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ABSTRACT
A Modern Isabelle-based Prover for VDM's Logic of Partial Functions

George Karabotsos

Specification and verification tools, often, employ theorem proving technology. This technology
encompasses an underlying logic encoded in a theorem prover. VDM-LPF, first developed by
Sten Agerholm and Jacob Frost in 1996, encodes VDM’s Logic of Partial Functions (LPF) by
extending the generic theorem prover Isabelle. Because of Isabelle’s powerful syntax facilities,

terms in this logic are written using a subset of the VDM-SL specification language.

In this thesis we provide the reader with a detailed description of the steps we undertake to revive
the VDM-LPF logic by upgrading it to the latest Isabelle version, namely Isabelle2005, and by
using its latest Intelligible Semi-Automated Reasoning (Isar) theory syntax. We first provide a
description of the Isabelle theorem prover, its generic design, and the unique facilities it provides
for extending itself and developing new object-logics. We then explain in detail the original
VDM-LPF system as developed for the Isabelle94-8. We describe all the necessary modifications
that were needed to perform the upgrade. Finally, a number of proofs are performed, using the

upgraded VDM-LPF system, that form a case-study.
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1 Introduction

Program verification is the process of ensuring that a software program performs as stated by its
specifications. To perform program verification in a rigorous manner the specifications must be
written in a specification language that is supported by an appropriate logical framework.
Specifications written using such a specification language allow for the automation of program
verification through the use of theorem-proving technology. That is, they allow the generation of
proof obligations based on these specifications and then using a theorem prover, equipped with
the correct logic, to validate these obligations. In this sense, program verification proves that the

software system performs as expected.

VDM-LPF is the result of the experiments Sten Agerholm and Jacob Frost performed in creating
a program verification system for VDM. VDM-LPF encodes VDM’s Logic of Partial Functions
(LPF) using the Isabelle generic theorem proving environment. This encoding is comprised of
syntax, a proof system, and a set of proof tactics. The syntax is a subset of VDM’s specification
language, which is known as VDM-SL. The proof system is defined axiomatically. It includes
theories for propositional and predicate logic as well as theories for advanced topics, such as
sequences, maps, and types. Proof tactics are employed in the process of deriving new theorems.
Isabelle provides with a comprehensive set of basic tactics. Moreover, Agerholm and Frost
developed a set of automatic proof tactics, specifically for VDM-LPF. These tactics facilitate the

proving process by making proofs compact.

The motivation behind our involvement with VDM-LPF is its underlying logic. The logical
foundation of VDM-LPF is the Logic of Partial Functions. The need to better understand and
experiment with such a logic arises from the belief that a non-classical logic, such a LPF, is more
appropriate for reasoning about software systems. Such a belief alone is not enough. We are
required to understand and experiment with a non-classical logic, such as LPF. This
understanding is a essential for two reasons: (1) to visualize how much more complex such a
logic is and (2) to understand why most software reasoning systems utilize a classical two-value
logic. The difference between a two-value and a three value logic is the manner they handle

partial functions.

1.1 Contribution
The main contribution of this thesis is a realization of support for VDM’s Logic of Partial
Functions (LPF) in one of the most popular theorem provers, Isabelle (2005 edition). Rather than

starting from scratch we chose to work from Isabelle/VDM-LPF, a realization of LPF written for



Isabelle about a decade ago. This thesis explains the step-by-step approach that we followed in
order to revive Isabelle/VDM-LPF. This revival was accomplished by rewriting theory files to
make use of the Intelligible Semi-Automated Reasoning (Isar) theory syntax. All aspects of the
theories have changed in various degrees thus making our upgrading task a challenge. In
particular, we successfully imported and were able to reuse the built-in proof search tactics
specifically developed for VDM-LPF. Finally, as a form of validation, we present a case study in

the use of our VDM-LPF to conduct proofs.

1.2 Thesis Organization
This thesis is organized into seven chapters and four appendices. Chapter 1 introduces the reader
to our work by providing a brief background, our motivation to pursue this topic and the main

contribution of our work.

Chapter 2 reviews the background of our work and a presents a small sample of tools that make
use of theorem proving technology that is related to our work. Additionally, both classical and
non-classical logics are examined, concentrating on the manner they handle partial functions.
Two specification languages, namely VDM and JML, are briefly discussed. Next we have a brief
look at computer-aided theorem proving, where we mainly concentrate on two popular theorem
provers, namely PVS and Isabelle — in particular, we examine their support for Higher-Order

Logic (HOL). Finally, two tools that make use of theorem proving technology are examined.

Chapter 3 presents a detailed view on the Isabelle theorem prover. We present Isabelle’s
evolution, architecture, and generic design. We further discuss Isabelle’s proof system and the
two types of theory development syntax. Finally, we examine the process for creating a new

object logic.

Chapter 4, presents the VDM-LPF logic as developed by Sten Agerholm and Jacob Frost. We
present the three different components comprising VDM-LPF — syntax, proof system, and the

proof search tactics are presented.

Chapter 5 presents the main contribution of this thesis. We describe the four step process of: (1)
obtaining the original VDM-LPF and initial obstacles that had to be resolved, (2) the successful
interpretation of the VDM-LPF theories on an older version of Isabelle, (3) the first migration to
the latest Isabelle version, (4) the final upgrade that makes use of the Isar theory and proof

language.



Chapter 6 portrays a set of proofs we have performed using the upgraded VDM-LPF object logic.
These proofs include propositional and predicate logic, as well as a proof involving VDM’s

specification language (VDM-SL) conditional statements.

Chapter 7 contains our conclusions and discusses the lessons learned from this exercise.

Additionally, ideas about future VDM-LPF enhancements are presented.

Appendix A lists the contents of the original prop. thy theory file as developed by Agerholm and
Frost. Appendix B, contain the LPF Prover.ML file, which holds the implementation of the built
in proof search tactics. Appendix C contains the syntax of the meta-logic as displayed by the
print syntax Isabelle command. Finally, Appendix D holds all the upgraded theory files of
VDM-LPF.



2 Background and Related Work

The purpose of this chapter is twofold. First, we provide the reader with the background material
necessary to understand later chapters. Second, we present a summary of related work ; this will
better help define the overall context of our work. The material covered includes specification

languages, logics, theorem provers, and tools that make use of theorem proving technology.

These topics are necessary because they are related in the specification and verification field of
study. Specification and verification tools are developed because of the need to build quality
software products. These tools use theorem proving technology to check specifications and their
associated code. These specifications are written following the language and semantics of a

specification language which in turn is based on a underlying logic.

2.1 Specification Languages

The research reported in this thesis is being done in the context of a larger research project on
dependable software engineering which seeks to advance practical, state-of-the-art rigorous
development techniques and tools. At the heart of these techniques is the notion of writing

contracts for software modules so that the software will be:

o better documented, and hence more easily understood and maintained;
o of higher quality since automated tools can be used to, e.g., automatically generate test cases
from specifications, or better still, statically verify that modules accurately implement their

specifications.

Hence, although this thesis is actually about a theorem proving support for a logic, the original
motivation for this logic comes from its presence as the formal foundation of a specification

language.

A specification language is a formal language used to model and describe the behavior of
software systems. Two important classes of specification languages (which are not mutually
exclusive) are model-based specification languages (SLs) and Behavioral Interface Specification
Languages (BISL). VDM, B [Abrial96] and Z [Spivey92] are examples of the former while the
Larch family of languages and the more recent Java Modeling Language (JML) {LBRO5] and
Spec# [Barnett+04] are examples of the latter. Model based specification languages allow
developers to accurately document a model of the software system. A BISL describes the
software system by describing the interfaces and behavior of specific modules of the system. As
such BISL are tailored to specific programming languages (e.g. JML is tailored for Java) and

usually a BISL will not be appropriate for a different language.



Next we provide a slightly more detailed overview of VDM and JML. We do so for VDM
because it is founded on LPF—the main topic of this thesis—and for JML because it is one of the
specification languages being actively worked on by the members of our research group.
Furthermore, it is becoming apparent that an LPF-like logical foundation will be most appropriate

for JIML as well [Chalin05, Chalin05-1].

2.1.1 Vienna Development Method (VDM)

The Vienna Development Method (VDM) is more than just a specification language [Jones90].
VDM is a formal development method mainly comprised of a specification language (VDM-SL),
data reification techniques, and operation decomposition techniques. A number of VDM tools
are available to developers with the most notable ones being IFAD’s VDMTools; although
somewhat dated, a research effort know as Overture is seeking to create a public domain (Eclipse-

based) version of the VDM (actually VDM++) support tools.

VDM-SL is the specification language underlying VDM. A typical VDM specifications consists
of a data model, a set of operations on the data model, and proof obligations. The data model
abstracts the main data types of the software system and can also be used to represent its state.
The operations are defined to describe the behavior of the system and may also change the state
as a side-effect. These operations are described in terms of inputs and outputs of the data model
[Jones90, Bicarreguit94]. The proof obligations are logical formulas capturing basic “well-
formedness” properties of the data model and their related operations—e.g., that an operation’s
post-condition be well-defined in all situations that satisty its precondition. The Logic of Partial
functions (LPF) [BCJ84, Cheng86, CJ91] is the logic that underlies VDM-SL and, in particular,
in which the proof obligations are written. LPF will be described in more detail starting in

Section 2.2.2.

Data reification is a process that allows a data model to be formally related to a more “refined”
data model. This process can be repeated. The goal of this process is to successively refine an
abstract data model until it reaches a level of detail that can be mapped directly into an

implementation language [Jones90, Bicarregui+94].

Operation decomposition is to operations as data reification is to the data model. It is, again, an
iterative process whereby operations, initially depicted using mathematical concepts, are rewritten
(decomposed) so that they increasingly incorporate programming language constructs, such as
loops, conditional statements, etc. [Jones90, Bicarregui+94] In other words the operations are

moving from an abstract representation into one that more closely resembles an implementation.



2.1.2 Java Modeling Language (JML)

JML is a specification language that falls under the class of Behavioral Interface Specification
Languages. As its name implies, it is a specification language tailored for use with the Java™
programming language. Its main purpose is to allow the interfaces of Java modules to be
accurately specified and in a way that captures both module signatures as well as component
constraints and behaviors. JML specifications are most often embedded directly with Java code.
Like VDM, there are a number of tools available for processing and checking JML, most notably
ESC/JAVA2 and LOOP which allow partial and, respectively, total verification of JML annotated

Java modules; we will have a closer look on these two tools later in this chapter.

A very simple Java class with a JML method specification is given in Figure 1. The first two
Java statements are used to declare a class named Tester and a method named addone. The
same statements are used in JML to declare the interfaces for the fore-mentioned class and

method.

Module behavior is also specified using specially embedded comments in the Java code. The

comments are annotated with an @ character. The
public class Tester {
keywords requires and ensures head public static int addOne(int 1)
{
//@ behavior ({

assertions that are used to define a method’s pre- /78 requires i > 0
and post-conditions. These conditions are specified /e ensures \result == i +
//@ 1}

using a ented Java expressions with predicate
Sing augm p p return (1+1)
logic quantifiers, such as forall and exists.
These expressions are logical statements that

describe the behavior of the module. JML’s

Figure 1: JML Sample Specification

underlying logic is (currently) a classical two-valued logic where partial functions are modeled as
underspecified total functions. The differences between JML’s and VDM’s logical foundations

are explained next.

2.2 Logics

Logic comes from the ancient Greek work Adyog (logos), which came to mean reason [WP]. Two
main branches can be identified: philosophical and mathematical logic. Of particular interest to
us are two kinds of mathematical logic: classical two-valued and non-classical three-valued. The
main difference between the two is the manner they handle undefined terms that result from the

application of partial functions. A partial function is a function that it is not defined for all



possible values in its domain; when applied to arguments outside its domain, it does not yield a

defined value.

In most formulations of classical logic, all functions are total functions — total functions are
functions that are defined for all possible values in its domain. However, since partial functions
arise naturally in mathematics and computer science (e.g. division) techniques have been devised
so that they can “deal with” partial functions as well. Unfortunately, the manner in which this is
done is, more often than not, inappropriate for reasoning about programs because of its
complexity in dealing with issues such as error conditions, non-termination, undefinedness, etc.
[Hahnle05]. But why is classical two-valued logic almost always used for program reasoning?
The answer lies in the desire to preserve well known properties Vs
of classical logic that do not hold in a non-classical logic. " ’

Figure 2: Law of Excluded Middle
Non-classical three-valued logics extend (or “lift”) all value

sets with an extra value used to represent undefinedness. With such an approach, partial functions
can be properly represented. It would seem that using a non-classical logic in program reasoning
is the right approach. Unfortunately this approach also has its share of problems. The problems
arise from the complexity in the semantics of the different operators, relational and logical alike,
because of the introduction of this special “undefined” value. Moreover, fundamental properties

such as the law of the excluded middle (given in Figure 2) no longer hold.

2.2.1 Classical Two-Valued Logic
A number of methods have been devised so that a classical two-value logic can deal with partial
functions. Restricting the domain set of a function, viewing functions as relations, and

underspecification are just a representative sample of these methods.[CJ91]

When dealing with partial functions in a classical logic, one can attempt to find a more restrictive
domain of that function while at the same time leaving the function unchanged. By finding such
a domain we are transforming this function from partial to total. Consequently, there is no need

to worry about undefined values. To illustrate consider the partial function [CJ91]:

zero: .Z => y4 .
zero(i) Aif i = 0 then i else zero(i-1)

This function accepts an integer and it subtracts one from it until it is reduced to zero. However,
this function is undefined for all the negative values because it will never terminate. Changing
the function so that its domain and range is the set of natural numbers (zero: N => N) will result

in no possible application of this function resulting in undefined values. Not all partial functions



are this simple. For most, finding such a restrictive set can be difficult. Even when such a set is

found, validating properties involving such a function maybe a very challenging task [CJ91].

Another solution is to avoid function application altogether. This can be achieved by modeling a
function as a relation (or graph). When a function is to be applied to a given argument, a test is
performed to determine whether the (domain, range) pair is in the graph. This means that
reasoning about a function expression such as f(x) = y takes the (x,y) ¢ f form. Thus
classical two valued logic is sufficient to represent such functions. {CJ91] Again there are issues
with this approach — the natural universally understood function application is been replaced by
an alternate notation. Such a solution has been implemented in the Z specification language and

its derivatives, such as B [Hahnle05].

Finally, underspecification is another method used to model partial functions in a two-valued
logic. Underspecification accepts the fact that function application may cause an undefined
result, however, instead of using a third undefined value an unknown or unspecified value from
the range of the function is returned [Chalin05]. Lets consider the quintessential example,
integer division by 0. If such an application occurs the division will result in an unspecified
integer value. Practically speaking that unspecified value is always the same — for example in
Isabelle/HOL division by zero always gives zero. Furthermore, Isabelle provides a polymorphic
constant, arbitrary::‘a, that can be used with partial functions [NPW98]. JML makes use of

underspecification in order to work around partial functions.

2.2.2 Non-Classical Three-Valued Logic

Three valued logics have been introduced for various reasons, but most importantly to enable a
more natural (or direct) form of reasoning about partial functions. However, due to their nature
such logics have some serious drawbacks because of the complexity in the semantics and because

classical logic fundamental properties no longer hold.

The complexities in the semantics are introduced because of the third truth value. Relational and
logical operators are no longer treated in the classical manner. As a first example of this we note
that three-valued logics come equipped with two kinds of equality: strong and weak equality —

see Figure 3. In this table vl and v2

strong| vl v2 U weak| vl v2 U

values we test for equality @ -7---- Hommooomo e A

are the valu quality vl | T F F vi | T F U

while U denotes the undefined value. 52 } Pl \JZ I Y
The meaning of logical operators is Figure 3: Strong and Weak Equality Truth Tables

even more complex. A choice of strong Kleene (known also as monotonic and non-strict), weak



Kleene (known as Bochvar and strict), and conditional (known also as McCarthy) logical

operators are available [Hahnle05, Cheng86]. Figure 4 shows the truth tables for disjunction.

strong Kleene weak Kleene conditional
OR | TFU OR | TFU OR | TFU
e it b to—————- == to—--—-
T | TTT T | TTU T | TTT
F | TFU F | TFuU F | TFuU
U | TUu U | uu u U | vuu

Figure 4: Truth Tables for Strong and Weak Kleane, and Conditional Disjunction
Fundamental properties from classical logic no longer hold. The law of the excluded middle is
one such property. If conditional logical operators are used the commutative property no longer

holds either.

Ideally in computing we would want a logic that is three-valued while maintaining all properties
of classical logic. However, this cannot be achieved. Consequently the next best thing will be a

three-valued logic that preserves as many as possible of the properties found in classical logic.

LPF is a non-classical three-valued first order predicate logic designed for reasoning about
languages with partial functions. This logic is used in VDM. Propositional logic uses the strong
Kleene connectives which preserve the commutative and distributive properties while predicates
range over defined values only. This non-classical logic inherits all properties of classical two-
valued logic, except for the law of the excluded middle. This is because LPF also deals with
undefined values. To alleviate this, a new operator is defined in LPF, namely 9, to test for
definedness. The definition is as follows:

de =¢e \/ ~e
Having this operator defined, the law of the excluded middle will hold in LPF if it is modified in
the following manner:

3 e

e\/ ~e
In a similar way, any classical logic tautology that no longer holds in LPF can be made valid by

use of this operator.

2.3 Theorem Provers

Like any formal language, a logic is most useful to a software engineer or a mathematician if
supporting tools are available that allow formal proofs to be carried out. The intent of this section
is to provide the reader with a brief introduction to theorem provers. As such our goal is to give
the reader a basic idea of what a theorem prover is and what it feels like to write theories and
perform computer aided proofs. This background is needed since the main contribution of this

thesis involves such a theorem prover.



A theorem prover is a software system that is able to reason about theorems. These theorem
provers come equipped with a language where new definitions can be expressed and a logic
where properties of these new definitions can be established or refuted. This language more often
than not, resembles a functional programming language. However, the aim is not to write
programs but to design abstract models of systems and validate them [NPW98]. Consequently

one can view a theorem prover as a specification and verification tool.

There are two main categories of theorem provers, those that are fully-automated and those that
can interactively validate theorems. Instances of the former are Simplify [STP], Harvey
[Ranise+03] and Twelf [Appel2] while instances of the latter include HOL [GM93], Isabelle
[Paulson, NPW98, Wenzel] and PVS [OSRS1, OSRS2, OSRS3]. It should be noted that proving
via interactive theorem provers, as the ones mentioned above, can be automated to a certain

extent via, e.g., tactics and decision procedures.

We will concentrate on just two of these theorem provers, namely Isabelle and PVS, for the
following reasons. First, PVS and Isabelle are two of the most widely used theorem provers.
Second, interactive provers are more appropriate for reasoning about software systems. This is
because the structure of such proofs is known in advance and they can be tedious and very large
[PST2]. Finally, VDM-LPF, the object logic this thesis is concerned with, was developed using

Isabelle.

231 PVS

PVS is a specification and verification system. It is actively developed by SRI International
which is an independent nonprofit research institute. PVS has an active user community
including prominent organizations such as NASA. PVS mainly offers a specification language
based on a higher-order logic, and a prover supporting this language. It also offers a user

interface in the form of an emacs-customizable mode.

The PVS specification language is particularly rich. It allows users to define types, functions, and
theorems. These definitions are organized into theory files. Functions can be recursive and
pattern matching on arguments can be achieved via the cases ENDCASES block statement.
Base types for Boolean, the natural, integer, and real numbers exist. Tuples and records can also
be defined. New types can be defined via the DATATYPE statement. Moreover, PVS allows for
definition of subtypes. Subtypes can be defined using logical expressions. For example, the

following:
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NonZeroNats : TYPE = {n:nat | n /= 0}
defines a subtype (subset) of the natural numbers that excludes zero. Such a subtype is desirable

in expressions that may involve division by zero, where the result is undefined.

The theorem prover is based on a classical typed higher-order logic (HOL). Theorems can be
specified via the THEOREM or (its synonym) LEMMA statements followed by a formula. Formulas
are expressions of the Boolean type. A large number of methods are available that can be applied
in order to resolve the proof, methods such as induct and grind. The induct method is used to
perform proof by induction while grind is a general purpose method that attempts to resolve the
proof automatically.

Figure 5 portrays a simple theory

sum: THEORY
REGIN

named sum which defines a

recursive function of the same name
n: VAR nat

and a theorem to be proved. The
sum{n): RECURSIVE nat =

function recursively implements the (IF n = 0 THEN 0 ELSE n + sum{n-1) ENDIF)
MEASURE (LAMBDA n: n)
summation of a natural number.
closed form: THEOREM sum{n) =n * (n + 1)/2
What the theorem says is that the -

. o END sum
recursive definition of the
. . . . Figure 5: PVS sum Theory
summation is equivalent to its

closed form. The first thing to do is to parse and typecheck the theory.

The next step will be to attempt to prove the theorem. This is achieved by placing the cursor
anywhere in the line containing the closed form theorem and using the PVS prove command.
The emacs screen splits and we enter the PVS’s proof mode. In this mode we can apply different
PVS methods in order to advance and hopefully resolve our theorem. Proofs are presented in a
form of sequent calculus [OSRS3]. Figure 6 shows the PVS’s proof mode and the successful
resolution of the closed form theorem. In gray you can see the user’s input. We use induction
and then we apply the brute force grind method twice to resolve the base and the induction step

cases. PVS clearly displays the successful resolution of this theorem by the ¢0.E.D. line.
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closed form :

{1} FORALL (n: nat): sum(n) =n * (n + 1) / 2

Rule? jinduéﬁ n¥

Inducting on n on formula 1,
this yields 2 subgoals:
closed form.1l :

{1} sum(0) = 0 * (0 + 1) / 2
Rule? {grindk
sum rewrites sum(0)
to 0
Trying repeated skolemization, instantiation, and if-1ifting,

This completes the proof of closed form.l.

closed form.2 :

{1} FORALL J
sum(j) = 3j * (3 + 1) / 2 IMPLIES
sum(j + 1) = (J + 1) * (3 + 1 + 1) / 2

Rule? (guind)
sum rewrites sum(l + 7)
to 1 + j + sum(j)
Trying repeated skolemization, instantiation, and if-lifting,
This completes the proof of closed form.2.

Q.E.D.
Figure 6: PVS close_form Proof

2.3.2 Isabelle/HOL

In this section we will provide the reader with a brief introduction to Isabelle. We will
concentrate on an instance of Isabelle called Isabelle/HOL which is similar, from a user’s point of
view, to PVS. In Chapter 3 we give a detailed account of Isabelle, its evolution and its generic

design, which is required material for the understanding of the main contribution of this thesis.

Although Isabelle, like PVS, can be used as a specification and verification system it is more
often described as a generic theorem proving environment. That is, it allows users to create and
experiment with the design of new specification languages and the underlying logics. This last
point is what sets Isabelle apart from other theorem provers, such as PVS. While PVS is
equipped to reason within the “limits” of a classical typed HOL, Isabelle in addition to HOL
provides instances for first-order logic (FOL), Logic of Computable Functions (LCF) and
Zermelo-Fraenkel set theory (ZF). The last two logics are implemented as extensions to HOL

and FOL respectively.
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Isabelle/HOL is the instance of [sabelle for HOL. It is very similar to what PVS offers. It offers
a specification language where specifications can be expressed and a logic where these
specifications can be reasoned about. Isabelle comes with a user interface in the form of a third-
party project, namely ProofGeneral [Aspinal, Aspinal2], which is also an emacs based interface

(an Eclipse based interface is under development).

Isabelle/HOL’s specification language is comprised of types, functions, and theorems. It follows
the functional programming paradigm and it is very similar to ML. ML is Isabelle’s
implementation language and they share many similarities. Functions can be recursive and make
full use of pattern matching. Isabelle’/HOL offers all the usual base types (bool, nat, int, real) and
a polymorphic typing system where tuples, records, type synonyms, and new types can be
defined. Theorems make use of logical and relational operators to formulate Boolean terms. A-

expressions are also available in the language.

The underlying logic is a classical two-valued typed high order logic. Partial functions are
implemented as total underspecified functions, by making use of the polymorphic arbitrary
constant. Theorems are written using the theorem and lemma statements. Similar to PVS

methods for induction (induct) and brute force (auto) resolution are supplied.

For an example of an Isabelle/HOL theory consider the sum theory on Figure 7. This theory
declares the exact same function and closed form theorem as the PVS theory displayed earlier.
The definitions are enclosed in theory  end statement blocks. We also see that the Main theory
is included in the current context. The Main theory is the top level theory of the HOL logic and
needs to be included if the HOL theorems and definitions are to be used. Next the recursive
function sum is defined. The definition clearly shows how one can use pattern matching in
Isabelle. Finally, the closed form theorem along with its proof can be seen in the 1emma  done
block. As before, induction followed by the brute force method auto is applied. Unlike the PVS
however, we need to apply an additional method, namely arith. This is because the auto

method cannot deal with complicated arithmetic expressions.
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theory sum = Main:

consts

sum :: "nat => nat”
primrec

"sum O ar

[T

"sum (Suc n) (Suc n} + (sum n)"

lemma closed form: "sum(n::nat) = (n * (n + 1)) div 2"
apply(induct n)

apply(auto)
apply(arith)

done

end

Figure 7: Isabelle/HOL sum Theory

2.4 Tools use Theorem Provers
In this section we briefly describe two tools that make use of theorem proving technology. The
first one is ESC/Java2 which performs extended static checking of JML annotated Java programs.

The second one is the LOOP tool that performs program verification, also, of JIML annotated Java

programs.

241 ESC/Java2

ESC/Java2 is been developed by David Coq and Joe Kiniry [ESCJ2]. It uses a subset of the JML
specification language to perform extended static checking of the Java code. This checking is
performed at compile time. ESC/Java?2 is intentionally designed not to find nor report all possible
errors in order to make it easier to use. In addition to static type-checking it reports of the
potential presence of runtime exceptions. An interesting aspect of ESC/Java2 is the use of a

theorem prover to prove that JML specifications are correct [Burdy+05].

242 LOOP

The LOOP tool is a program verification tool, developed at the University of Nijmegen [JP03]. It
can be used to perform full program verification of JML annotated Javacard applications. It is a
compiler that takes a Java program annotated with JML specifications and generates PVS theories
that expression verification conditions are generated from a specialized Hoare logic. These

theories are then fed into PVS for semi-automated proof under the guidance of developers.
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3 Isabelle

Isabelle is essentially a generic theorem proving framework that ships with predefined logics built
upon this framework, such as High Order Logic (HOL) and First Order Logic (FOL) among
others. In fact, what differentiates Isabelle from other theorem provers is this ability to support
different calculi [Paulson]. Isabelle is currently a joint project between Lawrence C. Paulson

(University of Cambridge, UK) and Tobias Nipkow (Technical University of Munich, Germany).

In this chapter we provide a more in-depth ook of the Isabelle theorem prover. Our aim is to
provide the necessary background information necessary for understanding the main contribution
of this thesis. We will look at Isabelle’s history and evolution, its flexible architecture, we will
see the two different flavors of Isabelle theories, and finally the facilities it provides to define new

object logics.

3.1 Historical Background

In 1972, while at Stanford University, Robin Milner created LCF, a proof checker for Dana
Scott’s Logic for Computable Functions. This version came to be known as the Stanford LCF.
By 1977 Robin Milner had moved to the University of Edinburgh, where he remained until 1995.
There he created a new version of LCF, namely Edinburgh LCF. This was the first version of
LCF where the proof commands could be programmed and extended. This was done by using the
ML programming language which was also designed and developed by Milner and his team for
this purpose. By 1981, further development of LCF was split between the University of
Edinburgh and the University of Cambridge. Larry Paulson joined Cambridge university in that
same year and helped in the development effort of LCF [Gordon97, Paulson90].

By 1985 Paulson started working on Isabelle. His goals were to build a generic theorem prover
implemented in its entirety in ML, making use of “Sokolowski’s (1987) technique of solving
unknowns in goals by unification” [Paulson90], and to experiment with “de Bruijn’s (1972)
treatment of bound variables” [Paulson90]. By 1986 the first version of Isabelle was released.
Isabelle86 was available with calculi for Constructive Type Theory (CTT), first-order logic
(FOL), and Zermelo-Fraenkel set theory (ZF).

A problem with the 1986 version was that it did not support natural deduction style proofs. By
1989 a new meta-logic, namely Isabelle/Pure, was developed. This meta-logic incorporated a
simply typed A-calculus as well as a subset of high order logic with implication, equality, and the
universal quantifier with their usual meaning. Through this meta-logic new calculi (also known

as object logics) were created [Paulson90].
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By 1993 Tobias Nipkow of the Technical University of Munich was part of the Isabelle
development team. Isabelle93 featured with the addition of a number of new logics, with the
most notable being a high-order logic (HOL). It should be noted that Nipkow may have been
working on Isabelle before 1993, however, the fore-mentioned date is the first reference we have

found of his involvement.

In 1999 the last major change was introduced to Isabelle. Marcus Wenzel, created a new
language for expressing theories and proofs, namely Isar - Intelligible semi-automated reasoning.
This change eliminated the need for ML styled proofs and merged the proof and theory files,
collectively known as old-style theories, in what we call today a new-style or Isar theory.
Currently Isabelle/Isar is made available via the Emacs editor. Efforts are underway to provide

an Eclipse-based interface as well (for those who do not find Emacs convivial enough).

3.2 Architecture

Isabelle is implemented in Standard ML and it provides a number of formal calculi to users. It
provides them with a (meta-)logical base, namely Isabelle/Pure, that is expressive enough and
contains enough deductive machinery to allow users to extend it and create new calculi. Some of
these tools include Isar [Wenzel], the Simplifier [Paulson], and the Classical Reasoner [Paulson].
Calculi such as First Order Logic (Isabelle/FOL) and High Order Logic (Isabelle/HOL) have been
created by extending Isabelle/Pure. Further calculi can be created by extending FOL or HOL.
The Logic of Computable Functions (Isabelle/HOLCF) and Zermelo-Fraenkel set theory
(Isabelle/ZF) are examples of such logics, extending HOL and FOL respectively. Figure 8 shows
the overall organization of the main Isabelle components — the logics displayed here (second and
third row) are just a representative sample, albeit the most complete of the existing ones. Proof
General is an (X)Emacs front-end for a number of theorem provers, including Isabelle. It
provides for interactive development of theorem files and it is superior to the only other

alternative available, a shell interface.

: Proof General — (X)Emacs based interface :
Zermelo-Fraenkel set theory Scott's Logic for Computable

(ZF) e Functions (HOLCF)
First Order Logic (FOL) High Order Logic (HOL)

~ Generic Isabelle (Isabelle/Pure)
Standard ML — Implementation Language

Figure 8: Overall organization of main Isabelle/Isar components
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3.3 Proofs 101

Isabelle’s proof system is based on the style known as natural deduction [NPW98]. Natural
deduction is the reasoning method that resembles human reasoning patterns [NPW98). That is,
proofs are developed incrementally, and eventually satisfied, by using inference rules. The

general format of an inference rule is:

Al .. An
C

Where a1 and an are predicates (called assumptions or hypotheses) that are necessary to infer the

conclusion ¢ (according to the given inference rule).

In general, there are two main types of inference rules: introduction and elimination. The former
introduces a logical symbol while the later eliminates (an instance of) it from their conclusions.

To illustrate, consider the conjunction inference rules from o P Ao P\ 0

P /\N O P 0

Figure 9. The first one says that from p and ¢ we can infer
. .. . . L. Figure 9: Conjunction Inference Rules

p /\ ¢ — i.e. it introduces conjunction. The remaining

two are elimination rules and they say that from p /\ Q we can infer either one of P and ¢. In

other words, the introduction rule shows how we can prove a P /\ ¢ conjunction while the

elimination rules show what can we prove froma P /\ ¢ conjunction.

In general these inference rules are or can be made available in Isabelle. Isabelle provides
facilities where such rules can be expressed. Figure 10 shows a possible Isabelle representation
of the conjunction inference rules seen above. The ==> symbol is Isabelle’s meta-implication
symbol that is also used to separate assumptions from the conclusion of a rule. The [| and |]
symbols are used to enclose multiple assumptions while a semicolon, ;, character separates them.
The propositions P and ¢ are prefixed by a » character. This is because these propositions may be
instantiated by other propositions during the proof process. For example, consider the 2 /\ B
proposition. If such a proposition is one of the goals (subgoals is the Isabelle terminology for
such goals) to prove and we apply the conjunction introduction rule, the 2p and 20 will be
instantiated as A and B respectively. This kind of variables in Isabelle are known as schematic

variables and the process of replacing such variables is called unification [NPW98].

[ [12P; 20}] ==> 2P /\ 20 [2P /\ 20 ==> 2P | 2P /\ 20 ==> 20 |

Figure 10: Conjunction Inference Rules — Isabelle Representation
We have seen how inference rules can be represented in Isabelle. Next we illustrate how such
rules can be used during a proof. Lets start by explaining how this is done with introduction

rules. The general case for applying the [ 1a1; ; An|] ==> Aintroductionruletoa [|c1;
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c¢m|] ==> c subgoal is to first unify A and c, remove the current subgoal and replace it with n
subgoals {/c1; ; Cmi] ==> Al [ICl; ; Cm|] ==> aAn. Considera /\ B ==> B /\ Aas
the current subgoal. Applying the [12P; 2011 ==> 2P /\ 20 rule entails the unification of »p
/\ 20 with B /\ A. This means that all instances of »p and 20, throughout the rule, will be
replaced by B and 2 respectively. Consequently we have progressed our proof state and we are

now presented by two new subgoals:

Elimination rules are similar to introduction rules. Additionally however, the first premise of the
inference rule is unified with a matching assumption from the current subgoal , that assumption is
then removed. The general case for applying the [1a1; ; BAnl] ==> A climination rule to a
[1cl; ; cm]) ==> Csubgoalis to first unify a and c, then unify 21 with one of ci, remove the
current subgoal and replace it with n-1 subgoals [ic1; ; cm-11] ==> a1, [ci;  ; Cm-
1}1 ==> an-1i. For the purposes of an example we use a different elimination rule for
conjunctions, not presented before:
[Ize /\ 7Q; [1?7P;7Ql] ==> ?R|] ==>7R
It specifies that if we know that a conjunction holds and we also know that and arbitrary
proposition can be inferred from the propositions of the conjunction, then we can infer that
arbitrary proposition. Lets apply this new elimination rule to the o /\ B ==> B subgoal (the first
subgoal from the previous example). Like before, unification on the conclusions of the rule and
the subgoal is performed, where occurrences of »r, throughout the rule, are replaced by B.
Unification on the first assumption of the elimination rule is performed where 2p and 2¢ are
replaced by 2 and B respectively. The unified assumption is eliminated and the subgoal is
replaced by the remaining assumption ([ |2p;?0|] ==> $Rr) of the elimination rule:
[ia;B]] ==> B

Isabelle provides the rule and erule methods for applying introduction and elimination rules.
These two methods are the main methods used in what is called backward or goal oriented
reasoning. They are classified this way because they decompose the current subgoal and replace
it with one or more subgoals based on that decomposition. Proofs in Isabelle are mainly
performed in such a backward reasoning style. Additionally, Isabelle provides with the frule
and drule (where f and d stand for forward and destruction) methods that allow for forward
reasoning, where the subgoal is not decomposed but complemented by additional assumptions

and/or subgoals.
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In forward reasoning (i.e. using the frule method) the general case for applying a (1 a1;
an|] ==> A ruletoa [|Cl; ;Cm|] ==> C subgoal is first to unify 21 with one of ci and then to
create n subgoals [1C1; ;Cn|] ==> A2, ,[ICl; ;Cni] ==> An, and [ICl; ,:Cn; A|] ==>
c. Performing rules using the drule method is identical to frule, however, the ci unified

assumption is removed.

3.4 Theories
Interacting with Isabelle, for most users, means that they will need to write theories. A theory is
comprised of types, declarations, and proofs. There are two styles of theory files, one is referred

to as old-style or classic Isabelle while the other as new-style or Isar.

In the following sections we will explain the two different styles of theories. Our medium for this
explanation will be the definition of a simple object logic for propositions. Emphasis in this
section will be placed on the differences between these theory styles and not on Isabelle’s
facilities for creating a new object logic - these facilities are explained in more detail in Section

3.5.

3.4.1 Old Style Theories
Two different types of files are needed to hold old styled theories: a theory file and a proof file.
The theory file with extension thy contains the types, declarations, and axioms of the theory. The

proof file is an ML file, with extension M1, that contains the proofs.

To illustrate the development of a theory in classic Isabelle we define a subset of propositional
logic with negation, disjunction and conjunction. The old-style theory files are provided in the
following two subsections. The contents of these files closely resemble the definitions found in
VDM-LPF. This is intentionally done in order to facilitate the reader’s understanding of VDM-
LPF when it will be covered in the Chapter 4.

3.4.1.1 Theory File

A theory declaration has the following general format:

T=B1+82+..A.+Bn+
types, declarations
end

where T is the theory name, while B1, B2, and Bn are theories to be included in the current theory.
The end of the theory is denoted by the end keyword. Figure 11 shows the contents of the

TestProp. thy file. This file contains the types, definitions, and axioms of our theory. We can
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tell that the theory name is TestProp and we include the definitions of the pure theory — in other

words we are extending the pure theory.

The types and arities statements are used to declare logical types. Since this theory defines a
subset of propositional logic we need to define a type that will denote propositions. The type is
called o (reminiscent of Church’s type o [Church40]) and is defined as follows:
types
o
arities
o :: logic
The consts keyword is used to declare logical constants with their associated type, as well as an

optional infix syntax annotation. Declaring elements as constants is a prerequisite before such

elements are allowed to appear in axioms, definitions, or proofs.

consts
true o
false :: o
neg 0 => 0 ("~ )" [501)
disj o=>0=>0 ("(_| D" {30,31] 30)
conj o=>0=>0 ("( & _)" [40,41] 40)

Here we define constants for the truth values (true and false) and for the negation (neg),
disjunction (disj), and conjunction (conj) logical connectives. The :: character sequence
separates the constant by its type. For example, both true and false constants are simple
propositions, while neg, disj, and conj constants form compound propositions and their types
are augmented by the => symbol, which denotes the type of functions from o to . Negation takes
a proposition and returns a (compound) proposition. For disjunction and conjunction it states that
they take two propositions and they return a compound proposition. An alternate syntax for the
type of a constant can be formed as conj :: [o,0] => o, where [0, o] abbreviates par o => o.
The TrRUEPROP constant is a special type of constant which is used when defining new object

logics — we defer its explanation until the next section.

These logical connectives are complemented by syntax annotations. These syntax annotations are
a short form syntax. They have two main components, a pretty printing string and a set of
priorities. The pretty printing string is enclosed within double quotes and parenthesis, where
underscore characters denote the argument positions while the symbols ~, |, and s, denote
synonyms for the neg, disj, and conj constants. Consequently, the following compound
proposition, conj (a,B) is pretty-printed to 2 &« B. A set of optional priorities for each of the
propositions and the connective as a whole can also be specified. This allows us to determine the

association of the connective. As expected both con3 and disj are set to associate to the right
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since the right proposition has a higher priority. Moreover, conj has a higher priority than disj —

thus, the following proposition, 2 | B & Cis interpretedasa | (B & C).

Next in our theory is a set of axioms, declared via the rules keyword, that establish some of the
basic properties of our simple subset of propositional logic. We first establish one of the simplest
axioms, true intr “true”, which states that “true” is always true. Next we establish two

properties of negation:

not_not_intr “P ==> ~ ~ P”
not_not_dest “~ ~ P ==> P"

which state that a doubly negated proposition is equal to its self. Recall that the ==> symbol is the
meta-implication symbol and is used to separate assumptions from the conclusion of axioms and

rules. Finally, a number of properties for disjunction are defined:

or_intr_left "P ==> P | Q"

or_intr_right "Q ==> P | Q"

or_elim "[| P| Q P ==>R; Q ==>R |] ==>R"
not_or_intr "[| ~P; ~Q |] ==> ~ (P | Q"

not_or_etim "[| ~ (P | @; [l ~P; ~@Q |} ==> R |] ==> R"

The first two state that assuming that at least one proposition holds in a disjunction then we can
conclude that the disjunction holds. The or elim states if we know a disjunction to be true then
we have to prove the conclusion twice — once for each proposition of the disjunction. Finally, the

last two define properties of propositions containing negation and disjunction.

The last set of statements in our test theory is a set of definitions (or abbreviations), performed via

the defs statement:

false_def "false == ~ true”
conj_def "p & q =~ (~p | ~ )"

This definitional approach is preferable because we do not have to write axioms to define
properties for falsity and conjunction. It is always preferable to keep the number of axioms small

since it can help reduce the risk of introducing contradictions. [NPWO98]
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TestProp = Pure +

types
o

arities
o :: logic

consts
TRUEPROP :: o => prop (" " 5)

consts
true
false ::
neg
disj
conj

("~ " [50] 50)
" " [30,31] 30)
(" & )" [40,41] 40)

0 COO0o0
[
vV Vv

o ©C O
Il
4

[ele]

i
Vv
i}
\

rules
true intr "true”

not not intr "P ==> ~ ~ P"
not not dest "~ ~ P ==> P"

or intr left "P ==>
or_intr right "Q ==>
or elim "l P
not or intr "I~
not _or_elim "

P | Q"
P | Q"
Q; P ==>R; Q ==>R |] ==>R "
;o Q] ==> o~ (P !
P Q) [l ~P ~Q
defs

false def "false == ~ true

conj def "p & g == ~ (~p | ~ q)

end

Figure 11: Old Style Theory File

3.4.1.2 Proof File
Proofs in old-styled theories are performed by using Isabelle’s ML modules. Figure 12 shows the
proof file that contains two proofs we performed based on the simple propositional logic we

defined earlier.

The first command in the proof file is the cpen TestProp;, which is the ML command for
opening ML structures. ML structures is the method to group ML declarations and associate
them with a name.[Paulson96, Milner+97] By opening a structure all the declarations can be
referenced without using name qualification. When Isabelle is asked to interpret an old-style
theory it creates an ML file containing a structure of the same name. This structure contains the
ML representation of the types and declarations of the theory. By opening the TestProp structure
we can refer to the declarations, such as the axiom true intr by just writing its name — the

alternative is to write TestProp.true_intr.
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open TestProp;

val [pl] = goalw TestProp.thy [] "P | Q ==> Q0 | P";
by (cut facts tac [pl] 1);

be or elim 1;

br or intr right 1;

ba 1;

br or intr left 1;

ba 1;

ged "or comm";

val [pl] = goalw TestProp.thy [con] def] "P & Q ==> Q & P";
by (cut facts tac [pl] 1);

be not_or elim 1;

bd not not dest 1;

bd not not dest 1;

br not or intr 1;

br not not_intr 1;

ba 1;

br not not intr 1;

ba 1;

ged "and_ comm";

Figure 12: Old Style ML Proof File
Proving that disjunction, as defined in our simple logic, commutes is the first proof we perform.
The following statement shows how we initiate the proof:
val [pl] = goal TestpProp.thy "P | Q ==> Q | P";
where TestProp. thy denotes the theory this proof belongs to, followed by the string p | 0 ==>
¢ | p which is the theorem that expresses the commutative property of disjunction. It states that
given the assumption that p | ¢ holds, then we can conclude that o | P also holds. Optionally,
the ML goal function may return a list containing the assumptions of the theorem — in this

particular case only one assumption is present and is assigned in the ML variable p1.

Isabelle responds to the execution of the goal statement by displaying the proof state:

tevel 0 (1 subgoal)

Q| P
1.qQ | P

where Level 0 indicates the number of rules we have applied thus far, 1 subgoal indicates the
number of subgoals present at this level, 0 | p displays the original theorem to be proved, and 1.
0 | P initiates the sequence of subgoals that we need to prove before we satisfy the original

theorem.

The first tactic we use is the cut facts tac. With this tactic we are able to introduce to our first

subgoal the assumption that ? | ¢ holds. The new proof state is as follows:
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Level 1 (1 subgoal)

Qlvr
I.PlQ==>qQ | P

Isabelle, again, informs us of the level, the number of subgoals, the theorem to be proved, and the
subgoals we need to satisfy. In this case we can see that our assumption is part of the subgoal.

We next proceed by applying the or elim axiom as an elimination rule:

be or_elim 1;

This results in the following updated proof state:

Level 2 (2 subgoals)

Qifvp
1. P=>Q | P
2.Q=0Q | P

This has transformed our subgoal into two subgoals, albeit with a simpler assumption. We
operate next on the first subgoal and we use the or intr right axiom as an introduction rule.

The new proof state now is as follows:

Level 3 (2 subgoals)

Ql P
1. P==>P
2.Q=>0Q | P

The first subgoal now can be easily satisfied by assumption — when a subgoal is satisfied it is

eliminated from the proof state. Consequently the new proof state is:

Level 4 (1 subgoal)
Ql P
1.Qq==>Q | P

The remaining subgoal is satisfied in a similar manner. The only difference is that we apply the

or intr left asan introduction rule in this case, resulting in the following proof state:

Level 5 (1 subgoal)

Q| P
1. Q ==> Q

This subgoal is also satisfied by assumption, resulting in the completion of this proof. The

following proof state indicates that the commutative property of disjunction has been proven:

Level 6
QP
No subgoals!

The proof now can be stored for later use. This is achieved by the ged statement. Once stored,
this theorem can be invoked and used to further prove propositional theorems at any time via its
name. It can be applied in the same manner axioms are applied. The ged “or comm” statement

results in the following output:
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val or_comm = "?P | ?Q ==> ?Q | ?P" : Thm.thm
The propositions P and ¢ used in the original theorem have now changed to 2p and 20. Isabelle
variables prefixed by a » character are referred to as schematic variables. Such variables are free

variables that can be instantiated arbitrarily by appropriate terms.

The other proof, seen on Figure 12, establishes the commutative property for conjunctions. The
same principles apply in this proof as with the previous one. The only difference is that in this
proof we automatically expand the conj def definition, through the use of goaiw statement. This

results in the following initial proof state:

Level 0 (1 subgoal)
Q&P
1.~ ~P)

The subgoal has been rewritten in terms of negation and disjunction. This is done because all
properties we have established are specified in such terms. We can now proceed to complete this
proof using the existing properties. Eventually, we will have enough properties for conjunction
established that such rewriting will be unnecessary. Remaining explanations on the and comm

proof are omitted because of their similarity to the previous proof.

3.4.2 New Style (Isar) Theories

With the introduction of Isar, a new language for writting theories and proofs is available. Isar
eliminated the ML proof files and merged them with the theory ones. New statements, such as
lemma and theorem, are introduced at the theory level to replace the ML functions such as geal
and goalw. Furthemore, a number of syntactic changes were made. Figure 13 shows the
TestProp theory written in the Isar language. Both these theories are equivalent, they differ only

in the syntax. In what follows we will highlight these syntax differences.

A theory is now contained withing a theory ... end block and has the following general
format:

theory T = Bl + ... + Bn:
types,declarations, proofs
end

where T, B1, and Bn have the same meaning as defined in the old-style.

The type o for propositions is declared now by a single statement, namely typedecl o. This

statement has the same effect as the types and arities statements together.

The constant definitions are identical to the ones from the old-style theory. The only difference is

the need to have the types of these constants enclosed within double quotes. The double quotes
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can be removed when a simple type is involved. As such the double quotes for the type of the

true and false constants are not necessary but were included for the sake of consistency.

Axioms are now defined using the very appropriate axioms keyword. Moreover, a colon

character is used to separate the name of the axiom by the formula.

Definitions, for the most part, are exactly the same as the ones from the old-styled proofs. Like

axioms, the names of the definitions and the actual definitions are seperated by a colon character.

The biggest change was the one involving proofs. With the introduction of Isar the proving
syntax underwent a substantial change. Proofs now co-exist with the other definitions in the

theory file and have the following general case:

lemma name: “§”
apply (method)

&6ﬁe|oops
where name is the name of this lemma, ¢ is the formula to be proven, method denotes the different
proof methods of applying axioms or previously proven lemmas. Finally, done denotes the

completion of a successful proof while cops has the opposite effect.

Let trace the Isar or comm proof in a similar way as it was done for the corresponding old-style
proof. We will see how the ML tactics have been replaced by Isar methods, as well as, what the
differences are, in terms of Isabelle’s response to each of these methods. Isabelle displays the
following proof state in response to the lemma or comm: "P | ¢ ==> O | P" statement:

proof (prove): step O

fixed variables: P, Q

goal (lemma (or_comm), 1 subgoal):
l.piQ==>0Q | P

level has now been replaced by the step label, however, their functionality remains the same.
The fixed variables: P, ¢ displays the variables that are present in this theorem. Finally,

Isabelle displays the list of subgoals for this proof.

The rules and the order they are applied are identical to the ones from the old-style proof. The
only difference is that in this case there is no need to perform the Isar equivalent method for
cut_facts_tac because the premise is retained. After the application of the or elim rule the

new proof state changes the current subgoal into two subgoals:
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proof (prove): step 1
fixed variables: P, Q

goal (lemma (or_comm), 2 subgoals):
1.pP==>Q | P
2.Q=>Q | P

The output shows that this is the first step and we need to resolve two subgoals. In Isar, when
more than one subgoal is present, methods operate on the first one. Applying the or intr right
rule, as before, will result in the following proof state:

proof (prove): step 2

fixed variables: P, Q

goal (lemma (or_comm), 2 subgoals):
1. P==>P

2: Q==>Q | P
Resolving the first subgoal is easily done by assumption and it modifies the proof state to:
proof (prove): step 3

fixed variables: P, Q

goal (Temma (or_comm), 1 subgoal):
1.Qq==>0Q | P

Next, the last subgoal is simplified by applying the or intr left rule:
proof (prove): step 4

fixed variables: P, Q

goal (lemma (or_comm), 1 subgoal):
1. Q ==>Q

The proof is complete by assumption and Isabelle will display the following:
proof (prove): step 5

fixed variables: P, Q

goal (lemma (or_comm)):
No subgoals!

Where No subgoals! denotes that the proof was completed successfully. Finally the done
command will end the proof and store it for later use. The output of the done command is similar
to the old-style ged one:

Temma or_comm: 7P | ?7Q ==> 7Q | ?P
The and_comm proof is also performed in the Isar theory. However, it is not explained in detail
since it adds no further detail. As before, the only difference is the expansion of the conj dest

definition. In Isar this expansion is performed by the unfold method.
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Theory TestProp = Pure:

typedecl o
judgment TRUEPROP :: "o => prop" (" " 5)
consts
true "o"
false "o
neg :: "O :> O" ("(N _) " [50])1
disj "o => o =>o" ("(_| )" [30,31] 30)
conj "o => o =>o" ("(_ & )" [40,411 40)
axioms
true intr: "true"
not not intr: "P ==> ~ ~ P"
not not dest: "~ ~ P ==> PV
or_intr left: "P ==> P | Q"
or intr right: "Q ==> P | Q"
or elim: "I P | Q; P==>R; Q==>R|] ==>R"
not or intr: "I~ P; ~Q ] ==>~ (P Q)"
not or elim: "h~ (P 1 Qs [l ~P; ~Q ] =>R |] ==>R"
defs
false def: "false == ~ true"
conj def: "p & g ==~ (~p | ~aq"
lemma or_ comm: "P | ==>Q | P"

apply(erule or_elim)
apply(rule or intr right)
apply (assumption)
apply(rule or intr left)
apply (assumption)

done

lemma and comm: "P & Q ==> Q & P"
apply (unfold conj def)
apply(erule not or elim)
apply (drule not not dest)
apply{drule not not dest)
apply(rule not or_intr)

apply{rule not not intr)
apply {assumption)
apply{rule not not intr)
apply (assumption)
done

End

Figure 13: Isar Theory File

3.5 Defining a New Object Logic

The previous section demonstrated how a new object logic can be defined in Isabelle. However,
parts of the definition, such as the purpose of the TRUEPROP constant, and other components, such
as syntax, the simplifier, and classical reasoner packages of Isabelle, were not described in that

section. Consequently, this section portrays the process of extending Isabelle with a new object
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logic. We will describe the different steps, explain what purpose they serve, and the tools

Isabelle provides to help us in this creation process.

As mentioned earlier on, there are two ways to extend Isabelle — first by extending an already
defined object logic, such as HOL, and second by extending generic Isabelle. Generic Isabelle
(also known as Isabelle/Pure or as just Pure) is the bare-bones Isabelle that contains its meta-
logic. This meta-logic is a subset of high-order logic based on typed A-calculus and it is

expressive enough to define constructs and proof rules of new logics.

In general the process of creating a new object logic entails the following steps:
¢ Declare the abstract syntax
o Declare the elementary and derived inference rules
o Declare the concrete syntax

¢ Instantiate the generic automatic proof tools

Manually code special proof procedures

These steps are just a guideline — most new objects logics perform all these steps, however, some
may not be necessary. Only the first two are absolutely mandatory for defining a new object

logic. However, the remaining steps make the difference between a usable and an unusable logic.

3.5.1 meta-logic

The meta-logic is contained within the pure theory. More precisely, the meta-logic is contained
within the Protopure theory. rure and its closely related cpure inherit the definitions of
protoPure and extend it with the syntax of prefix function application. Pure’s function
application follows the tupled paradigm while CPure’s follows the curried one [Paulson,

NPW9S].

The meta-logic is the subset of higher-order logic with implication (==>), equality(==), and
universal quantification (! !) based on Church’s typed A-calculus. There are two main classes of
terms in this meta logic: logic which denotes all logical types and prop which denotes formulae of
the meta-logic. Extending the meta-logic, essentially means extending these two classes.
Appendix C displays the Pure syntax where all elements of the meta-logic can be viewed,
including the logic and prop classes. The remaining components are not discussed but a detailed

explanation can be seen in [Paulson].
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All logical types extend the /ogic class of the meta-logic. The logic class is “equipped with the
syntax of types, identifiers, variables, parenthesis, A-abstraction and application” [Paulson].
Statements, such as typedecl o, allow terms of type o to inherit the above syntactic elements and
their meaning. Consequently, terms of these new logical types can be expressed using such a

syntax — for example, (true), ($x. true & x)true.

In each new object logic there is a statement that denotes the truth judgment for the logic.
Statements, such as judgment TRUEPROP :: "o => prop", specify that terms of type o can be
used as formulae. Essentially, such judgment statements extend the class prop of the meta-logic

and allow for such terms to be used as axioms and theorems [Paulson].

3.5.2 Declare the Abstract Syntax

After declaring the types and establishing the truth judgment of the logic, the next step is to
declare the abstract syntax that Isabelle can understand and reason about. Such abstract syntax is
defined by creating logical constants via the consts statement. For example, consider the
following set of constants as seen in the simple propositional object logic example, presented on

Section 3.4:

consts
true
false :: "
neg
disj
conj

"
- o"

= 0 => 0"
= 0 => o"

"

ocoooco

Note that we have removed the syntax annotations. This is because such annotations are part of
the concrete syntax and not the abstract one. Such constant definitions allow us to express
propositions in the abstract syntax. Propositions such as, conj(p,0), which denote the

conjunction of the p and @ propositions.

3.5.3 Declare the Concrete Syntax
At first glance short and simple propositions, expressed in abstract syntax, could be considered as
being sufficient. However, if we consider longer proposition such as:

neg(cony (P, disj(Q,neg(R)))
it becomes apparent that abstract syntax is not easy to understand and work with. If we imagine
that such a statement is presented to a mathematician (i.e. the logic’s target user) who is unaware
of Isabelle’s abstract syntax, we should not be surprised if such a presentation will create

confusion.

Fortunately, Isabelle provides us with a number of ways to develop and decorate new object

logics with a concrete syntax that closely resembles the syntax of the object logic. We have
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already seen one such way in the form of syntax annotations. Syntax annotations are appropriate
when the format of the abstract and concrete syntax closely resemble each other. In the case of
our simple propositional logic example, the formats are closely matched, thus adding to the

previous consts declarations to

consts
true "o"
false :: "o"
neg "o => o" "~ 2" [50])
disj "o =>0=>0" ("(_ | " [30,31] 30)
conj "o =>0=>0" ("(L&_)" [40,41] 40)

creates syntax annotations that will allow us to write the previously mentioned proposition into
the more readable
~(P&CQ}l~R))

In the case where syntax annotations are not sufficient to bridge the gap between abstract and
concrete syntax, Isabelle additionally provides us with macros or syntax translations and
translation functions. For illustration purposes we will extend our simple TestProp theory with
the implication connective, namely =>. Considering implication can be defined in terms of
negation and disjunction, we can define it using a defs statement, similar to the manner
conjunction is defined. However, we will instead opt for declaring it as a macro since that will
further our goal of illustrating macros. The syntax and translation statements below declare the

implication connective as a macro:

syntax

imp]l "o => 0 = o" ("(_ = _)" [20,21] 20
translations
"y => q" == "~ p | Q"

syntax statements are similar to consts, in the way they are declared.. However, syntax
statements declare purely syntactic constants. Such statements are used to enrich the syntactic
elements of a theory and they are not reasoned about by Isabelle. Consequently, such syntactic

constants must be rewritten into logical terms for reasoning.

Such rewriting is performed via the translations statements. In our example translation, we
inform Isabelle that, whenever propositions with the implication connective are encountered, they
are first to be translated into their equivalent negation and disjunction form, then reason about
them, and finally translate them back using the implication connective. Isabelle’s parsing and
printing process can be seen on Figure 14 and it will be explained in greater detail later on in this

section.

Thus far we have seen syntax annotations and macros for creating a user-friendly syntax. The

last method is that of translation functions. The translation function method is the most complex
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and the most powerful one. It involves knowledge of Isabelle’s parsing and printing process (as
shown on Figure 14), knowledge of Isabelle’s ML internal data structures, namely term and ast
(as shown in Figure 15), and it requires knowledge of the ML programming language. We will
neither attempt to be complete nor show an example of a translation function in this section; we
will see a translation function during our explanation of VDM-LPF in Chapter 4. Instead we will
describe Isabelle’s parsing and printing process and point out the locations where translation

functions can affect this process.

During parsing and printing of strings, there are places where users can affect the results of that
process. When a string is written in Isabelle, the lexer breaks it into tokens and passes it to the
parser where a parse tree is generated. That parse tree is then transformed into a tree represented
by Isabelle’s internal datatype ast. The user can affect this transformation by writing appropriate
ML routines, known as parse AST translations. The AST is then further changed by applying the
defined macros. This new AST is then translated into terms which are probably with incorrect
types, since type-inference occurs later on in the process. Users can also affect this
transformation by writing ML functions, which are known as parse translation functions. The last
step of the parsing process is to transform those terms into well-typed terms which then Isabelle

can reason about.

The printing process is the mirror image of the parsing process described above. The first
transformation is the one that changes the well-typed terms into a new AST — user defined ML
functions known as print translation functions can affect this transformation. Next the AST is
modified by the application of the defined macros — this time the macros are changing the logical
constants into the syntactic ones. Finally a new string is formed from the AST. This is the last
place where a user can supply ML functions, known as print AST translation functions, to affect

this transformation.

Isabelle’s translation function apparatus is powerful and complex at the same time. However,
when it comes to syntactic issues such as the one faced by the VDM-LPF creators, translation
functions offer an elegant solution. It is the complexity in writing translation functions that
prompted Larry Paulson to introduce translation functions by the following quote: “This chapter
is intended for experienced Isabelle users who need to define macros or code their own

translation functions” [Paulson].
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String

i Lexer, parser
Parse tree

1 Parse AST translation
AST

1 AST rewriting (macros)
AST

i Parse translation, type inference

well-typed term to be reasoned

i Print translation
AST

! AST rewriting (macros)
AST

1 Print AST translation

String

Figure 14: Isabelle's Parsing & Printing Process

datatype ast =
Constant of string |
Variable of string |
Appl of ast list
datatype term =

Const of string * typ |
Free of string * typ |
Var of indexname * typ
Bound of int |

Abs of string * typ * term |
$ of term * term

Figure 15: Isabelle's Internal Data Structures
Pertinent to Syntax Translation

3.5.4 Declare Inference Rules

Inference rules define the proof system of a new logic. First a set of elementary rules is defined
in the form of axioms. These axioms are then used to further develop the proof system by
deriving rules as shown in the previous section. We have seen how this is done through our

TestpProp example. We will see further examples when we describe VDM-LPF.

3.5.5 Instantiate the Automatic Proof Tools

The automatic proof tools are mainly the Simplifier and the generic Classical Reasoner packages.
These packages are ML modules and may be instantiated to be used with new object logics. They
are suited for classical object logics and require certain theorems to be present, theorems such as
equality substitution, modus-ponens, etc. When instantiated for an appropriate object logic they
provides a suite of automatic tactics, such as Blast tac, auto, force, simp, simp all, etc.
[Paulson]. These tactics allow for automating large parts of proofs. For a more detailed

discussion of the Simplifier and the Classical Reasoner refer to [Paulson].
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3.5.6 Code Proof Procedures

In cases where the automatic proof tools are not appropriate, Isabelle provides with ML modules
where it is possible to write proof procedures and allow for a certain degree of automation of the
proving process. This creation of custom proof procedures will be seen in detail when we explain

VDM-LPF in Chapter 4.
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4 VDM-LPF Object Logic in Isabelle94-8

This chapter will present the definition of a new object logic, called VDM-LPF, as created by the
original authors, Sten Agerholm and Jacob Frost [AF96]. As such, all code segments presented in
this chapter are in their original form, which follows Isabelle’s old-style theory syntax. The
reader is assumed to have basic knowledge of Isabelle as is provided by Chapter 3. Additional
material on the fore-mentioned subjects can be found in [Paulson]. Furthermore, we aim to
present and explain what is deemed to be important towards understanding what VDM-LPF is

and how it was defined. It is not our intention to provide a full presentation.

Sten Agerholm and Jacob Frost first developed the VDM-LPF logic in 1996 in an attempt to
mechanize proof support for VDM-SL. Their long term goal was to develop an industrial proof
support tool that could be integrated with IFAD’s VDM toolbox [AF96]. They started by
experimenting with a proof engine. To develop such an engine they used the Isabelle theorem
proving environment by extending generic Isabelle with the Logic of Partial Functions (LPF).

The result of these experiments is what has been called Isabelle/VDM-LPF or simply VDM-LPF.

The definition of VDM-LPF consists of syntax, a proof system, and a set of proof tactics. The
syntax is further partitioned into abstract and concrete so to facilitate users by allowing them to
write their VDM proof obligations in a familiar language. The proof system is defined based
upon an elementary set of rules defined as axioms and a set of syntactic definitions. These
axioms and definitions are then used to expand this system by deriving additional, often more
complex, rules. Finally, a set of built in proof tactics provided by Isabelle as well as a set of

search proof tactics, developed specifically for VDM-LPF, comprise the proof tactics system.

4.1 Syntax

VDM-LPF syntax is partitioned into abstract syntax and concrete syntax. The abstract syntax is
what Isabelle “understands™ and is able to reason about. The concrete syntax (a subset of VDM-
SL) is what users, of the logic, utilize to write their specifications and proof obligations.
Internally, concrete syntax terms are translated to the corresponding abstract syntax terms. Once
reasoning is completed, abstract syntax terms are translated back to the equivalent concrete
syntax terms and then are displayed as output. This is possible through Isabelle’s powerful and
flexible syntax translation facilities. However, notice that the exercise of creating the concrete
syntax is not necessary, since one can use Isabelle by directly employing its abstract syntax.
Nevertheless, allowing VDM users to create specifications and proof obligations in a familiar

syntax makes the system more usable.
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This is best illustrated by means of an example. Below you can see an example of a nested
conditional statement, making use of predicate and propositional logic, specified in abstract
syntax:

if' (forall' (A, (%x. P)), and'(p,q), if'(exists'(A,(%x. P)), or'(p,q),q))
This same statement expressed in the concrete syntax is:

if (forall x:A & P(x)) then (p and g) elseif (exists x:A & P(x)) then (p or g) else g
Both of these statements are equivalent, however, it is obvious that the concrete syntax is more

intuitive to users, even ones unfamiliar with VDM-SL.

What follows below is a detailed explanation of the abstract and concrete syntaxes of VDM-LPF.

4.1.1 Abstract Syntax

The abstract syntax contains only two phrase classes, one for expressions and one for types.
Thus, Isabelle’s typed A-calculus is extended with two new types ex and ty [AF96]. These are
the only new types introduced for the purpose of representing the object logic VDM-LPF.
Definitions and terms belong to either ex or ty, while formulas belong to just ex. Figure 16
shows how the ex type is declared in Isabelle. The types command declares a new type

constructor ex while arities adds a new arity to the

types
constructor. It is through this arities statement °*
that we extend Isabelle’s A-calculus with the new ~2Fities
ex :: logic
type ex. The last statement of Figure 16 informs consts
Isabelle that formulas will be terms of type ex. The Trueprop :: ex => prop ('( )" 3)

. . . . Figure 16: Declaration of ex Type
ty type is declared in a similar manner, without the g P

Trueprop constant definition, since formulas are of type ex.

Figure 17 shows a sample of the abstract syntax declared as Isabelle constants. These declare
constants for universal and existential quantification, for the subtraction function of natural
numbers, for the type of natural numbers, for equality, for the successor function of the natural
numbers, and for the natural number zero. It should be noted that all natural numbers in VDM-
LPF are internally denoted in terms of the successor function and zero. Digits as we know them

still exist but they are translated in successor, zero terms for internal use.
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forall’ :: [ty,ex => ex] => ex

exists’ :: [ty,ex => ex] => ex
sub’ 1 [ex,ex] => ex
natty’ oty

eq’ o [ex,ex] => ex

succ’ rroex => ex

zero’ Proex

forall’ (natty’,%x. exists’ (natty’,%y. eq’ (y,succ’ (x))))
Figure 17: Sample Abstract Syntax Definitions & Sample Terms

As an example, consider the following term of Boolean type which expresses the predicate that

every natural number has a successor:

forall’ (natty’,%x. exists’(natty’,%y. eq’(y,succ’(x))))

4.1.2 Concrete Syntax.

Concrete syntax, on the other hand, is useful for presenting a familiar notation to users; a notation
that closely matches VDM-SL’s syntax. Being able to create VDM-SL specifications and proof
obligations in VDM-LPF, not only enhances usability of the tool, but also the interoperability
between VDM tools — which was one of the stated goals of the original authors. To achieve this,
the original authors make use of Isabelle’s syntax annotations, syntax translations (called

macros), and translation functions.

4.1.2.1 Syntax Annotations
In situations where the abstract and concrete syntax structures closely match each other, syntax
annotation is an easy and effective way to create the association between the two. Figure 18

shows both the constant

. ) sub’ :: lex,ex] => ex  (“(_ -/ )7 [410,411] 410)
definitions and their  eq’ 1: [ex,ex] => ex (“(_ =/ )" [310,311] 310)
associated syntax annotations Figure 18: Sample of Syntax Annotations

for subtraction and equality. Outer parenthesis open and close a syntax annotation block. Such a

block contains:

e A template that denotes the concrete syntax: in the subtraction case, the inner parenthesis
denote a pretty printing block where  is an argument position and / is a possible line
break. Thus, this pretty printing block denotes an argument, followed by a space,
followed by the subtraction symbol -, followed by a space or a line break, and finally

followed by a second argument.

e A set of optional priorities: again in the subtraction case, the priorities are provided and
we see that the subtraction is associated to the right, because the right argument has a

higher priority.
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¢ Finally an optional priority for the whole construct may be provided. Missing priorities

default to the lowest possible one, i.e. to priority 0.

As you may have already perceived, syntax annotations are merely decorations of the abstract
syntax. They are however very powerful and can be confusing to new users, prompting the
Isabelle creators to warn that novices will be better off to avoid them altogether and keep writing

their terms using abstract syntax [PNW98].

4.1.2.2 Syntax Translations

When the structures of the abstract and concrete syntaxes differ, syntax translations, also known
as macros, are used to bridge the gap. Unlike macros known from programming languages,
Isabelle’s macros work both ways; as they can be used to deal with both parsing and printing
[Paulson]. This is easily specified by the operator used in the translation statement; these

operators are == for both parse and print, => for parse only, and <= for print only

Figure 19 presents all the components necessary for the syntax translations of the universal and
existential quantifiers. The need for syntax translations is evident because quantifiers in VDM-
SL can bind more than one variable (e.g. forall x:nat, y:nat & P). To achieve this, the
tbinds and tbind, syntax only, types are declared. Syntax only types is another mechanism,
Isabelle provides, for facilitating the creation of concrete syntax. Notice that no arities for
these types are declared; this is because it is the arities declarations that creates logical types.

These syntactic types will be replaced by appropriate logical ones through translations.

The definitions under the syntax commands are similar to constant declarations, with the only
exception being that they are not reasoned by Isabelle. Their only purpose is to extend Isabelle’s
syntax. The first set of syntax definitions handle the multiple variable bindings of the universal
quantifiers, while the second one declares the syntactic equivalent definitions for fora1l and

exists.

The next step in the process is to relate these syntactic elements to logical ones so that they can be
reasoned about. This is done through Isabelle’s translations statements. In the
translations section of Figure 19, the first translation of both forall and exists unfolds
quantifications of the form forall x1:11, x2:72, , =xn:m & P10 forall xl:tl & forall
x2:12 & & forall xn:m & P. The second translation statement replaces unfolded concrete
syntax statements with their abstract syntax counterparts. Thus, unfolded statements such as the
one above will look like forall’ (11,%x1. forall’ («2,%x2. forall’ (m, $xn. P) )) in

the abstract syntax.
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Types tbinds tbind

syntax

nn :: thind => tbinds ("m

tbindsn :: [tbind, tbinds] => tbinds ",/ M

tbind 1 [idt,ty] => tbind S A

consts

forall’ :: [ty,ex => ex] => ex

exists’ :: [ty,ex => ex] => ex

syntax

forall :: [tbinds,ex] => ex ("(2forall/ _ &/ )" [100,100] 100)
exists :: [tbinds,ex] => ex ("(2exists/ &/ )" [100,100] 100}
translations

"forall (tbindsn tb tbs) e" == "forall tb (forall tbs e)"
"forall (tbind x A) e" => "forall’ A (%x. e}"

"exists_ (tbindsn_ tb tbs) e” == "exists tb (exists tbs e)"
"exists_ (tbind x A) e" => "exists’ A (%x. e)"

Figure 19: Syntax Translation for Universal & Existential Quantifiers.

4.1.2.3 Translation Functions

Translation functions are also used in VDM-LPF. They deal with abstract to concrete syntax
transformations and vice-versa, that neither syntax annotations nor syntax translations can deal
with. They are the most powerful method for dealing with differences between abstract and
concrete syntax and the most complicated. Writing translation functions is complicated because
it requires knowledge of Isabelle’s parsing and printing process, Isabelle’s internal data
structures, and the ML programming language. For more information regarding this process and

its related internal data structures please visit Section 3.5.3.

From Figure 19 we can see that there are two translations that are declared as parse only. This is
necessary since these translation statements cannot handle the printing of terms with quantifiers
and multiple variable bindings in an appropriate manner. If these translations were changed to
include printing, then only the outer most binding variable would be translated, while the rest
would be left unchanged. Consequently a print translation function is provided to handle this
situation. Figure 20 shows the ML functions and the way these functions are attached to the
function translation apparatus. quan tr’ is the translation function while eta exp is a helper
function. In just this small code segment one can see elements of the Isabelle term built in data
type: elements such as aps, Const, op $ which denote terms of constants, A-abstractions, and
function applications respectively. print translation is a built in variable that creates the
association between logical and syntactic elements. Thus, when a logical element is encountered
the call to the associated function is performed. In this particular example when forall’ and

exists’ logical elements are encountered, a call to quant tr’ with either “forall ~ or
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“exists “ syntax only elements, as the first argument, is performed. Moreover, all the
terms on the left side of the original forall’ and exists’ elements are passed as arguments to
the quant_tr’ function. This function will then use all these data to generate the corresponding

concrete syntax term.

fun eta exp (e as BAbs( , , )) = e

| eta exp e =Abs ("x", dummyT, e$ (Bound 0));

fun guan tr' r [A,e] =

let val Abs(x, ,e') = eta exp e

val {(x',e'') = variant abs(x,dummyT,e')

in

Const (r,dummyT)} $ (Const ("tbind ",dummyT)$Free (x',dummyT)SA)Se'"'

end;

val print_translation = [("forall'",quan tr' "forall "), ("exists'",quan tr’
"exists ") ];

Figure 20: Sample of a Print Translation Function

4.2 Proof System

The proof system was copied from [Bicarregui+94]. It is defined axiomatically, which means
that axioms are used to define the properties of basic elements for the logic. The system is further
extended through a set of definitions and a set of derived rules, built upon the foundations laid by
the previously defined axioms. In addition to rules and definitions for propositional and
predicate LPF, [Bicarregui+94] also defines a number of rules for data types such as natural
numbers, sets, sequences, maps, and booleans [AF96]. These rules follow the natural deduction

style which is particularly well supported in Isabelle.

What follows is an explanation of how the proof system as seen in the previously mentioned book

can be written as Isabelle theories.

4.2.1 Axioms

Encoding those rules from the book in Isabelle was a fairly straight forward process. In
[Bicarreguit94] axioms are presented using the Hilbert-style system, where hypothesis and
conclusion are separated by a horizontal line. Axioms in both the book and Isabelle are used to
state undisputed facts that are universally accepted and that require no further reasoning to check
their validity; in other words axioms are rules that we know are true. Some sample axioms can be

seen in Figure 21. Also note that the naming conventions suggest that rule names usually end in
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an 1 or an E. I stands for introduction while E for elimination. Introduction rules operate on the

conclusion of a goal while elimination rules on the hypothesis.

true-1: Ax
true
\/-E: e \/ e e |- e; e |- e BAx
e

contradiction: e;; ~e; Ax

e

Figure 21: Axioms Definitions as Found in the [Bicarregui+94] Book

Rewriting the axioms found in the fore-mentioned book in Isabelle is fairly easy. Axioms are
always written in the theory file under the rules section. Hypothesis and conclusion are separated
by the meta-implication symbol, ==>. When more than one hypothesis is present they are
enclosed within the [| and |1 symbols and are separated by a ; character. When there is a need
to denote an arbitrary element in either conclusion and or hypothesis, then the meta-universal
quantification symbol, ||, is used. Isabelle requires a set of logical constants to be defined for the
new logical connectives. It is worth noting that although these constants are declared through
consts statements, all their properties are defined through axioms. Thus the axioms mentioned
above and the newly introduced logical constants are expressed, in Isabelle, as shown in Figure

22.

Consts

true’ :: ex {(“true”)

or’ :: [ex,ex] => ex (™(_ or\ _)” [230.231] 230)
not’ :: ex => ex (M (2 not \_)” [250] 250)

rules

true-intr “true”

or-elim “[| Por Q; P ==> R; Q ==> R |] ==> R”
contr “[1P; not P|] ==> Q"

Figure 22: Isabelle Axiom Definitions

4.2.2 Definitions

Sometimes it is not necessary nor appropriate to extend a theory by means of axioms. In the case
of propositional LPF, it is sufficient to introduce all necessary properties of truthfulness, negation,
and disjunction by axioms. Introducing further propositional connectives via axioms is
unnecessary because connectives such as disjunction and implication can be defined in terms of
disjunction and negation while bi-implication can be defined in terms of conjunction and
implication Thus, syntactic definitions are a simple way for expressing the remaining
propositional connectives. The remaining connectives for propositional LPF can be seen in

Figure 23 as syntactic definitions.
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e: /\ e == ~(~e;3 \/ ~ep)

false == ~true
e, => e. == ~e: \/ g,
e, <=> e, == (e => e;) /\ (e, => e;)

Figure 23: Definitions of Propositional LPF from the
|Bicarregui+94] Book

These syntactic definitions can be easily written in Isabelle via consts and defs statements as

shown in Figure 24.

Consts

false’ roex ("false™)
iff’ 1 [ex,ex] => ex (" <=>/ )" [210,211) 210)
imp’ i {ex,ex] => ex ("(_=>/ )" [221,220] 220)
and’ [ex,ex] => ex (" and/ )" [240,241] 240)
defs

false def

"false == not true”

imp_ def

"P => Q == not P or Q7

and def

"p and Q == not (not P or not Q)"

iff def

"P <=> Q == (P => Q) and (Q => P)"

Figure 24: Isabelle Definitions of Propositional LPF

4.2.3 Derived Rules

Derived rules are denoted in exactly the same manner as axioms with the only exception being
the Ax notation is missing. Unlike axioms, derived rules are premises whose validity needs to be
verified. This is done using axioms, syntactic definitions,

and/or previously derived rules. It is worth

noting that derived rules and definitions are ~o\/-I-deM: ~e; \/ ~e

~(e; /\ ep)
not necessary to perform proofs. Proofs can /\-comm: e; /\ e,
. . e e
be performed using axioms only. However, 2 /\ &
=>-trans e; => e€,; &; => ej
such proofs are often lengthy and not very e, => e,
intuitive. Figure 25: Propositional LPF Derived Rules from
[Bicarregui+94]

Figure 25 presents a small sample of
propositional LPF derived rules. The first is one of the deMorgan rules, the second denotes the

commutative property for conjunctions, and the last defines the transitive property of implication.
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Rewriting rules in Isabelle is identical to rewriting axioms. The only difference is that derived

rules reside in the ML proof

~-\/-I-deM: !!el. not el and not e2 ==> not (el or
files. The rules above can be ¢2)
/\-comm: !!el. el and e2 ==> e2 and el
seen rewritten in Isabelle in  =>-trans: !lel. [| el => e2; e2 => &3 |] ==> el =>
el

Figure 26. The !! is the ascii
Figure 26: Isabelle Propositional LPF Derived Rules
representation of the meta-

universal quantifier. Regarding their proofs, refer to the proof tactics section.

4.3 Proof Tactics
The set of proof tactics falls under two categories, the simple or built-in ones and the proof search

tactics designed and developed specifically for VDM-LPF by Sten Agerholm and Jacob Frost.

4.3.1 Built in Tactics
The built-in proof tactics are the standard resolution tactics provided by Isabelle, such as
resolve tac, eresolve tac, assume tac, €tC., and their short form br, be, ba, etc.,

respectively. These tactics make use of existing rules and definitions to derive new rules.

In order to illustrate the process we will perform a proof using exclusively built in tactics, axioms,

and definitions. The rules from Figure 26 will be used for the sake of consistency. Figure 27

shows the proof as performed using the interactive Isabelle interface. Shaded text represents user

input while the remaining text presents Isabelle’s output. The proof is initiated by the statement:
goalw Prop.thy [and_def] "!!p. not P and not Q ==> not (P or Q";

Where "1 !P. not P and not Q ==> not (P or Q)" isthe rule to be proved and [and def] isa

definition to be expanded. Isabelle responds by displaying one subgoal, labeled “1.”, with the

rule rewritten with the right hand side of the and_def definition.

The next step consists of finding a suitable rule to apply. By consulting the propositional LPF
axioms, documented in Appendix A, we can identify two such possible axioms that may be
applied: not or elimand nor or_ intr. We can choose either one. However, we choose to start
with not or elim simply because the hypothesis seems to be slightly more complex than the
conclusion; thus simplifying it first seems to be the right route. The rule is applied as seen below:
be not_or_elim 1;
Again we choose to simplify the assumptions in order to remove some of the nested not
connectives. This is easily done via the not not dest axiom. This rule is applied twice so that

both assumptions are simplified:
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bd not_not_dest 1;
Next we turn our attention to the conclusion of the subgoal in question. This time we apply the
not or intr axiom that is identical to our stated goal:

br not_or_intr 1;
This time Isabelle displays two sub-goals where, in each one of them, the conclusion is identical
to one in the assumptions. Thus, both goals can be resolved by applying the assumption tactic
twice:

ba 1;
Finally the desired output, No subgoals!, is displayed by Isabelle. The new rule is stored
through the ged statement in the mnemonic name not or intr dem. This rule can be further

used through this name to help in deriving additional rules.

> Goalw Propithy [and def] "11P. not P and not O ==> noty { R Rl
Level O

t!'P. not P and not Q ==> not (P or Q)

1. !1'P. not ( not not P or not not Q) ==> not (P or Q)

val it

> beind

Level 1

I'P. not P and not Q ==> not (P or Q)

1. !'tP. [{ mnot not not P; not not not Q |} ==> not (P or Q)

va} it = () : unit

ttpP., not P and not Q ==> not (P or Q)

1. tip. [ not not not Q; not P |] ==> not (P or Q)
i ()¢ unit

> bd notinoh dest 1y

Level 3

t'P, not P and not ¢ ==> not (P or Q)

not P; not Q |] ==> not (P or Q)

Level 4
'*P., not P and not Q ==> not (P or Q)

1. 1tp. 1 not P; not Q |] ==> not P
2. 'tp. [} not P; not Q [] ==> noct Q
val it = () : unit

> bas iy

Level 5

''P. not P and not Q ==> not (P or Q)
1. tipo [ not P; not QO |] ==> not Q
val it = () : unit

> ba 17

Level 6

t1'P. not P and not Q ==> not (P or Q)
No subgoals!
val ;t = () : unit

> ged Maot or sintr!dem’;
val not ot intr dem = " not ?P and not ?Q ==> not (?P or ?Q)" : thm
val it = () : unit

Figure 27: deMorgan's Proof via Built in Tactics
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4.3.2 Proof Search Tactics

An observation one should be able to make, by looking at the proof in Figure 27, is that for even a
simple rule, a large number of steps are performed. The number of steps, in this case, do not pose
any problems. However, in more complex proofs this will result in long, tedious, often confusing

proofs. To alleviate this, Isabelle supports the creation of user-built proof search tactics.

The proof search tactics is a new package, developed in the form of an ML functor, so that it can
fill the void of the generic classical reasoning package missing from VDM-LPF. The new
package is needed because LPF is a non-classical logic, thus making the use of the classical

reasoning package difficult [AF96].

This package can be found in Appendix B. It follows the same structure as Isabelle’s classical
reasoner. That is, it defines an ML data structure for holding set of rules. These rules are divided
into introduction, elimination, and destruction rules. Rules in these groups are classified as being
safe and unsafe rules. Safe rules can be applied without the loss of information and can be

backtracked. Unsafe rule may cause loss of information; thus backtracking is not possible.

The new search tactic developed in this package is 1pf fast tac. This tactic is applied in the
same manner the built in ones are. However, instead of applying a single rule, a set of rules is
provided. Rules from this set are then applied, one by one, until there are no more subgoals left.
Safe introduction, elimination, and destruction rules are applied first, followed by the unsafe
ones, in that same order. In the case where there are subgoals left, Isabelle displays an

appropriate message and leaves it up to the user to decide how to proceed next.

In what follows, we prove the same deMorgan’s rule, this time using the 1pf fast tac. A
prerequisite is to set up an appropriate set of rules for the proof (depicted in Figure 28). The
actual proof is depicted on Figure 29. The advantages of the search proof tactics are obvious;
the proof is performed in just one step, while the rule set can be expanded and reused as often as

required.

£ = empty 1pfs addSTs [not or inttl addSEs .[not or elim] 'addsDs

fnot notfdestys

val ruleSet =

LPFS3

{hazDs=[],hazEs=[],hazls=[],safeDs=[" not not ?P ==> ?P"],

safeEs=["[| not (?P or ?2Q); [| not ?P; not ?2Q [] ==> ?R |] ==> ?R"],
safels=["[! mnot ?P; not ?Q |] ==> not (?P or 2Q)"]} : 1lpf set

Figure 28: Setting up the Rule Set for a deMorgan's Proof
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> goarw Propithy Tand deéfl »1 1Ry not: P andnot Q' ==> not
Level 0
t1p. not P and not Q ==> not (P or Q)

1. '"'P. not ( not not P or not not Q) ==> not (P or
val it = [] : thm list )

> py (1pf. fast tag rileset 1)y

Level 1

e, not P and not ¢ ==> not (P or Q)

No subgoals!

val it = () : unit

> Hed MRot Or intridemit;

val not or intr deml = " not ?P and not ?Q ==> not (?P
val it = () : unit

Figure 29: deMorgan's Proof via Search Tactics

4.3.3 Rule Sets

As axioms and derived rules are defined, they are added to increasingly larger and more complex

are used in conjunction with the 1pf fast tac to perform this task.

LPF. The most important and widely used ones are the following:

e prop 1lpfs — Rule set for Propositional Logic
® exists lpfs & forall 1pfs— Rule sets for Predicate Logic

* bool 1pfs— Rule set for the Boolean type.

available and can be used as desired.
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(P or Q)";

Q)

or ?Q)" : thm

rule sets. A rule set is a set of related rules that can be used to derive new rules. These rule sets

Rule sets are defined in the same manner as shown in Figure 28. Essentially, they are an ML

variable of the 1pf_set datatype. There are a number of such rule sets defined throughout VDM-

Note that there exist a number of rules that do not belong in either one of these rule sets. They

were not added because they were either too unsafe or not necessary. Nevertheless, they are still



5 Isabelle/Isar 2005 support for VDM-LPF

In this chapter we describe the upgrading process of the VDM-LPF old-style theory development
to the new-style or Isar one. Understanding this chapter requires a basic knowledge of VDM-
LPF, as presented in Chapter 4, and the basic structures of Isabelle theories old and new styles

(also known as classic and Isar respectively) as presented Chapter 3.

The aim of this chapter is to provide a detailed account on the steps undertaken to upgrade VDM-
LPF so that it complies with the syntax, proof style, and organization of the latest version of
Isabelle, namely Isabelle/Isar 2005. These steps are described in detail in order to enable the
reader to retrace our work. When necessary, alternative choices are presented and the rationale
behind the final choice is explained. Such information will be of use to others who may wish to

covert old-style theories to the new style.

Upgrading the VDM-LPF theory files to Isabelle/Isar was deemed desirable because Isabelle/Isar
offered a much improved deductive environment. Isabelle/Isar offers a new theory format that
supports interactive development with unlimited undo operations. Moreover, it offers a new
language to perform proofs, either by emulating the tactics used in ML proof scripts or by using
the new proof language designed to closely resemble proofs as performed by humans. Finally, it
offers a document preparation system based on existing PDF-LaTeX technology as part of the

Isabelle/Isar theory syntax [Wenzel].

This upgrade was implemented in three stages. The first stage involved an attempt to execute the
VDM-LPF theories in their original form, under an older {sabelle build. This served to establish

the validity of the theory files before changes to them were applied.

After consultations with the Isabelle community, it was decided that it would be preferable to get
VDM-LPF working with the latest version of Isabelle in the classic mode, known as
Isabelle/Classic or simply Classic. This mode allows the execution of old style theories without

significant modifications.

Finally, the last and most complex step was to transform these old style theories into fully fledged
Isar ones. A number of changes were needed to achieve this transformation. First and foremost,
all the ML proofs scripts were eliminated and all the proofs rewritten and moved into the theory
files. A way to enable access to the VDM-LPF proof search tactics was found. Translation
functions were also moved into the theory files. Last but not least a number of relatively small

changes, pertinent to syntactic changes of Isabelle’s elements, have been performed.
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5.1 VDM-LPF in Isabelle94-8

The first step in the upgrading process from VDM-LPF to the Isabelle/Isar level, was to try and
use it with an older version of Isabelle, a version that required no changes of the theory files and
preferably the one that was used by the original authors. There were two reasons that made us

decide to try to use an older version of Isabelle with the original VDM-LPF.

The first reason stemmed from the fact that retrieving VDM-LPF through its advertised
repository was not successful. A copy of VDOM-LPF was found at the website of Jeremy Dawson
(a Post-Doctoral Fellow in the Logic and Computation programme of NICTA). Retrieving a
copy in such a manner raised questions on the validity of the theory files. Consequently, using an
older version of Isabelle to load the theory files, in their original form, and to perform checks was
necessary. It is worth noting that attempts to contact the original authors failed. We were,
however, able to contact Jeremy Dawson and inquire on the validity of the theory files. He was

confident that the files were unmodified, but he was not certain.

The second reason was that attempts to run VDM-LPF using Isabelle 2005 were failing. That
was an expected result given the number of changes made to Isabelle since 1996, the date VDM-
LPF was developed. Consequently, starting with a working copy of the original logic was the

prudent way forward.

Obtaining an appropriate version of Isabelle for the original VDM-LPF was an easy process.
Fortunately, all Isabelle builds starting from 1993 and afterwards are available for download from
Isabelle’s website. By consulting the available list of builds, it was easy to pick the Isabelle94-8
package, which contains all changes made between 1994 and 1998. The installation was
uneventful. The only exception was a small problem pertinent to the underlying ML interpreter,

which was quickly resolved.

Invoking Isabelle94-8 was also a simple affair. However, loading of VDM-LPF did not work as
expected. The reason for this unexpected result quickly became apparent. Initially Isabelle was
invoked in the following manner:

${ISABELLES94_8_HOME}/bin/isabelle
When Isabelle is invoked in such a way, the pre-built HOL (High Order Logic) which is based on
cpure is loaded by default. However, VDM-LPF is based on pure. Consequently, invoking
Isabelle with the Pure logic or another logic that was based on the pure one were the two

alternate solutions. The latter was preferred because FOL is one of the pre-built logics and is
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present in all installations, while Pure is not. Thus invoking Isabelle in this manner had the
desired effect:

${ISABELLO4_8_HOME}/bin/isabelle FOL
Loading the theory files was next. Unfortunately there was no root.ML file present, thus a brief

search was conducted to identify the top

theory. As a convention, in old-style > ${ISABELLES4.8 HOME}/bin/isabelle FOL
val it = false : bool

theories, a root.ML file is used as the top > val commit = fn : unit -> bool
> uge Lhy NVDMULPEY

level file for an Isabelle project. The Figure 30: Isabelle94-8 - Loading VDM-LPF Theories

vDM LPF.ML was identified

as the top level theory and was loaded into Isabelle as shown in Figure 30. Corresponding output

is not shown due to its length.

Being successful in loading the VDM-LPF files into Isabelle94-8 boosted our confidence in the
validity of the copy of VDM-LPF we obtained. To further convince ourselves we used
[Bicarregui+94], upon which the Proof system was based, to compare it with what was in the
actual theories. The results were encouraging. All the elements that we examined matched with
the ones found in the book. First, we compared the axiomatization of the rules against their
Isabelle implementation. We then proceeded to perform some simple proofs. In both these tasks
we mainly focused on the propositional and predicate subset of VDM-LPF, simply because it is
the most complete. Remaining theories, such as sequences, maps, etc., were only briefly

examined, for the purposes of this validation exercise.

Some of the interactive proofs we performed using the Isabelle94-8 client are provided in Figure
31, Figure 32, and Figure 33. In what follows we present a brief explanation of these proofs.
Moreover, we only make use of the simple built-in proof tactics, because we were interested in

visualizing all the steps of the proof.

The first proof involves the "q and p ==> p or " lemma. The first rule applied is the
or intr left axiom

P ==> P Or Q
which states that if we have a disjunction of two elements and we know that one of these
elements is true then we can conclude that the disjunction is also true. This is an introduction rule

and as such operates on the conclusion of our lemma. Next the and_elim elimination rule
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[I Pand Q; [I P; Q |] ==> R |] ==>R
is applied which specifies that if a conjunction is known to be true then we can assume that both
elements of such conjunction are true. Since this is an elimination rule it will operate on the

assumptions of the lemma. Finally, the proof is completed by assumption.

> val:[pl}:= gbalw Bropithy,:
stdIn:23.1-23.50 Warning: binding not exhaustive
pl :: nil = ...
Level O
p or g
1. por g
val thm

> by (v

Level 1

b or g
1. g and p ==> p or g

> Bé and e1imtl;
Level 3
p or gq
[l ==>p
unit
p or q
No subgoals!
val it = () : unit

Figure 31: First Sanity Test of VDM-LPF

The second proof involves a simple predicate logic lemma, forall x:A & x=x. The first step in
the proof is to expand the forail def definition

forall'(A,P) == not (exists x:A & not (P(x)))
which states that the universal quantifier is defined in terms of exists and negation. Next the
not exists_intr axiom

[l I'x.x:A ==> not (P(x)) |] ==> not (exists'(A,P))
is applied. This axiom says that it is sufficient to find an arbitrary element where the predicate is
not true to satisfy the negation of the existential quantification. Next the double negation axiom
not _not_intr

P ==> not not P

is applied with the obvious meaning. The last rule applied is the eq self intr axiom

which says that an element is equal to itself.
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> goalw Predithy [forall defl ¥fora

Level 0
forall x : A & X = X
1. not (exists x : A & not x = x)

val it = [],: thm lisp
> br not exists intr 13

Level 1
forall x : A & X = X
1. !'lx. x : A ==> not not x = x
val it = () @ unit
> br not not intr’i;
Level 2 B
forall x : A & X = X
1. !'x. x : A ==> x = X
val it = () : unit
> br eq self intril;
Level 3
forall x : A & x = X
1. !'!'x. = @ ==> x : ?RA2(x)
val it = () : unit
> pa 1y
Level 4

forall x : A & x = x
No subgoals!
Val it = () : unit

Figure 32: Second Sanity Test of VDM-LPF
In the last proof we deviate from propositional and predicate logic and we try to prove something
slightly more complicated. This proof involves a VDM-SL conditional statement dealing with
variables ranging over the type of natural numbers and Booleans. The lemma [| n:nat; m:nat;
m=n |] (if n=m then true else false) = true was also successfully proven by first
applying the if true axiom:
[l b:A; P |] ==> (if P then b else ¢c) = b

This axiom is used because the assumption m=n points to the fact that the condition of the
conditional statement is true. This axiom splits the lemma into two subgoals. The first one was

quickly satisfied by the application of the true form

true:bool
axiom, found in the theory of Boolean types. The second subgoal is satisfied by applying the
eq_symml

(| a:A; a=Db |] ==> Db = a

axiom which denotes the symmetric property of equality.
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stdIn:34.1-34.102

Wa

rning: binding not exhaustive
pl p2 p3 nil =
Level O
(1f n = m then true else false) = true
1. {(if n = m then true else false) = true
val pl = "n nat In natl"” thm
val p2 = "m : nat [m : nat]" thm
val p3 = "m = n [m = n]" : thm
> by {cur, facts tac ipl,p2;p3F 1);:
Level 1
(if n = m then true else false) = true
1. {l n nat; m : nat; m=n |] ==> (if n = m then true else false) = true
val it = () unit
> Er-if;%rue~lf
Level 2
(if n = m then true else false) = true
1. [l n nat; m : nat; m = n |] ==> true ?A3
2. [I n nat; m : nat; m=n |] => n = m
Warning: signature of proof state has changed
New theories: Bool, Seq, Map, Set, Nat, BasTy, Sub, Opt, Prod, Union, Let
Level 3
(1f n = m then true else false) = true
1. [l n nat; m : nat; m=n |} ==>n =m
val it = () : unit
B e’ symml 15
Level 4
(if n = m then true else false) = true
1. [l n : nat; m : nat; m=n |] ==>m ?A4
n : nat; m : nat; m=n |] ==>m = n
=0 unit
m then true else false) = true
:nat; m : nat; m=n |] ==> m = n
] () unit
> ba1;
Level 6
(1f n = m then true else false) = true
No subgoals!
val it = () unit

Figure 33: Third Sanity Test of VDM-LPF

5.2 Porting to Isabelle 2005 Classic

Executing VDM-LPF in the latest version of Isabelle, but in the classic mode of operation, was

chosen as the next step in the upgrading sequence because it was the natural and a relatively small

step forward. This entailed the following actions:

(1) renaming three theories that were in conflict with existing FOL theories;

(2) VDM-LPF’s proof search tactics had to be modified because of ML syntax errors;

(3) syntactically, Isabelle has evolved since 1996 and changes to the theory files had to be
performed to bring them up to date;
(4) finally, VDM-LPF’s base logic was changed from Pure to CPure.

Invoking Isabelle 2005 in Classic mode is done as follows:
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% ${ISABELLE_HOME}/bin/Isabelle -I false
Where -1 stands for Isar mode. Passing the string false to the -1 parameter invokes Isabelle in
the classic mode. Removing this parameter or passing any other string value will invoke Isabelle

in the Isar mode.

5.2.1 Theory Naming Collisions

A number of VDM-LPF theories shared the same name as their corresponding FOL and HOL
ones. Consequently, attempting to run the VDM-LPF top theory file resulted in errors (Figure
34).

Error: in '/tmp/isabelle-g karabl7550/Seq thy.ML', line 22.
Value or constructor (setrange tr) has not been declared
Found near $( $( ${ ...), ...... Yy, Abs( "x", ...))

Error: in '/tmp/isabelle-g karabl7550/Seq thy.ML', line 29.
Value or constructor (eta exp) has not been declared Found near eta exp(f)

Error: in '/tmp/isabelle-g karabl7550/Seq thy.ML', line 30.
Value or constructor (eta exp) has not been declared Found near eta exp(P)

"

Exception- Fail "Static errors (pass2) raised

Figure 34: Theory Naming Conflict Error

Two competing solutions were available to the theory naming conflict: make pure a stand alone
logic in our local Isabelle installation or rename the offending VDM-LPF theory files. The latter

solution was used because it made the redistribution of the upgraded VDM-LPF logic easier.

Six files were renamed and modified, namely from Nat.thy, Nat.ML, Map.thy, Map.ML, Set.thy,
and set.ML t0 NatLPF.thy, NatLPF.ML, MapLPF. thy, MapLPF.ML, SetLPF.thy, and SetLPF.ML.

References to these files and the theories they define were changed accordingly.

5.2.2 ML Syntax Errors
Correcting the naming issues did not result in a successful interpretation of the VDM-LPF

theories. A new error, shown in Figure 35, was hindering our progress.

Error: in ‘/home/g/g karab/thesis/tmp/DIST-VDM-LPF/LPF Prover.ML', line 32.
end expected but infix was found

Exception— Fail "Static errors (pass 1)" raised
*** Fail "Static errors (pass 1)"

*** At command "use™.

Exception- ERROR raised

Figure 35: Proof Search Tactics ML Error
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The problem is due to the infix statement in the LPF prover.ML file (proof search tactics
implementation as described in Chapter 4)—see Figure 36. The cause of the error is that infix

statements cannot occur with a sig  end ML block [Paulson96, Milner+97].

signature LPF PROVER =

sig

type lpf set

val empty lpfs : 1pf set

val addSIs : lpf set * thm list -> 1lpf set
val addSkEs : lpf set * thm list -> lpf set
val addsSbs : lpf set * thm list -> lpf set
val addIs : lpf set * thm list -> 1pf set
val addEs : lpf set * thm list -> 1pf set
val addDs : 1lpf set * thm list -> Ipf set
infix 4 addSIs addSEs addSDs addls addEs addDs;

val 1lpf atac : int -> tactic

val 1pf step tac : 1pf set -> int -> tactic
val lpf fast tac : lpf_ set -> int -> tactic
end;

Figure 36: Erroneous ML Code Segment

The solution is involves moving the infix statement outside (e.g. after) the signature

declaration.

5.2.3 Syntactic Changes

Nearly all theory files, .Mt and *.tny alike, had syntax errors. Thus, correcting them was a
fairly long and tedious exercise. Fortunately, all errors were of one particular type. Two
instances of this error for Prop.ML and pred. thy are given in Figure 37 and Figure 38 The error
is easily resolved by inserting a space to the right of the . character, thus: “p. not true ==> p~

and “forall’ (A, %x. e)”.

Exception- ERROR raised

*** Inner syntax error at: "P.not true ==> P"
***% Expected tokens: mignm ("
*** The error{s) above occurred for "!! P.not true ==> p"

" "

**% At command "use
Exception- ERROR raised

Figure 37: Syntax Error from Prop.ML as Displayed by Isabelle 2005 Classic

*** Tnner syntax error at: "x.e )"

*** Expected tokens: "id" " ("

*** The error(s) above occurred in translation pattern "forall'(A,
Exception~ ERROR raised

Exception- ERROR raised

o "

rX.e)

Figure 38: Syntax Error from Pred.thy as Displayed by Isabelle 2005 Classic
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5.2.4 Changing the Base Logic to CPure

The last change performed to complete this stage of the upgrading process was the replacement of
VDM-LPF’s base logic from Pure to CPure. Identifying the new basic logic only involved a
change to the Basic.thy file which formed the lowest level theory of VDM-LPF. All other
theories are based on this one, either directly or indirectly. Only the theory declaration statement

had to be changed from Basic = Pure +10Basic = CPure +.

cpure is identical to the pure logic with one exception; the function application syntax differs.
In pure, function arguments are enclosed within parenthesis and separated by commas, whereas
in CPure spaces separate both the function name from its arguments and the different arguments.
To illustrate consider the following translation statement as found in the Pred. thy file:
"forall_(tbindsn_(tb, tbs), e)" == "forall_(tb, forall_(ths, e))"
When Isabelle is asked to parse this statement it will display the error message as seen in Figure
39. To correct this statement the function will have to be expressed in the following cpure
complaint syntax:
forall_(tbindsn_ tb tbs) e" == "forall_ tb (forall_ tbs e)
This kind of modification is not limited to translation statements, it also affected a large number
of definitions, axioms, and proofs, making it the longest and most tedious of all the changes
performed so far. It should be noted that the change to CPure was not necessary for allowing the
theories to work in Isabelle/Classic 2005. However this will allow VDM-LPF to work under
Isabelle/HOL, which was also based on the CPure logic. Since our research group makes

exclusive use of HOL (vs. FOL), this seemed like the most appropriate choice.

**% Tnner syntax error at: ", tbs ) , e "

*** Expected tokens: "true" "false" "undefined” " " "op" "\<dots>" "PROP"
* * % "OFCLASS" "TYPE" "id" "1ongid" "Var" n..‘n "\<Struct>" Iv(n "\<COlOn>"
ok * "\<equiv>" n\<equiv>\</\sup>?n u)u M= MW Moyt Bandn ..o n_sn

* % "\<Longrightarrow>"

*** The error(s) above occurred in translation pattern
"forall (tbindsn (tb,tbs),e)"

Exception- ERROR raised

Exception- ERRCOR raised

Figure 39: Function Syntax Error Because of the Pure to CPure Change.

5.3 Final porting step: Isabelle/Isar 2005
Creating fully-fledged Isar theories out of the old style ones was the last set of modifications we
performed to VDM-LPF. This involved a large number of changes which can be categorized into

four different kinds:
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(1) syntactic changes,
(2) changes pertinent to VDM-LPF proof search tactics,
(3) changes involving the translation functions, and
(4) rewriting all the proofs from their ML proof scripting format into the Isar theory
format.
5.3.1 Syntactic Changes
Upgrading the VDM-LPF theories to Isabelle/Isar required a large number of syntactic changes.
This was due to the fact that Isabelle/Isar syntax is different from Isabelle/Classic. Most
modifications involved changes to the syntax of common constructs to both the Isar and Classic

mode. While other modifications involved the replacement of Classic constructs with newly

introduced Isar ones. In what follows we will have a closer look at these changes.

5.3.1.1 Theory Declaration
The manner in which theories are declared has changed in Isabelle/Isar as compared to
Isabelle/Classic. A new keyword, namely theory, was introduced to denote the start of a theory.
Additionally, a colon character is used to denote the end of the theory declaration statement and
the start of the declarations of new types, definitions, lemmas, etc. As an example consider the
following old style theory declaration:

VDM_LPF = Bool + Case
To perform the same in Isar, one will have to rewrite it as follows:

theory VDM_LPF = Bool + Case:

Furthemore, Isar theories must denote their ending by the end keyword. Classic theory files, only

required the end keyword if they contained definitions.

5.3.1.2 Truth Judgment

The new judgment keyword has been introduced to denote truth judgment statements. A truth
judgment statement is the very first step in the creation process of a new object logic and it
associates Isabelle’s meta-logic with the new object logic [Wenzel]. Consequently the following

statement from the classic theory

consts
Trueprop 1 oex => prop  ("(" 5)

will be written in an Isar theory like
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judgment
Trueprop 11 "ex = prop” ("()" 5)

5.3.1.3 Logical and Syntactic Types

Both logical and syntactic type declarations have changed. Logical types are introduced through
the typedecl statement hence replacing both types and arities while syntactic types are
introduced by the more appropriate nonterminals statement. It is worth noting that the types
keyword still exists in Isabelle/Isar, however, it is been used for declaring type synonyms, similar

to the C-language typedef statement.

Consequently, the ex type declaration seen in its classic form in Figure 16 would be written in
Isar as:

typedecl ex
The syntactic types

types tbinds tbind
are rewritten in Isar as

nonterminals tbinds tbhind
This last difference took the author some time to figure out because of its subtlety and somewhat
obscure reference in the documentation. In fact, it was only realized when the Isabelle/HOL

source code was consulted.

5.3.1.4 Axioms

Axiom declarations have been change in Isar by the introduction of the more appropriate axioms
keyword as opposed to the formerly used rules keyword. The syntax of both these statements is
the same for the most part, except for a colon character right after the axiom name. Figure 40,

shows sample [sar axiom definitions that are equivalent to the classic ones portrayed in Figure 22.

axioms

true-intr: “true”

or-elim: “[| P or Q; P ==> R; Q ==> R |] ==> R”
contr: “[1P; not Pl] ==> Q"

Figure 40: Isar Axioms Definition

5.3.1.5 Consts and Syntax Declarations

The form of statements of consts and syntax declarations is slightly different in Isar. The
difference is that the signature of a new constant or syntax definition must be enclosed within
double quotes. The quotes can be avoided only if a simple type is involved. Thus, the following

statement:
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consts
true’ Tioex ("true™)

remains unchanged in an Isar theories, while the following:

consts
not' roex => ex ("(2 not _/)" [250] 250)

has to be changed in the following manner:

consts
not' i M"ex => ex" ("(2 not _/)" [2501 250)

Syntax declarations are modified in the same manner.

5.3.1.6 Constant Definitions
Constant definitions introduced by the defs statement are also slightly different in Isar. The
differences are similar to the ones for axioms. That is all names must be followed by a colon

character. As such, the following classic statement

defs
false_def '"false == not true”

will have an Isar equivalent form like

defs
false_def: "false == not true”

5.3.2 Built-in VDM-LPF Proof Search Tactics

As was mentioned earlier, VDM-LPF’s proof search tactics where built to replace Isabelle’s
classical reasoner package that is inappropriate for a three-valued object logic like LPF. Since
our initial goal from the start was to upgrade VDM-LPF to the Isabelle/Isar level, a method had to

be established to make these custom built-in proof tactics available to Isar theories.

This method involved two components: first, a mechanism to include the ML module, defined in
LPF Prover.ML, into the Isar theories, thus making its definitions (rule set facilities and tactics)
available; second, a method capable of using these definitions—to be precise, a method to define
the same rule sets, as seen in the ML proof scripts, and a method to reuse the 1pf fast tac in

the corresponding Isar styled proofs.

5.3.2.1 Including VDM-LPF’s Proof Tactics

Figure 41 shows how VDM-LPF’s search proof tactics have been included into Isabelle/Isar
theories. The files “LPF Prover.ML”: clause, creates a dependency between the prop theory
and the LpF_prover.ML file. Moreover, it loads this file in theory pProp = Basic

files "LPF Prover.ML":

the current theory context. Subsequent theories that
Figure 41: Inclading LPF_Prover.ML

import prop, will have all the LpPF_Prover.uL definitions
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available. Thus there is no need to add the files clause in any of the remaining theory

declarations, for the purpose of making the tactics and rule set facilities available to them.

5.3.2.2 Using VDM-LPF’s Proof Tactics

Merely including the VDM-LPF search proof tactics is not enough to be able to use them.
Additionally, appropriate ML structures must be defined from the functor in LPF Prover.ML.
The rule sets have to be defined and a way to apply the search proof tactics in Isar proofs must be

found.

First and foremost, the functor found in LPF Prover.ML must be instantiated into appropriate ML
structures. At this point it is worth digressing and mentioning that ML functors are parameterized
structures and cannot be used as is. Instead they need to be passed structure(s) of the appropriate
signature(s). The result is a new structure which can now be used [Paulson96, Milner+97]. This
instantiation is identical to the one performed in the ML proof scripts and is depicted in Figure
42. There is one small difference however: when referring to axioms or theorems one has to use
the thm ML function to retrieve them as opposed to just using their name. The ML {* *}
construct allows one to include ML code in the current theory context. This statement is used

throughout the theory files when ML code needs to be included for one reason or another.

ML

{*
structure LPF Prover Data =
struct
val contr = thm "contr"
end;

structure LPF Prover = LPF Prover Fun(LPF Prover Data);

open LPF Prover;
)
Figure 42: Instantiating VDM-LPF's Functors
Defining the different rule sets is also achieved by anmr. {*  *} statement. Thus, the exact ML
code as found in the ML proof scripts in used in Isar theories. Again the only difference is that
the thm function is used to obtain the different axioms and theorems. Figure 43, shows how a
VDM-LPF rule set can be defined in Isabelle/Isar theories. The same rule set, in its ML proof

scripting form, can be seen on Figure 28. In the same manner all rule sets are defined throughout

VDM-LPF’s Isar theories.

ML
{ *
val ruleSet = empty lpfs addSIs l[thm “not or intr”] addSEs [ thm
“not or elim”] addSDs [thm ;hotgnotvdest”]; -
*}
Figure 43: Rule Set Definition in Isabelle/Isar
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After discovering a way of creating the different rule sets, we now need an method to apply them
in Isar proofs. Fortunately, Isabelle/Isar provides users with such a method, namely the tactic
method. This method allows us to use ML type tactics in Isar proofs. We used the tactic method
only with VDM-LPF’s built in proof search tactics. We could have used this method throughout
all proving steps. However, in that case, claiming that we have upgraded the ML style proofs into
the Isar tactic emulation style would have been false. To illustrate the tactic method consider the
following:

apply(tactic {* Ipf_fast_tac ruleSet 1 *})
An alternative to the tactic method was explored, however, it was not pursued further because it
was not the correct approach. This alternative involved using the Isabelle/Isar method setup
statement. This statement does what its name implies, it allows for the creation of a new method.
Figure 44 shows how a new method, namely 1pf prop, was created and was used to prove
propositional logic statements by writing:

apply(1pf_prop)
This method was not pursued because of its inflexibility. Ideally, we should only define one
tactic that will be accepting rule sets or some form of rule sets that is compliant with Isabelle/Isar
theories. However, lack of proper documentation and time constraints prevented us from moving

ahead with such a solution.

method setup lpf prop =
{*
Method.no args (Method.SIMPLE METHOD (lpf fast tac prop lpfs 1))
*}

Figure 44: method_setup Illustrated

5.3.3 Syntax Translation Functions

With the elimination of the ML proof scripting, Syntax Translation functions have also undergone
changes, albeit smaller when compared to the other components. These functions are developed
in ML using the exact same data structures. Consequently, changes to the actual functions were
minimal. The majority of changes mostly involved the manner these functions are included into

Isar theories.

With the introduction of Isar theories a new set of
parse translation {* ML code *}

block statements is introduced specifically for print_translation {* ML code *}
parse ast translation {* ML code *}

translation functions. These block statements and print ast translation {* ML code *}
their general format can be seen in Figure 45. The Figure 45: Isar Translation Function Statement

first two are the ones of interest to us since parse and print translation functions are used
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extensively in VDM-LPF. It is worth noting that documentation on translation functions is

limited. We were able to find examples by searching through the Isabelle/HOL source code.

Figure 46 displays the Isar complaint print translation function for properly displaying the
universal quantifiers with multiple bounded variables. For comparison reasons, the old style
translation function can be seen in Figure 20. The differences are very small; actually the only
difference is that the ML code is enclosed within a 1et  in end ML block statement. Parse

translation functions are declared in a similar manner.

print translation
(G
let
fun eta exp (e as Abs( , , )) = e

| eta exp e =Abs ("x", dummyT, e$ (Bound 0));

fun quan tr' r [A,e] =

let val Abs(x,_,e') = eta exp e
val (x',e'") = variant abs(x,dumnyT, e’}
in
Const (r,dummyT) $ (Const ("tbind ", dummyT)$Free (x', dummyT) $A) Se””’
end;
in
[("forall'",quan tr' "forall "), ("exists'",quan tr' "exists "),
("existsl'",quan_tr' "existsl "), ("iota'",quan tr' "iota ")]
end;

*}

Figure 46: Isar Declaration of Print Translation Functions

5.3.4 Isar-style Proofs

The largest set of changes involved re-writing the ML proofs in the Isar proof language. Two
types of Isar proofs are available, the Isar tactic-emulation proofs and the Isar human-readable
proof texts. The former was used since it closely resembled the ML proofs that needed to be re-
written, it was the natural next task to perform, ample set of examples existed, and an excellent
guide was available. Note that rewriting the proofs in Isar human-readable proof texts was

considered but was deferred because of the scope and difficulty of this task.

The task of rewriting the ML proofs into Isar tactic-emulation proofs was a matter of finding the
appropriate and equivalent Isar constructs. This was facilitated by the existence of an excellent
conversion guide [Wenzel] which was followed closely during this set of changes. Rewriting the
proofs in Isar emulation tactics was a two-fold process. First, expressing the goal statements in
the Isar language. Second, finding the corresponding Isar methods for each of the tactics used in

the ML proofs.
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5.3.4.1 Goal Statements

There are four types of goal and goalw statements in the VDM-LPF ML proofs scripts that
initiate a proof. Moreover, there are instances where the original authors create their own goal
extension statements to facilitate their work. The corresponding Isar statement is lemma or its
synonym theorem. The lemma statement is used throughout this rewriting exercise. The left
column of Figure 47 shows the general format of the goal and goalw statements as used in the
ML proofs, as well as the proof ending ged statements. The refers to the different ML tactics
performed to satisfy the proof. On the right column of the same table are the corresponding and
equivalent lemma statements, as well as the proof ending done statement. In this table the Greek

letters ¢ and y denote formulas, deri and dern denote definitions, finally p: and pn denote

premises.
goal “¢”; lemma name: “¢”:
Qed “name” done
goalw [defl, ,defn]l “¢”; lemma name: “¢”:
apply(unfold defl defn)
ged “name”
done
val [pl, ,pnl=goal “[ig/l ..;gn|]=>yw"; lemma name:
assumes pl: “¢1” and and pn: “gn”
ged “name” shows “y”’
done
val [pl, ,pn] = goalw [defl, , defn] lemma name:
g assumes pl: “¢g1” and and pn: “¢n”
shows “y”’
ged “name” apply (unfold defl defn)
done

Figure 47: Equivalent goal and lemma Statements

The first form involves rewriting a goal statement. This is the simplest form of all proof
statements, as such it is very simple to rewrite in Isar. Consider the following ML goal statement
with its corresponding proof ending ged:

goal Prop.thy "!!lP. not true ==> P";

aed “not_true_elim”
this is easily rewritten in the following manner in Isar:

lemma not_true_elim : "!!P. not true ==> P”

aone
The differences are minute and there are none in the manner the formula is expressed. Note that

the syntax of formulae was left unchanged throughout our upgrading effort.
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The second form of proof statements involves a goalw statement. Such statements allow for the
introduction of more complicated proof statements and for the automatic expansion of definitions.
Definitions are passed to the statement in the form of an ML list. All elements must be valid
definitions; that is, defined through a pair of consts and defs statements. Instances of such
definitions within the formula are automatically expanded. The new expanded formula is
displayed, and all tactics are performed in this expanded formula. As an example consider the

following statement:

goalw Prop.thy [false_def] "!ip. false ==> P";

aed “false_elim”
what this does is to replace occurrences, in the formula, of the left hand side of the false def
definition with its right side. Considering that false def is defined as “false == not true”,
the formula will be change to “!! P. not true ==> P”. To achieve the same effect in Isar the

goalw statement must be rewritten in the following manner:

Temma false_elim : "!ip. false ==> P"
apply(unfold false_def)

aone
The formula remains unchanged and the proof is initiated by the 1emma statement. The expansion

of the definition is performed by the unfoid tactic.

The third form involves a goal statement. This time we store the premises or assumptions into
ML variables. This is useful when we want to use these premises in the proving process; that is
apply them as we apply any other axiom or derived rule. The following example illustrates this
technique:

val prems = goal Prop.thy "[| not not P; P ==> R |] ==> R";

aed “not_not_elim”
The two premises will be stored in the prems ML list variable, the first at the head of the list
while the other as the second element of that list. To rewrite this in Isar a more verbose version

of the 1emma statement is used:

Temma not_not_elim :

assumes pl : "not not P"
and p2 : "P ==> R"
shows "R"
done

The assumes and the ana keywords store the premises in the p1 and p2, local for this proof, rules

while the shows keyword contains the formula to be proved, i.e. the conclusion.
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The last form is a combination of the previous two goaiw and goal statements. Statements,
where both definitions are expanded and premises are stored in ML variables to be used as rules.
Consider the following statement:
val [pl,p2,p3]l= goalw Prop.thy [imp_def] "[| P => Q; not P==>R; Q==>R |] ==> R";
aed "imp_elim”;
where three premises are stored in ML variables and the imp def definition is expanded. The

following set of Isar statements achieve the same:

Temma imp_elim :

assumes pl : "P => Q"
and p2 : "not P==>R"
and p3 : "Q==>R"

shows "R”

apply(cut_tac pl)
apply(unfold imp_def)

aone
You will notice that an extra method is applied before the unfolding of the imp def definition.
This extra method is adding p1 as a premise in the target formula we are attempting to prove.
Thus, right after cut_tac is applied Isabelle will display “p => ¢ ==> R~ as the goal formula.
This is necessary because unfolding the definition only works on the goal formula and not on any

of the local rules formed by the assumes and the and keywords.

In one of the ML theory files, namely pred.wm1, the authors created their own versions of goal
and goalw statements using ML functions. The definitions of these new statements can be seen
on Figure 48. These functions combine the goal and goalw statements with the cut facts tac
tactic. This is done just to save the authors from explicitly using this tactic at every proof. In Isar
we treat the use of goall and goalwl as if they were expanded into their corresponding
definition. Thus a 1emma statement with an application of the cut tac method is used to replace

such goal statements.

fun goall t s =
let val prems

i

goal t s in (by (cut facts tac prems 1);prems) end;

fun goalwl t tl s
let val prems

it H

goalw t tl s in {(by (cutéfacts‘tac prems 1);prems) end;

Figure 48: goall and goalw1 Definitions

5.3.4.2 Tactics

Rewriting the ML styled proof tactics into Isar methods involved two type of changes. First,
finding appropriate Isar methods for each ML tactic used. Second, finding appropriate Isar
constructs for rewriting ML tacticals. Tacticals are operations on tactics. They create new tactics

cither on a permanent or on a temporary basis.
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Isabelle/Classic provides a large number of tactics and a large number of short form synonyms of
these tactics. Fortunately, Isar has consolidated all these different tactics and synonyms into a
single set of methods. Figure 49 displays the ML proof tactics used in the original VDM-LPF
and their corresponding Isar methods used to replace these tactics. In this table thm, thmi, and
thmn, refer to theorems. The first row displays the cut facts tac and its corresponding Isar

cut_tacs method that was explained in the previous section.

cut facts tac [thml, ,thmn] 1 cut tac thmi thmn
ba 1 Assumption

atac 1 Assumption

br thm 1 rule thm

rtac thm 1 rule thm

be thm 1 erule thm

bd thm 1 drule thm

Figure 49: ML Proof Tactics and their Equivalent Isar Methods

The next two rows portray the ba and the atac tactics. Both are shortcuts for the assume tac

tactic. To illustrate consider the following equivalent applications of this tactic:

ba 1;
atac 1;
by (assume_tac 1);

All these statements are equivalent and they will be applied to the first subgoal in the sequence —

hence the 1 in the right hand side. The same can be achieved in Isar via the assumption method:
apply(assumption)

There is no need to specify the subgoal in the Isar assumption method because all methods

operate by default on the first one in the sequence. Actually, most the of the Isar methods do not

allow the specification of the subgoal. Isar, however, provides two helper methods, namely

prefer ianddefer, that allow the user to change the subgoal sequence.

The next two rows also involve shortcuts of the same tactic, namely resolve tac. This the
standard resolution tactic used with introduction rules. Let us consider again an example of a set

of equivalent application of the resolve tac and its synonyms:

br thm 1;
rtac thm 1;
by (resolve_tac {[thm] 1);

The same can be done in Isar through the rule method:

apply(rule thm)
Like the assumption, the rule method operates on the first subgoal in the sequence.
Alternatively, Isar provides the rule tac method, which allows for selecting a specific goal.

However, its usage is discouraged [Wenzel]. Thus, we refrained from using them in this project.
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The ML tactic be is also a shortcut of the eresolve tac tactic. This is also a resolution tactic,
however, it is used with elimination rules, hence the prefix e. The following equivalent ML proof
tactic statements:

be thm 1;
by (eresolve_tac [thm] 1

are rewritten using the erule Isar method:
apply(erule thm)
Similarly, bd is a shortcut for the dresolve tac ML tactic. This tactic is used with destruction

rules and it is also a resolution tactic. Let us again consider an example:

bd thm 1;
by (dresolve_tac [thm] 1);

By now the reader is aware of the pattern, thus the Isar method is none other than the drule one.

Consequently, the above two equivalent tactic applications can be performed in Isar as:

apply(drule thm)
Both erule and drule are similar to the rule method. As such, they both cannot specifically
operate on a different subgoal than the first one and they both have alternatives. These
alternatives are the erule tac and derule tac, where the subgoal can be specified. As before,

their usage is discouraged [Wenzel].

There are cases in the old style VDM-LPF theories where proof tacticals are used instead of
tactics. Tacticals are used to perform operations on tactics. This includes combining tactics,
repeating a tactic, and applying a tactic to all the subgoals. These tacticals and their

corresponding Isar constructs can be seen on Figure 50.

tacl THEN THEN tacn methl, .., methn
EVERY [tacl, , tacn] methl, , methn
REPEAT tac (meth)+

ALLGOALS tac (meth)+

thml RSN (i, thm2) Thml [THEN [i] thmZ2]
thml RS thm2 Thml [THEN thmZ2]

Figure 50: ML Proof Tacticals and their Equivalent Isar Constructs

The THEN and EVERY tacticals are closely related since the latter is an abbreviation of the former.

Consider the following two equivalent application of a tactic formed through these two tacticals:

by ((rtac eq_subs_right 1) THEN (atac 1) THEN (atac 1) THEN (atac 1));
By (EVERY [rtac eq_subs_right 1, atac 1, atac 1, atac 1]);

They both combine a set of tactics. The THEN statement combines two tactics at a time by

applying the first to the current proof state then applying the second to the updated proof state.
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EVERY operates in the same way. The only difference is that there is no need for nested TEEN

tacticals.

Both of these tacticals have the same translation in Isar tactic emulation proofs. However, in this
case we combine methods and not tactics. This is achieved by separating individual methods by
the comma character. Thus the following is the equivalent Isar statement:

apply(rule eq_subs_right,assumption,assumption,assumption)
The next tactical, namely REPEAT, involves repeating a tactic until it can no longer be applied; that
is it can no longer progress the proof any further, either because it was satisfied or it cannot be

applied to the current proof state. To illustrate consider the following example:

by (REPEAT (atac 1));
The same can be performed in Isar by prefixing the plus character, “+”, to a method application.
Thus the equivalent Isar statement is:

apply(assumption)+
A closely related tactical to THEN is the aALLGoaLs. It is used to apply an ML tactic function with
signature int -> tactic to all subgoals. The tactic type is an Isabelle built in type used to
denote tactics. Assuming that the current proof context contains n subgoals, ALLGOALS tacf
abbreviates to tacf(n) THEN THEN tacf(1)[Wenzel]. This difference in ordering is
important since there is no Isar construct that can duplicate this behavior. For most instances of
ALLGOAL tacticals the + method application prefix can be used to apply the method in all subgoals.
However, such an application is not in the right order — often this order is important. During the
upgrading process we encountered one such instance where the + prefix couldn’t be used. Figure
51 shows the old style proof, while Figure 52 and Figure 53 shows two different Isar solutions.
The latter was used for its simplicity, however it is worth noting how the first solution was

implemented since it clearly illustrates how the ALLGoOALS tactical operates.

val [pl] =

goalwl Pred.thy [forall def] "(!! y. y:A ==> def P(y)) ==> def forall'(A,P)"
br def exists 1;

by (ALLGOALS (fn i => 1lpf fast tac (exists lpfs addDs [p]) 1)};

ged "def forall”;

Figure 51: ALLGOALS Old-Style Proof
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lemma def forall:
assumes pl: "(!! y. y:A ==> def P(y))"
shows "def (forall' A P)”
apply (unfold forall def)
apply(rule def exists inh [THEN def elim])
apply(tactic {* lpf fast tac (exists_1pfs addDs [thm "pl"]) 3 *})
apply(tactic {* 1lpf fast tac (exists lpfs addDs [thm "pl"]) 2 *})
apply(tactic {* lpf fast tac (exists_lpfs addDs [thm "pl"]) 1 *})
done

Figure 52: ALLGOALS Isar Translated Proof - Take 1

lemma def forall:
assumes pl: "(!! y. y:A ==> def P(y))"
shows "def (forall' A P)"
apply(unfold forall def)
apply(rule def exists inh [THEN def elim])
apply(tactic {* ALLGOALS (fn 1 => 1lpf fast tac (exists lpfs addDs [thm
"pl"l) 1) *})
done

Figure 53: ALLGOALS Isar Translated Proof - Take 2

Finally two closely related operations on theorems are presented, rRsn and rs. These are not
tacticals but are presented here because they operate in a similar manner. rsy and rs allow for
the modification of existing rules and their subsequent application to a subgoal. The only
difference between them is that the latter always uses the first premise of the second rule to
modify the first while in the former the premise can be specified. To illustrate consider the

following equivalent ML proof rsn and Rs statement:

br ((hd prems) RS prodn_elim) 1;
br ((hd prems) RSN (1, prodn_elim) 1;

In Isar we can apply methods with the same effect using the THEN method attribute. The above

statements can be performed in Isar in the following manner:

apply(rule pl [THEN prodn_elim]})
apply(rule pl [THEN [1] prodn_eliim)

The second statement shows how the THEn method attribute replaces both rs and RrRsn rule

operations.
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6 VDM-LPF Case Study

In this chapter we present a number of proofs we performed in order to test, illustrate, and
experiment with the newly upgraded embedding of VDM-LPF in Isabelle/Isar 2005. As such,
understanding this chapter will require an understanding of the material presented on Chapters 3,

4, and 5.

This case study is comprised of three different sets of proofs: (1) propositional logic proofs, (2)
predicate logic proofs, and (3) other proofs. In the first and second set, as their name suggest, we
perform proofs pertinent to propositional and predicate logic. These proofs involve elementary
theorems as found in an introductory discrete mathematics text book [Rosen91] as well as a
number of proofs pertinent to definedness. The remaining set involves a proof that tests the
remaining components of the VDM-LPF logic, such as conditionals, the types of Boolean and
natural numbers. Some of these proofs are identical to the ones we performed during our sanity

tests of the original VDM-LPF logic, as seen in Section 5.1.

6.1 Propositional Logic

A number of propositional logic proofs are performed. These theorems are obtained by
consulting [Rosen91]. The aim of this exercise is to become familiar with the upgraded
underlying LPF system of VDM-LPF. Most of the theorems are proved successfully by a single
application of a VDM-LPF rule, which points to the fact that many of these fundamental laws are
already satisfied in this non-classical logic, while other theorems require the introduction of the
definedness operator 8. Finally, we perform a small number of proofs involving undefinedness.

What follows is a detailed examination of these proofs.

6.1.1 Identity Laws

The first set of proofs involves the Identity laws and can be seen on Figure 54. The first one
Temma "p and true ==> p”

states that given a conjunction p and true we can infer that p is true. This is easily proven by

applying the and elim derived rule (this rule, as well as all the rules used in this set of proofs,

can be seen in Appendix D, under the contents of Prop.thy). This is an elimination rule and it

will operate on the assumption by changing the goal to:

goal (lemma, 1 subgoal):
1. [I p; true |] ==>p

This proof is easily completed by assumption.
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The second identity law is similar to the first one, except that this time we are dealing with a

disjunction in the hypothesis: , , .
text {* Identity Conjuction *}

" » lemma "p and true ==> p"
Jemma "p or false ==> p .
. . . apply(erule and elim)
This lemma states that if p or false is true then we apply (assumption)

can conclude that p is true. The first step to prove done
text {* Identity Disjunction *}
lemma "p or false ==> p"
apply(erule or elim)
apply (assumption)
apply{erule false elim)
done

disjunction. Thus, we are presented by two subgoals: Figure 54: Identity Law Proofs

this lemma involves another elimination rule, namely
or elim. This rule states that we need to prove the

conclusion, R, twice — once for each term of the

goal (lemma, 2 subgoals):
- p==>p
2. false ==> p

The first one is satisfied by assumption while for the second is satisfied by another elimination

rule, namely false elim - thus, completing this proof.

6.1.2 Domination Laws
The next two proofs involve the domination law equivalencies which are very similar to the
identity laws. The proofs are depicted in Figure 55. The first one involves a disjunction in its
hypothesis:

Temma "p or true ==> true”
which specifies that if a disjunction exists where one of its propositions is the t rue value then this
is logically equivalent to true. We commence by applying the or elim rule, which results into
two subgoals:

goal (Temma, 2 subgoals):
1l. p ==> true
2. true ==> true

The first subgoal is satisfied by applying the text {* Domination Disjunction *}
lemma "p or true ==> true"
true intr rule. For the second subgoal we apply(erule or elim)
apply(rule true intr)
have a choice, we can either use the true intr apply (assumption)
done
rule for a second time or satisfy it by
* 3 1 3 ~ 3 *
assumption. We choose the later for no Ei:;a{..pDZ:;niizz Szzjgi;on :
apply(erule and elim)
apply (assumption)
done

particular reason other than to add variety to our
proof. It is also worth noting that this proof can

. . L. Figure 55: Domination Law Proofs
be completed by just a single application of the

true_intr rule. We choose the longer route for illustration purposes.

The second domination rule, as expected, involves a conjunction in the hypothesis:
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Jemma "p and false ==> false”
First, we apply the and_e1im rule which results in the following subgoal:

goal (lemma, 1 subgoal):
1. [| p; false |] ==> false

which is satisfied by assumption.

6.1.3 Idempotent Laws
Idempotent equivalence laws deal with disjunctions and conjunctions involving the same terms.

Their proofs are captured in Figure 56. The first one  Text {* Idempotent Disjunction *}
lemma "p or p ==> p"

of these laws: apply(erule or elim)
apply (assumption)+
Temma "p or p ==> p" done

deals with a disjunction of the same term which is  text {* Idempotent Conjunction *}
lemma "p and p ==> p"
logically equivalent to that same term. Since this apply(erule and elim, assumption)
done
law involves a disjunction in the hypothesis, the
Figure 56: Idempotent Law Proofs
or elim rule is the first one we use. This results

into two subgoals:

goal (lemma, 2 subgoals):
1. p==p
2. p=>0p

Both of these subgoals are easily satisfied by assumption.

Next we prove the idempotent law involving conjunction:
lemma "p and p ==> p"
This lemma is easily proven by an application of the and elim rule and by assumption. Both

these applications take place within the same app1y statement:

apply(erule and_elim,assumption)
The decision to combine the application of the and elim and assumption methods is done
because we have seen the effect these rules have and we knew what the resulting subgoal will

look like.

6.1.4 Double Negation

Next we prove the double negation law as seen on Figure 57.  toxt (* pouble Negation *}

: 1 "not t ==> p"
This law states that the truth value of a doubly negated term iggiy (Ziulzonoi_notje st)

is the same as the value of that term: done

Figure 57: Double Negation Proof
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Temma "not not p ==> p"
This is easily resolved since there exists an axiom, called not not dest which is identical to the
lemma we want to satisfy. Consequently, by just applying this elimination rule the lemma is

satisfied and the proof completed.

6.1.5 Commutative Laws

Commutative laws state that both conjunction and
text {* Commutative Disjunction *}

disjunction commute — we can switch their terms  lemma "p or q ==> q or p”
X . i . apply(erule or comm)
without changing their meaning. The proofs can  gone

be seen on Figure 58. The first proof deals with oyt (* commutative Conjunction *)

. .. . lemma "p and g ==> g and p"
the commutative law for disjunction: apply (erule and_comm)

done
Temma "p or g ==> q or p”
Figure 58: Commutative Law Proofs
In the propositional part of VDM-LPF such a
property for disjunctions has already been proven in the form of the derived rule or comm.

Consequently, the proof is completed by applying this rule, in the following manner:

apply(erule or_comm)

The conjunction commutative law is expressed in the following manner in Isabelle:

Jemma "p and g ==> q and p"
Like disjunction, there exists a derived rule in the propositional part of VDM-LPF, called

and comm. Thus this lemma is satisfied by a single application of the and comm rule:

apply(erule and_comm)

6.1.6 Associative Laws

The associative laws are similarly

. . . text {* Associative Disjunction *}
proven, depicted in Figure 59, as the 1 cpa "(p or q) or r ==> p or (g or )"
apply(erule or assoc left)

commutative ones.  There already ___

exists derived rules in VDM-LPF that

text {* Associative Conjunction *}

have established the associativity of ~1é™ma "(p and g) and r ==> p and (g and 1)
apply({erule and assoc left)
done

both disjunction and conjunction.
. .. . Fi A iative Law Proof:
Consequently, proving the disjunction igure 59: Associative Law Proofs
associative law

Jemma "(p or q) or r ==> p or (g or r)"

under the VDM-LPF logic is done by an application of the or assoc 1left rule:
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apply(erule or_assoc_left)

The proof for the conjunction associative law:

Temma "(p and g) and r ==> p and (q and r)"

is performed similarly, by applying the and assoc_1eft derived rule:

apply(erule and_assoc_left)

6.1.7 Distributive Laws
Distributive laws involve both text {* Distributive Disjunction *}
lemma "p or (g and r) ==> (p or q) and (p or )"
disjunction and conjunction. apply(erule or_and_dist_exp)
aone
Similarly to the previous two
. R . text {* Distributive Conjunction *}
sections, the distributive properties  1emma "p and (g or r) ==> (p and g) or (p and r)

of the both and

disjunction as defined in VDM-LPF

conjunction done

have been established. Consequently, the proofs are easily disposed of by a single application of

applyf{erule and or_dist exp)

Figure 60: Distributive Law Proofs

arule. The complete proofs are illustrated in Figure 60.

6.1.8 De Morgan’s Laws

Next we deal with De Morgan’s Laws.
As in previous sections these theorems are
already satisfied in VDM-LPF. Thus, a
single rule application is all that is
necessary to prove them. The proofs can
be seen in Figure 61. The first proof is

completed by applying the

text {* De Morgan's *}

lemma "not (p and g) ==> not p or not gq"
apply(erule not and elim dem)

done

text {* De Morgan's *}

lemma "not (p or q) ==> not p and not g"
apply(erule not or elim dem)
done

Figure 61: De Morgan's Laws Proofs

not_and elim demrule while the second by applying the not or elim demrule.

6.1.9 Absorption Laws
In this section we perform proofs

Absorption Laws.

laws are not satisfied in VDM-LPF. Consequently,

a proof that requires more than one

application is required. The proofs are illustrated

in Figure 62. The first law is expressed in Isabelle

in the following manner:

for the

In a welcome change these

text {* Absorption Disjunction *}
lemma "p or (p and g) ==> p"
apply(erule or elim)
apply(assumption)
apply(erule and elim)
apply(assumption)
rule  4one

text {* Absorption Conjunction *}

lemma "p and {(p or q) ==> p"
apply(erule and elim,assumption)
done

Figure 62: Absorption Laws Proofs
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Temma "p or (p and gq) ==> p"
We can only proceed by working from the hypothesis. The first rule to apply is an or elimination

rule, namely the or eiimrule. Its application results into two subgoals:

goal (lemma, 2 subgoals):
1. p==p
2. pand g ==> p

The first one is satisfied by assumption. The second subgoal requires further simplification. The
only way to proceed is by working on the hypothesis. We apply a conjunction rule, namely

and_elim which results in the following subgoal:

goal (lemma, 1 subgoal):
(1l p; gl]l==>p

which is easily disposed of by assumption.
The second absorption law involves conjunction as the outer most logical connective:
Temma "p and (p or q) ==> p"
As such, we only need to apply the and elim rule to simplify its hypothesis and then complete

the proof by assumption.

6.1.10 Other Logical Equivalences

In this section additional logical equivalences are examined. Their Isabelle representation along

with their proofs are captured on Figure 63.

The first one states that the disjunction of a term with its negation is logically equivalent to true.
It is expressed, as a lemma, in Isabelle in the following manner:
Temma "p or not p ==> true”

This is easily satisfied by applying the true intr axiom.

The second logical equivalence states that the

lemma "p or not p ==> true"
conjunction of a term with its negation is logically apply (rule true intr)

done
equivalent to false:

lemma "p and not p ==> false"

apply(erule and elim)
apply(erule contr)

This one is slightly more complicated to satisfy. We apply (assumption)
done

Temma "p and not p ==> false"

start by applying the and elim rule, since the outer most

lemma "p => q ==> not p or g
logical connective is a conjunction. This results in the apply (unfold imp def)
apply(assumption)
following subgoal: done

Figure 63: Logical Equivalences Proofs
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goal (lemma, 1 subgoal):
1. [l p; not p |] ==> false
By examining the assumptions we see that this a contradiction, because it is not possible to have
the same term and its negation hold at the same time. Consequently, the contr rule is applied

which results in the following subgoal:

goal (Jemma, 1 subgoal):
p==>p

which is easily disposed by assumption.

Finally, the last logical equivalence in this section deals with the logical connective of
implication:

lemma "p => g ==> not p or "

It states that implication can be denoted in terms of negation and disjunction. In VDM-LPF, as
seen on Chapter 4, implication is defined in exactly such a way. Thus, satisfying this lemma,
simply involves unfolding the imp def definition. This unfolding resuits in the following
subgoal:

goal (Temma, 1 subgoal):
1. not porg== notporgqg

which is satisfied by assumption.

6.1.11 Law of the Excluded Middle

While working through the proofs of the previous lemma "def p —> p or mot p"

apply(erule def elim)
apply(rule or intr left)
apply(assumption)
apply(rule or intr right)
apply (assumption)

done

or not p. Considering a single true hypothesis is Figure 64: Law of the Excluded Middle Proof

section, most notably the p or not p ==> true
logical equivalence, a decision was made to try to

prove the reversed statement, namely true ==> p

redundant, the formula can be change to p or not
p without any loss of information. Notice, that this statement is none other than our familiar law
of the excluded middle. As we have seen earlier this is not provable in a non-classical logic such
as LPF. To be able to perform this proof an extra assumption is added, namely ép. The complete
proof can be seen on Figure 64. The addition of the 8p assumption changes the lemma in the
following way:

Temma "def p ==> p or not p"

The first rule we apply is the def elim rule which changes the goal to the following subgoals:
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goal (lemma, 2 subgoals):
1. p==>por notp
2. not p ==>p or not p

The first subgoal is satistied by applying the or intr left rule and then by assumption. The

second subgoal is satisfied by applying the or intr right rule, followed by assumption.

6.1.12 Definedness Derived Rules

A number of proofs were performed involving the definedness operator. These proofs can be
seen on Figure 65. All proofs were obtained from [Bicarregui+94]. The first two proofs derive
the two introduction rules for definedness, similar to the ones for disjunction, while the third is

the definedness elimination rule.

The first one says that if P is true then P is defined and is expressed as:

Temma def_intr_left: !!P. P ==> def P

The first step is to unfold the definedness definition which results in the following proof state:

goa] (1emma (def_intr_left), 1 subgoal):
ltp, P ==> P or not P

The conclusion of the subgoal is further simplified by applying the or intr left rule, which
results to the following proof state which is then completed by assumption:

goal (Temma (def_intr_left), 1 subgoal):
1. {lp. P ==> P

The second proof follows the same structure as the previous one. The only difference is that the

or intr right is applied in place of the or intr left.

Lets examine the third proof which is the more interesting of the set. This proof derives the
definedness elimination rule. It says that if P is defined, and P infers Q, and the negation of P
also infers Q, then Q can be infered. The lemma is introduced using the assumes and

shows  lemma formulae definition because the premises are used as rules to resolve this rule.

The initial proof state can be seen below:

prems:
def P
==> Q
not P ==> Q
goal (lemma def_elim, 1 subgoal):
1. Q

The first statement is to re-introduce the def p premise in the subgoal by an application of the

cut tac method which results in the following proof state:
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prems:
def P
P ==> Q
not P ==> Q
goal (Temma def_elim, 1 subgoal):
1. def P ==> Q

Next, the definedness definition is unfolded and the new proof state is:

prems:
def P
P ==> Q
not P ==> Q
goal (lemma def_elim, 1 subgoal):
1. Por not P ==> Q

Having unfolded the definedness definition the assumption is now in terms of disjunction. As
such, the obvious next step is to apply the or eilim rule, which breaks the subgoal into two

simpler ones:

prems:
def P
P ==> Q
not P ==> Q
goal (lemma def_elim, 2 subgoals):
1. P ==> Q
2. not P ==> Q

These two subgoals are identical to the p2 and p3 premises respectively. As such they are
resolved by applying each one of these premises to the corresponding subgoal which are then

resolved by assumption.

lemma def intr left : "!IP. ==> def P"
apply{unfold def def)

apply({rule or_intr left)
apply (assumption)

done

lemma def intr right : "!!P. not P ==> def P"
apply(unfold def def)

apply(rule or intr right)
apply (assumption)

done

lemma def elim :

assumes pl : "def P"

and pz : "P==>Q"

and p3 : "not P==>Q"
shows Q"

apply(cut tac pl)
apply{unfold def def)
apply(erule or elim)

apply(rule p2)

apply(assumption)
apply(rule p3)

apply (assumption)
done

Figure 65: Definedness Derived Rules
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6.1.13 Explicit Undefinedness

In this last section on propositional logic proofs,
we experiment with the VDM-LPF’s undefined
value. The complete results of these experiments

are captured in Figure 66.

We commence by attempting to prove that the
disjunction of the undefined and true values is
valid:
Temma "undefined or true”

This lemma we know is valid and we should be
able to prove it because of the monotonic nature
of the LPF connectives. The proof is satisfied by
applying the or intr right and true intr

axioms.

Next we attempt to prove that the conjunction

between undefined and true values holds.

Temma "undefined and true”

Lemma "undefined or true”
apply(rule or_intr right)
apply(rule true intr)

done

lemma "undefined and true"
apply(rule and intr)
defer

apply(rule true intr)
00pPSs

lemma "undefined and true ==> undefined”
apply(erule and elim)

apply(assumption)

done

lemma "undefined and true ==> true”
apply(erule and elim)
apply(assumption)

done

lemma "undefined or true = true”
oops

Figure 66: Explicit Undefinedness Proofs

We are aware that the above lemma is false. Let us see if we can reach the same conclusion in

Isabelle using the axioms and rules of VDM-LPF. We first apply the and_intr rule and Isabelle

displays the following list of subgoals:

goal (lemma, 2 subgoals):
1. undefined
2. true

The second subgoal is satisfied by applying the true intr axiom. However, there exists no rule

that will satisfy the first subgoal. As such, we proceed by using the Isabelle cops command to

acknowledge that this proof does not hold.

The next two lemmas we attempt to prove are based on the assumption that the undefined and

true conjunction is valid:

lemma "undefined and true ==> undefined"

lemma "undefined and true ==> true"

Both these lemmas can be proven using the axioms and rules of VDM-LPF, however, only the

first statement makes sense. So how is it possible to prove the second statement as well? It is

provable because we make use of a wrong assumption.

Finally, we attempt to prove the following lemma:
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Temma "undefined or true = true”
We quickly discover that we are at an impasse. We are not able to find an equality axiom nor a
derived rule where it will allow us to proceed from this point onwards. If we want to reason with
statements involving equality and undefinedness, further axioms and derived rules have needed to

be defined. However, this is beyond the scope of our intended work.

6.2 Predicate Logic
Similarly to the propositional logic proofs, the predicate logic theorems are also obtained from an
introductory discrete mathematics textbook [Rosen91]. Furthermore, a final proof (obtained from

[Bicarregui+94]) is performed that involves definedness and the universal quantifier.

The first proof is portrayed in Figure 67 and essentially states that the negation of a universal
quantifier predicate can be written in terms of an existential one:

Temma "not (forall x:A & P(x)) ==> exists Xx:A & not P(x)"
To satisfy this lemma we first unfold the foral1 def definition. This changes the lemma into the
following subgoal:

goal (lemma, 1 subgoal): .
1. not not (exists x : A& not P x) ==> exists x : A & not P x

The exists statement in the hypothesis is identical to the one in the conclusion. However, we
need to work with the outermost elements, which in this case are the double application of the
negation logical connective. Consequently, we apply the not not_elim rule which changes the
subgoal to:

goal (Jemma, 1 subgoal): .
1. exists x : A& not P x ==> exists x : A& not P x

The proof is completed by assumption.

lemma "not (forall x:A & P(x)) ==> exlsts x:A & not P(x)"
apply{unfold forall def)

apply{erule not not elim)

apply(assumption)
Done

Figure 67: First Predicate Logic Proof
Figure 68 shows the second predicate logic proof. This is the mirror image of the previous proof
in which it claims that the negation of a predicate involving an existential quantifier can be
rewritten in terms of a universal quantifier.
Temma "not (exists x:A & P(x)) ==> forall x:A & not P(x)"

Again we start by expanding the foraill def definition:
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goal (lemma, 1 subgoal):
1. not (exists x : A & P x) ==> not (exists x : A & not not P Xx)

Next we apply the not exists intr rule which replaces the existential quantifier by its
predicate. This rule states that to satisfy an existential predicate, it is sufficient to show that a
value exists that satisfies that predicate. The resulting subgoal as displayed by Isabelle can be

seen below:

goal (lemma, 1 subgoal):
1. !!Ix. [ not (exists x : A &P x); X : A J] ==> not not not P x

Next we apply the not not intr rule in order to simplify the conclusion by eliminating the
redundant negations:

goal (lemma, 1 subgoal):
1. !'tx. [l not (exists x : A &P x); x : A |} ==> not P x

At this stage we turn our attention to the hypothesis, since the conclusion is simplified. We apply
the not exists dest rule, which is similar to the not exists intr, but operating on the

assumptions of the subgoal. The resulting subgoal:

goal (lemma, 1 subgoal):
1. Mx. x ¢ A==>x : A

is easily satisfied by assumption.

lemma "not {exists x:A & P(x)) ==> forall x:A & not P(x)"
apply (unfold forall def)

apply(rule notiexists_intr)

apply(rule not not intr)

apply{erule not_existsgdest)

apply(assumption)
Done

Figure 68: Second Predicate Logic Proof
The next proof we perform is identical to the one we performed during our sanity tests of the

original VDM-LPF, described in Section 5.1. The

Lemma "forall x:A & x=x"

corresponding Isabelle/Isar 2005 proof is displayed on apply (unfold forall def)

apply(rule not exists intr)
Figure 69. This serves not only as a nice example of the ~ 3PPly(rule not not intr)

apply(rule eq self intr)
usage of VDM-LPF but also as a comparison between the dapply (assumption)

one

old and new style proofs. The same rules are applied as in Figure 69: Third Predicate Logic Proof
Isabelle/Classic. The guidelines for changing old style to
new style proofs are followed as they were explained in the previous chapter. For an explanation

of the proof steps please consult the fore-mentioned section.

The last proof involves a rule concerning the definedness of the universal quantifier. This rule
says that if for any arbitrary value, in the domain, predicate P is defined then the universal

quantification of predicate P is also defined. The complete proof is displayed on Figure 70. The
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only premise is stored in the p1 local rule because it is used in the resolution of this rule. The first

step is unfolding the fora1l def definition which results in the following proof state:

prems:
7y : A ==> def P ?y
goal (lemma def_forall, 1 subgoal):
1. def not (exists x : A & not P x)

The next rule shows how the THEN method attribute can be used to create new rules. In this
particular case the conclusion of the def exists inh rule is resolved by the first premise of the
def elim rule and returns the resulting conclusion. This conclusion forms a new rule which is

applied to the current subgoal and changes the proof state in the following manner:

prems:
?y : A ==> def P ?y
goa1 (Temma def_ fora11 3 subgoals):
1. !lx. x : 7A1 ==> def ?P1 x
2. exists x : ?A1 & ?P1 x ==> def not (exists x : A & not P x)
3. not (exists x : ?A1 & ?P1 x) ==> def not (exists x : A & not P x)

In this subgoal list we can identify a number of schematic variables that can be instantiated by
arbitrary values. These schematic variables are replaced automatically by Isabelle via an

application of the assumption method. This application creates the following proof state:

fixed variables: A, P
prems:
?y 1 A ==> def P 7y
goa1 (Temma def_ fora11 2 subgoals):
1. exists x : A & P x ==> def not (exists x : A & not P x)
2. not (exists x : A & P x) ==> def not (exists x : A & not P x)

Next we decide to simplify the conclusion as much as possible since it involves a more

complicated term as compared to the assumption. The def not-inh is the first rule we apply:

prems:
?y ¢ A ==> def P
goa] (Temma def_ fora11 2 sub%oa1s):
1. exists X : A & P x ==> def (exists x : A & not P x)
2. not (exists x : A & P x) ==> def not (exists x : A & not P x)

Next we apply the def exists inh which replaces the existential quantifier by its predicate:

prems:
?y : ==> def P ?y
goa1 (1emma def_ fora11 2 subgoals):
1. !MIx. [|] exists x : A& P Xx; X : A |] ==> def not P x
2. not (exists x : A & P x) ==> def not (exists x : A & not P x)

Finally, the last simplification to the conclusion is performed by applying the def not inh rule.

This rule removes the negation operator:

prems:
?y @ A ==> def P ?y

goaT (lemma def_ fora11 2 subgoals):

1. tix. [| exists x : A& P x; x : A |] ==> def P x

2. not (exists x : A & P x) ==> def not (exists x : A & not P x)

Next we turn our attention to the assumption involving the existential quantifier. We apply the

exists_elimrule and Isabelle displays the following proof state:
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prems:
?y @ A ==> def P ?y
goal (Temma def_forall, 2 subgoals):
1. xy. [| x:A; Py; y A ] == def P x
2. not (exists x : A & P x) ==> def not (exists x : A & not P x)

The conclusion of our premise is now identical to the conclusion of the first subgoal. As such we
apply this premise as an introduction rule. This results in an updated proof state (shown below)

whereby the first subgoal is resolved by assumption:

prems:
?y 1 A ==> def P ?y
goal (lemma def_forall, 2 subgoals):
1. itxy. [ x:A; Py; v i A|]] ==>x: A
2. not (exists x : A & P x) ==> def not (exists x : A & not P x)

The last subgoal is resolved in a similar manner. We apply successive introduction rules until the
conclusion of the rule resembles the conclusion of our premise. In this case however, there is no
need to simplify the assumption since the application of the premise, as an introduction rule, is
enough to allow the successful completion of the proof by assumption. Because of the
similarities in proving this last subgoal to the previous one, detailed illustrations of the proof state

are skipped.

lemma def forall:
assumes pl: "(!ty. y:A ==> def P(y))"
shows "def (forall x:A & P x)"
apply(unfold forall def)
apply(rule def exists inh [THEN def elim])
apply (assumption)
apply(rule def not inh)
apply(rule def exists inh)
apply(rule def not inh)
apply (erule exists elim)
apply(rule pl)
apply (assumption)
apply(rule def not inh)
apply{rule def exists_ inh)
apply(rule def not inh)
apply(rule pl)
apply(assumption)
done

Figure 70: Universal Quantifier Definedness Proof

6.3 Other

In this section we perform one proof which was used during our sanity tests. (We essentially did
only one such proof because it involves knowledge of VDM-SL, something that was beyond the
scope of this thesis. Furthermore, our effort to find such other such VDM-SL based theories as

test subjects was hampered due to the need to make use of external tools for the axiomatization of
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the VDM-SL specifications or the further enrichment of the existing theories. Unfortunately

these tools are no longer accessible.)

The corresponding proof can be seen on Figure 71. It is identical to the proof performed in
Section 5.1 as a sanity test and serves as a comparison proof between old and new style proofs.
Exactly the same rules were used in the new style proof in the old one. The guidelines as
explained in the previous chapter were used to form the Isabelle/Isar proof as seen below. For an

explanation of the proof consult the fore-mentioned section.

lemma
assumes pl: "n:nat”
and p2: "m:nat"
and p3: "m=n"
shows " (if n=m then true else false) = true"
apply(cut_tac pl pZ p3)
apply(rule if true)
apply{rule true form)
apply(rule eq symml)
apply (assumption)
apply({assumption)
Done

Figure 71: Simple VDM-SL Proof
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7 Conclusion

One of our stated goals was to investigate how well suited a non-classical logic, such as LPF, is in
verifying software specifications. In the course of this investigation we felt the need to
understand and experiment with an implementation of a non-classical logic in a theorem proving
environment. Being always exposed to classical logics, the need to gain the necessary knowledge
and insight in a non-classical logic was essential. We believe the exercise of upgrading VDM-
LPF to the latest version of the theorem prover Isabelle enhanced this understanding and
increased our confidence on the use of a non-classical logic in verifying specifications. Our
confidence was increased because we were able to witness that proof in LPF is not much different
from its classical counterpart. We were able to validate fundamental propositional and predicate
logic laws as found in a standard discrete mathematics textbooks. The only classical logic
property not available to LPF is the law of the excluded middle. This law can be made available
in LPF by establishing definedness assumptions. Actually any classical theorem can be re-

introduced in LPF by means of definedness assumptions.

We have explored areas of specification languages and their associated tools that further
enhanced our understanding. Furthermore, the importance of the underlying logic used in such

tools was made evident.

Exploring, understanding, and comparing theorem provers such as Isabelle and PVS was another
area of the specification and verification field we examined. Especially enlightening was the
generic nature of Isabelle and its facilities for creating new object logics. Understanding unique
topics in the field of computer aided theorem proving, such as new logic definition, rule
application, and unification, that would have been otherwise not visited, was especially
rewarding. We have been able to learn how Isabelle came to be, its history and its design goals.
Experimenting with the old-style theories and rewriting them in the new style gave us a unique

perspective on Isabelle’s evolution.

With our work, we revived VDM-LPF by making it available in the modern incarnation of
Isabelle. This logic can now be used by VDM and LPF users alike to either further develop it or

learn from it, like we did.

Further, developing VDM-LPF is now possible. On the theoretical level, possible routes would
be to further develop existing theories such as types or to add theories for functions. On the
practical level, existing theories can further be upgraded to make use of more advanced Isabelle

features. The proofs can be further changed to make use of the human-readable Isar proof texts,
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as opposed the current Isar tactic emulation method. The built-in proof search tactics can be
embedded in the Isar theories, by extending the theory syntax to allow for the definition of rule

sets and the use of tactics, without the need to embed ML code in them.

Finally, beyond the availability of a modern realization of VDM’s LPF, an added benefit of our
work is that it can be used as a guide for upgrading old-style theories into Isar ones. Our detailed
account of this upgrading process and the Isabelle tools VDM-LPF made use of provide a wide
enough area of changes that can be used for any older type theories to be upgraded. The only
Isabelle set of tools VDM-LPF did not make use of was the simplifier and the classical reasoner,

since they were inappropriate for a non-classical logic such as LPF.
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9 Appendix A
Here’s is the propositional logic old-style theory file as developed by Sten Agerholm and Jacob

Frost:

9.1 Prop.thy

(*

Title: Propositonal VDM~LPF Theory

Author (s): Jacob Frost IT/DTU (and Sten Agerholm IFAD)
Copyright: 1996 Jacob Frost IT/DTU (and Sten Agerholm IFAD)
File: Prop.thy

Version: 1.2

Modified: 10:56:16 11/04/96

This is prototype software. Use at your own risk. Do not distribute or
reuse in any form without prior written consent of the authors.

*)

Prop = Basic +

consts

true’ 1roex ("true™)

false' poex ("false™)

not' roex => ex ("(2 not _/)" [250] 250)
iff’ i [ex,ex] => ex ("(_ <=>/ )" [210,211] 210)
imp’ :: [ex,ex] => ex ("(_=>/ )" [221,220] 220)
or' i [ex,ex] => ex ("(_ oxr/ )™ [230,231]1 230)
and’ i [ex,ex] => ex ("(_and/ )™ [240,241] 240)
def’ roex => ex ("{2def )" [250] 250)

rules

(* axiom for true *)

true intr
"true"

(* axioms for negation *)

not not intr
"P ==> not not P"
not not dest
"not not 2 ==> pP"

contr
"{|l not P; P |] ==> Q"

(* axioms for disjunction *)

or intr left
"P==> B or O
or intr right
"Q ==> P or Q"
or_elim
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"[l P or Q; P==>R; Q==>R |] ==> R"

not or intr

"Il not P; not Q |] ==> not (P or Q)"
not or elim

"] not (P or Q); [l not P; not Q |] ==> R |] ==> R”
defs

false def

"false == not true”

def def

"def P == P or not P"

imp def

"P => Q == not P or Q%

and def

"P and O == not {(not P or not Q"

iff def

"p <=> Q == (P => Q) and (Q => P)"
end
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10 Appendix B

In this Appendix we list the contents of the 1PF_Prover.u1, that contains VDM-LPF’s built-in
proof tactics:

10.1 LPF_Prover.ML

signature LPF PROVER DATA =

sig

val contr : thm (* [| not P; P |] ==> Q *)
end;

signature LPF PROVER =
sig
type 1pf set

val empty lpfs : lpf set

val addSIs : 1lpf set * thm list -> lpf set
val addSEs : lpf set * thm list -> lpf set
val addsDs : lpf set * thm list —-> lpf set
val addIs : 1pf set * thm list -> lpf set
val addEs : 1lpf set * thm list -> lpf set
val addDs : lpf set * thm list -> lpf set
val 1pf atac : int -> tactic

val 1lpf step tac : lpf_set -> int -> tactic
val lpf fast tac : 1lpf set -> int -> tactic
end;

infix 4 addSIs addSEs addsSDs addIs addEs addDs;

functor LPF Prover Fun(LPF Prover Data:LPF PROVER DATA) :LPF PROVER =
struct
open LPF Prover Data;

datatype lpf set =

LPFS of

{safeIs : thm list, (*safe introduction rules*)
safeEs : thm list, (*safe elimination rules*)
safeDs : thm list, (*safe destruction rules*)
hazIs : thm list, (*unsafe introduction rules*)
hazEs : thm list, (*unsafe elimination rules™*)
hazDs : thm list}; (*unsafe destruction rules*)

infix 4 addSIs addSEs addSDs addIs addEs addDs;

val empty lpfs =
LPFS{safels = [], safeEs = [], safeDs = [],
hazlIs = [], hazEs = [], hazDs = []};

fun (LPFS{safels,safeks,safeDs, hazls,hazkEs,hazDs}) add$Is thms =
LPFS{safels=safels@thms, safeEs=safeks, safeDs=safeDs,
hazIs=hazls, hazEs=hazEs,hazDs=hazDs};

fun (LPFS{safels,safeks,safeDs,hazls,hazEs, hazDs}) addSEs thms
LPFS{safels=safels,safeEs=safeEs@thms, safeDs=safeDs,
hazIs=hazls,hazEs=hazEs, hazDs=hazDs};

fun (LPFS{safels,safeks,safeDs,hazlIs,hazEs,hazDs}) addSDs thms =
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LPFS{safels=safels,safeEs=safeEs, safeDs=safeDs@thms,
hazIs=hazIs,hazEs=hazEs,hazDs=hazDs};

1

fun (LPFS{safels,safekEs,safeDs,hazIs,hazEs,hazDs}) addIls thms
LPFS{safels=safels,safeEs=safeEls,safeDs=safeDs,
hazIs=hazIs@thms, hazEs=hazEs,hazDs=hazDs};

fun (LPFS{safels,safeEs,safeDs,hazIs,hazEs,hazDs}) addEs thms =
LPFS{safels=safels,safefs=safeEs, safeDs=safeDs,
hazIs=hazIs, hazEs=hazEs@thms,hazDs=hazDs};

fun (LPFS{safels,safeEs,safeDs,hazIs,hazEs, hazDs}) addDs thms
LPFS{safels=safels,safeEs=safeEs, safeDs=safeDs,
hazIs=hazIs,hazEs=hazEs,hazDs=hazDs@thms};

fun 1pf atac i = (atac i) ORELSE ((etac contr i) THEN (atac i));

fun lpf step tac (LPFS{safels,safeEs,safeDs,hazls, hazEs, hazDs}) 1 =
(lpf_atac i) ORELSE

(resolve tac safels i) ORELSE

(eresolve tac safeEs i) ORELSE

(dresolve tac safeDs i) ORELSE

((resolve tac hazIs i) INTLEAVE

(eresolve tac hazEs i) INTLEAVE

(dresolve tac hazDs 1i));

fun 1lpf fast_ tac lpfs =

SELECT GOAL (DEPTH SOLVE (lpf step tac lpfs 1));
end;
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11 Appendix C

In here is we present Isabelle’s meta-logic syntax. This was generated via the print_syntax
command:

11.1 Isabelle/CPure Syntax

lexicon: n ! ! " "%ll " (ll !V) " ", n i1} . " " . " ” : : i l'; n 'l:=" 7|::>l' II:>II IIOFCLASS"

"PROP" "TYPE"™ "[" "[|" "\<And>" "\<Colon>" "\<Longrightarrow>" "\<Rightarrow>"
"\<~sub>" "\<dots>" "\<equiv>" "\<equiv>\< sup>?" "\<index>" "\<lambda>"

'V\<lbrakk>" l'\<rbrakk>" "\<Str1,lct>" "] L] " " " : " "Op" " { " "{ }" " [ ] " L } "

logtypes: dummy it iself fun h B

prods:

#prop = "\<And>" idts{0] "." propl(0] => "tI" (0)

#prop = "\<lbrakk>" asms[0] "\<rbrakk>" "\<Longrightarrow>" prop[l] =>
" bigimpl" (1)

#prop = "[I" asms{0] "[]" "==>" prop[l] => " bigimpl™ (1)

fprop = " (" #prop(C] ™)" (1000)

#prop = "OFCLASS"™ " (" typelO] "," logic[0] ™)" => " ofclass™ (1000)

#prop = "PROP" aprop{0] => " aprop"” (1000)

#prop = any[3] "==" any[2] => "==" (2)

#prop = propl[2] "==>" prop(l] => "==>" (1)

fprop = any[3] "\<equiv>\<"sup>?" anyl[2] => "=?=" (2)

#prop = any[3] "\<equiv>" any{2] => "==" (2)

#prop = prop([2] "\<Longrightarrow>" propl[l] => "==>" (1)

#prop = #propl4] "::" typel0] => " constrain” (3)

#prop = "!!'" didts[0] "." propf{0] => "!i" (0)

any = #propl~11 (~1)

any = logic{~1] (~1)

aprop = "\<dots>" => " DDDOT" (1000)

aprop = longid (1000)

aprop = "..." => " DDDOT" (1000)

aprop = var (1000)

aprop = id (1000)

aprop = " " => "dummy pattern” (1000)

aprop = logic{1000] cargs[1000] => " applC” (999)
args = anyl[0] "," args[0] => " args"” (1000)

args = any[~1] (~1)

asms = prop{0] ";" asms[0] => " asms" (1000)

asms = prop[~1] (~1)

cargs = any[1000] cargs[1000] => " cargs"” (1000)
cargs = anyf{~1] (~1)

classes = longid "," classes[0] => " classes” (1000)

classes = longid (1000)

classes = id (1000)

classes = id "," classes[0] => " classes” (1000)
idt = "(" idt[0] ™))" (1000)

idt = id "\<Colon>" type[0} => " idtyp" (0)

idt = id (1000)

idt = id "::" typel[0] => " idtyp" (0)

idts = idt[1] idts[0] => " idts"™ (0)

idts = idt[~1] (~1)

index = "\<index>" => " indexvar" (1000)

index = => " noindex"” (1000)

index = "\<”sub>" num const[0] => " index" (1000)
logic = " " => "dummy pattern" (1000)

logic = "\<lambda>" pttrns[0] "." any(3] => " lambda" (3)
logic = "\<dots>" => " DDDOT" (1000)

logic = "TYPE"™ " (" type[0} ")" => " TYPE” (1000)
logic = longid (1000)

logic = "...™ => " DDDOT" (1000)

logic = "(” logic[O0] ™))" (1000)
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logic = "\<struct>" index[0] => " struct” (1000)
logic = wvar (1000)
logic = id (1000)

logic = "8" pttrns{0] "." any[3] => " lambda” (3)

logic = "op" "==" => "==" (1000)

logic = "op" "==>" => "==>" (1000)

logic = "op" "\<equiv>" => "==" (1000)

logic = "op"” "\<Longrightarrow>" => "==>" (1000)

logic = "op" "\<equiv>\< sup>?" => "=?=" (1000)

logic = logic{1000] cargs[1000] => " applC"™ (999)

logic = logic[4] "::" type(0] => " constrain” (3)

logic = anyl[4] "\<Colon>" typel[0] => " constrain” (3)

num_const = num => " constify” (1000)

prop = #prop[~1] (~1)

pttrn = idt([~1] (~1)

pttrns = pttrn[l] pttrns[0] => " pttrns" (0)

pttrns = pttrn[~1] (~1)

sort = longid (1000)

sort = "{" classes[0] "}" => " sort"™ (1000)

sort = "{}" => " topsort™ (1000)

sort = id (1000)

type = longid (1000)

type = tvar "::" sort[0] => " ofsort"™ (1000)

type = tvar (1000)

type = "{" types[0] "]" "=>" type[0] => " bracket" (0)

type = "[" types[0] "]" "\<Rightarrow>" type(0] => " bracket" (0)

type = " " => "dummy" (1000)

type = " (" type(C] "," types[0] "}" id => " tappl"™ (1000)

type = "(" type[0] "," types{0] ™)" longid => " tappl” (1000)

type = "(" typel[0] ")" (1000)

type = " _::" sort[0] => " dummy ofsort”™ (1000)

type = tid "\<Colon>" sort[0] => " ofsort"” (1000)

type = tid (1000)

type = tid "::" sort{0] => " ofsort™ (1000)

type = typel[l] "\<Rightarrow>" typel[0] => "fun" (0)

type = typell] "=>" type[0] => "fun" (0)

type = type[l1000] longid => " tapp" (1000)

type = type[1000] id => " tapp" (1000)

type = id (1000)

types = typel0] "," types{[0] => " types" (1000)

types = type[~1] (~1)
print modes: "HTML" "ProofGeneral"” "latex" "xsymbols" "xterm" "xterm color”
consts: "Moo onnomwnmoawppnowpn Mprop" V== == Ve=3T Mo=3" Me=3T U=o=" "Gogl”
"Goal™ "TYPE" " _DDDOT" " _DDDOT" " K" " TYPE" " _abs" " appl” " applC" "_aprop”

" args”™ "_asms™ " _bigimpl"” " _bigimpl"” " bracket" " bracket" "_cargs”

" classes" "_constify" " constrain” " constrain" " dummy ofsort” "_idts”
" idtyp"

" idtyp” " index" " indexvar” " lambda” " lambda" " meta conjunction"”

" mk ofclass" "_noindex" " ofclass”" " ofsort" " _ofsort” " _pttras" " sort”
" struct”

" tapp" "_tappl” " _topsort" " types™ "all" "any" "aprop" "args" "asms”
"cargs" "classes" "dummy" "dummy" "dummy pattern”" "dummy pattern” "fun" "fun”
"fun”

Tid" "idt" "idts” "index"” "it iself" "logic" "logic" "logic class" "longid"
"num" "num const” "prop" "pttrn" "pttrns" "sort" "struct™ "tid" "tvar" "type”

"types" "var” "xnum" "xstr"
parse ast translation: "_appl™ "_applC" " bigimpl" " bracket” " constify"

" idtyp" "_indexvar" " lambda" " tapp" " _tappl”

parse rules:

parse translation: "!!™ " DDDOT" " K" " _TYPE" " abs" " aprop" " _ofclass”
print translation: "TYPE" " mk ofclass" "all"

print rules:

print ast translation: "==>" " abs" " idts"” " pttrns" "fun"
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token translation:
»":  xstr xnum num var _bound free _tvar _tfree _class

"xterm”: var bound free tvar _tfree class

"xterm color”: var bound _free _tvar _tfree class

"HTML": xstr var _bound free tvar _tfree class

"latex": xstr xnum num var _bound free _tvar tfree class
"ProofGeneral"”: var bound free tvar _tfree class
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12 Appendix D
In here we list all the Isar theory files of the upgrade VDM-LPF logic:

12.1 Basic.thy

theory Basic = CPure

typedecl ex

judgment

(* Natural Deduction *)

Trueprop :: "ex => prop" ("( )" 5)
consts

undefined’ 1:oex ("undefined™)
end

12.2 Prop.thy

theory Prop = Basic
files "LPF Prover.ML":

consts
true' 11 oex ("true™)
false’ oex ("false™)
not’ 1 "ex => ex" ("(2 not /)" [250} 250)
iff! i "lex,ex] => ex" ("(_ <=>/ )" [210,211] 210)
imp' 1 "lex,ex] => ex" ("(_ =>/ )" [221,220] 220)
or' i "[ex,ex] => ex" ("(_oxr/ )" [230,231]1 230)
and' 1 "lex,ex] => ex” ("(_ and/ )" [240,241] 240)
def’ c "ex => ex" ("(2def )" [250] 250)
axioms
(* axiom for true *)
true intr
"true"
(* axioms for negation *)
not not intr
"P ==> not not P"
not not dest
"not not P ==> p"
contr
"[| not P; P [] ==> Q"
(* axioms for disjunction *)
or intr left
"p ==> P or Q"
or_intr right :
"Q ==> P or Qn
or elim :
"I| P or Q; P==>R; Q==>R |] ==> R"
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not or_ intr

"[| not P; not Q |] ==> not (P or Q)"
not or elim
"[| not (P or Q); [| not P; not Q |] ==>R |] ==
defs
false def:
"false == not true"
def def:
"def P == P or not P"
imp def:
"pP => Q == not P or Q"
and def:
"P and Q == not (not P or not Q)"
iff def:
"P <=> Q == (P => Q) and (Q => P)"
(* Functor setup for LPF Prover*)
ML
{*
structure LPF Prover Data =
struct
val contr = thm "contr"
end;
structure LPF Prover = LPFﬁProveriFun(LPF_Prover_Data);

open LPF Prover;

*}
(* derived rules for negation *)

lemma not not elim

assumes pl : "not not P"
and p2 : "P ==> R"
shows "R"

apply (rule pl p2)
apply(rule not not dest)
apply(rule pl)

done

ML

{*
val not lpfs = empty lpfs addSIs
addSEs

*}

lemma not true elim : "!!P. not true ==>

apply({erule contr)
apply(rule true intr)
done

ML
{*

pr

val true lpfs = not lpfs addSIs [thm "true intr"]
addSEs [thm "not true elim”];

(* derived rules for disjunction *)
val disj Ipfs =
true lpfs
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addSIs [thm "not or intr"]
addSEs [thm "or elim", thm "not or elim"]

addIs [thm "or_ intr left", thm "or intr right"];

*}
(* derived rules for falsity *)

lemma false elim : "!!P. false ==> P"
apply(unfold false def)

apply(tactic {* lpf fast tac disj lpfs 1 *})
done

lemma not false intr : "not false"

apply (unfold false def)

apply(tactic {* 1pf fast tac disj lpfs 1 *})
done

ML
{*

val false 1lpfs = disj lpfs addSIs [thm "not false intr"]
addSEs [thm "false elim"];

*}
(* derived rules for implication *)

lemma imp intr left : "!!P. not P ==> P => Q"
apply(unfold imp def)

apply(tactic {* 1lpf fast tac false Ipfs 1 *})
done

lemma imp intr right : "!!P. Q ==> P => Q"
apply(unfold imp def)

apply(tactic {* lpf fast tac false lpfs 1 *})
done

lemma imp elim

assumes pl : "P => Q"
and p2 : "not P==>R"
and p3 : "Q==>R"

shows "R"

apply{cut tac pl)

apply(unfold imp def)

apply(tactic {* lpf fast tac (false lpfs addIs
done

[thm "p2",thm "p3"])

lemma not imp intr : "!!P. [{ P; not Q |] ==> not (P => Q)"

apply{unfold imp def)
apply(tactic {*1pf fast tac false lpfs 1*})
done

lemma not imp elim

assumes pl : "not (P => Q)"
and p2 : "[{] P; not Q |] ==> R"
shows "R"

apply(cut tac pl)

apply(unfold imp def)

apply(tactic {* 1pf fast tac (false lpfs addIs
done

ML

{*
val imp lpfs =
false_lpfs
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addSIs [thm "not_imp intr"]

addSEs [thm "imp elim"”,thm "not imp elim"]

addIs [thm "imp intr left"”, thm "imp intr right"];
*}

(* derived rules for definedness *)

lemma def intr left : "!!P. P ==> def P"
apply (unfold def def)
apply(tactic {* lpf fast tac imp lpfs 1 *})
done

lemma def intr right : "!!P. not P ==> def P"
apply{unfold def def)

apply(tactic {* 1lpf fast tac imp lpfs 1 *})
done

lemma def elim

assumes ol : "def P"

and p2 : "P==>Q"

and p3 : "not P==>Q"
shows "Q"

apply (cut_tac pl)

apply{(unfold def def)

apply(tactic {* 1lpf fast tac {(imp_lpfs addIs [thm "p2",thm "p3"]) 1 *})
done

lemma not def intr : "!!P.[| P; not P |] ==> not def P"
apply(unfold def def)

apply(tactic {* 1pf fast tac imp lpfs 1 *})

done

lemma not def elim :

assumes pl : "not def P"
and p2 : "[| P; not P |] ==> Q"
shows "Q"

apply {(cut_tac pl)

apply(unfold def def)

apply(tactic {* lpf fast tac (imp lpfs addIs [thm "p2"]) 1 *})
done

ML
{Jr
val def lpfs =
imp lpfs
addsIs [thm "not def intr"]
addSEs [thm "def elim”,thm "not def elim"]
addIs [thm "def intr left", thm "def intr right"];
*} - - - -
(* derived rules for conjunction *)
lemma and¥intr c "HEPL [ Py Q |] ==> P and Q"
apply (unfold and def)
apply(tactic {* lpf fast tac def Ipfs 1 *})

done

lemma and elim

assumes pl : "P and Q"
and p2 : "[| P; Q |] ==> R”
shows "R

apply({cut_tac pl)
apply (unfold and def)
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apply(tactic {* lpf fast tac (def 1pfs addIs [thm "p2"]) 1 *})
done

lemma not»and_intrAleft : "MIP, not P ==> not (P and Q)"
apply(unfold and def)
apply(tactic {* 1lpf fast tac def lpfs 1 *})

done

lemma not and intr right : "!!P. not Q ==> not (P and Q)"
apply{unfold and def)
apply(tactic {* lpf fast tac def 1lpfs 1 *})

done

lemma not and_elim

assumes pl : "not (P and Q)"
and p2 : "not P==>R"
and p3 : "not Q==>R"
shows "R"

apply (cut_tac pl)

apply{(unfold and def)

apply(tactic {* 1lpf fast tac (def 1lpfs addIs [thm "p2", thm "p3"]) 1 *})
done

ML
{*
val and lpfs =
def >pfs
addsTs [thm "and intr"]
addSEs [thm "and elim", thm "not and elim”]
addIs [thm "not and intr left"”, thm "not and intr right"];

*}
{(* rules and tactics for dealing with first-order hypothetical asssumptions *)

lemma mk hyp asm rl leml

assumes pl : "P ==> Q"
and p2 : "Q ==> R"
and p3 : "P or R"
shows "R"
apply(rule p3 [THEN or elim]j)
apply({rule p2)

(

(
apply(erule pl)
apply (assumption)
done

lemma mk hyp asm rl lemZ
assumes pl : "[! P;Q |} ==> PROP T"
and p2 : "P and Q"

shows "PROP T"

apply{cut _tac p2)

apply(rule pl)

apply(erule and elim, assumption)
apply(erule and elim, assumption)
done

ML
{*
fun mk hyp asm rl t =
case compose(t,l,thm "mk hyp asm rl lem2") of
[] => t COMP (thm "mk hyp asm rl leml™) |
[t'] => mk hyp asm rl t';

fun hyp asm tac t = rtac (mk hyp asm rl t);
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*}

(* derived rules for bi-implication *)

lemma iff intr : "!!P.[]| not P or Q;

apply(unfold iff def)

apply(tactic {* lpf fast tac and lpfs 1 *})

done

lemma iff elim :

assumes pl : "P <=> Q"
and p2 : "[] not P; not Q
and p3 : "[| Q; P |] ==> R"
shows "R"

apply(cut tac pl)
apply(unfold iff def)
apply(tactic {* 1pf fast tac
done

lemma not iff intr left : "!!P.]

apply(unfold iff def)

apply{tactic {* lpf fast tac and lpfs 1 *})

done

lemma not iff intr right : "!HIP.[

apply (unfold iff def)

apply(tactic {* lpf fast tac and_lpfs 1 *})

done

lemma not iff elim :

assumes pl : "not (P <=> Q)"
and p2 : "[] P; not Q |]
and p3 : "[! not P; Q |1

shows "R"

apply{cut_tac pl)

apply{unfold iff def)

apply(tactic {* l1pf fast tac
done

ML
{*
val iff ipfs =
and lpfs
addSIs [thm "iff intr"]

(and_lpfs addIls

(and 1pfs addIs

not 9 or P ] ==> P <=> Q"

addSEs [thm "iff elim", thm "not iff elim")
addIs [thm "not iff intr left”, thm "not iff intr right"];

val prop lpfs = iff lpfs;
*}

(* other derived rules from "Proof in VDM *)

(* conjunction *)

lemma and or dist_con: "!!P. P and Q or P and R ==> P and (Q or rRY”
apply({tactic {* lpf fast tac prop lpfs 1 *})

done

lemma andﬁor_dist_exp: "1!'P. P and {(Q or R) ==> P and ¢ or P and R”

apply(tactic {* lpf fast tac prop lpfs 1 *})

done

lemma and assoc_left: "!!P. P and ¢ and R ==> P and (Q and R)"

[thm "p2",thm "p3"]) 1 *})
==> not (P <=> Q)"
==> not (P <=> Q)"
[thm "p2",thm "p3"]1) 1 *})



apply(tactic {* 1lpf fast tac prop lpfs 1 *})
done

lemma and assoc _right: "!!P. P and (Q and R) ==> P and Q and R"

apply{tactic {* 1lpf fast tac prop_ lpfs 1 *})
done

lemma and comm: "!!P. P and Q ==> Q and P"
apply(tactic {* lpf fast tac prop lpfs 1 *})
done

lemma and elim left: "!!P. P and Q ==> p"
apply(tactic {* lpf fast tac prop 1lpfs 1 *})
done

lemma and elim right: "!!P. P and ==> Q"

apply(tactic {* lpf fast tac prop lpfs 1 *})
done

lemma and subs left:
assumes pl : "P and QU
and p2 : "P==>R"
shows "R and Q"
apply{cut tac pl)

apply(tactic {* 1pf_ fast tac (prop lpfs addSIs

done

lemma and subs_right:
assumes pli : "P and Q"
and p2 : "Q==>R"
shows "P and R"
apply(cut tac pl)
apply(tactic {* 1lpf fast tac (prop_lpfs addIs
done

(* definedness *)

[thm "p2"]) 1 *})

[thm "p2"]) 1 *})

lemma def and inh: "!!P.{| def P; def Q |] ==> def (P and Q)"

apply(tactic—{* lpf_fast tac prop lpfs 1 *})
done

lemma def and inh sqgt:
assumes pl: "def pP"
and p2: "P ==> def Q"
shows "def (P and Q)"

apply{cut tac pl)

apply{tactic {* hyp asm tac (thm "p2") 1 *})
apply({tactic {* 1lpf fast tac prop lpfs 1 *})+
done

lemma def iff inh: "!!P.[| def P; def Q |] ==> def (P <=> Q)"

apply(tactic {* 1lpf fast tac prop_ lpfs 1 *})
done

lemma def imp inh: "!'!P.[| def P; def Q |] ==> def (P => Q)"

apply(tactic_{* Ipf fast tac prop lpfs 1 *})
done

lemma def imp inh sqt:
assumes pl: "def P"
and p2: "P==>def Q"
shows "def (P => Q)"
apply(cut tac pl)
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apply(tactic {* hyp asm tac (thm "p2") 1 *
apply(tactic {* lpf fast tac prop lpfs 1 *})+

done

lemma def not inh: "!!P. def P ==> def (not P)"
apply(tactic {* lpf fast tac prop_ lpfs 1 *})

done

lemma def or intr left: "!!P. Q ==> def (P or Q)"
apply(tactic {* lpf fast tac prop lpfs 1 *})

done

lemma def or intr right: "!!P. P ==> def (P or Q)"
apply(tactic {* 1pf fast tac prop_lpfs 1 *})

done

lemma def or inh : "!IP.[] def P; def Q |] ==> def (P or Q)"
apply(tactic {* lpf fast tac prop lpfs 1 *})

done

lemma def or inh sqgt:
assumes pl: "def P"
and p2: "not P==>def Q"
shows "def (P oxr Q)"

apply(cut tac pl)

apply(tactic {* hyp asm tac (thm "p2") 1 *})

apply(tactic {* lpf fast tac prop lpfs 1 *})+
done

(* bi-implication *)

lemma iff not intr: "!!P. P <=> Q ==> not P <=> not Q"
apply(tactic {*1pf_ fast tac prop lpfs 1 *})

done

lemma iff comm: "!!P. P <=> Q ==> Q <=> p"
apply(tactic {* 1lpf fast tac prop lpfs 1 *})

done

lemma 1ff elim full: "!!P. P <=> Q ==> P and Q or not P and not Q"
apply(tactic {* 1lpf fast tac prop lpfs 1 *})

done

lemma 1iff elim left: "!!P.[]| P <=> Q; P |] ==> Q";
apply(tactic {* 1pf fast tac prop lpfs 1 *})

done

lemma 1iff elim left def: "!!P. P <=> Q ==> def Q"
apply(tactic {* Ipf fast tac prop lpfs 1 *})

done

lemma iff elim left not: "!!P.[]| P <=> Q; not P |] ==> not Q"
apply(tactic {* lpf fast tac prop lpfs 1 *})

done

lemma iff elim right: "!!P.[]| P <=> Q; Q |] ==> P"
apply(tactic {* 1pf fast tac prop lpfs 1 *})

done

lemma 1ff elim right def: "!!P. P <=> Q ==> def P"
apply(tactic {* 1lpf fast tac prop lpfs 1 *})

done
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lemma iff elim right not: "!!P.[}] P <=> Q; not Q |] ==> not P"
apply(tactic {* lpf fast tac prop lpfs 1 *})

done

lemma iff intrI: "!!P.[{ P; Q |] ==> P <=> Q"
apply(tactic {* 1pf fast tac prop_ lpfs 1 *})

done

lemma iff intr and: "!!P. P and Q ==> P <=> Q"
apply(tactic {* 1lpf fast tac prop lpfs 1 *})

done

lemma iff intr and not: "!!P. not P and not Q ==> P <=> Q"
apply(tactic {* 1pf fast tac prop lpfs 1 *})

done

lemma iff intr not: "!!P.[| not P; not Q |] ==> P <=> Q"
apply(tactic {* lpf fast tac prop lpfs 1 *})

done

lemma iff self intr: "!!P. def P ==> P <=> pP"
apply(tactic {* lpf fast tac prop lpfs 1 *}}

done

(* implication *)

lemma imp and left elim: "!!P.[| P; P and Q => R |] ==> Q => R"
apply(tactic {* lpf fast tac prop_ lpfs 1 *})
done

lemma imp not_conseq:
assumes pl: "P => R"
and pZ2: "not P ==> not Q"
shows "Q => R"
apply (cut_tac pl)
apply(tactic {* 1pf fast tac (prop lpfs addIs [thm "p2"]) 1 *})
done

lemma imp conseq:
assumes pl: "P => Q"
and p2: "Q ==> R"

shows "P => R"

apply (cut_tac pl)

apply(tactic {* lpf fast tac (prop lpfs addIs [thm "p2"}) 1 *})

done

lemma imp contrp: "!!P. P => Q ==> not Q => not P"
apply(tactic {* 1lpf fast tac prop lpfs 1 *})

done

lemma imp elim left: "!!P.[]| P => Q; P |] ==> Q"
apply(tactic {* lpf fast tac prop lpfs 1 *})

done

lemma imp elim right: "!!'P.[| P => Q; not Q |] ==> not P"
apply(tactic {* lpf fast tac prop lpfs 1 *})

done

lemma imp intr:
assumes pl: "def P"
and p2: "P ==> Q"
shows "P => QY
apply (cut tac pl)
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apply(tactic {* 1lpf fast tac (prop lpfs addIs [thm "p2"]) 1 *})
done

lemma imp intr_left vac: "!!P. Q ==> p => Q"
apply(tactic {* 1lpf fast tac prop lpfs 1 *})

done

lemma imp intr_right vac: "!!P. not P ==> => Q"
apply(tactic {* 1lpf fast tac prop lpfs 1 *})
done

lemma imp self intr: "!!P. def P ==> P => pP"
apply(tactic {* lpf fast tac prop lpfs 1 *})

done

lemma imp trans: "!!P. [| P => Q; Q => R |] ==> P => R"
apply(tactic {* lpf fast tac prop lpfs 1 *})

done

(* negation *)

lemma not and elim dem: "!!P. not (P and Q) ==> not P or not Q"
apply(tactic {* 1lpf fast tac prop lpfs 1 *})

done

lemma not_and_elimﬁleft: "11'P. | P; not (P and Q) |] ==> not Q"
apply(tactic {* lpf fast tac prop lpfs 1 *})

done

lemma not_andﬁelim;right: "1I'P.[f Q; not (P and Q) |] ==> not P"
apply(tactic {* lpf fast tac prop lpfs 1 *})

done

lemma not _and intr dem: "!!P. not P or not Q ==> not (P and Q)"
apply(tactic {* 1lpf fast tac prop lpfs 1 *})

done

lemma not and_intr sqgt:
assumes pl: "def P"
and p2: "P ==> not Q"
shows "not (P and Q)"
apply(cut_tac pl)

apply({tactic {* 1lpf fast tac (prop_lpfs addIs [thm "p2"]) 1 *})

done

lemma not imp elim left: "!!P. not (P => Q) ==> not Q"
apply(tactic {* 1lpf fast tac prop lpfs 1 *})

done

lemma not imp elim right: "!!P. not (P => Q) ==> P"
apply(tactic {* 1lpf fast tac prop lpfs 1 *})

done

lemma not_or_elim_dem: "11'P. not (P or Q) ==> not P and not Q"
apply{tactic {* 1pf fast tac prop lpfs 1 *})

done

lemma not or_intr dem: "!!P. not P and not Q ==> not (P or Q)"
apply(tactic {* lpf fast tac prop lpfs 1 *})

done

(* disjunction *)
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lemma or_and _dist_con: "!!P.(P or Q) and (P or R) ==> P or Q and R"
apply(tactic {* 1lpf fast tac prop lpfs 1 *})

done

lemma or and dist exp: "!!P. P or Q and R ==> (P or Q) and (P or R)"
apply(tactic {* lpf fast tac prop lpfs 1 *})

done

lemma or assoc_left: "!!P. P or Q or R ==> P or (Q or R)"
apply(tactic {* 1pf fast tac prop lpfs 1 *})

done

lemma or_assoc_right: "HtP, P or (Q or R) ==> P or Q or R"
apply(tactic {* 1lpf fast tac prop lpfs 1 *})

done

lemma or comm: "!!P. P or Q ==> Q or P"
apply(tactic {* lpf fast tac prop lpfs 1 *})

done

lemma orfelim_leftAnot: "1tp.l] P or Q; not P |1 ==> QU
apply(tactic {* 1lpf fast tac prop lpfs 1 *})

done

lemma or_ elim right not: "!!P.[]| P or Q; not Q |] ==> P"
apply(tactic {* 1lpf fast tac prop lpfs 1 *})

done

lemma or subs_left:
assumes pl: "P or Q"
and p2: "P ==> R"
shows "R or Q"
apply(cut tac pl)
apply(tactic {* 1lpf fast tac (prop lpfs addIs [thm "p2"]) 1 *})
done

lemma or subs right:
assumes pl: "P or Q"
and p2: "Q ==> R"
shows "P or R"
apply{cut_tac pl)
apply(tactic {* lpf fast tac (prop 1lpfs addIs [thm "p2"]) 1 *})
done

(* falsity *)

lemma false_contr:
assumes pl: "def P"
and p2: "P ==> false”
shows "not P"
apply(cut tac pl)
apply(tactic {* lpf fast tac (prop_ lpfs addEs [make elim (thm "p2")]) 1 *})
done

end
12.3 Pred.thy
theory Pred = Prop:

(* Corresponds to section 14.2 in Proof in VDM *)
ML
{*

105



print_syntax (theory "Prop");
*}

typedecl

ty
(* type binding lists *)
nonterminals tbinds tbind

print syntax

syntax
o :: "tbind => tbinds" mm
tbindsn  :: "[tbind, tbinds] => tbinds” ",/ M
tbind t: "[idt,ty]l => tbind" (M7 M

print syntax

(* gquantification *)

consts
forall' 1 "[ty,ex => ex] => ex"
exists' tr "[ty,ex => ex] => ex"

[
: [

existsl' r "[ty,ex => ex] => ex
[

iota" ty,ex => ex] => ex
syntax
forall :: "[tbinds,ex] => ex" ("(2forall/ _ &/ )™ [100,100] 100)
exists_ :: "{tbinds,ex] => ex" ("(2exists/ &/ )" [100,100] 100)
existsl :: "[tbinds,ex] => ex" ("(2existsl/ _ &/ )™ [100,100] 100)
iota :: "[thbhind,ex] => ex" ("(2iota/ _ & )™ [100,100] 100)
translations
"forall (tbindsn_ tb tbs) e" == "forall tb (forall tbs e)"
"forall (tbind x A) e" => "forall' A (%x. e)" -
"exists_ (tbindsn_ tb tbs) e" == "exists_ tb (exists_ tbs e)"
"exists (tbind x A) e" => "exists' A (%x. e)"
"existsl (tbindsn_ tb tbs) e" == "existsl tb (exists_tbs e)"
"existsl (thind x A) e" => "existsl' A (%x. e)"

"iota (Ebind_ x~A) e" => "iota' A (%x. e)"

print translation
S
let
fun eta_exp (e as Abs( , , )) = e
(

| eta exp e zAbs("x",dGmmyT,e$ Bound 0));

fun quan tr' r [A,e] =

let val Abs(x, ,e') = eta exp e
val (x',e'') = variant abs(x,dummyT,e')
in
Const (r, dummyT) $ (Const ("tbind ", dummyT) $Free (x', dummyT) $A) Se' "'
end;
in
[("forall'",quan_tr' "forall "), ("exists'",quan tr' "exists "),
("existsl'",quan_tr' "existsl "), ("iota'",quan_tr' "iota ")]
end; B
*}
consts

(* type membership *)
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of"' o "lex,tyl => ex" ("{_:/ )" [100,100] 10)

(* having typing membership as an expression and not a judgement,
allows substitution for equal values. This also seems to be
the approach taken in Mural *)

(* inhabited *)

inh' :: "ty => ex" ("(2inh )™)

(* equality *)

eq’ 1 "lex,ex] => ex" ("(_ =/ )" [310,311] 310)
neq' :: "[ex,ex] => ex" ("(_ <>/ )y" [310,3111 310)

(* axioms *)

axioms
exists elim:
"I exists' A P; Mly.[| P(y); y:A 1] ==> Q |] ==> Q"
exists intr:
"{| P{a); a:hA |] ==> exists' A P"

not exists dest:

"[| not (exists' A P); a:A |] ==> not P(a)"
not exists_intr:
"] !'!'x. x:A ==> not (P(x)) |] ==> not (exists' A P)"

def exists_ inh:
"(1tx., x:A ==> def (P(x))) ==> def (exists' A P)"

(* Definitions, page 274 *)

defs
forall def:
"forall' A P == not (exists x:A & not (P(x)))"
inh def:
"inh A == exists x:A & true"

(* Derivec rules, pages 274--277 *)

axioms

(*

def forall forall intr

Tk y. [l x:R; y:B |] ==> def P(x,y)) ==> \
\ def (forall x:A & forall'(B,P(x)))"
def forall inh
"It y.y:A ==> def P(y)) ==> def forall'(A,P)"

*)

(* Equality axioms, page 277 *)

eq self intr:
"a:A ==> a = a
eq subs left:

"[I b:A; a = b; P(b) |] ==> P(a)"”
eq subs right:

"] a:A; a = Db; P(a) |] ==> P(b)"
def eqg intr:

"Il oa:dA; b:A ] ==> def a = b"

(* Equality definitions, page 277 *)
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defs

neq def:
"el <> e2 == not el = e2"
(* Equality derived rules, page 277 -- 278 *)
axioms

def neq intr:
"] a:A; b:A |] ==> def a <> b"
eg_or_negq:

"[1 a:h; b:A |] ==> a = Db or a <> b"
eq cases:

W{I a:bh; b:A; a <> b ==>Q; a=>»b =>0Q |] ==> Q"
eq_extl:

"[| a:A; a = b; e(a):B |] ==> e(a) = e(b)"
eq ext2:

"Il a:A; a = b; e(b):B |] ==> ela) = e(b)"”
eq subsl:

"[] a:A; a =Db; P(b) ] ==> P(a)"
eq_subsZ:

"[] b:A; a = b; P(a) |] ==> P{b)"
eq_ symml:

"[{ a:R; a = b |] ==>Db = a”"
eq_symmZ:

"[] b:A; a=Db |] ==> Db = a"
eq_transl:

"{] a:A; a = b; b=c¢c |] =>a=c¢c"
eqg_trans2:

"[] b:A; a =b; b=c |] ==>a=c¢c"
eq_trans3:

"Il c:tA; a = b; b=c |] =>a=c¢c"
eq_trans leftl:

"Il a:tA; a = b; a=c¢ |] =>Db = c"
eq_trans left2:

"[| b:A; a = b; a=c¢c |] ==>Db ="
eq trans left3:

"{| c:tA; a =Db; a=c |] ==>Db = "
eq trans_rightl:

"I} atA; a =c¢; b=c |}] =>a = Db"
eq trans_right2:

"[] b:tA; a =c¢; b=~c|] ==>a=Db"
eq trans right3:

"[] c:A; a=c¢c; b=c |] ==>a=Db"
eq type inh left:

"[] a:A; b =a |] ==> b:A"
eq_type inh right:

"] b:A; b =a |] ==> a:A"
not eqg self intr:

T Ma:A ==> not a <> a"
neq comm:

"Il a:A; b:A; a <> Db |] ==> Db <> a”

(* Other Quantifiers axioms, page 279 *)

axioms
iota form:
"existsl' A P ==> (iota' A P):A"
iota_intr:
"existsl' A P ==> P(iota' A P)"
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(* Other Quantifiers definitions, page 279 *)
defs
existsl def:

"existsl' A P == exists x:A & P(x) and (forall y:A & Ply) => x = V)

{* Other Quantifiers derived rules, page 2739--280 *)

axioms
existsl eqg intr:
"a:A ==> existsl x:A & x = a"
existsl or dist exp:
"existsl x:A & P{x) or Q{(x) ==> (existsl' A P) or (existsl' A Q)"
existsl to_exists:
Y(existsl' A P) ==> (exists' A P)"

existsl elim:

"] (existsl' A P) ; \
't oz [ x:A; P(x); forall y:A & Ply) => y = x |] ==>\
11 ==> \

o

Q

Q"
existsl intr:

"[] a:A; Pla); forall x%:A & Pi{x) => x = a |] ==> (existsl' A P)"
existsl same:

[l a:A; b:B; P{a); P(b); (existsl' A P) |] ==> a = b"
existsl subs:

"Il (existsl' A P); '!x.{| =x:BA; P(x) |] ==> Q(x) |] ==> (exists' A P)"
iota defn:

"[| a:A; P(a); (existsl' A P) |] ==> (iota' A P) = a"

not existsl elim:
"[] a:A; not {existsl' A P) |1 ==> \
\ not P(a) or (exists x:A & P(x) and x <> a)"
not existsl intr:
"I a:A; b:A; Pla); P(b); a = b |] ==> not (existsl' A P}"
not existsl intr vac:

"not (exists' A P) ==> not (existsl' A P)"
existsl forall to forall exists:
"existsl x:A & (forall' B (P x)) ==> forall y:B & exists x:A & (P x y)"

ML

{*

val exists lpfs =
prop_lpfs
addIs [thm "exists intr"] addSIs [thm "not_exists_intr"]
addDs [thm "not exists dest"] addSEs [thm "exists elim"];

*}
(* standard rules for existential quantification *)

lemma not exists elim:

assumes pl: "not (exists' A P)"
and p2: "a:A"
and p3: "not P(a) ==> Q"
shows "Q"

apply(cut tac pl p2)
apply (tactic {* 1lpf fast tac (exists Ipfs addIs [thm "p3"]1) 1 *})
done

(* non-standard rules for existential quantification *)
ML
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{*
val def exists = (thm "def exists inh") RS (thm "def elim”);
*} - - - -
(* standard rules for type inheritance *)
lemma inh intr: "a:A ==> inh A"
apply (unfold inh def)
apply(tactic {* lpf fast tac exists lpfs 1 *})

done

lemma inh elim:

assumes pl: "inh A"
and p2: "lla. a:A ==> Q"
shows "Q"

apply (cut_tac pl)

apply (unfold inh def)

apply(tactic {* 1pf fast tac (exists lpfs addIs [thm "p2"]) 1 *})
done

ML
{*
val inh lpfs = exists_ lpfs addIs [thm "inh_intr"] addsEs [thm "inh_elim"];
*}

(* standard rules for universal guantification *)

lemma forall intr:
assumes pl: "!lx. x:
shows "forall' A P"
apply(unfold forall def)
apply(tactic {* lpf fast tac (exists 1lpfs addIs [thm "pl"]) 1 *})
done

o
Il
I

\

as]

k]

lemma forall dest: "!l!a.[] (forall' A P); a:A |] ==> P(a)"
apply (unfold forall def)

apply(tactic {* lpf fast tac exists 1lpfs 1 *})

done

lemma not forall intr: "!la.[| a:A; not P(a) |] ==> not (forall® A P)"
apply (unfold forall def)
apply(tactic {* lpf fast tac exists lpfs 1 *})

done

lemma not forall elim:

assumes pl: "not (forall' A P)"
and p2: "!lx.[] x:A; not P(xj |] ==> Q"
shows "Q"

apply(cut tac pl)

apply (unfold forall def)

apply(tactic {* 1lpf fast tac {(exists lpfs addIs [thm "p2"]) 1 *})
done

(* non_standard rules for universal quantification *)

lemma def forall:

assumes pl: "(!! y. y:A ==> def P(y))"
shows "def {(forall' A P)"

apply(unfold forall def)

apply({rule def exists inh [THEN def elim])

(* This is the order to prove the subgoals 1f the lpf fast tac is to be
used on it 1s own. Alternatevely, the ALLGOALS tactical can be used
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which resolves the subgoals from the Nth to the 1lst. *)

(* apply(tactic {* 1lpf fast tac (exists lpfs addDs [thm "pl"]) 3 *}) *)
(* apply(tactic {* 1lpf fast tac (exists lpfs addDs {thm "pl"]) 2 *}) *)
(* apply(tactic {* lpf fast tac (exists lpfs addDs [thm "pl"]) 1 *}) *)

apply(tactic {* ALLGOALS (fn i => lpf fast tac (exists_ lpfs addDs [thm "pl"])
i) *1)
done

ML

{*

val forall lpfs =
inh lpfs
addIs [thm "not forall intr"] addSIs [thm "forall intr"]
addDs [thm "forall dest"”] addSEs [thm "not forall elim"];

*}

lemma forall elim:
assumes pl: "(forall' A P}"
and p2: "a:A"
and p3: "P(a) ==> Q"
shows "Q"
apply{cut _tac pl p2)
apply (tactic {* 1lpf fast tac (forall lpfs addIs [thm "p3"]) 1 *})
done

(* other rules for existential guantification *)

lemma exists forall to forall exists: "exists x:A & (forall' B (P x)) ==>
forall y:B & exists x:A & (P x y)"

apply(tactic {* 1lpf fast tac forall lpfs 1 *})
done

lemma exists_forall_subs:
assumes pl: "exists x:A & (forall' B (P x))"
and p2: " !Mx y.[| x:A; y:B; (P xvy) |] ==> (0 x y)"
shows "exists x:A & (forall' B (Q x))"
apply (cut tac pl)
apply(tactic {* 1lpf fast tac (forall lpfs addIs [thm "p2"]) 1 *})
done

lemma exists and dist exp: "exists x:A & P(x) and Q(x) ==> (exists' A P) and

(exists' A Q)"
apply(tactic {* 1lpf fast tac exists 1lpfs 1 *})

done

lemma exists_and elim left: "exists x:A & P(x) and Q(x) ==> (exists' A Q)"
apply(tactic {* lpf fast tac exists 1lpfs 1 *})

done

lemma exists and_elim right: "exists x:A & P(x) and Q(x) ==> (exists' A P)"
apply(tactic {* lpf fast tac exists 1lpfs 1 *})

done

lemma exists exists comm: "exists x:A & (exists' B (P x)) ==> exists y:B &

exlsts x:A & (P x y)"
apply(tactic {* lpf fast tac exists 1pfs 1 *})
done

lemma exists exists elim:
assumes pl: "exists x:A & (exists' B (P x))"

111



and p2: "!lx y.[| x:A; y:B; (P x y) |] ==> Q"

shows "Q"

apply (cut tac pl)

apply(tactic {* 1lpf fast tac (forall lpfs addIs [thm "p2"]) 1 *})
done

lemma exists_exists intr: "[| a:A; b:B; (P a b) [] ==> exists x:A & (exists' B
(P x))"

apply (tactic {* lpf fast tac exists 1lpfs 1 *})
done

lemma exists exists subs:
assumes pl: "exists x:A & (exists' B (P x))"
and p2: "!!x y.[| x:A; y:B; (P xy) |] ==> (0 x y}"
shows "exists x:A & (exists' B (Q x))"
apply(cut tac pl)

apply(tactic {* lpf fast tac (forall lpfs addIs [thm "p2"]) 1 *})
done
lemma
assumes pl: "(exists' A P)"
and p2: "!lx. x:A ==> P(x) <=> Q(x)"
shows "(exists' A Q)"

apply{cut tac pl)

apply(tactic {* lpf fast tac (exists lpfs addEs [(thm "p2") RS (thm
"iff elim")]) 1 *1)
done

lemma exists imp subs:

assumes pl: "(exists' A P)"
and p2: "!!x. x:A ==> P(x) => Q{(x)"
shows " (exists' A Q)"

apply(cut tac pl)
apply(tactic {* 1lpf fast tac (exists lpfs addEs [(thm "p2") RS (thm

"imp elim")]) 1 *})
done
lemma exists or dist con: "(exists' A P) or (exists’ A Q) ==> exists x:A & P(x)
or Q(x)"
apply(tactic {* lpf fast tac exists lpfs 1 *})
done
lemma exists or dist exp: "exists x:A & P(x) or Q(x) ==> (exists' A P) or

(exists' B Q)"
apply(tactic {* 1lpf fast tac exists lpfs 1 *})

done

lemma exists_to_not forall dem: "exists x:A & not P(x) ==> not (forall' A P)"
apply(tactic {* 1lpf fast tac forall lpfs 1 *})

done

lemma exists_intr onept: "[| a:A; Pla) |] ==> exists x:A & x = a and P(x)"
apply(tactic {* lpf fast tac (exists lpfs addIs [thm "eg self intr"]) 1 *})

done

lemma exists_split: "exists x:A & (P x x) ==> exists x:A & (exists' A (P x))"
apply (tactic {* lpf fast tac exists 1lpfs 1 *})

done

lemma exists subs:
assumes pl: "(exists' A P)"
and p2: "!Ix.[] x:A; P(x) |] ==> Q(x)"
shows "(exists' A Q)"
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apply (cut tac pl)

apply(tactic {* 1lpf fast tac (exists 1lpfs addEs {thm "p2"]) 1 *})
done
lemma not exists to forall dem: "not (exists' A P) ==> forall x:A & not P(x)"
apply(tactic {* 1lpf fast tac forall 1lpfs 1 *})
done

(* other rules for universal quantification *)

lemma forall forall comm: "forall x:A & (forall' B (P x)) ==> forall y:B &
forall x:A & (P x y)"
apply(tactic {* 1lpf fast tac forall Ipfs 1 *})

done
lemma forall forall elim: "[| a:A; b:B; forall x:A & (forall' B (P x)) |] ==>
(P a b)"
apply(tactic {* lpf fast tac forall 1lpfs 1 *})
done

lemma forall forall intr:
assumes pl: "(!tx y.[] x:A; y:B |] ==> (P x y))"
shows "forall x:A & (forall' B (P x))"
apply(tactic {* 1lpf fast tac (forall lpfs addIs [thm "pl"]) 1 *})
done

lemma foreall forall subs:
assumes pl: "forall x:A & (forall' B (P x))"
and p2: "!!x y.[| x:A; y:B; (P x vy} |I] ==> (Q x y)"
shows "forall x:A & (forall' B (Q x))"
apply(cut_tac pl)

apply(tactic {* lpf fast tac (forall lpfs addIs [thm "p2"]) 1 *})
done
lemma forall and dist con: "({forall’' A P) and (forall' A Q) ==> forall x:A &

P(x) and Q(x)"
apply(tactic {* 1lpf fast tac forall lpfs 1 *})
done

lemma forall and dist exp: "forall x:A & P(x) and Q(x) == {(forall' A P) and
(forall® 2 Q)"

apply(tactic {* 1pf fast tac forall 1lpfs 1 *})
done

lemma forall def or inh: "[| forall x:A & def P(x); forall x:A & def Q(x) |]
==> forall x:A & def (P(x) or Q{x))"
apply(tactic (* lpf fast tac forall 1lpfs 1 *})

done
lemma forall def intr not: "forall x:A & not P(x) ==> forall x:A & def P(x)"
apply(tactic {* lpf fast tac forall Ipfs 1 *})
done
lemma forall iff elim left def: "forall x:A & P(x) <=> Q(x) ==> forall x:A &
def Q(x)"
apply{tactic {* lpf fast tac forall ipfs 1 *})
done
lemma forall iff elim right def: "forall x:A & P(x) <=> Q(x) ==> forall x:A &
def P(x)"
apply(tactic {* lpf fast tac forall lpfs 1 *})
done
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lemma forall iff subs:
assumes pl: " (forall' A P)"
and p2: "!!x. x:A ==> P(x) <=> Q(x)"
shows "{(forall' A Q)"
applyf{cut tac pl)

apply(tactic {* lpf fast tac (forall lpfs addEs [ (thm "p2") RS

"iff elim")]1) 1 *})
done

lemma forall iff subs def:
assumes pl: "forall x:A & def P(x)"
and p2: "llx. x:A ==> P{(x) <=> Q(x)"
shows "forall x:A & def Q(x)"
apply(cut tac pl)

apply(tactic {* 1pf fast tac (forall lpfs addEs [ (thm "p2") RS
"iff elim™)]) 1 *})
done

lemma forall imp subs:

assumes pl: "(forall' A P}"

and p2: "!lx. x:A ==> P(x) => Q(x)"
shows " (forall' A Q)"

apply({cut tac pl)

apply(tactic {* 1pf fast tac (forall 1pfs addkEs [(thm "p2") RS
"imp elim")1) 1 *})
done

lemma forall or intr left: "(forall' A P} or (forall' A Q)

P(x) or Q(x)"
apply(tactic {* lpf fast tac forall 1lpfs 1 *}]
done

(thm

(thm

(thm

==> forall x:A &

lemma forall or dist con: " (forall' A Q) ==> forall x:A & P(x}) or Q(x)"
apply(tactic {* 1lpf fast tac forall lpfs 1 *})

done

lemma forall or intr right: "(forall' A P) ==> forall x:A & P(x) or Q(x)"
apply(tactic {* lpf fast tac forall lpfs 1 *})

done

lemma forall to exists: "[| (forall' A P); inh A |] ==> (exists' A P)"

apply({tactic {* lpf fast tac forall lpfs 1 *})
done

lemma forall to not exists dem: "forall x:A & not P{x) ==> not (exists' A P)"
apply(tactic {* 1lpf fast tac forall 1lpfs 1 *})
done

lemma forall fix: "forall x:A & (forall® A (P x)) ==> forall x:A & (P x x)"
apply({tactic {* 1lpf fast tac forall 1lpfs 1 *})
done

lemma forall subs:

assumes pl: "(forall' A P)"

and p2: "Hix.[] =:A; P(x) ] ==> Q(x)"
shows " {(forall' A Q)"

apply (cut tac pl)

apply(tactic {* lpf fast tac (forall lpfs addIs [thm "p2"]) 1 *})
done

lemma not forall intr not: "[| a:A; P(a) |] ==> not (forall x:A & not P(x))"

apply({tactic {* lpf fast tac forall lpfs 1 *})
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done

lemma not forall to exists dem: "not (forall' A P) ==> exists x:A & not P(x)"

apply(tactic {*?lpf_fastitac forall Ipfs 1 *})
done

lemma def forall forall:
assumes pl: "(!!x v.[| x:A; y:B |] ==> def (P x y) )"
shows "def (forall x:A & (forall' B (P x))} )"
apply{rule def forall)
apply(rule def forall)
apply(rule pl)
apply(assumption)
apply (assumption)
done

end

12.4 Cond.thy
theory Cond = Pred:
(* Conditional *)

consts
if? 1 "[ex,ex,ex] => ex”

nonterminals eifs

syntax
if 1 "[ex,ex,eifs,ex] => ex"
("(if / then / /else )" {100,100,100,100] 100)
eifs nil :: "eifs" ("" 100)
eifs cons :: "[ex,ex,eifs] => eifs"
("(elseif / then / )" [100,100,100] 100)
parse translation
{*
let
fun eifs tr (Const("eifs nil"™, )) e = e
| eifs_tr {Const("eifs_cons", ) $ el $ e2 $ eif) e =
Syntax.const "if'" $ el $ e2 $ (eifs tr eif e);

fun if tr [el,e2,eifs,ed] =
Syntax.const "if'" $ el $ e2 $ (eifs tr eifs ed);

(* Const ("if'",dummyT) $ el $e2 $ (ezfs_tr eifs ed); *)
in [("if",if tr)]
end;

*}

print translation
{*

let
fun eifs tr' (Const("if'", )$elS$el2$e3) =
let val (eifs,e) = eifs tr' e3 in
(Const ("eifs cons",dummyT)$elSe2Seifs,e)
end
| eifs tr' e = (Const("eifs nil"”,dummyT),e);

fun if tr' [el,e2,e3] =
let val (eifs,e) = eifs tr' e3 in
(Const ("if"™, dummyT) SelSel2SeifssSe)
end;
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in [("if'",1if tr')]
end;

*}

(* Conditional axioms, page 280 *)

axioms
if false: "[] c:A; not P |] ==> (if P then b else ¢) = c”
if true: "I b:A; P |] ==> (if P then b else c) = b"

(* Conditional derived rules, page 280 *)

axioms

if true ident: "[] a:A; b:A |] ==> (if a = a then b else c¢c) = b"

if form: "[] def P; b:A; c:A |] ==> if P then b else c:A"

if form sgt: "[| def P; P ==> b:A; not P ==> c:A |] ==> if P then b else
c:A"
(* test *)

lemma "if true then false elseif true then false elseif true then false elseif
false then true else false = false"

oops

end

12.5 Let.thy

theory Let = Cond:

nonterminals lbinds lbind

consts
let’ 1 "[ex,ex=>ex]=>ex"
syntax
e :: "lbind => lbinds" ("""
1lbindsn :: "[lbind, 1lbinds] => lbinds" ("( ,/ ")
lbind :: "lidt,ex] => lbind"” ("_=_")
" let” :: "[lbinds, ex] => ex" ("(let _/ in )" [100,100] 100)
translations
" let (l1bindsn lb lbs) e" == " let 1b ( let lbs e)"
translations

" let (1bind x el) e2" => "let' el (%x. e2)"

print translation
(*
let
fun let tr' [ea,eb] =
case eb of
Abs(x1,Tl,el) =>

let val (x',e') = variant abs(xl,dummyT,el) in
Const (" let”,dummyT) $ (Const ("1lbind", dummyT) $Free(x',Tl) $ea)se’
end |
_=> let _tr’ [ea,RAbs ("x",Type ("ex", []1),eb$(Bound 0))];
in [("let'",let tr')]
end;
*}
axioms
let defn: "[] e:B; e'(e):B |] ==> (let x = e in e'(x)) = e'(e)”
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lemma let form: "!le. [| e:A; e'(e):

apply(assumption)+
done

end

12.6 Union.thy

theory Union = Let:
consts

unionty' :: "[ty,ty] => ty" ("_
axioms

union elim:

I

" [120,121)

"Il u : A | B; !lta. a:A ==> P(a);!!b.

union intr left:
"b:B ==> b:A|B"

union intr right:
"a:A ==> a:A|B"

(* derived rules *)
def eq intr gen:

"} a:A; b:B |] ==> def a=b"
union_assoc left:

"a: A} B | C==>a: A | (B}
union assoc_ right:
"a: A | (B} €C) => a: A | B |

union_ comm:
"a : A| B==>a:B | A"

End

12.7 Prod.thy

theory Prod = Union:
(* abstract syntax *)

typedecl prodnum'

consts
pn_zero' :: "prodnum'"
pn_succ' :: "prodnum' => prodnum'"

typedecl prodtys'
typedecl prodexs'

consts

prodty2' :: "[ty,ty] => prodtys'"
prodtyn' :: "[ty,prodtys'] => prodtys'"”
prod2’! 1 "lex,ex] => prodexs'"
prodn' i "[ex,prodexs'] => prodexs'"
prodty'! :: "prodtys' => ty"

prod’ :: "prodexs' => ex"

sel! :: "[ex,prodnum'] => ex"
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(* concrete syntax *)

nonterminals prodtys prodexs

syntax

prodty2  :: "[ty,ty] => prodtys " (" _* " o[131,131] 131)

prodtyn  :: "[ty,prodtys ] => prodtys " ("o " [131,131] 131)

prodty id :: "id => prodtys " ("s_™M

prodty var :: "var => prodtys " ("s ")

prod2 i: "[ex,ex] => prodexs " ",/

prodn 1 "[ex,prodexs ] => prodexs " ("_,/v")

prod id  :: "id => prodexs " ("s_ ")

prod var :: "var => prodexs " ("s. ™

prodty :: "prodtys => ty" (m ™ [131] 130)

prod_ :: "prodexs => ex" ("mk' T ")")

sel :: "[ex,xnum] => ex" (" . " [500,501] 500)
translations

"prodtyn t ts" => "(prodtyn' t ts)"
"prodty2 tl t2" => "(prodty2' tl t2)"
"prodty pts" => "(prodty' pts)"
"prodty id 1" => "i"

"prodty var_ v" => "y"

"prodn e es” => "(prodn’' e es)"”
"prod2 el e2" => "(prod2' el e2)"
"prod pes” => "(prod' pes)"
"prod id i" => "i"

"prod var v" => "y"

parse translation

=

let

(* parse translations for product selection *)

fun digit is to int [d] = d |
digit is_to_int (d::ds) = (digit is_te int ds * 10) + d;

i

fun int to prodnum 0 Const ("pn_zero'”, dummyT)

| int to prodnum n = Const("pnésucc'",dummyT)$(intAtovprodnum (n-1));

|

fun string to prodnum s =
int to prodnum(digit is_to int (tl {(map (fn c => ord ¢ - 48)

s))))s

fun sel_tr le,t as (Free(s, ))] =

(Const ("sel'",dummyT) $e$ (string to prodnum s));
in [("sel ",sel tr)]
end;

*}

print translation
S
let

(* print translations for product selection *)

1

fun prodnum_to int (Const("pn zero'", )) =
prodnum to int (Censt("pn_succ'”, )Se)

o
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fun

int to string n =

let val d = n div 10 in
if d >= 1
then int to_string d” (chr((n mod 10)+48))
else chr{(n+48)

end;

prodnum te string pn =
"""~ (int to_string (prodnum to int pn));

selitr' [e,pn] =

Const ("sel ",dummyT)$e$ (Free(prodnum to string pn,dummyT)) ;

{(* print translations for products *)

fun

fun

fun

prodtys_tr' (Const("prodty2'", )$tlst2)
Const ("prodty2 ",dummyT) $t1$t2 |
prodtys tr' (Const("prodtyn'", )S$tSpts) =
Const ("prodtyn ",dummyT)$t$prodtys tr' pts |
prodtys _tr' 1 = Const("prodty id ",dummyT)$i;

prodty tr' [pts] = Const{("prodty ",dummyT)Sprodtys tr' pts;

prods tr' (Const ("prod2'”, )Stlst2) =
Const ("prod2 ", dummyT)S$t1$t2 |
prods_tr' (Const("prodn'™, )$t$ps) =

Const ("prodn ", dummyT) $tSprods _tr' ps |
prods_tr' i = Const("prod id ", dummyT)$i;

fun prod_tr' [ps] = Const("prod ",dummyT)S$prods_tr' ps;

in [("sel'",sel tr'"), ("prodty'",prodty tr'), ("prod'",prod tr')]
end;

*}

axioms

(* rules for product constructors *)

prod2 elim: "[}| p:A*B; !l!a b.[]| a:A; b:B; mk (a,b)=p |] ==> P(mk_(a,b))
==> P (p) "

prodn elim: "[] p:A*$B; !!'a b.[] a:A; mk ($b):$B; mk_(a,$b)=p |] ==>
P(mk (a,sb)) |] ==> P(p)"

prod2 intr: "[]| a:A; b:B |] ==> mk (a,b): A*B"

prodn _intr: "[| a:A; mk ($b): $B {] ==> mk_ (a,$b): A*SB"

prod2 dist: "mk (al,bl)=mk (a2,b2) ==> al=a2 and bl=b2"

prodn dist: "mk_(al,$bl)=mk (a2,$b2) ==> al=a2 and mk ($bl)=mk ($b2)"

prodexs subsl: "[| prod'({a) = prod'(b); P(b); prod'(b):prodty’ (A) 1]
P(a)"

prodexs subs2: "[| prod'(a) = prod'(b):; P(a); prod'(a):prodty’ (A) N
P (b) "

(*

sell prod2 defn: "mk_(a,b):A*B ==> mk (a,b).#1 = a"
sel2 prod2_defn: "mk_(a,b):A*B ==> mk (a,b).#2 = b"
sell prodn_defn: "mk (a,$b):A*3B ==> mk (a,s$b).#1 = a"
seln prodn defn: "mk (a,$b):A*$B ==> (sel' mk (a,Sb)

rules for product destructors *)

mk_($b) pn)"
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ML
{*

fun bf t i = by (forward tac [t] i);
*}

lemma type subs right: "!la. [| a:A; a=b |] ==> b:A"
apply{rule eq subs right)
back
apply (assumption)+
done
lemma type subs left: "!l!a. [} a:A; b=a |] ==> b:A"
apply(rule eq subs left)
back
apply(assumption)+
done
lemma eqg subs3: "l!la.[| a:RA; a=b; P(b) |] ==> P(a)"

apply(drule type subs_ right)

apply(assumption)

apply(rule eq subs left,assumption,assumption,assumption)
done

lemma sell prodn_form: "!!p. p:A*$B ==> p.#1:A"
apply(erule prodn elim)
apply(rule sell_prodn defn [THEN [2] eq subs_ left])
apply (assumption)
apply(rule prodn intr)
apply (assumption) +
done

lemma prod2 destl: "!!a. mk (a,b):A*B ==> a:A"

apply{erule prod2 elim)

apply (drule prod2 dist)

apply({erule and elim)

apply{rule eq subs right,assumption,assumption, assumption)
done

lemma prod2 dest2: "!!'a. mk (a,b):A*B ==> b:B"

apply(erule prod2 elim)

apply (drule prod2 dist)

apply{erule and elim)

apply(rule eq subs_right,assumption,assumption, assumption)
done

lemma prodn destl: "!!a. mk (a,$b):A*S$SB ==> a:A"
apply(rule sell prodn defn [THEN [2] eq subs right])
back

apply{erule sell prodn form)
apply(assumption)
apply(erule sell prcdn form)
done

lemma prodn _dest2: "!la. mk (a,$b):A*$B ==> mk ($b):$B”
apply(erule prodn elim) N N

apply (drule prodn dist)

apply(erule and elim)

apply (rule eq_subs right,assumption,assumption, assumption)
done

lemma prod3 _elim:
assumes pl: "p:A*B*C"
and p2: "!l'a b c.[] a:A; b:B; c:C; mk (a,b,c)=p |] ==> P(mk (a,b,c))"
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shows "P(p)"
apply(rule pl [THEN prodn elim])
apply{erule prod2 elim)
apply (rule prodexs subsZ,assumption)
prefer 2
apply(rule prod2 intr)
apply (assumption)+
apply(rule p2)
apply (assumption)+
apply(rule prodexs_ subsl, assumption)
apply (assumption)
apply(rule type subs right)
prefer 2
apply{assumption)
apply(rule prod2 intr)
apply (assumption)+

done
lemma sell prod3 defn: "!!a. mk (a,b,c):A*B*C ==> mk (a,b,c).#1 = a"
apply(erule sell prodn defn)
done
lemma sel2 prod3 defn: "!l!a. mk (a,b,c):A*B*C ==> mk (a,b,c).#2 = b"
apply(frule prodn destl)
apply(frule prodn dest2)
apply (frule prod2 destl)
apply(frule prod2 dest2)
apply(rule seln prodn defn [THEN [2] eg subs left])
apply (rule sell prod2 defn [THEN [2] eqg subs left])
apply(assumption)+
apply(erule sell prod2 defn)
done
lemma sel3 prod3 defn: "!!a. mk (a,b,c):A*B*C ==> mk (a,b,c).#3 = c"

apply (frule prodn destl)

apply (frule prodn dest2)

apply(frule prod2 destl)

apply (frule prod2 dest2)

apply(rule seln prodn_defn [THEN [2] eq subs left])
apply(rule selZ prodZ defn [THEN [2] eqg subs left])

apply(assumption)+
apply(erule sel2 prod2 defn)
done

lemma prod3 intr: "!l!a.[] a:A; b: B; c:C |] ==> mk (a,b,c):A*B*C"
apply(erule prodn_intr)
apply(erule prod2 intr)
apply(assumption)

done

lemma prod3 defn: "!!p. p:A*B*C ==> mk (p.#l,p.#2,p.#3) = p"
apply{erule prod3 elim)

apply(rule sell prod3 defn [THEN [2] eqg subs left],assumption)

apply (erule prod3 intr,assumption,assumption)

apply(rule sel2 prod3 defn [THEN [2] eqg subs left], assumption)
apply(erule prod3 intr,assumption,assumption)

apply(rule sel3 prod3 defn [THEN [2] eg subs left],assumption)
apply (erule prod3 intr, assumption,assumption)

apply(rule eq self intr)

apply (erule prod3 intr,assumption,assumption)

done

lemma prod3 form: "!l!p. p:A*B*C ==> mk (p.#1,p.#2,p.#3) :A*B*C"
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apply(rule prod3 defn [THEN {2] eq subs left])
apply (assumption) +
done

end

12.8 Opt.thy

theory Opt = Prod:

consts
optty':: "ty => ty" ("roam
nil pr Mex"
axioms
nil form: "nil:[A]"
opt_elim: "[| a:[A]; P(nil); !!x. x:A ==> P(x) |] ==> P(a)”

opt_intr: "a:A ==> a:[A]"

(* derived rules *)

opt Union ext left: "a: [A] ==> a:[BIA]"
opt_Union_ext right: "a:[A] ==> a:[A|B]"
opt_elim neg nil: "I a:[A]; a <> nil |] ==> a:A"
end

12.9 Sub.thy
theory Sub = Opt:

consts

subty’ o "ity,ex => ex] => ty"
syntax

subty :: "[tbhind,ex] => ty" ("<< b >>M)
translations

"<< x:A | e >>" == "(subty' A (%gx. e))}"

print translation
S
let
fun eta exp (e as Bbs({ , , })) = e
| eta exp e =Abs("x",dummyT, e$ (Bound 0));

fun quan tr' r [A,e] =

let val Abs(x, ,e') = eta exp e
val (x',e'') = variant abs(x,dummyT,e")
in
Const (r,dummyT) $ (Const ("tbind ",dummyT) $Free (x',dummyT) SA) $e'’
end; N
in
[("subty'",quan_tr' "subty ")]
end;
*}
axioms
sub elim: "a: (subty' A P) ==> P(a)"
sub_intr: "Il a::A; P(a) |] ==> a:(subty' A P)"
sub supertype: "a: (subty' A P) ==> a:A"

(* derived rules *)
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seq elim bas: "I oa:h; Yix. x:A ==> P{x) |] ==> P(a)
seq_elim_bas2: "[] a:A; b:B; !lx y.[l %:A; y:B |} ==> (P xvy) 1] ==> (P
a b)"
seq elim gen: "I a:A; Pla); !!x. [| x:A; P(x) ] ==> Q(x) |] ==>
Qa)”
seqvelimigen2: "[| a:A; b:B; P(a); Qby;tlx y.[| x:A; y:B; P(x); Qly)
1] ==> (Rx y) |l ==> (R ab)"
sub union_ext left: "a:(subty' A P) ==> a: (subty' (B|A) )"
sub_unionfext_right: "a: (subty' A P) ==> a:(subty' (A|B) P)"
sub subs: "{| a:(subty' A P); !ly. []| y:A; Ply) |] ==> Q(y) |] ==>
a:({sub A )"
end
12.10 BasTy.thy
theory BasTy = Sub:
consts
intty' s My" ("int™)
ratty' :: "ty" ("rat")
tokenty’ :r "ty" ("token')
charty’ o "ty" ("char™)
end
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12.11 NatLPF.thy

theory NatLPF =

BasTy:

(* Corresponds to section 14.4 Of "Proof in VDM" *)

consts

natty’ ::

natlty

zero!
succ'
pred’
add'
sub'
mult’
div'’
idiv'

1t!
leqg’
gt'

geq’

Tey" ("nat")

' o "ty”
"eX"
"ex => ex"
"ex => ex"
"lex,ex] => ex"
"lex,ex] => ex"
"[ex,ex] => ex"
"lex,ex] => ex"
"lex,ex] => ex"
"lex,ex] => ex”
"l[ex,ex] => ex"
"[ex,ex] => ex"
"lex,ex] => ex"

("natl")

(Msucc'{_")™M)

("pred' ("))

(" +/ )" [410,411] 410)
("( =/ )" [410,411] 410)
(" */ )" [420,421] 420)
(" /7 Y™ [420,421] £20)
("(2div/ )" [420] 420)
("( </ )™ [310,311] 310)
("(_ <=/ )" [310,311] 310)
("(_ >/ )" [310,311] 310)
("(_>=/ )" [310,311] 310)

(* concrete syntax for natural number constants *)

nonterminals digit digit is

syntax
Zero "digit" ("o")
one_ "digit" ("1™
two :: "digit® ("2")
three :: "digit" ("3™)
four :: "digit" (4"
five "digit" ("5")
six :: "digit"” ("6")
seven "digit” ("7
eight :: "digit"” ("8"™)
nine o "digit” ("om)

digit isn_
natconst

"digit => digit is"

"digit is => ex"

parse translation

{*
let

fun digit to_ int

case

(Const (s, )) =

s of

"zero " => 0 |
"one " => 1 |
"two " o=> 2 |
"three " => 3 |
"four " => 4 |
"five " => 5 |
"six " => 6 |
"seven " => 7 |
"eight " => 8 |
"nine " => 9;
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fun digit is to int (Const("digit isn ", )

$dssd)

(digit is to int ds * 10)

digit to int d;

+ (digit to_int d)
| digit is to int d =
fun int to succ 0 = Const("zero'",dummyT)
| int to_succ n = Const("succ'"”,dummyT)$ (int to succ
fun digit is_to_succ ds = int to_succ{digit is to_int ds);
fun natconst_tr [ds] = digit is_to succ ds;
in
[ ("natconst ",natconst tr)]
end;

*}

print translation
(-
let

fun zero_tr'

[]

fun int to digit n
case n of

0 => Const("zero ",dummyT) |
1 => Const ("one ",dummyT) |

2 => Const ("two_ ",dummyT) |

3 => Const ("three ",dummyT) |
4 => Const ("four ",dummyT) |
5 => Const("five ",dummyT) |
6 => Const ("six ",dummyT) |

7 => Const ("seven ",dummyT) |
8 => Const ("eight ",dummyT) |
8 => Const("nine ",dummyT) ;

fun int to digit is n

Const("natconst_",dummyT)$Const("zeroﬁ",dummyT);

let val d = n div 10 in
if d >= 1
then Const{"digit isn_",dummyT)S$ (int to digit is d)$(int to digit (n
mod 10))
else int to digit n
end;
fun succ_to_int (Const("succ'",_)$e) = 1 + succ to int e
| succ_to_int (Const("zero'", )) =0
| succ_to int _ = raise Match;
fun succ_tr' [e] =
Const ("natconst_",dummyT) $ (int_to digit is ((succ to int e)+1));
in
[("zero'",zero tr'), ("succ'",succ_tr')]
end;
*}
(* axioms *)
axioms
zero form: "0 nat"
succ_form: "n nat ==> succ{n) nat”
nat _indn: "[| n nat; P{0); !'tk. [ k nat; P(k) |] ==> P(succ(k)) ] ==>
P(n) "
succ_oneone: "I nl nat; n2 nat; succ(nl) = succ(n2) |] ==> nl = n2"
succ_neq zero: "n : nat ==> succ(n) <> 0"
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add defn_zero_left: "n nat ==> 0 + n = n"

add_defn succ_left: "[] nl nat; n2 nat |} ==> succ{nl) + n2 = succ(nl +
n2)"

mult defn zero left: "n nat ==> 0 * n = 0"

mult defn_ succ_left: "[| nl nat; n2 nat |} ==>» succi{nli) * n2Z = nl * n2 +
n2"

(* derived *)

nat cases: "[| n nat; P(0); !1k. k nat ==> P(succ(k)) [] ==> P{(n)"

add form: "] nl nat; n2 nat |] ==> nl + n2 nat”

add defn_zero_right: "n : nat ==>n + 0 = n"

add_defn_succ_right: "] nl nat; n2 nat |] ==> nl + succ(n2) =
succ(nl + n2)"

add defn succ_left comm: "[| nl nat; nZ nat |] ==> succ{nl + n2) =
succ(nl) + n2"

add_comm: "[1 nl : nat; n2 nat |] ==> nl + n2 = n2 + ni"

add_assoc: "I} nl nat; n2 nat; n3 nat }} ==> nl + n2 + n3
=nl + (n2 + n3)"

mult form: "] nl nat; n2 nat |] ==> nl * n2 nat™

mult comm: "[| nl nat; n2 nat |] ==> nl * n2 = n2 * nl"

mult assoc: "[| nl nat; n2 nat; n3 nat ] ==> nl * n2 * n3 = nl * (n2 *
n3)"”
defs

natl def: "natl == << n:nat | n <> 0 >>"

1t def: "n<m==m > n"

gt _def: "n > m == exists k:inatl & m + k = n"

leg def: "n <= m ==m >= n"

geg_def: "n >= m == exists kinat & m + k = n"
axioms

natl intr: "Il n nat; n <> 0 |] ==>n natl"”

natl elim: "n : natl ==>n <> 0"

natl indn: "[I n : matl; P(succ(0)); !!k. [I k natl; P(k) 1] ==>
P(succ(k)) |} ==> P(m)"

natl supertype: "n : natl ==> n nat”

1t not refl: "n nat ==> not (n < n)"”

1t _trans: "I} nl nat; n2 nat; n3 nat; nl < n2; n2 < n3 |] ==> nl <
n3"

1t neq: "Il nl nat; n2 nat; nl < n2 }|] ==> nl <> n2"

1t tot ord: "Il nl nat; n2 nat |] ==> nl < n2 or nl = n2 or n2 < nl"

1t zero natl: "n natl ==> 0 < n"

1t zero nat: "I{| nl : nat; n2 nat; n2 < nl ] ==> 0 < nl"

1t nat_succ: "n nat ==> n < succ(n)"

def 1t: "] nil nat; n2 nat |] ==> def nl < n2"

gtinot_refl: n nat ==> not (n > n}"

gt trans: "Il nl nat; n2 nat; n3 nat; nl > n2; n2 > n3 |] ==> nl >
n3"

gt_succ _inh: "[]| nl nat; n2 nat; n2 > nl |] ==> succ(nl) > succ(n2)"

gt _tot ord: "] nl nat; n2 nat ] ==> nl > n2 or nl = n2 or n2 > nl"

def gt: "] nl nat; n2 nat |1 ==> def nl > n2"

leg succ_defn: "] nl nat; n2 nat |] ==> nl = succ(n?2) or nl <= n2 <=> nl
<= succ (n2)"

geq zero_intr: 'n nat ==>n = 0 or n > 0"

geq_succ_intr: "Il m : nat; n nat; n >m |] ==> n > succ(m) or n = succ{m)”
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neqg_succ: "] nl nat; n2z nat; n2 <> nl |] ==> succ(nl) <> succ(n2)”
not 1t zero: "n nat ==> not (n < 0)"
eq_zero iff leg zero: "n nat ==>n = 0 <=> n <= 0"
add_eqﬁzero‘elim: "] nl nat; nz2 nat; nl + n2 = 0 |] ==> nl = 0 and n2
O"
end
12.12 SetLPF.thy
theory SetLPF = NatLPF:
(* expression sequences *)
nonterminals exs
syntax
o "ex => exg" (Hill)
exsn "lex,exs]=> exs" ",/
(* set type constructor *)
consts
setty’ "ty => ty" ("set of " [140] 140)
(* set membership *)
consts
inset’ "lex,ex] => ex" ("(_ in set/ )" [310,310] 310)
syntax
ninset’ "lex,ex] => ex" ("(_ not in set/ _)"™ [310,310] 310)
translations
"ninset' a s" == "not (a in set s)"
(* primitive set constructors *)
consts
emptyset' "ex" ("{rm (* not VDM-SL! *)
addtoset’ "lex,ex] => ex" ("adda'(_, _")™M) (* not VDM-SL! *)
(* set operations *)
consts
union’ "lex,ex] => ex" (" union/ )™ [410,411] 410)
inter' "lex,ex] => ex" ("(_ inter/ )™ [420,421] 420)
dunion' "ex => ex" ("(2dunion/ )™ [450] 450)
dinter’ "ex => ex" ("(2dintexr/ )™ [4501 450)
power' "ex => ex" ("(2power/ )" [450] 450)
diff" "lex,ex] => ex" ("(_\N\/ )" [410,411] 410)
psubset’ "lex,ex] => ex" (" psubset/ )" [310,3101 310)
subset’ "lex,ex] => ex" ("(_ subset/ )" [310,310] 310)
card’ "ex => ex" ("(2card/ )" [450] 450)

(* set enumeration

*)
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syntax

"

enumset "exs => ex (ML rm
translations
"enumset (exsn e es)” == "{add' e (enumset es))"
"enumset (e} " == "(add’' e emptyset')"
(* set binding lists *)
nonterminals sbinds sbind
syntax
nn "Sbind => Sbinds" (n_n)
sbindsn_ "[sbind, sbinds] => sbinds"” ",/ M
sbind :: "[idt,ty] => sbind" ("{_ in set/ ™)
(* set bounded quantifiers *)
consts
existss’ "lex, ex=>ex] => ex"
foralls' "[ex,ex=>ex] => ex"
existsls' "lex, ex=>ex] => ex"
ictas’ "lex,ex=>ex] => ex"
syntax
foralls_ "i{sbinds,ex] => ex" ("(2forall/ _ &/ )" [100,100] 100)
existss_ "[sbinds,ex] => ex" ("(2exists/ _ &/ )" [100,100] 100)
existsls : "[sbinds,ex] => ex" ("(2Zexistsl/ _ &/ _)" [100,100] 100)
iotas :: "[sbind,ex] => ex" ("(2iota/ _ &/ )" [100,100] 100)
translations
"foralls_ (sbindsn_ sb sbs) e" == "foralls (sb foralls sbs e)"
"foralls_ (sbind_ x s) e" => "foralls' s (%x. e)"
"existss_ (sbindsn_ sb sbs) e" == "existss sb (existss_ sbs e)"
"existss_ (sbind_ x s) e" => "existss' s (%x. e)"
"existsls_ (sbindsn_ sb sbs) e” == "existsls sb (existss_ sbs e)"
"existsls (sbind x s) e” => "existsls' s (%x. e)"
"iotas (sbind_ x s) e" => "iotas' s (%x. e)"
(* set comprehension *)
consts
comp' "[ty, ex => ex, ex => ex] => ex"
comps' "lex, ex => ex, ex => ex] => ex”
syntax
comp "[ex,idt,ty,ex] => ex" ("(1{_ |/ _ : &/ )™M
comps "lex,idt,ex,ex] => ex" ("(1{_ |/ in set _ &/ )}™
compid "lidt, ty,ex] => ex" ("L =/ ) &/ M) (* not
VDM-SL! *)
compsid "[idt,ex,ex] => ex" ("(1{( in set/ ) &/ )™ (* not
VDM-SL! *)
comptr "lex,idt, ty] => ex" ("L {_ 1/ o/ M
compstr "[ex, idt,ex] => ex" ("(1{_ I/ (_ in set/ 1™
translations
"comp e x A P" => "comp' A (%x. e) (%¥x. P)"
"comps e x S P"=> "comps' s (%x. e} (%x. P)"
"compid x A P" => "comp' A (%x. x) (%x. P)"
"compsid x s P"=> "comps' s (%x. x) (%x. P)"
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Ycomptr e x A" =>
"compstr e x s"=>

(* set range *)

syntax
setrange

(* axioms ¥*)
axioms

emptyset form:
emptyset is empty:

"

"

comp' A (%x. e} (%x. true)”

comps' s (%x. e) (%x. true)"
lex,ex] => ex" ("{ oo, 1M
"{} set of A"

"

A ==> a not in set {}"

add form: "[!| a A; s set of A |] ==> add(a,s) set of A"
inset add_defn:
[} a : A; b A; s set of A |] ==>
a in set add(b,s) <=> a = b or a in set s"
set indn:
"Il s set of A; P({}):
tta s, []| a A; s? set of 4;
P(s'); a not in set s' |} ==> P(add(a,s')) |] ==>
Pi{s)"
existss elim:
"l s set of A; (existss' s P);
tfy. [l vy ¢ A; y in set s; P(y) |] ==> Q {] ==> Q"
existss intr:
"I a A; s set of A; a in set s; P(a) |] ==> (existss' s P)"
not existss_elim:
" a A; s set of A; a in set s; not (existss' s P) |] ==> not P(a)"
not existss_intr:
"Il s set of A; x A; PIx. x in set s ==> not P(x) |] ==
not (existss' s P)"
iotas_form: "[| s set of A; (existsls' s P) |] ==> (iotas' s P) A"
iotas_intr: "[| s set of A; (existsls' s P) |} ==> P(iotas' s P)"
psubset defn:
"] sl set of A; s2 set of A |] =>
sl psubset s2 <=> (forall a in set s & a in set s)"
subset defn:
"I sl set of A; s2 set of A |] ==
sl subset s2 <=> sl psubset s2 and sl <> s2"
eq_set defn:
"I} sl set of A; s2 set of A |] ==>
sl = s2 <=> sl psubset s2 and s2 psubset sl”
card defn emptyset: "card {} = 0"
card defn_ add:
"1 a A; s set of A; a not in set s |] ==>
card add({a,s) = succ{card s)"
union_ form:
"] sl set of A; s2 set of A |] ==> (un isl s2) set of A"
inset union defn:
"I a A; sl set of A; s2 set of A |] ==>
a in set sl union s2 <=> a in set sl or a in set s2"
inter form:
"I sl set of A; s2 set of A |]] ==> sl inter s2 set of A"
inset inter_defn:
"Il a A; si set of A; s2 set of A |] ==>
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a in set sl inter s2 <=> a in set sl and a in set s2"
diff form:

"[] sl : set of A; s2 : set of A |] ==> s1 \\ s2 : set of A"
inset diff defn:

"I} a : A; sl : set of A; s2 : set of A |] ==>

a in set sl \\ s2 <=> a in set s1 and a not in set s2"
dunion_ form:

"s : set of set of A ==> dunion s : set of A"
inset dunion_defn:

"[] a : A; s : set of set of A |] ==>

a 1in set dunion s <=> (existss' s (inset' a))"
dinter form:

"I s : set of set of A; s <> {} |] ==> dinter s : set of A"
inset dinter defn:
"Il a : A; s : set of set of A; s <> {} |] ==>

a in set dinter s <=> (foralls' s (inset' a))"”
power form:

"s : set of A ==> power s : set of set of A"
inset power defn:

"] s1 : set of A; s2 : set of A |] ==

sl in set power s2 <=> sl psubset s2"

set comp_form:

"[| forall x:A & def P(x); !!x. []|] x : A; P(x) ] ==> f(x) : B;
exists s:set of B & forall y:A & P(y) => f{y) in set s |] ==>
(comp' (set of B) £ P) : set of B"

inset set comps defn:

"[} b : B; forall x:A & def P(x); !!'x. [] x A; P(x) ] ==> fi{x) : B;
exists s:set of B & forall y:A & P(y) => f£(y) in set s |] ==>
b in set (comp' A f P) <=> (exists a:A & P(a) and b = f(a))"
comps_defn set:
"[] s : set of A; forall x:A & def P(x);
Vi, [f o x @ BA; P(x) |1 ==> f(x) : B;
exists t:set of B & forall y in set s & P(y) => f(y) in set t |] ==>
(comps' s £ P) = (comp' A £ P)"
defs
foralls def: "(foralls' s P} == not (exists X in set s & not P(x))}"
existsls def: "(existslis' s P} == exists x in set s & P(x) and (forall y in

set s & Ply) =>y = x)

parse translation
{(x
let

fun setrange tr [el,e2] =
Const ("comp'™", dummyT) $
Const ("natty'", dummyT) $
Abs ("x", dummyT, Bound 0)$
Abs ("x", dummyT,
Const ("and'", durmyT) $
(Const ("leg'", dunmyT)} $el$ (Bound 0))$
(Const ("leg'",dummyT) $ (Bound 0) $e2));
in
[ ("setrange ",setrange tr)]
end;

*1

print translation
o
let

fun eta exp (e as Abs(_, ,_}) = e
| eta exp e =Abs ("x", dummyT, e$ (Bound 0) ) ;
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fun comp_tr' [A,e,P] =

let val Abs(nl, ,e') = eta exp e
val Abs(n2, ,P') = eta exp P
val new = variant (add term names (e',add term names (P',[1}))
in
case (A,e',P") of
(_, ,Const("true'”, )) =>
let val n' = Free(new nl,dummyT) in
Const ("comptr", dummyT) $subst _bounds ([n’'},e")$n'3A
end |
(Const ("natty'", ),Bound O,
Const ("and'", )%
(Const ("leqg'", )S$Sel$(Bound 0))83
(Const ("leq'", )$(Bound 0)S$e2)) =>
Const ("setrange ", dummyT) Sel$e2 |
{ ,Bound 0, ) =>
let val n' = Free{new n2,dummyT) in
Const ("compid", dummyT) $n'S$ASsubst bounds([n'],P")
end |
=>
let val n' = Free(new nl,dummyT) in
Const ("comp”, dummyT) $
subst bounds([n'],e')$n’$ASsubst bounds([n'},P")
end
end;
fun comps_tr' [s,e,P] =
let val Abs(nl, ,e') = eta exp e
val Abs(n2, ,P') = eta exp P
val new = variant (add term names (e',add term names (P', []))})
in
case (e',P') of
(_ +Const("true'", )) =>
let val n' = Free(new nl,dummyT) in
Const ("compstr",dummyT) $subst bounds([n'],e’)sn’Ss
end |
(Bound 0, ) =>
let val n' = Free(new n2,dummyT) in
Const ("compsid”, dummyT) $n'$s$subst bounds([n'],P'")
end |
=>
let val n' = Free(new nl,dummyT) in
Const ("comps", dummyT) $
subst bounds([n'],e')$n'S$s$subst bounds([n'],P")
end
end;

fun squan_tr' r [s,e]
e
T

let val Abs (x, ') = eta exp e

val (x',e'') = variant abs(x,dummyT,e')
in
Const (r, dummyT) $ (Const ("sbind ", dummyT) $Free (x', dummyT) $s} 5e’’
end;
in
[("foralls'",squan_tr' "foralls "), ("existss'",squan_tr' "existss_"),
("existsls'",squan tr' “"existsls "), ("iotas'",squan_tr' "ictas "),
("comp'",comp_tr'), ("comps'",comps tr')]
end;

*}
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axioms

emptyset psubset: "s : set of A ==> {} psubset s”
singleton compid: "a : ==> {a} = {x : A & x = a}l"
singleton form: a : A ==> {a} : set of A"

forall to forall:
"Il s : set of A;
forall x:A & X in set s => P(x) }] ==>
(foralls' s PY"
foralls elim:
"Il a : A; s : set of A; a in set s; (foralls' s P) [] ==> P{a
foralls_intr:
"[l s : set of A;
Tty [y ¢ A; v in set s |] ==> def P(y) |] ==>
(foralls' s P)"
foralls_to forall:
"Il s : set of A; (foralls' s P) |] ==>
forall x:A & x in set s => P(x)"

def foralls inh:
"Il s : set of A;
Pty [y ¢ Ay y in set s |] ==> def P(y) ] ==
def (foralls' s P)"
def existss_inh:
"[] s : set of A;
Tix, [] x : A; x in set s |] ==> def P(x) |] ==>
def (existss' s P)"
def inset:

"l a : A; s : set of A |] ==> def a in set s"
def inter emptyset:
"[] s1 : set of A; s2 : set of A |] ==> def sl inter s2 = {}"

def psubset:

"[| sl : set of A; 82 : set of A |] ==> def sl psubset s2"
def emptyset:

"s : set of A ==> def s = {}"

eq emptyset_intr:
"[| s : set of A; !la. a : A ==> a not in set s |] ==> s = {}"
eq set intr psubset:
"I} sl : set of A;
s2 : set of A;
sl psubset s2;
s2 psubset sl |] ==>
sl = s2"
eg_set intr_sqgt:
[l sl : set of A;
s2 : set of A;

tta., [} a ¢ A; a in set sl |] ==> a in set s2;
b, [ b @ A; b in set 82 |] ==> b in set sl |] ==>
sl = s2"

exists to existss:
"[l s : set of A;
exists x:A & X in set s and P(x) |] ==>
({existss' s P)"
existss to_exists:
"] s : set of A;

(existss' s P) |] ==>
exists x:A & x in set s and P(x)"
existsls elim: "Il s : set of A; (existsls' s P);
My, [}y + A; y in set s; Pl(y);
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forall x in set s & P(x) => x =y |] ==> Q |] ==>

Qll
existsls intr:
"Il a : A; s : set of A; a in set s; P(a);
forall y in set s & P(y) => vy = a |] ==> (existsls' s P)"

inset singleton elim:
"[l a: A; b : A; bin set {a} |] ==> b = a"
inset singleton intr:
"a : A ==> a in set {a}”
inset singleton intr eq:
"[ta: A b=2a |] ==> Db in set {a}"”
inset inter elim:
"I} a : A; sl : set of A; s2 : set of A; a in set sl inter s2 |] ==>
a in set sl and a in set s2"
inset inter elim left:
"[| a : A; sl : set of A; s2 : set of A; a in set sl inter s2 |] ==>
a in set s2"
inset inter elim right:
"Il a : A; sl : set of A; s2 : set of A; a in set sl inter s2 |] ==>
a in set s1"
inset inter I:
"Il a : A; sl : set of A; s2 : set of A; a in set sl; a in set s2 |]
a in set sl inter s2"
inset notinset contr:

_"[t a : A; b : A; s : set of A; a in set s; b not in set s ] ==> a <>
b"
inset or notinset:
"Il a : A; s : set of A {] ==> a in set s or a not in set s"
inset union elim:
"Il a : A; sl : set of A; s2 : set of A; a in set sl union s2 |] ==>
a in set sl or a in set s2"
inset union_intr:
"Il a : A; sl : set of A; s2 : set of A; a in set sl or a in set s2 |]
a in set sl union s2"
inset union_ intr left:
"[] a : A; sl : set of A; s2 : set of A; a in set s2 |] ==>
a in set sl union s2"
inset union_intr_right:
"l a : A; 81 : set of A; 82 : set of A; a in set sl |] ==>
a in set sl union s2"
inset dunion_elim:
"[] a : A; s : set of set of A; a in set dunion s |] ==> (existss' s
(inset' a))"
inset dunion intr:
"I} a : A; s : set of set of A; (existss' s (inset' a)) |] ==> a in set
dunion s"
inset _add elim:
"l a: A; b : A; s : set of A; a in set (add b s) |] ==> a = b or a in
set s"
inset add intr:
"Il a : A; b : A; s : set of A; a = b or a in set s |] ==> a 1in set
{add b s} "
inset _add intr elem:
"Il a : A; s : set of A |] ==> a in set (add a s)"

inset add intr elem egq:
"Il a : A; s @ set of A; a = b |] ==> a in set {(add b s)"

inset add_intr set:

"Il a : A; b : A; s : set of A; a in set s |] ==> a in set (add a s)"
inset cases:

"[| a : A; s : set of A; a in set s ==> Q; a not in set s ==> Q |] ==

133



Q"
inset

inset

in set

set si”
inset

_diff elim:
"Il a : A; sl : set of A; s2 : set of A; a in set sl \\ s2 |] ==>
a2 in set sl and a not in set s2"
_diff elim left:
"[] a : A; sl : set of A; s2 : set of A; a in set sl \\ s2 |] ==> a not
s2"
inset diff elim right:
"I a : A; sl : set of A; s2 : set of A; a in set s1 \\ s2 |] ==> a in
_diff intr:
"I a : A; sl : set of A; 82 : set of A; a 1in set sl; a not in set s2

1] ==>

inset

inset

inset

inset

k <= 3"
inset

inset

a in set sl \\ s2"
set comp elim:
ﬁ"[l b : B; forall x:A & def Pi{x); !!x. [] x
exists s:set of B & forall y:A & P(y) =
b in set (comp' A £ P) |] ==>
exists a:A & P(a) and b = f(a)"”
_set _comp_intr:
"[| b : B; forall x:A & def P(x)
exists s:set of B & forall y:A & P(y)
( Il =

A; P(x) |1 ==> f(x) : B;
{(v) in set s;

;o oMix. [ x o B; P(x) |] ==> f(x) : B;
=> f({y) in set s;

exists a:A & P(a) and b = f(a) ] ==>
b in set (comp' A £ P)”
_set_comp_ intr_ fun:
"[} a : A; P(a); forall x:A & def P(x);
Mix., [] x : A; P(x) [|] ==> f(x) B;
exists s:set of B & forall y:A & P(y) => fly) in set s |] ==>
f(a) in set (comp' A f P)"
_interval_defn:
"{] i : nat; Jj : nat; k : nat |] ==> k in set {i,...,3} <=> i <= k and

_those_defn:
"exists s:set of A & forall y:A & P(y) => vy in set s ==
a in set {x:A & P(x)} <=> P(a)"”
those elim:
_"[I a : A; forall x:A & def P(x);
exists s:set of A & forall y:A & P(y) => y in set s;
a in set {x:A & P(x)} |] ==
P(a)"”

inset those intr:

"Il a : A; P(a); forall x:A & def P(x};
exists s:set of A & forall y:A & P(y) => y in set s |] ==
a in set {x:A & P(x)}"

inter singleton defn inset:

"[] a : A; s : set of A; a in set s |] ==> {a} inter s = {a}"
inter singleton_emptyset elim:

"[] a : A; s : set of A; {a} inter s = {} |] ==> a not in set s"
inter union dist left:

"[] s1 : set of A; s2 : set of A; 83 : set of A |] ==>

sl inter (s2 union s3) = sl inter s2 union sl inter s3"
inter union dist right:

"[] sl : set of A; s2 : set of A; s3 : set of A |] ==>

inter

= {} I]

= {1 1]

inter

(sl union s2) inter s3 = sl inter s3 union s2 inter s3"
union emptyset elim left:

"I} sl : set of A; 82 : set of A; s3 : set of A; (sl union s2) inter s3
32 inter s3 = {}"
inter union emptyset elim right:
"Il sl : set of A; s2 : set of A; s3 : set of A; (sl unicn s2) inter s3
==>
sl inter s3 = {}"
~union_left emptyset intr:
"Il s1 : set of A; s2 : set of A; s3 : set of A; sl inter s3 = {};
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s2 inter s3 = {} |] ==>
(sl union s2) inter s3 = {}"
inter union_right emptyset intr:
"Il s1 : set of A; s2 : set of A; s3 : set of A;
sl inter s3 = {} |] ==>
sl inter (s2 union s3) = {}"
inter assoc:
"[] s1 : set of A; 82 : set of A; s3 : set of A |

sl inter s2 inter s3 = sl inter (s2 inter s3)"
inter Comm:
"Il s1 : set of A; s2 : set of A |] ==> sl inter

inter comp:
"Il s1 : set of A; s2 : set of A |] ==>

sl inter 82 = {x : A & x in set sl and x in set
inter defn emptyset right:
"s : set of A ==> s inter {} = {}"

inter add intr inset:

sl inter s2 = {};
] ==
s2 = s2 inter sl”
52 }n

"Il a : A; sl : set of A; s2 : set of A; a in set s2 |] ==>
add{a,sl) inter s2 = add(a,sl inter s2)"
inter add intr notinset:
"Il a : A; sl : set of A; s2 : set of A; a not in set s2 [] ==>
add(a,sl) inter s2 = sl inter s2"
inter intr right psubset:
"[] sl : set of A; s2 : set of A; sl psubset s2 |] ==>
sl inter s2 = sl
inter self:
"s : set of A ==> s inter s = 8"
not add psubset intr elem:
"I a : A; sl : set of A; s2 : set of A; a not in set s2 |] ==
not add(a,sl) psubset s2"
not add psubset intr set:
"[I a : A; sl : set of A; s2 : set of A; not sl psubset s2 |] ==>

not add(a,sl) psubset s2"
ninset singleton intr:

"Il a : A; b : B; a<>»Db {] ==>a not in set {b}"
notinset inter elim:

"Il a : A; sl : set of A; s2 : set of A; a not in set sl inter s2 |]
a not in set sl or a not in set s2"
notinset inter intr left:
"Il a : A; sl : set of A; s2 : set of A; a not in set s2 |] ==
a not in set sl inter s2"
notinset inter intr right:
[} a : A; sl : set of A; s2 : set of A; a not in set sl |] ==>
a not in set sl inter s2"
notinset union elim:
"Il a : A; sl : set of A; s2 : set of A; a not in set sl union s2 |]
a not in set sl and a not in set s2"
notinset union elim left:
"Il a : A; sl : set of A; s2 : set of A; a not in set sl union s2 ]
==2
a not in set s2"
notinset union elim right:
"I} a : A; sl : set of A; s2 : set of A; a not in set sl union s2 |]
==>
a not in set sl"
notinset union intr:
"Il a : A; sl : set of A; s2 : set of A; a not in set sl; a not in set
s2 |} ==>
a not in set sl union s2"
notinset add elim:
"{] a : A; b : A; s : set of A; a not in set add(b,s) |[|] ==>

a <> b and a not in set s"
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notinset add_elim left:

"I[| a : A; b : A; s : set of A; a not in set add(b,s) |] ==> a not

set s"
notinset add elim right:

"l a: A; b : A; s : set of A; a not in set add(b,s) |

notinset add intr:

"Il a: A; b A; s : set of A; a <> b; a not in set s

a not in set add(b,s)"”
notinset diff elim:

"{l a : A; sl : set of A; s2 : set of A; (Nin a

a not in set sl or a in set s2"
notinset diff intr left:
"Il a : A; sl : set of A; s2 : set of A;
set s1 \\ s2”
notinset diff intr right:
"[] a : A; sl : set of A; s2 : set of A;
set s1 \\ s2"
notinset psubset intr:

] ==> a <> b"
1] ==>
(s1 \\ s2)) |] ==
a in set s2 |1 ==> a not
a in set sl |] ==> a not

"Il a : A;_sl : set of A; s2 : set of A; sl psubset s2; a not in set

1] ==
a in set sl1"
notinset those elim:
"Il a : A; forall x:A & def P(x);

exists s:set of A & forall y:A & P(y) => y in set s;

a not in set {x:A & P(x)} |] ==
not P(a)"”
notinset those intr:
"[] a : A; not P(a); forall x:A & def P(x)

’

exists s:set of A & forall y:A & P(y) => y in set s |l ==>

a not in set {x:A & P(x)}"
psubset _add_add_intr:
"Il a : A; b : A; s : set of A |] ==>
add(a,add (b, s)) psubset add(b,add(a,s))"
psubset elim:

"Il a : A; sl : set of A; s2 : set of A;

a in set s2"
psubset intr:
"[} sl : set of A; s2 : set of A;
'ta., [|] a : A; a 1n set sl |] ==> a in
sl psubset s2"
psubset self:
"s : set of A ==> s psubset s"
psubset trans:
"Il sl : set of A; s2 : set of A; s3
psubset s3 |] ==>
sl psubset s3"
union inter dist left:
"] sl : set of A; s2 : set of A; s3 : set
sl union s2 inter s3 (sl union s2) inte
union inter dist right:
"[] s1 : set of A; s2 : set of A; s3 : set
sl inter s2 union s3 (sl union s3) inte
union add left intr:
"It a : A; sl : set of A; s2 : set of A ]
add{(a,sl) union s2 = add{(a,sl union s2)"
union_add right intr:
"I} a : A; sl : set of A; s2 : set of A |]
sl union add(a,s2) = add(a,sl union s2)"
union assoc:
"[] sl : set of BA; s2 : set of A; s3 : set
sl union s2 union s3 = sl union (s2 union
union comm:
"Il sl : set of A; s2 : set of A |} ==> sl

i
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sl psubset s2

sl psubset s2;

a in set si;
set s2 |] ==>
set of A;
of A |] ==>

r (sl union s3)"

of A |]

==>

r (s2 union s3)"

of A ]
S3> "

union s2

==>

s2 union si"

in

in

in

s2
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union compid:

"I} sl : set of A; s2 : set of A |] ==>

sl union s2 = {x : A & x in set sl or x in set s2 "
union defn emptyset left:

"s : set of A ==> {} union s = s
union defn emptyset left rev:

"s : set of A ==> s = {} union s"
union defn emptyset right:

"s : set of A ==> s union {} = s"
union defn emptyset right rev:

"s : set of A ==> s = s union {}"

union defn those:
"[{ forall x:A & def P(x); forall w:A & def Q(w);
exists s:set of A & forall y:A (y) => y in set s;

& P
exists t:set of A & forall z:A & P(z) => z in set t |] ==>
{z +: & & P(z) or Q(z}) } = {x:A & P(x)} union {x:A & Q(x)}"
union intr left psubset:
"[| sl : set of A; s2 : set of A; sl psubset s2 |] ==> sl union s2 =

s2"
union psubset:
"l sl : set of A; s2 : set of A; s3 : set of A; sl psubset s3;
s2 psubset s3 |] ==
sl union s2Z psubset s3"
union self:

"s : set of A ==> s union s = s"
dunion union dist:
"[l s1 : set of set of A; s2 : set of set of A |] ==>
dunion (sl union s2) = dunion sl union dunion s2"
dunion comp:
"s : set of set of A ==> dunion s = {x : A & (existss' s (inset’' x)) }"
dunion defn emp:
"dunion {} = {}"
dunion defn one:
"s : set of A ==> dunion {s} = s"

dunion defn_add:
"Il s1 : set of A; s2 : set of set of A |] ==
dunion add(sl,s2) = sl union dunion s2"
add psubset elim left:
[l a : A; sl : set of A; s2 : set of A; add(a,sl) psubset s2 |] ==>
51 psubset s2"
add psubset elim right:
"Il a : A; sl : set of A; s2 : set of A; add(a,sl) psubset s2 |] ==>
a in set s2"
add psubset:
"] a : A; sl : set of A; s2 : set of A; a in set s2; sl psubset s2 |]

add (a,sl) psubset s2"
add_to uni:

"Il a : A; s : set of A |] ==> add{(a,s) = {a} union s"
add abs:
"It a : A; s : set of A |] ==> add{a,add(a,s)) = add({a,s)"”
add add form:
"[l a : A; b : A; s : set of A |] ==> add(a,add(b,s)) : set of A"
add_ comm:
LN a s Ay b : A; S : set of A . ==> add(a,add(b,s)) =

add(b,add(a,s))"

add_comp:

"Il a : A; 8 : set of A |] ==> add(a,s) = {x : A & x = a or x = s }"
add_diff psubset:

"Il a : A; sl : set of A; 82 : set of A |] ==

add(a,sl) \\ s2 psubset add(a,sl \\ s2)"
add red:

"] a : A; 8 : set of A; a in set s |] ==> add(a,s) = s
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card eq zero intr:

"s = {} ==> card s = 0"
card noteqg zero_elim:
"I s : set of A; card s <> 0 |] ==> 5 <> {}"

card defn uni:
"{|] 81 : set of A; s2 : set of A |] ==>

card (sl union s2) = add{card sl,card s2) - card (sl inter s2)"
card form:
"s : set of A ==> card s : nat"

diff eqg emptyset defn:

"[] sl : set of A; s2 : set of A |] ==> s1 \\ s2 = {} <=> sl psubset

s2"

diff inter DeM:

"I s1 : set of A; s2 : set of A |] ==>

s1 \\ s2 inter s3 = sl \\ s2 union (sl \\ s3)"
diff inter_ T:

"[| sl : set of A; s2 : set of A; s3 : set of A |] ==>

(s1 \\ s2) inter s3 = sl inter s3 \\ s2"

diff psubset:

"{] sl : set of A; s2 : set of A; s3 : set of A |] ==> sl \\ s2 psubset

sl”

diff union_DeM:

"[] sl : set of A; s2 : set of A; s3 : set of A |] ==>

s1 \\ (s2 union s3) = sl \\ s2 union (sl \\ s3)"
diff add intr inset:

"Il a : A; sl : set of A; s2 : set of A; a in set s2 |] ==

add(a,sl) \\ 52 = s1 \\ s2"
diff add_intr_notinset:

"[] a : A; s1 : set of A; 82 : set of A; a not in set s2 |] ==>

add(a,sl) \\ s2 = add(a,sl \\ s2)"
diff comp:

"I} sl : set of A; s2 : set of A |] ==>

s1 \\ 82 = {x : A & x in set sl and x not in set s2 }"
diff defn_ emptyset left:

"s : set of A ==> {} \\ s = {}"
diff defn_emptyset right:

"s : set of A ==> s \\ {} = s"
diff intr_ psubset:

"[] sl : set of A; 82 : set of A; sl psubset s2 |] ==> sl \\ s2 = {}"
diff self:

"s : set of A ==> 35 \\ s = {}"
finset image:

"[] s : set of A; !'x. x : A ==> f(x) : B |] ==>

exists t:set of B & forall x in set s & f(x) in set t"
inh to emptyset:

"Il a : A; s : set of A; a in set s ] ==> s <> {}"
ini setrange one_ form:

"n : nat ==> {succ(0),...,n} : set of natl"”
ini setrange_form:

"n : nat ==> {0,...,n} : set of natl"”

setrange diff defn:
"[| 1 : nat; j : nat [|] ==> {succ(i),...,J} = {0,...,3F \\ {0O,...,i}"
setrange emp:

") i : nat; 3 : nat; J < 1 |] ==> {i,...,3} = {"
setrange fin:
"[] 1 : nat; j : nat |} ==>

exists s:set of nat & forall y:nat & i <= y and y <= j => y in set s"
setrange form:

"It 1 : nat; § : nat |] ==> {i,...,3} : set of nat”
noteq_set_inh:
"[] s : set of A; s <> {} |] ==> exists a:A & a in set s"

power comp:
"s : set of A ==> power s = {t : set of A & t psubset s}"
set Un ext left:
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"s : set of A ==> s : set of (B | A)"
set Un_ext right:

"s : set of A ==> s : set of (A | B)"
set comp_ form set ident:

"I} s : set of A; t!x. [| x : A; x 1in set s [|] ==> f(x) : B;
exists t:set of B & forall y in set s & f(y) in set t [|] ==>
{f{x) ] x in set s} : set of B"
set comp form set ident global:
"[] s : set of A; !!x. x : A ==> f(x) : B |] ==> {f(x) | x in set s}
set of B"
set comp rewrite:
"] forall x:A & P(X) <=> Q(x); !'xw. [I| x A; P{x) 1] ==>» £(x) : B;
exists s:set of B & forall y:A & P(y) => f(y) in set s |] ==>
{f(x) | x:A & P(x)} = {f(x) | x:A & Q(x)}"7
set image form:
"] s : set of A; I!x. x : A ==> f(x) : B |] ==> {f(x) | x in set s}
set of B"
those eq form:
"a : A ==> {x : A & x = a} : set of A"
those inset form:
"s : gset of A ==> {e : A & ¢ in set s } : set of A"

those or form:
"] forall x:A & def P{x); forall x:A & def QO(x);
exists s:set of A & forall y:A & P(y) => y in set s;
exists t:set of A & forall z:A & P(z) => z in set t [] ==>
{x : A & P(x) or Q(x} } : set of A"
those to emptyset:
"forall x:A & not P{x) ==> {x:A & P(x)})} = {}"
those form:
"I forall x:A & def P(x);
exists s:set of A & forall y:A & P{y) => y in set s |] ==>
{x:A & P(x)} : set of A"
those form inset notinset:
"Il s1 : set of A; s2 : set of A |] ==>
{x +: A & x in set sl and x not in set s2 } : set of A"
those form rewrite:
"[| forall y:A & P(y) <=> Q(y):
exists s:set of A & forall y:A & P{y) => y in set s |] ==>
{x:A & Q(x)} : set of A"
those intr:
s : set of A ==> s = {e : A & e 1in set s }"
those rewrite:
"[] forall y:A & Ply) <=> Q(y):
exists s:set of A & forall y:A & P(y) => y in set s |] ==>
{x:A & P(x)} = {x:A & Q{x)}"
those weaken:
"[| forall x:A & def P(x); forall w:A & def Q(w);
exists s:set of A & forall y:A & P(y) => y in set s;
exists t:set of A & forall z:A & Q(z) => z in set t;
Mxo [ x 0 Ay P(x) 1] ==> Q(x) |] ==>
{x:A & P(x)} psubset {x:A & Q(x)}"
psubset inter left:
"[} sl : set of A; 82 : set of A |] ==> sl inter s2 psubset sl1”
psubset inter right:
"{} s1 : set of A; s2 : set of A |] ==> sl inter s2 psubset s2"
eq_inter diff diff:

"Il 81 : set of A; s2 : set of A |] ==> sl inter (sl \\ s2) = s1 \\ s2"
eg_inter diff emptyset:

"Il sl : set of A; s2 : set of A |] ==> sl inter (s2 \\ sl) = {}"
psubset union left:

"[] sl : set of A; s2 : set of A |] ==> sl psubset sl union s2"
psubset union right:

"[] s1 : set of A; s2 : set of A |] ==> s2 psubset sl union s2"

eg_union diff union:
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"I} sl : set of A; s2 : set of A |} ==> sl union (s2 \\ sl) = sl union

32 "
eq diff diff inter:
"} sl : set of A; s2 : set of A |] ==> s1 \\ (sl \\ s2) = sl inter s2"
End
12.13 MapLPF.thy

theory MapLPF = SetLPF:
(* General apply - will also be used for sequences and functions *)
(* abstract syntax *)

typedecl appexs'

consts
appl’ 1 Vex => appexs'"
appn' 11 "[ex,appexs'] => appexs'"”
app' i "lex,appexs'] => ex"

(* concrete syntax *)
nonterminals appexs
(* since appexs 1s not in class logic the concrete syntax does not allow

things like £f@((a,b)) or f€(a, (b,c}))

*)

syntax

appl :: "ex => appexs " ("mm

appn_ it "[ex,appexs_] => appexs " ", /.M

app_ 1t "[ex,appexs ] => ex" (" @' (_")y" [500,501] 500)
translations

"appn_ e es" == "appn' e es”

"appl e" == "appl' e

"app_ e es" == "app' e es”

(* Finite Maps: section 14.6, pages 302-314 in "Proof in VDM" *)

consts
mapty’ rr "lty,ty] => ty" ("map _ to " [110,110] 110)
inmap' s "ity,ty] => ty" ("inmap _ to " [110,110] 110)

(* map constructors *)

emptymapl s "ex" ("{ |_>}n)
addtomap’ r "lex,ex,ex] => ex" ("madd' (_, , "))

(* map operations *)

inverse' rr Tex => ex" ("inverse " [430] 430)
merge' Yex => ex" ("merge " [450] 450)

dom' 1 Vex => ex” ("dom " [450] 450)

rng' rr Mex => ex" ("rng _" [450] 450)

domsub' 1 "[ex,ex] => ex" (" <=/ )" [440,4411 440)
domres' 1o "lex,ex] => ex" ("(_ <:/ )" [440,441] 440)
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rngsub’ 1 "lex,ex] => ex" (M :=>/ )7 [440,441) 440)

rngres’ c: "lex,ex] => ex" (S >/ )" [440,441] 440)
munion’ cr "lex,ex] => ex" (" munion/ )" [410,411] 410)
mcompose’ 1 "lex,ex] => ex" ("({_ comp/ )" [611,610] 610)
modify"' i "lex,ex] => ex" ("(_ ++/ )" [410,411] 410)

(* maplet lists¥*)

nonterminals maplet maplets

syntax
nn :: "maplet => maplets” ("m
mapletsn :: "[maplet,maplets] => maplets"” (" _,/ ")
maplet 1 "lex,ex] => maplet"” "1=> _")

(* map enumeration ¥*)

syntax
enummap :: "maplets => ex" ("M{_m

translations
"enummap (mapletsn (maplet el e2) mls)"” == "madd(el,eZ,enummap (mls))"
"enummap_ (maplet el e2)" == "madd(el,e2,{|->}H"

\

(* map comprehension *)

consts
mcomp' i "[ty,ex=>ex,ex=>ex,ex=>ex] => ex"
mcomps ' cr "lex,ex=>ex,ex=>ex,ex=>ex] => ex"
syntax
mcomp :: "[maplet, tbind,ex] => ex" ("(1{_ |/ _ &/ _}™)
mcomps__ i1 "[maplet,sbind,ex] => ex" ("(1{_ I/ &/ }I"™)
mcomptr i "[maplet, tbhind] => ex" M1/ nm
mcompstr :: "[maplet, sbind] => ex" ("1 o nm
translations

Ao
x
©
N
o0

"mcomp (maplet_ el e2) (tbind x A) P" => "mcomp' A (%x. el) (
P)"

"mcomps  (maplet el e2) (sbind x s) P"=> "mcomps' s (%x. el) (%x. e2) (
P)Yl

"mcomptr (maplet el e2) (tbind x A)" => "mcomp' A (%¥x. el) (%x. e2) (%
true)”

"mcompstr_ (maplet el e2) (sbind_ x s)" => "mcomps' s (%x. el) (%x. e2)
true) "
consts

compatible 1 "lex,ex] => ex" (* not VDM-SL! *)

onetoone c: "ex => ex"” (* one-to-one map *)

(* axioms *)
axioms
emptymapgform: "{I->} : map A to B"

madd form:
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"Il a:A; b: B m:map A to B }] ==> madd(a,b,m) : map A to B"
madd modify:
"[] a : A; bl : B; b2 : B; m : map A to B |] ==>
madd(a,bl,madd(a,b2,m)) = madd(a,b2,m)"
madd comm:
"[| a : A; b : B; ¢ A; d: B; m: map A to B; a <> ¢ [|] ==
madd(a,b,madd (c,d,m)) = madd(c,d,madd(a,b,m))"

map indn:
"{] mO : map A to B; P({|->});

''abm. [| a: A b: B;
m : map A to B; P(m); & not in set domm |] ==>
P{(madd(a,b,m)) |] ==>

P(m0)"

dom defn emptymap: "dom {|->} = {}"
dom defn_madd:
"Il a:A;, b: B, m: map A to B |] ==> dom madd(a,b,m) = add(a,dom m)"

rng_defn_emptymap: "rng {|->} = {}"

rng_defn madd ninset:
"[| a : A; b : B; m: map A to B; a not in set domm |] ==
rng madd{a,b,m) = add(b,rng m)"

domsub defn emptymap: "s : set of A ==> 5 <-: {|->} = {[|->}"
domsub_defn_madd_ninset:
"[| a : A; b : B; m: map A to B; s : set of A; a not in set s |] ==>
s <-: madd(a,b,m) = madd(a,b,s <-: m)"
domres_defn emptymap: "s : set of A ==> s <: {|->} = {[->}"
domres_defn madd ninset:
"[| a : A; b : B; m: map A to B; s : set of A; a not in set s |] ==>
s <: madd{a,b,m) = s <: m"

rngsub_defn emptymap: "s : set of A ==> {|->} :-> s = {|->}"
rngsub_defn _madd_inset:
“I[| a : A; b : B; m: map A to B; s : set of A; b in set s |] ==>
madd({a,b,m) :-> s = {a} <-: (m :=> s)"
rngsub defn madd ninset:
"[| a : A; b : B; m : map A to B; s : set of A; b not in set s |[] ==>
madd(a,b,m) :-> s = madd(a,b,m :=> s)"

rngres defn_emptymap: "s : set of A ==> {|->} :> s = {[->}"

rngres_defn madd_inset:
"Il a:A; b : B; m: map A to B; s : set of A; b in set s |] ==>
madd(a,b,m) :~> s = madd{a,b,m > s)}"

rngres_defn madd_ninset:
"I a : A; b : B; m : map A to B; s : set of A; b not in set s |] ==>

madd(a,b,m) > s = {a} <-: (m :> s)"

at defn madd_eq:

"Il a:A; b:B; m: map A to B |] ==> madd(a,b,m)@(a) = b"

at defn madd neq:
"[] a: A b B; ¢c:A;m: map A to B; ¢ <> a; ¢ in set domm |] ==>
madd (a,b,m) € (c) = m@{c)"

eq _map_defn:
"[}] ml : map A to B; m2 : map A to B; dom ml = dom m2;
forall a in set dom ml & ml@(a) = m2@(a) [|] ==>
ml = m2"

modify defn emptymap right:
"m : map A to B ==> m ++ {[->} = m"
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modify defn madd:
"{[la:B; b:B; ml : map A to B; m2 : map A to B |] ==>
ml ++ madd{a,b,m2) = madd(a,b,ml ++ m2)"

compatible defn:
"[{ ml : map A to B; m2 : map A to B |] ==>
{compatible ml m2) <=>
(forall a in set dom ml inter dom m2 & ml@{a) = m2@(a))"

onetoone defn:
"m : map A to B ==>
onetoone (m) <=>
(forall x in set dom m & forall y in set dom m & m@(x) =

m@(y) =>x = y)"

comp_defn_emptymap: "m : map A to B ==> m comp {|->} = {|->}"
comp defn madd:
"] a:A; b:B; ml: map A to B; m2 : map A to B;
rng m2 psubset dom ml; a not in set dom m2;

b not in set dom ml |] ==>
ml comp madd({a,b,m2) = madd(a,ml@(b),ml comp m2)"
merge defn emptymap: "merge {} = {[->}"

merge:defnimadd:
"[l m : map A to B; s : set of (map A to B);

forall ml in set add(m,s) & (foralls' (add{(m,s)) (compatible ml))

merge add{m,s) = m ++ merge s"

inverse_defn:
"m : map A to B ==> inverse m = {m@(a) |-> a | a in set dom m}"

compm_form:

"[t forall x : A & def P(x); !'x. [| x : A; P(x) |] ==> f(x) : B;

i, [ x ¢ A; P(x) |] ==> g(x) : C;
exists s : set of B & forall y : A & P(y) => f£(y) in set s;
forall al : A, a2 : A &
P(al) and (P(a2) and f{al) = f(a2)) => g(al) = g(a2)
{f(x) |[-> g(x) | x + A & P(x})} : map B to C"

dom defn compm:

"[| forall x : A & def P(x); !'x. [| % : A; P(x) |] ==> f£(x) : B;

Pix, [] x ¢ A; P(x) |] ==> g{x) : C;
exists s : set of B & forall y : A & P(y) => f(y) in set s;
forall al : A, a2 : A &

P(al) and (P{a2) and f{al) = f£(a2)) => g(al) = g(a2)
dom {f(x) |-> g{x} | x A & P(x)} = (comp' A £ P)"
at defn compm:
"Il b : B; forall x A & def P(x);
Pix, [ x ¢ A; P(x) |] ==> t(x) B;
Plx, [ x ¢ A; P(x) |] ==> g(x) C;
exists s : set of B & forall y A & P(y) => f(y) in set s;
forall al : A, a2 : A &
P(al) and (P(a2) and f(al) = f£(a2)) => g(al) = g(a2);
b in set dom {f(x) |-> g(x) | x : A & P(x)} |] ==>
{f{(x) |-> g(x) | x : A & P(x)}@(b) =
(iota ¢ : C & forall x : A & P(x) and b = f(x) => c = g(x))"

compm defn set:
"Il s : set of A; forall x : A & def P(x);
Yix. [ x @ A; P(x) ] ==> f(x) : B;
Pix, [ x ¢ A; P{x) |} ==> g(x) : C;
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exists s : set of B & forall v : A & P(y) => f(y) in set s;
forall al : A, a2 : A &

P(al) and (P(a2) and f(al) = £(a2)) => g{al) = g(az) |] ==>
dom {f(x) |-> g(x) | X in set s & P(x)} =
{(f(x} I-> g(x) | ¥ : A & x in set s and P(x)}"

(* definitions *)

defs
inmap def: "inmap A to B == << x : map A tc B | onetoone(x) >>"

(* derived rules ¥*)

axioms
emptymap onetoone: "onetoone ({|->})"
emptymap dom disj: "m : map A to B ==> dom {|->} inter dom m = {}"
emptymap form inmap: "{|->} : inmap A tc B"
msingleton form: "[| a : A; b : B |] ==> {a [-> b} : map A to B"

comp form:
"[] mi : map B to C; m2 : map A to B; rng m2 psubset rng ml |] ==
ml comp m2 : map A to C"

def emptymap: "m : map A to B ==> def m = {|->}"
def inset dom madd intr:

"Il al : A; a2 : A; b : B; m : map A to B |] ==>

def al in set dom madd{(aZ,b,m)"
def inset_rng intr: "[| b : B m : map A to B |] ==> def b in set rang m"
def inset_dom intr: "[] a : A; m : map A to B |] ==> def a in set dom m"

def compatible:

"[{ ml : map A to B; m2 : map A to B |] ==> def (compatible ml m2)"
def onetocne: "m : map A to B ==> def onetoone(m)”
def onetoone pred:

"Il a:A; b: A;m: map A to B |] ==>

def {(a in set dom m and b in set dom m and m@(a) = m@(b))"
domres form: "[| m : map A to B; s : set of A |] ==> s <: m : map A to B"
domsub_form: "[| m : map A to B; 5 : set of A |] ==> s <-: m : map A to B"

domsub_defn: "m : map A to B ==> {} <-: m = n”
domsub _defn singleton ninset:

"[] a : A; m : map A to B; a not in set domm |] ==> {a} <-: m = m”
domsub defn madd singleton eq:

"Il a:A; b: B, m: map A to B |] ==>{a} <-: madd(a,b,m) = {a} <-: m"
domsub defn _madd_singleton_neq:

"[] al : A; a2 : A; b : B; m : map A to B; al <> a2 |] ==>

{a} <-: madd(a2,b,m) = madd(a2,b,{a} <-: m)"

inset dom madd elim:
"Il al : A; a2 : A; b : B; m : map A to B;
al in set dom madd(a2,b,m) [] ==>
al = a2 or al in set dom m"
inset dom madd_elim ninset:
"Il al : A; a2 : A; b : B; m : map A to B;

al in set dom madd(a2,b,m); a2 not in set domm |] ==>
al = a2 or al in set dom m and (Neqg a2 al)"
inset dom madd intr elem:
"[l a:A; b: B; m: map A to B |] ==> a in set dom madd(a,b,m)"
inset dcm madd intr map:
"Il al : A; a2 : A; b : B; m : map A to B; al in set domm |] ==>

al in set dom madd(a2,b,m)"”
inset dom compm intr fun:
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"[] a : A; P(a); forall x : A & def P(x);
i, [ x 2 Ay P(x)y ] ==> £(x} : B;
Yix. [ x @ A; P(x) |] ==> g(r) : C;
exists s : set of B & forall v : A & P(y) => f£(v) in set s;
forall al : A, a2 : A &

P(al) and (P(a2) and f(al) = f(a2)) => g(aly = g(a2} |} ==
f(a) in set dom {f(x) |-> g(x) | x : A & P(x)}"
inset rng madd intr elem:
"l a:A; b: B; m: map A to B |] ==> b in set rng (m ++ {a |-> b})"
inset rng modify msingleton intr elem:
"{|] a : A b: B; m: map A to B |] ==> b in set rng madd{a,b,m)"

inset rng madd_intr map:
"1 a: A; bl : B; b2 : B; m : map A to B; b2 in set rng m;
a not in set domm |] ==>
b2 in set rng madd(a,bl,m)"”
inset_rng elim:

"[l b : B; m: map A to B; b in set rngm |] ==>
exists a in set dom m & m@{a) = b"
inset rng intr_elimx:
"Il b : B; m: map A to B; exists a in set domm & ml(a) = b |] ==>

b in set rng m"
inset_rng intr at bimap:

"Il a : A; m : inmap A to B; a in set domm |] ==> ml{(a) in set rng m"
not inset dom emptymap intr: "a : A ==> a not in set dom {|->}"
not_inset rng emptymap intr: "b B ==> b not in set rng {|{->}"

ninset dom domsub intr_ singleton:
"[] a: A; m : map A to B |] ==> a not in set dom ({a} <-: m)"
ninset dom madd _elim:
"Il al : A; a2 : A; b : B; m : map A to B;
al not in set dom madd(a2,b,m) }] ==>
al <> a2 and al not in set dom m"
ninset dom madd elim left:
"Il al : A; a2 : A; b : B; m : map A to B;
al not in set dom madd{a2,b,m) |] ==
al not in set dom m"
ninset dom madd elim right:
"{l al : A; a2 : A; b : B; m : map A to B;
al not in set dom madd(a2,b,m) |] ==>
al <> a2"
ninset dom inverse intr:
"[| b : B; m: inmap A to B; b not in set rng m |] ==
b not in set dom (inverse m)"
ninset rng madd elim:
"Il a: A; bl : B; b2 : B; m : map A to B;
bl not in set rng madd(a,b2,m); a not in set dom m |} ==>
bl <> b2 and bl not in set rng m"
ninset rng madd elim left:
"{| a: A; bl : B; b2 : B; m : map A to B;
bl not in set rng madd{a,b2,m); a not in set dom m [] ==>
bl not in set rng m"
ninset rng madd elim right:
"{| a: A; bl : B; b2 : B; m : map A to B;

bl not in set rng madd(a,b2,m) ] ==>
bl <> b2"
ninset rng inverse intr:
"[] a : A; m : inmap A to B; a not in set domm |] ==>

a not in set rng (inverse m)"
modify form:

"] ml : map A to B; m2 : map A to B |] ==> ml ++ m2 : map A to B"
modify assoc:
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"[| ml : map A to B; m2 : map A to B; m3 : map A to B |]
ml ++ m2 ++ m3 = ml ++ (m2 ++ m3)"
modify comm:
"[] ml : map A to B; m2 : map A to B; (compatible ml m2)
ml ++ m2 = m2 ++ ml"
modify defn emptymap_left: "m : map A to B ==> {|->} ++ m =
modify preserves_dom psubset:
"[| ml : map A to B; m2 : map A to B; m3 : map A to B;
dom ml psubset dom m2 |] ==
dom ml psubset dom (mi ++ m2)"
meodify self: "m : map A to B ==>m ++ m =m

rngres_form: "[] m : map A to B; s : set of B |] ==>m :> s
rngres singleton not_empty elim:

"[| b : B; m: map A to B; m :> {b} <> {|->} |] ==> b in
rngres_defn_singleton_ninset:

"I[] b : B; m : map A to B; b in set rngm |] ==> m :> {b}
rngsub_form: "[| m : map A to B; s : set of B |] ==>m :->

psubset dom modify intr:
"{| ml : map A to B; m2 : map A to B |] ==>
dom ml psubset dom {(ml ++ m2)"

munion form:
"[{ ml : map A to B; m2 : map A to B; compatible(ml) (m2)
ml munion m2 : map A to B"

munion_comm:
"{| ml : map A to B; m2 : map A to B; compatible(ml) (m2)
ml munion m2 = m2 munion ml"

munion assoc:

"[| ml : map A to B; m2 : map A to B; m3 : map A to B;
compatible (ml) (m2); compatible(m2) (m3);
compatible (ml) (m3) |] ==

ml munion m2 munion m3 = ml munion (m2 munion m3)"

madd modify defn inset:
"Il a: A; b: B; ml: map A to B; m2 : map A to B;
a in set dom m2 |] ==
madd{a,b,ml) ++ m2 = ml ++ m2"
madd modify defn ninset:
"l a:A; b: B; ml : map A to B; m2 : map A to B;
a not in set dom m2 |] ==
madd(a,b,ml) ++ m2 = madd(a,b,ml ++ m2)"
madd modify defn compatible:
"{| a:A; b:B; mi : map A to B; m2 : map A to B;
compatible{(madd(a,b,ml)) (m2) |] ==>
madd{a,b,ml) ++ m2 = madd(a,b,ml ++ m2)"
madd modify indent:
"Il a: A; b : B; m: map A to B; a in set dom m;
m@(a) = b |] ==>
madd(a, brm) = m"
madd to modify:
"Il a: A; b:B;m: map A to B |] ==>m ++ {a |-> b} =
madd defn domsub _msingleton eq:

"] a: A; b : B; m: map A to B [|] ==>
madd{a,b,m) = madd{a,b, {a} <-: m)"

madd_ extract:
"[{ a: A; m : map A to B; a in set domm |] ==>

"

m = madd(a,m@ (a), {a} <-: m)
madd form bimap:
"{] a: A; b : B; m: inmap A to B; a not in set dom m;
b not in set rngm |] ==>
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madd(a,b,m) : inmap A to B"

at form:

[} a: A; m: map A to B; a in set domm |] ==> m@{a) : B"
at _inmap form:

"[l a : A; m : inmap A to B; a in set domm |] ==> m@(a) : B"
at_defn modify msingleton_eq:

"I a : A7 b:B;m: map A to B |] ==> (m ++ {a |-> b})€(a) = b"

at defn modify msingleton neq:
"[} a : A; b : B; a2 : A; m : map A to B; a2 in set dom m;

az <> al |] ==>
(m ++ {a [=-> b})@{a) = m@(a2)"
at _defn modify madd_eq:
"l a:A; b : B; ml : map A to B; m2 : map A to B |] ==>
(ml ++ madd(a,b,m2))@(a) = b”

at_defn modify left:
"l a «+ A; ml : map A to B; m2 : map A to B; a not in set dom m2;
a in set dom ml |] ==>
{(ml ++ m2)@(a) = ml@(a)"
at defn modify right:
"] a:A; ml : map A to B; m2 : map A to B; a in set dom mZ2 |] ==>
(ml ++ m2)@(a) = m2@(a)"
at defn compm_ fun:
"Il a : A; P(a); forall x : A & def P(x):;
Mx. [} x ¢ Ay P(x) |1 ==> f(x) : B;
Yix., [ x : A; P(x) |] ==> g(x) : C;
exists s : set of B & forall y : A & P(y) => f(y) in set s;
forall al : A, a2 : A &
P(al) and (P(a2) and f(al) = f(a2)) => g(al) = g(a2) |] ==>
{£(x) I-> g(x) | x : A & P(x)}@(f(a)) = g(a)”
at defn map_comp left set:
"I a: A; s : set of A; a in set s;
1. [| x : A; x in set s |] ==> f(x) : B |] ==>
{x |-> f(x) | x in set s}@(a) = f{a)"

inmap onetoone:
"{l al : A; a2 : A; m : inmap A to B; al in set dom m;
a2 in set dom m; m@(al) = m@(a2) |] ==>
al = az"
inmap_ onetoone not:
"[] al ¢ A; a2 : A; m : inmap A to B; al in set dom m;
a2 in set dom m; al <> a2 |] ==>
me@(al) <> mR(a2)"
inmap elim: "m : inmap A to B ==> onetoone(m)
inmap_ form: "[} m : map A to B; onetoone(m) |] ==> m : inmap A to B"
inmap indn:
"[] mO : inmap A to B; P{{|->});
!'fabm. [| a : A; b:B;m: map A to B; P(m); a not in set dom m;
b not in set rngm |] ==>
P{madd(a,b,m)) |] ==>
P(m0O)"
inmap supertype: "m : inmap A to B ==> m : map A to B"
inmap_unique_rng_elem:
"] a : Ay m : inmap A to B; a in set domm |] ==>
existsl b : B & b = m@(a)"”

"

compatible modify intr left:
"[{ ml : map A to B; m2 : map A to B; m3 : map A to B;
(compatible ml m3); {(compatible m2 m3) |] ==>
(compatible (ml ++ m2) m3)"
compatible modify intr right:
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"[{ ml : map A to B; m2 : map A to B; m3 : map A to B;
(compatible ml m2); (compatible ml m3) |] ==>
(compatible ml (m2 ++ m3})"
compatible madd elim left ninset:
"[l a : A; b: B; ml : map A to B; m2 : map A to B;
a not in set dom ml; (compatible madd(a,b,ml) m2) |] ==>
(compatible ml m2)"
compatible madd elim right:
"[l a : A; b: B; ml : map A to B; m2 : map A to B;
a in set dom m2; (compatible madd(a,b,ml) m2) |} ==>
m2@ (a) = b"
compatible comm:
"I[| ml : map A to B; m2 : map A to B; (compatible mli m2) |{] ==>
(compatible m2 ml)"
compatible defn emptymap left:
"m o map A to B ==> (compatible ({|->}) m)
compatible defn emptymap right:
"m : map A to B ==> (compatible m ({|->}))"
compatible elim:
"{l ml : map A to B; m2 : map A to B; (compatible ml m2) |] ==>
forall a in set dom ml inter dom m2 & ml@(a) = m2@(a)"
compatible intr:
"[| ml : map A to B; m2 : map A to B;
forall a in set dom ml inter dom m2 & ml@(a) = m2@(a) |] ==>
(compatible ml m2)"

"

dom form: "m : map A to B ==> dom m : set of A"

dom form inmap: "m : inmap A to B ==> dom m : set of A"
dom emptymap intr: "m = {|->} ==> dom m = {}"

dom domsub defn:

"l m: map A to B; s : set of A |] ==> dom (s <-: m) = dom m \\ s"
dom neq emps_elim: "[| m : map A to B; dom m <> {} |] ==>m <> {{->}"

dom madd int elim left:
"[] a : Ay b : B ml : map A to B; m2 : map A to B;
dom madd(a,b,ml) inter dom m2 = {} |] ==>
dom ml inter dom m2 = {}"
dom madd_int_elim right:
"[]l a: A; b : B; ml : map A to B; m2 : map A to B;
dom madd{a,b,ml) inter dom m2 = {} [|] ==>
a not in set dom m2"
dom defn modify:

"[] mi : map A to B; m2 : map A to B |] ==>
dom (ml ++ m2) = dom ml union dom m2"
dom defn madd inset:
"Il a : Ay b : B; m: map A to B; a in set domm |] ==>
dom madd(a,b,m) = dom m"
dom_defn inverse: "m : map A to B ==> dom {(inverse m) = rng m"
dom defn compm left set:
"Il s : set of A; !!'x. [] x : a; x in set s |] ==> f(x) : B |] ==>
dom {x |-> f(x) | x in set s} = s”
dom finite intrmp rng finite:
"Il forall x : A & def P(x); !'x. []| x : A; P(x) |] ==> £(x) : B;
Vi [ x ¢ A; P(x) ] ==> g(x) : C;

exists s : set of B & forall y : A & P(y) => f£(y) in set s;
forall al : A, a2 : A &
P(al) and (P({a2) and f(al) = f(a2)) => g(al) = gla2)
exists t : set of C& forall a : A & P(a) => g(a) in set t"

inverse form: "m : inmap A to B ==> inverse m : inmap B to A"

onetoone modify msingleton elim ninset rng:

"[l a: A; b: B; m: map A to B; cnetoocne(m ++ {a |-> b});
a not in set dom m [] ==>
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b not in set rng m"
onetoone madd elim ninset rng:
[l a: A; b: B; m: map A to B; onetoone{madd{a,b,m));
a not in set domm |] ==>
b not in set rng m"
onetoone _madd elim ninset map:
"Il a: A; b : B; m: map A to B; onetoone(madd{a,b,m));
a not in set domm |] ==
onetoone {m)"
onetoone elim:

"[} m : map A to B; onetocoone(m) |] ==>
forall x in set dom m & forall y in set dom m &
m@(x) = m@(y) => x = y"

cnetoone intr:
"Il m : map A to B;
forall x in set dom m & forall y in set dom m &
me{x) = m@(y) =>x =y |] ==>
onetoone (m) "

map C | A to B”
map A | C to B"
map A to C | B"
map A to B | C"

map_Union_ext dom left:
map Union ext dom right:
map_Union ext rng left:
map Union_ext rng right:

: map A to B ==>
. map A to B ==>
: map A to B ==

map A to B ==

n

338 8B
2888

compm_form left:
"[] forall x : A & def P{(x); !'x. [] x : A; P(x) |] ==> f(x)
exists s : set of B & forall y : A & P(y) => f(y) in set s

{x |-> £(x) | 2 : A & P(x)} : map A to B"¥
compm_form left set:
"[| s : set of A; !U!x. [| x : BA; P(x) |] ==> f(x) : B |] ==>
{x |-> £(x) | x in set s} : map A to B"
compm form set ident:
"[lvs : set of A; tlx. x ==> f(x) : B;
Pix. [} x @ A; P(x) |] ==> g(x) : C;
forall al in set s & forall a2 in set s &
f{al) = f(a2) => g{al) = g(a2) |] ==>
{f(x) |-> g{x) | x in set s} : map B to C"
compra left defn add:
"Il a: A; s : set of A; fla) : B;
', [] x : A; x in set s |] ==> f(x) : B |] ==>
{x |-> f(x) | x in set add(a,s)} =
{x |-> f(x) | X in set s} ++ {a |-> f(a)}"

merge form:
"[] s : set of {map A to B);
forall ml in set s & (foralls' s (compatible ml)) |] ==>
merge s : map A to B"

rng form: "m : map A to B ==> rng m : set of B”
rng_form inmap: "m : inmap A to B ==> rng m : set of B"
rng defn: "m : map A to B ==> rng m = {(compstr (dom m) (at

rng_defn madd:
"[l a: A b:B; m: map A to B |] ==>

rng madd(a,b,m) = add(b,rng ({a} <-: m))"
rng_defn madd inset:

"l a:A; b: B; m: map A to B; a in set domm |] ==>

rng madd{a,b,m) = add(b,rng ({a} <-: m))"

rng defn inverse: "m : inmap A to B ==> rng (inverse m) = dom m"

rng_defn compm:

"[] forall x : A & def P(x);
Yix. [ x @ BA; P(x) 1] ==> f(x) : B;
i, [| x @+ A; P(x) |] ==> g(x) : C;
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exists s : set of B & forall y : A & P(y) => f(y}) in set s;
forall al : A, a2 : A &
P(al) and (P(a2) and f(al) = £(a2)) => gf{al) = gl(a2)
rng {f(x) |-> g(x) | x : A & P(x)} = (comp’' A g P)"

print translation
(x
let

fun eta exp (e as Bbs( , ,_ )) = e

| eta exp e :Abs("x"jdammyT,e$(Bound 0));

fun mcomp tr' [A,fl,f2,P] =
let val Abs(nl,_,el) eta_exp f1

val Abs(n2, ,e2) = eta exp f2

val Abs(n2, ,P') = eta exp P

val new =

variant
(add term names

el,
(add_term names (e2,add term names (P',[]1)))))

I

in
case (el,e2,P') of
( , ,Const("true'”, )) =>
let val n' = Free(new nl,dummyT) in
Const ("mcomptr ", dummyT) $
(Const ("maplet ", dummyT)$
subst bounds([n'],el)$
subst_bounds([n'l,e2))$
(Const ("tbind ", dummyT) $n’S$A)
end |
=
let val n' = Free{new nl,dummyT) in
Const ("mcomp ", dummyT) $
(Const ("maplet ", dummyT)$
subst _bounds{[n'l,el)$
subst bounds([n'],e2))$
(Const ("tbind ",dummyT) $n'$A) S
subst bounds([n'],P")
end

end;

fun mcomps_tr' [s,fl,f2,P] =

let val Abs(nl, ,el) = eta exp fl
val Abs(n2, ,e2) = eta exp f2
val Abs(n2, ,P') = eta exp P
val new =
variant
(add term names (
el,
(add term names (e2,add term names (P',[]))))
in
case P' of
Const ("true'", ) =>
let val n' = Free(new nl,dumnmyT) in

Const ("mcompstr *, dummyT) $
(Const ("maplet ", dummyT)$
subst bounds([n'},el)s$
subst _bounds([n'l,e2))$
(Const ("sbind ", dummyT) $n'S$s)
end |
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=>
let val n' = Free(new nl,dummyT) in
Const ("mcomps ", dummyT) $
(Const ("maplet ", dummyT) $
subst bounds{[n'],el)s$
subst_bounds ([n'],e2))$
(Const ("sbind ", dummyT)$n'$s)$
subst bounds ([n'],P")

end
end;
in
[ ("mcomp'",mcomp_tr'), ("mcomps'", mcomps_tr')]

end;

*}

End

12.14 Seq.thy

thecry Seq = MapLPF:

(* Finite Sequences: section 14.7, pages 314-318 in "Proof in VDM" *)

consts
seqgty’ 1 "ty => ty" ("seq of M [140] 140)
seqlty' :: "ty => ty” ("seql of " [140] 140)

{* constructors *)

emptyseq' Moy (n[]n)
cons i Ulex,ex] => ex"
(* destructors *)
hd! 1 "ex => ex" ("{(2hd/ )™ [450] 450)
tl?’ 1 "ex => ex" ("(2t1l/ )" [4501 450)

(* other operations *)

append’ 1 Ulex,ex] => ex" (" ~/ )" [410,411) 410)
len' 1 "ex => ex" ("(2len/ )" [450] 450)
inds' 11 "ex => ex" ("(2inds/ )™ [450]1 450)
elems’ cr "ex => ex" ("(2elems/ )" [450] 450)
conc’ "ex => ex" (" (2conc/ )" [4501 450)
(* sequence enumeration *)
syntax
enumseq_ i "exs => ex" M1
translations
"enumseq_ {exsn e es)"” == "cons e (enumseq _es)"
"enumseq (e)” == "cons e emptyseg'"

(* sequence comprehension *)
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consts

scomps ' 11 "[ex,ex=>ex,ex=>ex] => ex"
syntax
sSComps 11 "lex,sbind,ex] => ex™ ("(1[_ |/ &/ _1}")
scompstr :: "[ex,sbind] => ex" (" 1/ M
scompsid :: "[sbind,ex] => ex" ("M &/ 1M (* not VDM-SL!
translations
"scomps e {(sbind x s) P" => "scomps' s (%x. e) (%¥x. P}"
"scompstr e (sbind x s)" => "scomps' s (%x. e) (%x. true)"
"scompsid  (sbind x s) P" => "scomps' s (%x. x) (3x. P}"
(* sequence range *)
syntax
seqrange 1 "lex,ex] => ex" ("L, ... /_0"M)
(* primitive rules (axioms) *)
axioms
emptyseq_form: "[] seq of A"
cons_form seqgl: "[| a A; s : seq of A |] ==> (cons a s) : seql of A"
hd defn cons: [t a: A; 1 : seq of A |] ==> hd {(cons a s) = a"
tl defn cons: "[l a:A; 1 : seq of A |] ==>tl (cons a s) = 1"

append defn emptyseq left:
"1 : seq of A ==> []"1 = 1"
append defn cons_left:
"{|] a:Al; sl:seq of A; s2:seq of A |] ==>
(cons a sl)”s2=(cons a (sl1l”s2))"

sapply _defn hd: "s:segl of A ==> s@(succ(0)) = hd s"

sapply defn tl:
"{| s : seqgl of A; 1 : natl; 1 <> succ{0); 1 <= len s [|] ==>
s@{i) = (tl s)@(i - succ(0))"

(* definitions *)

defs
seql def: "seqgl of A == << 5 : seq of A | s <> [] >>"
inds_def: "inds s == {succ(0),...,len s}"

(* derived rules *)

axioms
len def: "len s == if s=[] then 0 else succ({len (tl s))"
elems_def: "elems == if s=[] then {} else add(hd s,elems (tl s))"
conc_def: “conc s == 1f s={] then [] else (hd s)”conc (tl1 s)"

(* derived rules *)

axioms
def emptyseqg intr: "s:seg of A ==> def (s=[])"
eq seq defn cons:
"[| al:A; aZ:A; sl:seq of A; s2:seq of A |] ==>
(cons al s2)=(cons a2 s2) <=> al=a2 and sl=s2"
eq seqgl defn:
"[{| sl:seql of A; s2:seql of A |] ==>
sl=s2 <=> hd sl=hd s2 and tl sl=tl s2"
inset elems cons elim:
"[] a:A; b:A; s:seq of A; a in set elems (cons b s) |] ==>
a=b or a in set elems s"
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inset inds_elim:

"[] s:seql of A; n:natl; n in set inds s |] ==> n <= len s
notinset elems emptyseq intr:

"a:A ==> a not in set elems []"
notinset inds emptyseq intr:

"a:A ==> a not in set inds []"
append assoc:

" gl:seq of A; s2:seq of A; s3:seq of A |] ==> 51752783 = s1l*(s2"s3)"

append defn emptyset right:
"s:seq of A ==> s7[] = s"
append form:
"[| sl:seq of A; s2:seq of A |] ==> sl”s2:seq of A"

singletons noteqg emptyseq:
"a:A ==> [a] <> []7
singletons form:
"a:A ==> [a]:seq of A"

sapp form: "[| s:seql of A; i:natl; i<=len s |] ==> s@(i):A"

conc_defn emptyset:
"conc [] = []"
conc_defn cons:
"{] sl:seq of A; s2:seq of seq of A |] ==
conc {(cons sl s2) = sl”conc s2"
conc_form:
"s:seqg of seq of A ==> conc s:seq of A"

cons_noteq_emptyseq:

"[| a:A; s:seq of A |] ==> (cons a s) <> []"
cons_to append:

"[| a:A; s:seq of A |] ==> [a]l”s=(cons a s)"
cons_form:

"{| a:A; s:seq of A |] ==> (cons a s):seq of A"
cons_intr:

"s:seql of A ==> (cons (hd s) (tl s)) = s"

elems to those:

"s:seq of A ==> elems s = {s@(i) | i in set inds s}
elems defn emptyseq:
"elems [] = {}"

elems defn append:

"{] sl:seq of A; sZ2:seqg of A |] ==

elems (s17s2) = elems sl union elems s2"
elems defn append cons:

"{| a:A; sl:seq of A; s2:seq of A |] ==>

elems((cons a sl)”"s2) = add(a,elems(sl*s2))"
elems_defn_cons:

"Il atA; s:seq of A |] ==> elems (cons a s) = add(a,elems s)"
elems_defn_cons singleton:

"{| atA; s:seq of A |]] ==> elems (cons a s) = {a} union elems s"

elems form:

"s:seq of A ==> elems s:set of A"
elems form seql:

"s:segql of A ==> elems s:set of A"

hd defn singletons:
"a:A ==> hd [a] = a"
hd form:
"s:iseql of A ==> hd s:A"
inds defn_emptyseq:
"inds [} = {}"
inds form:

153



"s:seq of A ==> inds s:set of natl”
len defn emptyseq:

"len [] = 0"
len defn append:
"[] sl:seq of A; s2:seq of A |] ==> len(sl”s2) = len sl + len 32"
len defn singletons:
"a:A ==> len [a] = succ(0)"
len defn cons:
"[| athA; s:seq of A |] ==> len (cons a s) = succ(len s)"
len defn_seqgl:
"s:seql of A ==> len s = succ(len tl s)”"
len form:

"s:seq of A ==> len s:nat"”
len form seql:
"s:seql of A ==> len s:natl”

seql elim:

"s:seql of ==> 5 <> [1”
segl intr:
"[| s:seq of A; s <> [] |] ==> s:segl of A"
seql hnf:
"[| s:seqgl of A;
''""'h t.[| h:A; t:seq of A; P(t) |] ==> P(cons h t) |] ==>
P(s)"”
seql indn:
"[} s:seql of A; !'ta. a:A ==> P{(la]);
' h t.[] h:A; t:isegl of A; P(t) |] ==> P{cons h t) |] ==>

P(S) "
seql supertype:
"s:seql of A ==> s:seq of A"

seq append_indn:
"[I s:seq of Ay P([]); !la. a:A ==> P([a]);
'1sl s2.[{sl:iseq of A; s2:seq of A; P(sl); P(s2) |] ==>
P(sl"s2) }|] ==>
P(s)"
seq _or_ext right:
"s:seq of A ==> s:A | B”
seq_or_ext left:
"s:seq of A ==> s:B | A"
seq_sep:
"s:iseq of A ==> s={] or (exists h:A, t:seq of A & s=(cons h t))"

tl defn singletons:
"a:A ==> tl [a] = [1"
tl form:
"s:seql of A ==> tl s:seq of A"

parse translation
S
let

fun setrange tr [el,eZ] =
Const ("comp'"”, dummyT) $
Const ("natty'"”, dummyT) $
Abs ("x", dummyT, Bound 0)$
Abs ("x", dummyT,
Const ("and'"”, dummyT) $
(Const ("leq'”,dummyT) $el$ (Bound 0))$
(Const ("leq'",dummyT) $ (Bound 0)$e2))

’

fun segrange tr [el,e2] =
Const ("scomps'", dummyT) $

154



(setrange tr [el,e2])$
(Abs ("x", dummyT, Bound 0))$
(Bbs ("x", dummyT, Const ("true'", dummyT) )} ;

in
[{("seqgrange
end;

"

;seqgrange tr)]

*}

print translation
{*
let

fun eta exp (e as Bbs( , , )) = e
| eta exp e =Abs{"x",dummyT,e$ (Bound 0));

fun scomps_tr' [s,f,P] =

let val Abs(nl, ,e) = eta exp T
val Abs(nZ, ,P') = eta exp P
val new =
variant (add term names (e,add term names (P',[])))
in
case (s,e,P') of
(Const ("comp'", )$
Const ("nat", )%
Abs( , ,Bound 0)$
Abs( , ,
Const ("and'", )$
(Const ("leq'", )$el$(Bound 0))$
(Const ("leq'", )$(Bound 0)$e2);,
Bound 0,
Const ("true'", })) =>
Const ("segrange ",dummyT) Sel$e2 |
( , ,Const("true'™, )) =>
let val n' = Free(new nl,dummyT) in
Const ("sceompstr ", dummyT) $
subst _bounds([n'],e)$
(Const ("sbind ", dummyT) $n’$s)
end |
(_ ,Bound 0, ) =>
let val n' = Free(new nl,dummyT) in
Const ("scompsid ", dummyT) $
(Const {"sbind ", dummyT)$n'S$s)$
subst bounds([n'],P")
end |
=>
let val n' = Free(new nl,dummyT) in
Const ("scomps ", dummyT) $
subst _bounds{({n'],e)$
{Const ("sbind ", dumnyT)$n’'$s)$
subst bounds ([n'],P")
end
end;
in
[("scomps'",scomps tr')]
end;
*}
lemma "[false,true,false] : segl of Nat”
oops
lemma "[0,...,succ(0)1"
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oops

lemma "[ x | x in set {0,...,succ(0)} 1"

oops

lemma "[ x | x in set { x | x:nat & 0<=x and x<=succ(0)} 1"
oops

end

12.15 Bool.thy

theory Boocl = Seq:
(* Booleans: section 14.7, pages 319-321 in "Proof in VDM" *)

consts
boolty' :: "ty" ("bool™)

(* axioms *)

axioms
def to bool: "def P ==> P:bool”
bool to def: "P:bool ==> def P"
iff to eq: "P <=> Q ==> P = Q"

(* derived *)

axioms
forall form:
"(!ly. y:A ==> P(y):bool) ==> (forall x:A & P(x)):bool"”
foralls form:
"[] s:set of A; !!ly.[| y:A; vy in set s |] ==> P{y):bool |} ==>
(forall x in set s & P(x)):bool"

el:bool; e2:bool |] ==> el and eZ:bool”

and form: "l
" el:bool; el ==> e2:boocl }|] ==> el and e2:bool"

and form sqgt: "[

|
!

bool eval: "P:bool ==> P=true or P=false”

eq to 1ff: "[| P:bool; P=Q |] ==> P <=> Q"
eq form: "I a:A; b:A |] ==> a=b:bool"
exists form:
"(lty. y:A ==> P(y):bool) ==> (exists x:A & P(x)):bool"”
existss form:
"[] s:set of A; !ly.[]| y:A; y in set s |] ==> P(y):bool |] ==>
(exists x in set s & P(x)):bool™

existsl form:

"(lly. y:A ==> P(y):bool) ==> (existsl x:A & P(x)):bool”
existsls form:
"[} s:set of A; !!'y. []| v:A; y in set s |] ==> P(y):bool |] ==>

(existsl x in set s & P(x)):bool"

iff form: "] el:bool; e2:bool |] ==> el <=> e2:bool"

iff subs left: "[| Q <=> R; P(R) |] ==> P(Q)”

iff subs_right: "[| Q <=> R; P(Q) |] ==> P(R)"

imp form: "I el:bool; e2:bool |] ==> el => e2:bool”

imp form sqgt: "[] el:bool; el ==> e2:bool |] ==> el=>eZ : bool"
inset form: "[]| a:A; s:set of A |] ==> a in set s:bool"”
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1t _form: "{| nl:nat; n2:nat |] ==> nl<n?2 : bool"™
leg form: "[| nl:nat; n2:nat |] ==> nl<=n2 : bool”

not form: "P:bool ==> not P : bool”

noteg form: "[} P:A; Q:A |] ==> P<>Q : bool”

notinset form: "[| a:A; s:set of A |] ==> a not in set s : bool"

or form: "[] P:bool; Q:bool |] ==> P or Q : bool”

or form_sqgt: “"[| P:bool; not P ==> Q:bool |] ==> P or Q : bool™
psubset form: "[| sl:set of A; s2Z:set of A |] ==> sl psubset s2 : bool"

false form: "false:bool"
true form: "true:bool”

ML
(*
val bool l1lpfs =
prop_lpfs addls
[thm "forall form", thm "foralls form”, thm "and form",
thm "and form sqgt"”, thm "exists form",
thm "existss form", thm "existsl form", thm "existsls_ form”,
thm "iff form", thm "imp form", thm "imp form sqt”, thm "inset form”,
thm "1t form", thm "leg form", thm "not form”, thm "noteq_ form",
thm "notinset form", thm "or form", thm "or form sqgt"”,
thm "psubset form", thm "false form"”, thm "true form"];

*}

end

12.16 Case.thy
theory Case = Let:

(* case match *)

lemma case match: "!! e.[| P(e); e:A; el(e):B |] ==>
(let x = e in if P{x) then el (x) else e2(x)) = el(e)";
apply{rule eq trans3) :
prefer 2
apply(rule let defn)
prefer 4

apply(rule if true)

apply(tactic {* 1lpf fast tac (prop lpfs addIs [thm "if form sqt™]}} 1 *})+

done
(* case not_match *)

lemma case not match: "!! e.[| not P(e); e:A; e2(e):B |] ==>
(let x = e in if P(x) then el (x) else e2(x)) =
(let x = e 1in e2(x)})"
apply(rule eg trans3)
prefer 2
apply(rule let defn )
prefer 4
apply(rule eq transZ)
prefer 2
apply(rule 1f false)
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prefer 4
apply(rule eg symml)
prefer 2
apply(rule let defn)
apply(tactic {* 1pf fast_tac (prop_lpfs addls [thm "if form sqt”,thm

"let form™]) 1 *})+
done

ML {* val case others = thm "let defn”; *}

end

12.17 VDM_LPF.thy

theory VDM LPF = Bool + Case:

end
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