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Abstract

Mumford-Shah Model and its Application in Image Processing

Qinghui Zhang

The Mumford-Shah (MS) model has been studied in details in this thesis. Tt is found
that the piecewise constant approximation MS model can not be used for images
with large variation in the intensities. Therefore a linear approximation MS model is
introduced. We have found that the linear approximation MS model provides better
segmentation results than the piecewise constant MS model. The level set methods
are used in the numerical computations. We have explicitly proved that the MS
energy decreases with time (iterations) for all cases. The p and v dependence of
the MS model is also studied. It is found that when p becomes large, the piecewise
constant model is recovered. On the other hand, if i tends to zero, detailed structure
of the input image can be obtained by the MS segmentation model. The MS and
the Rudin-Osher-Fatemi (ROF) like models are generalized to include high order
derivative terms. It is found that this kind of model can be used for edges with low
contrast. The MS model is also generalized to a new model which can be used to
detect roof edges which are difficult to detect by other models. Verification of the

proposed models is done based on experimental results.
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Chapter 1
Introduction

In this chapter we will briefly review the basic concepts of image segmentation and

the level set method and outline the purpose of this thesis.

1.1 Image Segmentation

Image processing is one of the most important branches in computer science applica-
tion fields [42]. One of the difficult problems of image processing is image segmenta-
tion [41]. Although image segmentation has been studied for many years, it still lacks
fundamental theoretical background. This does not prevent it from being widely used
in many fields such as medical image processing, computer vision etc. Actually it is
very difficult to give a formal definition of segmentation.

In general, we think that image segmentation is to find the boundary of objects
that are of interest. But different people may have interest in different things. Thus
the segmentation problem is an observer dependent problem. This makes the image
segmentation problem more difficult. More or less, we believe that the following
”definition” reflects what most people want. That is we want to divide a given image
into several regions. In those regions, the image can be approximated by smooth
functions. The process of finding the boundaries of those regions is called image
segmentation.

To solve this problem, many models have been suggested such as snakes [10, 20],
the geodesic active contours model {2, 3, 4, 5], the Mumford-Shah models [13] etc. All

those models construct some kind of energy functionals and try to minimize them. It



is well known that all those models are ill-posed. In other words, there are many local
minima of the energy functionals. However, despite this shortcoming, those methods
are still used in image segmentation.

In this thesis, we will study the Mumford-Shah model which was put forward in
1989 [13] and now is widely used in computer vision and image segmentation. In
this model, we will try to find the minimum Mumford-Shah energy for each input
image. It is well known that minimization of an energy function will lead to an Fuler-
Lagrange partial differential equation (PDE). We will use the level set technique in
solving the related PDE’s.

1.2 The Level Set Methods

The level set methods are the numerical techniques originally introduced by Osher and
Sethian [14, 32, 33, 34, 35, 47] for analyzing and computing the motion of interfaces.
The basic idea of the Level set methods is the following: Define a level set function

&(z,y,t) in a input image (say 2-dimension) as

> 0 if (z,y) in Q2
¢z, y,1) =0 if (z,y) in 6Q ¢, (1)
< 0if (z,y) in O

v
or

g <0

X

60 4=0

Figure 1: The level set function ¢(x,y,t).

Then the evolution of the level set function can be used to determine the movement



of the front. Since the function ¢(z,y,t) at the boundary of the object must be zero,

thus we have the following equation:

0(z, y, t) dz dy, _
Eq.(2) can be re-written as
0 t
WALV 4 pivgl=o, 3)

ot

where, F'=17-U (¥ = (%, %) is the velocity of the boundary, 7 is the unit normal to

the boundary) is the normal velocity of the boundary. To solve Eq.(3), we still need

9%

3ﬁ=00n

the initial condition ¢(x,y,0) = ¢o(x,y) and boundary condition such as
o5,

The advantages of the level set methods on propagating boundaries are the fol-
lowing: (1) the topological changes in the evolving boundary such as merging and
breaking are handled naturally; (2) It is easy to build accurate numerical schemes to
approximate the equations of motion. Here we need to point out that F' is determined

by the dynamics of the system which is assumed to be known in advance.

1.3 Purpose of the Thesis

In this thesis, we will study the Mumford-Shah model systematically. We have derived
in detail all the necessary mathematical tools for the image segmentation problem.
Detail experimental analyses of the Mumford-Shah model are also given. We have also
tried to generalize the Mumford-Shah model to be able to detect edges of images with
low contrast. Our experimental results support the validation of these generalizations.

This thesis is arranged in the following way: In the Chapter 1, a short introduction
to the Mumford-Shah model is given and the piecewise constant approximation of the
Mumford-Shah model is studied. In Chapter III, the piecewise linear approximation of
the Mumford-Shah model is developed and tested. The dependencies of the Mumford-
Shah model on the parameters p and v are studied in Chapter IV. Some constraints on
the parameters p and v are also given in this chapter. In Chapter V, some variations
and generalizations of the Mumford-Shah model are developed. Conclusions and

possible future development are discussed in the last chapter.



Chapter 2

The Mumford-Shah Model and the

Constant Approximation

2.1 Introduction

The segmentation problem is a very important topic in many different areas including
computer vision, medical imaging, video processing etc. This problem can be defined
in the following way: For an observed image wugy (possibly with noise), we want to
find an optimal piecewise smooth approximation u of uq for each specific region. The
regions are denoted by £2;,7 = 1,2, ...,n. The function u varies smoothly within each
2; and rapidly or discontinuously across the boundaries of €2;. The process of finding
the boundaries of €2; is called segmentation. The boundaries of all €2; are denoted by

C and §); is an open set. Therefore the whole image can be expressed as

To solve this problem Mumford and Shah have proposed the following minimiza-

tion problem [13]:

n fucl B (U, - / - ? / ? )
infuc{E(u,C) o Q\C(u wo) “dxdy + p e |Vul*dzdy + v|Cl}

= aZ/QV(u—uO)dedy—F,u,Z/Q.\C]Vu]zdasdy—i—mC'I}, (5)



where u,v,a > 0 are fixed parameters which can be described as weight factors.
The problem is to find u and C such that the above energy is minimal. C' is the
segmentation curve and u is the approximation of ug.

From Eq.(5), we have the following observations. To minimize E(u,C), we need:
(1) u is a good approximation of ug, (2) u does not vary much in each region €;, and
(3) the boundary of each region €2; should be as short as possible. The minimal value

of E(u,C) should depend on the values of ¢, p and v.

2.2 Markov Random Field model

The Mumford-Shah model can be understood in the following way: For an observed
image ug (could be noisy), we want to find the approximate image u (or segmentation

image u). Using Bayesian decision theorem, the posterior probability is
P(ulug) = P(uo|u) P(u). (6)

Here P(u) is the probability of obtaining u for different ug, and P(uo|u) is the proba-
bility of obtaining ug with the segmentation image u. Then P(ujug) is the probability
of obtaining the image u with input image ug. If we assume that P(u) is proportional

to its energy in the following form
P(u) = exp(-U) (7)

Here U is the energy of the image. Consider only interaction between neighboring

sites of the image, we have

U o b g(u(z,y) — u(z',y)) < 3_g(Vu) (8)

(z,y) and (z',y’) are neighbor pizels

Here g(x) is a positive definite function. P(upl|u) is assumed to have the following

form

Pluglu) o Hlexp[—(uo(i) — u(i))?] oc exp[— /(uo — u)*dxdy]. (9)



Here 7 is the index of a pixel and N is the total number of pixels in the image. Thus,
P(up|u) increases as u approaches ug. If we assume that P(u|ug) = exp(—E(u, uo)).
Then we have [28, 38, 39, 40]

E(u,up) = /(u — ) dxdy + ,u/g(Vu)d:z;dy. (10)

If we also include the boundary energy in Eq.(10), we have
Blu,uo) = /(u — up)?dady + ,u/g(Vu)da;dy + |0, (11)

This is the Mumford-Shah model for g(z) = z2.

The solution to the above problem for arbitrary image is not a trivial task. There-
fore, many approximations and simplified models have been proposed. For segmen-
tation problem, the most important factors are the boundaries. The texture’s infor-
mation inside the boundaries is not important. As the first approximation, we can
take u as a constant in each region. This is called piecewise constant model and is

widely used in image segmentation.

2.3 Piecewise constant approximation

If we assume that u = ¢ and ¢ is a constant in each bounded region, then the second

term in Eq.(5) is zero. Therefore, Eq.(5) becomes
infec{E(u,C) = a/ﬂ\c(c — wg)dzdy + v|C|}

= ai/ﬂi(q — up) dzdy + v|C|}. (12)

If we choose n = 2 in Eq.(12), we will have two different values ¢; and ¢, for two
different regions. We will call each region which has a different value ¢; as one phase.
Thus, Eq.(12) for n = 2 is referred as two phases MS model. This model was first
used by Chan and Vese [23, 24, 22, 46]. In this simplified version of Eq.(12), the
number of phases is chosen in advance. In this study, we will concentrate first on
the two phase problem. We will later extend this study to four phases based on our

previous work [8, 9].



Using the Heaviside function H(z) defined as

lifz>0
H(z) = { 0ifz <0 } (13)

and the level set function ¢(z, y)

> 0 if (x,y)in
o(z) =0if (z,y)inéQ o, (14)
< 0if (z,y)inQ

the two phase version of Eq.(12) can be written as
E(u,C) = a/ (c1 — ug)*dxdy + a/ (ca — ug)*dzdy + v|C)|
inside C outside C

= o [(e1— w)* H(g)dw dy+ ale = w)*(1 — H(9))dzdy

—I—u/ |VH(¢)|dzdy. (15)

Since VH(¢) is nonzero only on the boundary of the curve, therefore the length

term can be written as
length(58) = / \VH(¢)|dzdy (16)

and this has been used in Eq.(15).

Using the formula

VH(¢) = (¢)V9e, (17)
We have
length(59) = / \VH()|dzdy = /Q 5(6)|Vo|dady. (18)

with
Vol =/¢2 + &5 (19)

Eq.(18) will be used in the latter part of this chapter.



If we define:

F(¢) = a(er = uo)* H(9) + alcz — uo)*(1 = H(¢)) + vd(¢)|V| (20)

and follow the derivation given in Appendix A, we have

o8 = ale —w)(9) - ale - wlS@) +F@E (2

and

o OF , 0% 0 ¢

= = ) —E— 1+ §()—
and

o  OF ¢y o ¢

998N s — s LDy

om0y ] (23)

Thus, we have the following Euler-Lagrange equation:

d(@)laler — w)? —aler — w0 =1V - ()] =0 (24)

with the boundary condition (see Appendix A)
0d) Gy 3P 0 _

Here 7 is the normalized normal of the boundary curve of the image.
In the following, we will denote the LHS of Eq.(24) by L(¢). Using the gradient

projection method, we can change Eq.(24) to the following time dependent equation

99 _
ot

\%
~L(¢) = 8(¢)[~aler — uo)* + a(ez — ug)* + vV - (l-v%)]- (26)
In the following, we will prove that %‘tz < 0. That is the solution of Eq.(26) will
decrease E(c;, C) in time. Therefore the final solution of Eq.(26) should minimize the

function F(c;, C).



From Fq.(15), we have

0E(c;, C 0 0
) = flatey —uO>25<¢>;§—a<c — 0)%0(6) 2z
96(¢) 9¢ 3\V(¢)i 0.
25 ath( \dady + v /5 S oy
3IV 9|V (¢)| 8¢,
+v [ 8(9) 5o Loy 27)
Using the fact that
0, _0(5) 90 _AF)
ot ayt ’ ot Oz (28)
Then Eq.(27) becomes:
Elc:
W) later — w562 ~ afes — uo)6(6) 2 )dady
06
%;ﬁ—lw #)\dzdy
0
+v /V d:vdy— /(V B) a¢dxdy
(29)
e ol ol _ . Vs
B = §(¢)(——— = 0(¢) = 30
O ) = 0O (30)
Because the boundary condition of the Euler-Lagrange equation
/v-édxdy:/é.ﬁdz:o, (31)
and Vo
.B=¢ 0(P)V - —— 32
\4 (@)IVe]+4(s) Vol (32)
we have
2
OE(ac;, ¢) = —/{ alc; — ug)? + alcy — ug)* — vV - (Ig(jj)]} dzdy
= — /L ®) 2d:/z:dy < 0. (33)



Thus we have shown in Eq.(33) that E < 0. In Appendix B, we show that this
result is true for any kind of Lagranglan.

For a fixed ¢, using the assumption that ¢; and ¢ are constants, we have

_g_cf?l. 0, gg 0. (34)
Thus

() = % (35)

and
o) = L= Oty "

In numerical calculations, we use

Ho(z) = 2(1+2 arctan(%))‘ (37)

and
5u(x) = %%M (38)

to replace H(¢) and 6(¢). In Fig. 2, H. and §, are shown for two different, ¢ values.
The smaller the € is, the closer H.(z) and é.(x) are to H(x) and §(z). If e — 0, H(x)

and 6(x) are regained.

2.4 Experimental results using the two-phase piece-

wise constant model

In Fig. 3, the piecewise constant approximation is used to segment a Chinese charac-
ter. It is seen that the segmentation result is very good. The steps of the segmentation
are also shown in Fig. 3. It is clear that after 3 iterations, the boundary of the Chinese
character is found. The energy changes with time is shown in Fig. 4. The numerical
results confirm that as time goes on, the total energy decreases and reaches a constant
value when time becomes very large. Fig. 4 is consistent with the results shown in
Fig. 3. In the calculations in this section, we fix v = 0.0502? and o2 is the variation
of the input image.

In Figs. 5 and 6, the segmentation results of David picture and some geometrical

10
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Figure 2: H.(z) and §.(z) are shown in the figure. Solid line corresponds to H.(x) for
€ = 0.2. The dashed line corresponds to H.(x) for e = 0.5. The doted line corresponds
to d.(z) for e = 0.2 and The dot-dash line corresponds to d.(z) for e =0.5

shapes are shown. It is clear that the piecewise constant can detect the boundary
of objects in the image. The total energy decreases vs. time (iterations) and this
confirms again our derivation in this chapter.

In Figs. 7 and Fig. 8, the segmentation results of an astronomy image and an
artificial image are shown. They both give good segmentation results.

The two phase Mumford-Shah model can not detect tri-junction regions as shown
in Fig. 9. In (a) of Fig. 9, we have three different regions, but the two-phase
Mumford-Shah model always misses one region as shown in (b) of Fig. 9. This is easy
to understand. Since we have only two phases, so two adjacent regions must be in
the same phase. Therefore, we can not detect the three different regions in (a). To
overcome this problem, we need to use more level sets. If we have two level sets, then
the whole image can be divided into four regions. Thus using two level sets, we can
detect tri-junction. If we have n level sets, then we have 2" phases. In the following

section, we will study two level sets Mumford-Shah model.

11



’ 2 3 21

Figure 3: Segmentation results of a Chinese character ”fu” (blessing). After 21 iter-
ations, we get the final result. The evolution of the level set with time (iterations) is
also shown.

2.5 The four-phase piecewise constant Mumford-

Shah model

For two level set functions ¢;, ¢, the total image can be divided into four regions as
shown in Fig. 10. Using H(¢,) and H(¢-), the four-phase Mumford-Shah model can

be written as

Ey(c11, co1, €10, Coos 1, P2) =

[Tt = en)H($1)H(2) + (o = c10)*H(n)(1 = H(g))

+(uo — c01)*(1 — H($1))H(¢2) + (uo — co0)*(1 — H(¢1))(1 — H(¢2))ldzdy
v [ IVH()\dedy. +v [ [VH(@2)|dzdy. (39)

Let

Fy(pr,d2) = (uo—c11)?H (1) H(¢2) + (uo — c10)*H(¢1)(1 — H(¢2))
+(uo — co1)*(1 — H(¢1))H(¢2) + (ug — coo)*(1 — H(¢1))(1 — H(a))
+v|VH(¢1)| + v|VH($s)| (40)

12
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Figure 4: The Mumford-Shah energy changes with time.

we have
OF} 9 9
—aa = (011 - UO) 5(¢1)H(¢2) + (010 - Uo) 5(¢1)(1 - H(@))
—(cor — u0)*8(¢1) H(¢2) — (coo — 10)*(61)(1 — H(2))
+v5'(¢1)[V¢1|
and
O OF, _ oy Y 9 b
ax(aQSlz) - V[5 (le)m + 5<¢1)3l‘ \/m]
and

0, 0F, 1y 0 b1y

(=2 = vyl W 4 — 7y
8y(a¢1y) V[ (¢l)m+ (¢1)6y\/m]

Therefore, we have the following FEuler-Lagrange equation for ¢;:

5(¢1) [[(011 —ug)? — (o1 — ug)*1H (o) +

[(c10 — U0)2 — (co0 — UO)Q](l — H(¢y)) — vV - (lvv%)] =0

13
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Figure 5: Segmentation results of the David image. (a) : the original image, (b) :
the initial level set, (c) : the final segmentation results, (d) : the MS energy vs time

(iterations).

with the boundary condition (see Appendix A)

5(¢1)
V|

5(61) 0
VO =196, on

Here 7 is the normalized normal of the boundary curve of the image.

Similarly, we can derive the Euler-Lagrangian equation for ¢,.

% = (cu1— uo)25(¢2)H(¢1) — (€10 — U0>2H(¢1)5(¢2)

+(001 - U0)25(¢2)(1 - H(Cbl)) — (coo — U0)2(1 - H(¢1))5(¢2)
+[6"(¢2) | V1]

and
0 , OF, : 03 0 o
it ) — 1) ———
oz (3¢2m) v1o'(d2) V3. + 03, i (¢2)8:c V3 + Cb%y]

14
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Figure 6: Segmentation results of a image. (a) : the original image, (b) : the initial
level set, (c) : the final segmentation results, (d) : the MS energy vs time (iterations).

and

0 A OF, b3, s, b2y

i — 5/ —__+5 —_——
3y 5g,,) = V109 Py (2)5, oy ¢§y]

Therefore, we have the following Euler-Lagrange equation for ¢s:

5(¢2) |[(er1 — u0)” — (10 — o) | H (1) +

(o = u0)? — (o0 — w)’)(1 — H(gn)) — 1V - (i

Vb

)| =0

with the boundary condition(see Appendix A)

5(¢2)
Vs

 8(0) 000
Voo -1 = Vo] On =

Here 7 is the normalized normal of the boundary curve of the image.

(48)

(49)

(50)

We need to notice that Eq.(44) and Eq.(49) are two coupled equations. We will
denote the LHS of Eq.(44) and Eq.(49) as Li(¢1, ¢2) and La(¢y, ¢2) respectively.

15
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Figure 7: Segmentation results of a galazy image. (a) : the original image, (b) : the
initial level set, (c) : the segmentation results, (d) : energy vs. time (iterations).

Using the gradient projection method, we have the following equations:

O _ o 9 _
o Ly 3% L, (51)

In the following, we want to prove that the 3—54 < 0.

From Eq.(39), we have
3¢1 Oz

3¢1

oF,

5 ]d$d

O

H(¢s) + H(¢1)d (¢2)

/(011 - UO) [6 (¢1)
+/ o — uo)[8(n) 5 (1 —H(¢2)—H(¢1) (¢2)5 2 dedy
20 "o,

+ /001—UO (1) S H(2) + (1 = H(1))0(9) 52 dady

+ (oo — o ¢1>3¢1( L— H(2)) - (1- H($2))6 <¢2>8¢2

90(¢1) 3¢1 O|V(¢1)| 01s
5o a1V (enldrdy +v [ 860 =5 AT

O|V(¢1)] 9¢y
y /5 So gy dedy

95(¢2) 06
O¢g Ot

|dxdy

dxdy

OV (92)] 92

[V (62)ldady + v [ (¢2) S ey
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Figure 8: Segmentation results of a image. (a) : the original image, (b) : the initial
level set, (c) : the segmentation results, (d) : energy vs. time (iterations).

|6¢2y
+y /5 a% =2 dady (52)

Using the fact that

ot Oy ot Oz
and 5 5
Bt By ot Dz

Then Eq.(52) becomes:

OBE) — [(en — w560 oL (6) + H(6:)5(60) 2wy
+ [ (e ~wo)? [6<¢1>%<1 — H(g)) — H(6)3(62) 2 dudy
+ (e~ wop @@H(@) +(1 - H(p)S <¢2>8¢2]dxdy
5¢1 O,

(1= H(2)) — (1= H(41))5(¢2)—,"dady

+/ coo — tp)® ¢1)
+z//6’ (1) |V¢1|—d:cdy+v/5’ ¢2) |V¢2]%d:ﬂdy

17



a b

Figure 9: One level set results for a tri-junction region. (a) is the original image and

(b) is the segmentation result.

+I//V Bl— Ydzdy — v /(V Bl)%dxd
+u/v B2— da:dy—l//(v Bg)%da:dy
ith
b B s(oy @0 Ve, o Vo
LY 0, O, VIV
d
2N 06y, T 0y, YV

Because of the boundary condition of the Euler-Lagrange equation

/V-gldxdy:/ﬁl-ﬁdlzo /v-égd:cdy=/§2.ﬁdl:0,

. Ve,
and Vo

> st L2
we have

M —/ ¢1 —(c11 — u0)* + (cor — o)) H (¢2)+

ot

T chbl 2
[(er0 —u0)” — (coo — uo)’](1 — H(g)) + l%ﬂ”

18
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Figure 10: [llustration of two level sets. The whole image is divided into four regions.
The mean value in the region ¢1 > 0,02 > 0 is ¢11. The mean value in the region
¢1 > 0,0 < 0 is c1g. The mean value in the region ¢1 < 0,y > 0 is cpy. The mean
value in the region ¢ < 0,05 < 0 45 Coo-

- / {8() [[—(e11 — u0)* + (cor — u0)’JH (¢1) + [(c10 — 0)* — (co0 — uo)’]

oo}

= — /(Lf + L3)dzdy < 0 (61)

Eq.(61) is generally true for arbitrary Lagrangian. The derivation can be found
in Appendix B.

The shortcoming of two level set method is that it depends strongly on the initial
conditions. This can be seen from Fig. 11 where the total MS energy is calculated for
different initial conditions. It is clear that the final energies are different for the two
different initial conditions. Therefore, we should be very careful in choosing the initial
conditions when using the two level sets. To overcome this difficult, a hierarchical
multiphase segmentation method is suggested in Ref. [8]. This method has the

advantage that its segmentation results do not depend on the initial conditions.
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Figure 11: Ilustration of segmentation results of two level set method. (a) : the
original image, (b) : initial curves of two level sets, (c) : different initial curves of
two level sets, (e) : the segmentation results of b, (f) : the segmentation results of c,
(d) : energy vs. time (iterations). The two segmentation results have different final
MS energy. This shows clearly in top right corner of the (d) which is the plot for the
number of iterations between 100 and 200 using different scale.

2.6 The hierarchical multiphase segmentation method

Since the two level sets method depends on the initial conditions, in [8] the hierarchical
multiphase method was introduced. At the first stage, we apply the constant MS
segmentation model with one level set function ¢; to a given image. At the end
of the first segmentation stage, we obtain two sets of resulting sub-regions. The
second stage starts by applying the same model with another level set function ¢,
to each of the sub-regions independently. After the second segmentation, we obtain
four resulting sub-sub-regions. We can apply the same model with the third level set
function ¢3 and so on. In our calculations, we only use two level set functions. We
illustrate our multiphase hierarchical approach through the case of the 4-phase (two
level set functions) segmentation. Like the Chan-Vese model, there are two evolution
curves Cy and Cy, which are represented by the corresponding level set functions ¢4

and ¢y. At the first segmentation stage, the evolution of the curve (] is governed by

20



the motion equation of the level set function ¢; (o = 1):

A

Ve
[Vl

— (ug — &1)* + (uo — 2)7] (62)

where ¢; and ¢y are the averages of ug inside and outside Cy respectively. In other
words, we will calculate ¢, using the one level set method. We then obtain two-regions
defined by ¢; > 0 and ¢; < 0.
After the first stage, we will use one level set PDE equation for each region sepa-
rately. That is for region I (¢; > 0), we have
02

G2 =86V -

Vs

Vorl — (uo — en)” + (uo — c0)7- (63)

where c;; is the average of ug in sub-region I and also inside the curve Cy (¢ >
0,2 > 0) and ¢y is the average of ug inside the sub-region I and outside the curve
Cs.

For sub-region 1I(¢; < 0), we have

%’? = 0(¢2)[12V - %2—1, — (g — co1)* + (uo — co0)?]- (64)

where cg; is the average of ug in sub-region II and also inside the curve Cy (¢; <
0, ¢2 > 0) and cgp is the average of uy inside the sub-region II and outside the curve
Cy. This approach corresponds to solving the one level set equation 3 times. The
advantage of this method is that the results do not depend on the initial conditions.

Here we need to point out that Eq.(63) and Eq.(64) come from the second equation
of Eq.(51) which is

ol 2 2
B —6(¢2) [[(Cn — ) — (10 — uo)”|H (¢1)+
Vo

Vb

[(co1 — uo)” — (coo — uo)?J(1 — H(¢1)) — vV - ( )| - (65)

If ¢ >0, H(p1) =1 and 1 — H(¢,) = 0, thus we get Eq.(63) from Eq.(65). If ¢; <0,
H(¢1) =0and 1 — H(¢y) = 1, thus we get Eq.(64) from Eq.(65).

We have proved that using gradient projection method, we always have %]f— < 0.
This should be also true for the hierarchical method. In Fig. 12, we see that for the
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Figure 12: Illustration of segmentation results of two level set hierarchical method.
(a) : the original image, (b) : initial curves of two level sets, (c) : another initial
curves of two level sets, (e) : the segmentation results of b, (f) : the segmentation
results of ¢, (d) : the energy vs. time (iterations). The two segmentation results have

the same final MS energy.

two different initial conditions, we obtain the same segmentation results. The energy
vs time (iterations) is also shown. It is shown that the final segmentation results have
the same MS energy. The end of the evolution time of the first level set is also marked

in Figure 12 which is 12 and 18 for the initial conditions (b) and (c) respectively.

2.7 Experimental results of hierarchical multiphase

method

In Fig. 13, the one level set and the hierarchical two level set results are shown.
It is clear that one level set can not detect all the regions because there are many
tri-junctions inside the wheel. Two level set method can detect all structures of this
image. In the calculations of this section, we take v = 0.05¢0% and o? is the variation
of the input image, v; = 0.0507 and v, = 0.0502. Here 0% and o3 are the variations

of the region ¢; > 0 and ¢ < 0.
In Figs. 14, 15,16 17, 18, more segmentation results are shown. It is clear that
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Figure 13: Segmentation results of the hierarchical two level set method and the one
level set method. (a): the original image and initial level set,(b) : segmentation result,
(c) : the energy vs time for one level set, (d) : the original image and the initial level
sets, (e) : segmentation result, (f): The MS energy vs time for hierarchical two level
sets method.

two level sets results are better than the one level set method. In (¢) and (f) of those

figures, the energy vs time is shown.

2.8 Conclusions and Comments

In this chapter, we have used the original MS model for image segmentation. For
the first order approximation, we have assumed that u is a constant inside each of
the regions. We have used the gradient projection method for solving the Euler-
Lagrangian equation. The level set method was used for the numerical computations.

We have proved that the MS energy will decrease vs. time for the two-phase and
four-phase approaches. In the Appendix B, we give a general proof for this statement
and this should be true for arbitrary number of phases. We have shown that the

hierarchical two level set method does not depend on the initial conditions.
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Figure 14: Segmentation results of the hierarchical two level set method and one level
set method (a) : the original image and initial one level set, (b) : the segmentation
results of one level set, (c) : energy vs time for one level set, (d) : the original image
and initial two level sets, (e) : the final segmentation results, (f) : the MS energy vs
time for hierarchical two level sets method.
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Figure 15: Segmentation results of the hierarchical two level set method and one level
set method. (a) : the original image and initial one level set, (b) : the segmentation
results of one level set, (c) : energy vs time for one level set, (d) : the original image
and initial two level sets, (e) : the final segmentation results, (f) : the MS energy vs
time for hierarchical two level sets method.
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Figure 16: Segmentation results of the hierarchical two level set method and one level
set method. (a) : the original image and initial one level set, (b) : the segmentation
results of one level set, (c) : energy vs time for one level set, (d) : the original image
and initial two level sets, (e) : the final segmentation results, (f) : the MS energy vs
time for hierarchical two level sets method.
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Figure 17: Segmentation results of the hierarchical two level set method and the one
level set method. (a) : the original image and initial one level set, (b) : the segmen-
tation results of one level set, (c) : energy vs time for one level set, (d) : the original

image and initial two level sets, (e) : the final segmentation results, (f) : the MS
energy vs time for hierarchical two level sets method.
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Figure 18: Segmentation results of the hierarchical two level set method and the one
level set method. (a) : the original image and initial one level set, (b) : the segmen-
tation results of one level set, (c) : energy vs time for one level set, (d) : the original

image and nitial two level sets, (e) : the final segmentation results, (f) : the MS
energy vs time for hierarchical two level sets method.
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Chapter 3

Linear Approximation MS Model

3.1 Introduction

In Chapter 1, we have used a piecewise constant model for image segmentation and
we obtained very good results. However piecewise constant approximation may not
be appropriate for images with large variations in intensities. For this kind of image,
if we use constant approximation as in Chapter 1, the first term of Eq.(15) will be
very large due to the large fluctuation of intensity in each region. To make the first
term small, we need to have a better approximation of ug. Therefore, instead of
approximating the image in each region by a constant, we will approximate it by a
planar surface [44]

u(z,y) =a+b-x+c-y. (66)

Here a, b, ¢ are constants.

3.2 Two-phase linear approximation

We will study two-phase linear approximation first. Later we will extend it to the case
of four phases as we have done in the last chapter. For the two phase case, we will
have two linear planar surfaces one approximating the inside, the other approximating

the outside of the level set curve:

ul(:r,y):a1+b1 'I—f—Cl'y, (67)
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and

ug(@,y) =as +by-z+co-y. (68)

Eq.(4) then becomes:
E(a;, b, ¢, C) = /(al + b1z + ey — ug)’ H(p)dxzdy
+ [ (@ + bz + oy — uo)* (1 = H(@))dody
(b} +cb) [ H(g)dzdy ++n(] + ) [ (1~ H(@))dody +
v / \VH(8)|dzdy. (69)
Let
F(¢) = (a1 +biz+cry —up)>H(p) + (ay + box + coy —ug)*(1 — H())

(b5 + ) H(9) + +p(b5 + 3)(1 — H(¢)) +
+v6(9)| V9. (70)

Following the derivation in Appendix A, we have

%g = (a1 + bz + 1y — up)*0(9) — (ag + bz + oy — u2)8(o) +
(0} + )3(8) — p(b; + 3)8(¢) + v6'(9)| V] (71)
and
o oF. . $ ) 4
5;(0(%) = I/[5 (¢)\/m+5(¢>5‘x‘\/m] (72)
and

0 OF o2 o ¢
() = pld(d)——E 1 S — y
ay(a¢y) [ () riwf (¢)6y o

—~
-1
w

~—

Thus, we have the following Euler-Lagrange equation:

51V - % (a4 b+ ey — uo) + B+ )

—(az + byz + coy — ug)” — p(b; +¢3)] = 0 (74)
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with the following boundary condition(see Appendix A)

d(¢)

3(6) o(6) 00 _,
Vo

Here 7 is the normalized normal of the boundary curve of the image. In the following
we will denote the LHS of Eq.(74) by Linear-

Following Appendix B, we have the time dependent evolution equation of the level
set ¢(z,y, t)

0
—% 5(¢)[VV'I—§—§I — (a1 4+ b1z + ey — ug)® — p(bi + ¢})
+(az + bot + oy — ug)? + p(b5 + 3)] (76)

We can calculate aq, b1, c; by the following equations

o8 _ OB _ 0F
8a1_’361_ N

From Eq.(77) we have
@ / H(¢)dady + by / H(¢)axdzdy

+or [ yH(@)dzdy = [ uoH (6)dady

@ / s H($)dzdy + by / ? + p H($)dzdy

ey / ryH(¢)dzdy — / ruoH(§)dzdy (78)
ar [ yH(@)dedy + by [ wyH(@)dedy + ey [[y? + p)H(¢)dedy
— [ yuoH (¢)dzdy

Similar to the above, we have

9B _ 0B _ 0B
day N N

Or

a (1= H(6))dzdy + by [ (1~ H(@))zdzdy
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ter [y(1 = H(g))dady = [ ug(1 — H(g))dady
@ [ 31— H(g))dudy + by [[2* + )(1 — H(6))dudy
+co /xy(l — H(¢))dxdy = /a:uo(l — H(¢))dzdy (80)
@ [ y(1 — H(@))dzdy + +b [ oy(1 — H(@))dedy +
2 [l + (1 — H(@))dsdy = [ yuo(1 — H(¢))ddy
In the following, we will prove that BE < 0. That is E(ay, b;, ¢;, C) will decrease
in time. Therefore the final solution of Eq.(76) should minimize the functional

E(ai, bi, ci, C)-
From Eq.(69), we have

g~ [<al+b1x+cly—uo>26<¢>%§ ~ (aa + bar oy — 0)*8(¢) 2 dady
0|V (¢)| 0.
o [ Zg v @dady o [ ot0) "
f?IV ¢)| 99,
v /5 S oy (81)
Using the fact that
0¢, 0(%) 0¢,  0(%)
o Oy’ ot Ox (82)
Then Eq.(81) becomes:
8’3(““8(’;"3“0) = / [(ay + bz + ¢, — )%(gb)%—(az+b2x+02y—u0)25(¢)g(f]d:cdy
85
a‘j) d V(¢)ldady
—H//V da:dy— /(V B)gqsdxdy
(83)
. o1vg| 9V Vo
B =6(¢) (22 TPl _ () -2 4
()54, 5%, ) WIWI (84)
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Because the boundary condition of the Euler-Lagrange equation

/V-B’dxdy:/f?-ﬁdz:o, (85)
and Vo
V'B:5(¢)|V¢|+5(¢)V'W, (86)
we have

3E(ai, bi, C;, C)
ot

= — / {5(@5)[((11 + bz + 1y — up)? + (ag + bz + oy — up)?

vo . )*
@)]} dxdy

- - / Lisnear (8)2dzdy < 0, (87)

AV

' )
Thus we have shown in Eq.(87) that 2% < 0.

3.3 Experimental results of linear approximation

for one level set

We have implemented the above model using the method developed in [23]. The
segmentation results of three Chinese characters are shown in Fig. 19. It is clear that
our method gives good segmentation results. In Fig. 20, the MS energy vs time is
shown. The graph shows that the MS energy decreases with time.

In Fig. 21, we show the segmentation results by using the Chan-Vese model and
our model. Our model gives a much better segmentation results compared to the
Chan-Vese model. Our model can obtain detailed structure inside the image. We
have also shown in the figure the energy vs time. It is clear that the MS energy of the
linear approximation MS model is smaller than the energy of the piecewise constant
MS model.

In Figs. 22 to 24, more examples of segmentation using the piecewise constant and
linear approximation MS models are shown. These results show us that this linear
approximation model can produce better segmentation results. For example, in Fig.
24, the piecewise constant MS model can not produce a good segmentation for the

lower part of the image. However our model can provide better results.
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Figure 19: The images show the evolution of the ¢(x,y,t). In the calculation, we have
approzimated the two phases by two planes. It is clear after two iterations, we almost
get the final segmentation results. In the calculation, we choose v = 0.502. o? is the
variation of the input image.

3.4 The four-phase linear approximation

To investigate more detailed structure of an image, we need more level sets. For two
level set functions ¢1, ¢,, the four-phase linear approximation Mumford-Shah model

can be written as

E{™ (a4, big, ¢ij, f1, ba) =
/ (o — ant — buz — c1y)?H(é) H(éo)dzdy
+ [ (o — aro — biow — croy)* H(g) (1 — H(2))ddy
+ [ (o — o = bors — —eory)*(1 = H(¢1)) H(2)dody
+ [ (o — a0 — boow — coay)*(1 = H(9))(1 = H(gw))dady
Fulb + & / H(é1)H(s)dzdy
o+ ko) [ H(91)(1 ~ (H(a))dady

+M%+%0/O—HWMHWﬁm@
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Figure 20: The MS Energy vs time (iterations) is shown.

Hu(tRy + ch) [(1= H(@))(1 = (H(@2))dzdy
v / IV H (¢n)|dzdy + v / IV H(¢s)|dzdy.

Let

Fimear(ﬁbl, ¢2) = (UO —ay —bnr — Clly)zH(¢1)H(¢2)
+(up — @10 — bioT — c10y)*H (61)(1 — H(é2))
+(up — agr — b1z — cory)*(1 — H(d1))H(d2)
+(uo — aoo — oo — cooy)*(1 — H(¢1))(1 — H(42))
+u (bl + ey H (1) H (¢2) +

+N(bgl + C01)(1 — H(¢1))H(¢2) + M(bgo + 0(2)0)(1 —H
+u|VH(¢1)| + v|VH(¢2)]
we have
linear
or, = (apn +buz+cny — U0)25(¢1)H(¢2)
91

+(a10 + bloiC -+ Cioly — UO)25(¢1)(1 — H((f)g))
—(ao1 + b1z + cory — U0)25(¢1)H(¢2)
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Figure 21: Segmentation results of a roof edge image. (a): Original image and ini-
tial level set for the piecewise constant model, (b): Segmentation result of piecewise
constant MS model, (c): energy vs time for the piecewise constant model, (d): Origi-
nal image and initial level set for the linear approzimation model, (e): Segmentation
result of the linear approximation MS model, (f): energy vs time for the linear ap-
prozimation MS model. In the calculation, v = 0.502 and o is the variation of the
mput tmage, 1= 0.

—(ago + boo™ + cooy — uo)20(¢h)(1 — H(¢))

(01 + c11)8($1) H () + p(blg + c1p)d(¢1)(1 — (H(¢2))

—p(boy + €01)3(d1))H (¢2) — p(bo + c00)0(¢1)) (1 — (H(62))
+16'(61)| V| (90)

and

9 OF, 0 OF
0z 8¢1z ’8y a¢1y

Vo
V|

) = v[§'(61)[Veul +6(h1)V -

| (91)

We have the following Euler-Lagrange equation for ¢;:

(1) [{(011 + bz + ey — u0)2 + ,uJ(bf1 -+ cfl)
—(ao1 + b1z + cry — u0)2 — u(bg1 + 6(2)1)]H(¢2)+
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Figure 22: Segmentation results of an artificial image. (a): Original image and
initial level set for the piecewise constant model, (b): Segmentation result of piecewise
constant MS model, (c): energy vs time for the piecewise constant model, (d): Original
image and initial level set for the linear approzimation model, (e): Segmentation result
of the linear approximation MS model, (f): energy vs time for the linear approzimation
MS model. In the calculation, v = 0.502 and o? is the variation of the input image,
p=0.

[(a10 + broz + c10y — uo)® + p(biy + cio)

— (o0 + boo + cooy — u0)® — p(bi + ¢5o)1(1 — H(eha))

vV - ([Y;f;) =0 (92)

with the boundary condition (see Appendix A)

5(¢) s 0(0) 9 _ (93)

Vo T Wi on

Here 7 is the normalized normal of the boundary curve of the image.

Similarly, we can derive the Euler-Lagrangian equation for ¢s.

OFy

% = (a1 + biix + ci1y — uo)*8(do) H(¢1)
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Figure 23: Segmentation results of an artificial image. (a): Original image and
initial level set for the piecewise constant model, (b): Segmentation result of piecewise
constant MS model, (c): energy vs time for the piecewise constant model, (d): Original
image and initial level set for the linear approrimation model, (e): Segmentation result
of the linear approzimation MS model, (f): energy vs time for the linear approzimation
model. In the calculation, v = 0.502 and 02 is the variation of the input image, p = 0.

—(a10 + biox + cr0y — uo)* H(¢1)d(¢2)

+(ao1 + bor + cory — 1o)?3(¢2)(1 — H(¢))

—(ago + boo + cooy — uo)*(1 — H($1))5(¢2)

(bl + 31)8(B2) H () — n(blo + clo) H(¢1)5(¢2)

+u(by + ¢01)d(¢2) (1 — H(¢n)) — p(bio + co)*(1 — H(¢1))d(¢2)

+08'(2) V| (94)
and
& 0F,, 0 0F . . Ve
V- (‘5:; 8(%)7 8_y(8¢2y)) = v[0"(¢2)| V2| + 0(¢2)V - ZN (95)
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Figure 24: Segmentation results of a bone image. (a): Original image and initial level
set for the piecewise constant model, (b): Segmentation result of piecewise constant
MS model, (c): energy vs time for the piecewise constant model, (d): Original image
and initial level set for the linear approximation model, (e): Segmentation result of
the linear approximation MS model, (f): energy vs time for the linear approximation
model. In the calculation, v = 0.050% and o? is the variation of the input image,

w=0.
Therefore, we have the following Euler-Lagrange equation for ¢s:

5(¢2) |[(an1 + bz + ey — o) + p(b], + ¢4y)

—(a10 + bioz + 10y — o) — p(bly + o)1 H (d1)+

[(ao1 + bonx + co1y — wo)” + p(b3, + c5y)

—(ago + boo + cooy — u0)? — pu(bgg + o)) (1 — H(¢1))

V¢2ﬁ:=0 (96)

V(g

with the boundary condition{see Appendix A)

5(¢2)
Vol

 5(62) 0
Vo =150 on

= 0. (97)
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Figure 25: Segmentation results of a bone image. (a): Original image and initial level
set for the piecewise constant model, (b): Segmentation result of piecewise constant
MS model, (c): energy vs time for the piecewise constant model, (d): Original image
and initial level set for the linear approzimation model, (e): Segmentation result of
the piecewise constant MS model, (f): energy vs time for the linear approrimation
model. In the calculation, v = 0.050% and o? is the variation of the input image,
w=0.

Here n is the normalized normal of the boundary curve of the image.
We need to notice that Eq.(92) and Eq.(96) are two coupled equations. We will de-
note the LHS of Eq.(92) and Eq.(96) by L™ (¢,, ¢9) and L% (1, ¢o) Tespectively.

Using the gradient projection method, we have the following equations:

O : Os :

el A _lenear 772 _lenear 98

at 1 at 2 ( )
Similarly, we can also prove that %{ < 0. The derivation is similar to the deriva-

tion of the two level set case in the Chapter 1 except that we use a;; + bz + ¢y to

replace ¢;; in Eq.(52). For the benefit of space, we will neglect the derivation here.

We have

OE(u,C)

i = = [l + (L) dady < 0 (99)
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The shortcoming of two level set methods is that it depends strongly on the initial
conditions. Thus we will also use the hierarchical multiphase segmentation method

as suggested in [9].

3.5 The hierarchical multiphase segmentation method

For the hierarchical multiphase segmentation method, we will first solve the one level

set equation for ¢,.

0 \Y
T = Y - g~ (= a1 bz ) — 0+ )

+(up — ag — box — coy)? + p(ba + c2)) (100)

We then obtain two regions defined by ¢; > 0 and ¢; < 0.
After the first stage, we use one level set PDE equation for each region separately.
That is for region I (¢; > 0), we have
02 Vo

Bt = (o) [h V- W — (up —ann + bz — C11)2 — ,U(b%l + c?l)

+(ug — a1 ~ bioT — c1oy)? + p(bly + o)l (101)

For sub-region II{¢; < 0), we have

Opa Vo, 9 2 | 2
9P2 _ . e — e _ — (b
5% 6(h2) 1LV N (uo — ap1 — borz — co1y)* — (b, + cg1)
+(UO — ago — boox — Cooy)2 + :u(b(2)O + CSO)]. (102)

This approach corresponds to solving the one level set equation 3 times. The advan-
tages of this method are that the results do not depend on the initial conditions, and
the PDE’s are decoupled.

Here we need to point out that Eq.(101) and Eq.(102) come from the second
equation of Eq.(98) which is

9o

o —6(92) [[(an +buz +eny — uo)’ + p(bi, + i)

—(a10 + brox + c10y — U0)2 - N(bfo + C%o)]H(fﬁl)”i"
[(ao1 + borz + cory — U0)2 + M(bgl + 081)_
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Figure 26: Segmentation results of two level set method. (a) : the original image and
initial level sets (b) : segmentation result, (c) : energy vs time for piecewise constant
MS model, (d) : the original image and initial level sets (e) : segmentation result,
(f) : the energy vs. time (iterations) for linear approzimation MS model. In the

calculation, v = 0.506% and o? is the variation of the input image, p = 0. 1, = 0.0102
. H 1

and vy, = 0.0102. Here o2 and 02 are variations in region I and region II.
(@00 + boo + cooy — o) — (b + c5o)](1 — H(¢1))

A v AN ( V¢2

oo (103)

If ¢y >0, H(¢) = 1 and 1 — H(¢;) = 0, thus we get Eq.(101) from Eq.(103). If
¢ <0, H(¢1) =0and 1 — H(¢y) = 1, thus we get Eq.(102) from Eq.(103).

3.6 Experimental results of hierarchical multiphase

method

In Fig. 26, we show the segmentation results for both piecewise constant and linear
approximation MS models. It is clear that the linear approximation is better than
the piecewise constant model for this image. The energy vs time is also shown for

both models. The final state energy of the linear approximation MS model is smaller
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Figure 27: Segmentation results of two level set method. (a) : the original image and
initial level sets (b) : segmentation result, (c) : energy vs time for piecewise constant
MS model, (d) : the original image and initial level sets (e) : segmentation result,
(f) : the energy vs. time (iterations) for linear approzimation MS model. In the
calculation, v = 0.502 and o is the variation of the input image, = 0. v, = 0.010%
and vy = 0.0103. Here 03 and 03 are variations in region I and region II.

than that of the piecewise constant MS model.

In Fig. 27, we show another segmentation results of roof edges. It shows in Fig.
21 that one level set linear approximation can give us much better results than the
piecewise model. This is because the variation of the intensity in the image is large.
For the two level set method, we have shown that linear approximation can also give
better segmentation results. It is clear that linear approximation can detect more

detailed structure of the image.

3.7 Conclusions and comments

The piecewise constant model can not obtain good segmentation results for images
which have large intensity variations inside each region. In this chapter, we have used

a linear approximation MS model to model this kind of images and as expected we
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have found that this model can produce better segmentation results than the piecewise
constant model. We have proved explicitly that the MS energy will decrease vs. time
for two phases and four phases approaches.

Of course, in principle, we should solve the original PDE equations for the image
function ug. However this is an ill-posed problem and the calculation time would
be impossible for real applications. Therefore, approximation methods used in this

chapter and Chapter 1 should be of interest for practical applications.
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Chapter 4

The Effects of ;1 and v in the
Mumford-Shah Model

4.1 Introduction

In Chapter 1, we have mentioned that the MS energy depends on the two parameters
1 and v. It is clear that if u is very large, the contribution from the second term of
Eq.(5) will be significant. To minimize the MS energy, we need to have a small Vu,
that is if 4 — o0, then Vu must tend to 0 otherwise the MS energy will approach
infinity. Similarly, we can see that if v — oo, then the total length of the level set
must approach zero. From this argument, we see that the MS energy depends on the
parameters ¢ and v. This will be the main topic to investigate in this chapter.
From Eq.(5), we observe that the dimension of /it is length and the dimension
of /v is intensity. In the following we will show that /i is a characteristic length or

scale of the image and v is connected with the contrast of the image.

4.2 p-dependence in the MS model

The two-phase energy function of Eq.(5) can be written as

E(Ui7 C> B /nside C(U1 B UO)dedy + outside C(u2 B u0)2d$dy
e /inside c [V Pdzdy + p tside C Vg |*dzdy + v|C]
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= [ — w)*H(g)ds dy + [ (o — uo)(1 — H($))dudy
i [ 1V PH(6)dady + [ Vo (1 — H(9))dzdy

" / \VH($)|dxdy.

If we define:

F(¢) = (ur—uo)’H(¢) + (uz — uo)*(1 — H(¢)) +
+1u| V[P H(9) + | Vua|* (1 — H(¢)) + v6(9)|V |

and follow the derivation given in Appendix A, we have

G = (1~ wf8(9) - (w2 — uoP5(e) +
iV 23(6) — ulVua8(6) + 18 (6)| V]
and
g = WO iy, yree
and
o, 0F, o s 0 S

Thus, we have the following Fuler-Lagrange equation:

Vo

3()(ur — u0)* — (uz — uo)* + p| Ve |* — p| Vo |* = vV - (IV—qﬁ)] =0

with the boundary condition (see Appendix A)

50) gy o 90106 _
R

Here 7 is the normalized normal of the boundary curve of the image.

(104)

(105)

(106)

(107)

(108)

(109)

(110)

In the following, we will denote the LHS of Eq.(109) by L(¢). Using the gradient
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projection method, we can change Eq.(109) to the following time dependent equation

0 \Y%
o = ~L6) = 60) [~ — o + (s =) 0¥ (L ()
For uy and uy, we can also derive two PDE’s
oF
S = 2w~ w)H(9) (112)
and
0 0F 0 OF
(= — = 2ulAuH
Thus the PDE for u, is:
(w1 — uo) — pAw}H(¢) =0 (114)
with boundary condition
(U1g, U1y) - 72 = 0. (115)
Similarly, the PDE for u, is :
[(ug — up) — pAug](1 — H(¢)) =0 (116)
with boundary condition
If 4 — oo, we have
Au; =0, i=1,2 (118)

with the boundary conditions of Eq.(115) and Eq.(117). Therefore, the solution of
Eq.(118) are

Where ¢;,1 = 1,2 are constants. This is consistent with argument in the introduction.
That is if 4 — o0, u; must be a constant in each region. Therefore the constant

approximation is a case corresponding to u — oo.
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4.3 pu-dependence of image segmentation

In the following, we will show a simple example to explain the physical meaning of

w. For an one dimension space, the PDE for u can be written as:

u— ,ugz—z = ug(x), (120)
with boundary condition
%:O z =a,b. (121)
Where a, b are the boundary values. If a = —oo and b = 0o, we have
u(e) = [ 5= exp(- g )ay. (122
2/i "R

From Eq.(122), it is clear that p is the characteristic size of the image. If u — 0,
then u(x) — wup. On the other hand, if 4 — oo, then u — const. In other words, if
i = 0, we get almost all information in ug. On the other hand, if y = oo, we lost
almost all detail information of the original image. From Eqgs.(79),(81), we can see
clearly that if 4 — oo, then b = ¢; = by = ¢ = 0.

In Fig. 28, the u dependence of the segmentation results can be seen for each
row. It is clear that if py-value is very small, the segmentation result contains more
detailed information of the original image. The energy vs. time is also shown in Fig.
28. It is clear that the segmentation energy for the case p = 0 is the smallest among

the three cases.

4.4 v-dependence in the piecewise constant MS

model

From Eq.(15), we observe that for a fixed boundary, if v is very large, then the length
term will contribute largely to the total energy F(u,C). On the other hand, if v is
very small, then the length term will contribute very little to the total energy. Since
the Chan-Vese model tries to the find the minimal energy of E(u,C). Therefore, if

v is very large, we can not expect very long total boundaries; otherwise it will make
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Figure 28: The segmentation results for different p. From left to right: p =
0,1000, 00. The corresponding energy vs time is also shown in the second row. Here
1L = oo refers to piecewise constant case. In the calculation we fix v = o2 and o* is
the variance of input image.

E(u,C) large. On the other hand, if v is very small, then we could find long total
boundaries. Because of this, if we try to get the right boundary of some large objects,
we have to choose a very small v. It has been observed in Gao and Bui’s paper [9]
that when v becomes very large, the segmentation result of the Chan-Vese model is
bad.

In Fig. 29, we show an one dimensional distribution. For this distribution, we
can fit by using two constant functions u(z) = hy for 0 < z < b and u(x) = h, for

—a < x < 0. Then its MS energy is
Epin =v. (123)
We can also fit this distribution using a continuous function u(z). It is clear that
this u(z) should satisfy the following equation:

A%u

4T o2

== h], (124)
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Figure 29: Two lines with height hy and hy respectively. The length of the two lines

are from —a to 0 and from 0 to b respectively.

and

&*u
T g =

with the following boundary conditions

ou(x)

Ox r=—a,b

= 0.

and

u(:E) Iz:0+ = ’LL(:E) |x:0_ .

The above equation actually consists of the following two equations:

with boundary conditions

Ju(x)

and

50

(125)

(126)

(127)

(128)

(129)

(130)



with boundary conditions

ou(x)

815 T=—qa

=0, u(x)lxzo‘ =Y.

Suppose w(x) is the solution of

w=pgz =0

with the boundary condition

ow

w0 =1 Z—|,0p=0.
w0 =1, Golos

We can explicitly write out the solution of w(z) as

cosh(ﬁ(x - b))

cosh(ﬁb)

w(z) =

The solution of Eq.(128) can be written as
u=(y— hy)w+ hy.

Then its MS energy is

ow

E, = /Ob(y — h)*[w?® + u(%)ﬂdaz = (y — h1)*/2 tanh( b

Similarly, the solution of Eq.(130) can be written as
Uu = (y — ]’Lz)w + hQ.

and its MS energy is
a
E2 = (’y — h2)2\/ﬁtanh(—ﬁ)

Therefore the total MS energy is

Egpio = E1 + Fy = (y — hQ)Q\/ﬁtanh(%) + (y — hl)Qﬁtanh(—;—ﬁ).

o1

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)



The energy E depends on the value y and its minimal value satisfies

OF

9L _ o 14
5 =" (140)

From Eq.(140), we obtain

_ \/ﬁtanh(ﬁ)hg + \/ﬁtanh(%)hl

b au (141)
\/ﬁtanh(ﬁ) + /ptanh(%)

Thus the minimal MS energy F is

Epu = (hy — ha)(—m— s 4 ) (142)
\/ﬁtanh(ﬁ) \/ﬁtanh(%)
Suppose a, b >> /i, we have
1 2
So in order to detect this step edge, we must require that Ey;;; < Efyn or
y<1\/ﬁ(h — hy)* => hy — hy > hy = 2 (144)
5 1 2 1 2 0 i

In Eq.(144),we have shown that v must be small enough for a fixed p to detect the
step edge. In other words, for a fixed v, only the difference larger than hg can be
detected.

4.5 A constraint on v in the piecewise constant

model

In Fig. 30, the segmentation results for the piecewise constant MS model are shown
for different v values. It is clear that as v becomes small, the segmentation results
are good. This is due to the fact that when v becomes small, we could find the small
regions which could not be recognized when v is large. However when v is very small,
regions could not detected due to noise.

In the following, we will show that the value of v should not be too large and
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Figure 30: From left to right: v = 0.10%,0.506%,1.00%. Here o? is the variance of the
input image. The first row is the results of Chan-Vese model and the second row the
corresponding energy vs time. The original image is in Fig.16.

its value is smaller than the variance of the image. Suppose the boundary is empty,

|C| = 0, then the total energy of the Chan-Vese model of the image is

E(u,C) = / (c — wo)2dwdy = No. (145)
Here o2 is defined as
o = LS (i) — e = =3 wli) (146)
B N =1 ’ T N i—=1 ° .

N is the total number of pixels on the image and ug(i) is the pixel value for pixel i.
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¢ is the average pixel value for the image. The Chan-Vese model energy is
B(u,C) = [[(er ol H(@) + (2 — w)*(1 = H(9)) + v[VH(6)[|dudy.  (147)

According to the Chan-Vese model, the energy in Eq.(147) is smaller than the energy
in Eq.(145). Since the last two terms in Eq.(147) are greater than zero, we have

v|C| < No*. (148)

Since the total length of |C| is proportional to the total number of pixels N and its

maximum value is ~ N. Thus
v <o’ (149)

Eq.(149) means that we should select v-value less than the variance of the input image

and it is helpful for segmentation experiment.

4.6 More experimental results

In this section more experimental results are shown in Fig. 31. It is clear that as p
becomes large, the detailed information inside the image is lost in the segmentation
image. On the other hand, when v becomes small, some detailed information of the

image can be obtained.

4.7 Conclusions and comments

In this chapter, the p and v dependences of MS model have been studied. It has been
found that when p is small, detailed information inside each image can be observed.
On the other hand, if 4 — oo, detailed information of the image is lost. Therefore for
images that have very large variations, piecewise constant approximation MS model
can not provide good segmentation results. When v is smaller, we can also get detailed
structure of the input image. It has been proved that the value of v should be smaller

than the variance of the input image.
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Figure 31: From left to rght: p = 0,500,1000, 3000, c0. From top to bottom: v =
0.0102,0.50%,1.002%. 02 is the variance of the input image
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Chapter 5

Roof Edge Detection Models

5.1 Introduction

To find the boundary of objects of interest, many methods have been suggested. For
example, Sobel and Laplace edge detectors have been used successfully to detect sharp
edges of images. However Sobel [48, 49, 50] and Laplace methods calculate the gradi-
ent and the second order derivative for each pixel of the observed image. Therefore,
only the property of the neighboring pixels is used. These are local approaches. The
global property of the input image is neglected in the these methods. On the other
hand, the MS model is a global model which involves all the pixels of image in the
calculation. To avoid the problem of solving several PDE equations, we have used
piecewise constant approximation and linear approximation in the second and third
chapters. However, these models can not detect edges that have low contrast.

To deal with edges with low contrast, the MS model can be generalized to the

following function form:
E(u,C) = / lu — u0|pda:dy+u/90 f(Vu)dzdy + 1// g(|Vul)dl, (150)
c
where p > 1 and f(z) is a convex function satisfying

m 1) +00, (151)
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and ¢ is an increasing function satistying

lim == = oo, (152)

Here we would like to point out that the convex requirement of f(x) is not important
since we know that E(u,C) is a non-convex function with length term.

There are many variations of the Mumford-Shah model such as Rudin-Osher-

Fatemi (ROF) [36] like model which can be expressed as the following minimization

problem:
: — _ 2
infuc{Bror(u,C) = [ o wo)drdy + /| o |Vuldady +v(C1}, (15)

The difference between the MS and the ROF like models comes from the second term.
In the MS model, the LP norm with p = 2 of the gradient allows us to remove the
noise but unfortunately penalizes too much the gradient corresponding to edges. One
could then decrease p in order to preserve the edges as much as possible. One of the
first work in this direction is the ROF model [36].

In this Chapter, we will study some variations of the MS model [43, 45]. Some of

the segmentation results are also shown.

5.2 Piecewise constant approximation

If we assume that u is a constant in each region (u = ¢), Eq.(5) and Eq.(153) are of

the same form, that is
infuc{E(u,C) = /Q\C(c— up)*dxdy + v|C|}. (154)

The two-phase version of Eq.(12) can be written as [23, 21, 25, 8, 9]

Blayend) = [ (a—uodedy+ [ (er—uo)dudy+v|C]
_ /Q (1 — uo)2H($)dzdy + /Q (cs — u2)(1 — H($))dzdy
Y / IV H(8)|dady (155)
JQ

where ¢; and ¢y are constants.
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We have the following level set equation:

0 \Y
o = )l = w0 = (o2 =) =¥ - (L) (156)
with the boundary condition ¢|V¢ = Ié‘%bl 5> = 0. The final solution of Eq.(156)

will minimize the function E(cy, ¢, ¢). Because ¢; and ¢, are constants, we have

OE _ 9E _ Jo uoH(¢)dady [ uo(1—H(¢))dady
5 = 5. = 0. Therefore, ¢;(¢) = —‘jm— and co(p) = ?Q(I_H(d)))dxdy .

5.3 ROF model with gradient term

For the piecewise constant approximation, the second term of Eqs. (5) and (153)
does not appear and the MS and ROF models are the same. In this case, the whole
image is segmented into different regions such that the variance inside each region is
small. Therefore the low contrast edges in a region will not be detected since it will
not cause much changes to the variance inside that region. In order to detect these
small differences, we need to include the gradient term in Eq.(153) in our calculation.
To include the gradient in the calculation means that we need to solve two PDEs
[1, 7, 15, 19]: one for u inside and one for u outside the curve C. To simplify the
problem we use the fact that the final solution of u should be approximately ug,
and we replace the second term of Eq.(153) by [ |Vug|dzdy. Thus, the ROF model

becomes:

infu,C{E(u’ C> - »/inside C(c1 B U0)2dl'dy + outside C(c2 B U0)2dll7dy
+’u inside C \VUO|dxdy + V|C|}’ (157)

Notice that for the gradient term, we only calculate the gradient inside C'. The
advantage of this approximation compared to the original ROF model is that the
calculation is fast since we do not need to solve two coupled PDEs for u inside and
outside respectively. Therefore, it would be more useful for practical applications.
The advantage of this approximation over the piecewise constant case is that more

edges can be detected.
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The level set equation becomes:

o _
ot

\Y
~5(0)ler — o) = (2 = o + Vel =0V (N (158)
with the boundary condition fé—?Vcﬁ -1 = 0. It is clear that when p — 0, Eq.(157)
becomes Eq.(155).

5.4 ROF model with high order derivative

In both the MS and the ROF original models, high order derivatives of u are not
included. We of course can include high order derivative term of u in the models. For

example, if we include second derivative of u in ROF, then the ROF model becomes:

infucliBu,C) = Awm—wym@+uéwwmmw+

+AANJAM¢My+/MCH, (159)

In order to study only the Laplacian term effects on the segmentation, we will
take u = 0 in Eq.(159). Using u = uy approximation in the third term of Eq.(159),

the above equation for two phases becomes:

infu,C{E(u7 C) = / . C(Cl - U0)2d113dy -+ (CQ - ’U,Q)2d.’L'd’y

inside C

+ oA |mmmw+/mmh (160)

inside C

In the above, we have only included the Laplacian term for the inside region.

Thus, the level set equation changes to

99 _
ot

—4wma—wf—«a*wY+MNM—vV%%%H (161)

with the boundary condition %%ngﬁ -n =10
In [11], Lee, Ben Hamza and Krim have also included the Laplacian term in their

analysis. Where they have constructed an energy function as

infoc{Eu,C) = / y C(cl — uo)dedy + (co — uo)Qd:Edy

inside C
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+ /u|0|+ﬁA—

A |Auoldady - Auoldedyl},  (162)

outside C

Here A is the area inside the curve. Due to the fact that [|Aug|dzdy is a con-
stant for a given image. Therefore, the maximum value of [, ... o |Auo|dzdy —
Jinsige o |Au|dzdy is the same as the minimum value of [, .. o |Auoldxdy. There-
fore the model in Ref. [11] is similar to the above model. If A = 0, Eq.(160) becomes
to FEq.(155).

5.5 Linear approximation of ROF model

In the MS model, the second term in Eq.(5) leads u to be smooth in each region.
However |Vu| becomes very large across the boundary line. Therefore the MS model
can be used to detect discontinuities in the image surface. They can also be detected
by the Chan-Vese (CV) model due to the fact that the variation of the image intensity
across the regions becomes very large if the boundaries are step edges. But if the step
edge is small, then this kind of boundary will be hard to detect.

In the following, we will use linear approximation instead of constant approxima-
tion. We will use a linear planar surface, u(z,y) = a+b-x + ¢ -y, to approximate
the inside of each region in this section. Here a, b, ¢ are constants. From here onward
J means [,; for simplicity £2 is omitted.

For the two-phase case, Eq.(153) becomes:

Eror(ui,us,9) = /(al + 1T + 1y — o)’ H(¢)dzdy

+ /(ag + by + coy — up)*(1 — H(¢))dzdy

+J(F + ) [ H(@)dady + /(B3 + B) [ (1= H(g))dwdy +

y / IV H (¢)]dxdy. (163)

We obtain the following level-set equation for Eq.(163):

o = Y T -+ b ey — )+ (T 1 )
—(ag + box + coy — ug)? — /(b3 + 3)] (164)
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with the same boundary condition as Eq.(156).

We can calculate aq, by, ¢; for ROF model via the following equation

aj /H(¢)dxdy+ by /H(¢)xdxdy+ a1 /yH(qu)dxdy = /uoH(gb)dwdy

by
aj /xH(¢)dxdy + by /(xQ)H(gb)d:cdy + W/Tc% / H(¢)dzdy

+cl/a:yH(¢)da:dy = /xuoH(¢)d:cdy (165)

ar [ yH(@)dedy + +by [ ayH(@)dedy + o1 [ () H(¢)dzdy

pct _
+2ET§/HWM@—/wwwmw

We have similar equation for as, by, ¢y but with 1 — H(¢) replacing H(¢).

5.6 Experimental results of the ROF model

In Fig. 32, the segmentation results of all the above models are shown. It is clear
that the CV constant model cannot detect all the boundaries in the image. On the
other hand, all other models give better segmentation results. This is not surprising
at all. Since it is well known that the gradient and Laplacian terms can detect the
boundary very well for sharp edges. Therefore including the gradient and Laplacian
terms in the CV model can give us better results. For linear approximation model of
the MS and ROF models, we can expect some detailed information inside each region
;.

In Fig. 33, we have also used the Chan-Vese piecewise constant approximation
model, ROF like model with the gradient and Laplacian terms, and the MS and ROF
models with linear approximation for the car plate image. It is found that Chan-Vese
piecewise constant approximation cannot detect the number 8 in the image while it
is detected by other models.

In Fig. 34, we have also used the above models for the bone image. It is found
that the ROF like model with the gradient and Laplacian terms, the MS and ROF
models with linear approximation gives better results than the piece-wise constant
MS model.
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Figure 32: First row: (a) original image, (b) Chan-Vese piecewise constant approz-
imation. (¢) ROF model with the gradient term. Second row: (d) ROF model with
Laplacian term, () MS model with linear approximation, (f) ROF like model with
linear approrimation.

5.7 More on the generalized MS model

In the Mumford-Shah model, the second term in Eq.(5) leads u to be smooth in each
region. |Vu| will become very large across the boundary line. Therefore the Mumford-
Shah model can be used to detect discontinuities in the image surface. This kind of
discontinues in image surface is called step edges. However there is also a case that
the image is continuous but its first order derivative is discontinuous; that is there is
a step edge in the first order derivative functional space. This kind of discontinuities
is called roof edges.

In the MS model, u is required to be smooth in each region. For images that have
intensity changes almost everywhere, it is hard to use the MS model to detect the
right boundary. In order to detect boundary of this kind of image, we will introduce

another generalization of the MS model (Eq.(5)):
Ecys = / (u — uo)*dady + p / (Vu — Vug)?dzdy + v|C|. (166)
a\C Jae

The difference between Eq.(5) and Eq.(166) comes from the second term. In this new
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Figure 33: First row: (a) original image, (b) Chan-Vese piecewise constant approz-
imation. (¢) ROF model with the gradient term. Second row: (d) ROF model with
Laplacian term, (e) MS model with linear approzimation, (f) ROF like model with
linear approximation.

model, we constrain that the gradient of u approaches the gradient of ug. Unlike
Eq.(5), where we constrain that u approaches wug; here we would like both u and Vu
to approach ug and Vug respectively. Therefore u should be a better approximation
to the original image. In the following, we will call Eq.(166) as the generalized
Mumford-Shah (GMS) model.

It is clear that if we let 4 = 0, then Eq.(166) and Eq.(154) are the same. It is
clear that if 4 — oo in Eq.(166), we have Vu — Vugy. Thus all the variations of the
original image ug are conserved. However if 4 — oo in Eq.(154), we have Vu — 0.
Thus all the variations of the original image are lost. This short analysis tells us that

Eq.(166) is better than Eq.(154) for images which have large variations.

5.7.1 Constant approximation

For the constant approximation u = ¢, the two-phase GMS model can be written as

Eous(cr,c,C) = /(Cl - UO)ZH(@dfvd?J + /(02 - U0)2(1 — H(¢))dzdy

+,u/qu0|2d:cdy+/l/|C’[}, (167)

63



Figure 34: First row: (a) original image, (b) Chan-Vese piecewise constant approz-
imation. (¢) ROF model with the gradient term. Second row: (d) ROF model with
Laplacian term, (e) MS model with linear approzimation, (f) ROF like model with
linear approximation.

The third term in Eq.(167) is a constant for each input image. So we will change it

to:
EG’A{S(C:[, Co, C) = /(Cl - UO)2H(¢)dﬂ’}dy + /(Cg - U0)2(1 - H(¢))dﬂ§dy
1 [ IVuoPH(9)dzdy + [viCI}, (168)
Thus, the level set equation for Eq.(168) is

99 _
ot

Vo

—8(d)[(c1 — uo)?® — (c2 — uo)? + (Vug)* — vV - (r%

)] (169)

This equation is similar to Eq.(158).

5.7.2 Linear approximation

The two-phase linear approximation of the GMS model can be written as

Egns(ai, b, e, C) = /(al + b1z + a1y — ug) H(¢)dzdy

64



+ /(a2 4 box + coy — w0)2(1 — H(¢))dxdy

bl = G2+ (e~ G ()dady

b [ - 8““ +lea = GOPIL~ H(6)dady +

/ y|VH(¢>)ld:cdy. (170)

The level set equations for Eq.(170) is

= SV l*%—(al+b1w+01y—1lo)2“
3u0

3u0 2
(b — —5;) + (e1 — gy“) ]
+(a2 + bgl’ + CoY — ’lLQ)2 +

Pl = G2 + (e = G2 (1)

We can calculate aq, by, ¢c; by the following equations

0E OE OF
e = Vg~ 05 =0 (172)

a /H((b)d:cdy—}- by /H(qﬁ)azdazdy
o1 [ yH(@)dady = [ uoH(@)dwdy
o / 2 H($)dzdy + by / (22 + p) H (¢)dzdy
ter / ryH($)dzdy = / (wuo + u%f)H(gb)dzdy (173)
ar [ yH(@)dedy + by [ syH(@)dedy + 1 [ (4 + 1) H(@)dwdy
)
= /(yuO + Mai;)ﬂ(qﬁ)dxdy
Similar to the above, we have

OE OF OF
9 = Vo =g =0 (174)

From this we have
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@ [ (1= H(@))dzdy + by [(1~ H(g))adady

te /y(l — H($))dxdy = /u0(1 — H(¢)dzdy

o / 2(1 — H())daedy + by / (2% + w)(1 — H($))dzdy

te / zy(1 — H($))dzdy = / (zuo + u%)(l — H(¢))dzdy (175)
@ [y(L— H(@)dady + b [ ay(1 = H($))dady + ez [ (4 + u)(1 ~ H(9))dady

~ [ (o + n%52) (0~ H(@))dodydsdy

5.8 Experimental results of the GMS model

We have implemented the GMS model and the MS model using the method developed
in [23]. In Figs. 35,36, the segmentation results of an artificial image are shown. It is
clear that the piecewise constant and linear approximation MS models can not detect
the the correct boundary of the input image. However, the MS model with gradient
term and the GMS model can detect the boundary. More importantly, the GMS
model can reproduce the texture of the input image.

In Fig. 37, the segmentation results of the piecewise constant MS model, the MS
model with gradient term and the GMS model with linear approximation are shown.

It is clear that GMS model] with linear approximation provides us better results.

5.9 Conclusions

We have applied different variations of the MS model and the ROF model for image
segmentation. It is found that the piecewise constant approximation CV model cannot
detect the edges with low contrast in the image. For this kind of edges, we need to
include the gradient term in the original models. To do this, we can either use the
original image to calculate the gradient or use linear approximation of the image
function u. Linear approximation ROF-like model is also applied here and we find it
produces similar results as the linear approximation of MS model. We also include the

Laplacian term in the ROF model and we have found that ROF model with Laplacian
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Figure 35: First row: (a) : original image, (b) : initial curve. (c) : the piecewise
constant approzimation of the MS model. Second row: (d) : MS model with linear
approzimation, (e) The piecewise constant MS model with gradient term, (f) GMS
model with linear approzimation.

term can produce better results than the piecewise constant approximation CV model.

MS model is generalized to a new model. In this new model, we require that the
gradient Vu approaches Vugy. Here u is a approximation to the original image ug.
It is found that with this constraint we can find the roof edge which is hard to be
detected by the original MS model.
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Figure 36: First row: (a) original image, (b) initial curve. (c) the piecewise constant
approximation of the MS model. Second row: (d) MS model with linear approzimation,

(e) The piecewise constant MS model with gradient term, (f) GMS model with linear
approximalion.

Figure 37: From left to right: The first image is the originals, the second is the
segmentation results of the piecewise constant MS model, the third is the MS model
with gradient term, the last s GMS model with linear approximation.
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Chapter 6
Conclusions

In this thesis, we have systematically studied the Mumford-Shah model and its vari-
ations and applied to image segmentation problems. The level set method is used
in numerical implementation. We have found that the Mumford-Shah model and its
variations can produce good segmentation results. It is found that the piecewise con-
stant model can not obtain good segmentation results for images with large intensity
variations inside each region. We have proposed a linear approximation to model this
kind of images and as expected we have found that this model can produce better
segmentation results than the piecewise constant model. We have also proved that the
MS energy will decrease with respect to time for both the two-phase and four-phase
approaches. A general proof is also given in the Appendix.

The dependence of the Mumford-Shah model on the parameters p and v are also
investigated. It is found that when p — oo, the piecewise constant MS model results
is recovered. On the other hand, if p — 0, detailed structure of the images can be
obtained. We have also obtained a constraint on the parameter v for the piecewise
constant model.

We have applied different variations of the MS model and the ROF model to
images segmentation. In these models we have included the gradient term. To do
this, we can either use the original image to calculate the gradient or use linear
approximation of the image function u. Linear approximation ROF-like model is also
applied here and we find it produces similar results as the linear approximation of
MS model. We also include the Laplacian term in the ROF model and we have found

that ROF model with Laplacian term can produce better results than the piecewise
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constant approximation CV model.

We have generalized the MS model to another model. In this new model, we
require that the gradient of the approximation image should approach the gradient
of the input image. It is found that with this constraint we can find the roof edge
which is hard to be detected by the original MS model.

The segmentation method proposed in this thesis can be extended in several di-
rections. Since the proposed algorithm is based on level set methods, it can be easily
extended to solve the image processing problems in higher dimensional space. There-
fore, one direction is to extend our segmentation method to three-dimensional image
segmentation problems, such as medical image processing. The another direction is

to study the p and v dependence in the generalized MS model.
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Appendix A

A derivation of the Euler-Lagrange

equation

A.1 Euler-Lagrange equation for one dependent

variable
We will try to minimize E(u)
infu {E(u /F T, Y, U, Uy, Uy )dady}, (176)

with u = u(z,y), u, = %@, Uy = —xﬂ Taking variation of FE(u) with u, we have

OF
SE(u) = / gy Ouldudy

BF 65u OF 85u]
aux Oz 8uy Oy

—5u—|—A V(ou)|dzdy

dxdy

\\\

——6u—|—V (Abu) — V - A(6u))dzdy

/__v Audzdy + [ (du)A - di (177)
with OF OF
A= —). 1
(8ux’ 8uy) (178)
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In the above derivation, we have used Gaussian theorem
/Q V - (Asu)dzdy = /6 _(Abu) -l (179)

Here 652 is the boundary of the face 2 and 7n is the normalized normal of the curve
082.

Since Eq.(177) is true for all du, we have following equations:

E %(81_%) - 5&(@;) =0 (180)

and
i 6F8_:C 6F@_

" b on  du,on

0. (181)

It is clear that this derivation can be generalized to arbitrary number of variables

Z1,Z2, ..., Tn. Then Eq.(180) changes to

oF & 0 ,0F
o Z oz; (6ua:1) =0 (152)

We normally refer to Eq.(181) as boundary conditions. In the following, we will
denote the left hand side of Eq.(180) as L(u), that is

L{u) = e %(8_%) - 8_y(8_uy)' (183)

A.2 FEuler-Lagrange equation for more dependent

variables

If we have two functions uy, us. Then Eq.(176) changes to

infy {E(Ul,UQ) = /F(xvyaul;ulzau1y7u27u2x>u2y)dxdy}’ (184)
with u; = U1($7y),U2 = UQ(iE,y),le = %Ci)auly = %?f’y)yulv = %ﬁf—’?ﬁauﬂy =

@%(yﬂl. Taking variation of E(uy,us) with uy, we have (similar to Eq.(177))

OF OF OF
SE(w) = / (G 37+ GOt + Ol
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= / 2L A sudady + / (6u1) Ay - dl.

ou
with
oF OF

i =28 o,
! (6’114155’ 8U1y

In the above derivation, we have used Gaussian theorem

/QV(Aléul)dxdy = /(;Q(Aléul) - ndl.

(185)

(186)

(187)

Here 62 is the boundary of the face 2 and n is the normalized normal of the curve

o€2.

Since Eq.(185) is true for all u;, we have following equations:

and OF 0 OF 0
— N i y
Al -n= — =0.
VT Bu, i ' Buy, 0
We can derive a similar formula for uy. That is
OF 0 OF 0 oF, |
Ou;  Ox Ougy, 0y " Ouy,
and
—».ﬁ_ﬁF@_x 8F0y_0
2T Ouge 01 Ougy OB
with OF OF
Ay = (—, ).
2 (871,2I ’ GUQy

(188)

(189)

(190)

(191)

(192)

This derivation can be generalized to more functions ( we will denote them as

u(1),u(2), ...,u(m)),then Eq.(176) becomes

i fua)am {E@(1), w(2), ... u(m)) = / F(21, T, ooy T,
U(1), (1) gy (1) agy ooy (1), w(2), u(2) 2y, U(2) gy .-

u(m), w(m)g,, u(m)e,, ..., u(m)y,, Jdridzy...dz, },
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Ou(f) (21,2, ,Tn

with w(j) = u(§)(z1, 22, .., Tn), u(J)s, = e . Then we will have Euler-

Lagrange equations

) = (j=1,..,m). (194)
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Appendix B

Proof of %% <0

B.1 One dependent variable case

To solve Eq.(180) with boundary conditions of Eq.(181) in Appendix A, we normally
use the gradient technique. That is, we change Eq.(180) to the following time depen-

dent equation

ou _
ot
If this equation has a stable solution as time goes to infinity, that is %lt—m = 0, then
we have G(u) = 0. If as long as G(u)=0, L{u) = 0, then the solution of Eq.(195) is
also a solution of Eq.(180).

In the following, we will show that we can choose a function of G(u) such that its

G(u). (195)

solution will minimize the energy E(u) in Eq.(176).
From Eq(195), u is a function of time; accordingly, E(u) is also a function of time.

Thus we have

|dzdy

8_E_ B /[8_17@ N OF Ou, N OF Ou,
ot J'oudt Ou, Ot  Ou, Ot

%ut + %% + é—u—;@]dajdy

= /[(—()Euf +A- V(uy)]dzdy

ou
oF - S
= /[%Ut + V- (Auy) — V - A(w,)]dzdy
oF - .
= 15, = V- Aludedy + [(u)A-dl (196)
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with

= (%;78_%)11% =5 (197)

In the above derivation, we have used Gaussian theorem (Eq.(179)). Using the defi-
nition of L(u) (Eq.(183)), we have

P [ Lt [(w)A - d (198)

The last term of Eq.(198) is zero due to the boundary conditions in Eq.(181).
Using Eq.(195), we have

OF
e / L(u)G(w). (199)
ot
It is clear that if we take G(u) = —L(u), then
oF
— <0. 2
<0 (200)
Therefore, the solution of Eq.(195) is the solution of the Eq.(176) which will

minimize the energy functional E(u) in Eq.(176).
We have also noticed that if we take E(L(u)) = L(u), then we will have

OF

— > 0. 201
Then the corresponding solution of Eq.(195) will give us a maximum value of E.

Therefore the choice of E(L(u)) is very important when we change the Euler-Lagrange

equation to the time dependent equation.

B.2 Two dependent variables

Using gradient projection method, we have the following equations

Oup Ouy

Similar to Eq.(196), we have

6E(U,1,U,2) . oF 8’&1 oF (9u1x oF 8uly
o~ Jowa Toun ot T w, ar
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oF 3u2 OF 8UJQz oF 8u2y
/ T T T T W T L
B 8F 8F 8u11 8F 6U1t
B /[8u1 Ou, Ox - Juyy Oy |dwdy
6F 8F (9u2t 3F a’ltzt
[6uQ 8qu oz + Oug, Oy |dzdy
oF
= /[6—u1t 1+ A V(uye)]dzdy
1
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In the above derivation, we have used Gaussian theorem (Eq.(179)). Using the defi-
nition of L;(u) and Ly(u) which are LHSs of Eq.(188) and Eq.(190), we have

OF

= = [ (L@ + La(uus)dady + [(u) Ay -dl+ [() Ayl (205)

The last two terms of Eq.(205) is zero due to the boundary conditions in Eq.(189)
and Eq.(191). Using Eq.(202), we have

oF

& = / 1Ly ()G (u) + Lo(w)Ga(w)|dzdy. (206)

It is clear that if we take G(u) = —Lq(u) and Go(u) = — Lo, then

oE

= =- /(Lf + [2)dzdy < 0. (207)

Therefore, the solution of Eq.(202) is the solution of the Eq.(184) which will
minimize the energy functional F(u) in Eq.(184).
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