optimized to minimize the packet delivery latency in addition to a guaranteed packet
transit delay [47,75,76,77]. It is the optimized stack that is interesting in the given
problem context. RTnet implements UDP, ICMP and ARP protocols which is just
sufficient for a distributed real-time application to operate over an IP network. This
scheme requires a dedicated LAN segment where all the real-time nodes are tightly
bound with each other [75,76]. All the participating real-time nodes have to implement
the RTnet stack on RTAI Network and system parameters about all the participating
real-time nodes are collected at a central place during setup time. Every node is allocated
a specific media access time slot when it sends packets. Real-time media access control
and central archiving of node parameters are executed by two additional real-time

networking protocol running over the usual UDP/IP, Ethernet and MAC protocol layers.

The RTnet task model and architecture layering (Fig. 8.1, next page) [47] is some what
similar to Linux. However there are differences. The ISR does not belong to Linux
domain, it is a RTAI ISR. The softirq task thread as in Linux is replaced by a high
priority RTAI kernel task thread which takes care of the protocol processing. The user
space task thread is a high priority LXRT task. There is no packet queue buffer or socket
buffer however the NIC DMA buffer still exists. Instead of both packet queue and socket
buffer there is one single staging buffer for each network socket opened. This staging

buffer serves as a common staging area for protocol processing and socket buffering.
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This staging buffer is created when a socket is opened from user space. The socket
operating semantics is similar to BSD socket operation [78]. RTnet allows multiple users.
The RTnet stack sits over RTAI kernel and can co-exists with Linux and its native
network stack.

Fig. 8.1: RTnet network stack
(3 tasks, 1 copy, 1 memory allocation)

______________ Application specific
e processing e User space
KWakeup _____ _
LXRT / ___ 4 > |
task = || T , :
Copy Protocol i RTAI
stack i kernel
i task
Staging buffer
In t
ferpt RTAI
Enqueue & Kernel
Memory allocation | | /= RTAI
ISR

When a LXRT task tries to read a empty socket it blocks on a socket semaphore. This
socket semaphore (a RTAI kernel semaphore) is not available if there are no packets in
the staging buffer. The RTAI kernel task blocks on an interrupt semaphore (RTAI kernel
semaphore) when there are no pending packets to process in the staging buffer. When a
packet is received the RTAI ISR is invoked, the ISR transfers the packet from the DMA
buffer to the staging buffer and releases/signals the interrupt semaphore on exit so that
the kernel task is waked up to processes the packet. On completion of the protocol
processing, the RTAI kernel task releases/signals the socket semaphore to wakeup the

blocked user space LXRT task to carry out the event data processing.
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Like Linux, the packet transfer from DMA buffer to staging buffer is carried by packet
buffer transfer instead of copying for large packet sizes. The packet data is copied from
staging buffer to user space memory on the return path of the socket read call. But this
stack does not allocate memory to replenish the DMA buffer, because when the ISR
hands over the packet to the staging buffer, it receives an empty packet buffer in return.
This empty packet buffer is the one whose data has been already read by the user space
task earlier. Sufficient numbers of empty buffers are pooled at setup time, so that the
system do not starve out of empty buffers at run time. Only a small number of empty
buffers and small DMA and staging buffer sizes are required as all three tasks can be
balanced due to their true real-time priorities and manageable response jitters. So this
architecture do not suffer from memory allocation inefficiencies but only from data copy,
unnecessary protocol processing, context switching and DMA mapping-unmapping
inefficiencies. Task synchronization with semaphore is a costly method and may not
yield better performance than suspend-resume method as used in DMA ring on LXRT.
Context switching, unnecessary protocol processing and data copy avoidance are three
most significant advantages that yields higher performance (Fig. 7.20). Unlike DMA
ring, RTnet does not exploit these key improvements. So it is most likely that DMA ring
will have better receiving performance than RTnet. RTnet implementation also requires

modification in the NIC driver, similar to what is required for DMA ring implementation.

RTnet cannot be used in a system where the packet sending nodes are numerous, where
they do not implement a real-time OS or RTnet protocol and they do not belong to the
same dedicated LAN segment. A NMS or NIDS application is one such application

where RTnet cannot be deployed, therefore it was not deemed as a deployable solution.
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8.2 Differences and advantages of proposed DMA ring architecture

DMA ring architecture reduces both per packet and per byte packet processing cost
component, thus it yields superior performance at small and very large packet sizes. In
most situations small sized packets below 600 bytes are most likely [36,37]. For network
management applications the alarm message size is also below 500 bytes. In worst case
scenario, smaller packet size implies higher packet rates. So managing per packet costs in
a high packet rate scenario is more important than eliminating only data copy to tackle

large packets.

DMA ring is a scalable software solution that does not require any modifications in the
network adapter, neither in the host hardware, nor in the OS kernel. The single thread
single buffer architecture has simple system dynamics, whose performance scales linearly
with CPU speed. DMA ring works with off the shelf, readily available commodity
components. It does not depend on any low availability, difficult to administer, custom
patch. DMA ring can work on either Redhat 8 or any RTAI vanilla Linux combination. In
its present form it can work on any uniprocessor or multiprocessor Intel Pentium
hardware. With a single minor modification it can be ported to work with other non-Intel
CPUs that supports either Redhat 8 or RTAI-Linux. The timing measurement based on
Pentium CPU clock cycle counter (TSC) is the only CPU dependent function that needs

to be modified.

DMA ring can work with any network protocol. DMA ring may even support
ATM/SONET NICs. Memory requirement for a DMA ring size of 2048 for individual
64K Byte packet buffers for Gigabit jumbo frames, is on the higher side and might pose
practical problems, but in that case DMA ring for Gigabit NICs can be implemented on
LXRT with smaller (64) ring sizes. It can work with any PCI NIC with commodity

features. The modifications required in the NIC driver are well defined and can be
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applied to any generic Linux NIC driver. The intricate modifications are packaged into
two functions, which are similar to existing Linux kernel APIs. Other NIC drivers can be
modified using these functions. The user space component is fairly generic and can work

on any platform that supports Linux.

DMA ring is a non-adaptive hybrid interrupt-polling mechanism implemented partially in
the user space. It involves only a single task thread, thus it reduces context switching in
the real-time critical path. The differentiating features of DMA ring are - low fixed
polling rate (polling overheads amortized over many packets), lower context switching
frequency, minimal protocol processing, no border crossing for data, no copy, no memory
allocation operation, simplified computation to decide operation mode (polling or
interrupt), no need for task balancing and simple buffer overflow management (moderate
increase of DMA buffer size solves the problem). The current DMA ring architecture
only serves a single packet capturing process, which is sufficient for NMS and NIDS

applications.

8.3 Future research directions and insights for further improvements

The DMA ring was tested only on uniprocessor hardware where multi threading has no
advantage. The event data processing tasks may require more CPU resources, in such
case, multiple concurrent threads on multiple processors can be employed to carry out
event data processing. It might be possible to run concurrent user space threads for packet
receiving and event data processing tasks without explicit task synchronization and
balancing. An enhanced version of the DMA ring buffer can still act as the common
staging area for all threads. This DMA ring memory will be shared across all Linux
threads or processes. The DMA ring LKM is already thread safe, so most of the design
enhancements for multi threaded operation can be easily implemented in user space.

Another area worth studying is the performance of the suggested algorithm that decides
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the mode switching. Under various packet arrival patterns its performance can be

ascertained.

8.4 Conclusion and discussions

This thesis investigated the packet capturing problem in network management and
network intrusion detection applications. The receiver capacity limitations largely
determined the packet loss characteristics in such systems. The issues that limit the
packet capturing performance in a receiver host were identified. In this regards, several
possible architectural forms, the relationship between performance of these architectures

and their structural parameters were discussed.

Linux OS based system was chosen for detailed analysis and the factors behind poor
network receiving performance of Linux 2.4, 2.6 kernels and existing Linux based
solutions like NAPI and PFRING were studied, ascertained and discussed. Several other

possible relevant approaches and solutions were also considered and deliberated.

Based on the findings, a set of design and implementation strategies were proposed for a
high performance packet capturing architecture. Utilizing these strategies, a high
performance packet capturing architecture was designed and implemented for Redhat 8
and for RTAI 3.1 on Linux 2.4.24 with high availability, off the shelf components. The
development work included modifying and porting the available Linux NIC driver and
developing a user space driver component. This architecture avoided most of the
identified problems that limited the performance of Linux, NAPI and PFRING. This
architecture could receive packets at high arrival rates without any packet loss while
consuming less CPU resources. The generic modifications to be carried on NIC drivers

were delineated.
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Performances of the proposed architecture, Linux, NAPI and PFRING were measured in
experimental setups. Performance of the proposed architecture was compared with that of
Linux, NAPI and PFRING against seven performance criteria. The test results
demonstrated that the proposed architecture is superior in terms of lower CPU usage, no
packet loss (higher throughput), lower packet delivery latency jitter and greater
robustness. This study also indicated that a user space network processing mechanism
can yield better performance under heavy network loads compared to existing kernel

mechanisms, provided additional design efforts are undertaken.

The experimental work also profiled performances of NAPI and PFRING more
exhaustively and elaborately than any other published literatures that could be found.
Limitations of these two solutions were exposed. Many related works and solutions
available to solve problems associated with packet capturing were surveyed and
discussed. Some key implementation aspects with LXRT-RTAI were discussed which
could ecase development of other hard real-time data acquisition applications.
Performance evaluation and measurement of network stack is a common practical
problem. The evaluation and instrumentation methodology that was documented in this

work could be used to measure performance of similar network stack.
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