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Abstract

Issues in verification and validation of artificial neural network
based approaches for fault diagnosis in autonomous systems

Uma Bharathi Ramachandran

Autonomous systems are those that evolve over time, and through learning, can make
intelligent decisions when faced with unidentified and unknown situations. Artificial
Neurél Networks (ANN) has been applied to an increasing number of real-world
problems with considerable complexity. Due to their learning abilities, ANN-based
systems have been increasingly attracting attention in applications where autonomy is
critical and where identification of possible fault scenarios is not exhaustive before hand.
The “black box” label associated with ANNs hides away training rules by which
they have adapted to arrive at the expected result. This notion of unpredictability of
neural networks makes it hard to warrant a certification procedure and thereby limits their
use in safety critical systems. There are no effective ways to determine (a) if the network
has learned the correct data even if the training set provided all possible scenarios, and
also (b) how the network would adapt when it is faced with unfamiliar data that it has not
seen during the training phase. This necessitates a need for well-tested techniques for
Verification and Validation (V&V) of neural networks in order to verify the correctness
and robustness of the rules that the network has learned. There are a few proposed

solutions to V&V of autonomous systems, specially the ones with ANN-based. However
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the solutions are far from being matured and complete. These challenges are still open
issues in this domain.

Through extensive literature review it was established that ANN based systems
cannot be verified by using conventional V&V techniques due to their own inherent
limitations. Verification of trained neural networks does not allow us to directly prove
that the network behaves according to a certain specification. Thus there is an immediate
need for a formal methodology to verify the correctness of the learning rules. We
envision that formal methods can be used successfully for verifying neural network based
software systems.

Towardé this end, we have proposed a methodology in which the learning rules
that a trained network has adapted can be extracted and refined using rule extraction and
rule refinement techniques, respectively, and then these refined rules are subsequently
formally specified and verified against requirements specification using formal methods.
The effectiveness of the proposed approach has been demonstrated using a case study of

an attitude control subsystem of a satellite.
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Chapter 1

Introduction

This chapter begins with a brief introduction to adaptive and autonomous systems
and their role in safety critical applications. It further highlights the need for verification
of neural network.based software systems which are adaptive systems used in safety
critical applications. The discussion then leads to the issues which arise when verifying
and validating Artificial Neural Networks (ANN) based software. These issues form the
basis for our proposed approach for Verification and Validation (V&V) of ANN-based
autonomous systems. The chapter concludes with highlighting, observations, and

contributions made in this thesis.

1.1 An Overview of Adaptive and Autonomous Systems

Autonomous systems are composed of several technical devices. These devices
have both onboard intelligence as well as certain standalone communication capabilities.
The flexibility of these devices has allowed these autonomous systems to grow in a short
time span and become a very significant part of the present market.

Adaptive systems are those which have the ability to adapt to changing
environments. They are being widely used in domains where it is impossible to
predetermine all the possible environmental conditions that may arise. These systems,
however, are hard to model as they have different issues such as many degrees of
freedom, distributed sensors, high noise level, and uncertainty. Nevertheless, the

intelligence of these adaptive systems is measured with respect to their ability to handle



the difficulties present within the system.

In adaptive systems, such as unmanned space vehicles, the focus of autonomy is
likely to be vital to their functionality. Allowing the system to diagnose and fix
unexpected problems onboard is a valuable technology for unmanned aircraft and space
vehicles. These autonomous systems help in reducing the ground support required and
the effect of communication lag between the ground station and the space vehicle. This
adaptive behavior assures that the system will perform reliably while minimizing
resources utility. These adaptive systems should be able to intelligently respond to
changes in the system and execute efficient resource allocation. This implies that
adaptive systems shouid contain the capability of assuring fault tolerance. Thus adaptive
systems are those which evolve over time and through learning, can make intelligent
decisions when faced with unidentified and unknown situations.

Artificial Neural Networks (ANN)-based systems have emerged as a powerful
class of autonomous and adaptive systems [1]. NASA has conducted experiments using
adaptive computational paradigms, such as ANN for providing fault tolerance capabilities
in control systems where sensor or actuator faults are present. Promising results [1] have
provided Ways‘to future work. For this reason, ANN-based autonomous systems are
being considered as a promising solution to the autonomy problem owing to the distance

in space mission applications.

1.2 Neural Networks in Safety Critical Applications

Artificial Neural Network (ANN) based information-processing paradigms belong

to a special class of autonomous systems. They have been applied to an increasing



number of real-world problems with considerable complexity. ANN is different from
conventional computing as they are self-organized and adaptive, while conventional
computing use an algorithmic approach to a problem. Due to their learning abilities,
ANNs have been increasingly attracting attention in applications where autonomy is
critical and where the identification of the possible fault scenarios is not extensive before

hand. The computational capacity of ANN excels in many areas:
e Pattern classification
e Speech analysis
e Robot steering
e Processing of inaccurate or incomplete inputs

Further, some of the abilities of ANN that should be explicitly stated include error
tolerance, ability to deal with novel inputs, ability to work with problems where
algorithmic specifications are not available, and speed. Learning algorithms indirectly

aid the neural network in accomplishing these abilities.

1.3 Need for Formal Verification of Neural Network based Software
Systems

Though ANN have been accepted and used in fault diagnosis, there are some
specific concerns with respect to the reliability and acceptability of ANN in safety critical
applications, since faults in the system may lead to catastrophic effects. The major
shortcoming that we have noticed when it comes to ANN is the lack of human

comprehensibility. Hence, the correctness checking of ANN based systems is important



before applying them to safety critical applications.

Verification is a process of checking if the system conforms to the specification,
which is to assure that the software components or software systems meet their specified
requirements [2]. Specified requirements are not only found in requirements-
specification documents, but can also be found in functional specifications, architecture
and design models, test cases, and so on. The pufpose of validation is to demonstrate that
a software component or system fulfills its usage requirements when placed in its

intended environment [3].

Although effective, applying verification and validation to neural network-based
systems, however, is difficult since the underlying learning algorithm does not provide
any mathematical contribution in the verification process. Further, the black box label
restricts us from determining the learning rule that the network adapted to arrive at the
specific training result. As a result, many authors have attempted to find solutions to this
problem by extracting the knowledge stored in connection weights and interpreting the
activation of each and every neuron. This knowledge reveals some information about the

black box and then rules can be extracted from the ANN.

As a consequence, there is no defined way to determine if the network has learned
the correct data even if the training set provides all possible situations of scenario under
test. It is also not clear if the network would adapt well when faced with unfamiliar and
unseen data during the training phase. This introduces a need for well-tested techniques
for the verification of ANN in order to verify the rules that the network has learned.
Furthermore, such verification is needed to see how the network is adapting and to

determine if the network is in fact learning properly.



ANNs are adaptive systems and thus, they are supposed to adapt to unforeseen
situations, but due to the lack of a detailed system model, traditional verification
techniques are meaningless. Thus, formal techniques must be devised for the
Verification and Validation (V&V) of neural networks. However, to verify ANN-based
systems with the formal verification techniques, there is a need to have a detailed system
model [3]. This requirement is set forth to focus on the risk associated with the technical
development and the performance of ANN. The major prerequisite for the certification
procedure is that all activities in the software development lifecycle have to be executed
according to the prescribed detail software process. Essentially, formal methods are
necessary for making V&V of software more objectiVé by complimenting the traditional
testing technique. They are required to be more rigorous such that there is an increased
assurance with respect to the results of the conducted V&V process. Formal methods for
ANN include specification language and methods for knowledge representation, such as
rule extraction and decision trees. These formal methods can allow the system to be

tested for both correctness and completeness.

1.4 Issues in Verification and Validation of Neural Network based
Software Systems

Some of the well-established techniques to verify conventional software systems
are [4]:

1. Model checking

2. Theorem proving

3. Static analysis

4. Run time analysis



However, ANN based software systems cannot be verified as conventional
software systems. Conventional software systems can be verified against a model but
ANN based systems lack a system model therefore they cannot be compared in the
verification phase.

In the V&V of software systems, we consider three factors, namely, fault
avoidance, fault removal, and fault tolerance [4]. Unfortunately, none of these three
factors would be applicable to verifying the ANN for the following reasons.

Fault Avoidance:

Fault avoidance does not hold good for the adaptive ANN, as we do not have the
knowledge of how these systems learn the rules and we are unaware of what they would
learn. There is no bound on what the system is learning as there would be an unreliability
always encountered with the ANN.

Fault Removal:

Fault removal also does not hold good for adaptive ANN, as we cannot anticipate
the type of faults. Within the context of conventional software system, the assumption is
that the system of interest will work in the same way in the real world as it had worked
during the training phase. However, with respect to ANN, we cannot assure that the
system will repeat its functionalities for the training and real world phases when given the
same input data. The behaviour of the ANN is based on the learning rule and we are not
aware of the reaction of the system when it comes across the data which had been seen
during the training phase and thus fault removal property doesn’t hold true.

Fault Tolerance:

Fault tolerance works on the premise that we know exactly the kind of faults to



anticipate and we tolerate those by using techniques, such as error detection and error
recovery. This is not possible when working with ANN-based autonomous systems, as
there is no way to anticipate neither the type of faults nor the techniques by which we
know what the system has learned.

The V&V of conventional software system begins with a system model and has
- been tested against this neural network model. Techniques like run time verification have
some scope for use in V&V of neural network-based systems. However, even this
technique has some drawbacks which include overhead in program execution and the
possibility of falsely detecting a non-existent problem. The uncertainty associated with
non-deterministic software systems such as ANN, makes the Veriﬁcétion process
difficult. For safety-critical applications, a neural network-based controller must be
verified and validated thoroughly, and must pass a rigorous certification procedure which
has yet to be accomplished. There are a number of questions raised about the capabilities
of ANN, such as their memory retention capability, their abilities to learn the correct
data, handle data outside the training set, and adapt to unseen scenarios [4].

Experts have to know what information they are looking for and how to analyze
the data. Previously lookup tables were used to analyze the mapping between the
independent variables and the dependent variables. However lookup tables can only be
used when the mapping is comparatively simpler. Static ANN, for example, behaves like
lookup tables. Other complexities that arise when we use continuous input variables are
that infinite input values may be present and it is not feasible to check every possible
output. Since ANN is non-linear, it is difficult to guarantee the bound on the interior

values. Thus, as the output set becomes large, it becomes more difficult to guarantee any



kind of proper data analysis. Performance guarantee is essential for ANN to be able to
clear the certification procedure and make their way into the class of safety critical

applications. These challenges are still open issues in the field of V&V of ANN.

1.5 Approaches to V&V of Neural Network based Software Systems

During the course of our literature survey, we found that for ANN-based systems
to be verified by the conventional V&V techniques there are different techniques that
have been adapted. One such technique discusses the detailed development process for
the neural network which has not yet been trained. The certification procedure requires
that the entire software development and lifecycle be performed according to a software
process. A process guide has been developed for the intelligent flight control software
(IFCS) [5]. They have been specially modified for ANN. V&V of ANN was applied to
all phases of the software lifecycle. These software development lifecycles are applied to

pre-trained ANNs.
Some of the techniques that were discussed for post-trained neural network as

possible solutions have been briefly mentioned here. The techniques that claim to

address and resolve some of the V&V issues in ANN include [6, 7, 8]:

e Automated testing and test data generation methods
¢ Run-time monitoring

e Formal methods

e Cross validation

e Lyapunov Stability Analysis



¢ Automated testing and test data generation methods
The traditional training-validation-testing approach fails to give assurance that a neural
network will meet the rigorous standards of safety critical applications. A testing set for
error calculation is enough for a developer to assess a system since this technique does
not hold well for highly reliable environments. So this technique enables the developer
to increase the amount of testing data which aids in reliability assessment. Test data
generators are used to generate partial or whole new data sets. This technique works well
in situations where the data used is a single-valued data and where fixed neural networks
are used. Hence, this technique helps the V&V practioners in the testing phase of the
network.

¢ Run-time monitoring
Run-time monitors are developed as a part of the system itself. They need not be
upgraded from the conventional testing technique. They can detect if the network is
deviating from the learning curve. This technique is very useful as it helps in detecting
faults. However, this technique has a few drawbacks which include overhead in program
execution and a possibility of falsely detecting a non-existent problem.

e Formal methods
Formal methods-based technique includes specification language and methods for
knowledge representation including rule extraction and decision tree. The use of a
specification language such as CONNECT or nn/xnn for the abstract specification of the
ANN has been discussed in detail in [5]. Furthermore, rule extraction and decision trees
have been seen as a means of providing an insight into the rules that the network has

adapted. The developed approach is based on these initial findings.



¢ Cross Validation
This is a technique where the system assures reliability through redundancy. The
validation is in-built in such systems with cross validation, where the system uses a group
of neural networks to validate one neural netWork. This technique improves system
reliability and can also be applied in safety critical applications. This technique can be
applied to the design phase of the development of the neural network. The drawback of
this process is that it is time consuming and tedious.

e Lyapunov’s Stability Analysis

This technique deals with self-stabilization analysis in the design, verification and
validation of the dynamics of an adaptive system. Often, mathematical theory for
stability analysis is (mis)understood as a process for solving differential equations that
describe the system dynamics. Stability analysis is the theory of validating the existence
of stable states. Since traditional self stabilization approaches cannot deal with
continuous adaptation and lack flexibility, Lyapunov’s second method for neural
networks can be used to validate the existence of the stable state in the adaptive systems
[8]. But when dealing with variable data manifold, we propose the need for a real-time
stability monitor that can detect unstable state deviations.

After discussion of the related work done in this field, we would like to just state our

observations, as well as, the contributions that were made in this thesis.

1.6 Observations and Motivations

There is an increasing demand to make adaptive systems safer and reliable. Their

requirements extend beyond that are normally acceptable for non-critical software
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systems. Adaptive systems evolve over time and this has been seen as their greatest
advantage when used in safety critical (and autonomous) applications. The system has to
be adaptive to recover from the faults or have early detection capabilities so that we can
avoid shutdown, breakdown, or even catastrophes involving human life. Given these
issues, verification and validation of adaptive systems become a necessity.

ANN belongs to a special class of these adaptive systems. It has been
increasingly attracting attention in safety critical applications. Thus, the ANN used in
critical applications have to be verified thoroughly for them to be accepted and used in
safety critical applications. With this background, we have studied and addressed issues

related to verification and validation of ANN used in safety critical applications.

1.7 Contributions of the Thesis

While conducting literature survey, it has been observed that the already-
established frameworks for verification and validation of ANN present in open literature
have not addressed formal verification of neural network systems [6]. Earlier work in
this field had concentrated on the same problem but from a different aspect. They were
trying to replace lookup tables with fixed neural network. The non-linear aspect of the
fixed neural network was overcome by an estimation technique that was applied. This
technique is limited to networks that are trained offline and is frozen after training,

On the other hand, we chose an autonomous model of a system to show
verification and validation of ANN adapted at safety critical applications. These chosen
ANN find their place in a special class of autonomous systems. Furthermore, space

applications are taken into consideration, as distance is a major drawback in such

11



systems. Thus, increasing duties conducted at the ground station were made to be self-
directing in the spacecraft itself as a means of overcoming the distance factor. This also
allows fault diagnosis and recovery to take place autonomously in the spacecraft. Thus
V&V of neural network-based software systems is essential within safety critical system,
since they might lead to undesirable catastrophic effects if they are not tested for reliable
performance.
Our specific contributions in this thesis are:
1) Address issues in the V&V of the ANN
2) Development of an approach for verification and validation of ANN that have been
used in software systems as a part of larger software systems.
3) Demonstration of the same with an ACS model and training the neural network to
provide fault tolerance for the ACS model.
4) Demonstrating rule extraction from trained neural network to enable
comprehensibility of the neural network model developed.
5) Demonstrating the use of formal verification to facilitate neural networks to be used

in safety critical systems.

1.8 Organization

The thesis is organized as follows: In Chapter 2, we give an introduction of ANN
and definition of safety critical systems, as well as, the challenges in safety critical neural
networks. Chapter 3 introduces rule extraction from a trained neural network and
describes the different approaches involved. Further, it introduces the model used to

illustrate the proposed approach. Chapter 4 describes three failure scenarios in the model

12



followed by the process of training the ANN and finally the rule extraction from trained
neural network. The formal specification of the model is also described in this chapter.
Finally, in chapter 5 we conclude with a brief discussion of contributions of the thesis and

future research direction.
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Chapter 2

Literature Review and Survey

The first part of this chapter gives an overview of ANN and the learning
algorithms that have been used. This chapter further focuses on safety critical systems

and the challenges of safety critical neural networks.

2.1 An Overview of Artificial Neural Networks

ANN is viewed differently from conventional computing. Neural networks are
essentially information processing paradigms that have been greatly inspired by the
biological nervous systems [9]. They are a form of multiprocessor computer systems
with simple processing elements, highly interconnected processing elements (neurons),

and adaptive nature. Moreover, they can be trained to perform a specific function.

2.1.1 Data Representation in Neural Networks

The ANN looks similar to the biological neural cells. They have numerous
simple processing elements (neurons) which are interconnected. These neurons are
responsible for transporting the incoming information on one neuron to the outgoing
connections of the connecting neurons. These connections are called weights. Each of
these weights has a specific value. Artificial neural networks work the same way as the
human brain [9]. The information is sent to the neuron using these input weights. This
input is processed by a propagation function that adds up the values of all incoming

weights.

14
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Figure 2.1 Structure of a neuron in a neural net [9].

activated, the neuron sends an output on its outgoing weights to all connected neurons.

The neurons are usually structured in layers.
connected to a neuron in a preceding or following layer. This creates an interconnected
neural net. The information given to a neural net is propagated layer-by-layer from input
layer to output layer through none, one, or more hidden layers. The structure of the
neuron in a neural network shown above in Figure 2.1, illustrates how this activation

takes place. Figure 2.2 shows the different threshold functions that can be chosen for

activation of the neuron.
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Figure 2.2 Threshold (L), hyperbolic tangent (C) and Sigmoid (R) activation functions for a
neuron [9].

Depending on the learning algorithm, it is also possible that information is

propagated backwards through the net.

2.1.2 Neural Network Architecture and Topologies

There are different types of ANN. The ANN can be classified as feed forward
and feed back networks [9, 10].

Feed Forward Networks:

Feed forward networks are those which contain layers of neurons in which the
input layer is connected to the output layer only in one direction. Hidden units perform
the activation function and the outputs from the hidden layer either feed into another
hidden layer (if multiple hidden layers exist) or the output layer.

Feed Back Networks:

Alternatively, there are feed back networks which are dynamic. Their 'state’
continuously changes until they reach a stable point. They remain at the stable point until
the input changes and a new stable point needs to be found. For this reason, they are very
powerful, but can become very complex. Feedback architectures are also referred to as

interactive or recurrent, although the latter term is often used to denote feedback
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connections in single-layer organizations. To achieve the desired function, the network
can be influenced by [9]:
e The learning algorithm — They are used to minimize the error between the actual
output and the desired target function.
e Number of hidden units —-More hidden units is appropriate for inputs with more
noise.
e The number of learning samples — More training samples may provide more

data for the target function to be achieved easily.

2.1.3 Training and Learning Algorithms

Once the neural network architecture has been designed, a training process and
learning algorithm must be selected. This process is where the network is trained to
perform a specific function by adjusting connection weights based on a learning rule.
The training process consists of three sets of data: training data, testing data, and
validation data. The training sample data is usually chosen to be a true representative of
a target function. There are different algorithms that have been adopted which try and
minimize the error in the target function as much as possible. The different learning
algorithms that have been established are given below.

Supervised learning: Supervised learning is a type of learning algorithm, where the
output of the network is compared with a target output. Depending on the differences
between the input and the target function, the error is computed.

Unsupervised (self-organizing) learning: A specific type of a learning algorithm,

especially for self-organizing neural networks like the Kohonen Feature Map. Unlike
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supervised learning, no target patterns exist.

Reinforcement Learning: This can be seen as an alternative of the supervised learning
technique. It is used when learning examples (inputs and outputs) are not available.
Supervised and unsupervised learning are commonly used with the following weight
updating methods:

Off-line learning: The network weight updates are computed and recorded during
one pass of the training set. At the end of the training, all the weights are added together
and the network weights are updated with the composite value.

On-line learning: The network weight updates are computed and modified after

each input sample.

2.1.3.1 Backpropagation Learning

The Backpropagation Net was first introduced by G.E Hinton, E.Rumelhart, and
R.J Williams, and is one of the most powerful neural net types [9]. It has a structure that
is similar to a multi-layer-perceptron and uses the backpropagation algorithm. These are
feed forward types of ANN which use supervised learning methods. Their structure is
similar to the normal neural net types where they have an input layer, a few hidden layers

and an output layer.
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Figure 2.3 BackPropagation structure [ 9].

The BackPropagation algorithm uses a computed output error to change the
weight values in the backward direction. To get this net error, a forward propagation
phase must be applied. While propagating in forward direction, the neurons are being

activated using the sigmoid activation function.

The formula of sigmoid activation is shown in equation 2.1:

1
1+

fx)= @.1

Figure 2.3 shows the structure of the backpropogation neural network. Assuming
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neurons in the model are arranged in such a way that the first neuron is called neuron (i)
in the first layer and the second neuron in the first input layer is (i+1) and so on. The
same process is repeated for the second layer where the second layer is defined as (j),

(j+1) and so on. The following algorithm steps are applied in the back propagation:

1. Set all weights to random values ranging from -1.0 to +1.0.
2. Set an input pattern (binary values) to the neurons of the net's input layer.

3. Activate each neuron of the following layer:

e Multiply the weight values of the connections leading to this neuron with the
output values of the preceding neurons.

e Add up these values.

e Pass the result to an activation function, which computes the output value of this

neuronm.

4. Repeat this until the output layer is reached.
5. Compare the calculated output pattern to the desired target pattern and compute an
error value.

6. Change all the weight values of each weight matrix using the formula :

Weight (old) + learning rate * output error * output (neurons i) * output (neurons
1+1) * (1 - output (neurons i+1))
Where learning rate is defined as the changeable value used by the learning algorithm

which affects the changing of the weight values.

7. Gotostep 1.
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8. The algorithm ends, if all output patterns match their target patterns.

2.1.3.2 Other Learning Algorithms

There are many other learning algorithms and network models. Variations of
recurrent or feed-back networks influence the learning algorithms utilized. These
networks contain connection cycles from the output layer back into the input layer. All
learning rules derived for the multi-layered perceptron can be used for this type of

network [9].

Perceptron

The perceptron was first introduced by F. Rosenblatt in 1958 [9]. It is a very
simple neural net type with two neuron layers that accepts only binary input and output
values (0 or 1). The learning process is supervised and the net is able to solve basic
logical operations like AND and OR. It is also used for pattern classification purposes.
They usually have one input layer and one output layer. They are feed forward type of
networks and they use the Hebbian learning rule [9]. There are however some problems
that cannot be solved by perceptron. The most often quoted problem is the XOR problem
which involves building a perceptron, which takes two Boolean input and outputs the
XOR of them. What we expect here is a perceptron which would output a 1 if the two
inputs are equal and output a zero if the inputs are unequal. The truth table showing the

same 1s shown in Table 2.1
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Input Desired Output
0 0 0
0 1 1
1 0 1
1 1 0

Table 2.1 Truth Table of XOR

Consider the sample perceptron shown in figure 2.4. If the inputs are both 0, then net

input is 0, which is less than the threshold (0.5). So the output is 0 - desired output. If

one of the inputs is 0 and the other is 1, then the net input is 1.

Xi

. /

Figure 2.4 Perceptron attempting to express the XOR problem
This is above threshold, and so the output 1 is obtained. But the given perceptron fails
for the last case which is when both inputs are 1, the output is 0. We now have a
geometrical interpretation of the perceptron. A perceptron with weights wy, wa, ..., Wy

and threshold T can be represented by a hyperplane. All points on one side of the
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hyperplane belong to one class. The hyperplane (perceptron) divides the set of all points
(patterns) into 2 classes. In the case of the XOR problem, there are 2 inputs. Therefore,
we are able to have 2 dimensions. The points that we want to classify are [(0,0), (1,1)] in
one class and [(0,1), (1,0)] in the other class. A hyperplane showing no hyperplane can
divide the given set of points is shown diagrammatically in the figure 2.5 below. Clearly,
we cannot classify the points (crosses on one side, circles on other) using a straight line.

Hence, no perceptron exists which can solve the XOR problem.

(1,1)

Figure 2.5 The XOR problem where no hyperplane can divide the given set of points into

two classes.

Multi-Layer-Perceptron

The Multi-Layer-Perceptron was first introduced by M. Minsky and S. Paperta in
1969 [9]. It is an extended Perceptron and has one or more hidden neuron layers between
its input and output layers. Due to its extended structure, a Multi-Layer-Perceptron is

able to solve every logical(bperation, including the XOR problem. This perceptron is
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composed of an input layer, a few hidden layers, and an output layer. They use the Delta
learning rule which was developed by Widrow and Hoff [9]. The Delta rule is a
supervised learning technique that is also referred to as the Least Mean Square (LMS)
method, and is one of the most commonly used learning rules. For a given input set, the
output set is compared to the correct answer. If the difference is zero, no learning takes
place; otherwise, the weights are adjusted to reduce this difference. Multi-layer

perceptron are of the feed forward type and utilize supervised learning techniques.

Hopfield Net

The Hopfield Net was first introduced by physicist J .J. Hopfield in 1982 [9] and
belongs to the neural network types called ‘thermodynamical models’. It consists of a set
of neurons, which are interconnected. There is no differentiation between input and the
output neurons. The main application of a Hopfield Net is the storage and recognition of
patterns, e.g. image files. They are of the feedback type of networks and they use

supervised learning rules.

Kohonen Feature Map

The Kohonen Feature Map was first introduced by Teuvo Kohonen [9]. It is
probably the most useful neural net type when considering the simulation of the learning
process of the human brain. The essence of this type is the feature map, which is a
neuron layer where neurons organize themselves according to certain input values. The
type of this neural net is both feed forward (input layer to feature map) and feedback

(feature map). Furthermore, they use unsupervised learning algorithms.
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2.2 Overview of Safety Critical Systems

Having discussed the ANN architecture, training process, and learning algorithms
that were adapted, we now move on to the safety critical neural network domain and
begin with introducing safety critical systems. There have been numerous techniques
that have been discussed in literature about the safety related issues in a software system.
These issues have discussed different aspects such as faults, hazards, etc. Discussing each
of these techniques is beyond the scope of this thesis. We would just like to draw
attention to some of the issues that have to be highlighted when we use ANN in safety

critical systems.

2.2.1 Basic Definition

Computer, electronics, or electromechanical systems are those whose failure may
cause injury or death to a human being. For example, an aircraft or nuclear power
stations control system [11]. Thus, safety critical systems are systems where the system
specification and design must be carefully executed in order to assure that no errors occur

in the implementation.

Definitions of safety-related systems and components are as follows [11]:

* Software system safety —The software will execute within a system context without
contributing to hazards.

* Safety-critical software — any software that can directly or indirectly contribute to the
occurrence of a hazardous system state.

* Safety-critical functions — those system functions whose correct operation, incorrect

operation (including correct operation at the wrong time), or lack of operation contributes
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to a system hazard.
* Safety-critical software functions — those software functions that can indirectly, in
consort with other system component behaviour or environmental conditions, contribute

to the existence of a hazardous state.

2.2.2 Software System Safety Analysis.

Industries have devised their own form of safety standards [11, 12] for different
applications. These safety lifecycles are applicable to systems solely involving hardware
or software. The lifecycle must be managed through the stages of system development,
acquisition, operation .(includes maintenance), and disposal. The safety lifecycle’s
primary aim is to identify, mitigate and control hazards resulting from faults and failures.
Effective execution of all required safety processes must be ensured by a plan devised by
a safety management team.

Verification and Validation (V&V) plays a vital role in this place. Verification is
a process of checking if the system conforms to the specification. Verification is to
assure that the software components or software systems meet their specified
requirements [13]. Specified requirements are not only found in requirements
specification documents but can also be found in functional specifications, architecture
and design models, test cases, and so on. The purpose of validation is to demonstrate that
a software component or system fulfills its usage requirements when placed in its

intended environment [13].

The process of V&V is applied to the last stages of the Software System Analysis.

Some of the safety systems have quantitative requirements. Aircrafts for example have
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such safety standards. Failure rates must occur with probability of less than 10”7 per hour
and may be due to some technical fault in the overall system. This can be considered as a
form of safety requirement which needs to be demonstrably shown to be achieved.
Similar standards have also been expected out of space applications that use adaptive

systems.

2.2.3 Challenges for Safety Critical Neural Networks

Artificial Neural Networks (ANN)-based systems have emerged as a powerful
class of autonomous and adaptive systems [11, 12, 13]. Due to their learning abilities,
ANN have been increasingly attraéting attention in applications where autonomy is
critical and where the identification of the possible fault scenarios is not exhaustive
before hand. Though ANN has been accepted in many fields, there has been a certain
concern as to their acceptability in safety critical systems. The application of ANN in
safety critical system has to be supported by some techniques which can minimize the
amount of risk that is involved. So, to meet the requirements of such systems, ANN have
to be certified; however, there exist a number of issues that have currently not allowed

ANN to be certified. Specifically, in this thesis, our objectives are to:
(1) Address issues in the V&V of the ANN.

(2) Discuss current approaches to the V&V of ANN and identify limitations of the

conventional approaches to verification of ANN based systems.

(3) Propose an approach for V&V of ANN-based systems for on-board fault diagnosis in

an autonomous system.
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(4) Demonstration of the same with an ACS model and training the neural network to
provide fault tolerance for the ACS model.

(5) Demonstrating rule extraction from trained neural network to enable
comprehensibility of the neural network model developed.

(6) Demonstrating the use of formal verification to facilitate neural networks to be used

in safety critical systems.

2.3 Conclusion

This chapter began with an overview of the ANN, their architecture, and
topology. We then introduced the training and learning algorithms that are commonly
used within the ANN. This led to the discussion of the feed forward type of training and
back propagation algorithm with special emphasis, since this algorithm will be
extensively used in our proposed approach which will be discussed in the subsequent
chapters. We also discussed about safety critical applications and challenges for safety
critical neural network and issues of such approaches. This discussion pointed out the
importance of verification and validation of safety critical systems. The chapter
concluded with a brief overview of previous approaches in the field or V&V of neural-

network-based systems.
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Chapter 3

V&V of Neural Networks: Overview and
Proposed Approach

This first part of the chapter gives an overview of the concept of Rule Extraction, as well
as, the algorithms available for Rule Extraction, which enables the extraction of rules
from trained neural networks. The chapter further emphasises the need for development
of ANN-based fault diagnosis system and the need for verification of such systems. The
chapter then explains the proposed framework for verification of ANN-based fault
diagnosis systems and formal verification of the same. We finally provide a brief
description of UPPAAL and PVS; the tools used for correctness checking of the rules

extracted using the rule extraction algorithm.

3.1 An Overview of Rule Extraction

ANNSs have been widely accepted in industries due to their salient features such as
knowledge acquisition, knowledge retention, and robustness. However, this success is at
a cost of the ability of ANN to explain in a comprehensible manner the process by which
the given decision has been taken. This explanation capability is an integral part of the

functionality of ANN used in safety critical applications.

These explanation capabilities are defined by the rule extraction process. This
can be defined as the process of deriving a symbolic description of a trained ANN [14].
Ideally, the rule extraction process results in a symbolic description which closely

resembles the behaviour of the network in a brief and comprehensible form.
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Several advantages result when using rule extraction in ANN, namely:

(1) User explanation capability: In order for adaptive systems, in particular ANN, to gain
a higher degree of acceptance, they must incorporate some form of explanation
capability. This should be a vital portion of the trained ANN. The explanation capability
provides a means of understanding the symbolic and connectionist kind of approach used
in Artificial Intelligence. Further, it opens up the black box module and explains the

intermediate stages involved in the working of the ANN.

(2) Extension of ANN in safety critical domain: In addition to the user explanation
capability, the need to verify the ANN architecture and topology is also an important
facet of rule extraction. The requirements are for the ANN solution to be transparent so
that the different states of the system are interpreted unambiguously. Such requirements
will enable us to identify if ANN solutions are erroneous, as well as, why and when

suboptimal solutions occur.

(3) Knowledge acquisition for symbolic Artificially Intelligent(Al) systems: Machine
learning algorithms have overcome the problems of ‘knowledge acquisition’ which was
believed to be the most time consuming and challenging task in building an expert
system. Recent developments have shown that ANN can assist the task of knowledge

acquisition, and outperform other symbolic machine learning algorithms.

(4) Software verification and debugging of ANN components in software systems: If the
neural networks are part of a large software system which must be verified, then the

neural network component must also be verified. In this case, the rule extraction
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algorithm provides a mechanism for partial or complete ‘decompiling’ of the trained

neural networks. This serves as an implicit way of achieving software verification.

3.2 Rule Extraction Algorithms

Till now, we have discussed the advantages of rule extraction from trained neural
networks. We now present the different rule extraction algorithms present in literature
for the same type of networks. There are a number of different techniques that have been
developed to achieve the desired goals of extracting rules from trained neural networks.
The rule extraction algorithms are classified by (a) the expressive power of the extracted
rules; (b) the ‘translucency’ of the view taken within the rule extraction technique of the
underlying Artificial Neural Network units; (c) the extent to which the underlying ANN
incorporates specialized training regimes; (d) the ‘quality’ of the extracted rules; and (e)
the algorithmic ‘complexity’ of the rule extraction/rule refinement technique [15].
The two basic categories of rule extraction techniques are ‘decompositional’ and
pedagogical’. There is also a third - labeled as “eclectic’, which combines elements of
the two basic categories [16]. The decompositional approach focuses on extracting the
rules at hidden and output units within a trained neural network. A basic requirement for
rule extraction techniques in this category is that the computed output from each hidden
and output unit in the trained neural network must be mapped into a binary outcome
which corresponds to the notion of a rule consequent. All these individual binary rules
extracted from the hidden and output layers are combined together to form a rule base.
The particular interest in this type of classification are two techniques which are

SUBSET algorithm and M of N technique, here the algorithm searches for a set of weight
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containing the initial link/connection with sufficient positive value so that the threshold
value on the unit which is being analyzed will be exceeded irrespective of the values in
the other links or weights.

On the other hand, the pedagogical approach treats the ANN as a black box. The
core idea in the pedagogical approach is to view rule extraction as a learning task, where
the target concept is the function computed by the network and the input features. The
core idea in the ‘pedagogical’ approach is to view rule extraction as a learning task where
the target concept is the function computed by the network and the input features are
simply the network's input features' [S]. Hence the ‘pedagogical' techniques aim to
extract rules that map inputs directly into outputs.

The third category in this classification scheme combines the elements of both the
Pedagogical and Decompositional rule extraction techniques.

Rule extraction techniques can be classified into the following three categories.
These will be explained in brief in the subsequent sections.

(1) Boolean rule extraction using decompositional approach
(2) Extraction of fuzzy rules.

(3) Boolean rule extraction using Pedagogical approach

3.2.1 Boolean Rule Extraction using Decompositional Approach.

The first sets of algorithms we discuss incorporate the decompositional approach.
The backpropagation algorithm has been used successfully in problem domains involving
learning and generalization. For this reason, there existed a need for developing a rule

extraction technique for this algorithm which led to applying the decompositional
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approach to such problems. The main focus was placed on extracting Boolean rules from
trained neural networks. This is done at the individual (hidden and output) units [16]
where the basic motif initially searches for sets of weights containing a single
link/connection of sufficient (positive) value to guarantee that the bias on the unit being
analyzed is exceeded irrespective of the values on the other links/connections. If a link is
found which satisfies this criterion, it is written as a rule. The rules extracted at the
individual unit level are then aggregated to form the composite rule base for the ANN as
a whole. A schematic of the basic algorithms as reported by Towell and Shavlik [16]
using Boolean extraction which in turn use decompositional techniques is been explained
.b'elow.

SUBSET ALGORITHM:

For each hidden and output unit:

1. Extract up to Sp subsets of the positively-weighted incoming links for which the
summed weight is greater than the bias on the unit. Here P is a set of positive
weights and p is a element of the set Sp,

For each element p of the Sp subsets:

2. Search for a set Sy of a set of negative-weights, so that the summed weights of p
plus the summed weights of N — n (where N is the set of all negative weights and n
is an element of Sy) exceed the threshold on the unit;

3. With each element n of the Sy set, forms a rule: 'if p and NOT n, then the
concept designated by the unit'.

The subset algorithm has been successful in some cases; however, one of the major

concerns with using these algorithms, as reported by Towell and Shavlik, is that
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searching through the entire search space is time consuming. One option used in [17] for
restricting the size of the solution search space is to place a ceiling on the number of
antecedents per extracted rule [16, 17]. In such cases some of the rules may be omitted.
Another important development in the decompositional technique is M-of-N Techniques
[17]. The M-of-N concept expresses rules in the form:

If (M of the following N antecedents is true) then ...

The algorithm is explained in brief in the section below.

The M-of-N Technique.

1. Generate an Artificial Neural Network using the Knowledge based ANN
systém and train it using ba;:kpropagation. With each hidden and output unit, form
groups of similarly-weighted links.
2. Set link weights of all group members to the average of the group;
3. Eliminate any group which does not significantly affect whether the unit will be
active or inactive;
4. Holding all link weights constant, optimize biases of all hidden and output units
using the back propagation algorithm;
5. Form a single rule for each hidden and output unit; the rule consists of a
threshold given by the bias and weighted antecedents specified by the remaining
links;
6. Where possible, simplify rules to eliminate superfluous weights and thresholds.
M-of-N technique has been tested successfully for varied range of problem
domains including two from the field of molecular biology, such as splice junction

problem and the promoter recognition problem [17].
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3.2.2 Extraction of Fuzzy Rule

The extraction of Boolean rules using decompositional technique was growing
within the scope of ANN. At the same time, the method of extracting fuzzy rules from
trained neural networks was also making developments in the so called neuro-fuzzy
systems. Neuro fuzzy systems have three distinct elements. The first is that it contains a
mechanism to insert the khowledge in the form of fuzzy rules into an ANN structure .The
second element is training the neural network, which in our case is tuning the
membership function according to a pattern in the training data. The third element is
extracting refined rules from trained neural network, where the knowledge is stored as
membership functioﬁs. In order to continue making progress, substantial research is being

conducted in this field.

3.2.3 Boolean Rule Extraction using Pedagogical Approach

In this implementation, the underlying Artificial Neural Network is treated as a
‘black box' which contains a set of rules from a medical diagnostic problem domain,
which are extracted from changes in the levels of the input and output units. One of the
earliest published pedagogical approaches to rule extraction was the Validity Interval—-
Analysis (VIA) technique developed by Thrun [18]. This approach extracts rules that
map the input and output directly. This algorithm uses generate and test procedures for
the extraction of symbolic rules from a trained neural network which was trained using
standard back propagation approaches. This algorithm differs from other techniques
wherein the input checks for the individual activation of the units. In this technique, the

emphasis is on what is called the ‘validity intervals’. Here the validity interval of a unit
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specifies the maximum range for its activation value. The only assumption that is made
about the network is that the non linear transfer function of the units in the network are
either monotonic or continuous, which is the case in standard backpropagation algorithm.

The algorithm adapted for rule extraction is described below:

VIA Algorithm

1) User assigns arbitrary intervals to all units in the neural network.

2) VI-Analysis is done on these units and the intervals are being refined.

3) Refining the intervals is done by iteratively detecting and excluding the
activation functions fhat are inconsistent with the weights and biases.

4) The activation functions that are consistent with the initial input interval will
also be consistent with the refined interval.

5) The possible outcome of the VI analysis would be either consistent with the

input or it would return an empty interval.

This algorithm is explained through an example. Activation values are denoted by
x; where i refer to the index of the unit in the network in equation 3.2. If unit i is an input
unit, its activation value will simply be the external input value. If not, i refer to a hidden
or an output unit; Let P (i) denote the set of units that are connected to unit i. The
activation x;is computed in two steps:

net; = > W,x,+6, (3.1)

keP(i)
x; =0, (net,) 3.2)

Where the net; is called the net-input as shown in equation 3.1 and W, and 6,
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represents the weight and the bias respectively, o, denotes the transfer function which
was inferred from the training of the backpropagation algorithm, that is shown in

equation 3.3

with &' (xn = —ln(l - 3.3
i

H

O-i (neti) = 1 4 e(_neti)

The validity intervals for the activation function x; are denoted by [a;, bi]. There
are two phases in the VIA algorithm: forward phase and the backward phase. Usually the
network topology includes an input layer and output layer connected through a hidden
layer. Furthermore, there is a single layer of weights connecting the two layers. Refining
the validity intervals is done by means of a technique called linear programming, such as
the simplex algorithm. All of the non-linearities in the transfer function must be
removed, and thus the refinement of the intervals is done by projecting back the net-
interval. The resulting validity intervals form a set of linear constraints on the activation
values. All these if-then rules are then written of the form of a target class C, and where
I=/a; bj". Here, the precondition-hypercube of the rule to be verified is given by I and

If input € some hypercube I, then the rules belong to a class C

If input € some hypercube I, then the rules do not belong to a class C

Thus the VIA algorithm allows us to check for the correctness of the extracted

rules by verifying the correctness of the resulting classes.

3.3 Need to Develop Fault Diagnosis Systems

Safety critical systems are currently being employed in many fields, such as
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medicine and defense. These systems are vital, and thus failures in such systems may
lead to fatal consequences. Therefore, one attempts to use certain techniques which can
detect faults in advance and tolerate them before they develop into failures.

Software fault detection or diagnosis is termed as the use of any technique or
procedure that aims at detecting errors during any phase of a software life cycle thereby
avoiding any faults in safety related applications [19]. The traditional development
approaches aims at:

¢ Avoiding the introduction of faults in the system

e Removing faults during subsequent verification

Fault tolerant approaches can suppress the effects of such faults in the system [20,
21, and 22]. Typically they are based on the concept of code redundancy, which is
making sure that there is a redundant backup approach available in case the present
technique fails. The main objective of such fault diagnosis systems is that software faults
should not give rise to system failures. The faults must be detected before it starts
affecting a certain part of the system such that the result produced conforms to the
intended function.

Safety critical systems are influenced by several external factors as shown in
figure 3.1. These factors are responsible for affecting the safety of such systems [13] and
have incorporated different standards depending on each industry. Faults can occur at any
part of the software life cycle and removing such faults and maintaining the safety of

such systems is a huge challenge.
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Figure 3.1 Different bodies that influence safety critical systems [13].

So it has been established that various factors affect the safety of such mission
critical applications and various faults can occur at different stages of the software
lifecycle. Thus, a well-tested framework to diagnose, avoid, and tolerate faults is
required. Safety evidence plays a major role in arguing that the system has met all safety
requirements. At every phase of the software lifecycle such evidence has been extracted

and thus the cost of safety is inevitably expensive.

3.3.1 Development of ANN-based Fault Diagnosis Systems

Once the concept of ANN and safety critical applications has been understood, we
can relate both of them and understand the role of ANN in safety critical systems. The
adaptive behavior of ANN has attracted much attention from researchers however the

role of ANN in safety critical applications to date has been very limited. We introduce
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this aspect through examples.

Knowledge based artificial intelligent systems are popularly being used in safety
critical applications. The field of medicine has a keen interest in both neural networks
and knowledge based expert systems for diagnosing and advising doctors. The product
created for this diagnosis is called PROforma [23, 24] and has many benefits such as:

* Representation and accessibility of ever-increasing knowledge and information

* Dealing with altered or updated information

* Improved time resources, which are required to perform certain functions

This product learns from examples and feeds the new set of knowledge back into
the system. The diagrammatic representation of the PROforma domain rhbdel is given in
figure 3.2. The components of the system include Beliefs: Facts known by the system or
fed into the system. Goal: The intended goal of the system. Options: The possible
options available in order to achieve the goal. Argument: Argues how the chosen option
achieves the goal and why it is more beneficial than others. Processes: The resultant
processes that have been derived. Actions: The actions performed on the processes, with
resultant facts fed back into the system.

The common problem with this structure arises at the ‘actions’ stage. This stage
restricts the role of the system to ‘advisory’ roles, where the medical consultant
ultimately has the final decision. Thus, the advisory role of a knowledge-based artificial
intelligence system is very limited. Consultants may become too dependent on the
system and compromise final decisions [24]. This problem exists across a range of other
applications. Another problem is the generalization, which is the ability to give a correct

output when provided with unseen or novel inputs.
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Figure 3.2 Domino model used in PROforma [22)

A more specific example related to neural networks is concerned with Statistical
Process Control (SPC) [25]. The end-application in the case of an SPC may be a
production plant with ANNSs monitoring process operation and performance. The major
advantages of this type of function includes that it is capable of detecting the occurrence
of unspecified or undesired production. Important process disturbances and process
malfunctions (or faults) can also be detected [25]. This can lead to great improvements in
the overall system process operation. Siemens has been working on producing intelligent
fire detectors [25]. These detectors use both neural networks as well as data that have
been gathered from fire tests over the past several years. ANNs are used to combine
measurements of smoke density and temperatures from optical and heat sensors. ANNs
are then trained using a collection of rules discovered from human experts over many
decades. This product is called ‘Algorex’ and the developers are so confident in its ability
that they are offering compensation for any damages resulting from it. From these
examples, it can be seen that there is a need for ANN-based systems to be dependable

and safe in order for them to be used in safety critical applications.
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3.3.2 Need for Verification of ANN-Based Fault Diagnosis System

The systems that have used neural networks to date have been using them only in
advisory roles where they have limited flexibility. The concern behind this is that there is
a large amount of uncertainty with respect to the adaptability of ANN. This further leads
to the reason why neural have not been fully accepted within the study of safely critical
system applications. The issues related to the adaptability are the following:

* Correct functioning of the system according to its design

* Providing that the design meets its requirements

* Fault tolerance

Within the context of flight control systems, neural networks have high
dependency roles. Thus, the desired aim for ANNs is to achieve both critical and
essential roles.

* Critical — a function in which the occurrence of a failure would prevent proper
operation of the system [13].

* Essential — a function in which the occurrence of a failure would reduce the ability of
the safety-critical system to handle operating conditions outside of the normal operating
environment [13].

Given the lack of certification methods, developers of safety-critical systems are

required to build Al components that are recommended to perform the following [13]:

1. Redesign the proposed system without the AI component.

2. If the above is not possible, isolate the Al technology from non-Al components based
on hazard and system safety analysis and other processes.

3. If the above is not possible, then withdraw from the project quoting ‘Codes of
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Practice’.

The problem of verifying that the network is actually a refinement of the
specification needs to be tackled [13]. This may require formal specification or otherwise
to define the behavioral requirements of the network [13]. Exhaustive testing may be
impractical if the input space is too large and complex, since ANNs cannot be easily
divided into small meaningful components [13] which lead to the black-box

representation of systems.

3.4 Proposed Approach

After analysis of the use of neural networks in safety critical systems, it is evident
that there is a need for a complete framework for the verification of neural network-based
software systems. Formal methods could be used successfully for verifying neural
network-based software systems. Neural networks have been applied successfully in
many real world scenarios, however when the systems become increasingly complex and
when the input/output mapping becomes difficult then it is difficult to understand what
the network has learned. Our framework is, thus, an attempt to understand the black box.

The block diagram of the proposed framework is shown below in figure 3.3.
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Neural Network Theorem Prover
Rule Extraction Refinement of
:> . Extracted Rules

Figure 3.3: Block diagram of the proposed approach

Each of the modules of the proposed approach is explained in detail subsequently.
The Modelling of the Autonomous system under consideration for our framework is the
Attitude Control Subsystem (ACS) Model in simulink. The usage of the Altitude Control
Subsystem (ACS) [26] is that it is commonly considered as momentum management
system, which orients the main structure of the satellite at desired angle(s) within the
required accuracy. This ‘required accuracy’ is set by the payload, communication
devices, etc, mounted on the main structure. The attitude of a spacecraft may be specified
in a number of ways such as direction cosines, Euler’s angles, etc. The bodies in space
are constantly subjected to disturbance torques by various sources. In order to combat
those disturbances, an ACS subsystem is required. The torques usually re-orients the
spacecraft unless they are restricted in some way or another. Hence, it is essential that the
spacecraft determine its attitude using sensors and controls them using actuators.

The major components of the ACS are [26]: the Attitude Control Processor (ACP)
or on-board attitude controller, control torquers or actuators, (for example, reaction

wheels (RW), momentum wheels (MW), magnetic torque bars (MTB), etc.), attitude
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sensors, and the spacecraft body. The attitude sensors acquire the spacecraft’s altitude.
The errors in the angles are computed and based on these error signals the on-board ACP
generates torque command voltages. Control actuators produce torques depending on the
torque demand/command voltage inputs they receive from the ACP. In this process, the
required attitude is attained. A generic ACS block diagram with the reaction wheel as the

actuator for control along a single axis is shown in Figure 3.4:
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Figure 3.4 ACS block diagram [26]

A MATLAB-Simulink model of a generic ACS of a satellite has been developed.
Simulink was chosen as the modeling tool because of its wide acceptance and growing

demand in system modeling, analysis and design.

The model has been developed for fault-diagnosis in the ACS along a single axis,
i.e., along the pitch axis. Thus, it is not necessary to consider any cross-coupling effect.
The actuator or reaction wheel block in the control loop of the developed ACS model is
primarily based on the reaction wheel model presented in [14]. The model has been

extended and modified in order to include fault injection capabilities which will be
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presented in subsequent discussions. Also, an ideal dynamics for altitude sensors has
been assumed, i.e., signals from sun sensors, horizon scanners, magnetometers, etc. have
been fed back to ACP without any error or time delay. Therefore, the gain of the Sensor
Dynamics block has been assumed to be 1. Data was generated from the model under
three different failure scenarios both with and without the injection of faults. The
symbolic information that is gathered from the ACS model is then fed into the neural
network and the trained neural network is applied to rule extraction algorithm.

Having generated the required data from the model, the next step was training the
neural networks using these data. The trained neural network is then applied to a rule
extraction algorithm. We had started with a decompositional approach and chose the
SUBSET algorithm [17] to extract rules from the trained neural network. A simple
SUBSET breath first algorithm starts with searching to see if there are any sets containing
a single link which can indeed guarantee that they exceed the threshold. If so, then this
set is written as a rule. The search proceeds by increasing the size of the subset until all
the possible subsets have been completely explored. Once these rules have been
extracted the subsumed and overly general rules are removed and finally the rules are
derived. Though the SUBSET algorithm worked quite well with binary data, the number
of rules extracted could be numerous. On comparing the input and the target after rule
extraction, the amount of error that we had encountered was slightly high. The rules that
were extracted were further checked for correctness using the model checker, such as
UPPAAL.

The other rule extraction algorithm used is based on Pedagogigal approach, where

the knowledge may be in terms of symbolic information (such as if-then rules). The
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decompositional approach is of particular interest to safety critical applications since it
combines the symbolic knowledge and neural network learning paradigm. By combining
these two features we can refine and modify the symbolic knowledge. The block diagram
showing the process of combining the symbolic knowledge and neural network learning

is shown in figure 3.6.

Symbolic If-Then
Knowledge rules
7y
\ 4
INSERT EXTRACT
7\
v
ANN REFINE S Trained

Figure 3.5 Framework of combining the symbolic knowledge and neural network

learning [27].

The term referring to the combination of symbolic knowledge with neural
learning is ‘hybrid’. There are three main stages associated with the framework for
‘hybrid> ANNs. The first stage involves gathering initial symbolic information. This
initial information is prior knowledge known about the problem involved and can be in
the form of rules. The initial rule set is then ‘inserted’ into a neural network structure.

This can be achieved through rule-to-network algorithms [27, 28], which map parts of
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each rule into the internal structure of the ANN (such as weights and neurons).

Once the ANN has been represented as rules or in other words once the symbolic
information has been inserted, the next stage involves refinement or learning. Refinement
uses training samples to add or modify new knowledge to the initial symbolic
information. This is the key motivation for adopting the neural learning concept. Training
data may be simulated or may consist of data sampling gathered from real-world
interaction. A typical algorithm used for the learning process is the back-propagation
algorithm. During refinement or learning, the topological structure of the ANN may
require adaptation to accommodate changes in the initial rule set. For safety-critical
applications, ‘hybrid’ ANNs encompasses the potential to overcome many problems
associated with typical ANNs.

Analytical arguments about the solution provided by the ‘hybrid> ANN may be
based upon symbolic information. This enables a higher level of abstraction as opposed
to dealing with low-level representation, such as weights, links, and neurons. For
example, rather than using an overall output error (produced over some test set), the
network can be analyzed in terms of the rules it embodies. Consequently, this provides
extra comprehensibility for analytical processes.

Once the learning phase is complete, the final stage involves extracting symbolic
knowledge from the final ANN. This process attempts to determine all changes or
additions made to the initial symbolic information. In our approach, we use the VIA
algorithm as a means of extracting the symbolic knowledge stored in the network. Once
the final symbolic information has been determined, these rules which are of the If -then

form are then mapped into a form understandable to the theorem prover, such as
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Prototype Verification System ( which is described in detail in section 3.4.3). PVS
checks for the correctness and completeness of the extracted rules [30]. The output from

the theorem prover helps us modify the specification of the model.

3.5 Formal Verification

Formal methods in software development are defined as “A method that provides
a formal language for describing a software artifact (e.g. specifications, designs, source
code) such that formal proofs are possible, in principle, about properties of the artifact so
expressed” [29]. Formal methods involve the essential use of a formal language. These
methods of reasoning are exemplified by formal proofs. A proof begins with a set of
axioms, which are to be taken as statements postulated to be true. A set of inference
rules must be given in each formal method. A proof then consists of a sequence of well-
defined formulae in which each one is either an axiom or derivable by an inference rule
from previous formulae in the sequence. The last formula in the sequence is said to be

proven.

Formal methods in neural network represent the knowledge in specification
languages and methods of representation suéh as rule extraction and decision trees. In our
approach, we have chosen to use rule extraction to extract the symbolic knowledge from
the trained neural network after the fixed neural networks are tested and refined by
inserting examples. The testing and refinement provides us with test cases and test
procedures. The symbolic knowledge that we have extracted from the trained neural
network mimics the functionality of the network, these rules can be compared with the

original requirements. This is done by representing them in a formal language in the form
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of theorems and they are verified using a formal verification tool, such as PVS. These
formal methods allow the system to be proven to be correct, complete, and consistent.
There has been limited work done in the field of formal verification of neural networks
and the formal methods that are available for the V&V of neural networks are constrained
for specific networks only. Thus, our approach provides both the flexibility of usage on
any type of network along with a defined level of formalization with respect to the rule

refinement.

3.6 UPPAAL Overview

UPPAAL is a tool box [29] for modeling, simulation, and verification of real-time
systems, based on constraint solving and on the fly techniques developed by Uppsala
University and Aalborg University. It is suitable for those systems that can be modeled as
collection of non-deterministic processes with finite control structure and real valued
clocks, communicating through channels and/or shared variables. UPPAAL has three
main parts in the form of a description language, a simulator, and a model-checker. The
description language is a non-deterministic guarded command language with data types.
It serves as a modeling or design language to describe system behavior as networks of
timed automata extended with data variables. System behavior can be analyzed
interactively and in automated fashion by manipulating and solving constraints that

represent the state space of a system description.

3.6.1 Modeling in UPPAAL

The model consists of a collection of timed automata extended with integer
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variables in addition to clock variables. The edges of the automata are represented with
three label types: guards, synchronization action, and invariants.

Guards: Guards are conditions on the values of clocks and integer variables that must be
satisfied in order for the edge to be taken. They are basically conjunctions of time and
data constraints, where a timing constraint is of the form x ~n or x —y ~n (where n is a
natural number and ~ represents <=, >=, =, <, >) and a data constraint is of a similar form
1~jori—j~kbut with k being an arbitrary integer.

Synchronization: Automata communicate through communication channels. If ‘a’ is the
communication channel between two processes then synchronization actions are
represented by a! (Sending on channel a) and a? (Receiving on channel a).

Invariants: Control nodes are decorated with invariants to enforce progress in a system,
which are constraints on the clock values in order for control to remain in a particular

node.

3.6.2 Simulation and Model-checking

The simulator allows the user to examine the dynamic behavior of the system in
an interactive and graphical manner. It explores only a particular execution trace, i.e. a
sequence of states of the system. This provides an inexpensive means of fault detection in
early stages of the design. Its is also used to visualize a diagnostic trace generated by the
model checker so that the user can in an interactive and graphical fashion examines the

execution trace which may result in a system error.

The model checker covers the exhaustive dynamic behavior of the system by
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exploring the whole reachable state space of the system. It allows checking for invariant
and reachability properties; in particular, whether certain combinations of control-nodes
and constraints on clocks and integer variables are reachable from an initial
configuration. Other properties, such as liveness properties, can be checked by reasoning
the system in the context of testing automata or simply decorating the system description

with debugging information and then checking reachability properties.

3.7 PVS Overview

The tool used within our proposed approach is Prototype Verification System
(PVS), which provides a mechanized support for formal specification and verification. It
is built by SRI (Stanford Research Labs) and uses tools to support formal methods. PVS
is mainly intended for the formalization of requirements and design-level specifications,
and for the analysis of intricate and difficult problems. PVS and its predecessors have
been primarily applied to algorithms and architectures for fault-tolerant flight control

systems and to problems in hardware and real-time system design [30].

PVS consists of a specification language, a number of predefined theories, a
theorem prover, and various other utilities. The specification language used in PVS is
based on classical, typed, higher order logic. PVS specifications are organized into
parameterized theories that may contain assumptions, definitions, axioms, and theorems.
The goal of the PVS theorem prover is to support efficient software development of
readable proofs of all stages of proof development lifecycle. Thus, PVS is used as a
theorem prover in our proposed approach to prove for the correctness and completeness

of the symbolic rules that were extracted from the neural network.
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3.8 Conclusion

This chapter provided an overview of the rule extraction algorithm and discussed
the fault diagnosis aspect of the neural network. Furthermore, we discussed the proposed
approach for verification and validation of neural network-based software systems.
Finally, an overview of verification tools, such as UPPAAL and PVS (the tools used
within our approach for both formal specification and verification of our system) was

given.
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Chapter 4

Verification of the ACS Model

The first part of the chapter gives an overview of the ACS failure scenarios under
which the data was made available for training. This overview/discussion is based on the
work reported in [32]. We then move on to the specific discussion of the rule extraction
algorithm adapted in our proposed approach. We then explain in detail the aspects of
verification introduced during training and rule extraction from the trained neural
network. The specifics pertaining to the different formal techniques that were applied to
formally verify the rules extracted from a trained neural network have also been shown in

detail.

4.1 ACS Failure Scenarios

The training data which resulted for training the neural network was taken from
the ACS Simulink model developed in [26]. The Simulated data was given as input to
the neural networks, and the neural network output is compared with the simulated ACS
model output. Thus Failure Scenarios were created by injecting faults in the ACS
Simulink model. We wanted to train and extract rules from the neural network under
different scenarios of failure. Three failure scenarios for which data have been provided

for training are presented in the subsequent sections.
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4.1.1 ACS Failure Scenarios -1

A random increase in the reaction wheel motor current

Hardware level failure in the motor driver unit (MDU) of the reaction wheel can
cause this type of faults. This fault is injected when the Reaction Wheel is running near
zero speed. The purpose of this fault is to represent failure under a surge in the current.
The system behavior (pitch angle error) during the fault-free condition as well as under

the presence of this fault can be observed in figure 4.1.
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Figure 4.1: Pitch error vs time under failure scenario-1 [26]

The fault has been injected between t=2500 and t=3500 seconds. For all other

intervals outside of this time range, the system behaved normally.
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4.1.2 ACS Failure Scenarios -2

An Increase in Friction in the reaction wheel

These faults were injected when the Reaction Wheel was running near zero speed.
The purpose of this fault is to represent a failure if the friction is increased in the wheel
bearings because either the bearing material is wearing out or there is some problem with
the lubricant flow. The system behavior (pitch angle error) during fault-free condition as

well as under the presence of this fault can be observed in Figure 4.2.
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Figure 4.2: Pitch error vs time under failure scenario-2[26]

In this case, the faults were fed when t=2000 and it removed when t=3000. At all

other stages, the system reacted normally.
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4.1.3 ACS Failure Scenarios- 3

Bus Voltage Failure at High Speed

This fault has been injected when the Reaction Wheel was running near a
maximum allowable speed. This type of fault may occur at low bus conditions when
large back-EMF, developed in the reaction wheel motor operating at a high speed, limits
the motor current, consequently the motor torque. The system behavior (pitch angle error)
both under fault-free condition as well as under the presence of this fault can be observed
in figure 4.3. The fault has been injected between t=2000 and t=3500 seconds. As

anticipated, the system behaved normally outside this time range.
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Figure 4.3: Pitch error vs time under failure scenario-3[26]

It should be clear at this stage that failure due to bus voltage may take place only
at high operational speed of the reaction wheel. At low or near zero speed, even if the bus

voltage drops to a value as low as 10 volts, the torque may not be limited because of
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small back-EMF developed in the motor. And it is very unlikely that the bus voltage will
ever reach such low values. For this reason, we should only consider scenarios at high
speed. It has been assumed that the bus voltage level is 15 —28 volts under normal system
conditions. Consequently, it has also been assumed that the maximum allowable reaction
wheel speed is 5095 RPM which can be rounded to 5100 RPM. Figure 4.4 shows

different ACS parameters and their behaviour under failure scenario 3.
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Figure 4.4 Different ACS parameters under failure scenarios 3[26]
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4.2 Neural Network for the ACS Simulink Model

As discussed in Chapter 3, a multilayer perceptron model is generated for the

Attitude Control Subsystem of a satellite which uses the backpropagation learning

algorithm in supervised mode. A multilayer perceptron is a feed-forward neural network

consisting of a number of neurons typically arranged in layers namely the input layer,

hidden layer and output layer. The input layer receives the input and passes it on to the

next layer using the weighted connections of the hidden layer. The structure of the neural
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network model that we had generated has a structure such as the shown in figure 4.5.
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Figure 4.5 A multilayer perceptron architecture for the model chosen for training

In the neural network model structure shown in figure 4.5, each neuron takes one
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input variable ranging from X;, X;...... Xo. These inputs represent Bus voltage, External
Torque, Pitch, Pitch Error, Wheel Speed, Vehicle Angular Velocity, Motor Current,
Motor Torque, Torque command voltage. The outputs are Yy, Y5....Yo which would be
the trained output which tolerates the faults which are introduced in the input due to the
three faulty scenarios considered.

Each of these nodes in the neural network has variable weights and a predefined
transfer function between them. The input that is given to the neural network is
propagated through the different layers until it reaches the final layer which generates the
output of the neural network. The network output is then compared with the expected
output and the mean square error is ézilculated. The error is then propagated back through
those network layers which have contributed to the output. The process is repeated until a
reasonable error is achieved. Thus the neural network which was given an arbitrary input
resulted in the correct output after training. The training is done using the learning rule
and the transfer function. The learning rule that was used aided in changing the weights
and bias values. The transfer function is the function that relates the neuron output to the

net output. The neuron output is calculated using the formula shown in equation 4.1.
N-1
x=3 (Wx,-6) (41)
i=0

where W; is the weight in the ith neuron on the neural network, xi is the input at the ith
neuron, and @; is the bias value at that same neuron.It is assumed that i denotes neurons
in the input layer of the neural network architecture shown in figure 4.5 and j denotes
neurons in the hidden layer.

The transfer function or activation function that was chosen for the network is the

sigmoidal function. Sigmoidal function is a mathematical function that a neuron uses to
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produce an output referring to its input value as shown in equation 4.2.
N-1
Y=transf(x)-transf ( Z Wixi-0,) (4.2)
i=0

The activation function that is chosen is either tanh, logistic or Gaussian. In
our case the bipolar fanh has been chosen as the activation function of the hidden units.
The tanh produces both positive and negative values which results in faster training. The
learning rate controls the rate at which the error modifies the weights.

In our training, deciding when the training is optimal and deciding on a stopping
criteria were the two main obstacles. These were overcome by using the technique of
early training and stopping as explained below. The work done by Vapnik [31] had
shown that cross validation with the testing data is mandatory due to issues relating to
overtraining and cases where the network starts to memorize the input data.

Figure 4.6 illustrates that the error decreases over a number of iterations (training
each data sample) but then starts to increase after a point x. This problem can be solved
by stopping the training at point x or when the smallest error has been detected (using the

validation set as a reference).
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Figure 4.6 - Performing early training stopping to ensure best generalizations [31]

The following steps were followed to achieve maximum generalizations [31, 32]:

1. We divided the training data into training and validation set. The recommended

size of the validation set was 10% of the total training data samples.

2. After a few iterations of training, the network error was measured using the

validation set. Maximum error was considered for safety-critical systems rather

than average error functions.

3. We stopped training when the error started to increase.

The neural network was developed using a neural network toolbox however prior
to that we discuss the pre processing and the post processing that was required before the

data generated from the ACS subsystem of the satellite was given to the neural network

model.
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4.2.1 Preprocessing and Post processing

The neural network that was used utilized was a feed forward type of
backpropagation algorithm. For the architecture that was chosen, the data was in decimal
format and we converted it to binary input so that it was comprehensible to the neural
network.

The neural networks’ training can be made more efficient by perfdrming
preprocessing steps on the networks input and target values. The data available to us from
the ACS simulink model had nine variables out of which faults were induced into the
three variables discussed earlier. The threshold values of the data variable considered as

the input to the ANN are given in the Table 4.1 below.

Variables Range Unit Comments
From To

Bus voltage +15 +28 \" Assumed range

External torque -10X10” +10X10~ N-m Assumed range

Motor current -0.95 +0.95 A None

Motor torque -27.55X10° | +27.55X10° [ N-m None

Wheel speed -5200 +5200 RPM None

Torque command -5 +5 v None

Voltage

Pitch -2 +2 Degrees Approx range

Pitch error -0.15 +0.15 Degrees Approx range

Vehicle angular | -0.0021 +0.0021 Deg/sec Approx range

velocity

Table 4.1.Threshold values for data variables considered as the inputs to the ANN,

Since the network only accepts binary data, the decimal numbers were first

converted into the accepted binary form. The values of some of the input variables were

63




real numbers and so these were converted to decimal first and then to the respective
binary numbers in order to meet the requirements of the neural network at hand. The one
main drawback in this type of training is that negative numbers could not be expressed
easily. For experimental purposes we considered them as positive and then negated them
back after post processing. The post processing process was the reverse process in which

the binary data was converted back into the equivalent decimal numbers.

4.2.2 Neural Network Training using the Simulation Results

After completion of the pre processing stage, the ANN was trained for the first
failure scenario where faults were induced in the motor current. The data of the mofor
current is considered individually for training. The preprocessed data are fed in as the
input and target of the neural network and the neural architecture mentioned previously
was established. The data variables are then trained under different training parameters to
get optimum training. The parameters that were chosen for optimum training are shown

in detail in Table 4.2 below.
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Input 10
Hidden 1
Output 10
Learning coefficient of input 0.25
Learning coefficient of output 0.25
Epoch 1052
Learning algorithm Back propagation
Learning method Supervised
Activation function Sigmoidal

Table 4.2 ANN parameters for the ACS model

The graphical representation of the different trainings and the error in the training

is shown in figure 4.7 and 4.8 respectively
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Graph representing error in training motor current
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Figure 4.7 Graphical representation of error in training (motor current)

Graph showing correct training for motor current

1.2
1 _

0.8
Training
0.6

0.4

0.2

0 T T 1

[ I

1 2 3 4 5 6 7 8 9 10

Time (sec)

I Target(binary)
B Output

Figure 4.8 Graphical representation of correct training (motor current)
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MOTOR CURRENT ANN MOTOR
CURRENT
0.7 0.7
0.528 0.5
0.910 0.9
0.204 0.2

Table 4.3 Testing the ANN with 10 sets of training

The data provided as input was considered as a combination of faulty and non-
faulty data and the target was chosen such that it will approximate the input to the nearest
non-faulty data. The data after training is compared with the target function to check if
the error is minimal. The optimal values of the input variables are also approximated
from the output. A sample of the training and optimal value approximation is shown for

each of the failure scenarios in Table 4.3 and also graphically in figure 4.9.
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ANN versus simulation
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Figure 4.9: ANN versus Simulated Data

This procedure is repeated for the remaining two fault scenarios and the data
values of both pitch and bus voltages are also sufficiently trained until the optimal
training point is reached. Figures 4.10 and 4.11 show the error in the training and the
optimal training respectively. Table 4.4 contains a sample of data which shows the

approximation done using the testing data and figure 4.12 shows the graphical form.
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Graph representing error in training for bus voltage
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Figure 4.10 Graphical representation of error in training (bus voltage)

BUS VOLTAGE NEURAL
NETWORK BUS
VOLTAGE
15.89 15
14.98 15
28.98 28
26.12 26

Table 4.4 Testing the ANN after 10 sets of training
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Graph representing correct training for bus voltage
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Figure 4.11 Graphical representation of correct Training (Bus Voltage)

ANN versus simulation data
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Figure 4.12 ANN versus simulation data

The values that had been approximated by the neural network model for each of
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the pitch variables are shown in Table 4.5 below and graphically in figure 4.15. The
error in training is shown graphically in figure 4.13 and figure 4.14 as mentioned in the

previous cases for other failure scenarios.

Graph showing correct training for pitch
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Figure 4.13 Graph showing the correct training (Pitch)

PITCH ANN PITCH
1.0837 1

2.217 2

0.622 0

1.718 1

Table 4.5 Testing the ANN with 10 sets of training
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Graph showing correct training for pitch
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Figure 4.14 Graph showing the error in training (Pitch)
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Figure 4.15 NN versus training data
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4.3 Rule Extraction Algorithm Applied to Trained Neural Network

The verification of neural network based software systems has been discussed in
Section 3.4. It has been established in the literature that although neural networks are
highly researched, they cannot be verified using the conventional techniques. The main
problems that have been encountered in verifying the neural networks is acquiring an
accurate ANN model and then testing it against a real system.

For conventional systems, formal testing can be devised to validate a real system
against some model. However, ANNs do not have an adéquate model to test against
which becomes a limitation [16, 17]. The two levels involved in the validation of the
neural network are the training phase and the network validation phase. Training of the
neural networks plays an essential role in validation. The process of training can be
divided into two main functions [17, 18].

1. Ensuring that the data adequately describes the requirements.
2. Ensuring that the network training process adequately translates the requirements into
the expected output.

Validation for neural networks becomes an important and significant issue
because of the shortage of high integrity data for most applications [18]. However,
network solutions are usually selected for problems that have this data shortage. The
types of problems related to data can be a result of noise, imprecision, missing or
irrelevant data samples including erroneous measurements. Furthermore, assurance that
the data adequately describes the requirements is also needed. Techniques that attempt to
extract rules and facts (symbolic reasoning) from the network may be used to fulfill these

requirements [18].
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Therefore, in order to handle the problems with the data, we had ensured that the
Simulink model met with the requirements when the data was gathered from the model.
Usually statistical models provide only quantitative data and they do not provide a
threshold for safe and unsafe values. Since ACS was a simulated model, the threshold
values for each of the data variables under safe and unsafe conditions were first
established. Table 4.1 shows the optimum values for the model working without any
faults injected.

Realizing verification and validation of neural networks would only be complete
if we could extract rules from a trained network and if the extracted rules replicate the
workings of the neural network. First, sufficient data was collected successfully from the
ACS simulink model under different failure scenarios. It was then divided into three sets
which are the training set, testing set and validation set. Once the network had been
sufficiently trained the rule extraction algorithms were applied to them. For experimental
purposes we had binarised the input and trained the network against the target function.
After having chosen the network architecture and the learning algorithm, we had trained
the neural network model with all three failure scenarios, after which we had to choose
the rule extraction algorithm. At first, we choose the SUBSET algorithm, however there
were too many drawbacks. This led to the usage of the VIA rule extraction algorithm as
it is classified as a pedagogical technique where there is no changes are required in both

the training and learning mechanisms.
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4.3.1 Rule Extraction Using SUBSET Algorithm

Having trained the neural network under three different scenarios, now we have to
extract rules from them. The SUBSET algorithm is based on a realistic assumption that
the levels in the input and output are stored as logical functions corresponding to TRUE
or FALSE. Therefore, the activation depends upon the weight values on each of the links
connecting the input, hidden and output layers. Rules are generated by finding the
subsets of incoming weights where the sum of these weights and bias values makes the
activation high enough to generate an output that is equal to TRUE. The rules are of the
form

If (Condition) Then (Proposition)

The steps that we followed in order to generate these rules were:

1) Firstly, we identified the positive and negative weights as shown in Table 4.6
which was extracted after training from the neural network model trained for one
of the three faulty scenarios. We then identified the greatest positive weight
which has the most probable chances of generating an activation which would

exceed the threshold such that the output becomes TRUE.
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Positive Weight Negative weight
3.9867 -2.8094
3.7296 -1.6685
2.8842 -0.8924
0.5581 -0.6752
0.5578 -0.5042
0.5475 -0.4590
0.4165 -0.2850
0.3542 -0.1838

0 -0.1787
0 -0.0624

Table 4.6 Weights classified in descending order for positive and negative values

For each set of positive weights P, subsets of these positive weights incoming to

the neuron are identified as shown in equation 4.3

> (W,x, +6,)>0 4.3)

jeP
where i, j represent the neurons on the input and hidden layers respectively, N is
the set of negative weights, x; is the input that is entering the neuron i, W is the weight
that is assigned to the link connecting the neurons i and j and 6, is the bias for the neuron
i.
2) The same process was repeated for the negative weights and therefore for each P,
a subset N of negative weight links incoming for the neuron i are chosen such that they

satisfy the following equation shown in 4.4.

Q. W)= Wig+0)>0  (4.4)

jepP jepP

3) For each N state the rule:
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“If P and N then the corresponding neuron are selected”
4) Finally, the extensively obvious and subsumed rules are removed. In ‘general, it
is advisable to restrict the number of subsets.

The set of rules that were extracted using this algorithm was large therefore we
show a single example as a means of explaining the rule extraction method. The

resulting network is shown in figure 4.16.

0 1 1
-1.6685
0.5582 3.7296

Figure 4.16 Diagram showing initial conditions from which rules are extracted

1. For each output and hidden neuron i, Z (Wixi+0>0)  is checked.

P1: ((0) (0.5568)-(3.1747))>0 False
P2: (1) (-1.6685) + (0.5040))>0 False
P3: (1) (3.7296)-(0.7802))>0 True

2. For each of the hidden and output neuron i,

(2, Wp)-Y, (Wixi+6))>0

jeP jeP

N1: ((0) (0.5581)-((0.5581) (0)) - 3.1747) > 0 True
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N2 :((1) (-1.6685)) - ((-1.6685) + 0.5040)) > 0 False
N3: ((1) (3.7296)-((1)(3.7296)-0.7802)) > 0 True
3. ForeachN
If (C and not E) then True
The same procedure is repeated for each of the neurons and the rule base is formed.
A large number of rules resulted after removing the overly obvious and subsumed rules
for the three faulty variables. For this reason, the rules that were extracted were verified
for consistency in a model checker. The percentage of accuracy was considerably less
than that of VIA algorithm. Some of the drawbacks of this SUBSET algorithm include
that it can be applied with data which is in binary format only and moreover, the set of
rules which are extracted is quite large. These drawbacks forced us to consider an
alternative algorithm. This brought about the usage of the VIA algorithm for rule

extraction.

4.3.2 Rule Extraction using VIA Algorithm

The VIA algorithm is used to extract if~then type of rules from a trained neural
network. This algorithm is based on a validity interval analysis (VIA), which checks for
consistency within a trained neural network. This consistency is achieved by propagating
the validity interval through the network in an iterative manner.

The VIA algorithm was directly applied to our model as no new requirements
were imposed on the neural network. Thus the data from the ACS simulink model was
not binarised for training the neural network, the data was taken directly from the model

and the input data provided was taken under faulty scenario as discussed in section 4.1.
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The only assumption taken was that the nonlinear transfer function of the neural network
must be monotonic and continuous. This is the case with which we trained our neural
network and thus no modifications were required. As previously mentioned, the main
design behind this algorithm encompasses the notion of a validity interval. Initially, the
intervals are randomly assigned then afterwards; they were iteratively refined by
removing those intervals which were inconsistent.

The neural network chosen for rule extraction has an input layer, a hidden layer
and an output layer. We have considered nine variables that were taken into consideration
during the training phase and hence nine neurons are present in the input layer each of
which take one variable as input. In the hidden layer, each neuron takes in nine variables
namely bus voltage, external torque, motor current, motor torque, wheel speed, torque
command voltage, pitch, pitch error, vehicle angular velocity as their input from the nine
input layer neurons X;, X»...Xo. The network architecture that was chosen is shown in
figure 4.5. For simplicity reasons, only three variables containing faults have been
considered for training, which are motor current, bus voltage and pitch. Thus the network
under consideration has three neurons in the input namely X;, X, and X3 and hidden
layers and three in the output layer having outputs Y, Y and Y3. The network structure
is shown in Figure 4.17 and the weight and bias information that are extracted from the

network are shown in the Table 4.7.
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Figure 4.17 Network topology of the neuron model under consideration

From node To node

Hidden4 | Hidden5 | Hidden6

1(input) 14111 | -2.6423 | 2.8074
2(input) -1.7672 | 1.8327 | 3.0807
3(input) 1.0559 | -3.1011 | 2.3757
Bias -0.1716 | 0.0913 | 0.0746

Outputl | Output2 | Output3

4(Hidden) 0.2154 | 0.0268 | 0.3705
5(Hidden) -0.3706 | 0.4040 | -0.1404
6(Hidden) -0.0340 | -0.6008 | 0.1595
Bias -03726 | 0.1374 | -0.1504

Table 4.7 Weights and bias neuron model shown in figure 4.17
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Once the network is well-trained, the weight and bias information are extracted
from the network and the activation function is calculated. Since we assume the network
is sufficiently trained, we consider static values of both the weights and biases.

The VIA algorithm has two phases, namely the forward and backward phases.
The forward phase consists of when the intervals of activations are propagated in the
forward direction. We randomly set a maximum range on the initial activation values
which are the validity intervals of the neuron for the forward phase. We used linear
programming and simplex algorithm to optimize these intervals in the backward phase.
Inconsistent activation values are removed during the refinement using linear
programming. All the activation values consistent with the initial interval are also

consistent with the refined interval. Thus the rule extraction has two main steps.

1. Finding rule hypotheses in the form of validity intervals for neurons of the neural

network

2. Using VIA to verify these initial intervals and refine them by detecting and

removing all of the inconsistencies.

The first part involves finding the rule hypotheses in the form of validity intervals
for neurons. The algorithm proposes both search based and learning based mechanisms.
We have a discrete data set and therefore, the search based technique is the better option.
A search tree was constructed with the most general rule at the root of the tree. Each node
in the tree spans a subtree of a more specific rule. The VIA algorithm is applied to the

node. If the rule is verified the subgraph is removed.
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In order to derive the general rule we first calculate the initial activation values.
The activation value is constrained such that the successor receives the value of net;
which is within the validity interval. The activation x; is computed in two steps in

equation 4.5 and 4.6:

net= Z(W,jx,. +6) 4)5)

jeP
x; =0 ,(net,) (4.6)

Here the net; is called the net-input and W; and 6; are weight and bias
respectively. o denotes the transfer function which it infers from the training of the
back-propagation algorithm as shown in equation 4.7.

with o,” (x;)=— ln(i -1 @7
X.

H

oi(neti) = "

—neti
e

Once the validity interval is extracted and propagated through the network the
activation function of the successor units are smaller than the previous values for all
consistent links.

Once the input and target are given and the neural network is trained sufficiently,
the weights and bias information are extracted. For the purpose of analysis we have
considered three parameters in which faults were injected as discussed in section 4.1. The
positive and negative values of the weights of the output and hidden units are first
classified in descending order in two sets as previously shown in Table 4.7.

Within the algorithm, for each hidden or output unit j the algorithm starts from the
most positive weight value( say i) and then it searches for the incoming link that causes

the node in the next layer to be active regardless of other input links coming to that node
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(from the other neurons of the input layer). If such nodes are identified then they are

written as a rule. The intermediate rules extracted are of the form

If [(wiI X1+ woXotws X+ ... . +wpXy,) >= 0+A] L) consequent

where w refers to the weights, x refers to the input, 0 refers to the bias value and Cris the
certainty factor which represents the measure of the belief in the extracted rules. The A
refers to the certainty factor. The certainty factor for the sigmoidal function is calculated
using the equation 4.8.

1

n
. (.Z Wijx,'—Bj—A)
1+ exp =1

Cr= If the activation is sigmoidal  (4.7)
Note that a range of x; values may satisfy an intermediate rule and thus it is
desirable to determine a suitable extreme value within the range. To make this traceable,
each input range is discretized into a small number of values that can subsequently be
examined. Thus, each input feature x; € (a;, b)) is discretized using % intervals as shown in
equation 4.8.
(Di € {dijg=ai,diy, ......... dik-1, dix = bi}) (4.8)
where d;;and d; . are the upper and lower boundary values of interval / of input x;.
Through this method, the intermediate rules are first determined for our network.
Then, the positive links for each of the three variables were considered in order to
determine the general rules. From these rules, a hypothesis about the problem is
considered. This can be proved or disproved using prior knowledge of the model and the
rules previously generated. The hypotheses of the problem involved in our model are as
follows:

Motor_Current € {True, False}
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Pitch e {True, False}
Bus Voltage € {True, False}

Within these hypotheses, all of these variables can be either faulty or non-faulty
which is denoted as True or False respectively. Essentially we are attempting to realize a
target concept or a particular goal within our network. The extracted rules would be
deemed correct if they prove this target.

The target within our system is as follows:
e Problem M1 : If pitch=True, Motor_current=True and Bus_voltage=True Then

M1(Status=SAFE)

As mentioned earlief, we have considered faults within three variables and thus
the other variables are set to TRUE by default. There is no checking necessary for these
statements.

e Problem M2: If any of the three variables has a value other than TRUE Then

M2(Status=UNSAFE)

After having stated our hypothesis and the target function which we are trying to
realize, we then extract the general rule by finding out the activation function of the most
positive weight which exceeds the threshold imposed by that neuron. This is done by
using a Directed Acrylic Graph as shown in figure 4.18. The list of consistent rules that
resulted was large and therefore we had to impose linear constraints on the network in
order to get a finite set of consistent rules. These constraints were only imposed in the
case where we had all nine variables present. Within our concise example of three
variables, these constraints were not required. The constraints imposed were the

following:
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-If sum of all feature values >1 then not M1

-If sum of all feature values were <=1 then M2

As a result, we iteratively removed all the inconsistent links within our network. As
stated earlier, the target function is realizing whether the system is safe or unsafe. Some

of the rules that were extracted in the process of realizing the target function are shown in

Table 4.8.

Pitch Motor Current Bus Voltage Class
True False False Not M1
False True True Not M1
False False - True Not M1
False False False Not M1
True True False Not M1
False True True Not M1
True False True Not M1
True True True M1

Table 4.8 The extracted rules from the network learned

After the general rule was established the Directed Acrylic rule graph (DAG) was
constructed for the three fault variables which we have taken under consideration. This
enabled us to prove or disprove the hypotheses and remove the inconsistent rules from
the finite search space.

Within this DAG, a breadth first search is done to extract the rules by knowing the
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target concept. The entire search space consists of all the possible rules. The root forms
the most general rule where the status of our three variables (true or false) is unknown.
The search then progresses and each of the rules are either proved or disproved. It can be
seen that if all three variables are true then the target concept is proved and the system is
deemed safe. Thus once the general rule is proved correct the entire subgraph belongs to
the same class. Thus the DAG will generate the final rules which are shown in Table 4.8
Therefore, the VIA analysis has been successful in generating the proper rules thereby

proving our target concept.

[y1 = true;y.=true;.....

[yi1=true;y,=false;.....}

lyi=false;y,=true;.....]

4{/; ly:=false;y,=faise;...] \
4///'.’ lys=true;.....; ya=truely

SSY
W4
¢ [y1=false;y,=true;y,=true)

o XA lys=false;.....;ys=falsel LN}
[ ys=true] 4“\‘ [yi=false;y,=true;y;=false]

[yi=false;y,=false;y;=true]

[ys=true;y,=false;ys=true]

/

[yi=true;y,=false;y;=faise]

[y =false;y,=false;y;=false}]

4.18 Directed Acrylic Graph for rules with three Boolean variables[18]

The main advantages of using the rule extraction algorithms is better
understanding of the output of the neural network and a higher speed of learning. A
pedagogical approach to the problem was used and the symbolic information that has

been extracted from the rules is fed back into the network. These extracted rules are of
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the Boolean propositional logic (If-then form) form which gives the relationship between
the inputs, weighfs and the output activation. By looking at the output activation
functions a distinct pattern can be realized which is unique for the faulty data and non
faulty inputs. Thc extracted rules for each individual neuron are aggregated over the
entire network to determine a global rule set. These extracted rules can then be used to
generate a specification at training a posteriori.

As a result, the rule extraction was a process of translating the neural network
into a straightforward comprehensible format which allowed us to understand the inner
functioning of the neural network.

There are a number of factors that determine the accurééy of rule extraction algorithms.
These include fidelity, quality and comprehensibility of the extracted rules. Fidelity is the
ability of the extracted rules to mimic the working of the neural networks.
Comprehensibility is the ability of general users to understand the rules with ease. The
rule extraction algorithms used, their classification and their applicability is shown in
Table 4.9. The quality of the rules and the complexity of the two algorithms that we have

utilized are shown in Table 4.10

Rule extraction algorithm | Classification Applicability
SUBSET Decompositional | 3-Layer feed forward, | Binary
backpropagation with
weights
VIA Pedagogical 3-layer feed forward, | Discrete
backpropagation with
weights

Table 4.9 Classification and applicability
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Complexity Quality of Rules
Dependence Evaluation Accuracy Fidelity Comprehensibility
Number of | High Low High High
rules are more
Number of | High High Low low
neurons  and
layers

Table 4.10 Quality of rules and complexity

4.4 Formal Specification of the Neural Network in UPPAAL

Formally specifying the neural network that was designed based on the extracted
rules is the first step taken towards formal verification of the neural network. The
SUBSET algorithm was applied to the trained neural network and symbolic rules were
extracted. The rules were checked for correctness by representing them in a model
checker such as UPPAAL and then checked against the target. The entire rule extraction
phase of our proposed model is modeled in UPPAAL and the verification is done using
the model checker for various safety and liveness properties. Each layer of the neural
network is modeled as a finite state machine synchronized with each other through
message exchanges over communicating channels.

Our design contains a main machine as shown in figure 4.19 which is
synchronously running with the finite state machine of each individual node in the
process. This state machine moves from the SAFE state to the UNSAFE state depending
on the input and target values. In addition, we have three different processes representing
our Input layer, Hidden layer and Output layer. The Neural network training and rule

extraction from trained neural network is shown in detail in section 4.2 and section 4.3.
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Section 4.3.1 in specific focuses on rule extraction using SUBSET algorithm from trained
neural network. The extracted rules are then model checked using the model checking
capabilities of the UPPAAL tool. Having trained the neural network model in supervised
training algorithms, we already know the expected target and the output that we derived
using the neural network model designed for training. The rule extraction algorithm
‘further provided us a comparison of the target output and the output that was obtained.
The target and the output obtained are further checked for correctness using the model

checking capabilities of UPPAAL.

input1!=Cutput1 || Input2!=Output2{jinput3!=Output3
trig?

Output1:=0,0utput2:=0,0utput3:=0
notrig?

Figure 4.19 Main finite State machine in UPPAAL

Each layer within the neural network structure is represented by a separate finite
state machine which is then synchronized with the main machine. Each state machine is
designed such that based on the given values for Activation and Threshold a particular
node is reached. After comparing the Activation and Threshold values, a decision is
made and one of two states is attained namely triggered or not triggered. In figure 4.20,

the first node represents the input layer. If the Activation is greater than the threshold
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then the neuron is triggered and goes to the Trigger A, else the neuron A is not triggered
and it goes to the Do_Not Trigger A state. The channel trig and notrig synchronizes
this state machine with the main machine. Thus similar to the working of the rule
extraction algorithm, our model is designed to make decisions on if the neuron A is

triggered or not.

Activation := 0,
Threshold := 1

Activation = 0 Activation =0

Activation < Threshold
notrig!
Outputt =0

Activation > Threshold
trig!
Output1 =1

Figure 4.20 Input layer state machines in UPPAAL

In figure 4.21, the first node represents the hidden layer and has a similar
structure. It is triggered on the basis of the second activation function and the second
threshold function. This is also synchronized with the main machine using the trig and

notrig channels.
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Secpnd_Activation := 2,
Sedond_Threshold := 1

Second} Activation = 0 Second] Activation = 0

Second_Activation > Second_Thresholg
trig!
Output2 ;=1

econd_Activation < Second_Threshold
notrig!
Output2 :=0

Figure 4.21 Hidden layer finite state machines in UPPAAL

In figure 4.22, the first node represents the output layer. This machine is similar
to the input and hidden layers and is also synchronized with the main machine using the

trig and notrig channels.

Third_Activation := 2,
Tryrd_Threshold := 1

Third_{\ctivation = 0 Third_fActivation = 0

Third_Activation > Third_Threshold
trig!
Output3 ;=1

Third_Activation < Third_Threshold
notrig!
Output3 := 0

Figure 4.22: Output layer finite State machine in UPPAAL
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4.4.1 Simulation and Verification

The model has been simulated using the UPPAAL simulator. Our Target value is
set to (0,1,1) which states that neuron A was not triggered and neuron B and neuron C
were triggered. The output resulting from our model check, should be the same. If the
expected target and the output that we had derived are the same then the system goes to
the Safe state else the system goes to the Unsafe state which is shown in the simulation
results using the message sequence diagram. It can be seen from the message sequence
diagram in figure 4.23 that when the expected output and target are different the system
goes to the Unsafe state else it remains in the Safe state. The results for a single
simulation are shown however the simulation is repeated for all three fault scenarios.
The same process is repeated for each output and the neural network model is checked

for correctness.
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Neuron_A Neuron_B Neuron_C Status
Trigger_C Unsafe
Start
Decision_State
Start
Safe
Do_Not_Trigger_A
Decision_State
I o
E -
Trigger_B Unsafe
L
Start
A
Decision_State
Start
Decision_State
Start
N
Decision_State

N7

Do_Not_Trigger_A Safe

Figure 4.23: Simulation results.
In figure 4.24 we show the model checked results for certain liveness and safety

properties. While conducting this simulation, the input value was taken as (0, 1, 1). This

means that the neuron A is not triggered. With respect to the first state machine, the state
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Trigger A is reached and thus the model checker shows property not satisfied. The
system is also checked for deadlock which does not exist within the system therefore the
property is satisfied. The results of the reachability analysis performed are shown in
figure 4.25. In figure 4.25 we have shown that the finite state machine that was created
and synchronized in UPPAAL does not have any deadlock. Various other properties
such as the reachability analysis has also been shown, except the first property which is
not be satisfied because the output expected is (0, 1, 1) and thus the Trigger A state is not
activated and hence when we check to see if that state is reached that property is not
satisfied. All other properties such as Trigger B and Trigger C are satisfied because
those states are activated. Hence we have shown that the model checking capabilities of
UPPAAL can be used for the verification of neural network based systems to be used in

safety critical systems using formal methods.

States States Reachable Status
PO E<>A.Trigger A Not Satisfied
P1 E<>C.Trigger C Satisfied
P2 E<>B.Trigger B Satisfied
P3 E<>A.Do_Not_Trigger A Satisfied
P4 E<>Status.Unsafe Satisfied
P5 E<> Status.Safe Satisfied
P6 A[] not Deadlock Satisfied

Figure 4.11 Model checking and reachability analysis of the system in UPAAL
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4.5 Formal Specification in PVS

The rules extracted from the VIA algorithm are also checked for correctness
against the ACS model specification. The extracted rules are formally specified using a
theorem prover called PVS. Each of the nine variables given as an input to the neural
network model is checked for correctness. The variables are set to either TRUE or
FALSE indicated by 0 or 1 in the specification. The theorems are then checked and the
system is deemed safe when all of the variables result in a TRUE value. Otherwise, the
system is considered unsafe. The variables are set to TRUE only when the faults are
tolerated in the initial training phase of the neural network and the rules extracted are
replicating the ACS model completely as is the case within the actual neural network
structure. It is indicated in our PVS code by the‘ﬁrst eight AXIOMS that even if one of
the nine variables are FALSE then the system’s status is unsafe. The theorem proving
capabilities of PVS proves that the system is deemed safe only when all of the variables
are true and this would happen only when the initial specification and the extracted rules
are similar which in other words means that the neural network behavior is completely
replicated. The rules extracted using VIA algorithm was similar to the initial
specification so we had proved using theorem prover that the system was proven to be
safe.

Hence formal verification has proved that V&V of neural networks is similar to
the conventional verification if a well specified model and adequate data is available for
training. We have shown that neural networks can be verified through a proposed
framework for use in safety critical systems and an understanding of the working of the

neural networks can be achieved. The same formal verification could have been done in
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a model checker such as UPPAAL also, but we wanted to show that different formal
techniques can be used for V&V of neural networks. V&V of ANN was actually to
prove that the neural networks were indeed behaving in the way it was intended to
behave and there is no incomprehensibility associated with the neural network training.
Neural networks can be used in safety critical systems only when they clear a
certification procedure and for them to be able to clear this process they must be able to
prove that though neural networks are adaptive, they are indeed adapting to the correct
data and the neural network training is indeed correct. This is done by extracting the
rules from the trained neural networks and formally verifying those using formal methods
to see if the extracted rules replicate the specified model. Thus the proposed framework
was successful in showing this for the three failure scenarios for which the neural

networks was trained and the rules were extracted from them and tested formally.

Q

simplecheck % [ parameters ]
THEORY

BEGIN
mybool: TYPE+4=int
Pitch: int=0
Motor Current: int=0
Motor_ Torque: int=0
Pitch Error: int=0
Vehicle Velocity:int=0
Tcommand Voltage:int=0
Wheel Speed:int=0
B Voltage:int=0
External Torque:int=0
Status: int

Rule: AXIOM ((Pitch=1)AND
(Motor_Current=0)AND(Motor_Torque=O)AND(Pitch_Error=O) AND

(Vehicle Velocity=0) AND (Tcommand_Voltage=0) AND (Wheel Speed=0) AND
(Bus_Voltage=0) AND (External Torque=0)) IMPLIES (Status=1)

Rulel: AXIOM ((Pitch Error =1) AND (Motor_Current =0) AND (Motor Torque
=0) AND (Pitch=0) AND (Vehicle Velocity=0) AND {Tcommand Voltage=0) AND
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(Wheel Speed=0) AND (Bus Voltage=0) AND (External Torque=0)) IMPLIES
(Status=1)

RuleZ: AXIOM ((Motor Current=1) AND (Pitch Error=0) AND

(Motor_ Torque=0) AND (Pitch=0) AND (Vehicle Velocity=0) AND
(Tcommand Voltage=0) AND (Wheel Speed=0) AND (Bus Voltage=0) AND
(External Torque=0)) IMPLIES (Status=1)

Rule3: AXIOM ((Motor Torque=1) AND (Pitch Error=0) AND

(Motor_ Current=0) AND (Pitch=0) AND (Vehicle Velocity=0) AND
(Tcommand Voltage=0) AND (Wheel Speed=0) AND (Bus_Voltage=0) AND
(External Torque=0)) IMPLIES (Status=1l)

Ruled: AXIOM ((Vehicle Vehicle=1) AND (Pitch Error=0) AND

(Motor_ Current=0) AND (Pitch=0) AND (Motor Torque=0) AND
(Tcommand Voltage=0) AND (Wheel Speed=0) AND (Bus Voltage=0) AND
(External Torque=0)) IMPLIES (Status=1)

Rule5: AXIOM ({(Tcommand Voltage=1) AND (Pitch Error=0) AND
(Motor_ Current=0) AND (Pitch=0) AND (Motor Torque=0) AND
(Vehicle Velocity=0) AND (Wheel Speed=0) AND (Bus Voltage=0) AND
(External Torque=0})) IMPLIES (Status=1)

Rule6: AXIOM ((Wheel Speed=1) AND (Pitch Error=0) AND (Motor Current=0)
AND (Pitch=0) AND (Motor Torqué=0) AND (Tcommand Voltage=0) AND
(Vehicle Velocity=0) AND (Bus Voltage=0) AND (External Torque=0))
IMPLIES (Status=1)

Rule7: AXIOM ((External Torqgue=1) AND(Pitch Error=0) AND

(Motor Curent=0) AND (Pitch=0) AND (Motor Torque=0) AND
(Tcommand_Voltage=0) AND (Wheel Speed=0) AND (Bus Voltage=0) AND
(Vehicle Velocity=0)) IMPLIES (Status=1)

Rule8: AXIOM ((Bus_Voltage=1l) AND (Pitch FError=0) AND (Motor Current=0)
AND (Pitch=0) AND (Motor Torgue=0) AND (Tcommand Voltage=0) AND

(Wheel Speed=0) AND (External Torque=0) AND (Vehicle Velocity=0))
IMPLIES (Status=1l)

FINAL: THEOREM (Motor Current=0 AND Motor Torque=0 AND Pitch=0
AND Pitch Error=0 AND Vehicle Velocity=0 AND Tcommand Voltage=0
AND Wheel Speed=0 AND Bus_ Voltage=0 AND External Torque=0 )
IMPLIES Status=0

FINAL]l: THEOREM (Motor Current=0 AND Motor Torque=0 AND Pitch=0
AND Pitch Error=0 AND Vehicle Velocity=0 AND Tcommand Voltage=0
AND Wheel Speed=0 AND Bus Voltage=0 AND External Torque=1 )
IMPLIES Status=1 B B

END simplecheck
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4.6 Conclusion

In this chapter we have shown the results of training the data from the ACS simulink
model using neural networks. We have shown the developed neural network model
which was trained in such way as to not allow overtraining and we used a generate and
test procedure during the training of the neural network where the training data was
divided into training set, testing set and validation set. The training was successfully
completed and rules are extracted from the trained neural network. The extracted rules
are then checked for correctness with the initial specification using formal techniques
such as a model checker and a theorem prover. We had chosen two different rule
extraction algorithms. The rules extracted from the SUBSET algorithm was checked for
correctness against the specification of the ACS model using the UPPAAL model
checker. We realized that the rules extracted from the SUBSET algorithm did not really
replicate the specification of the ACS model. Some of the reasons why SUBSET
algorithm did not work too well for our model were that the number of the rules that were
extracted for our problem was so many that when overly obvious rules were subsumed
rules was removed. The removed rules would have hidden a significant structure of the
neural model. The other reasons was that there is always only a certain level to which we
can safely restrict the number of antecedent, as there is always a tradeoff between the
number of rules that were extracted and the accurate reproduction of the network’s
behavior. We understood that the rule extraction algorithm and the formal verification
tool that is chosen are subjective to the problem in hand. That is the reason that SUBSET
algorithms, though being established as an algorithm from which rules have been

extracted successfully was not able to completely replicate the network’s behavior

98



successfully in our problem. We have shown rule extraction from SUBSET algorithm
only under one faulty scenario as the rules extracted were so many taking into account
one scenario itself. SUBSET algorithm only accepts data in the binary format. The
algorithm was not successful in replicating the network’s behavior under one fault
scenario itself. The rules extracted from SUBSET algorithm was successfully verified
using a model checker. Though the rules were not consistent with the model, it was
shown that a model checker could check for correctness of the specified model.
UPPAAL was successful in showing that the system was considered unsafe as the
extracted rules were not correct. Due to the fact that the SUBSET algorithm did not
provide satisfactory results, we advanced our work to include the VIA algorithm for rule
extraction. VIA algorithm can be directly applied to the model as no new requirements
were imposed. Rules were extracted from the neural network model trained using a
simple back propagation algorithm. The neural model was trained under all three failure
scenarios and the extracted rules replicated the network’s behavior to a good accuracy
level. The results were that the VIA algorithm returned accurate results with respect to
our given model. In order to illustrate that formal methods can be used within trained
neural networks we chose an alternative correctness checker known as the PVS theorem
prover. The theorem prover helped us realize that the rules extracted from the VIA
algorithm replicated the initial specification. So we have realized that for the proposed
approach to work properly three different criterion should be satisfied (1) There should
be adequate data for training the neural network in the initial training phase (2) The Rule
extraction algorithm used is specific to the domain that has been chosen (3) Formal

verification does play an important role in the verification and validation of the neural
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network based software systems used in safety critical systems.
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Chapter 5

Conclusions and Future Work

As time progresses, autonomous systems evolve and thus, through discreet
learning and intelligent decision capabilities, they are able to respond to situations that
have not been a priori identified or analyzed. In particular, neural network-based systems
have emerged as a powerful class of autonomous and adaptive systems. Due to their
learning abilities, ANN have been increasingly attracting attention in applications where
autonomy is critical and where the pre-identification of the possible fault scenarios is not
eXténsive. Though ANN have been accepted and used in fault diagnosis, there are some
specific concerns with respect to their reliability and acceptability in safety critical
applications, since the occurrence of faults may lead to catastrophic effects in the system.
For this reason, ANN must undergo a certification procedure in order to be accepted for
use in safety critical applications. Thus, it was established that for ANN to be accepted
into the safety critical domain, they need to be verified and validated thoroughly to prove
that the model is consistent with the specification, and thus, formal analysis was
considered. One formal method used for analyzing neural networks was symbolic rule
extraction from trained neural networks.

In this thesis, an approach for verification and validation of neural network-based
software systems has been proposed. This approach aims to provide a framework for
formal verification of neural networks, which allows them to be successfully used in
safety critical autonomous systems. The input for our approach involves data collected

from an attitude control subsystem of a satellite model which was modeled in Simulink
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[32]. The model was used to generate simulated system data under faulty and non-faulty
system conditions, which is an essential part of the fault-diagnosis study performed in
[32]. Faults were injected into the model and this resulted in three different fault
scenarios used within our framework. In this thesis, neural networks have been used as a
tool for diagnosing faults in the Attitude Control Subsystem of a satellite. The framework
proposed in this thesis utilizes rule extraction without which the explanation capability of
the working of the neural networks could not have been realized.

In order to support the proposed fault-diagnosis approach, a neural network model
was developed which was trained with faulty data and tested against non-faulty data to
see if the nétWork behaved in a non-faulty manner. The neural networks confine the need
for a detailed knowledge of the design and construction of the system under
consideration. To ascertain that the neural network is functional, the rules they follow
must be extracted. In our approach, an existing rule extraction algorithm was modified
and adapted for extracting rules from a trained neural network. The advantage of this rule
extraction algorithm is that the algorithm does not require any special type of training
topology to be established.

Given the system parameters under faulty and fault-free conditions, the neural
model generated was able to diagnose the faulty and non-faulty data. The rule extraction
algorithm further extracted the rules and determined if the neural model was functional.
At this point, the specified system could be classified as safe or unsafe, based on the
extracted rules and their type.

Based on the work reported in [32], in this thesis three probable ACS failure

scenarios have been studied. Different types of faults have been injected into the ACS
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model and data for nine pre-selected attributes have been collected for faulty, as well as,
non-faulty system behavior. These faults are similar to the ones that are often
encountered in practice. Next, a neural model was generated training each of the four
faulty variables against non-faulty variables and diagnosing faults in the data provided.

Under each failure scenario, a neural model was checked and optimal values were
estimated for realizing a non-faulty model. At this stage, we assume that the neural
network model is trained sufficiently. Finally, two different rule extraction algorithms
have been applied to the neural network model, in order to generate a general rule from
the trained neural network. The extracted rules are formally verified using two different
formal techniques such as model checker and theorem-prover which was explained in
Chapter 4. It has been found that the extracted rules relatively mimic the working of the
neural model. The proposed approach manages to prove that there are techniques to
formally verify the working of neural networks. Though we have managed to show that
neural networks can be used successfully in safety critical systems and the working of the
neural network can be understood by the process of rulé extraction, there still remain
uncertainties with the neural networks. One of these is the training output from the neural
network which cannot be completely reliable.

Finally, we point out that limited work has been done within the scope of
verification and validation of neural network based safety critical system. This has been
the motivation behind our intention to design such a framework.

The contribution of this thesis can be summarized as follows:
(1) Introduced a framework for verification and validation of neural network

based safety critical systems.
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(2) Developed a neural network model for training and diagnosing faults for a
generic attitude control subsystem (ACS) model with faults being injected in
the model.

(3) Demonstrated that formal techniques can be successfully used in verification
and validation of neural networks used in safety critical applications.

(4) Demonstrated verification and validation of neural networks using the
proposed framework under three different ACS failure scenarios thereby
illustrating that formally verified neural network based autonomous systems

could be used safely in mission critical systems

The thesis can be extended in order to obtain better results. Thus, as part of future
research work within our topic, the rule extraction algorithm can be perfected.
Furthermore, the same approach can be implemented for dynamic neural networks. At
present the neural networks that we have adapted are fixed neural networks, where
weights and bias information are extracted from the neural network after they have been
fully trained. The complete rule extraction algorithm has been applied using static
weights and bias information. The neural network learning process however is continuous
and hence dynamic neural networks are better suited for the verification and validation of
neural networks used in mission critical applications. Therefore, the proposed framework
and the network topology used have to be modified for improved results. Though some
of the existing algorithms for rule extraction have provided good fidelity and
comprehensibility for neural networks such that they can be used in safety critical

applications, a more accurate algorithm is needed. Rule extraction is only one facet of
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the verification and validation of neural networks used in safety critical systems. There
still remain several barriers to overcome before neural networks can gain full acceptance
within the domain of safety critical systems. Formal methods have great potential for
proving the correctness of the specification of the model and this thesis has provided an
insight into the possible formal techniques that can be employed. This is simply a
foundation for the extent of work that can be done with regards to the applicability of

formal methods in neural networks.
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