NOTE TO USERS

This reproduction is the best copy available.

®

UMI

EFFICIENT MULTICAST ROUTING ALGORITHMS FOR

MESH-CONNECTED MULTICOMPUTERS

SHENGJIAN WANG

A THESIS IN THE DEPARTMENT OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING
PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

AUGUST 2005

© SHENGJIAN WANG, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10298-5
Our file Notre référence
ISBN: 0-494-10298-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Efficient Multicast Routing Algorithms for Mesh-connected Multicomputers

Shengjian Wang

Multicast is a collective communication method in which a message is sent from a source
to an arbitrary number of distinct destinations. Multicomputers refer to massively parallel
computers that consist of thousands of processors built to handle computation intensive
applications. Mesh is a kind of network topology widely used in multicomputers.

Performance of multicomputers largely depends on that of the underlying network
communications such as multicast, which is essential for processors to exchange data and
messages. Two major parameters used to evaluate multicast routing are the time it takes
to deliver the message to all destinations and the traffic which refers to the total number
of links involved. Research indicated that these two parameters are normally not
independent, but contradict each other. It has been proved that traffic optimal multicast
problems such as Optimal Multicast Path/Tree in mesh-connected network are NP-
complete. Hence, it is NP-hard to find multicast routing which is optimal on both time
and traffic.

In this thesis, we proposed three efficient multicast routing algorithms for mesh-
connected multicomputers: DIAG, DDS and XY-path, all of which have a small
complexity of O(kN) or less. The DIAG and DDS are two tree-based shortest path
multicast routing algorithms designed for store-and-forward switched mesh network,

which obtained near optimal time and reduced traffic significantly over its predecessor

il

VH algorithm. XY-path is a dual-path-based multicast routing algorithm intended for
wormhole routed 2D mesh network, which reduced the time and traffic significantly over
LIN’s Hamiltonian path-based algorithm. Performance evaluations of these algorithms

resulted from simulations are given at the end of the thesis.

v

Acknowledgement

I would like to express my sincere thanks to my advisor Dr. Hovhannes Harutyunyan
without whom this work couldn’t have been accomplished. I thank him for his
mentorship to me of not only how to do research but also how to be a wonderful person,
for his financial support to me, for the seminars he hosted which laid the solid foundation
for my study in this field, for his patience to explain the problems to me and especially
for his instructive advice to help me tackle some hard problems during the process of my
thesis research. Thank you, Dr. Harutyunyan, for all the support I got from you.

I would also like to thank my parents, my brothers and sisters for their love and
support, especially at tough times when I have doubt about myself.

Finally, I would like to extend my thanks to the faculty of the department of computer
science and software engineering, some of whom instructed me in the major courses I
took, for the knowledge and skills T learned from them and for providing the excellent
research facilities and resources. I also deeply appreciate all kinds of assistance I’ve got
from the staff and fellow graduate students of my department, especially our secretary of

graduate program who is always kind to give me advice on my graduate study.

This Work is Dedicated to My Beloved Mom and Dad
Ms. Qiaoying Liu and Mr. Leyao Wang

Who are always Proud of My Success

vi

Table of Contents

LIST OF FIGURES ...outtitiiiiiiieinieictiitttetiecaetsessescsssonsasenssnsanssossasssssssses X
CHAPTER 1 INTRODUCTIONocoviiiiciicnrcntisicssessssnsssssssessscsssessassssssssnnassssassassans 1
1.1 MIOTIVATION ..uiiieiiieeeiieeeiieeeieee st aaeaeeamse s ssaesenaesenteaeesaaassessanbeaansb e eesnbe bt e st e saneeentaes 1
1.2 OVERVIEW OF THE PROBLEMeiiiiiiiiiiiiiiiiitic ittt 2
1.3 SCOPE OF THE STUDY ...uvtetieeeeteamteieenieesasiiiasaresonsssassaseaeessssssassssassssssessasssesessssnsesses 6
1.4 ORGANIZATION OF THE THESIS ...ccccutiiiiiiiiiiiiiiiiiiniie st eine st e 6
CHAPTER 2 LITERATURE REVIEWininnininininiieesisnecsissnsesssssans 8
2.1 PRELIMINARY ...ooiiiiiieeieiieaeieeaiteeesieesetesanesastsassnssanaaaesessenbesasssseaassssssasesensseenseesnneenan 8
2.1.1 NEtWOTK BASICS ovviiiiiiiieieiciieeeitce st ettt ctiee e e ece s snes s sta e s re s abe s sra s ens e 8
2.1.1.1 Communication Modelcccoiiiiiiniiiiiiiic i 8
2.1.1.2 Network TOPOIOZY «..veveouiiiiiiaiiiiiiiiiii e 9
2.1.1.3 Node Architecture of MulticOmputers........cc.ccccveiiiviiniiiiininieenie e 13
2.1.1.4 Routing TEChNIGUEScooeiiiiiiiiiiiiiiie it 15
2.1.1.5 Switching TEChMIGUESc.coiiiiiiiiiiiiiiiiic e 16

2. 1.2 MUIICASE . et e ettt ettt et e e e e s sbe e s s enaa s s e e areeeans e e snesennnens 19
2.1.2.1 Multicast ProbIemsoooviiiriiiiiiienicriie e 19
2.1.2.2 Multicast MOAELSooiniiiiiie et 22
2.1.2.3 Multicast in MESH ...c..oiiiiiiee et 25
2.1.2.4 Multicast Evaluation Criteria.......c.coccevriieieeeiieiaiiiiiiiiiiienieeeesinnneeessneeaens 25

2.2 REVIEW OF PREVIOUS STUDIESciittiiiiiiiaiiiiiiiiiini e s ssiies e sssses et 34

vii

CHAPTER 3 PROPOSED MULTICAST ALGORITHMScoccevenvivnnsuenans 37

3.1 MODELING OF THE PROBLEMcoiiiiiiiiiiiiiii ettt et eae s 37
3.1.1 Problem and the Modelcooooiiiiiiiii e 37
3.1.2 Definitions and NOtAtIONS.ccuveeieieriiresieeeriresireecieesiieesrraseeeeneesseeeearesennns 40
3.1.3 Solution to Multicast i TOTUS...c.ccouerierieii et s 44

3.2 TREE-BASED MULTICAST ALGORITHMSccutteiieiieaimiiieesieenaeeieeeteeneasstessseeseeaeeas 46
3.2.1 DIAG Multicast AIGOTItNIMcooiiriiiiiiieiicecie et ear s 47

3.2.1.1 Motivation of Designing DIAGcccccooiiiiiviiiiiiieeceee e 47
3.2.1.2 Heuristics of DIAG AIZOTithimccoooviiiiiiiiiiciiciccie e 50
3.2.1.3 DIAG Algorithm in 2D MeSh.........oooiiiiiiiiiiieeceeceecece e 53
3.2.1.4 DIAG Algorithm in 2D TOTUS.....cccooiiiiiiiiciiiie et 60
3.2.1.5 DIAG Algorithm in 3D Meshccooovieiiiiiiiiiiiececeecee e 64
32.1.6 DIAG Algorithm in 3D TOrUS.....coooiiiiiiiicciiece e 67
3.2.1.7 DIAG in n-D Mesh and TOruScocvoviviriiiiiiiiciieciie e 71
3.2.2 DDS Multicast ALOTTthmcccoiiiiiiiiiiiiieiiiiieeece e 72
3.2.2.1 Motivation of Designing DDS ... 73
3.2.2.2 Heuristics 0f DDS AIZOTTthMcoooiiviiiiiiieiiiice e 74
3.2.2.3 DDS in n-Dimensional Mesh.........cccoccoiiiiiiniiiiiiiiiccecece e 75
3.2.2.4 DDS Algorithm in 2D MeShcccceiiiiiiiiiiiiiiicecceee e 78
3.2.2.5 DDS Algorithm in 2D TOTUS ...cocouiiiiiiiiiiiviieiiece e e 82
3.2.2.6 DDS Algorithm in 3D Mesh......cccooiiiieiiiiiiiieceiecceeeeeecee e 84
3.2.2.7 DDS Algorithm in 3D TOTUS ..occveiiieiiiieieceeiceeeeceeereecer et 86
3.2.3 Comparison of DIAG, DDS, VH and MIN..............cooooiiii e, 88

viii

3.3. PATH-BASED MULTICAST ALGORITHM ...uciiiiiiiiittieeerieteeeetiiesesiennnseaeeinneneeesessasennnsns 90

3.3.1 About Path-based MUltICaStc..ccoviiiiiiiiiiiiiiiiii e 90
3.3.2 Review of LIN’S ALZOTItRMcoviiiiiiiiiiiiiiiiiiiiiiie e 92
3.3.3 XY-path Multicast AIgorithmccooiiiiiiiiiii e 94
3.3.3.1 Heuristics of XY-path Algorithm ..o 94
3.3.3.2 Formal Description of XY-path Algorithm ... 96
CHAPTER 4 SIMULATIONS AND DISCUSSIONS ..iiivrmniecierncsansnssnannes 106
4.1 THE SIMULATION MODELccctieitiiiiiiiaeninineiieireeinessnee et ese s sase s snasnneseconines 106
4.1.1 Model of Simulation Program...........ccceviiriiriiinciiniininiec e 106
4.1.2 Implementation of Simulation System..........cccocviiviiiniiiiiiiicees 107
4.1.3 Performance Evaluation Model.........cccooiiiiiiniiniiiaiiiiin i, 108
4.2. PERFORMANCE EVALUATION OF DIAG ANDDDS ... 109
4.2.1 Simulation ASSUMPLIONS ...cc.ceiiiierieeiiicieenieieeire st eaesne e sre s e resasssaeseas 109
4.2.2 Simulation of DDS and DIAG in 2D Meshcocooiiiiiniiiiiiiii, 110
4.2.3 Simulation of DDS and DIAG in 2D TOrus.....c.cccceiiiiiiciiioniiiiieiin e, 114
4.2.4 Simulation of DDS and DIAG in 3D Meshcccoociiiiiiiiiiniiiiiiiiniienn 119
4.2.5 Simulation of DDS and DIAG in 3D TOruScccccoviiviciiiiiiiiiiieieeeiecns 121

4.3 PERFORMANCE EVALUATION OF XY -PATH.....covuiiiiiiiiiiaiiiiiiciic e 123
4.3.1 Simulation ASSUMPLIONSccueiveritieieiitcrine e cet et ses e e ere e sas s 123
4.3.2 Simulation of XY-path in 2D Meshccccccooiiiiiiiiiiis 124
CHAPTER 5 CONCLUSION AND FUTURE WORK.......ccciniiiiesienecncnans 127
BIBLIOGRAPHYcorriieiceerciccnnesrsntssstssasssssssissessssessessssssssesssssssssssssassssssasesassnsssasase 130

1X

List of Figures

Figure 2.1.1: Performance of Multicast vs Broadcast.........ccoooooiiininin. 9
Figure 2.1.2: Common Network TOPOLOZIESc.ceiiiiiiiiiiiiiiiie e 10
Figure 2.1.3: Mesh-connected Network Topologies.........coiviiiiiiiiiincniiie 12
Figure 2.1.4: Node Architecture in MulticOmputerccoooooiiiiiiiniiincenees 14
Figure 2.1.5: Message Format in Wormhole Routing ..., 18
Figure 2.1.6: Example of Unicast-based Multicast.............ccoooviiiiiiiniiiiiicins 23
Figure 2.1.7: Comparison of Different Switching Techniques........c.....ccocooviiiiiiininns 29
Figure 2.1.8: Comparison of Communication Latency ..., 30
Figure 2.1.9: Calculation of Multicast HOPS.........ccccooeimiiiiiiiiiics 33
Figure 3.1.1: Model of Multicast in Mesh ..o 39
Figure 3.1.2: 2D Mesh and TOTUScccoviiiiiiniiiiiccen e 41
Figure 3.1.3: Legend for a Multicast Treeccocoviiiiiiiiis 43
Figure 3.1.4: Division of 2D Torus Network..........cccccooviiiiniiniiii 45
Figure 3.2.1.1: Example of VH Multicast Tree in 2D Mesh ... 48
Figure 3.2.1.2: AAT of VH versus MIN ... 49
Figure 3.2.1.3: The Diagonal ROUINEccooiiiiiiiiiiiiiiiiii e, 49
Figure 3.2.1.4: Example of Non-dimensional Shortest Path ..o 51
Figure 3.2.1.5: Example of Bad Case VH Multicast Treeccooovviiiiniiiiiee 51
Figure 3.2.1.6: Example of Diagonal Path of DIAG Multicastcooooeiiiiiinnnnnn, 56
Figure 3.2.1.7: Example of DIAG Multicast in 8x8 Mesh ..., 57
Figure 3.2.1.8: Example of VH Multicast in 8x8 Meshc.ccooooviiiiiiiiii 58

Figure 3.2.1.9: Example of DIAG Multicast in 8x8 TOTUS........ccceveeiiiiiiiiiecie e, 61

Figure 3.2.1.10: Example of VH Multicast in 8x8 TOruS........cccocveerriviiviiriieicienes 62
Figure 3.2.1.11: Example of DIAG Multicast in 5x5x5 Mesh........ccoccocvivrivinnnnininnnnn. 66
Figure 3.2.1.12: Example of DIAG Multicast in 5x5%5 TOMUSccoovevviveiinieciernane. 69
Figure 3.2.2.1: Comparison of Traffic of DIAG and MINc.cooveiiiieiiiceeiee 74
Figure 3.2.2.2: Scanning and Sorting of DDS in 8x8 2DMcccceeeviiiiiiciieeceecveeeae 80
Figure 3.2.2.3: Example of DDS Multicast in 8x8 Meshccccooeevieviiiiiicciiciiiice, 81
Figure 3.2.2.4: Example of DDS Multicast in 8x8 TOrus.........cccoovvevvivieieiieiinicecene, 83
Figure 3.2.2.5: Example of DDS Multicast in 5x5x5 Mesh.....c..cccovvvevviivieiiiiiceee. 86
Figure 3.2.2.6: Example of DDS Multicast in 5x5x5 TOIUSc..coovvvieieiicieiiiieceen 87
Figure 3.2.3.1: Comparisons between Algorithms in 2DM..............cccoooveviviiiiiiicennen 89
Figure 3.3.1: A Multicast by LIN’s Algorithm in 10x10 Mesh............ccccocoovivieiercnnnnnn. 93
Figure 3.3.2: X path and Y path in 8x16 Mesh........ccccocovirimninieiiiiiiceeeeeee, 98
Figure 3.3.3: Example of XY-path in 10x10 Meshccoooeiiiiiiiiiceecee 102
Figure 3.3.4: Example of XY-path Multicast in 10x10 Mesh............c..cccooviviniieinnnn. 103
Figure 4.1.1: Class Diagram of Simulation Program...................ccccooviviiiviceciece 107
Figure 4.2.1: Multicast Time of DIAG versus VH in 2D Meshcccooovivviiovveneennn. 111
Figure 4.2.2: Multicast traffic of DIAG versus VH in 2D Mesh..............c..cccocoievien.. 112
Figure 4.2.3: Multicast Time of DDS versus MIN in 2D Meshc...cocooov v 113
Figure 4.2.4: Multicast Traffic of DDS versus MIN in 2D Mesh...........ccccoooovvvieiennn. 113
Figure 4.2.5: Multicast Time of DIAG versus VH in 2D Torus...........cccccoocvvvvveeeceenne... 114
Figure 4.2.6: Multicast Traffic of DIAG versus VH in 2D Toruscccocoovvveenennn.e. 115
Figure 4.2.7: Multicast Time of DDS versus MIN in 2D Torus..........cccccveeeevieeneennene... 115

X1

Figure 4.2.8: Multicast Traffic of DDS versus MIN in 2D Torus ..o, 116

Figure 4.2.9: Multicast Time of DIAG in 2D Torus versus 2D Mesh............c.......... 117
Figure 4.2.10: Multicast Traffic of DIAG in 2D Torus versus 2D Mesh.........c....c..... 117
Figure 4.2.11: Multicast Time of DDS in 2D Torus versus 2D Mesh.........cc.occoconin. 118
Figure 4.2.12: Multicast Traffic of DDS in 2D Torus versus 2D Mesh......................... 118
Figure 4.2.13: Multicast Time of DIAG versus VH in 3D Mesh ... 119
Figure 4.2.14: Multicast Traffic of DIAG versus VH in 3D Mesh......c..cccooviins, 119
Figure 4.2.15: Multicast Time of DDS versus MIN in 3D Mesh ..., 120
Figure 4.2.16: Multicast Traffic of DDS versus MIN in 3D Mesh........cccn. 121
Figure 4.2.17: Multicast Time of DIAG versus VH in 3D Torus.........ccccoovnninn. 121
Figure 4.2.18: Multicast Traffic of DIAG versus VH in 3D Torus ... 122
Figure 4.2.19: Multicast Time of DDS versus MIN in 3D Torus..........coccccoovcnne 122
Figure 4.2.20: Multicast Traffic of DDS versus MIN in 3D Torus.........ccccoocccoone. 123
Figure 4.3.1: Multicast Time of XY-path versus LIN’s in 2D Mesh ... 125
Figure 4.3.2: Multicast Traffic of XY-path versus LIN’s in 2D Mesh........c.cccccoeiei. 125

xii

Chapter 1

Introduction

1.1 Motivation

Given the enormous amount of computation demanded by applications such as scientific
simulations and 3D animations, computers with a few processors are not powerful
enough to process the huge amount of data at a practical speed. High performance
computers are highly desirable to tackle these challenges. Multicomputers [1], also
known as MPC (Massively Parallel Computer) [2], are built to meet these demands.
Multicomputers usually consist of thousands of processors which are connected to each
other and have their own local memory. In a multicomputer, a time consuming task is
usually divided into small tasks distributed to a set of nodes which compute concurrently.
Due to the fact that nodes in a multicomputer do not share physical memory, they must
communicate by passing messages through the network. Consequently, efficient routing
of messages is critical to the performance of multicomputers [2].

Messages can be passed from one to one (unicast), one to all (broadcast), or one to
many also known as multicast. In fact, unicast and broadcast are just special cases of
multicast which is a very basic operation in multicomputer. For example, memory
updates in distributed shared memory system and global notifications of events all need

to be implemented through multicast operations [1, 11]. Hence, multicast communication

can become the bottleneck of the overall performance of a multicomputer and efficient
multicast routing algorithms are much desired.

Time and traffic are two key parameters in evaluating the performance of multicast
communications [1]. Mesh-connected network is a popular network topology for
constructing multicomputers because it scales well [2]. Efficient multicast routing
algorithms intended for mesh-connected networks, which try to minimize both time and
traffic, will be especially practical and useful in the field of parallel and distributed
computing. Many multicast routing algorithms have been proposed for mesh-connected
multicomputers [4, 5, 10, 11, 26, 33, 34], but most of them are unicast-based which
proved not to be very efficient neither on multicast time nor on multicast traffic. With the
demand on the performance of multicomputers constantly increasing, more efficient
hardware-supported tree-based multicast routing algorithms are yet to be developed. And

this is why we conduct this thesis research.

1.2 Overview of the Problem
Multicast refers to a collective communication in which the same message is delivered
from a source to an arbitrary number of distinct destinations [1]. It has been applied in
many network-related domains such as multicomputers, telecommunication and the
Internet for long time.

A network is essentially a set of objects which can communicate with each other
through direct or indirect (through a sequence of other objects) connections. There are
mainly two ways of connecting nodes in a network. One way is to connect all the nodes

to a shared communication line called bus. The other is through point to point or direct

connection [2], in which there is an exclusive link between a node and each of its
neighboring nodes. Networks using direct connection are called direct networks. Direct
networks especially mesh-connected are the primary network topologies used in
multicomputers because they scale well.

In a multicast within direct networks, the message is first sent from the source to its
neighbors, and then disseminated further to other intermediate nodes until all the
destination nodes receive the message. The efficiency of multicast in direct networks
largely depends on the underlying network technologies such as topologies, routing

algorithms, and switching technologies [1, 2].

Multicast in Multicomputer

Multicast exists as a basic operation in multicomputers to improve the efficiency of
communications as mentioned in [1, 7, 11, 15]. First, it is often required to distribute
large data array over system nodes in many scientific computations and to support data
updating in distributed shared memory system. Second, it is required in control
operations such as global synchronization in image and 3D graphics processing on
parallel computers. Third and primarily, it is needed to support parallel applications,
languages, and algorithms [1]. In parallel search algorithms including game-tree search
and those for artificial intelligence problems, a set of processes collectively solve a
decision or optimization problem. Processes in such applications typically search a global
state space and may use multicast to efficiently inform one another concerning their

findings.

Because multicast communication is a primitive operation in multicomputers, the
performance of multicomputers depends not only on the speed of processors but also on
the performance of communications. The primary metric for communication performance
in direct network is the communication latency [6]. Hence, multicast communication
latency incurred by a message traversing from a source node to destination nodes will
significantly affect the overall performance of the multicomputer system and the
granularity of parallelism as well. It is essential to develop efficient multicast routing

algorithms for multicomputers.

Implementation of Multicast

There are several ways to implement multicast. A simple and naive way to accomplish it
is through multiple one to one communications (unicast), called unicast-based multicast
[5]- Another way is to use broadcast in which every node forwards a copy of the message
to its neighbors who have not received the message yet. Although these two ways are
simple, they pay little attention to the efficiency and cost of the operation. In unicast-
based multicast the message is sent from the source node to each destination node
sequentially. In broadcast non-destination nodes are also to receive the message, which
will obviously cause extra time and traffic.

A more efficient and effective way, called tree-based multicast [8, 27, 37, 39, 40], is to
use a good strategy to disseminate the message from the source to multiple destinations
concurrently through the smallest subset of links and nodes of the host network, in which
each link and node occurs only once. Thus, nodes and links involved in the multicast

form a tree rooted at the source node. In tree-based multicast, the message is first sent out

from the source node to some of its neighbors, and then nodes that have received the
message relay it to some of their own neighbors, the dissemination keeps going until ail
destinations received the message. Tree-based multicast overcomes the drawbacks of
unicast-based multicast, and broadcast. Therefore, tree-based multicast routing

algorithms are desirable to improve the performance of multicomputers.

The Problem in Multicast
For tree-based multicast, the main challenge is to find the optimal multicast tree. There
are mainly two parameters that are used to evaluate the performance of multicast, i.e.
time and traffic. The problem is that multicast time and traffic do not seem to be
independent from one another. Instead, they contradict each other. Experiments show that
optimization dedicated to one parameter will usually deteriorate the performance of the
other. As a matter of fact, Lin has proved in [1] that finding the optimal multicast tree in
mesh-connected networks is NP-complete. So, the multicast problem seeking optimal
results on both time and traffic is NP-hard. Heuristics are needed to solve the problem. A
good approach is to minimize one parameter first, and try to reduce the cost of the other
one as much as possible. Since our goal is to develop efficient multicast routing
algorithms for time-critical multicomputers, we use the pro-time approach that minimizes
the time first.

Mesh-connected network is essentially a multi-dimensional array of nodes connected
to their neighbors in each dimension. Because of its geometric regularity, it scales very
well and is by far the most used topology for multicomputers. Hence, multicast problems

in multicomputers can often be treated as those in mesh-connected networks. In a mesh-

connected network, distance and routing between nodes are related to their positions in
the array, which significantly reduces the complexity of routing algorithms. Therefore,
the NP-complete optimal multicast tree problem can be much easier in a mesh-connected
network. Time optimal multicast routing with near optimal traffic is likely achievable
with reasonable computation complexity. Heuristics are the key to develop such

algorithms.

1.3 Scope of the Study

Multicast in general is a very wide topic due to a large number of applications and a
variety of underlying network technologies. Many problems such as traffic balancing,
flow control and deadlock prevention need to be considered in multicast routing.

In our study, we focus on the efficiency of multicast routing algorithms designed for
mesh-connected network (Hypercube excluded) under a theoretical model. We do not
consider the details of any specific network architecture, and assume everything works
perfectly in an ideal environment without unpredictable problems such as blocking and
fault tolerance. Moreover, our algorithms are designed for multicasting of a single
message without special optimizations on concurrent multicasting of multiple messages.
Finally, due to the NP-completeness of the problem, our goal is not necessarily to find the

optimal solution, but to design heuristics that achieve near optimal result.

1.4 Organization of the Thesis

The organization of the rest of the thesis is as follows. In Chapter 2 we review the

preliminary knowledge, previous studies, and the latest development related to

multicasting in mesh-connected multicomputers. In Chapter 3 we present our
methodology of solving the problem and propose three efficient multicast routing
algorithms: the DIAG, DDS, and XY-path algorithms. In Chapter 4 we evaluate the
performance of the three algorithms based on the data and statistics resulted from the
simulations. The last chapter is a brief summary of the accomplishments and conclusions

we achieved through our study, and of the future work that need to be done in this field.

Chapter 2

Literature Review

2.1 Preliminary

A network is often modeled as a graph in theory study. Hence, network related problems
such as multicast problems become graph theory problems. To better understand the
problem and our model which will be presented later, we first have a brief review of the

basics of multicomputer network, graph theory, and multicast communication.

2.1.1 Network Basics

2.1.1.1 Communication Model

Depending on the number of destinations in a communication, there are three types of
communication models: unicast (one to one), multicast (one to many), and broadcast (one
to all) [3]. Unicast problem is usually to find the shortest path between a pair of nodes,
while the problem of broadcast is more like constructing a minimum spanning tree. In our
study we do not particularly address the unicast and broadcast problems, but only discuss
multicast problems. In some cases, multicast can be implemented through multiple
unicasts or broadcast. But such solutions will cause unnecessary large amount of traffic
as shown in Figure 2.1.1. Our goal is to develop tree-based multicast routing algorithms

that are more efficient than those implemented through unicast or broadcast.

3000 1 T T T Y T T T

2500 maltiple cae-to-one 7
2000
Average
Additienal 1500
Traffic
1000

300

ﬂ 1 1 l H 1 1 F| 1

g 100 200 200 400 500 600 TOO 30 BID
Number of Destination Nodes

Figure 2.1.1: Performance of Multicast vs Broadcast

2.1.1.2 Network Topology
Network topology refers to the configuration of connections between nodes. It can be

classified into two broad categories: direct networks and indirect networks [6].

Types of Network Topology
In direct networks each node has a point-to-point or direct connection to some of the
other nodes called neighboring nodes. The ring, star, mesh, and tree are some examples
of direct network topologies (Figure 2.1.2 [21]). A direct network is called a mesh
network if there are at least two nodes which can be connected through several paths.

In indirect networks nodes are connected to other nodes through one or more switching
elements. Examples of indirect networks include the crossbar, bus, and multistage
interconnection networks. Among them the bus network such as the Ethernet is the most

commonly used. Bus networks are easy to set up (add or remove nodes). But the failure

of the bus will disable the whole network, and the performance degrades quickly as the

number of nodes increases.

Ful!\? Connected

Line 4 Tree Bus

Figure 2.1.2: Common Network Topologies

Mesh networks, on the other hand, are more reliable and fault tolerant. The failure of
one node or several links will not fail the whole network. More importantly they scale
well. The total communication bandwidth, memory bandwidth, and processing capability
of the system increase with the number of nodes. Therefore, mesh has emerged as a
popular topology for multicomputers. In multicomputers nodes are usually arranged as an
n-dimensional array and are connected to their neighbors in each dimension. Such
topologies are called n-dimensional meshes. In what follows a mesh refers to an n-

dimensional mesh unless otherwise specified. Here is its formal definition.

Definition 2.1.1 (n-Dimensional Mesh) An n-dimensional mesh is an interconnection

structure that has ke x ks x . . . x k«-s nodes, where k: denotes the number of nodes in the ith

10

dimension. Each node in the mesh is identified by an n-coordinate vector (xo, X1, ..., Xu1),
where 0 < x; < k--1. Two nodes (xo, X1, ..., x.-1) and (ys, y1, ..., y»1) are connected if and only
if there exists an i such that x: = (y» £1), and x; =); for all j # i. Thus the number of

neighbors of a node ranges from n to 2n, depending on its location in the mesh [6].

In a mesh there are no connections between the first node and the last node of each
dimension. Hence, communications between them need to travel a long distance. But if
we add a link between the first node and the last node, links along each dimension form a
circle. Therefore, a message can travel in the two opposite directions of one dimension
but reach the same destination, which significantly reduces the distances between nodes.
Meshes with wraparound links are called tori. The following is the formal definition of an

n-dimensional torus [2].

Definition 2.1.2 (n-Dimensional torus) An n-dimensional torus differs from an n-
dimensional mesh only at the interconnection structure. Two nodes (xo, xi, ..., x4) and (o,
V1, ..., yo1) in a torus are connected if and only if there exists an 7 such that x; = (y: £1)
mod k;, and x; =y; for all j # i. The wraparound links in an n-dimensional torus (specified

by the use of modulus in the definition) are not present in n-dimensional meshes.

A torus is a symmetrical topology in which the degree of a node is the same regardless
of its location in the network. This can balance the traffic load and simplify the routing
algorithms in tori. The mesh, on the other hand, is an asymmetrical topology in which the

node degree depends on its location. Links near the center of the mesh experience higher

11

traffic density than those near the boundaries. The diameter of a mesh is greater than that
of the respective torus [6]. But the scalability of tori is not as good as that of meshes since
wraparound links usually bear different weights (length, bandwidth etc.) from those of
the regular links. Some special cases of n-dimensional meshes and tori have special

names, e.g. K-ary n-cube and hypercube. Here are their definitions.

Definition 2.1.3 (K-ary n-cube) A K-ary n-cube is a special case of n-dimensional torus

when the sizes of all n dimensions are the same, say, K.

Definition 2.1.4 (Hypercube) A hypercube is a special case of n-dimensional meshes
when the sizes of all n dimensions are 2. It is also a special case of K-ary n-cube when

K=2, consequently called 2-ary n-cube [2].

(1) 2-ary 4-cube (Hypercube); (2) 3x3 2D Torus; (3) 3x3x3 3D Mesh;

Figure 2.1.3: Mesh-connected Network Topologies

K-ary n-cube and hypercube are even more symmetrical and regular topologies than
tori. They are popular for first generation multicomputers. For example, the hypercube

was adopted by iPSC-2 and nCube-2/3. Whereas, low-dimensional meshes and tori

12

become more popular in the new generation multicomputers such as Paragon and Symult
2010 built with 2D meshes, Cray T3D and MIT J-Machine built with 3D meshes [2].

Figure 2.1.3 [2] illustrates a 4D hypercube, a 3D mesh, and a 2D torus.

Choosing a Topology for Multicomputers

Given the number of nodes in a multicomputer, how should we choose a topology that
can achieve the best network performance? In general, low-dimensional meshes are
preferred because they have low node degrees and fixed-length channel wires which
make them more scalable than high-dimensional meshes and K-ary n-cubes. Low-
dimensional meshes also have higher channel bandwidth per bisection density and lower
blocking latencies, which result in lower communication latency [6]. On the other hand,
high-dimensional meshes or K-ary n-cubes have smaller diameters and average distances.
Therefore, for networks where communication latencies depend on the path length, high-
dimensional meshes such as hypercubes are good. High-dimensional meshes also have
more paths between pairs of nodes. They provide better adaptability and fault tolerance.
In our study, the multicast algorithms are mainly designed for 2D or 3D meshes, but they

can be easily applied to 2D/3D tori and higher dimensional meshes.

2.1.1.3 Node Architecture of Multicomputers

The nodes in a multicomputer communicate by passing messages through an
interconnection network [6]. Hardware support is essential to handle the transmission of
messages between nodes. In most systems, a router is associated with each node to handle

communication-related tasks. Figure 2.1.4 shows the architecture of a generic node

13

consisting of a processor, a local memory, a router, and some other I/O devices. The
router is connected to the processor and local memory through internal channels. The
internal input channel is used to absorb messages destined for the host processor. The
internal output channel is used to send outgoing messages from the host processor to
remote nodes. According to the number of internal channels, we have either all-port or .-
port architecture. In the all-port architecture, every external channel has a corresponding
internal channel, thus allowing the node to send or receive on all external channels
simultaneously. A k-port architecture has k£ (less than the total number of external
channels) internal channels, which are multiplexed by the external channels. When £ is

one, we call it one-port architecture.

Router

m—— |
e g e
External Chiwnels . ¢ L] Extcmal Channcls
{iaput) . L] {owput)
¢ Coatrul Uit *
w———— S
b A
‘“‘1‘:‘:’%‘% P * & |lntemal Cranncls
{outpet) {nicroonnoct
{ 1
i
Functional Loca)
Ueits ke Processor Meaory
VO devices

Figure 2.1.4: Node Architecture in Multicomputer

In practice one-port and all-port are the most used architectures. In one-port
architecture, nodes can not send/receive messages to/from several different neighboring

nodes simultaneously but sequentially due to the contention for the internal channel

14

which results in delay. But in all-port architecture, this kind of delay can be avoided since

messages can be sent/received simultaneously.

2.1.1.4 Routing Techniques

Routing techniques can be classified with respect to different characteristics. They can
be classified as source routing or distributed routing according to where routing decisions
are made. In source routing the entire path for message routing is decided at the source
node before the message is sent. Each message carries the complete routing information
in its header, which increases the overall message size. In distributed routing, routing
decisions are made at every intermediate node through which the message traverses [6].

Routing can also be classified as deterministic or adaptive based on the path selection
process. In deterministic routing the path is determined by the source and destination
addresses, and consequently is unique. Adaptive routing, on the other hand, provides
multiple paths from the source to the destination, and the path taken by a particular
message depends on network conditions and the routing algorithm.

Routing can be minimal or non-minimal. In minimal routing, the message is routed
through one of the shortest paths between the source and the destination. In non-minimal
routing, a message can take any path between the source and the destination, and thus
might take a non-shortest path because of congestion or faults in the shortest paths.

In practice, a routing algorithm can combine characteristics from different routing
techniques. Take multicast routing for example. If we use distributed routing, the
complicated routing algorithm has to be executed at each node, which results in much

overhead time and reduces overall performance dramatically when the number of

15

intermediate nodes is large. But if we use source routing, messages carry too much
routing information in the header, which not only costs buffer space but also causes
overhead transmission time. Semi-distributed routing is proposed as a compromised
solution between source routing and distributed routing. In semi-distributed routing, an
overall routing algorithm is executed at the source node generating the most important
routing information (only information of the destination and replicate nodes) to be
embedded in the message header. And then, at each intermediate node, only very simple
routing decisions need to be made based on the routing information in the header. Semi-
distributed routing successfully overcomes the pitfalls of source routing and distributed

routing, and is widely used in multicast.

2.1.1.5 Switching Techniques
Nodes in a direct network communicate by passing messages from one node to another.
A message may be divided into equal or variable-sized packets. A packet is the smallest
unit of data that contains routing and sequencing information. In most multicomputers, a
packet enters the network from a source node and is switched or routed toward its
destination through a series of intermediate nodes. Four types of switching techniques are
usually used for this purpose: circuit switching, store-and-forward, virtual cut-through,
and wormhole.

In circuit switching, a dedicated path (physical circuit) is established between the
source and the destination before the data transfer initiates. Once the data transfer is
initiated, channels on the path are reserved exclusively, the message is never blocked and

buffering of data is not needed. On the other hand, establishing the path requires

16

significant overhead time and reservation of all channels for the entire duration of
message transmission degrades performance. Circuit switching was once used in old
multicomputers such as iPSC/2 but is no longer used in new commercial multicomputers.

In store-and-forward switching, a message is divided into packets that are
independently routed towards their destination. The entire packet is buffered at every
intermediate node and then forwarded to the next node in its path. The advantage of
packet switching is that the channel resources are occupied only when a packet is actually
transferred. The drawback is that, since the packet is stored entirely at each intermediate
node, the time to transmit a packet from the source to the destination is directly
proportional to the number of hops in the path. Ncube-1 and Ametek 14 are
multicomputers that adopted store-and-forward switching.

In virtual cut-through, while routing toward its destination, a packet is stored at an
intermediate node only if the required next channel is occupied by another packet. Hence,
the distance between the source and destination has little effect on communication
latency. The disadvantage of the virtual cut-through technique is that each node must
provide sufficient buffer space for all the messages passing through it.

Wormbhole routing is a variant of the virtual cut-through technique that avoids the need
for large buffer spaces. In wormhole routing, a packet is transmitted between the nodes in
units of flits, the smallest unit of a message on which flow control can be performed. The
header flit(s) of a message contains all the necessary routing information and guides the
route. All the other flits contain the data elements and follow the header flit(s)
contiguously in a pipelined fashion as indicated in Figure 2.1.5. The main advantage of

wormhole routing is that its transmission latency is insensitive to the distance between

17

the source and destination. Moreover, since the message moves flit by flit across the
network, each node needs to store only one flit. Wormhole routing is said to be the most

promising switching technology for multicomputers and is used in Touchstone Delta,

Symult 2010, and MIT J-Machine [6].

1 . [|

;
pses T T T T 1] -
S SRR y
0op

Fliiws [p[opololDiDIp DD N}

A1}~

H : Header Fiit

‘ - Dl Dl =S
D : Datw Flit
(a) (b)

Figure 2.1.5: Message Format in Wormhole Routing

The drawback of wormhole routing is that it can easily cause blocking and deadlock.
Since the header flit governs the routing, if it cannot advance in the network due to
resource contentions, all the trailing flits are also blocked along the path and can further
block other messages or cause deadlock. Prevention of deadlock is one of the main issues
in wormhole switching, and is usually accomplished by a suitable choice of routing
function (such as XY-routing) that selectively prohibits messages from taking some
paths, thus prevents cycles in the network. Virtual channels can also be used in

wormhole-routed networks to prevent deadlock and chained blocking [Dally 1992].

18

2.1.2 Multicast

2.1.2.1 Multicast Problems

Let the interconnection topology of a multicomputer be denoted by a host graph G(V, E),
where each vertex in ¥ corresponds to a node and each edge in E corresponds to a
communication link. For a multicast communication, let usdenote the source node and w:
U, ..., ur denote k destination nodes, where k > 1. The set K = {uo, us, us, ..., we}, which is
a subset of V(G), is called a multicast set. Depending on the underlying communication
paradigm and the routing method, the multicast communication problems can be
formulated as four different graph theoretical problems: Multicast Path (MP) problem,
Multicast Cycle (MC) problem, Steiner Tree (ST) problem, and Multicast Tree (MT)

problem [1].

Multicast Path (MP) Problem

In some communication mechanisms, replication of an incoming message in order to be
forwarded to multiple neighboring nodes involves too much overhead and is usually
undesirable. Thus, some routing method does not allow each node to replicate the
message passing by. In such case the multicast routing problem becomes finding a path
starting from wuo and visiting all k destination nodes. The optimization problem is to find

an optimal multicast path (OMP) and is formally defined as follows.

Definition 2.1.5 (Optimal Multicast Path) A multicast path MP(vi, v, .., v,) for a
multicast set K in G is a subgraph P(V, E) of G, where V(P) = { vi, vz, ..., v» } and E(P)

= { (v, vs1): I <i < n-1}, such that vi=u» and K < V(P). An OMP is an MP with the

19

shortest total length.

Multicast Cycle (MC) Problem

Reliable communication is essential to a message passing system. Usually, a separate
acknowledgment message is sent from every destination node to the source node. One
way to avoid sending |K| separate acknowledgment messages is to have the source node
itself receive a copy of the message it initiated after the last destination node being
visited. Thus, the multicast communication problem is the problem of finding a shortest

cycle, called Optimal Multicast Cycle (OMC) for K.

Definition 2.1.6 (Optimal Multicast Cycle) A multicast cycle (v, v, ..., v, vi) for K is a
subgraph C(V, E) of G, where V(C) = { v, v;, ..., va } and E(C) = {(vs, V1), (vi, vir1): 1 <1

<n-1} suchthat K c V(C). An OMC is an MC with the shortest total length.

Steiner Tree (ST) Problem

Both OMC and OMP assume that the message will not be replicated at any node during
transmission. However, message replication can be implemented by using some hardware
approach. If the major concern is to minimize traffic, the multicast problem becomes the

well-known Steiner Tree problem [1]. Formally, we restate the ST problem as follows.

Definition 2.1.7 (Minimal Steiner Tree) A Steiner tree S(V, E) for a multicast set K is a
subtree of G, such that K < V(S). A Minimal Steiner Tree (MST) is a ST with the minimal

total length.

20

Multicast Tree (MT) Problem

In the ST problem, we do not require the using of a shortest path from the source to a
destination. If the distance of two nodes is not a major factor to the communication time,
such as wormhole routing, the above optimization problem is appropriate. However, if
the distance is a major factor to the communication time, such as the store-and-forward
mechanism, then we may like to minimize time first then traffic. The multicast
communication problem is then modeled as an Optimal Multicast Tree (OMT) problem

which is defined as below.

Definition 2.1.8 (Optimal Multicast Tree) An OMT, T(V,E), for K is a subtree of G, such

that a) K < V(7), b) dT(us, u;) = dG(us, w) for 1<i<k, and ¢) |E(T)) is as small as possible.

Complexity of Multicast Problems

Essentially, in terms of computation complexity, the above graph optimization problems
can be stated as: Given a host graph G, a multicast set K, and an integer /, does there exist
an OMP (OMC, MST, OMT) for K with total length less than or equal to [? Apparently,
the complexity of each of the above optimization problems is directly dependent on the
underlying host graph. Lin ef a/ [1] proved a number of results related to the complexity

of multicast problems, which we treat as theorems here:

Theorem 2.1.1 The OMC, OMP, MST and OMT problems for 2D mesh graph are all NP-

complete.

21

It is not difficult to see these results can also be applied to higher dimensional meshes.
Since a multicast problem in a 2D-mesh can always be treated as a special case of that in
an n-dimensional mesh (n>2), if multicast problems in n-dimensional meshes are not NP-
complete, then they should not be NP-complete for 2D meshes either, which contradicts

the theorem above. Hence, we have the following theorem.

Theorem 2.1.2 The OMC, OMP, MST and OMT problems for n-dimensional (n>2) mesh

graphs are all NP-complete.

2.1.2.2 Multicast Models

We just studied the multicast problems merely at theoretical level in the previous section.
In practice multicast in mesh-connected networks can be implemented in many different
ways which are referred here as multicast models. In general, multicast models are
divided into two categories: unicast-based and tree-based. In most of first generation
multicoimputers, the hardware at each node only supports one to one communications.
Therefore, multicast communications can only be implemented through multiple unicasts,

named unicast-based multicast.

Unicast-based multicast
Unicast-based multicast can also be implemented in many ways. The naive way is just to
send a separate copy of the message from the source node to every destination node,

hence called separate addressing [4]. This is the simplest but most costly way both on

22

time and traffic since it is completely sequential and makes no use of any previous traffic.
Another way is called chain tree, in which the source node only sends a copy of the
message to a subset of destinations and then the destinations that have received the
message further forward it to those that have not received yet. The process continues until
all destinations receive the message, thus forming a logic message-passing tree composed

of all destination nodes.

[0‘0]E“".‘"".""'"""'.""‘."“‘.[7'01 / s 2\
5 ' ' : H ' ' :
A di a2
Jy“ 2 3
: / \ 3
il e d4 d6 a3
""""""""" e s | 3
L ds
) i o
(@) (b)

Figure 2.1.6: Example of Unicast-based Multicast

Figure 2.1.6 illustrates how chain tree multicast works. Figure 2.1.6(a) indicates the
distribution of the destinations d, d., ds, ds, ds, ds and the source node s. Figure 2.1.6(b) is
a possible chain tree in which each link represents a unicast between the two nodes.
Assume each node can be involved in one unicast at a time, the number besides the links

indicates at which step the unicast is conducted.

Tree/Path-based multicast

23

In tree-based multicast, the hardware (router) at each node usually supports multicast
routing. Routing information with the set of destinations is embedded in the header of a
packet. The source node sends the packet to a selected set of its neighboring nodes, each
of which is able to digest the routing information without the intervening of the CPU and
decides what to do next. Depending on the routing information embedded in the packet,
the receiving nodes may simply accept the packet (a leaf destination node) or may just
pass the message to one of its own neighbors (a passerby node) or both (an intermediate
destination node). In some cases the node (a replicate node) may need to replicate the
message, modify the routing information in the header, and then pass it to several
neighboring nodes. Thus, the message is disseminated from node to node in a certain
order until all destinations receive the message. All nodes and links involved in the
dissemination occur only once at a certain time, forming a tree in the host network rooted
at the source node. In some special cases, the message is passed along one or several
paths starting at the source node.

Tree-based multicast is recognized for its high efficiency on both time and traffic {8,
27, 37, 39, 40]. Hardware support and high parallelism in the message dissemination both
significantly reduce the communication latency. In the multicast tree, destination nodes
share as much common routing path as possible and no links occur twice. Hence, the total
traffic tends to be small too. Tree-based multicast generally outperforms the unicast-
based multicast and has become a more promising multicast model for the new

generation multicomputers.

24

2.1.2.3 Multicast in Mesh

Mesh, due to its good properties, has become a popular network topology in
multicomputers. Compared to multicast in an arbitrary network topology, multicast
routing in mesh-connected networks is much easier to design. It can be implemented at a
low cost as a result of the meshes’ geometric regularity. For example, nodes of mesh are
arranged like an array, connectivity and distance between them can be determined by
comparing their coordinates. And the routing is simply to choose the direction
(dimension) at each node. These good characteristics reduce the complexity of the
algorithm significantly, which will otherwise involve a lot of graph based searching.
Moreover, because of the regularity, the length and bandwidth of each link is almost the
same. Hence, we can assign the same weight usually one to each link, which simplifies

the calculation and achieves very good scalability.

2.1.2.4 Multicast Evaluation Criteria
The main process of multicast routing is to select paths to deliver a message from the
source to all its destinations in a very efficient and economical way. Lin [1] proposed
traffic and time as two major parameters to evaluate multicast communication. The
parameter fraffic refers to the number of links used to deliver the source message to all its
destinations. The parameter fime is the message transmission time starting from when the
source sends out the message till the last destination receives it.

Good performance of a multicast routing algorithm involves several contradicting
requirements. One requirement is that the message should be sent from the source to all

destinations as soon as possible, i.e. to minimize the multicast time. Another requirement

25

is that the multicast operation should create as less traffic as possible. Heavy traffic not
only costs resources but also causes contention, blocking, deadlock, and could increase
the time. The third important requirement is the computational complexity of the routing
algorithm should be small. Large computation complexity will increase the delay at each
node and deteriorate the overall performance. However, these three parameters are not
totally independent, and obtaining optimal result for one parameter may degrade the
result for the other.

As a matter of fact, we have already learned that OMP, OMC and MST problems
which try to obtain optimal multicast traffic are NP-complete. Hence, the problem of
obtaining results optimal for both time and traffic will be NP-hard. A practical solution is
to design heuristic algorithms with a reasonable complexity, which can obtain near
optimal result of one parameter without seriously degrading the result of the other

parameters.

2.1.2.4.1 Evaluation of Multicast Traffic

Calculation of multicast traffic is indifferent regardless of the underlying network
topology, switching technology, and routing algorithms. For tree-based multicast, the
traffic is just the total number of edges in the tree. Let MT(V,E) define the multicast tree
for multicast from the source uo to K destinations where ¥V is the set of nodes in the tree

and F is the set of edges in the tree, then we have the formula.

Multicast Traffic=|E(MT)| (2.1.1)

26

Besides the parameter fraffic, another parameter called Additional Traffic is also
widely used to evaluate the traffic [1]. Additional Traffic is essentially the total traffic
subtracted by the total number of destinations {1, 7, 12]. Sending a message to K
destinations needs at least K links, each of which delivers the message to one destination.
So, the amount of traffic on top of the minimum necessary traffic is considered additional
traffic. It reflects the efficiency of the traffic better than total traffic. In the multicast

stated above, we have the following formula.

Additional Traffic=|E(MT)|-K (2.1.2)

2.1.2.4.2 Evaluation of Network Latency
The performance of communication is often evaluated by the communication latency
which is an accumulation of network latency. Network latency is defined as the time
between the moment when the message head is injected into the network by the source
node and the moment when the message tail is absorbed by the destination node.
Calculation of network latency greatly depends on the underlying switching technologies.
We will present the formulas to calculate the network latency for the four types of
switching techniques used in multicomputer network.

In store-and-forward switched network, when a packet reaches an intermediate node,
the entire packet has to be stored in the buffer before it is forwarded to a neighboring
node. Hence, the message transmission time is linearly proportional to the number of

hops (distance) between two nodes. Thus, the network latency is:

27

Network Latency=(L/B)D (2.1.3)

Where L is the length of the packet, B is the bandwidth of the channel, and D is the
length of the path between the two nodes, i.e. the number of links in the path.

In circuit switching, a control packet is first transmitted to construct a physical circuit
between the source and the destination node. Once the circuit is established, the actual

packet is transmitted along the circuit to the destination. Thus, the network latency is:

Network Latency=(L/B)D + L/B (2.1.4)

Where L. 1s the length of the control packet transmitted to establish the circuit and
when L.<<L, the distance D has a negligible effect on the network latency.

In virtual cut-through switching, a packet is stored at an intermediate node only if the
next required channel is busy; otherwise, it is forwarded immediately to next node

without buffering. The network latency is:

Network Latency= (LvB)D + L/B (2.1.5)

Where L+ 1s the length of the header field and when Li<<L, the distance D has a

negligible effect on the network latency.

In wormhole routing, a packet is divided into a number of smaller units called flits for

transmission. The header flit governs the route. As the header advances along the

28

specified route, the remaining flits follow in a pipeline fashion without delay. The

network latency is:

Network Latency=(Ly/B)D + L/B (2.1.6)

Where Ly is the length of each flit and when L, <<L, distance D has a negligible effect
on the network latency.

Figure 2.1.7 illustrates the calculation of the network latency in networks using
different switching techniques when a packet is transmitted from a source node S to the
destination node /3 through intermediate nodes // and /2. Since the network latency of
store-and-forward switching is the packet size times the hops, it is usually much larger
than that of the other switching technologies. In general store-and-forward works well

when the packets and network size are small.

MNode

Packet
Y S— egons [t
i ' — Header Data
2 o
@ O pe
M
Nade Mode
sOg S I TITITIT]
L I — Njsssussns;
b J [Sowe—) % OIIIrrm
] B — 8 O
L Time Time
(2 3

(1) Store-and-forward (2) Circuit Switching (3) Wormhole routing

Figure 2.1.7: Comparison of Different Switching Techniques

29

Figure 2.1.8 compares the network latency at different distances in contention free
networks using store-and-forward, circuit switching, and wormhole routing techniques.
Although the network latency in wormhole-routed networks is distance-insensitive, it is
still desirable to reduce the path lengths, which will reduce the overall traffic loads and

channel contentions.

LG e s s g ,
78— e —
7.0 /// -1
6.5 e -
8.0 b e —
5.5 //
8.0 b P 64-node Noube-1 {slasg-and-forward] .
Comm. 45— // e
fatency 40 // —
{ms) 35 =
3.0 v -]
25
204 Message size: 1 Kbyte -
55 —
; g 32-rode IPSC-2 (Circuit switching)
05 64-note Ncube-2 {wormhole routing} 1
0.0 3 L
1

2 3 4 &
Distance {number of hops}

m

Figure 2.1.8: Comparison of Communication Latency

2.1.2.4.3 Evaluation of Multicast Time

Multicast time, also known as multicast communication latency, is the message
transmission time of a multicast starting when the source sends out the message tili the
last destination receives the message. Communication latency depends on the underlying
network technologies especially the switching techniques. Criterion for evaluating
multicast time varies from one switching technology to another. In the following sections,
we present the formulas to calculate the multicast time for the two most commonly used

switching technologies: store-and-forward and wormhole routing.

30

For Unicast-based Multicast

Unicast-based multicast is accomplished through a series of unicasts between destinations
in the order designated by a logical multicast tree. Since the network latency in wormhole
routed networks is distance insensitive, each step of unicast takes approximately the same
amount of time. Therefore, the unicast-based multicast latency is actually decided by the
maximum number of message passing (unicast) steps needed to send the message to all
destinations (i.e. depth of the logical multicast tree). Assume the number of unicasts
needed to deliver the message from source node uo to destination nodes v, vs, ..., Vi is n,

n., ..., m respectively, then

Multicast Time=max{ ni, nz, ..., nx} (2.1.7)

An algorithm to construct the optimal multicast tree was proposed in [5] consisting of
the minimum [/og:m] steps, where m is the total number of destinations. It is obtained

when the number of destinations that receive the message doubles at each step.

For Tree/Path-based Multicast
Calculation of multicast latency for tree-based multicast is more complicated. Assume a
multicast delivers a message to K destinations, the length of the path from the root/source
node to the destination nodes di, d:, ..., dwi, dr in the multicast tree are /., Lo, ..., I, Lk
respectively.

The network latency in store-and-forward switched networks is proportional to the

distance, and can be counted in hops which represent the time for a message to be

31

transmitted from a node to its neighboring node. In a network with all-port architecture
where the message can be transmitted from a node to all its neighbors simultaneously, the

multicast time will simply be the length of the longest path to a destination, i.e.

Multicast Time=max{ly, I, ..., lv1, I« } (2.1.8)

But in networks with one-port architecture, hops waited at the branching nodes have to be
counted. Assume on the path to destination node d, there are n branching nodes and the
hops waited at each branching node is A, A, ..., hai, hs, then the total hops waited at

branching nodes for di is w: where

n
wi=S" Iy
j=1

Multicast time will be the maximum number of hops it takes for the message to reach all

the destinations.

Multicast Time=max{ Lws, LAws, ooy Lo tWier, Lbwe } (2.1.9)

Figure 2.1.9 illustrates how the hops are counted in a multicast tree of one-ported
network. The root is the source node, the filled circles stand for destination nodes, and the
empty circles stand for intermediate nodes. The number beside each link designates the
number of the hop when the message is transmitted at that link.

In wormhole-routed networks, things are quite different. The network latency (7) in

wormhole routed networks is 7=(L/B)D+L/B as presented in Formula (2.1.6). Assuming

32

Figure 2.1.9: Calculation of Multicast Hops

that the time to transmit one flit from a node to its neighbors is one time unit, i.e. L/B=1,

then the formula can be simplified as follows.

Network Latency=D+L (2.1.10)

So, the network latency is the sum of the distance and the length of the message. In a

multicast, the length (L) of the message is the same for all destination nodes. The

multicast latency will be decided by the longest path to a destination in the multicast tree.

Therefore, we have:

Multicast Time=max(1, I, ..., l1, lL)+L (2.1.11)

33

2.2 Review of Previous Studies

Many papers related to multicast in mesh-connected multicomputers have been published
since the early 90s’. The following is a brief review of the history of the studies in this

field.

Basic Theories and Early Studies

In 1993 Lin and Ni [1] introduced multicast communication in multicomputers in details
and gave the formal definitions of the multicast problems. They further proved a series of
results such as the NP-completeness of multicast problems, and defined the criteria for
evaluating the performance of multicast routing. In addition they proposed several
heuristic multicast algorithms in general such as the sorted MP algorithm, which we use
as a guideline to design our algorithms.

Most of first generation multicomputers used store-and-forward switching and
adopted the hypercube topology because it obtains a very short distance among any pair
of nodes. In late 1980s, numerous papers [31, 32] were dedicated to multicast routing in
multicomputers with hypercube topologies. But when the distance insensitive wormhole
routing emerged as a more popular switching technology, hypercube was gradually
replaced by low dimensional meshes.

In 1993 Ni and Mckinley conducted a very thorough survey [2] on wormhole routing
technology. Performance evaluation of wormhole routed networks is discussed in details.
Due to the fact that wormhole routing is particularly susceptible to deadlock, several
approaches to ensure deadlock-free routing are proposed. Some of the techniques such as

dimensional ordered routing (XY -routing) are adopted by our algorithms. Later in 1998,

34

Mohapatra further discussed various techniques for enhancing the performance and
reliability of the wormhole routing [6]. These deadlock-preventing and fault-tolerant

techniques [2, 6] can be easily incorporated into our algorithms upon implementation.

On Unicast-based Multicast
In early wormhole-routed multicomputers, hardware used to only support unicast. Hence,
a multicast communication has to be done through a sequence of unicasts. Mckinley [5]
presented two optimal efficient algorithms to implement multicast communication in
wormhole-routed n-dimensional meshes which delivers a multicast message to m-/
destinations in [log,m| message passing steps. In 1995 Robinson et al presented the
version of the algorithms for wormhole-routed torus networks called U-torus [11], which
also achieved the [log,m | optimal result.

Unicast-based multicast proved not to be very efficient due to its low parallelism, lack
of optimization on traffic, and too much software involvement. Hardware supported tree-

based multicast was needed to improve the performance of multicomputers.

On Tree-based Multicast

In 2003 Liu [3] proposed two tree-based multicasting algorithms for mesh and torus
networks: the VH algorithm with a time complexity of O(kD), and the DIST algorithm
with a time complexity of O(KDN). Simulations showed that the DIST algorithm
generates less traffic than VH algorithm, but at the price of much larger multicast time
and computation complexity. VH algorithm, on the other hand, obtained very low
computation complexity and optimal multicast time. But simulations indicated that it

creates a very large amount of traffic. Harutyunyan later proposed the MIN algorithm

35

[22], which was designed to reduce the multicast traffic. Simulations proved that the MIN
algorithm produces the least traffic among all the algorithms without significantly
degrading the multicast time, but its computation complexity is higher than others.
Hence, each of these algorithms needs some improvement on one aspect or the other.
Fortunately, due to the good properties of mesh topology, multicast routing that obtains
optimal time is achievable at a low computation complexity. How to reduce the traffic as
much as possible for the time optimal multicast algorithms becomes a new challenge in

this field, which leads to the development of our new algorithms: the DIAG and DDS.

On Path-based Multicast

Tree-based multicast routing may seem to be efficient on both time and traffic. But
simulations showed they only perform well in store-and-forward switched networks, not
in wormhole routed networks. Lin proved in details in [7] that path-based multicast
routing outperforms tree-based multicast routing in wormhole routed networks. With
wormhole emerging as the most promising switching technology [7], efficient path-based
multicast routing algorithms are also very desirable.

Lin and Ni proposed the dual-path and multi-path multicast routing algorithms for
wormhole-routed multicomputers with 2D-mesh or hypercube topology [7]. Both
algorithms used a Hamiltonian path to guide the routing of the message along as short
paths as possible. The drawback of such algorithms is that they create large excessive
traffic because routing has to observe the order of the Hamiltonian path. Hence, how to
reduce the total traffic or the length of routing paths remains a challenge and leads to the

development of our XY-path algorithm featuring two guiding paths for message routing.

36

Chapter 3

Proposed Multicast Algorithms

3.1 Modeling of the Problem

Following the convention, we model the mesh network in multicomputers as a graph, and
the multicast problem as finding the optimal multicast tree in the host graph. We will

introduce the model in details in the following sections.

3.1.1 Problem and the Model

In our model every node of the multicomputer usually consisting of a processor and a
router is deemed as a vertex, and connections between pairs of nodes are deemed as
edges (links) in the host graph. Depending on the underlying network topology, the
deployment of the nodes and connectivity between them will result in very different host
graphs. In our study, the mesh-connected multicomputer network is modeled as an n-
dimensional mesh graph.

We can just imagine that the n-dimensional mesh is fit into the first (positive) section
of an n-dimensional coordinate space with their origins overlapped. Each node of the
mesh is located at a point which is identified by the node’s corresponding n-coordinate

vector, and each pair of neighboring nodes are connected with a line that represents the

37

link between them. Distance between neighboring nodes is one which stands for the

weight of the edge.

The Problem

As we mentioned in Chapter 2, the two parameters time and fraffic used to evaluate
multicast contradict each other. It is hard to minimize both. So the common strategy is to
minimize one parameter first and try to reduce the value of the other parameter as much
as possible [3]. If an algorithm tries to obtain minimal traffic, the problem becomes a
Minimal Steiner Tree (MST) or Optimal Multicast Path (OMP) problem which is NP-
complete in general. If it minimizes the time first and tries to reduce the traffic as much
as possible, the problem becomes Optimal Multicast Tree (OMT) problem which is NP-
compete in general as well. Fortunately, OMT which is often reduced to shortest path
problems is not very hard in a mesh graph. In our study, we choose the second approach
to design efficient multicast routing algorithms for mesh-connected multicomputers.
Hence, our problem becomes the Optimal Multicast Tree (OMT) problem in mesh graphs.

Here is the formal definition.

Definition 3.1.1 (OMT Problem In Meshes) Given the host mesh network M, and a
multicast from the source node us to k destination nodes set K={ u,, ..., wx}, find the
Optimal Multicast Tree, T(V,E), such that a) T is a subgraph of M; b) K < V(T); ¢)

dT (0, ui) = dM(u0, ui) for 1< i <k, (Shortest Path); d) |E(T)| is as small as possible.

The Computational Model

38

In reality any node in the mesh could be the source node uo that sends a message to a set
of arbitrary destination nodes. In order to simplify the mathematical model and

simulations, we assume the source node is fixed at the origin of the mesh or torus.

oo AN (7.0
P _‘0‘3 Lo
Coodr Co dg
.'""'"‘.'"""f'"‘.‘"""".
| Submeskl | Submask? |
{4 o —d : . . :>
1 1 L] s 1] 1 t
S Y SO S S S
BORNERE
| Submestk3 | Submeshd |

[u’?] ------------ ¢—-J---J---J---J[?J?]

Figure 3.1.1: Model of Multicast in Mesh

The legitimacy of this assumption is obvious in the case of the symmetrical torus
network. An arbitrary instance of multicast in tori can be reduced to an equivalent case,
whose source node is located at the origin, by simply rotating some distance along each
dimension. In the case of mesh, an arbitrary instance of multicast can also be reduced to
several such multicasts in submeshes, which have the source node at their respective
origins and a subset of the destination nodes. Consider the multicast in 2D mesh as an
example illustrated in Figure 3.1.1. An arbitrary multicast is launched in the mesh from a
source node s(3,4) to a set of destination nodes di(1,2), d:(1,5), dis(4,1), d«6,2), ds(6,5).
We can split the mesh into 4 submeshes by dividing it along the X and Y dimensions of
node s, i.e. submesh:, submesh:, submeshs;, and submesh.. Meanwhile, the original

destination set was also divided into 4 subsets, one for each submesh. Now, assume that

39

the source node s is the origin of each submesh. Then the original multicast can be
reduced to four multicasts from the origin s to its respective subset of destinations in each
submesh. The computation complexity, value of performance evaluating parameters, and
simulation results of the original multicast can be reflected by those in the four

submeshes.

3.1.2 Definitions and Notations

Definitions and notations of a graph, mesh and path in general were introduced in
Chapter 2. Here we present more specific notations related to our study of multicast in

2D/3D meshes/tori.

On Mesh Network

In an n-dimensional mesh network, the distance between nodes (xo, X1, ..., X»1) and (y, y1,
vy Yrr) 18 2 yi- xi|, 0 £ 1 < m-1. The maximum degree of the node in the n-dimensional
mesh is 2n, and the diameter of the n-dimensional mesh is 2(k-1), 0< i <n-1.

A 2D mesh is usually denoted as 2DM(m x n). Each node is identified by coordinate
(x, ¥), where 0 <x <m-] and 0 <y <n-1. The total number of nodes in 2ZDM is N =m x n.
Every node in 2DM has at least 2 and at most 4 neighbors. And the diameter of 2DM 1s m
+n-2. Figure 3.1.2 (a) shows an 8 x § 2D mesh.

A 3D mesh network is usually denoted as 3DM(m = n x p), which contains N =m x n
x p nodes. Each node is identified by coordinate (x, y, z), where 0 Sx <m-1, 0 <y <n-I,
and 0 <z <p-1. The node of 3D mesh has maximum degree 6, and the diameter of 3DM

ism+un+p-3.

40

— y—
e [
. I~
= =
et AR AL SEEL IR SRS L S LT
LR R b " o=k =" 1y
U i R R R LR U MY
by 1y LI} "y [vy 1y)
Rt R R R R e I
e R R R P e
L) [AT ===y ===aT"r 1)
] [[o I [[[
i R L EE AL R R R L Er I
[k o LI I [o [L S
R N B L e B
P ' o b] vl ! [
gmbogmbogobogatbogeabagmboagabayg o
[S S T T R TR 2L B
L i e il (kT T
' .r . _r ' ". ' ". 1 .r ' “: ' _r ' "
Eob-4-todobetobog-boa-tlogobod |
i e F I R]
A N Ty A N FE

[: ! ' ' ' ! '
[t uae Al et Al e S it dd il St e S e
I T T [T St B
IR RN R R TS L EEPE Rt R
ty ' fFa ' ' 'y ' ta
AR A LR R R R ERE L LT
PV sda v T [
v ty L Bt Tt af Sl oY [[
e ' i¢ Ve e Ve ir te
T - -
.- -
||||||||||||||||
||||||||
[})
. -
= (=
— —
[Lt
- -
[oo
(S S
LR LT e,
' ' ' ' ’ 1 ' 1
[' ' ' [' 1 '
¢ ' ' ' ' ' ' '
R bt R TR R
' ' ' v ' ' v 1
1 ' ' ' ' 1
i [') 1 [' '
R R A R]
' ' ' ' ' 1 ' '
' ' ' ' ' ' ' 1
' [' ' 1 ' ' 1
B EEEE LR S R R R R LR
' . ' ' ' ' ' '
' ' ' ' ' ' ' 1
' 1 ' ' ' 1 ' '
R R R R R R
1 1 ' ' ' ' ' 1
1 ' [' ' ' ' '
1 ') ' ' ' ' '
R AR LY R
' 1 ' ' ' '] 1
v ' ' ' ' ' ' '
' ' ' ' ' ' ' '
R R R R R RREE LR
' ' ' ' 1 ' ' 1
v 1 ' ' 1 I ' 1
' ' 1 ' ' 1 ' 1
uuuuuuuuuuuuuuuuuuuuuuuuuuuuu
p— —
=) [t
. -
=) =)
— —

(b) 8 x 8 2D torus

(a) 8 x 8 2D mesh

Figure 3.1.2: 2D Mesh and Torus

. x ka1), where

Definition 3.1.2 (Zone) A zone Z of an n-dimensional mesh M{ko x k: x . .

., Yn1) are

ey Xn-l) and y())O, Vi, ..

ki >2 (0 <i <n-1), is a submesh within M. Assume x(xs, X1,

’

the two end points of the diagonal of the zone, then for any node in the zone z(zo, z;, ...

zn1), zi 1s between xi and yi (0 <i < n-1). We denote a zone with the two diagonal nodes x

and y as {x<y}.

X kn~

Definition 3.1.3 (Multicast Zone) In an n-dimensional mesh or torus M(ks x ki x . . .

1), where & >2 (0 <i< n-1), if a multicast sends a message from the source node s to a set

..., dv}. The multicast zone is the minimal zone that

:{ d}, 2,

of destination nodes D

covers the source node s and all the destination nodes in D.

On Torus Network

41

In general a torus network is a mesh with wraparound links that connect the two end
nodes (xo, ..., Xi1, ki-1, Xie1, ..., Xat) and (xs, ..., Xe1, 0, Xi+1, ..., Xo1) in the ith dimension. All of
the links are bi-directional. A transfer is in the positive direction if it is from node (xo, ...,
Xer, Xiy Xivl, ..., Xo1) to node (xo, ..., Xis, (xi+1) mod ki, xi+1, ..., x.1) and vice verse it is called
negative direction.

In an n-dimensional torus network, the distance between node (xo, x, ..., x-s) and node
(o, Y1, -y yu1) 18 Zmin(|yi- xi|, k-|yi- xi), 0 < i < n-1. The degree of a node in the n-
dimensional torus is 2n and its diameter is [k/2), 0 <i <n-1. We will use the same set of

notations of 2D/3D meshes for 2D/3D tori.

On Multicast

Definition 3.1.4 (Multicast in 2DM/2DT) In a 2D mesh/torus network M(m x n), given a
source node s(0,0) and a set of destination nodes D={ (x;, y1), (xz, y2), ..., (x; 3:) }, where 0
<xi <m-/ and 0 < y:< n-1. Multicast sends a message from s to all nodes in D. Define:
Kmax = max{xi, ..., Xi}; Ymax = max{y,, ..., y;i}; The total number of nodes in the mesh N =
m x n; The diagonal node of s in the multicast zone d = (Xmax, Ymax); Dmax = max{D,, ...,

D:} where D is the distance between the source and the destination (x; y:).

Definition 3.1.5 (Multicast in 3DM/3DT) In a 3D mesh/torus network M(m x n x p),
given a source node s(0,0,0) and a set of destination nodes D={ (x;, y1,), (x2, y», z2), ...,
(xi s z0) }, where 0 <xi <m-1, 0 <y: <n-I and 0 < z: < p-I. Multicast sends a message
from s to all nodes in D. Define: Xmax = max{xi, ..., xi}; Ymax = max{y, ..., yi}; Zmax =

max{zi, ..., z:}; The total number of nodes in the mesh N = m x n x p; The diagonal node

42

of s in the multicast zone d = (Xmax, Ymax, Zmax); Dmax = max{D, ..., D:} where D; is the

distance between s and the destination (x; y; z:).

Definition 3.1.6 (Multicast in n-D Mesh) In a n-dimensional mesh network M(k: x k2 x
...x k), given a source node 5(0, 0, ..., 0) and a set of destination nodes D={d,, d, ..., di}

Multicast sends a message from s to all nodes in D.

0.0) pm_m o

Figure 3.1.3: Legend for a Multicast Tree

According to the kind of role they play, nodes in a multicast tree can be classified into
the following categories: Source node, Destination node, Leaf node, Intermediate node,
Replicate node, and Passerby node. Any node between the source node and a leaf node is
called Intermediate node. If an Intermediate node has to forward the message to more
than one node, it is called Replicate node. An Intermediate node can also be a
Destination node. If an Intermediate node is neither a Destination node nor a Replicate
node, it 1s called a Passerby node.

Figure 3.1.3 illustrates the legend for different type of nodes in a multicast tree. A

double circle in a filled square is the source node. An empty double circle is a non-

43

destination replicate node and a filled double circle is a destination replicate node. An

empty circle is a passerby node. A filled circle is a non-replicate destination node.

3.1.3 Solution to Multicast in Torus

Multicast problems in a torus are very similar to those in a mesh. We present here in

details how the multicast problem in tori can be reduced to those in meshes.

2D Torus Network

In the multicast given by Definition 3.1.4, while delivery of the message to the
destinations in 2DM always follows the positive directions, that of 2DT may follow in
either positive or negative direction, depending on the position of these nodes. The 2DT
graph can be divided into four zones shown below and each node (x; y:) belongs to one of

them.

zoner: { (0, ya(m/21-1,Tn/211) }
zones: { (m-1, Oy=>(m/2],[n/2}1) }
zones: { (0, n-Iy>(m21-1,[n21) }

zones: { (m-1, n-N>(Tm/21,[n/27) }

After dividing the 2DT into four zones, the multicast in 2D T becomes multicast in four
submeshes. In zone:, message is routed from source node (0, 0) to all the destinations in it.
In zone:, node (m-1, 0) first gets the message from node (0, 0) through wraparound links and
then is treated as a source node in its zone. Similarly, in zones, node (0, n-1) is treated as a
source node. And node (m-I, n-1) is treated as the source node in zones Figure 3.1.4

tllustrates how it works in an 8 x 8 2D mesh.

44

T Izl ¢
T cre~Frre-

s I s 1
el deob gt L 3ol e
=&a L L t o
1

3]

‘ 1
--4-.-4--[-4--|-4--‘-,1

a2

(IR |

Figure 3.1.4: Division of 2D Torus Network

3D Torus Network
Multicast in 3D torus can be solved in a similar way as in the 2D torus. Unlike the 2DT
network, which consists of four 2D submeshes, the 3DT network can be divided into
eight zones as shown below and each node (x; y; z:) belongs to one of them. Hence,
multicast in the 3D torus given by Definition 3.1.5 is reduced to multicasts in eight 3D
submeshes.

zoner: { (0,0, Oy m/21-1,Tn/211,[p/211) }

zonex: { (m-1, 0, O)>(m/21,[n2 11, [p/211) }

zones: { (m-1, 0, p-H(m2) [n2 11,1 p/21) }

zones: { (0, 0, p-De>(m2 11,1 n211,1p21) }

zones: { (0, n-1, 0y m/2 11, [n2], [pr211) }

zones: { (m-1, n-1, 0= m/21,[n/21,[p211) }

zoner: { (m-1, n-1, p-ly=(m/2 1, [n/21,Tpr21) }

zones: { (0, n-1, p-1y=>(m/21-1,1n/21,[p/21) }

45

For n-dimensional tori, in the same way we deal with 2D and 3D tori, we can
transform a multicast in an n-dimensional torus into multicasts in 2" n-dimensional

submeshes by dividing the original mesh at the middle of each dimension.

3.2 Tree-based Multicast Algorithms

An efficient multicast routing algorithm should transmit the source message to each
destination node with as small transmission time and less communication channels (links)
as possible. For a set of given destination nodes, the tree-based multicast routing delivers
the message along common paths as much as possible, then branches the message to each
destination node which results in a tree-like routes. One multicast can be accomplished
through many multicast trees. Our goal is to find the multicast tree that is optimal on both
time and traffic. However, the problem is NP-hard, and only heuristics are realistic
solutions. Here, we use a pro-time strategy to design the tree-based multicast algorithms
that minimize the time first and try to reduce the traffic as much as possible.

Network technologies such as switching techniques significantly affect the
performance of multicast algorithms. Research indicated that the general tree-based
multicast is good for store-and-forward switching but not for wormhole routing. On the
other hand, the path-based multicast in which all destinations on the path can receive and
absorb the message worm simultaneously works well in wormhole routed network [1].
We will study on the path-based multicast routing algorithms later.

Here, we first propose two tree-based shortest path multicast algorithms for store-and-
forward switched mesh networks: the DIAG algorithm and the DDS algorithm, which

obtain near optimal multicast time while keep the multicast traffic as low as possible.

46

3.2.1 DIAG Multicast Algorithm
DIAG is designed to reduce the large amount of multicast traffic of the previous tree-
based time optimal VH algorithm (See details below). The algorithm first finds a path
that approximates the diagonal of the multicast zone from the source node to the opposite
end. It then uses the diagonal as the main path or stem of the multicast tree and connects
all the other destinations through the shortest paths possible. Thus, in the multicast tree,
the path between the source node and each destination node is a shortest one which
results in near optimal time and modest amount of traffic.

In the following sections, we will discuss in details the motivation and heuristics of
designing this algorithm, then present the formal description and analysis of the

algorithm in 2D/3D meshes and tori.

3.2.1.1 Motivation of Designing DIAG

Liu [3] designed a time-optimal multicast tree algorithm called VH algorithm in which
the message is routed strictly in dimensional order to each destination node. So, the
message is transmitted from the source node first along the lowest dimension, then turns
to the next lowest dimension, the process goes on until the message arrives at the
destination. Thus, we can find the routing path for every destination and then construct
the multicast tree by merging the common parts of all the routing paths. Figure 3.2.1.1
shows the multicast tree constructed through VH algorithm for a multicast from the

source node (0, 0) to destinations (2, 3), (3, 5), (4, 6) and (6, 9) in a 2D mesh.

47

VH algorithm delivers the message to each destination along a shortest path obtaining
the optimal multicast time. The upper bound of multicast time of VH algorithm in 2D
mesh is Dwact1, Where Dua is the distance from the source to the farthest destination node
and the minimum possible multicast time in theory. VH algorithm also has a very low
computational complexity as low as O(kD) compared to O(KDN) of some other

algorithms such as the MIN algorithm.

Figure 3.2.1.1: Example of VH Multicast Tree in 2D Mesh

Unfortunately, VH algorithm pays little attention to reduce the multicast traffic. As a
result, VH algorithm generates a very large amount of traffic. Figure 3.2.1.2 [22] shows
that the additional traffic of VH algorithm almost doubles that of the pro-traffic MIN
algorithm.

The question is: Is the large amount of traffic created by VH algorithm necessary for
obtaining the shortest paths? After a close look at the multicast example, we find out why

VH generates so much traffic. In fact, if we send a copy of the message to node (6, 9) from

48

AAT
1“0 T T T T T T T T T

0+ —VH]
gof MIN
70} ;
60}]
50|]
0|
30}
20|
10}

0 1 1 1 1 1 g RS St
0 10 20 30 40 50 &0 70 80 90 100
Number of Destinations

Figure 3.2.1.2: AAT of VH versus MIN

node (4, 6) instead of from the far away node (4, 0), much traffic will be saved. So, the
excessive traffic is most likely a result of the rigid dimensional order. If we ignore the
dimensional order, the message can be routed along the tree shown in Figure 3.2.1.3,
which also obtains minimum multicast time with only /5 links of traffic compared to 29

links in the VH multicast tree.

{0.9)

Figure 3.2.1.3: The Diagonal Routing

49

Our question now becomes: can we develop a new algorithm that can obtain near
optimal multicast time and reduce the large amount of excessive traffic of VH algorithm.
DIAG (diagonal) multicast algorithm is designed just for this purpose. Next, we will

discuss the heuristics of DIAG algorithm.

3.2.1.2 Heuristics of DIAG Algorithm
As DIAG algorithm is designed to reduce the traffic of VH algorithm, the main strategy
will be to eliminate bad scenarios in VH algorithm which create large excessive traffic.

One major reason why VH enforces the dimensional order is to ensure that messages
reach each destination along a shortest path. However, the dimension-ordered routing is
not a prerequisite for a shortest path. Figure 3.2.1.4 shows that the dimension-ordered
routing results in route (/). But if we take route (2), 1.e. alternatively routing along X and
Y dimensions, we also get a shortest path.

One of the bad scenarios for VH routing in 2D mesh is when the destinations are
located at the bottom of each column as shown in Figure 3.2.1.5. The message has to be
routed from top of a column all the way through to the bottom only to one or two
destinations, which is not efficient on traffic. This is mainly caused by the strict
dimensional order in routing. As a result, the major routing path (X dimension route) is
located at the top which is far away from most of the destinations at the bottom.

A natural solution to such a bad case is to let the X dimension routing path intercept
the columns at the middle instead of at the top, which can save almost half of the total

traffic. In order to balance the two dimensions, we may need to apply the same trick to ¥

50

(0.0)

Figure 3.2.1.4: Example of Non-dimensional Shortest Path

dimension. Hence, the major routing path nceds to travel along both dimensions
concurrently, instead of in just one dimension. To achieve this, we can let the major
routing path advance along either dimension alternatively at small steps (instead of to the

maximum coordinate at once) until both dimensions reach their maximum coordinates.

"';[9,9)

Figure 3.2.1.5: Example of Bad Case VH Multicast Tree

To keep the path balanced in both dimensions, the step length for each dimension

should be proportional to the maximum coordinate in the respective dimension. Thus, the

51

resulted path approximates the diagonal line of the multicast zone. If we route the
message from some point at the diagonal major path to each destination node, long
distance travel along one dimension to just one or two destinations can be avoided.

Based on this idea, we propose a so-called DIAG (Diagonal) multicast algorithm. Here
are some principles or heuristics that we use to design it.

¢ To maintain the minimized multicast time obtained by VH algorithm, we
demand that the message be routed from the source to each destination along a
shortest path, in which case, the total traffic will not be very bad either.

e Since the major path (stem of the tree) is the diagonal of the multicasting
zone, it is likely that most of the destinations will be around the diagonal not
too far away.

e If we first send the message to the destination nodes closer to the source node,
then they can forward the message to farther destinations with just a little
extra distance.

e If we connect a destination to the existing multicast tree through a shortest
path, the new added traffic is likely small, which will result in a small total
traffic.

The main procedures of DIAG multicast routing algorithm are roughly described as
follows.

Step 1. Find the multicast zone and the diagonal node d which has the maximum

coordinate in every dimension of all destination nodes.

Step 2. Form a shortest path that approximates the diagonal line between

the source node s and the diagonal node d.

52

Step 3. Sort all the destination nodes according to their distance to the source
node and put them in a queue.

Step 4. Remove the first node ¢ from the queue and connect it to the closest node
¢ in the multicast tree and within the zone { s<>q}.

Step 5. Repeat step 4 until the queue is empty

3.2.1.3 DIAG Algorithm in 2D Mesh

This section presents the formal description and analysis of the DIAG multicast algorithm
in 2D meshes under the multicast defined by Definition 3.1.4. We divide the algorithm
into two parts. Part one is to find the diagonal path and called DIAG multicast
preparation algorithm. Part two is to construct the complete multicast tree and called

DIAG multicast routing algorithm.

Algorithm 3.2.1. 1(Multicast preparation algorithm of DIAG in 2DM)

Let us denote the diagonal path from the source node s to its diagonal node d as DP.
Denote the diagonal line from s to d as sd. oi(u) denotes the x coordinate of node u, and
o(u) denotes the y coordinate of node . D(u,/) denotes the distance from node u to line /.

Input: M D, s
Output: DP
Variable: u, u’, u” (temporary nodes)

(1) DP={ s }; u=s; Find the diagonal node d
(2) o{u)= ow)t1; o(u’)= oi(u)
o(u”)= ox(u); ox(u”)= o(u)t!
IF (D(u’, sd) <D(u”, sd)) THEN u=u’
ELSE u=u"
DP=DP+{u}
(3) Repeat Step (2) until u=d

53

Proposition 3.2.1.1 The time complexity of the preparation algorithm of DIAG multicast

in 2D meshes is O(m+n).

Proof. The preparation algorithm is to find a path which approximates the diagonal
line from the source node s to the diagonal node d of the multicast zone as much as
possible. The process starts from the source node s and keeps routing from the current
node toward node d to one of its neighboring nodes which is closest to the diagonal line.
The result is a shortest path from the source node s to the diagonal node d. The length of
the path is the times that this process is repeated, i.e. the time complexity, and less than

the diameter of the mesh which is m+n-2.

Algorithm 3.2.1.2 (DIAG multicast routing algorithm in 2DM)

Let DP denote the diagonal path from the source node s(0, 0) to its diagonal node d. The
multicast tree constructed through the routing algorithm is denoted as MT

Input: M, D, s, DP
Output: MT
Variables: u, ¢ (temporary nodes)

(1) Sort the destination nodes in D according to their distance to the source node s
(2) MT=DP (Initialize the multicast tree with the diagonal path)
(3) - u=first node in D
- Find a node ¢ in MT and in zone {s<>u}, that is closest to node u
- Add node u to MT through a shortest path from ¢ through XY routing
-D=D - {u}
(4) Repeat Step (3) until D=
(5) Cut the tail part of DP which has neither destination nodes nor replicate
nodes

54

Proposition 3.2.1.2 The time complexity of the routing algorithm of DIAG multicast in
2D meshes is O(KN) where K is the total number of destinations and N is the total number

of nodes in the mesh.

Proof. We know that step (1) which sorts the destinations will take O(klogk), step (3)
is actually to add the K destinations to the existing multicasting tree. For each destination,
it needs to traverse the multicast tree which contains no more than N nodes. So step (3)
will take O(KN). All together, it will take O(KN +Klogk) which is at the same order with

O(KN).

Proposition 3.2.1.3 In the multicast tree constructed by DIAG routing algorithm, the path

from the source node s to any destination node is a shortest one.

Proof. The diagonal path found by the preparation algorithm 1s a shortest path from
source node s to the diagonal node d. Since the diagonal path is used as the stem of the
initial multicast tree, the path between the source node and every node on the current tree
is shortest. Any new destination d’ is connected to a node ¢ on the shortest path tree and
in zone {s<>d’}. Routing between d’ and ¢ is dimensional-ordered which results in the
shortest path between them. Path sc and ¢d’ are both shortest and in zone {s<d’}. So,

path sd’ is also shortest.

Proposition 3.2.1.4 DIAG multicast routing in mesh or torus networks is deadlock free.

55

Proof. First, since the message is routed along a multicast tree, it is obvious there is no
deadlock within a single multicast. Second, for several concurrent multicasts, DIAG
algorithm uses dimensional-ordered XY routing to transmit message between any two

nodes, which will guarantee no deadlock cycle within the mesh or torus networks [2].

Example 3.2.1.1 In a 2D mesh network M(8 x 8), construct the multicast tree using DIAG
algorithm for a multicast that sends a message from the source node s(0, 0) to a set of

destination nodes D={ (0, 2), (3, 0), (4, 0), (4, 6), (6, 6), (7. 4) }.

0.0 g SR 2
s a2 3 |G
d1 ¢

I

Figure 3.2.1.6: Example of Diagonal Path of DIAG Multicast

In this example, the multicast zone is between the source node s(0, 0) and the diagonal
node d(7, 6) as shown in Figure 3.2.1.6. We now run the preparation algorithm to find the
diagonal path between s and d. Starting from the source node s(0, 0), we noticed that node
(1, 0) is the one closer to the diagonal line sd among the two neighbors of node s, so the
diagonal path routed from s to node (7, 0). Then, we check node (7, 0)’s neighboring nodes

toward the diagonal node d and find node (7, 1) is closer to the diagonal line sd than the

56

other node (2, 0), and the path routed to node (7, /). The routing process proceeds in this
way until the path reaches the diagonal node d. The final diagonal path between s and d is

illustrated with dark zigzag line in Figure 3.2.1.6.

Figure 3.2.1.7: Example of DIAG Multicast in 8x8 Mesh

Now, we need to use the diagonal path as the stem to construct the multicast tree.
First, we sort all the destination nodes according to their distances to the source node, and
get di, d., ..., ds as indicated in Figure 3.2.1.6. Then, we connect each destination node to
the tree through dimension-ordered XY routing as illustrated in Figure 3.2.1.7. At the
beginning, the multicast tree consists of only the diagonal path. For the first destination
node di(0, 2), the closest node in the already existing tree and within zone {s<>d:} is s(0, 0),
so we connect d: to s through XY routing. Likewise, we connect d:(3, 0) to node (1, 0), ds(4,
0) to dx(3, 0), d« to node (4, 4), and ds(7, 4) to node (5, 4) through XY routing. Destination
node ds(6, 6) is already on the diagonal path. Finally, we need to cut off the unused part of

the diagonal path after ds(6, 6). Here are the steps of constructing the tree: s(0, 0) = d(7, 6)

57

(along the diagonal path), s(0, 0) = di(0, 2), (1, 0) = d=(3, 0), d=(3, 0) = ds(4,0), (4, 4) = d«(4,
6), (5. 4) = ds(7, 4).

The completed multicast tree is shown in Figure 3.2.1.7. The multicast traffic 1s 2/
links, and the multicast time is /2 hops. The same example using VH algorithm for 2D
mesh will result in 25 links and /3 hops (Figure 3.2.1.8), which shows that DIAG

generates less traffic than VH but does not sacrifice the multicast time.

(0.0) g5

'

L}

-+

'
1 b
) 1
[
1 1
1 1
L} 1
R
L} 1
1 1 L}
1 1 L} L} L}
fmmmd et 4
1 1 L} 1] L}
: ' ' ‘
L} 1 L} L}
bmmm 4
L} L} L]
L} L} 1
L] 1 1
.

0.7 I (7.7)

Figure 3.2.1.8: Example of VH Multicast in 8x8 Mesh

Proposition 3.2.1.5 The bound of DIAG multicast traffic in 2D meshes is D < Traffic <

Z lXi+yi[, [<i<K.

Proof. 1t is obvious that the total traffic can be no less than the distance from source
node to the farthest destination node which is Dmax. This best case result of multicast
traffic is obtained when all the destination nodes are located on a shortest path from the
source to the farthest destination node. Since the path from the source s5(0,0) to each

destination node (x: ,y;) in the multicast tree is a shortest path and less than | xi+y:|, the

58

total links of the tree is less than the sum of all these shortest paths, which is 2| xi+y|, 1 <

i <K.

Proposition 3.2.1.6 The bound of DIAG multicast time in 2D meshes is Dmax < Time <

Dmax+K-1.

Proof. In all-port architectures, a message can be sent from a node to all its neighbors
simultaneously, and the number of hops needed to transmit a message to a destination
node is simply the distance to the source node. Hence, the multicast time in any mesh
networks is always Dmax, which is the distance from the source node to the farthest
destination node.

In one-port node architectures, the message can only be sent to one neighbor at a time
(hop). If a node needs to send the message to several neighbors, it does so sequentially
which results in delay hops. Assume that at a branching node the message is always sent
to a neighbor on the diagonal path (stem) first, if there is one, and then the other
neighbors. Like in all-port architecture, the multicast time can be no less Dmax. This best
case multicast time is obtained when the path from the source node to the farthest
destination node always takes the direction with higher transmission priority at a
branching node. The worst case though is that the path from the source node to the
farthest destination node takes the direction with lower transmission priority at branching
nodes, which results in one delay hop at each branching node. For a multicast with K

destination nodes, the branching nodes on the path to a destination node can be no more

59

than K-1. Consequently, the delay hops for the farthest destination node is less than K-/

and the multicast time is less than Dmax+K-1.

3.2.1.4 DIAG Algorithm in 2D Torus
This section discusses how to apply the DIAG algorithm to solve the multicast problems

in 2D tori, and give the formal description and analysis of the algorithm.

Algorithm 3.2.1.3 (DIAG algorithm in 2D tori)

Input: I,D, s
Output. MT (Multicast Tree)

(1) Divide the torus 7 into four submeshes M;, M. M;and M, each of which 1s
defined by a zone as following:

M {0, 0) = (m211,[n2}1) }
M:: { (m-1,0) = (m/21,Tn211) }
M {0 n-1) o (w21, [n2]) }
My { (m-1, n-1) & (Tm/2),Tn/2]) }

(2) Partition the destination set D into four subsets D;, D: D; and D which
contain the destination nodes in submesh M, M:, M; and M. respectively

(3) Assume s:(0, 0) as the source node and origin of submesh M, D:as the set of
destination nodes, apply DIAG algorithm in submesh M;and get the multicast
subtree MT)

(4) Assume s:(m-1, 0) as the source node and origin of submesh M:, D: as the set of
destination nodes, apply DIAG algorithm in submesh M:and get the multicast
subtree MT:

(5) Assume s;3(0, n-1) as the source node and origin of submesh M;, D; as the set of
destination nodes, apply DIAG algorithm in submesh M;and get the multicast
subtree MT;

(6) Assume s«m-1, n-1) as the source node and origin of submesh M., D: as the set
of destination nodes, apply DIAG algorithm in submesh M; and get the
multicast subtree M T

(7) Assemble the multicast subtrees M7:, MT: MT; and MT: into the overall
multucast tree MT that rooted at the source node s(0, 0) by connecting s:, s;to s
and connecting s to s:

60

Proposition 3.2.1.7 The time complexity of DIAG algorithm in 2D tori is O(KN) where N

is the total number of nodes in the torus and K is the total number of destinations.

Proof. 1t is obvious that step (1) and (2) will take O(K). Step (3)~step (6) is actually
to execute the DIAG algorithm in a mesh of size (m/2) x (n/2) with less than K
destinations. So each step will take O(kmn/4)=0(kN/4), all together the four steps will
take O(KN). Step (7) takes O(7). So the total time complexity will be O(k+k~N+1) which is

at the same order with O(KN).

(0.0) L *“‘.-..:_._-.l.-.“:[? 0)
Zonel iZoneZ :
Zone3 ' gZDINﬂ 5
__________________ T R
o) _—
(a) Distribution of destinations (b) Multicast tree

Figure 3.2.1.9: Example of DIAG Multicast in 8x8 Torus

We use the same multicast in Example 3.2.1.1 to show how the DIAG algorithm in 2D
tori works. As illustrated in Figure 3.2.1.9 (a), the torus is first divided into four
submeshes at the middle of each dimension: zones, zone:, zone; and zones. The original
destination set is divided into four subsets respectively. Second, we treat node (0, 0), node

(7, 0), node (0, 7) and node (7, 7) as the origin and source node of zone:, zone:, zone: and

6l

zones, and then apply the DIAG algorithm for 2D mesh in each zone with the respective
destination nodes. Thus, each zone will have its own subtree (consisting of the straight
links in the figure), and we can connect each subtree to the original source node s(0, 0)
through wraparound links (arches in the figure). Here are the exact steps to construct the
multicast tree. Subtree of zone:: (0, 0) = (0, 2), (0, 0) = (3, 0); Subtree of zone:: (7, 0) = (4, 0);
Subtree of zones: (7,7) = (6, 6), (7, 7) = (7. 4), (6, 6) = (4, 6); Combine the subtrees: (0, 0) =

(7,00, (7,0) =(7, 7).

(0.0] 7.0)

..........................

(7.7}

Figure 3.2.1.10: Example of VH Multicast in 8x8 Torus

The completed multicast tree is shown in Figure 3.2.19 (b). The total multicast traffic
is /7 links. If we assume the wraparound links have a higher transmission priority than
other links, then the multicast time is 6 hops. Compared with DIAG for 2D meshes in the
same example, the multicast time is reduced significantly by a half from /2 to 6, but the
traffic is not reduced much, only 4 links. Compared with VH for 2D tori in the same
example (Figure 3.2.1.10), the multicast time is the same, and there is only one link

difference on total traffic. So the traffic reduction effect of DIAG over VH in 2D tori is

62

not as obvious as in 2D meshes. This is probably due to the fact that the 2D torus is

divided into 4 smaller meshes.

Definition 3.2.1.1 The 2D torus is divided into four roughly equal submeshes, each of
which has its own origin (source) node and destination set. K: is the number of
destinations in zone: and Dne. 1s the maximum distance from a destination in zone: to its
origin (/<i <4). Then, we have:

K=K+ K:+ K5+ K«

Dma.x: max {Dmaxl,DmaxZ,Dmax3,Dmax4 }

Proposition 3.2.1.8 The bound of multicast time of DIAG in 2D tori 1S Dwa < Time <

Dna+K+1.

Proof. The lower bound of multicast time in zone: 1S Dmai. If Dmax=Dnax, there are no
wraparound links for zone:, so D will also be the lower bound of the multicast time in
the whole torus. The upper bound of the multicast time in zone: is Dnwt+Ki-1, the
multicast time for the whole torus also includes the number of wraparound links which is
at most two of zone.. It is not hard to see that when Dwuw=Dnmas and K=K, the multicast

time obtains the maximum value: Daawst Ke-1+2, i.€. Dt K+1.

Proposition 3.2.1.9 The bound of the multicast traffic of DIAG in 2D tori is reduced to

those of DIAG in its four submeshes.

63

3.2.1.5 DIAG Algorithm in 3D Mesh

In this section, we will give the formal description and analysis of the DIAG multicast
algorithm in 3D meshes under the multicast defined by Definition 3.1.5. The algorithm is
divided into two parts. Part one is to find the diagonal path, and called DIAG multicast
preparation algorithm. Part two is to construct the complete multicast tree, and called

DIAG multicast routing algorithm.

Algorithm 3.2.1.4(Multicast preparation algorithm of DIAG in 3DM)

DP denotes the diagonal path from the source node s to its diagonal node d. sd denotes
the diagonal line from s to d. ox(u) denotes the x coordinate of node u, oi(u) denotes the y
coordinate of node u and o(u) denotes the z coordinate of node u. D(u,[) denotes the
distance from node u to line /.

Input: M D, s
Output: DP
Variable: u, ux, wy, U. (temporary nodes)

D»i (minimal distance from nodes to sd)

(1) DP={s}; u=s; Find the diagonal node d

(2) odu)y= o(u)t1; o= o(u); o(u)= oi(u),
odw)= ou); o(w)= o(u)tl; o(u)= ou),
ofu:)= odu); ou)= ou); o)== ou)+1;

Drin=min{ D(u., sd), D(w, sd), D(u., sd) };
IF (D(ux, sd)==Dnm») THEN u=u,

ELSE IF (D(w, sd)==Dw») THEN u=u,,
ELSE IF (D(u., sd)==Dw») THEN u=u.,

DP=DP+{u},
(3) Repeat step (2) until u=d

Proposition 3.2.1.10 The time complexity of the preparation algorithm of DIAG

multicast in 3DM is O(m+n+p).

64

Proof. Like it was explained for DIAG multicast in 2D meshes, the result of the
algorithm is a shortest path from the source node s to the diagonal node d. The length of
the path is the times that step (2) is repeated. Hence, the time complexity is less than the

diameter of the mesh, which is m+n+p-3.

Algorithm 3.2.1.5 (DIAG multicast routing algorithm in 3DM)

Let DP denote the diagonal path from the source node s(0, 0, 0) to its diagonal node d, MT
denote the multicast tree constructed through the routing algorithm.

Input: M, D, s, DP
Output: MT
Variables: u, ¢ (temporary nodes)

(1) Sort the destination nodes in D according to their distance to the source node s
(2) MT=DP {Initialize the multicast tree with the diagonal path}
(3) - u=first node in D
- Find a node ¢ in MT and in zone {s<>u} that is closest to node u
- Add node u to MT through a shortest path from ¢ through XYZ routing
-D=D - {u}
(4) Repeat step (3) until D=@
(5) Cut the tail part of DP which has neither destination nodes nor replicate nodes

Proposition 3.2.1.11 The time complexity of the routing algorithm of DIAG multicast in
3D meshes is O(KN) where K is the total number of destinations and N is the total number

of nodes in the mesh.

Proof. The proof is similar to that of the DIAG multicast in 2DM.

65

Proposition 3.2.1.12 In the multicast tree constructed by DIAG algorithm in 3DM, the

path from the source node s to any destination node is a shortest path.

Proof. The proof is similar to that of DIAG multicast in 2DM.

Example 3.2.1.2 In a 3D mesh network M(5 x 5 x 5), construct the multicast tree using
DIAG algorithm for a multicast that sends a message from the source node s(0, 0, 0) to a

set of destination nodes D={ (0, 3, 0), (1, 3, 0),(1, 4, 2),(2, 3, 0,3, 1, 0), (4, 3, 3) }.

The process of solving this example is similar to that of 2D mesh. The diagonal path is
drawn in dark line illustrated in Figure 3.2.1.11 (a). The completed multicast tree is
shown in Figure 3.2.1.11 (b). The multicast traffic is 20 links and multicast time 1s /0

hops.

(a) Diagonal path (b) Multicast tree

Figure 3.2.1.11: Example of DIAG Multicast in 5x5x5 Mesh

66

Proposition 3.2.1.13 The bound of DIAG multicast time in 3D meshes is Dmax < Time <

Dmax+K-1.

Proof. The proof is similar to that of the DIAG algorithm in 2D meshes.

Proposition 3.2.1.14 The bound of DIAG multicast traffic in 3D meshes is Dua< Traffic <

ZI Xityitzi |, 1 <i<K.

Proof. The proof is similar to that of the DIAG algorithm in 2D meshes.

3.2.1.6 DIAG Algorithm in 3D Torus

In this section we will discuss how to apply the DIAG algorithm for 3D meshes to solve

the multicast problem in 3D tori, and give the formal description and analysis of the

DIAG multicast algorithm in 3D tori under the multicast defined by Definition 3.1.5.

Algorithm 3.2.1.6 (DIAG multicast algorithm in 3D Tori)

Input: T D, s
Output: MT

(1) Divide the 3D torus 7 into eight 3D submeshes M, M., Ms, M., Ms5, Ms, M7 and
M;, each of which is defined by a zone as follows:

M1 {(0,0,0) = (Tm211,[n/211, [p/211) }
Mz { (m-1, 0, 0) = ([m/2, (0211, [p/211) }
Ms: { (m-1, 0, p-1) = (Tm/2), [n/27:1, [p/21) }
M {0, 0, p-1) = (Im2 11, [n/211,Tp/21) §
Ms: { (0, n-1, 0) & ([m21-1,Tn21 [p/2 11) }
Me: { (m-1, n-1, 0y = ([m/2),[n/21 [p/21-1)}
Mz { (m-1, n-1, p-1) =& (Tm21, Tn/21 [p/21) }
Ms: {0, n-1, p-1) = ([m/211,[021, [p21) }

67

(2) Partition the destination set D into eight subsets Di, Dz, Ds, Ds Ds, Ds, D7 and
Ds which contain the destination nodes in submesh M, M:, M, M« Ms, Ms, M
and Ms respectively.

(3) Assume s:(0, 0, 0) as the source node and origin of submesh M, D:as the set of
destination nodes, apply DIAG algorithm in submesh M;and get the multicast
subtree MT;

(4) Assume s:(m-1, 0, 0) as the source node and origin of submesh M:, Dz as the set
of destination nodes, apply DIAG algorithm in submesh M: and get the
multicast subtree MT:

(5) Assume s3(m-1, 0, p-1) as the source node and origin of submesh M;, Dsas the
set of destination nodes, apply DIAG algorithm in submesh M; and get the
multicast subtree MT;

(6) Assume 540, 0, p-1) as the source node and origin of submesh M,, D+ as the set
of destination nodes, apply DIAG algorithm in sub mesh M: and get the
multicast subtree M T

(7) Assume ss5(0, n-1, 0) as the source node and origin of submesh Ms, Dsas the set
of destination nodes, apply DIAG algorithm in submesh M and get the
multicast subtree MTs

(8) Assume se(m-1, n-1, 0) as the source node and origin of submesh Ms, Dsas the
set of destination nodes, apply DIAG algorithm in submesh Ms and get the
multicast subtree MTs

(9) Assume s7(m-1, n-1, p-1) as the source node and origin of submesh M, D: as the
set of destination nodes, apply DIAG algorithm in submesh M and get the
multicast subtree M T

(10) Assume ss(0, n-1, p-1) as the source node and origin of submesh M;, Ds as
the set of destination nodes, apply DIAG algorithm in submesh Ms and get the
multicast subtree MTs

(11) Assemble the multicast subtrees M, M: M;, M, Ms Ms M; and Ms into
the overall multucast tree that is rooted at the source node s(0, 0, 0) by
connecting s:, s+ and 55 to s, connecting s; and ss to s:, connecting s«to ss, and
connecting s7 to s;

Proposition 3.2.1.15 The time complexity of DIAG algorithm in 3D tori is O(KN) where

N is the total number of nodes in the torus and K is the total number of destinations.

Proof. It is obvious that step (1) and (2) will take O(K). Steps (3) to (10) are actually to

execute the DIAG algorithm in a mesh of size (m/2) x (n/2) x (p/2) with less than K

destinations. So each step will take O(kmnp/8)=0O(KN/8), all together the eight steps will

68

take O(KN). Step (11) takes O(7). So the total time complexity will be O(K+KN+1) which
is at the same order with O(KN).

Next, we use the same multicast in Example 3.2.1.2 to show how the DIAG algorithm
in 3D tori works. We first divide the original mesh into eight zones (a.k.a. submesh) at
the middle of each dimension. The eight zones are zone:{ (0, 0, 0) < (2, 2, 2) }, zone:{ (4, 0, 0)
(3,2 2)},zones{ (4,0, 4) <= (3, 2, 3) }, zone{ (0,0, 4) & (2, 2, 3) }, zones{ (0,4, 0) (2,3, 2) },
zones{ (4,4, 0) = (3, 3, 2) }, zoner{ (4,4, 4) = (3, 3, 3) }, and zones{ (0, 4, 4) = (2, 3, 3) }. Zone:,
zones, zones, zones, zones have no destination nodes. Zoneshas destination nodes (0, 3, 0),
(1,3, 0), (1, 4, 2), and (2, 3, 0). Zone: has destination node (3, 1, 0), and zone; has destination

node (4, 3, 3).

SN
Zoned ST sanme (IR
3 ANAY & &1 G HE
s 1 - - - - M. J. * .
PARE G ol sk Sbd s
[U,U,U] m',-,. ’.-k.-:.—;;’.—' o r__:__{[:d,'ﬂ,lﬂ]
R P e P ML P
.
T L A Mo - o clZone 2 - 4
:’.:._:..:’::::'- } - P T
Vs T T T
donel s AqeAcimr ¥ 'j"f.jJ-;*.’/:
Y e i, e oA DRy Lo
a .5’.-" .-'—j’_-r_-'-".—r.—' ;’-:: '
-
CA A R R E Y
A ot vt e A £ gl I g
ST AT Ee ,:! c
‘..._' £ = oA :::.1"-.-':-:' 'l:
HEHREE 2 N R 4
Zoneh AN
PR L AL 45 L A
[0.4.00 Zonet [4.4,0]
(a) (b)

Figure 3.2.1.12: Example of DIAG Multicast in 5x5x5 Torus

Then, we treat nodes (0, 0, 0), (4, 0, 0), (4, 0, 4,(0,0,4),(0,4,0), (4, 4,0), (4,4, 4),and (0, 4, 4)
as the origin and source node of zone; ~ zonesrespectively, and apply the DIAG algorithm
for 3D meshes in each zone with their respective destination nodes. Thus, each zone will

have its own multicast subtree (consisting of the straight links in the figure), and we then

69

connect each subtree to the original source node s(0, 0, 0) through wraparound links(arches
in the figure) to build the final multicast tree. Here are the exact steps to build the
multicast tree. Subtree of zone:: (4, 0, 0) = (3, 0, 0) = (3, 1, 0); Subtree of zones: (0, 4, 0) = (I,
4,00=(1,4,2,(0,4,00=(0,3,0,(1,4,0)= (1, 3,0), (1,3, 0) = (2,3, 0); Subtree of zone:: (4, 4,
4)= (4,3, 4) = (4 3, 3), Combine the subtrees. (0,0, 0) = (4,0,0) = (4,0, 4) = (4,4, 4), (0,0, 0)
= (0, 4, 0).

The completed multicast tree is shown in Figure 3.2.1.12 (b). The total multicast
traffic is /4 links, and the multicast time is 6 hops. Those wraparound links that did not
send message to any destinations such as (0, 0, 0) = (0, 0, 4) = (0, 4, 4) are not counted. We

assume the wraparound links have a higher transmission priority than other links.

Definition 3.2.1.2 The 3D torus is divided into eight roughly equal submeshes, each of
which has its own origin (source) node and destination set. K: is the number of
destinations in zone:and Dmax:is the maximum distance from a destination in zoneito its

origin (/ <i <8), then we have:

K=Yk
i=1

Dmax= maX{Dmaxi,I [<iL8 }

Proposition 3.2.1.16 The bound of the multicast time of DIAG in 3D tor is Dmax < Time

< Dmax+K+2.

Proof. The lower bound of multicast time in zone:is Dmaxi. If Dmax=Dmax, there are no

wraparound links for zone:, so Dmax is the lower bound of multicast time for the whole

70

torus. The upper bound of multicast time in zoneiis Dmax+ Ki-1, the multicast time for the
whole torus needs to add the number of wraparound links which are at most three of
zones~ zones (In lower zone first transmission priority). It is not hard to find that when
Dmax=Dmaxrand K=K (the same with zones, zones and zones), the multicast time obtains

the largest possible value which is Dmaxr+ Kr-1+3, i.e. Dmax+ K+2.

Proposition 3.2.1.17 The bound of the multicast traffic of DIAG in 3D tori is reduced to

those of the DIAG in its eight submeshes.

3.2.1.7 DIAG in n-D Mesh and Torus

We can extend the DIAG algorithm to n-dimensional meshes and tori very easily. We
will not give the precise description of the algorithm here but rather the rough idea of
how it works under the multicast defined by Definition 3.1.6. Assume MZ is the multicast
zone, source node s will be one of the diagonal nodes of the zone, let us denote the other
diagonal node as d(x;, ..., x,) and the diagonal line as sd.

Like all the previous DIAG algorithms, the algorithm consists of two parts. Part one
forms the diagonal path by starting from the source node s, and then traveling along cach
dimension / alternatively at small steps y: which is proportional to x;, i.e. it satisfies y/xi=
yo/x:=...= yu/x» (< xi). This way it will finally reach the diagonal node d. Part two is
actually the same as the DIAG multicast routing algorithm in 2D and 3D meshes, 1.e. to
construct the multicast tree by connecting all destination nodes.

For n-dimensional tori, we can use the similar way as handling the 2D and 3D tori.

First, divide the torus into 2" submeshes by dividing the original torus at the middle of

71

each dimension. The destination set D will be partitioned into 2" subsets too. And then
apply the n-D DIAG algorithm for meshes in each submesh with the respective
destination subset. Finally assemble the multicast subtrees in each submesh into a single

multicast tree that is rooted at the source node s.

3.2.2 DDS Multicast Algorithm

DDS (Dimensional Distance Sorted) is a tree-based multicast routing algorithm for store-
and-forward switched mesh networks. It is designed to obtain near optimal multicast time
and further reduce the large multicast traffic of previous shortest path multicast

algorithms such as DIAG. First, here is the definition of dimensional distance.

Definition 3.2.2.1 (Dimensional distance) The dimensional distance between two nodes

is the distance along one dimension between them. For example, for any two nodes x(x;,

ey Xiy ooy, Xo) and y(yy, .., Vi ..., Yu), the ith dimensional distance d=| x: - y: |. The minimum
dimensional distance between x and y denoted as dm=min{d,, ..., d, ..., d.}. If one of the
two nodes is the source node s(0, .., 0), the other node is x(x;, ..., x,) then d=| xi|, dwn
=min{ | x|, ..., | Xa| }.

DDS algorithm sorts all the destinations in dimensional distance so that those closer to
the source node in one or more dimensions can receive the message first and hopefully
forward it to destinations behind them through an extra short distance. Thus, the path or
distance previously traveled in each dimension can be shared as much as possible by

nodes coming behind. When constructing the multicast tree, we keep connecting the

72

sorted destination nodes to the tree through an as short as possible path which is part of a
shortest path from the source node to the respective destination.

In the following sections, we will discuss in details the motivation and heuristics of
designing this algorithm, and the formal description and analysis of the DDS algorithm in

2D/3D meshes and tori.

3.2.2.1 Motivation of Designing DDS

The DIAG multicast algorithm maintains the near optimal multicast time while reduces
the multicast traffic significantly over the time optimal VH algorithm. Now, the questions
are: Does DIAG algorithm generate the least traffic among all shortest-path multicast
algorithms, can we further reduce the traffic, and how close is it to the optimal multicast
traffic?

The answer is not obvious. But first, let us compare its traffic with the previously
known pro-traffic multicast algorithm: MIN. The MIN algorithm constructs the multicast
tree by alternatively choosing the node with the smallest coordinate in each dimension
from the remaining destination nodes and connecting it to the tree through a shortest path
possible.

Figure 3.2.2.1 illustrates the average total traffic curve for both DIAG and MIN
algorithm in a /0x/0 mesh. There is a notable difference between the traffic of the DIAG
algorithm and the MIN algorithm, which means that there is still potential space to
further reduce the traffic resulted from the DIAG algorithm. Although the MIN algorithm
generates less traffic than DIAG algorithm, it is not a shortest path multicast algorithm

and its multicast time is not near optimal.

73

Traffic
100

1 £ 1 1

0 60 70 @80 90 100
Number of Destinations

0 10 20 30 40 5

Figure 3.2.2.1: Comparison of Traffic of DIAG and MIN

Therefore, our new challenge will be to develop a new multicast routing algorithm
which obtains near optimal time and as good performance on traffic as the MIN

algorithm. The DDS algorithm is designed for such purposes.

3.2.2.2 Heuristics of DDS Algorithm

As DDS algorithm is designed to reduce the traffic of previous shortest path multicast
algorithms such as VH and DIAG, the main strategy will be to eliminate bad scenarios
which create large excessive traffic.

We know that both VH and DIAG use a major routing path (the X path in VH and the
diagonal path in DIAG) in the multicast tree and then connect the destination nodes to the
major path. The bad thing is, in some cases, destinations may be far away from the major
path. Hence, to connect these destinations to the major path will create large traffic.
Moreover, the major path itself can become excessive traffic when very few destinations

are connected to it.

74

In DDS we discard the use of a major routing path, but just construct the multicast tree
from scratch by connecting the destinations to current multicast tree. In order to ensure
the shortest path routing and share as much common path as possible with previously
connected nodes, we propose the following heuristics:

e If all the destination nodes, which are closer to the source node in some

dimension than one destination node, receive the message earlier, very likely it
will need to travel less distance in each dimension to get the message from a
preceding node.

e If the message is routed along a shortest path between any two nodes in a
multicast tree, it is likely that the total links of the tree will be low, and the
transmission time between the source node and the destination nodes will also be
minimized.

o If a shortest path travels along different dimensions alternatively rather than in
dimension order, then there are more routing choices and the chances of receiving
the message from a nearby node are increased which can save traffic.

Based on these heuristics, we designed the DDS multicast algorithm which we will

discuss in details next.

3.2.2.3 DDS in n-Dimensional Mesh
This section presents the formal description and analysis of the DDS multicast algorithm
in n-D meshes under the multicast defined by Definition 3.1.6.

DDS multicast algorithm can be divided into two parts. Part one is to sort the

destinations according to their dimensional distance and is called DDS multicast

75

preparation algorithm. Part two is to construct the multicast tree that covers the sorted

destinations and is called DDS multicast routing algorithm.

Algorithm 3.2.2.1 (DDS multicast preparation algorithm)

The main process of this algorithm is to sort the destination nodes in D according to their
dimensional distance to the source node s(0, .., 0). We can use any commonly used
sorting algorithm such as the merge sort to deal with the sorting. So the major problem is
how to compare the dimensional distance of any two nodes. Here is the algorithm to just
do that.

Assume the two different nodes to be compared are x(x;, ..., x; ..., x») and y(ys, ..., y; ...,
y»). Let us denote the minimum dimensional distance of x as Dmw(x), the first dimension
which bears the minimum distance as Nmi(x).

Input: X,y
Output: the order between x and y

(1) IF Duin (x) < Dmin (y) then x<y
IF Duin (X) > Dmin () then x>y
IF Dwin (X) == Duin ()
{
1= Nmin ()C)
J= Newin ()
IF i<j then x<y
IF i>j then x>y
IF i==j thenx=x - {x:}; y=y - {y},
H
(2) Repeat step (1) until x<y or x>y

Proposition 3.2.2.1 The time complexity of the preparation algorithm of DDS multicast
in n-D mesh is O(n’KlogK) where K is the total number of destinations and # is the

number of dimensions.

Proof. The calculation of the minimum dimensional distance of an n-D node takes

O(n). In the algorithm of comparing the dimensional distance of two nodes, the worst

76

case will need to do » times minimum dimensional distance calculation which takes
O(n®). To merge sort K destinations, O(KlogK) comparisons of nodes are done which will

take O(n’KlogK).

Algorithm 3.2.2.2 (DDS multicast routing algorithm)

The main process of the routing algorithm is to construct a multicast tree by connecting
the sorted destination nodes in D sequentially. Let us denote the multicast tree as MT.

Input: M D, s
Output: MT
Variables: u, ¢ (temporary nodes)

(1) MT={s } (Initialize it with only source node)
(2) - u=first node in D
- Find a node ¢ in MT and in zone {s<>u} that is closest to node u
- Connect node u to MT through a shortest path from ¢ through dimension-
ordered routing
-D=D - {u}
(3) Repeat step (2) until D=@

Proposition 3.2.2.2 The time complexity of the routing algorithm of DDS multicast in n-
D meshes is O(KN) where K is the total number of destinations and N is the total number

of nodes in the mesh.

Proof. The algorithm connects each destination node to the multicast tree MT. For

each destination, finding the shortest path to be connected to MT needs a traversing of the

tree, which takes O(N). K destinations will take O(KN).

77

3.2.2.4 DDS Algorithm in 2D Mesh
DDS multicast algorithm in 2D meshes is just a special case of DDS algorithm in n-
dimensional meshes. This section presents a more specific description and analysis for it

under the multicast defined by Definition 3.1.4.

Algorithm 3.2.2.3 (DDS multicast algorithm in 2DM)

Let the multicast tree constructed through the routing algorithm be denoted as MT.

Input: M D, s
Output: MT
Variables: x, y (x,y coordinate)

d (dimensional distance)

(1) MT={s} (Initialize the multicast tree and set the root of the tree at s)

(2) d=0 (Initialize the dimensional distance)

(3) Scan the column x=d, starting from the point (d, d) down to (d, n-1)
(Here is the pseudo code for this step)

x=d;
FOR(y=d; y<m; y++)
{
IF (x, y) is a destination node
{
- Find a node ¢ in MT and in zone {s <> (x, y)}, which is closest to
node (x, y)
- Connect node (x, y) to MT through a shortest path from ¢ through XY
routing
}
}

(4) Scan the row y=d, starting from the point (d, d) to (m-1, d)
(Here is the pseudo code for this step)

y=d
FOR(x=d; x<m; x++)
{ IF (x, y) is a destination node
{ - Find a node ¢ in MT and in zone {s < (x,)} that is closest to node
- ((?)gri}riect node (x, y) to MT through a shortest path from ¢ through XV
routing

78

}
}
(5) IF d=m-1 or d=n-1 then it is done,
ELSE d=d+1 and repeat step (3) and (4)

Proposition 3.2.2.3 The time complexity of the routing algorithm of DDS multicast in
2DM is O(kKN) where K is the total number of destinations and N is the total number of

nodes in the mesh.

Proof. The process of scanning the mesh will take O(mn), i.e. O(~). Similar to the case

of DDS in #-D meshes, constructing the tree will take O(k»). The whole process will take

O(N+KN) which is at the same order with O(KN).

Proposition 3.2.2.4 In the multicast tree constructed by DDS algorithm in 2D meshes, the

path from the source node s to any destination node is a shortest path.

Proof. The proof is similar to that of DIAG algorithm in 2D meshes.

Proposition 3.2.2.5 DDS Multicast routing algorithm in mesh or torus networks is

deadlock free.

Proof. The proof is similar to that of DIAG algorithm in 2D meshes.

79

Let us use the same multicast in Example 3.2.1.1, which sends a message from the
source node s(0, 0) to a set of destination nodes D={ (0, 2), (3, 0), (4, 0), (4, 6), (6, 6), (7, 4) }, to
show how DDS algorithm in 2D meshes works. As illustrated in Figure 3.2.2.2, the
algorithm starts by using the source node s(0, 0) as an aligning point to scan the column
and then the row where it is located. Then, it moves to the next aligning point (/, 1)
increasing both coordinates of the previous aligning point by /, and do the same. Repeat
the process until all the nodes in the mesh have been scanned. During the scanning,
whenever we come cross a destination node, add it to a queue. At the end, the sorted
destination nodes in the queue are di0, 2), d:3, 0), ds4, 0), d«4, 6), ds(7, 4), ds(6, 6)

sequentially.

...................................

Figure 3.2.2.2: Scanning and Sorting of DDS in 8x8 2DM

After the sorting, we will construct the multicast tree by connecting destination nodes
to it. At the beginning, the multicast tree consists of only the source node itself and we
connect the first destination node d:(0, 2) to source node s(0, 0) through XY routing. Then

for the second destination node d:(3, 0), the closest node in the already existing tree and

80

within zone {s<>d:} is source node s, so we connect d: to s through XY routing. Likewise,
we connect ds(4, 0) to dx(3, 0), d«4, 6) to ds(4, 0) through XY routing. For destination node
ds(7, 4), the closest node in the already existing tree and within zone {s<>ds} is an
intermediate node (4, 4), so we connect node ds(7, 4) to node (4, 4) through XY routing.
Likewise, we connect the last destination node ds(6, 6) to an intermediate node (6, 4). Here
are the exact steps of constructing the tree: (0, 0) = (0, 2), (0,0) = (3,0), (3,0) = (4, 0), (4, 0)
=(4,6), (4 4) = (7, 4), (6, 4) = (6, 6).

The completed multicast tree is shown in the Figure 3.2.2.3. The multicast traffic is /7
links and the multicast time is /3 hops. The same example using DIAG results in 2/ links
and /2 hops, which shows that DDS generates less traffic than DIAG but does not

sacrifice much on multicast time.

1 '
5 1 '

1 ' 1 1 ' ¢
P Rk TSI UEREE | § R A |
1 ' ' 1 ' '

[

Figure 3.2.2.3: Example of DDS Multicast in 8x8 Mesh

Proposition 3.2.2.6 The bound of DDS multicast time in 2D meshes is Dmax < Time <

Dmnax+K-1.

81

Proof. Assume that at a branching node the message is sent to neighbors in X
dimension first and then those in Y dimension. The rest of the proof is similar to that of

DIAG algorithm in 2D meshes.

Proposition 3.2.2.7 The bound of DDS multicast traffic in 2D meshes is Dna < Traffic <

Z])Ci+yi|, 1 <i<K.

Proof. The proof is similar to that of DIAG algorithm in 2D meshes.

3.2.2.5 DDS Algorithm in 2D Torus

In this section, we will discuss how to apply the DDS algorithm to solve the multicast

problem in 2D tort and give the formal description and analysis of the DDS multicast

algorithm in 2D tori.

Algorithm 3.2.2.4 (DDS algorithm in 2DT)

Input. I'D s
Output: MT (Multicast Tree)

The main procedures are similar to those of DIAG algorithm in 2DT as described
in Algorithm 3.2.1.3, except that we apply DDS for 2D meshes in each submesh
here instead of DIAG for 2D meshes.

Proposition 3.2.2.8 The time complexity of DDS algorithm in 2D tori is O(KN) where K

1s the total number of destinations and N is the total number of nodes in the torus.

32

Proof. The proof is similar to that of DIAG algorithm in 2D meshes.

To show how DDS algorithm in 2D tori works, we give an example where the source
node s(0, 0) sends a message to a set of destination nodes D={ (0, 2), (3, 0), (4, 0), (4, 6), (6, 6),
(7, 4) }. The main procedures are similar to those of the DIAG algorithm in 2DT except
that we apply DDS for 2D meshes in each zone instead of DIAG for 2D meshes. Here are
the exact steps to construct the multicast tree. Subtree of zone:: (0, 0) = (0, 2), (0, 0) = (3, 0);
Subtree of zone:: (7, 0) = (4, 0); Subtree of zones: (7, 7) = (7, 4), (7, 6) = (6, 6), (6, 6) = (4, 6);

Combine the subtrees: (0, 0) = (7, 0), (7. 0) = (7, 7).

[ﬂ'ulm """"""" *" "'"".""'.""‘.
E EZonel ' ::ZoneZ
PR S S ‘
. Zone3 E zoned 5
__________________ .*___,‘__.‘...:

.7) T @.7) 0.7)

(a) Distribution of destinations

(b) Multicast tree

Figure 3.2.2.4: Example of DDS Multicast in 8x8 Torus

The completed multicast tree is shown in Figure 3.2.2.4. The total multicast traffic is

16 links and the multicast time is 6 hops. Compared with DDS for 2D meshes in the same

example, the multicast time is reduced significantly by half from /3 to 6, but the traffic is

not reduced much.

83

Proposition 3.2.2.9 The bound of multicast time of DDS in 2D tori is Dua < Time <

Dot K+ 1.

Proof. The proof is similar to that of DIAG in 2D tor1.

Proposition 3.2.2.10 The bound of multicast traffic of DDS in 2D tori is reduced to those

of DDS in its four submeshes.

3.2.2.6 DDS Algorithm in 3D Mesh
In this section, we will have the formal description and analysis of the DDS multicast
algorithm in 3D meshes under the multicast defined by Definition 3.1.5. Let the multicast

tree constructed through the routing algorithm be denoted as MT.

Algorithm 3.2.2.5 (DDS multicast routing algorithm in 3DM)

Input: M, D, s
Output: MT
Variables: x,y, z (x, y, z coordinate)
d (dimensional distance)

(1) MT={ s } (Initialize MT with only the root s)
(2)d=0 (Starting from dimensional distance 0)
(3) Scan the surface x=d, starting from the point (d, d, d) toward (d, n-1, p-1)
- Treat zone {(d, d, d)<(d, n-1, p-1)} as a 2D mesh whose origin is (d,
d, d)
- Apply the DDS algorithm for 2D meshes in zone {(d, d, dy=(d, n-1, p-
1)} to connect all the destinations in this zone to MT
(4) Scan the surface y=d, starting from the point (d, d, d) toward (-1, d, p-1)
- Treat zone {(d, d, dy=(m-1, d, p-1)} as a 2D mesh whose origin is (d, d,
d)
- Apply the DDS algorithm for 2D meshes in zone {(d, d, d)}<>(m-1, d, p-
1)} to connect all the destinations in this zone to MT

84

(5) Scan the surface z=d, starting from the point (d, d, d) toward (m-1, n-1, d)
- Treat zone {(d, d, d)<=>(m-1, n-1, d)} as a 2D mesh whose origin is (d, d,
d)
- Apply the DDS algorithm for 2D meshes in zone {(d, d, d)y<>(m-1, n-1,
d)} to connect all the destinations in this zone to MT
(6) IF d=m-1 or d=n-1 or d=p-1 then it is done
ELSE d=d+1 and repeat step (3), (4) and (5)

Proposition 3.2.2.11 The time complexity of the routing algorithm of DDS multicast in
3DM is O(kN) where K is the total number of destinations and N is the total number of

nodes in the mesh.

Proof. The proof is similar to that of DDS multicast routing algorithm in 2D meshes.

Proposition 3.2.2.12 In the multicast tree constructed by DDS algorithm in 3D meshes,

the path from the source node s to any destination node is a shortest path.

Proof. The proof is similar to that of DDS algorithm in 2D meshes.

Figure 3.2.2.5 shows how DDS algorithm for 3D meshes works in Example 3.2.1.2.
The aligning points (0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3) and (4, 4, 4), the XY, XZ and YZ
scanning surfaces, and the sorted destinations from d; to ds are indicated by Figure
3.2.2.5 (a). The completed multicast tree is shown in Figure 3.2.2.5 (b). The multicast
traffic is 16 links and the multicast time is // hops. The same example using DIAG for

3D meshes results in 20 links and /0 hops.

85

Pk el e a4
ot P ! e !
e T T R, P
7 A T N I L TP
A s At A Al AN
et e 0
d] ‘
[U:U;U] . X .l’_-}_-‘,.—s’_-'p_-:_-.f‘[, + s]
' [ARTAREL ST S BT
Ve - A
Y el
A L N L A
Gt @y etk e
:l/l‘|"_l-‘_l- 4 'J’I‘IJ-JS
AR AR AR A =
P Aozt op o -‘ [l
. : J:f'z' ;’-’r-"f-;’-f--’:-;’-;-'}-fl’ i
[¥ R Lt
S e dE et D
ar &
'
A A
Vi gy Pty
e mmmdcae mamadee-aa 4
(0.4,0) (4.4.0)
(a) (b)

Figure 3.2.2.5: Example of DDS Multicast in 5x5x5 Mesh

Proposition 3.2.2.13 The bound of DDS multicast time in 3D meshes is Dmax < Time <

Dmax+K-1.

Proof. The proof is similar to that of DDS multicast in 2D meshes.

Proposition 3.2.2.14 The bound of DDS multicast traffic in 3D meshes is Dmax < Traffic <

ZI Xf+yf+Zi], 1 <i<K.
Proof. The proofis similar to that of DDS algorithm in 2D meshes.
3.2.2.7 DDS Algorithm in 3D Torus
In this section we will discuss how to apply the DDS algorithm to solve the multicast

problems in 3D tori, and give the formal description and analysis of the DDS multicast

algorithm in 3D tori under the multicast defined by Definition 3.1.5.

86

Algorithm 3.2.2.6 (DDS multicast algorithm in 3D torus)

Input: T, D, s
Output: MT

The main procedures are similar to those of DIAG algorithm in 3DT as described
in Algorithm 3.2.1.6, except that we apply DDS for 3D meshes in each submesh
instead of DIAG for 3D meshes.

Proposition 3.2.2.15 The time complexity of DDS algorithm in 3D tori is O(KN) where K

is the total number of destinations and N is the total number of nodes in the torus.

Proof. The proof is similar to that of the DIAG algorithm in 3D tori.

(00,4 _ Zoned 40,9 (0.0.4) 40,9
Zane$,”'“""i"t"' ’ """"
e 441l + Zone 3)
(0.0.0) ™% 214,00 (0.0,0) 5
e 3 ks S R
I - g clZone b - 4 Aoy
- " 1 ia"-p

~

{

[N

iy
ASRE
-l -
SN
~

M
0

~
e
W
ey
i
Bty
alaty
"y
L o
N~
v
S
- L
i
b . --
s |
"
—r
T\1I- ?“.
«.-\-u:.-.\&.-.,-..
| S -
e \ln
‘\.\ - ﬂ-"

4
L}
¢ .:'. ==
Zoneli | 9
. T
L/

‘{I
N e e

AN
« -
i v
IR =
whL A oy " -
I._:_I N ' P,
~ o w1
LR, .
N
Y
-]
L.
N

#

bt T (4,0,4) A (4.4.4)
-Z'J-Jnf;é N [4: 41 U] [[L 4;['] - 3 = [[4’ 4‘ U]

(@) (b)

Figure 3.2.2.6: Example of DDS Multicast in 5x5x5 Torus

Now, let us use DDS algorithm in 3D tori to solve the multicast in Example 3.2.1.2.

The main procedures are similar to the example of DIAG algorithm in 3DT except that

87

we apply DDS for 3D meshes in each zone instead of DIAG for 3D meshes. The
completed multicast tree is shown in Figure 3.2.2.6 (b). The total multicast traffic is /4

links and the multicast time is 6 hops.

Proposition 3.2.2.16 The bound of multicast time of DDS in 3D tori is Duwa < Time <

Drat+K+2.

Proof. The proof is similar to that of DIAG in 3D tori.

Proposition 3.2.2.17 The bound of multicast traffic of DDS in 3D tori is reduced to those

of DDS in its eight submeshes.

3.2.3 Comparison of DIAG, DDS, VH and MIN

Optimal multicast solution that minimizes both time and traffic is NP-hard or even does
not exist at all. The algorithms we have discussed so far including DDS, DIAG, MIN and
VH are all heuristic algorithms. That means none of them can obtain the best results at all
cases. Each of them has pros and cons. In this thesis, we will discuss the strengths and
drawbacks of DDS, DIAG, MIN and VH based on the results we get in 2D meshes. The
relationships of these algorithms in 3D meshes or tori are very similar.

The table (Figure 3.2.3.1) compares the multicast traffic, time and computation
complexity between DDS, DIAG and VH multicast algorithms in 2D meshes.

As illustrated in the table, DDS and DIAG algorithms have the same computation
complexity of O(KN). VH algorithm has the best complexity since KD < KN (D=m+n-1,

N=mxn), while MIN has the worst complexity which is D times that of DDS.

88

DDS DIAG MIN VH
Complexity O(KN) O(KN) O(KND) O(KD)
Traffic Dmax Dimax Dmax Drmax
(Best case)
Time Dmax Dinax Dimax Dmax
(Best case)
Time Dmax+K-1 Dmax+K-1 Z(I X~ Xi] | + b/,-- Vi Dmax+1
(Worst case)), 1<i<K

Figure 3.2.3.1: Comparisons between Algorithms in 2DM

All four algorithms have the same minimum multicast time which is Dmax. But VH has
a much better worst case multicast time than all the others, which is Dmax+1. Therefore,
VH will almost always have the near optimal multicast time which is either Dmax or
Dmax+1, and is very predicable unlike the other three which have a wide range. Although
both DDS and DIAG are also shortest path multicast algorithms and their multicast time
is optimal in all-port node architectures, they cause more delay hops in one-port node
architectures. Hence, in general multicast time of DDS and DIAG can be no better than
VH, which can be as high as Dmax+K-1 in the worst case. MIN algorithm will normally
need more time to do the same multicast than DDS and DIAG since it is not shortest path
based. In the worst case, when all destination nodes are connected through a non-shortest
path, multicast time of MIN is the total number of links (total traffic).

We also notice that all the algorithms have the same minimum multicast traffic which
is Dmax. However, we have learned from the heuristics and examples that, DDS and
DIAG usually create less traffic than VH for the same multicast. The worst case multicast

traffic of VH is actually the maximum x coordinate plus the sum of the y coordinates of

89

all destination nodes, which could be much worse than that of all the other three
algorithms. MIN is believed to be the one that normally creates least traffic since it 1s

optimized for traffic only but at a cost of highest computation complexity.

3.3. Path-based Multicast Algorithm

3.3.1 About Path-based Multicast

In path-based multicast, a message is passed along a path that starts from the source node

and goes through all the destinations.

Problems of Tree-based Multicast

It is believed that tree-based multicast is efficient on both time and traffic due to the fact
that the message is routed along common paths as much as possible and then branches to
different destinations. This is true especially for store-and-forward switched networks
since the network latency is proportional to the distance [1]. In tree-based algorithm, the
message is being passed concurrently from node to node, so the distance of the path to
the farthest node is likely much less than that of a path-based multicast which passes
message from node to node sequentially.

However, the story is a little bit different in wormhole routed networks. In tree-based
multicast, when we launch only one worm from the source node to be routed along the
whole tree and once blocking occurs at any node on the routes, the flits will remain in
contiguous channels of the network and the whole wormhole routing tree is frozen. Such
scenarios in turn block the transmission of other messages in need of the occupied

channels, and are very vulnerable to deadlocks and congestions. Lin and Ni have

90

discussed in [7, 13] that tree-based multicast routing is not suitable for wormhole routed
network, and that channel congestion and deadlock becomes an important factor affecting

the network performance when the traffic is high.

Why Path-based Multicast?

In wormhole routed networks, the network latency is insensitive to the distance especially
when the message is very long. So a reasonable solution will be to pass the message to as
many destinations as possible in a single worm and prohibit the branching at any
intermediate nodes, which leads to multicast path pattern [7]. A multicast path for a
multicast is a set of contiguous channels, starting from the source node and reaching each
destination node in a certain order.

Since path-based routing does not need to replicate messages at each intermediate
node, it can save much overhead time. An analysis in [1, 7] proved that the probability
that a message is blocked in path-like routing is lower than that in tree-like routing.
Experiments and simulations in [1, 7] further show that path-based model provides much

better performance than the tree-based model when there are contentions in the network.

Strategies to Design Path-based Multicast

Here is a typical way to develop a path-based multicast algorithm in 2D meshes. First,
find a Hamiltonian path of the mesh and label the nodes with their order on the path.
Then, sort the destinations according to their labels. And finally develop a routing
function that routes the message from one destination to another through a sequence of

nodes whose labels are in the same order (ascending or descending) as on the base path.

91

The Hamiltonian path guarantees the feasibility of forming a message-passing path
and defines the order of the nodes, which has to be observed when passing the message.
Almost all topologies currently used in multicomputer networks, including 2D meshes
and hypercubes, have Hamiltonian paths [7]. The Hamiltonian path is usually used as a
guide to form the message-passing path. Message is generally passing along the base path,
but can take shortcuts from one destination toward the next destination down the base
path (i.e. Can skip some parts of the base path between the two destinations) as long as
the order of nodes on the passing path is consistent with that on the base path.

The key of designing efficient path-based multicast routing is to reduce the distance
between the destinations and reduce the total length of the path, which consequently
reduces the total traffic and the transmission time. Another trick is: if the number of
destinations in each path is small, the length of the path and the average distance between

destinations will also tend to be small.

3.3.2 Review of LIN’s Algorithm

In [7], Lin proposed a path-based multicast algorithm for 2D meshes, which uses a
Hamiltonian path (Figure 3.3.1 (a)) to govern the routing. The algorithm, starting from
the source node, labels each node with their order along the path and sorts the set of
destination nodes according to their label. It then passes the message from one destination
to another by routing from current node to one of its neighbor that 1s closest to next
destination down the Hamiltonian path. Figure 3.3.1 (b) illustrates the message passing
path from LIN’s algorithm based on the Hamiltonian path in Figure 3.3.1 (a) for a set of

multicast destinations nodes. The main advantages of LIN’s algorithm are as follows.

92

(1) It 1s very easy to form the Hamiltonian path, and computation complexity is small.
(2) The routing function and supporting hardware are simple since messages are

always passed along a single path.

\
& = = S = = = & & 3
———6—06—6—060—66—0—6—10
———O0—6—0—6—60—6—9
I :
——6—0—0—60—6—0—0—9
. . H
- = = = & = = = = Q)
. = = = = = = = = 9.
¢ = = o < = & = = 9
€ < = S = = = & = &

Figure 3.3.1: A Multicast by LIN’s Algorithm in 10x10 Mesh

The drawbacks of this algorithm are:
(1) Low parallelism. Message is passed along one single path.
(2) Very large maximum message passing distance which is the length of the path.
(3) Very large amount of traffic due to the fact that messages have to be passed in a
certain order in accordance with the base path.
(4) Very large amount of inefficient traffic. Such as row 4 and row 5 in Figure 3.3.1
(b) exist only to send the message to one destination node because the
Hamiltonian path travels back and forth through the whole row which is a very
long distance.
As aresult, LIN’s algorithm produces a lot of excessive traffic because messages have
to be passed strictly following the order of nodes in a single Hamiltonian path.

Furthermore, the time that it takes for the last node to receive the message is related to the

93

total length of the message-passing path, which is likely to be a large number. To
overcome these disadvantages of LIN’s algorithm, we develop a dual-path-based

multicast routing algorithm called XY -path algorithm.

3.3.3 XY-path Multicast Algorithm

XY-path is a dual-path-based multicast routing algorithm designed for wormhole routed

2D-mesh multicomputer networks. First, we will discuss the heuristics used to design it.

3.3.3.1 Heuristics of XY-path Algorithm
Two basic facts about multicast path problems were stated in [1], which we cite as two

theorems for our study.

Theorem 3.3.1 There is a Hamiltonian path in any 2D mesh.
Theorem 3.3.2 The OMP (Optimal Multicast Path) problem in 2D meshes is NP-

complete.

It is unrealistic for us to design an optimal path-based multicast algorithm with
polynomial time, but only heuristic algorithms that try to reduce the maximum path
distance and total traffic as much as possible. Our goal is to overcome those pitfalls of
LIN’s algorithm. The following are some heuristics we used.

(1) Increase the parallelism of the message passing. If we increase the number of

paths, then messages can be passed concurrently along several paths.

94

(2) Reduce inefficient traffic. If we reduce the back and forth traveling distance of the
base path, then that of the routing path will also be reduced and some unnecessary
traffic will be saved.

(3) Reduce the total traffic. If a message is passed along a shortest path between
destinations, the total traffic and maximum message passing distance will also
tend to be small.

(4) Reduce the maximum message passing distance. If we try to partition the network
into several disjoint sets and form a path for each partition, the length of each path
is also likely much smaller than that of a single path.

In a 2D mesh we notice that the source node, which is located at the left-top corner, is
connected to its neighbors through two separate channels. This provides the possibility of
passing the message along two different paths simultaneously to the destinations. Based
on these heuristics, we developed the so-called XY-path multicast routing algorithm, in
which two message-passing paths start from the source node, one travels back and forth
along the X dimension and the other along Y dimension. Together they cover all the
destination nodes in the mesh. XY -path algorithm can well overcome the pitfalls of LIN’s
algorithm. First, since messages were passed through two paths, the length of each path
will be likely less than that of a single. Second, the mesh network is partitioned to two
small parts, which reduces the chances of long back and forth traveling and the average

distance between two destinations.

95

3.3.3.2 Formal Description of XY-path Algorithm

The XY -path multicast routing algorithm actually consists of two phases. First we need to

split the nodes of the mesh into two subsets joined only at the source node, and form a

Hamiltonian path for each subset, i.e. X path and Y path. Then we route the message in X

path and Y path concurrently from one destination to another in the order as they occur in

X path or Y path. Hence, XY-path algorithm contains two parts: the partition algorithm

and the routing algorithm.

The partition algorithm is critical since it forms the base paths which very much

determine the overall performance of the multicast. Basically the partition algorithm

splits all the nodes into two paths joined at the source. We accomplish it by alternatively

running one path (X) along rows back and forth and the other path (Y) along the columns

exclusively.

Algorithm 3.3.1 (XY-path multicast partition algorithm in 2DM)

Denote the set of nodes in X path as X and the set of nodes in Y path as Y. Label(u)
denotes the label of node u, Length(X) denotes the length of path X. x(v) denotes the x
coordinate of node v, and y(v) denotes the y coordinate of node v.

Input: M
Output: XY
Variables: u, v (temporary nodes)

(1) X=Y={s}; (Initialization)
Done(X)=Done(Y)=FALSE ;
(2) IF NOT Done(X)
(a) v=last node in X
IF x(v)==m-1 and v is the last node of its row and Length(X)>Length(Y)
THEN go to step (3)

ELSE find next node u by traveling along rows, make U turn to next row if it

reaches the end of a row or a node belonging to ¥
(b) IF u is founded THEN X=X+{u}, Label(u)=its order in X
ELSE Done(X)=TRUE (It either visited last row or can not make U turn)

96

(c) Continue step (2)
(3) IF NOT Done(Y)
(a) v=lastnode in Y
IF y(v)==n-1 and v is the last node of its column and Length(Y)>Length(X)
THEN go to step (4)
ELSE find next node u by traveling along columns, make U turn to next row if
it reaches the end of a column or a node belonging to X
(b) IF u is founded THEN Y=Y+{u}, Label(u)=its order in ¥
ELSE Done(Y)=TRUE (It either visited last column or can not make U turn)
(c) Continue step (3)
(4) REPEAT step (2) and step (3) UNTIL Done(X) and Done(Y)

Proposition 3.3.1 Using the partition algorithm, we can always find a pair of X path and

Y path joined only at the source node s(0, 0), which cover all nodes in a 2D mesh.

Proof. According to the partition algorithm, the switching point can only be a node at
the boundary. Therefore, whenever we switch the path, the unoccupied area is a mesh.
This process will continue until only one row or one column is left. And this row or

column can be easily added to X path or Y path depending on the final scenario.

Proposition 3.3.2 The time complexity of XY-path partition algorithm for 2D meshes is

O(N) where N is the total number of nodes in the mesh.

Proof. 1t is easy to see the process of partitioning the 2D mesh is to check each node
in the mesh and add it to either X or Y path according to the status of the node. The total
number of nodes in the mesh is N. So the complexity is O(N).

The XY -path partition algorithm is very dynamic. The switching point is decided by

comparing current length of the paths and can only be at the boundary of the mesh not at

97

the middle of a row or column. When one path comes across the other, it must make a U-
turn. Hence, it is not known which node belongs to which path until the algorithm is
executed. Here is our goal of making it dynamic: First, to balance the length of the two
paths so the traffic load and maximum traveling distance on both paths will also be
balanced; Second, to avoid too many long runs in the back and forth direction. As
indicated in Figure 3.3.2, in an asymmetric /6 x 8 mesh, Y path needs to travel back and
forth several rounds to match the distance traveled by X in just one round. Thus, the
length of runs of X path decreases faster than that of Y path, and the number of very long

runs is limited.

s
)
)
D
D
D
e D --
4
D
)
P
D
D

)
&)
)
£
&) - -
),
).
D
D
O
D
D
©

Figure 3.3.2: X path and Y path in 8x16 Mesh

We got X path and Y path that can be used as base paths to govern the message
routing. A basic rule for path-based routing is that the message must be passed from one
destination to next through a sequence of nodes whose order is in accordance with that of
the base path [1]. Messages need not move exactly along the base path, and can take a
shortcut from one destination to next, but the ascending or descending order of the nodes
must be observed. The XY -path routing algorithm is to find the message-passing paths

that pass message to the destinations in X path and Y path.

98

Algorithm 3.3.2 (XY-path multicast routing algorithm in 2DM)

Let X’ denote the message-passing path for X path, and Y’ denote the message-passing
path for Y path. R(u,v) is the routing function to route from node u to node v on a
Hamiltonian path of a mesh.

Input: MD XY
Output: XY

(1) X’= Y’={s}; (Initialization)
(2) Get the message passing path X~ for destinations in X path
(a) Get the last node u in path X~
(b) Get next destination node v on X path
(c) Using R(u,v) based on X path to find the path P(u...v) which connect u to v
(@) X'=X"+P
(e) Repeat step (2) until all destinations on path X are exhausted
(3) Similar to step (2), we can Get the message passing path Y~ for destinations in
path Y

The routing function R(u,v) is derived from a general routing function in [1] refereed
to as sorted MP message routing algorithm . Its main idea is to choose next node in the
path that is a neighbor of current node and closest to next destination down the base path.
When we apply this function in our algorithm, we get our R(u,v). Let u be the current
node, v be the next destination node down X path, and L(x) be the label of node x on X
path, then we have the definition of R(,v) based on X path:

R(u,v)=w (3.3.1)

Where w satisfies L(w)=max{ L(p), p is a neighbor of « and L(v)> L(p)>L(u) }.

Likewise we can have the R(u,v) based on Y path.

Proposition 3.3.3 The time complexity of XY-path routing algorithm for 2D meshes is

O(N) where N is the total number of nodes in the mesh.

99

Proof. The time cost to find the multicast paths actually involves executing the routing
function R at each node along the paths. Time complexity of R is O(/). The total number
of nodes in both X path and Y path is less than that of the mesh. Hence, the routing

algorithm will cost O(N) time.

Proposition 3.3.4 Time complexity of XY-path multicast algorithm for 2D meshes is O(n)

where N is the total number of nodes in the mesh.

Proof. Both the XY partition algorithm and the routing algorithm cost O(~). The over
all time of XY-path multicast algorithm is also O(~), which is at the same order of

O(KlogkK) of the LIN’s algorithm.

Proposition 3.3.5 For two destination nodes « and v on the X path or Y path in a 2D mesh,

the path selected by routing function R(u,v) is a shortest path from u to v.

Proof: Consider path Y for example. According to the routing function R(u,v), the
message will be passing through a sequence of nodes whose labels are in ascending order.
Assume u and v are two destination nodes on column Cu and Cv, u<v (i.e. u precedes v),
hence Cu < Cv. If Cu = (v, it is obvious that the path between u and v will be along the
same column and it is shortest. Now Cu < (v, according to R(u,v), there will be no links
on the path that travel from a larger column to a small column. So we have a) the total

distance traveled along X dimension is just the distance between u and v in X dimension,

100

i.e. [x(u)-x(v)|. Then we need to prove b) the distance traveled along Y dimension is |y(u)-
y(v)]. The following is the proof for b). If y(u)sy(v), then we can prove that the path
travels downward from the node with smaller y to node with larger y. Assume w is a node
on the path from which the path travels along a column upward and reaches node w’ at
the same column, then we have y(v)2y(w)>y(w’). We notice w’s neighbor on next column,
say w”, is obviously closer to destination v than node w’ in both dimension X and Y since
y(w”)=y(w). According to R(u,v), it should be routed from w to w” not w’, which shows
the assumption is wrong. Hence all routing along dimension Y is downward. Similarly we
can prove when y(u)2y(v) all routing along Y dimension is upward. So we can draw the
conclusion of b). Combine a) and b), the distance traveled by the routing path between u

and v is [x(u)-x(v)|[+ly(u)-y(v)|, which is shortest.

Proposition 3.3.6 The multicast message-passing path obtained through the routing

function is optimal for the given base path X or Y.

Proof. Since message is routed along a shortest path from one destination to another,
the length of the multicast path, which is essentially the sum of the distance between each

pair of destinations along the path, 1s also minimized.

Example 3.3.1 In a 2D mesh network M(10 x 10), construct the multicast path using XY-

path algorithm for a multicast that sends a message from the given source node s(0, 0) to a

set of destination nodes D={ (2, 0),(3, 1),(7, 2), (7. 5), (0, 4), (1, 3) }.

101

Path D --Q--QP--L--G--06

Figure 3.3.3: Example of XY-path in 10x10 Mesh

First, we partition the nodes of the mesh into two independent paths joined at the
source node. In this example, the algorithm starts advancing path Y from the source node
along column 0 till the boundary node (0, 9), then compares the length of the two paths
and finds that path X is shorter than path Y (at this point, length of path X is zero), so the
turn is switched to path X. Then, it advances path X from source node along row 0 till
boundary node (9, 0) where the length of path X is still not longer than that of path Y, so
instead of switching to path Y, it continues advancing path X. It turns to node (9, /) on row
I and advances along row /, then makes U turn to row 2 when it hits path ¥ and
continues on row 2 till it comes back to the boundary node (9, 2) where we notice that
path X is already longer than path Y. So it is time to advance path Y. Thus, whenever a
path arrives at a boundary node, compare their length and give the tum to the shorter
path. We keep alternatively advancing path X along rows and path Y along columns back
and forth until both paths can not advance any more. The final path X and Y are illustrated
in Figure 3.3.3. The partition also divides the destination nodes into two subsets { (0, 4),

(1,3)}onpath Yand { (2, 0),3, I),(7 2),(7, 5) } onpath X.

102

{0.0]

9.9] (0.9}
(a) XY-path (b) LIN’s

Figure 3.3.4: Example of XY-path Multicast in 10x10 Mesh

After the partition, we will need to find out the message-passing paths through the
XY-path routing algorithm. Take path X for example. Starting from the source node s(0,
0), it is very obvious that the shortest route between s, 0) and destination node (2, 0) is on
the base path X. But for the route between node (2, 0) and node (3, 1), simply following the
base path is not a good choice, so we need to find a shortcut. We execute routing function
Rqu, v) at node (2,), which actually checks the distances to node (3, /) from all node (2,
0)’s neighbors behind node (2, 0) but before node (3, /), and routes to the one closest to
node (3, 1) which is (3, 9). We then execute routing function R, v) at node (3, 0), which
finally routes the message to destination node (3, /). Afterwards, we can route the
message from destination node (3, /) to destination node (7, 2) and to destination node (7, 5)
using the same routing function R, v). Likewise, we can find out the message-passing
path for destinations on path Y. The complete message-passing paths are illustrated in

Figure 3.3.4 (a). The total traffic is /8 links and the maximum distance of the path is /2.

103

The same multicast using LIN’s algorithm will generate total traffic of 26 links which 1s

also the maximum distance as shown in Figure 3.3.4 (b).

Proposition 3.3.7 The bound of multicast traffic for XY-path multicast is K < Traffic <

KD, where K is the total number of destinations, D is the diameter of the multicast zone.

Proof. Assume there are p destinations (v, vz, ..., v») in X path, ¢ destinations (u,
U, ..., Ug)in Y path . D(u,v) is the distance between node u and v, s is the source node. K
is the total number of destinations, i.e. K=p+q. The multicast traffic of XY-path

algorithm is:
p-l q-1
Traffic = D(s,v\) + ZD(W, Vi+1)+ D(s,u1) + ZD(ui, Ui+1)
i=l i=1

It has been proven that the minimum total links is K for any kind of multicast [1], i.e. the
message reaches a destination every time it passes through a link. In case of XY-path
algorithm, traffic reaches the low bound K when the K destinations line up in just one
path and adjacent to one after another. Since the path between each pair of destinations is
shortest, which is less than D, the total distance of the K pairs of destinations will be less

than KD.

Proposition 3.3.8 The bound of multicast time for XY-path multicast 1s K+L < Time <

KD+L, where L is the length of the message.

104

Proof. According to Formula (2.1.11), in wormhole routed networks Multicast
Time=max(l;, I, ..., l1, l)+L. In the case of XY-path multicast, assume the length of X
path and Y path is dx and dy respectively, then we have Multicast Time=max(d., dy)+L.

So, when max(d., dy)<<L, the effect of distance is negligible and length of the
message dominates the multicast time. When max(d:, dy)>>L, the distance of the path
dominates the multicast time. But since for a certain message to be multicasted, its length
L is constant, the distance of the multicast path becomes the decisive factor. The bound of
max(d., dy) is K~KD according to Proposition 3.3.7, so the bound of multicast time will

be K+L~KD+L.

105

Chapter 4

Simulations and Discussions

4.1 The Simulation Model

The purpose of this chapter is to evaluate the performance of these new algorithms and
verify whether we have achieved our goals of designing them. We developed software to

simulate the multicast communications in mesh-connected multicomputer networks.

4.1.1 Model of Simulation Program

The generic multicast simulation program is developed not only for multicast simulation
in mesh-connected networks but also for any kind of network topology, any kind of
multicast algorithm, and any kind of node architecture. Hence, we choose the object-
oriented design methodology featuring good hierarchy and flexibility. Figure 4.1.1
illustrated the model and class diagram of this program.

In order to maintain a good generality, flexibility, and extensibility of the program, we
introduce a set of abstract classes: Graph, Node, Processor and MultiAlgorithm. They
form the core of the model and define the interfaces. In addition to the abstract classes,
we defined corresponding concrete classes that implement the interfaces and add specific

features. Mesh, MeshNode and MeshAlgorithm are all concrete classes for meshes.

106

MeshCoord

., |&DimNum
" |&¢Coord : int

DDSalgorithm MultiAlgorithm Graph Node
“InitO ‘Muhicasto ‘getLabelo
SMsgPrepare() SFirst() *setiabel()
*hsgRouting() SNext() SgetChild()
*MsgTransmit() Sast() 1 @getNext()
$GetNode() S5etChild()
:Ne!ghborso *addSibling)
DIAGalgorithm Unicast() :getgrevo 6
getParent
addChild()
MeshAlgorithm
‘VHalgorithm - +Fors : Mesh MeshNode
== ®MeshMsgPrepare() &~iistNode : MeshNode
SMeshMsgRauting() +<Use ®5etProcessor()
*eshMsgTransmit() A
& ,' T
Processor
& switching method
° — $SendOut
MINalgorithm MulticastAnalysis ‘Repficate%o
POASLe
:MulticastTimeCurveO Q?g::;:l%goo
MulticastTraficCutve() SgetSwitchingTech()

Figure 4.1.1: Class Diagram of Simulation Program

4.1.2 Implementation of Simulation System

The simulation program we have just introduced can be implemented in any object

oriented programming language such as C++ or Java. In our case, since the simulation of

multicast in multicomputer network is very computation intensive, we chose C++ which

is a very efficient programming language. More specifically we developed the simulation

software using Visual C++ and MFC within Microsoft Visual Studio 6.0 under Windows

XP environment. The program can run under any Windows operating system with the

Win32 and MFC libraries installed. To ensure the speed and efficiency of the simulation,

we recommend computer systems with at least 2GHz CPU clock speed and /GB RAM.

107

4.1.3 Performance Evaluation Model

Since the multicast routing algorithms that we proposed are heuristic algorithms, none of
them is optimal, i.e. no algorithm is best at all scenarios. One algorithm performs better
than the other in some cases, but worse in other cases. So, we can only use the average
value of a large number of randomly generated multicasts to evaluate the performance of
each algorithm on average.

There are two major parameters used to evaluate the performance of multicast
operation: time and traffic. Here we use several types of charts related to these two
parameters to evaluate and analyze the performance of the multicast algorithms. They are
the multicast time curve, the multicast traffic curve and the average additional traffic
(AAT) curve. The time curve reflects the changing trend of the average multicast time
with respect to the number of destination nodes. The traffic curve reflects the changing
trend of the average multicast traffic with respect to the number of destination nodes. The
AAT curve reflects the changing trend of the average additional traffic with respect to the
number of destination nodes. Both traffic and AAT curves reflect the multicast traffic of
an algorithm, but AAT is a better parameter to indicate the efficiency of the multicast
traffic. The traffic curve indicates just the total traffic that a multicast creates.

To compare the performance of several algorithms in one chart, we will draw a curve
for each algorithm, resulted from exactly the same set of samples. Every point on the
curve is averaged over /000 runs of multicasts with the same number of destination
nodes [1, 7]. The set of multicast destination nodes and their distribution are generated

randomly through pseudo random number.

108

We also introduce another parameter mean to indicate the average performance of an
algorithm in a certain mesh network regardless of the number of destinations. This
method is derived from the ideas introduced in [18] for evaluating the efficiency and

resource consumption of multicast in an arbitrary network.

Definition 4.1.1 (Mean of a Parameter) Given a mesh or torus M and a multicast
algorithm A, the average value of a parameter P from all the multicast samples, regardless
of the number of its destinations, in a statistical experiment is called the mean of

parameter P for multicast algorithm 4 in mesh or torus M.

Mean roughly indicates the overall performance of algorithm 4 on parameter P in the
mesh M. It is actually the average line for the curve of parameter P. We will use multicast
time mean, multicast traffic mean and AAT mean to reflect the multicast time, traffic and

AAT of a certain multicast algorithm in a given mesh in general.

4.2. Performance Evaluation of DIAG and DDS

4.2.1 Simulation Assumptions
The following are the assumptions and conditions under which the simulations are done
for the performance evaluation of the tree-based multicast algorithms.
e All the simulations are done in a store-and-forward switched mesh or torus
network, since both algorithms are best for store-and-forward technology.
e The nodes in the network have one-port architecture which is the mostly used

architecture in multicomputers.

109

To simplify the calculation, we assume the size of each dimension of an n-
dimensional mesh is the same. The unit of time is hop and the unit of traffic is
link.

The sampling resolution for the curves is /0 destination nodes per sample point.
The value at each sample point is averaged over /000 runs of multicasts with the
same number of destination nodes.

Use dimension-ordered routing as the routing function between pairs of nodes,
which results in a shortest path and prevents deadlock.

Use semi-distributed routing scheme, which has been introduced in Chapter 2, for
message transmission along the multicast tree.

Formulas to calculate multicast time, traffic, and additional traffic in our
simulations are those for store-and-forward switched networks with one-port

architecture which are introduced in earlier sections.

Multicast Traffic=|E(MT)|
Additional Traffic=|E(MT)|-K

Multicast Time=max{ ltw:, l+w;, ..., latwir, bitwi }

4.2.2 Simulation of DDS and DIAG in 2D Mesh

We study the performance of the algorithms in 2D meshes through simulations done in a

20 x 20 mesh in this section.

In Figure 4.2.1 multicast time curves of DIAG and VH are almost overlapped, which

indicates that on average the multicast time resulted from D/AG algorithm is very close to

110

that of VH algorithm. This is in accordance with the fact that they are both shortest path
multicast algorithms, which result in near optimal multicast time. In this example, the
multicast time mean of DIAG is 35.76, which is 0.41% less than VH’s 35.91. We can also
notice that the multicast time curve is pretty flat, which means it does not relate very
much to the number of destinations. This is because the multicast time mainly depends on
the distance of the farthest destination node but not the number of the destination nodes.

The multicast time generally increases with the number of destinations.

Time

30 T T T T T 1 T T T
2t —DIAG T
64k - VH |
56| |
48|]
a0l]

2| T]
24| |
16] |
8|]

i Il 1 1 1 i 1 Il

0 (
0 40 80 120160200240280320360400
Number of Destinations

Figure 4.2.1: Multicast Time of DIAG versus VH in 2D Mesh

Figure 4.2.2 indicates that multicast traffic generally increases with the number of
destinations, but AAT first increases with the number of destinations and reaches its peak
at about 20% percent of the total nodes, and then it decreases and finally reaches 0. This
means that when the number of destination nodes is very small or very large, the
multicast traffic 1s most efficient. In between it will generate more inefficient traffic. The

figure also indicates that both traffic and AAT of DIAG algorithm is much less than that

111

of VH algorithm. In this example, the multicast traffic mean of DIAG is 247.28 which is
25% less than VH's 333.69. The AAT mean of DIAG algorithm is 52.28 which is 62%

less than VH's 138.69.

AAT Traffic
400 e 400
360| — DIAG - 360
320 0 VH] 320}
280 | 280
240 A . 240
200l T Tl] 200}
160] 160} /
120L / J 120/
80} .] 80|
40 - 40
ol v s 1] O
0 40 80 120160200240280320360400 0 40 80 120160200240280320360400

Number of Destinations Number of Destinations

Figure 4.2.2: Multicast traffic of DIAG versus VH in 2D Mesh

From the simulation results of D/IAG and VH algorithms in this 2D mesh, we can
notice that DIAG algorithm reduces the multicast traffic by 25% and increase traffic
efficiency by 62% over VH algorithm without sacrificing the near optimal multicast time
of VH algorithm. The D/AG algorithm even somehow performs slightly better than VH in
terms of multicast time.

In Figure 4.2.3 multicast time curves of DDS, DIAG and MIN show that, on average,
DIAG has the best multicast time, DDS has a little bit larger multicast time than DIAG,
MIN has the worst multicast time. This is due to the fact that both DDS and DIAG are
shortest path multicast algorithm, MIN is not. In this example, the multicast time mean of

DDS is 37.88, which is 8.5% more than DIAG’s 34.89, but 5% less than MIN’s 39.56.

112

Time
8[] T T T T T T T T T

[£25 —DDS
64 e DIAG -
561 —--~MIN

a8l]
a0
32f &5 ;
24} .
16}]
8}]

0
0 40 80 120160200240280320360400
Number of Destinations

Figure 4.2.3: Multicast Time of DDS versus MIN in 2D Mesh

Figure 4.2.4 indicates that the multicast traffics of DDS and MIN are very close and
obviously better than DIAG. In this example, the multicast traffic mean of DDS is 230.85
which is /.3% more than MIN's 227.77 but 4.3% less than DIAG’s 241.41. The AAT
mean of DDS algorithm is 40.85 which is only 8% more than MIN’s 37.77 and 20.5%
less than DIAG’s 51.41. The trend of these curves is similar to those of DIAG we

mentioned in the previous section.

AAT Traffic
400 — 11 400 ——
360} — pDS 360(]
3200 - DIAG J20¢ }
280} —---MIN | 280}]
240 4 240 4
200} 4 2000 4
160} 4 0L . 4
120} 4 120f .
80| -] 8o 7 1
a0} =3] 40| 1
0 P S T S B — =P 9N 0 SR S S Y S RN SO S
0 40 80 120160200240280320360400 0 40 80 120160200240280320360400
Number of Destinations Number of Destinations

Figure 4.2.4: Multicast Traffic of DDS versus MIN in 2D Mesh

113

From the simulation results of DDS, DIAG and MIN algorithms in this 2D mesh, we
can notice that DDS algorithm reduces the average additional traffic by 20% over DIAG
algorithm and reaches the neighborhood of the pro-traffic MIN algorithm. It improves the
multicast traffic efficiency significantly while keeping the multicast time near that of

DIAG algorithm.

4.2.3 Simulation of DDS and DIAG in 2D Torus

In this section we study the performance of the algorithms in 2D tori through simulations

done in a 20 x 20 torus.

Time
1
43 ——DIAG T
6af - VH 1
56|]
48| -
a0|
32|
Al i
16|~ i
81

0 1 1 1 1 1 i 1 ! (
0 40 80 120160200240280320360400
Number of Destinations

Figure 4.2.5: Multicast Time of DIAG versus VH in 2D Torus
Figure 4.2.5 shows the multicast time of DIAG and VH in 2D tori is also very close.

The difference is that the multicast time of both algorithms is reduced significantly by

almost 40% over their counterpart in the 2D mesh.

114

AAT Traffic
400 S — 400
360 —DIAG T 360
3200 - VH i 320!
280 Ny 280l
240 . 2401
200 S] 200/
160+ - T 1 160}
1201 / 1 120} .

80 i . 80}
40 o N 40 - "“““DlAG E

] 1
0 40 80 120160200240280320360400
Number of Destinations

1] !
0 40 80120160200240280320360400
Number of Destinations

Figure 4.2.6: Multicast Traffic of DIAG versus VH in 2D Torus

In Figure 4.2.6 the trend of the multicast traffic curves of DIAG and VH in the 2D
torus is similar to those in the 2D mesh. The multicast traffic mean of DIAG is about
255.63, decreased by 18.54 over VH'’s 313.84, and the AAT mean of DIAG is about 65.63
decreased by 47% over VH's 123.84. These simulation results lead to the similar
conclusion as in the 2D mesh.

Time

80 ————— T —— 1
2L
64}
56 -
481 4
40+ 4
320 .
241
16}]
8L]

i 1 1 1 s 1 Il 1 1

0 40 80 120160200240280320360400
Number of Destinations

— A —— e —— e . .

Figure 4.2.7: Multicast Time of DDS versus MIN in 2D Torus

115

Figure 4.2.7 shows that the relations between the multicast time of DDS, DIAG and
MIN in the 2D torus is similar to that in the 2D mesh, except that the difference between
them is smaller, with DDS at 23.7, DIAG at 22.25 and MIN at 23.69. This is due to the

fact that their multicast time over all is reduced by almost 40% over their counterparts in

the 2D mesh.
AAT Traffic
00, o
360} — PDS 360] :
3208 e DIAG 320+
280[—---MIN | 280|
240} i 240(
200}] 200()
160} i 160
120}] 120f
gol .- 8ol /
40}] 400
0 L L 1 1 1 LT 0 L 1 1 L : TR S S
0 40 80 120160200240280320360400 0 40 80 120160200240280320360400
Number of Destinations Number of Destinations

Figure 4.2.8: Multicast Traffic of DDS versus MIN in 2D Torus

Figure 4.2.8 shows that the trend and relations of multicast traffic curves of DDS,
DIAG and MIN in the 2D torus are similar to those in the 2D mesh. The multicast traffic
mean of DDS, DIAG and MIN 1s 237.30, 255.39 and 235.29 respectively. The AAT mean
of DDS is 47.30, which is 28% less than DIAG’s 65.39 and only 4% more than MIN’s
45.29.

After comparing the performance of different multicast algorithms in the 2D mesh and
torus, we now study the performance of the same algorithm in the 2D mesh over 2D torus.
Figure 4.2.9 indicates the relation of DIAG algorithm in the 2D mesh and 2D torus.

Multicast time mean of DI4AG in the 2D torus is 22.27 which is about 36% less than that

116

in the 2D mesh. This is understandable given the fact that the diameter of a torus is half
of that of the respective mesh.

Time

30] T T T T T T T T
72 Torus A
[1 HMesh 4
56} i
48+ E
401 E

32p -7 .
24| -
16} l
8l i

0 i 1
0 40 80 120160200240280320360400
Number of Destinations

Figure 4.2.9: Multicast Time of DIAG in 2D Torus versus 2D Mesh

affic

o 00
360t Torus 1 3601]
. | Mesh | 320+ .
2801] 2801]
240] . 2401 .
200} . 2001 1
160(. 160+ 1
120} . 1201]

sol < | sol 1

40} . 40} .

o P S S S S S S k>~ 0 P S ST S S S P
0 40 80 120160200240280320360400 0 40 80 120160200240280320360400
Number of Destinations Number of Destinations

Figure 4.2.10: Multicast Traffic of DIAG in 2D Torus versus 2D Mesh

While the multicast time of DIAG in the 2D torus is less than that of the 2D mesh, the
multicast traffic increases slightly. As we can see from Figure 4.2.10, the multicast traffic
mean in the 2D torus is 255.99, increased by 6% over the 2D mesh’s 241.38. The AAT in
the 2D torus is increased by about 22% from 57.38 of the 2D mesh to 65.99. This is

probably because the torus is divided into four submeshes each of which forms a separate

117

multicast subtree of its own. Hence, destination nodes in one submesh can not receive
messages from a nearby node in other submeshes but from the source node at the corner
of its submesh which can be a long way away and creates a lot of inefficient traffic.

From the simulation results of DIAG algorithm in the 2D mesh and the 2D torus, we
can notice that the DIAG algorithm in the 2D torus reduces the multicast time

significantly by 40% over that of the 2D mesh but at the cost of slightly more traffic.

Time
80 A —— T ——————T
2t Torus
64 eeeas HMesh i
66} E
48t E
oL - cermmeem e S
321~]
241 J
16+ 4
gl 4

0 40 80 120160200240280320360400
Number of Destinations

Figure 4.2.11: Multicast Time of DDS in 2D Torus versus 2D Mesh

AAT Traffic
400 — T 400
360 Torus A 3601 4
K | Mesh | 320 4
280} 4 280 R
240} 1 240} 4
200+ . 2001 g
160} . 1600 p i
120} 1 120]

8o} .] goL /L Hesh

40} . 40 Torus |

1 1 1 I 1 1 TR I 1 1 ' 1 s 1 1 1
l][] 40 80 120160200240280320360400 0 40 80 120160200240280320360400
Number of Destinations Number of Destinations

Figure 4.2.12: Multicast Traffic of DDS in 2D Torus versus 2D Mesh

118

Simulation results of DDS algorithm in the 2D mesh and 2D torus illustrated in

Figures 4.2.11 and 4.2.12 resemble those of DIAG algorithm.

4.2.4 Simulation of DDS and DIAG in 3D Mesh

In this section, we study the performance of the algorithms in 3D meshes through

simulations done in a 10 x 10 x 10 mesh.

Time

40 —

36}
32+
28}
241
20+
16}
121

gl

4l

{ 1 1 1]

0 1
0 10020030040050060070080090C1000

Number of Destinations

Figure 4.2.13: Multicast Time of DIAG versus VH in 3D Mesh

AAT

1000
900
800
700
600
500
400
300
200
100

Number of Destinations

0
0 1002003004005006007008009001000

Traffic
1000

900+
soot
7001
600
5001
4001
300t
2001
100+

0
0 10020030040050060070080090C1000
Number of Destinations

Figure 4.2.14: Multicast Traffic of DIAG versus VH in 3D Mesh

119

Figures 4.2.13 and 4.2.14 indicate that the results of DIAG and VH algorithms in 3D
meshes are consistent with those in 2D meshes. The 4AT mean of DIAG algorithm is
62.75, which is 77% less than VH's 273.62, an even bigger difference than in the 2D
mesh.

Figure 4.2.15 shows that the multicast time mean of DDS in the 3D mesh is 28.24
which 1s 10% more than DIAG’s 25.34 but 12% less than MIN’s 32.05, a larger
difference than in the 2D mesh. We can also notice that the curve is not as flat as in the
2D mesh, and it is more like an arch. This is probably because when the number of
destinations is very large, there may be fewer branching nodes in the tree, which causes

less delay hops.

4l 4

1] ! L 1 1 1 Il 1} 1 1
0 10020030040050060070080090C1000
Number of Destinations

Figure 4.2.15: Multicast Time of DDS versus.MIN in 3D Mesh

Figure 4.2.16 illustrates the simulation results on the multicast traffic of DDS, DIAG
and MIN in the 3D Mesh. It seems that the difference between these algorithms in 3D

meshes is not as big as that in 2D meshes.

120

AAT
1000

900
800}
7001
600
500}
4001
3001
200}

100

1 1 L Il

Number of Destinations

Figure 4.2.16: Multicast Traffic of DDS versus MIN in 3D Mesh

0 1 == i
0 10020030040050060070080090(1000

Traffic

1000
900
800
700
600
500
400
300
200
100

1

1

1

0 !
g 1002

4.2.5 Simulation of DDS and DIAG in 3D Torus

0030040050060070080090(1000
Number of Destinations

In this section we study the performance of the algorithms in 3D tori through simulations

doneina /0 x 10 x 10 torus.

Time

40
36
32
28
24
20
16
12

8

4

Figure 4.2.17: Multicast Time of DIAG versus VH in 3D Torus

1

1

1

1

Number of Destinations

0
0 1002003004005006007008009001000

121

Figure 4.2.17 and Figure 4.2.18 show that the simulation results and conclusions of

DIAG and VH in the 3D torus are similar to those in the 2D torus and/or 3D mesh.

AAT Traffic
1000 — 1000
900} — DIAG 900}
goOfr e VH 4 800
700 . 700}
600 4 600+
500 4 500+
400 4 4001
so0f T . 300f |
200f 7 . 200} ;
100} RN 100}
0 EOU SOV SV U S S S 1} TN SR TN S ST WS SO SO
0 10020030040050060070080090(1000 0 1002003004005006007008009001000
Number of Destinations Number of Destinations

Figure 4.2.18: Multicast Traffic of DIAG versus VH in 3D Torus

Figure 4.2.19 and Figure 4.2.20 show that the simulation results and conclusions of

DDS, DIAG and MIN in the 3D torus are similar to those in the 2D torus and/or 3D mesh.

Time

T
36 ——DDS 1
32}
28}
24}
20}
16} i
12} |
e 4
41 4

i 1 1 1 i 1 Il ! 1

0
0 10020030040050060070080090C1000
Number of Destinations

Figure 4.2.19: Multicast Time of DDS versus MIN in 3D Torus

122

AAT Traffic

1000 T T T T T T T T L 1000
900} oDS 1 900]
goop, - MIN goo .
7001 —---DIAG | 700 i
600}) 600}
500}) 500 i
400} i 400
300}) 300
200} _ il 200 i
100] s~ ey | 100]

L T 0 i I3 1 1 1 1 i A 1
00 106200300400500600 700800901000 0 10020030040050060070080090(1000
Number of Destinations Number of Destinations

Figure 4.2.20: Multicast Traffic of DDS versus MIN in 3D Torus

4.3 Performance Evaluation of XY-path

4.3.1 Simulation Assumptions
In this section we will analyze the performance of the XY-path multicast algorithm. Since
it is path-based and suitable for wormhole routed network, the simulation conditions are
different from those of DDS and DIAG algorithms. Here are the assumptions:
e Simulations are done in a wormhole routed 2D-mesh network. To simplify the
calculation, we assume the sizes of the two dimensions are the same.
e Nodes in the network have all-port architecture in order to increase the parallelism
and obtain the best performance of the algorithm.
e Sampling resolution is /0 destination nodes per sample point. The value of each
sample point is averaged over /000 runs of multicasts with the same number of
destination nodes [1, 7].

o The unit of time (a hop) is the time to transmit a flit through a link and the unit of

traffic 1s link.

123

e The length of the message is fixed at 20 flits, which tends to be the average
message length being delivered in a multicomputer network.

e Use distributed routing scheme, which has been introduced in Chapter 2, for
message transmission along the multicast path.

e R(u,v), which is introduced in XY-path algorithm, is the routing function executed
at each node on the paths.

e Formulas to calculate the multicast time, traffic and additional traffic in our
simulations are those for wormhole routed networks with all-port nodes which
were introduced in earlier sections. Assume dx and dy are the length of the X and Y

message passing paths respectively, then:

Multicast Time=max(dx, dy)+L (4.3.1)
Multicast traffic= dx+ dy (4.3.2)
Additional traffic= dx+ dy-K (4.3.3)

4.3.2 Simulation of XY-path in 2D Mesh

In this section we study the performance of XY-path algorithm compared to LIN'’s
algorithm through simulations done in a 20 x 20 mesh.

Figure 4.3.1 indicates that the multicast time of XY-path algorithm is much less than
that of LIN’s algorithm. In this example the multicast time mean of XY-path is 185.83,
which is 48% less than LIN’s 356.39. The time curves of path-based algorithm climb

quickly at the beginning, after the point of about half the total number of nodes, it

124

becomes very flat which means once the number of destinations are more than 50%;, the

length of the path does not differ much.

Time
420 T T T T T_.-L---F L Sl

378} ——XYPATH;
3L e LIN'S

294 ;

252l]

2100 ;

1681

126}
84|]
a2}]

i i 1 1 1 1 L 1

0 !
0 40 80120160200240280320360400
Number of Destinations

Figure 4.3.1: Multicast Time of XY-path versus LIN’s in 2D Mesh

AAT Traffic
400 T ——T——— 400
360} ——XYPATH 360t
K Pd | S e LIN'S 4 320}
280} . 280
2401 - E 240
2001 . 200t
160 ¢ . 160} ;|
120} - - 120¢

8o . 8oL

40} . 10L

O i} P EE S W W—

0 40 80 120160200240280320360400 0 40 80 120160200240280320360400
Number of Destinations Number of Destinations

Figure 4.3.2: Multicast Traffic of XY-path versus LIN’s in 2D Mesh

Figure 4.3.2 indicates that multicast traffic generally increases with the number of
destinations, but AAT first increases with the number of destinations and reaches its peak

at about 20% percent of the total nodes. Then, it decreases with the number of

125

destinations. This means that when the number of destination nodes is very small or very
large, the multicast traffic is more efficient. In between it will generate more inefficient
traffic. In this example, the multicasts traffic mean of XY-path and LIN’s algorithm are
317.59 and 336.39 respectively. The AAT mean of XY-path algorithm is 127.59, which is
13% less than LIN's 146.39.

From these simulation results of XY-path and LIN’s algorithms in the 2D mesh, we
can notice that XY-path algorithm reduces the multicast time by almost 50% and reduces
the additional multicast traffic by /3% over LIN’s algorithm without sacrificing the

computation complexity.

126

Chapter 5

Conclusion and Future Work

Multicast problems in mesh-connected networks are NP-complete in general. Efficient

multicast routing algorithms with good heuristics, that can minimize the time and reduce

the traffic as much as possible, are needed to improve the performance of mesh-

connected multicomputers under different circumstances. To tackle this challenge, we

conducted a study in this field and achieved the following accomplishments and results.

Designed the pro-time tree-based shortest path multicast routing algorithm called
DIAG for store-and-forward switched mesh networks which significantly reduced
the multicast traffic (by about 50% in 2D meshes) over the previous VH algorithm
without sacrificing the multicast time and complexity.

Designed the pro-time tree-based shortest path multicast algorithm called DDS for
store-and-forward switched mesh networks which further reduced the multicast
traffic (by about 20% in 2D meshes) over DIAG with only a slight increase (by
8% in 2D mesh) on multicast time.

Designed and implemented a generic program to simulate multicasting in mesh-
connected multicomputers for performance evaluation, which can be easily
customized for any size of meshes or tori, different switching techniques, and

node architectures.

127

e Analyzed the performance of DIAG and DDS algorithms through simulation
results with comparisons to previous ones in 2D and 3D meshes. We also
presented the pros and cons of each algorithm under different circumstances.

e Designed the dual-path-based XY-path multicast routing algorithm for wormhole
routed 2D mesh networks which significantly reduced the multicast time (by
about 50% in 2D meshes) and slightly decreased (by /5% in 2D meshes) the
multicast traffic over L/N’s Hamiltonian path-based algorithm.

e Analyzed the performance of XY-path algorithm through simulations with
comparison to LIN’s algorithm in 2D meshes. We also presented the pros and

cons of the algorithms under different circumstances.

Experiments and simulations in our research showed that each of these algorithms
including DIAG, DDS, VH, MIN and XY-path has its strengths and weaknesses. None of
them performs best at all cases. Hence, more attention and research will need to be
directed to this field to develop good multicast routing heuristics for different network
architecture, applications and performance requirements. The following are some of the

work that can be done in the future.

Simulate these algorithms in higher dimensional meshes and evaluate their

performance with respect to the size and dimensions of meshes.

e Incorporate these multicast algorithms with deadlock preventing, fault tolerant,
and traffic balancing heuristics, and get it ready for real applications.

e Develop algorithms optimized for concurrent multiple message multicasting.

e Develop pro-traffic multicast algorithms that target to minimize traffic first.

128

e Develop more multicast algorithms that are specially optimized for tori and/or
wormhole routed networks since they are the more promising multicomputer

technologies.

129

Bibliography

(1]

(2]

(3]

(4]

(5]

[7]

(8]

[9]

X. Lin and L. M. Ni, Multicast communication in multicomputer networks, IEEE Tr-
ans. Parallel and Distributed Systems, vol. 4, pp. 1105--1117, October 1993.

L. Ni and P.K. McKinley, 4 survey of wormhole routing techniques in direct networ-
ks, IEEE Computer 26 (2), pp. 62-76, 1993.

X. Liu, Multicasting algorithms for mesh and torus networks, Call no. TK 5105.887
L58 2003, Concordia University Library, 2003.

J.-Y. L. Park, H.-A. Choi, N. Nupairoj, and L. M. Ni. Construction of Optimal Mult-
icast Trees Based on the Parameterized Communication Model. In Proc. Int. Confer-
ence on Parallel Processing (ICPP), Volume I, pp. 180--187, 1996.

P. K. McKinley, H. Xu, A.-H. Esfahanian, and L. M. Ni. Unicast-based Multicast C-
ommunication in Wormhole-routed Networks. IEEE Transactions on Parallel and Di-
stributed Systems, 5 (12), pp.1252--1265, Dec. 1994.

P. Mohapatra, Wormhole Routing Techniques for Directly Connected Multicomputer
Systems, ACM Computing Surveys (CSUR), Volume 30, Issue 3, pp. 374 — 410,
1998.

X. Lin and L. M. Ni, Deadlock-free multicast wormhole routing in multicomputer n-
etworks, In Int. Symp. on Computer Architecture, pp. 116--125, 1991.

J.-S. Yang and C.-T. King, Efficient Tree-based Multicast in Wormhole-Routed 2D
Meshes, ISPAN, p. 494, 1997.

P. K. McKinley, Y. Tsai, and D. F. Robinson, Collective Communication in Wormh-

ole Routed Massively Parallel Computers, Computer, vol. 28, no. 12, pp. 39-50, De-

130

cember 1995.

[10] X. Lin, P.K. McKinley, and L.M. N1, Deadlock-Free Multicast Wormhole Routing
in 2-D Mesh Multicomputers, IEEE Transactions on Parallel and Distributed Syste-
ms, vol. 05, no. 8, pp. 793-804, August 1994.

[11] D.F. Robinson, P. K. McKinley, and B. H. C. Cheng, Optimal Multicast Communi-
cation in Wormhole-Routed Torus Networks, IEEE Transactions on Parallel and Di-
stributed Systems, Volume 6 , Issue 10, pp. 1029 — 1042, October 1995.

{12} C.S.Yang, Y. M. Tsai, and C. Y. Liu, Performance Evaluation of Multicast Worm-
hole Routing in 2D-Torus Multicomputers, ICCI 1992, pp.173-178, 1992.

[13] K.-P. Fan and C.-T. King, Optimal Multicast Communication in Wormhole-Routed
Torus Networks, Proceedings of the 6th Symposium on the Frontiers of Massively
Parallel Computation, p. 50, 1996.

[14] E. Fleury and P. Fraignaud, Analysis of deadlock-free path-based wormhole multic-
asting in meshes in case of contentions, Frontiers (6th), p. 34, 1996.

[15] A. Al-Dubai, M. Ould-Khaoua, and L. M. Mackenzie, An efficient path-based multi-
cast algorithm for mesh networks, Proc. 17th Int. Parallel and Distributed Processi-
ng Symposium (IPDPS) Nice, France, IEEE Computer Society Press , pp. 283-290,
22 -26 April, 2003.

[16] H. Xu, P. K. McKinley, and L. M. Ni, 4 Scalable Multicast Service in 2D Mesh Ne-
tworks, Frontiers'92: The 4th Symposium on the Frontiers of Massively Parallel Co-
mputation , pp.156--163, Oct. 1992.

[17] W.Jia, L. Cheng, and G. Xu, Efficient Multicast Routing Algorithms on Mesh Netw-

orks, Proceedings of the Fifth International Conference on Algorithms and Archite-

131

ctures for Parallel Processing (ICA3PP.02), 2002
[18] P. V. Mieghem, G. Hooghiemstra, and R. V. Hofstad, On the Efficiency of Multicast,
IEEE/ACM Transactions on Networking, vol. 9, no. 6, pp. 719-732, December
2001.

[19] Motorola Inc., Mobile Mesh Networks Technology, http://www.motorola.com/,2004

[20] National Institute of Standards and Technology, Dictionary of Algorithms and Data
Structures, http://www.nist.gov/dads, last updated 16:43:26, Mon. Jan. 3, 2005.

[21] Free Software Foundation, Inc, Wikipedia, the free encyclopedia, http://en.wikipedi-
a.org/wiki/Main_Page, last modified 14:33, April 9, 2005.

[22] H. A. Harutyunyan and X. Liu, New Multicast Algorithms in Mesh-connected netw-
orks, International Symposium on Performance Evaluation of Computer and Telec-
ommunication Systems (SPECTS)’ 2003, pp. 284-291, Montreal, Canada, 2003.

[23] T.-S. Chen, C.-Y. Chang, and J.-P. Sheu, Efficient path-based multicast in wormhol-
e-routed mesh networks Source, Journal of Systems Architecture, Volume 46 , Issue
10, pp. 919 — 930, 2000.

[24] E. Fleury and P. Fraigniaud, Strategies for path-based multicasting in wormhole-ro-
uted meshes, Journal of Parallel and Distributed Computing, Volume 53, Issue 1,
pp- 26-62, August 1998.

[25] R. Cypher and L. Gravano. Storage-efficient deadlock-free packet routing algorith-
ms for torus networks, IEEE Trans. on Computers, vol. C-43, no. 12, pp. 1376-
1385, 1994.

[26] S.-Y. Wang, Y.-C. Tseng, and C.-W. Ho, Efficient Multicast in Wormhole-Routed

2D Mesh/Torus Multicomputers: A Network-Partitioning Approach, Symposium on

132

the Frontiers of Massively Parallel Computation, pp. 42-49, 1996.

[27] P. Mohapatra and V. Varavithya, 4 Hardware Multicast Routing Algorithm for Two-
Dimensional Meshes, SPDP (8th), p. 198, 1996.

[28] J. Wu, Maximum-Shortest-Path (MSP): An Optimal Routing Policy for Mesh-Conn-
ected Multicomputers, IEEE Transactions on Reliability, 48 (3), pp. 247-255, Sept.
1999.

[29] B. D. Birchler, A.-H. Esfahanian, and E. Torng, Sufficient Conditions for Optimal
Multicast Communication, ICPP'97, 1997.

[30] K.-P. Fan and C.-T. King. Turn grouping for efficient multicast in wormhole mesh
networks, Frontiers (6th), p. 50, 1996.

[31] S.-H. Sheu and C.-B. Yang, Multicast algorithms for hypercube multiprocessors So-
urce, Journal of Parallel and Distributed Computing, Volume 61, Issue 1, pp. 137—
149, 2001.

[32] Y. Lan, A.-H. Esfahanian, and L. M. N1, Multicast in hypercube multiprocessors, J-
ournal of Parallel and Distributed Computing, Volume 8 , Issue 1, pp. 30— 41, 1990.

[33] N. Nupairoj, L.M. Ni, J. Park, and H. Choi, Architecture-Dependent Tuning of the
Parameterized Communication Model for Optimal Multicasting, Proceedings of the
1997 International Parallel Processing Symposium (Z/PPS'97), University of Geneva,
Switzerland, April 1997.

[34] Z. Liu and J. Duato, Adaptive Unicast and Multicast in 3D Mesh Networks, Proc.
27th Hawaii Int'l Conf. System Sciences, pp.173-82, Jan. 1994.

[35] A. Shaikh, S. Lu, and K. Shin, Localized multicast routing, Proceedings of Globec-

om'95, pp. 1352-6, 1996.

133

[36] J.H. Park, H.G. Kim, S.T. Hwang, J. Kim, 1. Jang, and H. Yoon, An Efficient Unica-
st-Based Multicast Algorithm in Two-Port Wormhole-Routed 2D Mesh Networks, P-
roceedings of IEEE Second International Conference on Algorithms And Architect-
ures for Parallel Processing (ICA3PP'96), 1996.

[37] H. Wang and D. M. Blough, Tree-Based Multicast in Wormhole-Routed Torus Net-
works, Technical Report ECE-98-03-01, University of California, Irvine, March
1998.

[38] S. Oral and A. George. Multicast Performance Analysis for High-Speed Torus Net-
works, LCN (27th), p. 0619, 2002.

[39] H. Wang and D. M. Blough, Tree-Based Fault-Tolerant Multicast in Multicomputer
Networks, Proceedings of the 1998 IEEE International Symposium on Modeling and
Analysis of Computer and Telecommunication Systems, pp. 44-49, 1998.

[40] D. Kumar, W. A. Najjar, and P. K. Srimani, 4 New Adaptive Hardware Tree-Based
Multicast Routing in K-ary N-cubes, IEEE Transactions on Computers, vol. 50,

no. 7, pp. 647-659, July 2001.

134

