Design of Data Abstraction Structure
for MDG-HOL Hybrid Tool

SM Musabbir Hasan

A Thesis
n
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University
Montreal, Quebec, Canada

September 2005

© SM Musabbir Hasan, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-20749-9
Our file Notre référence
ISBN: 978-0-494-20749-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Design of Data Abstraction Structure for MDG-HOL Hybrid Tool

SM Musabbir Hasan

We have proposed design and implementation of a data abstraction structure that will result
in extension to an existing Hybrid hardware verification tool so that it empowers to handle

larger data paths automatically.

Interactive and user-expertise-dependent theorem proving techniques are well suited to
handle large and complex data path dominated systems. However, they are complicated and
difficult to handle when highly complex real-life designs are considered. On the other hand,
automated state-space-exploration based techniques can verify trivial systems automatically,
whereas they lack in the ability to verify practical designs due to state space explosion
problems. To bring about a solution to the dilemma, hybrid approaches are under study,
which widely vary in the tradeoff between the expressiveness of interactive approaches and

automation and speed of the exploration based methodologies.

In the thesis we have described the design of an abstract data structure that allows natural
numbers as the operands in addition to bit level descriptions. As a case study, we specified
and implemented a generic computer processor using the abstract data structure. We
implemented a parser that would be used to parse the specification and implementation of the

design to be verified.

With the parser, and the data abstraction structure, it would be the perfect launch-pad for the
implementation of a powerful and largely automatic tool that should be able to verify most

practical hardware designs.

1t

Acknowledgement

At the beginning, I must thank Dr. Abdeslam En-Nouaary for being my administrative
supervisor. He forwarded invaluable suggestions targeting the perfection of the thesis. I
would like to render my heartiest gratefulness to Dr. Skander Kort as he accepted me as his
student and enabled a smooth entrance at Concordia University for me. Moreover, he guided
me wisely and professionally through my courses so that I could complete my ground work
and prepare well for the research. Finally he supervised and guided me throughout the whole

research process, report writing and all other related logistic events.

Also, my gratitude is bound for my friends at the Hardware Verification Group in Concordia.
They spent their own time and resources to extend cooperating hands in technical and logistic
terms to me from time to time. Outside the group, I would like to acknowledge the
cooperation of my friends who came forward with suggestions in both technical and non-
technical aspects. Special thanks for my friends who proofread the report and suggested

useful modifications in it.

Last but not the least; I won’t be able to express how deeply I am indebted to my parents, my
wife, and the rest of my family in Bangladesh. Their compassionate attitude, you-can-do-it
approach, and we-are-there-for-you assurances drove me through unfavorable times and

enabled me to hold the light of hope up during the odds.

I conclude this acknowledgement with heartfelt thanks to everyone I mentioned and apology
to those I missed. Nonetheless, I am grateful to all the nice people around me who make my

life livable,

v

List of Figures

List of Tables

Chapter 1

1.1
1.2
1.3
1.4
1.5
Chapter 2

2.1

22

23

2.1.1

212

Table of Contents

Introduction

Background and Motivation
Objective

Related Works

Scope of the Thesis
Organization of the Thesis
Theoretical Review
Formal Methods

Synthesis

Formal Verification

2.1.2.1 General Description

2.1.2.2 Methodologies of Formal Verification

2.13

2.14

2.1.5

2.1.6

Theorem Proving

Model Checking

Symbolic Analysis

Binary Decision Diagrams
Partial Order Reduction
Abstraction in Model Checking

Decision Diagram-based Approaches

ix

10

10

11

12

13

14

15

17

18

19

24 Theorem Proving vs. Model Checking
24.1 Theorem Proving
242 Model Checking
25 Hybrid Approach
2.6 Summary
Chapter 3 Verification Methods
3.1 The HOL Theorem Prover
3.2 Multi-way Decision Graph
33 Methodology
33.1 MDG Tactic Table
332 Data Abstraction Structure
34 Summary
Chapter 4 Design and Implementation of Data Structure
4.1 Overview
4.1.1 Sorts
412 MDG Word
4.13 MDG Value
414 MDG Function
4.1.5 Table Value
4.1.6 MDG Term
4.1.7 MDG Table
4.1.8 MDG Transform
4.1.9 Component

vi

20

20

21

22

23

25

25

29

33

35

37

38

39

39

42

42

43

43

44

44

44

45

45

4.1.10 Block

42 Implementation of Proposed Data Structure
43 Issues Faced
44 Summary
Chapter 5 Case Study
5.1 Description of Simple RISC Processor

5.1.1 Control System
5.1.1.1 Control Signal Encoder
5.1.1.2 Clocking Logic
5.1.1.3 Control Step Generator
5.1.1.4 OpCode Decoder
512 Data Path
52 Formalization
521 Main Modules and Their Design
5.2.1.1 Instruction Set Architecture
522 Register Transfer Notation
523 Implementation
5.2.3.1 Controller
5.2.3.2 Data Path
53 Application Results and Analysis
5.3.1 Verification of an ALU
5.4 Summary

Chapter 6 Conclusion and Future Work

vil

45

45

46

47

48

48

49

50

50

50

51

51

52

52

53

55

59

59

60

60

62

63

64

6.1 Major Contributions

6.2 Future Research Directions
Bibliography

Appendix A

Appendix B

viii

64

65

67

71

81

2.1

2.2

23

24.

3.1

3.2

3.3

4.1

4.2

5.1

5.2

5.3

List of Figures

Pre-synthesis Model

Formal Synthesis Model

Formalization of VHDL

Hierarchical Verification

Different Representations of an OR gate
Disintegration of Design into Blocks
Block Diagram of Arithmetic Logic Unit

Flow Chart of the Proposed Tool
Class Diagram for the Data Structure
Control Unit

Data Path

Instruction Formats

X

23

31

35

35

40

46

49

51

53

3.1

32

5.1

52

List of Tables

ALU OpCodes and Corresponding Function Symbols
Data Abstraction Structure
Register Transfer Notation

Truth table for control signal, PCoy

36

37

56

57

Chapter 1

Introduction

The introductory chapter of the report starts with stating the very background and motivation
of the work. Then objective of the thesis and related works are discussed. Next we turn to the
scope of the thesis followed by the way it has been organized focusing on the contents of

each of the following chapters.

1.1 Background and Motivation

Hardware design is generally a large and complex procedure due mainly to the involvement
of many different types of modules, intricate controls, exponential growth of chip sizes etc.
When errors are introduced in a design at a late stage, it becomes catastrophically expensive
to trace and fix, and the time-to-market is stretched in an unprecedented fashion.

Simulation is a conventional way of testing systems. However, when complexity of the
design rises, coverage tends to be poorer and simulation time stretches beyond acceptability.
Eventually bugs start to sneak in the design. “Program testing can be a very effective way to
show the presence of bugs, but it is hopelessly inadequate for showing their absence. The
only effective way to raise the confidence level of a program significantly is to give proof for
its correctness”’[1]. Moreover, it is not feasible to simulate all input sequences to completely
verify a design. This is where the major roll of Formal Methods comes into play. Until now,
it is a wide area of research because of the dispersal in direction, methodology and outcome
offered by different techniques used for the purpose.

Among different formal methods, Theorem Proving and Model Checking techniques have

gained more confidence and endeavor from the researchers. Theorem Proving starts with

building a mathematical model or theorem based on the structure and behavior of the system.
A calculation on the derived theorem verifies if it satisfies certain desired properties.
Theorem proving techniques can be automated to some degree, but it calls for in-depth
knowledge and background of the user and it lacks in feedback in case of failure.

Model checking techniques are automatic. The systems being checked are assumed finite.
Temporal logic is used for specifying the system properties. Owing to the automation feature,
it does not require expertise of the user. However, it oversimplifies systems, which
sometimes causes loss of significant detail. Model checking scales well for finite systems.
For nontrivial systems, however, model checking may not be as useful due to state space
explosion problem. A more efficient methodology evolves in the form of a hybrid approach
that uses a series of abstraction last of which model checking can handle. Several research
works have been directed towards finding an efficient methodology combining model
checking and theorem proving approaches. However, among other drawbacks, data width
problems have mostly deterred the success of the hybrid approach.

Thus, the prime motivation behind our work has been to design and implement a data
abstraction structure that can eliminate the data width limitation problem of the hybrid tool.
This would allow the tool to handle larger designs with automated methods and manage the

overall proof with interactive approach.
1.2 Objective

Our main objective was to develop a data structure that enables the MDG (Multi-way
Decision Graph) embedding in HOL with an aim to utilize the abstraction offered in it. The
earlier version of embedding contained only concrete and abstract sorts in it. Concrete sorts,

generally used for control signals, have explicit enumerations. Abstract sorts, on the other

end, are without any enumerations and are used for defining data sorts. To circumvent this
limitation, our proposed structure stems on the formation of sorts that encompass, besides
abstract and concrete ones, sorts that supports integers, words, Booleans and facilitates
function declarations. Again, within the tool, the sorts are grouped into abstract and concrete
depending on their intrinsic enumerations. To this end, Booleans, due to having a concretely
defined enumeration, are interpreted as concrete sorts. Natural numbers are interpreted as
abstract sorts. This allows us to deal with the operands, which are in natural number forms
rather than as binary number of, for example, 32 bits.

The structure would allocate the choice to the user of the tool to define data at different
abstraction levels according to the need of the proof procedure. Due to the fact that the data
abstraction up to integers and refinement down to bits are defined within the data structure,
verification scope is significantly enhanced. Depending on the outcome of a verification
attempt with MDG the user might choose to either use a more abstract or refined model for
the succeeding verification process. Thus, the automation of model checking is integrated
with the tool whenever the abstract model is tractable.

Then we specified and implemented a generic simple RISC processor’s single-bus 32 bit
architecture in HOL incorporating the MDG embedding. The behavioral model is in terms of
tables in MDG whereas the structural implementation is a net list of components. These
components had also been defined as HOL definitions. Throughout the specification and
implementation, the proposed data abstraction structure has been the imparted. These
specification and implementation models offer to the designer of the tool an opportunity to

apply on and gain in confidence plus conduct modifications as needed. Within the

implementation, we employed abstract function symbols. However, in a separate script, we

provided interpretations, which would be deemed optional from the user’s viewpoint.

1.3 Related Works

Some existing tools have successfully found bugs in implemented hardware systems. SMV
[25], SPIN [26], COSPAN [27], HSIS [28], and VIS [29] are such proven tools that verified
real-world examples [30, 31, 32] with more than 10%° states. Although the number seems
enormous for control-oriented systems, this number of states is quickly exceeded if data
paths are involved. In these cases, the verification with model checking tools often suffers
from the state-explosion problem which roughly means that the number of states grows

exponentially with the size of the implementation.

This work aims to extend the MDG-HOL hybrid tool, presented by S. Kort et al. [3], in
which authors proposed an MDG-HOL hybrid tool that enables the user to verify a design in
HOL hierarchically while using MDG to automate the proof of simpler sub modules down
the hierarchy. In the paper, they demonstrated that with the application of the hybrid tool on
a sample telecom switch block, verification was faster than the either cases when theorem-

proving technique would be applied individually. [3]

T. Mhamdi presented a framework in which he attempted to balance the expressiveness of
theorem proving and the efficiency and automation of state exploration techniques. He
proposed to integrate a layer of checking algorithms based on MDG in HOL. He embedded
the MDG underlying logic in HOL and implemented a platform that provides a set of
algorithms allowing the user to develop own state-exploration based application inside HOL.

While the verification problem is specified in HOL, the proof is derived by tightly combining

the MDG based computations and the theorem prover facilities. They have been able to
implement different state exploration techniques within HOL such as MDG reachability

analysis, equivalence and model checking. [21]

Y.Xu, X. Song, E. Cerny and O. Ait Mohamed studied model checking for a first-order
linear-time temporal logic. They presented the computation model: ASM in which data and
data operations were described using abstract sort and un-interpreted function symbols. They
defined a first-order linear-time temporal logic called Lgg, which supports the abstract data
representations. Both safety and live ness properties can be expressed in Lmgg, however, only
universal path quantification is possible. Fairness constraints can also be imposed. The
property checking algorithms are based on implicit state enumeration of an ASM and

implemented using MDG. [22]

1.4 Scope of the Thesis

This thesis can be treated as an extension to the MDG-HOL Hybrid Tool for hierarchical
verification [3]. The hybrid tool was bound by a limitation in terms of data width it could
deal with. We have proposed a data abstraction structure that eradicates this shortcoming.
Now the user of the tool would not have to simplify the design and risk losing significant
detail in the process. We utilized the abstraction facilities within MDG and extended it
further to incorporate abstract sorts. We also specified and implemented a generic Simple
RISC Computer controller and data path using the proposed data abstraction as part of our

case study.

1.5 Organization of the Thesis

The rest of the report is arranged in the following manner:

Chapter 2 provides theoretical review of testing and verification. Chapter 3, is all about the
HOL and MDG, where the in-depth analysis of these tools is done. Also other works in a
related field are summarized there. Chapter 4 focuses on the design of the tool structure with
embedded data abstraction. Chapter 5 highlights the design, specification and implementation
chronology of the case study, which is about a Simple RISC processor implementation.
Finally, chapter 6 encompasses the conclusion and future research directions.

In this chapter, the thesis topic has been introduced. The background of the thesis stems on
the fact that traditional techniques to test and simulate might fall short in terms of
effectiveness when it comes to large systems. This leads to verification methodologies where
the data is represented in a more abstract fashion. The chapter wound up with the forecast of
the succeeding chapters. In the next chapter, an elaborate discussion of the theoretical

knowledge base is furnished.

Chapter 2

Theoretical Review

In this chapter, a far-reaching review of the theoretical concepts is made with a view to create
the basis of understanding for our work. As described earlier, due to the lack of coverage
offered by conventional approaches of testing systems, formal methods are evolving as

widely practiced.
2.1 Formal Methods

Development of computer systems encompasses one major aspect — ‘correctness’. Formal
Methods can be defined as the application of logic to the development of ‘correct’ computer
systems. [23] Formal methods are used in microprocessor design, cache coherency protocols,
telecommunications protocols, rail and track signaling, security protocols, automotive
companies etc.

Besides their usage in specification, design and implementation of software and hardware
systems, formal methods are widely used in verification.

Following section elaborates the use of formal verification at different stages of synthesis:
2.1.1 Synthesis

Formal verification can be classified into following three main categories:

i Pre-synthesis: In this case the Computer Aided Design (CAD) tool is formally

Specification | cap Implementation
e . —>
(Verified)

Fig 2.1 : Pre-synthesis Model

verified as shown in figure 2.1. Pre-synthesis has common use in software
verification. In Pre-synthesis model, the verification process is guaranteed to
succeed due to the fact that the CAD tool itself is verified.

However, some drawbacks of pre-synthesis are in the fact that CAD designers have to do

everything and that it involves a large number of lines of codes.

ii. Post-synthesis: Formal hardware verification is grouped in this section. Here
digital circuit designer verifies that the implementation implies the specification.

The major limitations of post-synthesis includes
a. The verification process must be repeated for each and every specifications
b. Post-synthesis proves difficult for complex circuits.

iii. Formal synthesis: This is accomplished in steps as shown in figure 2.2. In each
step, resources are allocated and scheduling of the resources is completed. Then
the steps are formalized. The final phase involves the proof of correctness of each
step individually.

The main task entails proving that the output of each step is correct with respect to the

corresponding input.

Input t
npu STEP | Outpu

Fig 2.2 : Formal Synthesis Model

When an algorithm is fed as input, through high-level synthesis, one obtains an RTL
(Register Transfer Level) description of the design. The effectiveness of formal synthesis is
limited by the problem in definition and optimization of granularity of the steps.

Optimizations can be Coarse-grained or Local (Fine) — grained.

Example of different levels of granularity:

S<=a*4 (a)

S«alsl2 (b)
Expression (b) is the fine-grained optimized version of (a). In the expression (b), Isl stands
for logical shift left.
Formal synthesis starts with a functional language. It must be mathematically defined.
Conventional HDL (Hardware Description Language), such as VHDL (Very high speed
integrated circuit HDL) can be a starting point too. However, VHDL is not a formal
language, because its semantics are not mathematically defined- although some researchers
tried to formalize it. Therefore, the formalization of VHDL progresses as shown in fig 2.3.

VHDL is the informal description and a straightforward translation is desired from VHDL.

VHDL

A

Formal
Language

A 4
/’_—__\

— LN
(Formal synthesis framework)

Back to
VHDL

Fig 2.3 Formalization of VHDL

Therefore, the verification goal stands like:

Implementation => Specification

The expression above stands for, “the implementation does not contradict specification”.
2.1.2 Formal Verification

Before going deep into verification methodologies, the general description of Formal
Verification is elaborated below.

2.1.2.1 General Description

Formal verification is the process of checking whether a design satisfies some requirements
(properties). Verifying the correct behavior of a digital system is becoming an open-ended
task. Traditional techniques, such as simulation, are often inadequate for covering the large
state spaces found in present day processor designs. Simulation and testing both involve
making experiments before deploying the system in the field. While simulation is performed
on an abstraction or a model of the system, testing is performed on the actual product. In the
case of hardware verification, simulation is performed on the design of the circuit whereas
testing is performed on the circuit itself. However, checking all of the possible interactions
and potential pitfalls using simulation and testing techniques is rarely possiblé. Formal
methods are emerging as a practical solution to specific aspects of the verification problem.
Formal verification is an approach to verify correct behavior in logic designs. Unlike
simulation, where “confidence” comes from running an arbitrary number of test cases
through a design, formal verification uses mathematical techniques to examine the entire
solution space of a specified design property. There are no vectors. If formal verification says
a property is verified, it is-under all conditions. Thus, while simulation is open-ended and
uncertain, formal verification removes uncertainty, increasing designer confidence and

reducing verification time.

10

2.1.2.2 Methodologies of Formal Verification

Among other methodologies, formal verification involves Interactive verification and
automated techniques based on Binary Decision Diagrams (Described on page 15).
Interactive verification usually refers to the use of axioms and proof rules to prove the
correctness of systems. In early research on deductive verification, the focus was on
guaranteeing the correctness of critical systems. It was assumed that the importance of their
correct behavior was so great that the developer or a verification expert would spend
whatever time was required for verifying the system. Initially such proofs were constructed
manually. Eventually, researchers realized that software tools could be developed to enforce
the correct use of axioms and proof rules. Such tools can also apply a systematic search to
suggest various ways to progress from the current stage of the proof.

On the other hand, automated techniques include equivalence checking and model checking.
BDD-based automated techniques are particularly suitable for verifying finite state
concurrent systems. Example of such systems includes controllers with limited number of
states. One benefit of this restriction is that verification can be performed automatically. The
procedure normally uses an exhaustive search of the state space of the system to determine if
some specification is true or not. Given sufficient resources, the procedure will always
terminate with a yes/no answer. When the answer is ‘No’, the tool comes up with a
counterexample which points to the flaw. Practically, a counterexample is a test vector with a
sequence of states.

A third approach, sometimes called Hybrid approach, tends to combine interactive

techniques and automated methods, which will be discussed in chapter 3.

11

2.1.3 Theorem Proving

Theorem proving technique progresses as a specification and its implementation are usually
expressed as first-order or higher-order logic formulae. Their relationship, equivalence or
implication, is regarded as a theorem to be proven within the proof system using a set of
axioms and inference rules. Theorem proving has had its greatest successes in verifying data
path dominated circuits as it supports the verification of parameterized data path dominated
circuits. It can manipulate high abstraction and express powerful logic. Thus, theorem
proving enables designs to be represented at different abstraction levels rather than only at
the Boolean level. Moreover, it allows a hierarchical verification methodology, which can
effectively deal with the overall functionality of designs having complex data paths.
Theorem provers such as HOL (Higher Order Logic), Isabelle, PVS (Prototype Verification
System) etc. are interactive techniques. However, in contrast to more automated formal
verification methods, such as model checking or equivalence checking, it is currently a
memory and time consuming method, especially when industrial designs are considered.
Moreover, users need expertise to verify any design using theorem proving and this indicates
to a limitation against applying the method on industrial designs.

Common approaches to Theorem Proving are-

» Fully Automated (Push-button technology)

* Human Assisted (Interactive Prover) - This mainly builds on step-by-step guidance. In this
case systematic patterns of interactions can be captured as macros and it builds on tactics,
strategies.

* Proof Checkers [4]

12

2.1.4 Model Checking

A model-checking problem is a problem of verifying that a formula 5 holds in a model M:
Mk

where M represents the design and is usually finite, and f is the desired property of this

design expressed through a temporal logic like CTL (Computation Tree Logic) or LTL

(Linear Time Logic). [5]. Model checking techniques are based on the exhaustive state

traversal of the model, and are often automatic and very efficient. The efficiency comes from

the use of compact data structures like OBDDs (Ordered Binary Decision Diagrams) to

represent the model, and powerful reduction techniques to reduce the search space. However,

model checking is largely limited to finite models and propositional formulas.

Model checking as a verification technique has three fundamental features:

» It is automatic. It does not rely on complicated interaction with the user for
incremental property proving. If a property does not hold, the model checker
generates a counterexample trace automatically.

» The systems being checked are assumed to be finite. Typical examples of finite
systems, for which model checking has successfully been applied, are digital
sequential circuits and communication protocols.

» Temporal logic is used for specifying the system properties. [6]

Thus, model checking can be summarized as an algorithmic technique for checking

temporal properties of finite systems.

Model Checking is an automatic technique for verifying finite state reactive systems,

such as sequential circuit designs and communication protocols. Specifications are

expressed in temporal logic and the reactive system is modeled as a state transition graph.

13

An efficient search procedure is used to determine whether the state transition graph

satisfies the specifications. The verifier provides a high level representation of the model

and the specification to be checked. The model checker will either terminate with the

answer true indicating that the model satisfies the specification, or, give a

counterexample execution that shows why the formula is not satisfied. Two most

important features distinct model checking technique from theorem proving ones-

» Model checking technique is highly automatic

> In case of non-compliance of the model under test with the specification, the checker
provides counterexamples. Thus, it contributes to find the understated errors in
complex reactive systems [7].

The major disadvantage of model checking relates its limitation to handle state space

explosion problems.
2.1.5 Symbolic Analysis:

It has often been argued that model checking and theorem proving could be combined so that
the former is applied to control-intensive properties while the latter is invoked on data-
intensive properties. Obtaining a combination of theorem proving and model checking is not
impossible. Both the techniques verify claims that look similar and it is possible to view
model checking as a decision procedure for a well-defined fragment of specification logic.
[24]. Nataranjan Shankar argued for a specific combination where theorem proving is used to
reduce verification problems to finite state form and model checking explores propetrties of
these reductions. This decomposition of the verification task forms the basis of the Symbolic
Analysis Laboratory (SAL), a framework for combining different analysis tools for transition

systems via a common intermediate language. Symbolic analysis is simply the computation

14

of fixed-point properties of programs through a combination of deductive and explorative
techniques. The key elements of symbolic analysis are:

Automated deduction: computing property preserving abstractions and propagating the
consequences of known properties.

Model checking: A means of verifying global properties of the system by means of
systematic symbolic exploration. For this purpose, model checking is used for
actually computing fixed points such as the reachable state set in addition to verifying
given temporal properties.

Invariant generation: A technique for computing useful properties and propagating
known properties. [2]

2.1.6 Binary Decision Diagrams (BDD)

A BDD is a data structure that is used to represent a Boolean function. The Boolean function

is represented as a rooted, directed, acyclic graph in a BDD. It contains two types of vertices-
terminal and non-terminal.

Canonicity reduces the semantic notion of equivalence to the syntactic notion of
isomorphism.[12] If OBDDs (Ordered Binary Decision Diagram) are used as a canonical
form for Boolean functions, then checking equivalence is reduced to checking isomorphism
between binary decision diagrams. Similarly, satisfiability can be determined by checking
equivalence to the trivial OBDD that consists of only one terminal labeled by 0. OBDDs are
often much more compact than traditional normal forms such as conjunctive normal form
and disjunctive normal form. They can be manipulated very efficiently. Therefore, they
became widely used for a variety of CAD (Computer Aided Design) applications including

symbolic simulation, verification of combinational logic and verification of sequential

15

circuits. An OBDD is similar to a binary decision tree except that its structure is a directed
acyclic graph rather than a tree, and there is a strict total order placed on the occurrence of
variables as one traverses the graph from root to leaf.

The size of an OBDD can depend critically on the variable ordering. Finding an optimal
ordering for the variables is intricate. Several heuristics have been developed for finding an
efficient variable ordering when such an ordering exists. If the Boolean function is given by a
combinational circuit, then heuristics based on a depth-first traversal of the circuit diagram
generally give good results. The intuition for these heuristics comes from the observation that
OBDDs tend to be small when related variables are close together in the ordering. The
variables appearing in a sub circuit are related in that they determine the sub circuit’s output.
Hence, these variables should usually be grouped together in the ordering. This may be
accomplished by placing the variables in the order in which they are encountered during a
depth-first traversal of the circuit diagram. A technique called dynamic reordering appears to
be useful in those situations where no obvious ordering heuristics apply. When this technique
is used, the OBDD package internally reorders the variables periodically in order to reduce
the total number of vertices in use. The reordering method is designed to save time rather
than to find an optimal ordering.

Reduced OBDD (ROBDD) is used in model checking to describe the transition and the
output relation of a transition system. It can be viewed as a form of deterministic finite
automata. An n-argument Boolean function can be identified with the set of strings in {0,1}"
that evaluate to 1. Since this is a finite language and since all finite languages are regular, a
minimal finite automaton accepts this set. This automaton provides a canonical

representation for the original Boolean function. Logical operations on Boolean functions can

16

be implemented by set operations on the languages accepted by the finite automata. For
example, AND corresponds to set intersection. Standard constructions from elementary
automata theory can be used to compute these operations on languages. The standard OBDD

operations can be viewed as analogs of these constructions. [8]
2.1.7 Partial Order Reduction

Model checking has proven to be almost perfect for the verification of small to medium scale
systems. Nevertheless, with the increase in the complexity and rise in the number of states,
one thing that undermines the effectiveness of Model checking tools is State Space
Explosion. To prevent Model checking to be intimidated by state space explosion problem
several measures are under trial- among them ‘Partial order reduction’ reduces the size of the
state space that needs to be searched by model checking algorithms. It utilizes the
commutative characteristics of concurrently executed transitions that result in the same state
when executed in different orders. In synchronous systems, concurrent transitions are
executed simultaneously rather than being interleaved. Therefore, partial order reduction
technique suits best for asynchronous systems.

The technique consists of constructing a reduced state graph. The full state graph may be too
big for the memory, so it is never constructed. The behaviors of the reduced graph are a
subset of the full graph. It can be shown that there exist behaviors, which are equivalent to
each other. The checked property cannot distinguish between such behaviors. So for the
checker to be correct, it is required that if a behavior is not present in a state graph, one

equivalent of that must be included.

17

Partial order reduction is based on dependency relation that exists between the transitions of
a system. In addition, the reduction method specifies which states would be included and

which would not. [8]

2.2 Abstraction in Model Checking

Abstraction is the simplification of a system model by removing “irrelevant” detail. It
reduces the state space while preserving essential characteristics of the system. Sometimes it
is “obvious” that a detail can be removed. Abstraction is one of the most important
techniques for reducing the state explosion problem. Two main techniques for abstraction
are- The cone of influence reduction and data abstraction. Both of these techniques are
performed on a high level description of the system, before the model for the system is
constructed. Thus, the construction of the unreduced model that might be too big to fit into
memory is avoided.

The cone of influence reduction attempts to decrease the size of the state transition graph by
focusing on the variables of the system that are referred to in the specification. The reduction
is obtained by eliminating variables that do not influence the variables in the specification. In
this way, the checked properties are preserved, but the size of the model that needs to be
verified is smaller.

Data abstraction, on the other hand, involves finding a mapping between the actual data
values in the system and a small set of abstract data values. By extending this mapping to
states and transitions, it is possible to obtain an abstract system that simulates the original
system and is usually much smaller. Because of the reduction in size, it is frequently easier to

verify the abstract system than the original system.

18

Lakhnech, Bensalem, Berezin and Owre put forward an incremental verification technique
that uses abstraction of infinite-state and very large systems. It consists in finding an
abstraction relation and an abstract system that simulates the concrete one and that is
amenable to algorithmic verification. [13] One then checks that the abstract system satisfies
the concrete property of interest. Well-established preservation results allow then to deduce,
for a large class of properties, that the concrete system satisfies the concrete property if the

abstract system satisfies the abstract one.
2.3 Decision Diagram-based Approaches

The MDG (Multi-way Decision Graphs) verification is a black-box approach. During the
verification, the user does not need to understand the internal structure of the design being
verified. The strength of MDG is its speed and ease of use. The MDG hardware verification
system has been used in the verification of significant hardware examples such as Telecom
System Block (TSB)—Receive APS Control, Synchronization Status Extréction and Bit
Error Rate Monitor Telecom System Block (RASE TSB) which is a commercial product of
PMC-Sierra Inc.[9]. A fundamental primitive of its hardware description language is the
table which is the truth table representation of a relation between the values on variables.
Used with don't-care and default values, next state variables and variable entries, it becomes
a powerful specification construct that can be used to give behavioral specification of
hardware as abstract state machines.

MDGs have been proposed as a solution to the data width problem of ROBDD based
verification tools. The MDG tool combines the advantages of representing a circuit at higher
abstraction levels as is possible in a theorem prover and of the automation offered by

ROBDD based tools. An MDG is a finite, directed acyclic graph (DAG). MDGs essentially

19

represent relations rather than functions. They can also represent sets of states. They are
much more compact than ROBDDs for designs containing a data path. Furthermore,
sequential circuits can be verified independently of the width of the data path. The MDG
tools combine the basic MDG operators and verification procedures. The verification
procedures are combinational and sequential verification. The combinational verification
provides the equivalence checking of two combinational circuits. The sequential verification
provides invariant checking and equivalence checking of two state machines. [10]. Further

discussion on MDG is put in the third chapter.

2.4 Theorem Proving vs. Model Checking

This section is dedicated to the comparative analysis of theorem proving paradigm and model
checking techniques.

2.4.1 Theorem Proving

It is particularly useful for architectural design and verification of the system. In case of
theorem proving, both implementation description and specification description are
developed through formal logic.

Correctness: |-Imp =>Spec (implication) or |-Imp<::>Spec (equivalence)

It is possible to accommodate high abstraction level, expressive notation, powerful logic and
reasoning. For the user to be able to manipulate Theorem Prover effectively, a deep

understanding of design and logic is required as the tools are interactive. The user needs to

develop rules tactics and lemmas for class of designs.

20

2.4.2 Model Checking

Model checking is specific to RT-level (or below) with at most ~400 Boolean state variables.
Here the process implementation description is modeled as FSM whereas specification
description is developed through properties in temporal logic.

Correctness: Implementation |=Speciﬁcation (property holds in the FSM model)

Model Checking is easy to learn and to apply as it is completely automatic. But properties
must be carefully prepared for the model checking to be effective. It is integrated with design
process and is in fact a refinement from skeletal model. The most important problem faced in
model checking is state space explosion problem. It ceases to be useful when circuit grows
large. However model checking helps increase confidence. [11]

In short, model checking is a powerful technique, but, it “oversimplifies”. So it is
recommended to try the best of both worlds approach. It works with a series of abstractions,
the last of which model checkers can handle. Then theorem prover goes on to prove that each
abstraction is property-preserving.

The weakness of Automated Theorem Provers is that it needs considerable proof effort, its
proof finding process must be guided, and the user must be sophisticated. Moreover there is a
lack of useful feedback in case of failure.

Model Checking is a powerful technique but it oversimplifies the problem. So, the best
approach would be found in a useful and optimum combination of both the Model checking
and theorem proving techniques. It can be done by a series of abstractions, the last of which

model checkers can handle. And then prove (using theorem provers) that each abstraction is

property preserving

21

2.5 Hybrid Approach

The discussions above illustrates clearly that both the automated decision diagram based
formal hardware verification and interactive theorem proving methodologies have their own
pros and cons.

Automated methods are fast and convenient, but have limitations for nontrivial systems,
especially where data path and control circuitry are combined. Details of the version of the
design under verification need to be simplified. Finding a model reduction and appropriate
abstractions so that verification is tractable with the tool can be time consuming. Moreover,
significant detail can be lost.

On the other hand, theorem prover can verify hierarchically allowing large designs to be
verified without simplification. Furthermore, it is possible to reason about high-level
abstractions of data types. It can however be very time-consuming, requiring significant user
interaction and skill. Aiming to decimate these shortcomings, research works have been
going on for a while around a hybrid approach such that the weaknesses of both approaches
can be limited with the advantages being employed wherever applicable.

Several approaches to combine or hybrid the two formal verification techniques are in focus
of recent research. Some, of these, concentrate on integration of model Checkers into
theorem provers, while others work on integration of theorem proving techniques into model
checkers. Nonetheless, the embedding of MDG into HOL, proposed by S. Kort et al. [3] to
allow the combination of HOL’s expressiveness and MDG’s automation still remains
distinctive from similar methodologies. This hybrid tool supports hierarchical verification
within HOL while MDG is called to prove tractable modules and these verification results

are integrated into overall HOL proof. They verified a communication block design using the

22

tool and demonstrated the improvement in speed and ease-of-use offered by it. Despite all its
novelty, however, the tool suffered a drawback in terms of ability to handle data. It did not
support data abstraction; which meant that all the data were assumed to have 1 bit instead of,
say, 32 bits for the sake of simplification. However, chance of losing significant detail is
more in that proposition.

One important aspect of the MDG-HOL hybrid tool was the hierarchical verification
capacity. Generally, HOL is used to verify a design which is modeled as a hierarchy structure

with modules divided into sub modules as shown in Fig 2.4

Specification Verification
A
| Sub Module | | Sub Module |
—
v | [Sub Sub Module | | Sub Sub Module_|

Fig. 2.4 Hierarchical Verification
The sub modules are repeatedly subdivided until eventually the logic gate level is reached.
Both the structure and behavior specifications of each module are given as relations in
higher-order logic. The verification of each module is carried out by proving a theorem that
asserts that the implementation, its structure, implements (implies) the specification, its

behavior. More discussion on hierarchical verification is furnished in chapter 3.
2.6 Summary

The main objective here was to prepare the basis of the proposed data abstraction aimed to be
utilized in a verification tool. The procedural chronologies of a formal synthesis have been

illustrated which formed the foundation of formal hardware verification. Relative review of

23

automated techniques and interactive approaches paved the path of a hybrid line of attack
that aims to utilize the returns of both paradigms. From here, we can start delving deep into

individual methods and gradually move towards our proposed methodology.

24

Chapter 3

Verification Methods

Previously, we have seen how the automated verification methodology differs from
interactive ones. With the formal verification methodology in general in the context, this
chapter focuses on the description of the two specific techniques that constitutes the existing
MDG-HOL hybrid tool. With that picture in mind, the proposed methodology is introduced

later in the chapter

3.1 The HOL Theorem Prover:

Theorem proving has had successes in verifying data path dominated circuits as it supports
the verification of parameterized data path dominated circuits. It can manipulate high
abstraction and express powerful logic. Thus, theorem proving enables designs to be
represented at different abstraction levels rather than only at the boolean level. To this end, it
allows a hierarchical verification methodology, which can effectively deal with the overall
functionality of designs having complex data paths.‘ However, in contrast to more automated
formal verification methods, such as model checking or equivalence checking, it is still
considered to be a memory-and-time-consuming method, especially when industrial designs
are considered. Users need substantial expertise to verify any design using theorem proving

and this fact points to a major limitation against applying the method on industrial designs.

Some of the widely used theorem provers in the hardware verification community are HOL

(Higher-Order Logic), PVS (Prototype Verification System), Nqthm (a Boyer- Moore

25

theorem prover), ACL2 (Industrial strength version of the Boyer-Moore theorem prover)

[20], HOL light (Intel) etc.

HOL can be precisely defined as ‘an LCF (Logic for Computable Functions)-style proof for

classical higher order built on top of (polymorphic) simply-typed A-calculus’. [14]

HOL system is a general verification technique that accepts specification and implementation
expressed as first-order or higher order logic formulae. The equivalence or implication
between specification and implementation is regarded as a theorem to be proven within the
proof system using a set of axioms and inference rules. Due to its generality, HOL is being
used in a variety of application areas although it had been originally intended for hardware

verification. HOL’s interface to the system is the functional language ML. [15]

Robin Milner developed the approach to mechanizing formal proof used in HOL. He also
headed the team that designed and implemented the language ML. That work centered on a
system called LCF. LCF was intended for interactive automated reasoning about higher order
recursively defined functions. With the purpose in view that other logics eventually be tried
in place of the original logic, the interface of the logic to the meta-language was made
explicit. The HOL system is a direct descendant of LCF; this is reflected in everything from
its structure and outlook to its incorporation of ML, and even to parts of its implementation.

Thus, HOL fits the preceding plan of application of LCF methodology to other logics. [16]

HOL supports both forward and goal-directed backward proofs in a natural-deduction-style
calculus. In forward proof, the steps of a proof are implemented by applying inference rules
chosen by the user and HOL checks the steps for safety. Derived inference rules are built on
top of a small number of primitive inference rules. Backward proof procedures are carried

out with user-defined tactics applied to proof goals or sub-goals. In the backward proof, the

26

user sets the desired theorem as a goal. Tactics are applied to the goal to create sub-goal and
inference rules are applied to prove the sub-goals, which in turn proves the main goal. A
tactic is usually a small SML program, which constitutes a high-level proof step. ‘Tacticals’
(it can be expressed as a sequential set of tactics) are repeatedly applied to break the goal into
a list of sub-goals until they can be resolved. Theorem proving technique can be described as
the procedure that involves constructing a mathematical model (M) of the computer program,
hardware, or system concerned, and then using calculation to determine whether the model

satisfies desired properties (P).

It constitutes of the following aspects:

*Model using “formal language” (logic)

*Calculation (|-) that takes up “formal deduction” (proof)

The prime issues of Theorem proving include expressive power (Propositional, First Order,

Higher Order, Modal, etc.), decidability and complexity.

The end-result from a theorem prover must be sound (meaning ‘what I prove is correct’) and
complete (meaning ‘if something is correct, I can prove it”). A broader approach to modeling

reveals that:
Background + Environment + System |- Requirement

Fidelity of modeling requires background (domain knowledge, e.g. interpreted theories such
as arithmetic and data types). Model checking over-simplifies the task and, in that way,
downscales the complexity though it does fine for finite control. However, it is unable to
handle data types and computations easily (extensions such as Binary Moment Diagrams

needed to handle multiplier circuits). Finite models are another major constraint. [3]

27

Although, HOL can be used for directly proving theorems, but more often its role is as a

theorem proving environment for implementing special purpose formal verification systems.
Types:

The types of the HOL logic are expressions that denote sets. There are four kinds of types in

the HOL logic.

1. Type variables denote arbitrary sets in the universe. These are part of the meta-language

and are used to range over object language types.

2. Atomic types stand for fixed sets in the universe. Each theory determines a particular

collection of atomic types.

3. Compound types have the form (oy,....,04) Op, Where oy,...0 , are the argument types and
op is a type operator of arity n. Type operators denote operations for constructing sets. The
type (o1,....0) op denotes the set resulting from applying the operation denoted by op to the
sets denoted by o), 0, For example, list is a type operator with arity 1. It denotes the
operation of forming all finite lists of elements from a given set. Another example is the type
operator prod of arity 2 which denotes the Cartesian product operation. The type (c 1, 62)

prod is written as 61 X ¢ 2.

4. Function types: If 61 and 62 are types, then 61—02 is the function type with domain 61
and range o2. It denotes the set of all (total) functions from the set denoted by its domain to

the set denoted by its range.
Terms:

Terms are expressions that denote the elements of sets that are used to denote types. A term

can be a variable, a constant, a function (combination of terms) or a lambda abstraction.

28

3.2 Multi-way Decision Graph (MDG)

The MDG system is a verification tool, based on decision diagrams and is primarily intended
for hardware verification. Multi-way decision graphs are an extension of Reduced Ordered
Binary Decision Diagram (ROBDD) approach [17]. MDGs were proposed [33] as a solution

to the data width problem of ROBDD based verification tools.

The most important advantages of MDG over ROBDD are the incorporation of abstract sorts
and un-interpreted function symbols. These allow the tool to verify large state spaces. The
MDG tool combines some of the advantages of representing a circuit at higher abstract levels

besides the automation offered by decision diagram based tools. [18]

An MDG is a finite, directed acyclic graph (DAG). MDGs essentially represent relations
rather than functions. MDGs can also represent sets of states. They are much more compact
than ROBDDs for designs containing a data path. Furthermore, sequential circuits can be
verified independently of the width of the data path. The MDG tools combine the basic MDG
operators and verification procedures. The verification procedures are combinational and
sequential verification. The combinational verification provides the equivalence checking of
two combinational circuits. The sequential verification provides invariant checking and
equivalence checking of two state machines. [19]. MDG tool is broadly a black-box

approach. User isn’t required to be aware of the internal structure of the system.

The input language for MDG system is MDG-Hardware Description Language (MDG-
HDL). It supports structural descriptions, behavioral abstract state machine (ASM)
descriptions and a mixture of both of these. A structural description usually resides at the

Register Transfer Level (RTL) with a net list of components connected by signals. A

29

behavioral description is given by a tabular representation of the transition/output relation or
truth table. The goal of verification tool is to prove that the structural implementation

satisfies the behavioral specification.

The MDG tool provides four applications for combinational and sequential hardware
verification — ASM state space exploration, safety property checking, equivalence checking
and combinational verification. One notable point here is that, ASMs are not another kinds or
state machine; rather they represent a way of describing state machines at a higher level of

abstraction.

The MDG-HDL comes with a large library of basic components such as logic gates,
multiplexers, registers, bus drivers etc. In the language, a circuit is described including the
definition of signals, components and the circuit outputs. Declaration of a signal is
accompanied by its sort. Input and output ports of predefined components are instantiated for
declaring components. Although there are some requirements on the node ordering for
abstract variables, there is none for concrete variables. Abstract data types (ADT) are used to
denote data values. Un-interpreted function symbols denote data operations. Cross-operators
are used to represent feedback from the data path to control circuitry. They are un-
interpreted; however, their allowable range of interpretation is limited by information

provided by axioms.

Sorts are generally either concrete or abstract. Concrete sorts are characterized by their

enumerations. Abstract sorts do not have any enumerations.

“Table’ is an important one among the predefined component modules. Both implementation
and specification of a design can have tables to describe a functional block. A table is similar

to a truth table. However, it allows first-order terms in its rows. A table contains a list of

30

rows. The first row consists of a list of variables and cross-terms. The last element of the list
must be a (either concrete or abstract) variable whereas all the other variables must be
concrete. Starting from the second row are lists of values that the corresponding variables or

cross-terms can take. For example, following is a table to represent a 2-input OR gate:
table ([[x1,x2,y], [0,0,0],[0,1,1] [1,*,1])

The table description is further internally translated into an MDG (decision diagram) with the

variable ordering x2<x2<y (figure 3.1 d)

X1 | Xy
X1 i 0 0 0
Component(or_gate, or (input
X2 :D_ Y (x1,x2), output (y)). 61 1 [1
1 * 1
(a) Gate (b) MDG-HDL (c) Table (d) MDG

Fig 3.1 : Different Representations of an OR Gate

Another example of the use of tables with abstract variables and functions is given by the

following example:
table ({[cnd,geq(x,y),n_y],[1,1.x]ly])
which defines the function
if (cnd = 1) and (geq(x,y) =1) thenn_y=xelsen y=y.

where cnd is a concrete boolean variable, x is an abstract input variable, y is an abstract state

variable, and n_y represents its next state. geq represents a function symbol that means

31

“greater-or-equal”. The term y after symbol ‘|’ in the table description is used as the default

value.

MDG tool requires, beside circuit descriptions, a variety of information, such as sort and
function type definitions, symbol ordering and invariant specifications, etc. These are
provided in order to use all the applications outlined earlier. Supplied information are
organized in six files: Algebraic specification file, Symbol order file, Circuit description file,

Invariant specification file, State encoding file and Manual relation partitioning file. [20].

The algebraic specification file defines sorts, function types and generic constants used in
hardware descriptions. It also includes, if necessary, the rewrite rules which partially

interpret otherwise un-interpreted function symbols.

The symbol order file provides the custom symbol order for all the variables and cross-

operators which would appear in MDGs.

The circuit description file declares signals and their sort assignments, component network,
outputs and the mapping between state variables and next state variables. table is used as the

tabular representation for behavioral descriptions.

The invariant specification file defines the invariant to be checked during the reachability

analysis.

The state encoding file provides the mapping of state encoding between two circuits to be
compared. The manual relation partitioning file allows users to declare partitioned

transition/output relations manually for the product machine.

When MDG tool is used for the verification of a hardware design, it returns a

counterexample in case the verification fails. A counter example service generates a

32

sequence of input-state pairs leading from the initial state to the incorrect behavior. This is

handy when it comes to pinpointing the design flaws.

Non termination problem: It is an important issue as per as MDG tool is concerned. The
abstract state enumeration method may not terminate. For example [20], if the program
counter of a microprocessor is represented by a variable pc of abstract type, the initial value
of pc is given by a generic constant zero, and a function symbol inc denotes the incrementing
of pc by a non-branching instruction, then a node labeled by pc will have, in recursive
invocations of the algorithms, an unbounded collection of edges pc, inc(pc), inc(inc(pc)),
efc., and the algorithm will not terminate. This can be avoided by generalizing the initial
state, using a variable x to denote the initial value of the program counter. Generalizing the
initial state amounts to supplying an invariant. In general case, however, there is no

guarantee that an invariant can be found to avoid non-termination.

MDG size: Another important point to consider about the MDG, is the size of it. The
efficiency and effectiveness of the verification process largely depends on the size of the
MDG resulting from the transformation of the design specification. Several ways for
reducing the size of the graph are contemplated, such as, symbol ordering, partitioned

transition relations, ROM declaration, rewrite rules for cross-terms etc.
3.3 Our Methodology

Numerous research works in the area of formal hardware verification have been and are
directed towards finding optimum balance between the mutually exclusive advantages of two
paradigms in- user-interactive but able-to-handle-large-designs theorem proving techniques

and largely-automated but state-explosion-prone model checking procedures. Furthermore,

33

works, intending to hybrid HOL with MDG in order to accumulate their individual
advantages into one tool, have also been developed for some time now. In those researches,
attention has been focused on embedding MDG into HOL, improving the temporal logic to
make MDG more effective and seamless inside HOL etc. However, one important aspect of
MDG?’s shortcomings is its limited ability to handle large data paths. Use of abstraction at
various stages and aspects of the existing verification systems is a key option that has been
researched for quite some time now. To this end, an efficient way of data abstraction, that

enables the MDG tool to verify larger system, should be a remarkable solution.

The main goal of the verification procedure will be to prove the global goal for a given

design that:
| Implementation > Specification ¢))

Rather than attempting to verify the whole design altogether, the tool would use the
hierarchical verification tactic to recursively break down the top-level design into sub blocks

until a tractable (to the proof tool) unit is attained.

Let us consider a design that is broken into sub modules Block 1 and Block 2 as shown in
figure 3.1. While the main goal of the proof is same as expression (1), the

HIER VERIF TAC [3] would derive following sub goals from the main goal:

I. }Imp 1 > Spec]

34

Block 1 Block 2
Spec 1 Spec 2
Imp 1 Imp 2

Fig 3.2 : Disintegration of a Design into Blocks

II. }Imp 2 > Spec2
II. }Specl A Spec 2 o Specification

Since expressions I and II are implications, proving III would suffice to prove the top goal.
3.3.1 MDG Tactic Table

MDG tactic tables represent un-interpreted function symbols and their corresponding

OpCode

X > ALU >
¥

) 4

Fig 3.3 : Block Diagram of an Arithmetic Logic Unit

symbols in MDG tool. Let us consider a table for arithmetic logic unit (ALU) whose
operands are x and y and the output is z. We assume that value of “OpCode” indicates the

desired arithmetic operation.

Table 3.1 shows the MDG tactic table for the ALU (Fig 3.3) where the value of the output is

given for different values of the OpCode.

35

OpCode Z
add add_fn (x,y)
sub sub_fn (x,y)
mul mul_fn (x,y)
div div_fn (x,y)

Table 3.1 : ALU OpCodes and Corresponding Function Symbols

The sort of ‘OpCode’ must be concrete with the symbols appearing in the column as its

enumeration, as expressed below:
conc_sort (OpCode, [add,sub,mul,div]).

In the table the symbols add_fn (x,y) is an un-interpreted function symbol that might mean

addition. Also x, y and z must be of abstract data type, namely, wordn.

During verification, functions symbols are interpreted at different abstraction levels as

required by the tools. For example:
add_n: 1t is interpreted as HOL add on ‘num’. At this abstraction level, the proof requirement
18
Vinterpretation. imp => spec
and when proved, a theorem (e.g. Ctrl_thm) is generated.

add_w : 1t is interpreted as HOL add on ‘word’s. Integers are refined to words by HOL
operator NBWORD and words are abstracted to integers by BNVAL as required. For
example integer ‘14’ is translated to Boolean word [1,1,1,0]. At this stage the proof

requirement looks like

Interpretation2gepayioras => Interpretationlgehayioral

36

and the proof should use the Ctrl_thm generated at the integer level.

add_i : It is interpreted as bit addition. At this level, operations are disintegrated further to
obtain bit-level proofs. For example: in case of a 16-bit addition, the structure is re-arranged
with four Carry Look Ahead (CLA,) adders. CLAys are verified using MDG. Consequently,

for each individual adder, it is proved that

CLA4structural => CLA4 Behavioral

3.3.2 Data Abstraction Structure

Embedded HDL HOL HDL
BOOL Bool Bit
NUM Num [Notbslylfsnt(lrll:srinz)able]
BUS Bit word [Deﬁﬁiﬁﬁidiﬁdth]
ABSTRACT ‘a set [Not gfgiﬁr:si;able]
CONCRETE Enumeration Concrete

Table 3.2 : Data Abstraction Structure

The table demonstrates the formation of data sorts through different platforms of
specification and implementation. Notable here are HOL numbers which would be translated
as ‘bus’ of ‘wordn’, an abstract sort in MDG. Thus, natural numbers are incorporated within

the definition. Again, a Boolean word in HOL that has a small length would be interpreted as

37

bus of concrete sort, whereas a larger word will be interpreted as abstract. However,

abstract sorts are not synthesizable in the HDL.

3.4 Summary

This chapter sheds light on HOL and MDG tools. Then the proposed methodology for the
design of data abstraction structure for MDG-HOL hybrid tool is introduced to show gradual
transformation of data from hardware description language in general to the MDG-HDL that
was used in the data structure and incorporated by the embedding. Now that we have
discussed our methodology in general, coming chapters put focus on the design and

implementation procedure followed by the issues faced during the procedure and how these

were overcome.

38

Chapter 4

Design and Implementation of Proposed Data Structure

In the previous chapter, the focus was on HOL and MDG and based upon that description we
went on to explain our proposed methodology. Now, we will continue into our proposed data

structure in terms of design and implementation.
4.1 Overview

As described earlier, the tool links HOL and MDG with the aim in mind that the individual
pros of each tool can be incorporated in it and be exploited to the optimum. The tool is
written using Moscow ML. The overall proof procedure is managed within HOL whereas
MDG is summoned seamlessly to prove relatively tractable components, sub blocks or
blocks. The tool counts on ML functions, called tactics, to conduct the proofs. The
specification and implementation of the design to be verified are written in HOL. MDG has

been embedded in HOL in order to be able to support the semantics of HOL.

The design hierarchy, of the sub blocks that constitute a block implementation, dictates the
way in which a proof is structured in HOL. Each and every block of the design is specified in
terms of its behavior and structure. Blocks residing at the bottom of the hierarchy are
considered primitive components. All the other block’s implementations are verified against

their specification in following three steps:

1. An intermediate verification result is obtained about the block based on the
behavioral descriptions of its sub blocks considering sub blocks as primitive

components.

39

2. The same process is repeated recursively on the sub blocks to obtain correctness

theorems for them.

3. The correctness theorems of the sub blocks are combined with the intermediate
correctness theorem of the block itself to give the actual correctness theorem of the
block. This is based on the full structural description of the block down to primitive
components.

The verification follows the natural design hierarchy as shown in figure 4.1. If this process is

applied to the top-level design block, a correctness theorem for the whole design is obtained.

I

Use higher data
abstraction

Yes ‘
HOL goat
Apply
MDG_SEQ_TAC l

HOL goal

or
MDG_COMB_TAC Apply
MDG_SEQ_TAC

or
MDG_COMB_TAC

MDG
Verification

succeeded MDG

Verification
succeeded,
No

Yes |] N Apply
{]
2 Analyze MDG st M No HIER_VERIF_TAC
Make HOL counter example
theorem Analyze MDG HOL Proof L

Make HOL counter example

theorem l

Correct Design
L Cormect Design
T

<

Figure 4.1: A Flow Chart of the Proposed Tool
The integration of the verification results of the separate components that would be done

informally, if at all, in an MDG verification is thus formalized and machine-checked in the

HOL approach.

The hybrid tool fits the use of MDG verification naturally within the HOL framework of

compositional hierarchical verification [3]. Thus, it supports hierarchical verification

40

automating the process discussed earlier. There is no need to provide behavioral
specifications for sub blocks and to verify them separately because the HOL system manages
the proof with the MDG system called to verify tractable design blocks. At any point,
hierarchical verification can be abandoned and the whole block can be verified in MDG
provided the block is sufficiently simple. Besides, a tractable block can be verified using
MDG under the assumption that its sub blocks are all primitive components. Since no
information is lost in using MDG via the hybrid tool, a normal HOL proof can still be
performed in case the block is not simple enough. To allow the seamless integration of the
tools, we use MDG-style behavioral specifications within HOL. This warrants that the
specifications must be in the form of a finite state machine or table description [3]. When
state explosion occurs due to the application of MDG to a block, the user has the choice to
either apply HIER VERIF TAC to break up in tractable modules or to use the same block
with higher data abstraction applied to it.

The hybrid tool supports the hierarchical verification process by providing a HOL embedding
of the concrete subset of the MDG input language to allow MDG-style specifications to be
written in HOL. Three high-level proof tactics that manage the proof process are also
provided. A hierarchy tactic HIER VERIF TAC automates the sub goaling of the
correctness theorem of a block by analyzing its structure [3]. It later combines the proven sub
goals to give the desired correctness theorem. Where a non-primitive component occurs
several times within a block, the tactic avoids duplication generating a single sub goal that
once proved is automatically instantiated for each occurrence of that component to prove the
correctness of the block. Two other tactics automate the link to the MDG tools.

MDG_COMB_TAC attempts to verify a given correctness theorem for a block using MDG

41

combinational equivalence verification. MDG _SEQ TAC [3] calls MDG sequential

equivalence verification to prove the result.
4.1.1 Sorts

This structure of Sort is of central importance to the tool’s operation. In contrast to previous
embeddings where sorts have been either abstract or concrete,'here we define Boolean,
integer, bus and product sorts in addition to abstract and concrete sorts. Concrete sorts may
be user-defined sorts with explicit enumeration. Abstract sort enables abstraction of the data
in order to provide capacity to handle larger data width. Bus sort defines the width of
‘wordn’ defined in MDG-HDL. Product sort facilitates the declaration of functions where the
domain and range of the function have individual sort assignments. Integer is another
important abstract sort, which enables the user to define inputs as integers so that verification
in MDG can take place, at a higher level of abstraction, on functions like addition between
two integers. Boolean sort, which was earlier included in concrete sort, is explicitly defined
now. Other sorts can also be declared concrete provided they have explicit enumerations of
their own. For example, Boolean sorts have [0,1] as their possible values. So, Boolean sort is
grouped to be a concrete sort. Similarly, words of length up to 8, have their enumerations
explicit in MDG. So, those are declared concrete whereas, larger words hold abstract sort.

Integers are always dealt with as abstract sorts.

4.1.2 MDG Word

A new data type, ‘MDG word’ is declared that enables to handle HOL words. As HOL words
are composed of a list of Boolean values, our MDG word constructs out of a list of

characters. Each individual character member of the list corresponds to the Boolean value

42

declared in the HOL specification of the design. Method ‘ToMDG’ transforms a word into its
equivalent integer. Thus, the user is offered the freedom of defining data in integers, words or

bits.

4.1.3 MDG Value

An MDG value can be constructed from Boolean, integer, string, MDG words, abstract sorts,
concrete sorts or recursive product of MDG values. In order to check the concreteness of a
value, we wrote a function ‘OfConcreteSort’ which takes the value and the sort of it. If the
value is concrete and the sort is concrete too and also the value is found within the

enumeration of the sort, the function returns true; otherwise it returns false.

MDG constants are constructed from an MDG value along with its sort. A constant can be *
concrete or abstract depending upon its sort. Again, the constant- whose MDG value is
concrete and the sort is concrete too- we call it an individual constant. The constant that is

not an individual constant is defined as a generic constant.
4.1.4 MDG Function

An MDG function is declared using its name, sort of its domain and sort of its range. A
function is defined to be a concrete function if all of its arguments are concrete and also it
ranges over an argument of concrete sort. An abstract function must be ranged over an
abstract sort. Cross-operators are allowed to have at least one abstract argument in its domain
whereas the range must be concrete. Concrete function symbols must have explicit definition,

while abstract function symbols and cross-operators are un-interpreted.

43

4.1.5 Table Value

Table values are MDG values used in tables. A table value must be either an MDG value or a
‘Don’t_care’ value. ‘Don’t care’ specifies the situations when the value associated to a

particular input in a table doesn’t influence the output.

4.1.6 MDG Term

An MDG term can be a constant, a variable, a function or a recursive product of MDG terms.
In order to check the well-typed-ness of a function term, the method ‘WellTypedTerm’
ensures that the term is of the same sort as the range of the function and the term is a well-

typed one.

4.1.7 MDG Table

A table consists of five arguments namely, input list, output, input rows, output column and
default value. The input list is a list of terms. Casting functions are required to convert
variables into MDG Terms. We defined these casting functions in a separate module. The
output is a MDG variable. Input rows are of list of ‘Row’s. Consequently, a row is a list of
Table values. In the case study, we utilized the casting of different parameters into Table
values using the constructor ‘TABLE_VAL’. The output values corresponding to the input
combinations are given as a list of terms. Finally, the default value is again a term.

Individual methods are defined so each of the five arguments can be extracted from a table
when necessary. The function, ‘ToMDG?’, converts a table definition to a string that respects

the syntax of table construct in MDG.

44

4.1.8 MDG Transform

An MDG transform is a black-box component that implements any function. An MDG

transform is constituted by a function, its inputs and the output.
4.1.9 Component

A component can be an MDG component, a multiplexer, a table or a function expressed in
transformation form. It is possible to retrieve the signals and their corresponding sorts from a
component with respect to what type of component it is. For example, if the component is an
MDG component and its function is to return the OR-ed output for two words, the sort must
be word too. Again, for a table that contains only control signals, the signals are associated to

Boolean sorts.
4.1.10 Block

The proposed tool extracts block from the design when it is parsed by the parser. Blocks are
characterized by an interface, group of sub blocks, internal signals and sorts of the signals.
Interface: The interface of a block consists a name, the input and output ports for the block.
Sub block: A sub block can be another block or a component.

Internal Signals: The sub blocks are connected by internal signals.
Sorts of Internal Signals: This field stores the sort information for the block. When a
component is extracted as a block, depending of the component characteristics, the sorts of

its inputs and outputs are determined.

4.2 Implementation of Proposed Data Structure
Figure 4.2 shows a class diagram for the proposed data structure. It is shown that Block is

formed by sub blocks, Block interface has name and input and output ports, and component

can be a multiplexer, an MDG component, a Table or a function represented as a black box.

45

An MDG Table uses variables, terms and table values for its construction. An MDG constant
is formed with an MDG value along with its associated sort. Furthermore, Table Values are

constructed with MDG values.

Block.sm! astruct»
interface : Block Interface| Block Interface
-IntemalSignal iName : string
-Subblock inputs : Port
-SignatSorts +Outputs : Port
+NewBlock() : Block.sml

Port
«struct» -Name : string
Component |-Direction
I
P «struct»
MDGTable «struct»
MDGComponent.smi
«structy e GComp: [+inputList MDGTransform
MDGMux +Input +Output +inputs
+sel +Output +Row +unc
+valAndCorlnVar TNowhDGG DT pe +OutputValues +output
[+outvar L) Libaltonie }+Default [+NewMDGTransform() : MDGTransform|
+NewMDGMux() : MDGMux| «uses» | [+ToMDG()
______________________________ «uses»__: ;,: «Iuses»
] S .
L
MDGTerm prempry «implementation classy
MDGVariable TableValue
+WellTypedTerm() : baol [+name
+ConcretelyReducedTerm() : bool [+ToMDG() +ToMDG()
+ConcreteTerm() : bool +ValToTabieVal() : TableValue
+AbstractTerm() : bool +ConstToVal() : TableValue
MDGConstant M‘;t_:‘;_,’:“:c
-Value : MDGValug|
Lsort : Sort name
+domain : Sort
+range : Sort
+AbstractFunc() : boot
+ConcreteFunc() : bool
+CrossOperator() : boot

+WellTypedFunc() : booll
Sort MDGValue
-Name
i +ToMDG()

[+ToMDGY() : string| +OfConcreteSort() : bool
+IsInSort() : bool +ConcreteSortValues() : <unspecified>

Fig 4.2: Class Diagram for the Data Structure

4.3 Issues Faced
While defining MDG variables, we first followed the embedding and described it as a

combination of a name, a Boolean value and a sort. In the subsequent modules, it appeared to
be cumbersome and unnecessary too, to define an MDG variable this way, in all the

instances. This was mainly due to the common presence of the variables in the interface of all

46

the tables, multiplexer and transformation functions. So we had to modify the structure of
variable so it constitutes out of its name only. In doing so, another issue surfaced- how to
store the sort information of the variables when the particular component is a sub-block
inside a block. To this end, we appended one more argument in the list of block’s elements
that would conserve the signals along with their respective sorts. This way, the chance of
losing sort information was eliminated.

Another related issue was how to transport the sort of the signals from components to blocks
when the component forms a sub block, owing mainly to the reason that, interface of a
component does not contain MDG variables. As a solution to the problem, the tool would be
empowered to determine the sorts of the input and output arguments depending on which
component they belong to. For example, sorts of signals of a component that returns the OR-

ed output of its two word inputs will be determined to be a word too.

4.4 Summary

In this chapter, we have discussed the design and implementation of the data structure with
specific attention to the classes and modules of the design. Also, different issues that came
along have also been highlighted. In order to apply and validate the proposed data structure,
we introduce the design, specification and implementation of a single bus simple RISC
processor. Further, the consequence of the application of the proposed structure on the

processor design is reviewed and analyzed.

47

Chapter 5

Case Study

The previous chapter was all about the design and implementation of the data structure. We
also elaborated different classes and modules of the structure. Now, we will focus on the
description of Simple RISC processor followed by the formalization and implementation of

the design.

5.1 Description of Simple RISC Processor

We selected a simple Reduced Instruction Set Computer (RISC) processor as our case study
for the proposed hybrid tool due mainly to its generality and rich instruction set architecture.
The subset of 12 instructions considered here are:

a. Load and store instructions:
i. Direct and indexed addressing load: /d
ii. Displacement addressing load: la
iii. Register relative addressing load: /dr
iv. Direct and indexed addressing store: s¢
b. Register relative addressing store: str Arithmetic instructions:
i. 2’s complement addition — add
ii. Immediate 2’s complement addition — addi
iii. Negation — neg
c. Logical operations:
i. Logical NOT — not
ii. Logical OR - or
iii. Immediate logical OR ~ ori

d. Branch operations: br

48

While modeling the processor, we followed the procedural steps that would take us from

behavioral aspects of the controller to the point where structural details of the data path

implementation were taken care of. The modeling starts in the form of specification of the

behavior that the control system demonstrates. When the behavior of the controller and other

sub modules of the control system are known, we can go on to define the interface of the

control system. Descriptions of each input and each output form the interface. Finally the

interface of data path, counter and memory system is determined.

5.1.1 Control System

Master
Clock Strt Wait Done

L]

Clocking Logic

Enable

Step Generator

Control
Step
Decoder

Counter

OpCode IR Other signals
from data path
\‘l Decoder
=528 |82|2(3 3| g
Y. Y V¥ ¥
T0
T1
T2
T3 Control Signal Encoder
T4
T5
T6
T7

Reset

CONTROL UNIT

Figure 5.1 Control Unit

The control system contains a clocking logic, a control step generator and a signal encoder.

The step generator is made up of counter and a control step decoder.

49

5.1.1.1 Control Signal Encoder

Control signal encoder is responsible for generation of a set of control signals that are used to
drive data path modules. As input, the encoder receives control step signals, decoded
OpCode and other signals from data path. Then the combinational circuit generates the
corresponding control signal that will be the input of data path or memory.

5.1.1.2 Clocking Logic

Clocking logic receives ‘Start’ signal from external source, ‘Run’ signal from within the
circuit, and ‘Read’, “Write’, and ‘Stop’ signal generated within the control unit.

The outputs are:

a. Enable: Signal that enables the counter and control step generator.

b. Rd/ Wr: In response of Read/Write signal from the control signal encoder, these
signals are generated towards memory unit. The Rd/Wr signals remain latched until
the corresponding memory operation is completed.

5.1.1.3 Control Step Generator

The control step generator is a synchronous parallel-load up counter in the design. It accepts
an increment signal, the Master Clock in this case, an enable signal and a Reset signal that
causes the counter to restart its step output at TO at the next clocking event. The 3-bit counter
counts from O to 7 when it is reset. For example, the Reser signal is generated by the End
signal that terminates a control sequence. This unit generates control steps such as TO,
T1....T7 corresponding to the sequential counter numbers 000, 001...111 etc. These control
steps are input to the control signal encoder, which utilizes these steps along with other
inputs from opcode decoder to generate appropriate control signals. These control signals are

input to data path and memory units.

50

5.1.1.4 OpCode Decoder

The function of this unit is to read the opcode sitting in the first 5 bits of the instruction

register (IR) and assert appropriate control signal (1d, 1dr, st, str, la, add, addi, or, ori, not,

neg, br) associated with the opcode towards control signal encoder. In essence, opcode

decoder is a 5 to 1 decoder that depicts the instruction to be executed.

RO
General —

purpose
registers

Register
File

T

Data Path
4

R31 <

{

CON, 7 7@ CON
>

oL Cond
Logic

A

Op
Register Select] Select Logic c3
»] R

| Sselect Logic
cl]

B

Y Y

c2

A B
Arithmatic

and Logic
Unit ALU

(o]

To memory subsystem ——p

5.1.2 Data Path

The design of the data path involves decisions at several levels of abstraction. The highest
level is that of the micro architecture, where the basic registers and interconnections of an
implementation are laid out. There are also design decisions to be made about the type of
flip-flop used to implement registers and the type of interconnecting bus to use. In general,

the high-level decisions affect the register transfers that can be performed and how many of

N

Figure 5.2 Data Path

51

Condition
Code
Logic

Instruction
Register

Interface
to
Memory

them can be performed simultaneously. The low-level decisions affect the speed at which
each register transfer can be done. There is a limited influence of the flip-flop type on the

kind of register transfer that can be done.

Data path is made up of Register file, Arithmetic Logic Unit (ALU), Condition Code Logic
unit, Instruction Register (IR), and Interface to memory. Program Counter (PC) points to the
next instruction to be executed and the IR holds the current instruction. Three control signals-
PC,y, PCy, , and IR;, are associated to PC and IR. 5-bit register select and three other fields-
cl, c2 and c3 — are extracted from IR. Registers MA (memory address) and MD (memory
data), along with their associated signals, provide the interface to the memory system. MA
receives the memory address from the bus through the unidirectional channel, whereas, MD
is bidirectional in the sense that it receives data from memory and transfer it to bus during a

‘read’ operation and vice versa during a ‘write’.

5.2 Formalization

As we completed defining the interface, the formalization of the specification can proceed.
5.2.1 Main Modules and Their Design

As the mnputs and outputs of the control unit are determined and defined, derivation of
Boolean expressions is the next step. In order to be able to analyze the control signals and

derive respective Boolean expressions, the instruction formats deserves an examination.

52

5.2.1.1 Instruction Set Architecture:

As shown in figure 5.3, all instructions are 32 bits long. The memory operands can be

accessed through load and store instructions only in SRC, as they are load-store class of

s, 7T 32“21{*3? 16 0
addion [Op [ra [| 2 1
31 2726 2221 0

s | 99 || 1
N 22w 221716 12 1 o
natneg |LOp | ra] | unused |
| a1 2726 22211718 12 1 2 0
b Lop| [| re|ichunsediCong)
31 2726 22211716 12 o
add,or | Op |ra [|rc | wnused |

Fig 5.3 : Instruction Formats

machine. Opcode is 5 bits long. So, a total of 2° = 32 different instructions are possible. Here
we consider 12 of these instructions. The ra, rb and rc are 5 bit fields which point to one of
32 general purpose registers (GPR).
cl is a 22 bit field that contains one of the following:
1. Constant to be added to Program Counter (PC) in order to calculate the address of the
memory data to be loaded to a GPR

Example: /dr ra, cl : Load Register relative : R[ra] = M[PC + c1]

2. Constant to be added to Program Counter (PC) in order to calculate the address of the
memory location where content of a GPR will be stored

Example: str ra, cl : Store Register relative : M[PC + cl1] = RJra]

53

c2 holds a 17 bit value. In case when the value contained in 1b is 0, which points to r0, the

control unit recognizes that c2 holds the sign extended 2’s compliment number that specifies

the address itself. c2 contains one of the following:

1.

Memory address of the memory data that will be loaded to a general purpose register —
Example: 1d ra, c2 : Direct addressing: R[ra] =M [c2]

Constant to be added to the content of a GPR to calculate the address of the memory data
that will be loaded to another GPR.

Example: 1d ra, ¢2 (rb) : Indexed addressing R[ra]= M[c2 + R[rb]]

Memory address where the content of a GPR will be stored

Example: st ra, c2 : Direct addressing: M [c2] = R[ra]

Constant to be added to the content of a GPR to calculate the memory address where the
content of another GPR will be stored.

Example: st ra, c2 (rb) : Indexed addressing M[c2 + R[rb]] = R[ra]

Constant, acting as the displacement address argument, to be loaded to a GPR

Example: la ra, c¢2: Load displacement address: R[ra] = ¢2

Constant, to be added to be added to the content of a GPR in order to calculate the
displacement address, to be loaded to another GPR

Example: 1a ra, c2 (rb): Load displacement address: R[ra] = ¢2 + R[rb]

c3 ranges over the 3 least significant bits of the 32 bit instruction, allowing to specify one of

0,1,2,3,4 or 5. It contains the condition that is tested against the contents of a GPR to

determine branch operations.

54

Example: br 1b, rc, ¢3: Branch to R[rb] if R[rc] fulfills condition in ¢3

op<4..0> := IR <31..27>: Operation code field

ra<4..0> ;= IR <26..22>: Target register field

1b<4..0> := IR <21..17>: Operand, address index or branch target register
rc<4..0> :=1R <16..12>: Second operand, conditional test

c1<21..0> :=1R <21..0>: Long displacement field

c2<16..0> :=1R <16..0>: Short displacement or immediate field
¢3<11..0> :=1R <11..0>: Modifier field

Branch conditions are dependent on the ‘cond’ field, ¢3<2..0>, and conditional branches are

dependent on the value of a general register rather than the value of a flag or flags register:

cond :=¢3 <2..0>=0—>0: Never
c3<2.0>=1->1: Always
c3<2..0>=2 > R[rc]=0: If register is zero
c3<2.0>=3 - R[rc] = 0: If register is nonzero
c3 <2..0>=4 - R[rc]<31>=0: If positive or zero

c3 <2..0>=5 - R]rc] <31>=1: If negative

5.2.2 Register Transfer Notation (RTN)

Although plain English is useful.for describing common features of a machine design and its
general capabilities, industrial or research based design of a computer can not rely on that
view. In pursuit of such designs, precise specifications of functions are indispensable.
Register transfer language facilitates the precise specification of the transfer of data among
registers and memory cells. Register transfer notation, thus, is used to describe the

components and operation of SRC.

An example of RTN for the instruction 1dr ra, c1 is given in table 5.1.

55

Opcode 2 Idr ra, cl

Control step RTN Control sequence

TO MA « PC: C « PC+4; PCout, MAjp, INC4, C;y
Tl MD « M[MA]: PC « C; Read, Coy, PCiy, Wait
T2 IR « MD; MDouyt, IRin

T3 A « PC; PCout, Ain

T4 CeA+cl; clow, Add, Ciy

T5 MA «C; Couts MAjp

Té MD « M[MA] Read, Wait

T7 R[ra] « MD; MD,y, Gra, Riy, End

Table 5.1 Register Transfer Notation
Formalization of the processor design goes through the following steps:
1. Translate Boolean expressions into MDG tables
2. Specification of the controller behavior in HOL
3. Specification of data path in HOL
4. Formulation of structural model of the controller and data path
Standard logic manipulations of the logic expressions provide us enough information to form
tables for each control signal. However, in order to keep the table size small and for the sake
of simplicity, we defined some concrete sorts to group signals together. In the process, we
grouped all the memory accessing signals- 1d, ldr, st, str, 1a- into the sort, “s_ldst”. Similarly,
Arithmetic operation signals- add, addi, or, ori, not, neg, inc4-, branch operation signal- br-,
and condition operation signal —con- and control steps- TO, T1, T2, T3, T4, TS, T6 and T7-
have been bundled in the sorts, “s arithop”, “s brop”, “s cndlgc” and “s_ctlstp”
respectively. One example of the resulting tables is as shown in table 5.2. From the table, we

can conclude the following Boolean expression for PCy; :

56

PCoy = TO + T3.(1dr + str)

All the tables required for the formalization process have been furnished in Appendix A.

Ctrl Stp Ld St Arith Op Br Op Cond Log | PCyy
TO DON’T CARE | DON’T CARE | DON’T CARE | DON’T CARE 1
T3 Ldr DON’T CARE | DON’T CARE | DON’T CARE 1
T3 Str DON’T CARE | DON’T CARE | DON’T CARE 1

Default 0

Table 5.2 Truth table for control signal, PC,,

The MDG embedding in HOL contains a ‘TABLE’ construct that allows us to define the
encoded controller signals as outputs of those tables that take the individual signals, that
come as input to the encoder, as its inputs. An example of such a table construct, written for

‘PCout’, in HOL is given below:

F PC_out_tab (ctlstp,ldst) PC_out

= ~(stateVariable PC_out) A\
TABLE [vtt ctlstp;vtt 1dst] PC out
[[itv 0;DONT_CARE]; [itv 3;itv 2]; [itv 3;itv 3]]
[btc T;btc T;btc T] (btc F)

As described earlier, Table has a list of inputs as MDG Terms, an output as MDG Variable, a
list of input value lists as Table values, a list of corresponding output values as MDG Terms
and a default value again as MDG Term. A predicate, stating that the output is not a state
variable, is put in conjunction with the table itself. ‘vtt’, ‘itv’, ‘btc’ etc. are casting functions
required for transforming the values into warranted forms. ‘DON’T _CARE’ is a value

assigned to an input variable when it does not affect the value of output variable.

All the output signals of control step encoder are defined in this way. Then, the top-level
encoder is obtained as a conjunction of the interfaces of all the signal definitions. The

interface of the encoder contains all the inputs and outputs as shown in figure 5.1.

57

Designing counter includes conjunction of predicates that declare the outputs of the counter
as state variables. The counter input is an asynchronous reset. In each clock cycle, the
counter increments its output by 1 until the output equals 7 after which it restarts counting
from 0 again. At any point, the asynchronous reset can initialize the counter.

The control step generator is largely a 3 to 8 decoder. Its inputs are the outputs of the counter
and it generates the control steps TO, T1...etc. provided the ‘enable’ signal originated from
the clocking logic is set.

The clocking logic inputs include external inputs such as ‘start’, internally generated signals
such as ‘wait’ and ‘done’, ‘Read’ and ‘Write’ signals from control signal encoder. It sends
‘enable’ to the control step generator, and ‘read’ and ‘write’ latching signals to memory

system.

Data path modules- ALU, Register file, Instruction register, Memory interface, and condition
code logic- are defined separately in HOL. While defining ALU, inputs and output are
considered as words. The output values of the table are un-interpreted function symbols
according to the requirement of MDG. To this end, ALU table dictates which function
symbol, from among ‘add’, ‘or’, ‘not’, ‘neg’ and ‘inc4’, should be the value of the output
depending on the value of the control signals- ADD, OR, NOT, NEG and INC4. As these are
words, the bus width of the inputs and the output are also taken into account. The definition
also includes a conjunction of a predicate that warrants that the bus widths of all the inputs

are equal.

The top-level of data path design is again a conjunction of the instances of individual

modules along with predicates and declaration of internal signals etc.

58

3.2.3 Implementation

Implementation of both the controller and the data path are structural models. They represent
a net list of components. The set of components is made up of subsets of components defined

in the MDG embedding in HOL, and subsets of user defined components.
5.2.3.1 Controller

Structural definition of the controller involves simply a realization of the logic equations
derived earlier. Using logic gates defined in the embedding, we completed the net list form of
the equations. In order to keep the definitions of individual control signals small, we grouped
the inputs of the control signal encoder according to their functionalities. For example, we
defined ‘Id_ldr_gr’, which is an instantiation of a 2-input OR gate with ‘1d’ and ‘ldr’ as its
inputs and ‘Id_ldr’ as its output. Thus, whenever an OR-ed form of ‘1d’ and ‘ldr’ would be
required in any of the succeeding definitions, we would be able to use ‘ld_ldr’ rather than

defining the sub module repeatedly.

As described before, control signal encoder is a combinational circuit that is hard-wired to
provide the desired control signal outputs according to the logic equations. To this end, the
structural model is devoid of any sequential element such as registers. However, the counter

is implemented with registers besides other components.

Same as the specification, implementation of the top-level controller is the conjunction of

instances of control signal encoder, clocking logic and control step generator.

59

5.2.3.2 Data Path

A register with control is defined in the components. Such a component is instantiated in the
implementation of sequential sub modules in data path. An example of such a sub module is
the register ‘A’ that holds the operand for ALU. Similar to the controller, data path top-level
model is the conjunction of the instances of sub-modules that constitutes its structure. The
ALU operands are implemented as words. However, the embedding allows us to implement

them as integers too.

5.3 Application Results and Analysis

As a verification tool, MDG accepts MDG-HDL which allows the use of abstract variables
for representing data signals. The MDG-HDL is then compiled into the ASM model in
internal MDG data structures. The simple RISC processor has been specified and
implemented using HOL. In this case the MDG embedding in HOL served the purpose of
MDG-HDL. Besides specification and implementation a parser has also been designed and
implemented. The main function of the parser is to parse the circuit definitions in structural

and behavioral terms.

We used the parser for parsing the description of specification and implementation of the
SRC processor. The specification is generally a behavioral description of the circuit. It uses
tabular representation of input and output relations. The proposed data structure supports the
use of abstract function symbols as output variables in the table. As stated earlier, the
embedding allows us to describe the circuit as a list of theorems in HOL. The parser parses
these theorems as statements. A function, ‘StatToTuple’, defined in the ParserSupport

module, disintegrates this list of statement into a tuple of signals, their sort assignments,

60

components, outputs and the mapping between state variables and next state variables which

are the required inputs of MDG tool.

Signals are parsed into a tuple containing the signal identifier and its associated sort
assignment. For example, signal (CON, bool) represents a signal ‘CON’ which is of type

Boolean.

Components are parsed following the MDG tool syntax as Component (CompName,
CompDef), where CompName is the component identifier and CompDef represents its
definition. A component is generally defined by instantiating the input/output ports of a
predefined component module in MDG. In addition to this, our data structure allows a
component to be a table, or a user-deﬁned componént. We also incorporated an additional
field in the interface of a block. When a user defines a list of components in conjunction
among themselves, we term that as a grammar block. Both a block and a grammar block
contain a field in their interfaces that lists the signals and their corresponding sort
information. Consequently when a block is extracted from a parsed module, the signals and
their sorts are readily available for extraction by the tool. As we see, when the design
specification and implementation is parsed, the compiled output of the parser is in the form
as warranted by MDG. So, when the proposed tool calls MDG for verification of a block that
is sufficiently tractable, it finds the required circuit description file. As rests of the required
files are generated by the proposed tool, the MDG tool can go ahead with different stages of

verification.

61

5.3.1 Verification of an ALU:

In place of the MDG-HOL hybrid tool to verify the proposed data abstraction structure, we
validated an ALU in HOL. In this case the ALU was formed to comply with the proposed

data structure in terms of abstraction and refinement.

The ALU comprised two functions- addition and multiplication. The behavioral model
contains a table that directs to the desired output function according to the inputs. The
structural implementation uses components for transformation and multiplexing the inputs

towards one expected output.

The verification process advances in stages. Firstly, an overall proof goal was set to prove
that the structural ALU model implies the behavioral specification. Secondly, because the
goal was too deep to prove, it was disintegrated into two sub goals to prove that the
components used in the implementation are the implication of the table that depicts the
behavior of the ALU and the predicate relating to the state variable. Proof of each sub goal
involves proving the member theorems top down recursively. Thus, when the two sub goals
are proved, the over all goal is verified. The verbose messages of the proof procedure are

furnished in Appendix B.

The main difference between this verification and a similar procedure with the existing
hybrid tool would be in the data size. The existing MDG-HOL hybrid tool verifies the model
assuming that the operands are one bit long. The proposed data structure facilitates the
verification of the ALU with the operands defined as words. Thus it improves upon the data

handling capacity and approaches towards practical applications.

62

5.4 Summary

The objective in this chapter was to utilize the processor model so the proposed and
implemented data structure could be applied on it and the consequent result would be
analyzed. Finally, by using HOL, we verified an ALU that uses the proposed data structure.
Next chapter sums up the findings so far, points to the probable future research direction and

wraps up the thesis.

63

Chapter 6

Conclusion and Future Work

In the last chapter, we shed focus on the case study relating to the Simple one-bus RISC
Processor. Also, we furnished the result and analysis of the application of the proposed data
abstraction structure on the processor specification and implementation. In this chapter we
will conclude our findings and also indicate the future research prospects.

Automatic tools are convenient to use while they lack in ability to handle practical circuits.
The main reason behind this is the state space explosion problem associated to these state
space exploration based techniques. Interactive techniques are capable of handling large,
industrial designs. However, their interactive feature warrants for user involvement and
expertise, which is again unsuitable for industrial purposes. Concocted solutions of these two

approaches are under researchers’ scrutiny for quite a while.

One major aspect that invites swelling of design size is the data structure involved in the data
path operations. Refined data structures at bit level increases the data width requirements
exponentially. With the same data represented in a more abstract level, subsequent upsurge
of resultant data size can be reduced considerably and thus the capacity of the verification

tool is enhanced largely. Our focus has been on this approach of optimization.

6.1 Major Contributions

An MDG embedding in HOL is the embedding of MDGs as built-in data types. We extended
the existing embedding in order to incorporate abstract sorts and related functions. MDG

operations are interfaced to HOL functions. This allows the tool to maneuver graphs rather

64

thah corresponding HOL terms. For supporting the abstract data sort structure, new data
types and functions have been included in the embedding. Then we designed and
implemented a simple RISC processor incorporating abstract data sorts, defined in the
embedding, in the controller and data path circuits. The main intention behind this was to
apply the data abstraction structure to the design of a circuit and assimilate the forthcoming
design of the tool that integrates the proposed data abstraction structure. With this view in
mind, we also designed and implemented a parser that successfully parses both the
specification and implementation of the processor. This would work as the parser for the
main module of the proposed verification tool that extracts blocks, sub blocks and grammar

blocks from the parsed modules.

The next step involved the design of the modules, acting as the building blocks of the
proposed data structure, that encompass the sorts, values, variables, terms, constants,
functions, components and tables. Also included in these modules are methods used to
transform signals, terms, variables, functions etc. into MDG-formats, to check the well-typed

ness, to check other predicates etc.

6.2 Future Research Directions

With the existing data structure in place, the MDG-HOL hybrid tool would allow the
specification and implementation to range over different data abstraction levels starting from
Boolean, concrete towards integer and abstract sorts. In addition, Boolean words offer an

intermediate abstraction level.

The existing hybrid tool uses three tactics- two for dealing with combinational and sequential

circuits and the other for managing hierarchical verification. The proposed tool, which will

65

utilize the implemented data abstraction structure as its backbone, would exercise the full
capacity when more tactics are designed and implemented. These tactics would allow the tool
designer elaborate the specification and implementation of the design under test at different

abstraction levels and deal with un-synthesizable data sorts.

Finally, if the future tool includes a quantitative direction to the user that enables to
determine whether or not the design under verification needs abstraction in order to be

verified by automated tool, it would make it more attractive to the industrial applications.

66

[\o]

Bibliography

W. E. Dijkstra, The Humble Programmer, ACM Turing Award Lecture, 1972.

. N. Shankar, Combining Theorem Proving and Model Checking through symbolic

Analysis, CONCUR, 2000.

S. SKort, S.Tahar, P. Curzon, Hierarchical Verification Using an MDG_HOL
Hybrid Tool, International Journal on Software Tools for Technology Transfer, Vol.
4, Springer Verlag, 2002, pp. 1-10.

G. S. Kumar, Slides on theorem prover, Center for Formal Design and Verification of
Software, IIT, Bombay, India, 2002.

S. Berezin. Model Checking and Theorem Proving: a Unified Framework. Ph.D.
Thesis, Carnegie Mellon University, 2002.

E. Clarke, A. Biere, R. Raimi, and Y. Zhu, Bounded Model Checking Using
Satisfiability Solving, Formal Methods in System Design, Vol. 19, issue 1, July 2001.
E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, Vol. 16(5), pp. 1512--1542,
September 1994.

E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking, Cambridge: MIT Press,
1999.

M.H. Zobair and S. Tahar, Formal Verification of a SONET Telecom System Block,
Proc. International Conference on Formal Engineering Methods (ICFEM'02),

Shanghai, China, October 2002.

67

10.

1.

12.

13.

14.

15.

16.

17.

18.

VK. Pisini, S. Tahar, O. Ait-Mohamed, P. Curzon, and X. Song. 4n Approach to
Link HOL and MDG for Hardware Verification. Proc. of the 1999 Micronet
Workshop, Ottawa, Canada, April 1999, pp. 156-157.

S. Tahar, E. Cerny and X. Song, Slides on Formal Verification of Systems,
Department of Electrical and Computer Engineering, Concordia University,
Montréal, Canada, 1999,

Fabio Somenzi. “Binary Decision Diagrams”. In Manfred Broy and Ralf
Steinbriiggen, editors, Calculational System Design, NATO Science Series F:
Computer and Systems Sciences, Vol. 173, pp. 303-366. IOS Press, 1999.

Y. Lakhnech, S. Bensalem, S. Berezin, S. Owre, Incremental Verification by
Abstraction, Tools and Algorithms for the Construction and Analysis of Systems: 7th
International Conference, TACAS 2001

John Harrison, Verifying Floating-Point Algorithms using Formalized Mathematics,
Presentation, HVG Concordia, 2005

L. Paulson. ML for the Working Programmer, Cambridge University Press, 1996.

O. Parshin, Specification and verification of the ARM6 microprocessor in HOL, State
of the Art of Formal Hardware Verification Seminar, January 2004.

P. Curzon, S. Tahar, O. Ait Mohammed, Verification of the MDG Components
Library in HOL. In Jim Grundy and Malcolm Newey, editors, Theorem Proving in
Higher Order Logics: Emerging Trends, Department of Computer Science, The
Australian National University, pp. 31-46, 1998.

R.Bryant, Graph-based Algorithms for Boolean Function Manipulation. 1EEE

Transactions on Computers, Vol. C-35(8) pp. 677-691, August 1986.

68

19.

20.

21.

22.

23.

24.

25.

26.

27.

V.K.Pisini, S.Tahar, P.Curzon, O. Ait-Mohamed and X. Song. 4 hybrid approach to
Jformal verification using HOL and MDG, 1999.

Z. Zhou, N. Boulerice, MDG Tools User’s Manual, 1996

T. Mhamdi and S. Tahar: Embedding Multiway Decision Graphs in HOL; B-Track
Proc. International Conference on Theorem Proving in Higher-Order Logics
(TPHOLSs'04), Park City, Utah, USA, pp. 121-136, September 2004.

Y.Xu, X. Song, E. Cemy, O. Ait Mohamed, Model Checking for a First-Order
Temporal Logic Using MDGs, The Computer Journal, The British Computer Society,
2004.

M. Newey, Mechanical Verification, Lectures in The Department of Computer
Engineering, Australian National University, 2000

S. Rajan, N. Shankar, M.K. Srivas. An integration of model checking with automated
proof checking. In Pierre Wolper, editor, Computer-aided Verification, CAV ’95, vol.
939 of Lecture Notes in Coputer Science, pp 412-416, Passau, Germany, March 1996,
Springer-Verlag.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell
Massachusetts,1993.

G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
vol. 23(5), pp. 279295, May 1997.

R. H. Hardin, Z. Har’El, and R. P. Kurshan. COSPAN. In Rajeev Alur and Thomas
A. Henzinger,editors, Conference on Computer Aided Verification (CAV), vol. 1102
of LectureNotes in Computer Science, pp. 423—427, New Brunswick, NJ, USA,

July/August 1996.Springer Verlag.

69

28. A. Aziz, F. Balarin, S.-T. Cheng, R. Hojati, T. Kam, S.C. Krishnan, R.K. Ranjan,
T.R. Shiple,V. Singhal, S. Tasiran, H.-Y. Wang, R.K. Brayton, and A.L.
Sangiovanni-Vincentelli. HSIS:4 BDD-Based Environment for Formal Verification.
In ACM/IEEE Design Automation Conference(DAC), San Diego, CA, June 1994.
San Diego Convention Center.

29. R. K. Brayton, A. L. Sangiovanni-Vincentelli, A. Aziz, S.-T. Cheng, S. Edwards, S.
Khatri,Y. Kukimoto, S. Qadeer, R. K. Ranjan, T. R. Shiple, G. Swamy, T. Villa, G.
D. HachtelLF. Somenzi, A. Pardo, and S. Sarwary. VIS: A4 system for verification
synthesis. In Computer-Aided Verification, New Brunswick, NJ, July-August 1996.

30. M.C. Browne, EM. Clarke, D.L. Dill, and B. Mishra. Automatic Verification of
Sequential Circuits Using Temporal Logic. IEEE Transactions on Computers, vol. C-
35(12), pp. 1034-1044,December 1986.

31. D.L. Dill and EM. Clarke. Automatic verification of asynchronous circuits using
temporal logic. IEE Proceedings, vol. 133 Part E(5), pp. 276282, September 1986.

32. EM. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L. McMillan, and L.A.
Ness. Verification of the Futurebus+ Cache Coherence Protocol. In D. Agnew, L.
Claesen, and R. Camposano, editors, IFIP Conference on Computer Hardware
Description Languages.

33.F. Corella, Z. Shou, X. Song, M. Langevin and E. Cerny. Multiway Decision Graphs
Jor Automated Hardware Verification. Formal Methods in System Design, Vol 10 (1),

pp 7-46, 1997.

70

Appendix A

LOGIC EXPRESSIONS FOR CONTROL SIGNLAS

PCout = TO + T3.(Idr + str)

PCj, = T1+ T4.br.CON

MA;, =TO0 + T5.(1d + st + 1dr + str)

Cout =T1 + T4.(not + neg) + T5.(1d + 1dr + st + str + la + add + addi + or + ori)

Cin =TO + T3.(not + neg) + T4.(1d + ldr + st + str + la + add + addi + or + ori)

Rout = T3.(not + neg + add + addi + or + ori + br) + T4.(add + or + br) + T6.(st + str)
Ri, = T4.(neg + not) + TS5.(add + addi + or + ori + la) + T7.(1d+1dr)

Aj, =T3.(1d +1dr + st + str + add + addi + or + ori + la)

IRj, = T2 + T6.(1d + 1dr)

MDgy = T2 + T7.(1d + 1dr)

MDyys = T6.(st + str)

MDyq = T1 + T6. (1d + 1dr)

MDy, = T7.(st + str)

Cloy = T4.(1dr + str)

C2ou = T4.(1d +st + 1a + addi + ori)

Gra = T4.(not + neg) + T5.(la + add + addi + or + ori) + T6.(st + str) + T7.(1d + 1dr)
Grb =T3.(1d + la + st + add + addi + or + ori) + T4.br

Gre = T3.(neg + not + br) + T4.(add +or)

ADD =T4.(1d + 1dr + la + st + str + add + addi)

NOT =T3.not

71

INC4=TO

NEG = T3.neg

OR = T4.(or + ori)

CON;j, =T3.br

READ = T1 + T6.(1d + 1dr)
WRITE = T7.(st + str)
WAIT =T1 + Té6 (1d + 1dr)
BAou=T3.(1d + st + 1a)

END = T4.(neg + not + br) + T5.(la + add + addi + or + ori) + T7.(1d + 1dr + st + str)

CONCRETE SORTS

Ctrl_Stp : TO0, T1, T2, T3, T4, TS, T6, T7
Ld St : 1d, 1dr, la, st, str

Arith Op : add, addi, or, ori, not, neg

Br Op : br

Cond Log : CON

72

TRUTH TABLES FOR CONTROL SIGNALS

Pcout

Ctrl_Stp Ld St Arith Op Br Op Cond_Log | PCyu
TO DON’T CARE | DON’T CARE | DON’T CARE | DON'T CARE 1
T3 Ldr DON’T CARE | DON’T CARE | DON’T CARE 1
T3 Str DON’T CARE | DON’T CARE | DON’T CARE 1

Default 0

PCi,

Ctrl Stp Ld St Arith Op Br Op Cond_Log PCi,
T1 DON’T CARE | DON’'T CARE | DON’T CARE | DON’T CARE 1
T4 DON’T CARE | DON’T CARE br CON 1

Default 0

MA;

Ctrl_Stp Ld_St Arith Op Br Op Cond_Log MA;
TO DON’T CARE | DON’T CARE | DON’T CARE | DON’T CARE 1
T5 1d DON’T CARE | DON'T CARE | DON’T CARE 1
T5 st DON’T CARE | DON’'T CARE | DON’T CARE 1
T5 1dr DON’T CARE | DON’T CARE | DON’T CARE 1
T5 str DON’T CARE | DON’T CARE | DON’T CARE 1

Default 0

Cout

Ctrl Stp Ld St Arith Op Br Op Cond Log Cout
T1 DON’T CARE | DON’T CARE | DON’T CARE | DON’T CARE 1
T4 DON’T CARE not DON’T CARE | DON’T CARE 1
T4 DON’T CARE neg DON’T CARE | DON'T CARE 1
T5 1d DON’T CARE | DON’T CARE | DON’T CARE 1
T5 1dr DON’T CARE | DON’T CARE | DON’T CARE 1
T5 st DON’T CARE | DON'T CARE | DON’T CARE 1
T5 str DON’T CARE | DON’T CARE | DON’T CARE 1
T5 la DON’T CARE | DON’T CARE | DON’T CARE 1
T5 add DON’T CARE | DON’T CARE | DON’T CARE 1
TS5 addi DON’T CARE | DON’T CARE | DON’T CARE 1
T5 or DON’T CARE | DON’T CARE | DON’T CARE 1
T5 ori DON’T CARE | DON’T CARE | DON’T CARE 1

Default 0

73

Cin

Ctrl_Stp Ld St Arith Op Br Op Cond_Log Cin
TO DON’T CARE | DON’T CARE | DON’T CARE | DON’T CARE 1
T3 DON’T CARE not DON’T CARE | DON’T CARE 1
T3 DON’T CARE neg DON’T CARE | DON’T CARE 1
T4 add DON’T CARE | DON’T CARE 1
T4 addi DON’T CARE | DON’T CARE 1
T4 or DON’T CARE | DON’T CARE 1
T4 ori DON’T CARE | DON’T CARE 1
T4 Id DON’T CARE { DON’T CARE | DON’T CARE 1
T4 ldr DON’T CARE | DON’T CARE | DON’T CARE 1
T4 st DON’T CARE | DON’T CARE | DON’T CARE 1
T4 str DON’T CARE | DON’T CARE | DON’T CARE 1
T4 la DON’T CARE | DON’T CARE | DON’T CARE 1

Default 0

Rout

Ctrl Stp IL.d St Arith Op Br Op Cond Log Rout
T3 DON’T CARE not DON’T CARE | DON’T CARE 1
T3 DON’T CARE neg DON’T CARE | DON’T CARE 1
T3 DON’T CARE add DON’T CARE | DON’T CARE 1
T3 DON’T CARE addi DON’T CARE | DON’T CARE 1
T3 DON’T CARE or DON’'T CARE | DON’T CARE | '1
T3 DON’T CARE ori DON’T CARE | DON’T CARE 1
T3 DON’T CARE | DON’T CARE br DON’T CARE 1
T4 DON’T CARE add DON’T CARE | DON’T CARE 1
T4 DON’T CARE or DON’T CARE | DON’T CARE 1
T4 DON’T CARE | DON’T CARE br DON’T CARE 1
T6 st DON’T CARE | DON’T CARE | DON’T CARE 1
T6 str DON’T CARE | DON’T CARE | DON’T CARE 1

0

Default

74

R;

Ctrl Stp Ld St Arith Op Br Op Cond Log Rin
T4 DON’T CARE not DON’T CARE | DON’T CARE 1
T4 DON’T CARE neg DON’T CARE | DON’T CARE 1
T5 DON’T CARE add DON’T CARE | DON’T CARE 1
TS5 DON’T CARE addi DON’T CARE | DON’T CARE 1
T5 DON’T CARE or DON’T CARE | DON’T CARE 1
TS DON’T CARE ori DON’T CARE | DON’T CARE 1
TS la DON’T CARE | DON’T CARE | DON’T CARE 1
T7 1d DON’T CARE | DON'T CARE | DON’T CARE 1
T7 ldr DON’T CARE | DON'T CARE | DON’T CARE 1

Default 0

A;

Ctrl Stp Ld St Arith Op Br Op Cond_Log Ajn
T3 DON’T CARE add DON’T CARE | DON’T CARE 1
T3 DON’T CARE addi DON’T CARE | DON’T CARE 1
T3 DON’T CARE or DON’T CARE | DON’T CARE 1
T3 DON’T CARE ori DON’T CARE | DON'T CARE 1
T3 1d DON’T CARE | DON'T CARE | DON’T CARE 1
T3 1dr DON’T CARE | DON'T CARE | DON’T CARE 1
T3 st DON’T CARE | DON’T CARE | DON’T CARE 1
T3 str DON’T CARE | DON’T CARE | DON’T CARE 1
T3 la DON’T CARE | DON’T CARE | DON’T CARE 1

Default 0

IR;

Ctrl_Stp Ld St Arith Op Br Op Cond_Log IR;,
T2 DON’T CARE | DON’T CARE | DON’T CARE | DON’T CARE 1
T6 1d DON’T CARE | DON’T CARE | DON’T CARE 1
T6 1dr DON’T CARE | DON’T CARE | DON’T CARE 1

Default 0

MDout

Ctrl Stp Ld St Arith Op Br Op Cond_Log MDD,
T2 DON’T CARE | DON’T CARE | DON’T CARE | DON’T CARE 1
T7 1d DON’T CARE | DON’T CARE | DON’T CARE 1
T7 1dr DON’T CARE | DON'T CARE | DON’T CARE 1

0

Default

75

MDbus

Ctrl Stp Ld St Arith Op Br Op Cond Log MDpus
T6 st DON’T CARE | DON’T CARE | DON’T CARE |
T6 str DON’T CARE | DON’T CARE | DON’T CARE 1

Default 0

MDrd

Ctrl_Stp Ld_St Arith_Op Br_Op Cond_Log MD;q
T1 DON’T CARE | DON'T CARE | DON’T CARE | DON’T CARE 1
T6 1d DON’T CARE | DON’T CARE | DON’T CARE 1
T6 1dr DON’T CARE | DON’T CARE | DON’T CARE 1

Default 0

MDy,

Ctrl Stp Ld St Arith Op Br Op Cond_Log MD,,,
T7 st DON’T CARE DON’T CARE | DON’T CARE 1
T7 str DON’'T CARE DON’T CARE | DON’T CARE 1

Default 0

Clout

Ctrl Stp Ld St Arith Op Br Op Cond Log Clout
T4 1dr DON’T CARE | DON’T CARE | DON'T CARE 1
T4 str DON’'T CARE | DON’T CARE | DON’T CARE 1

Default 0

C2ut

Ctrl Stp Ld St Arith Op Br Op Cond_Log C2ut
T4 1d DON’T CARE | DON’T CARE | DON’T CARE 1
T4 st DON’T CARE | DON’T CARE | DON'T CARE 1
T4 la DON’T CARE | DON’T CARE | DON’T CARE 1
T4 DON’T CARE addi DON’T CARE | DON’T CARE 1
T4 DON’T CARE ori DON’T CARE | DON’T CARE 1

0

Default

76

Gra

Ctrl Stp Ld_St Arith_Op Br Op Cond_Log Gra
T4 DON’T CARE not DON’T CARE | DON’T CARE 1
T4 DON’T CARE neg DON’T CARE | DON’T CARE 1
TS5 DON’T CARE add DON’T CARE | DON'T CARE 1
TS DON’T CARE addi DON’T CARE | DON'T CARE 1
T5 DON’T CARE or DON’T CARE | DON’T CARE 1
T5 DON’T CARE ori DON’T CARE | DON’T CARE 1
T5 la DON’T CARE | DON’T CARE | DON’T CARE 1
T6 st DON’T CARE | DON’T CARE | DON’T CARE 1
T6 str DON’T CARE | DON’T CARE | DON’T CARE 1
T7 1d DON’T CARE | DON'T CARE | DON’T CARE 1
T7 1dr DON’T CARE | DON’T CARE | DON’T CARE 1

Default 0

Grb

Ctrl Stp Ld St Arith Op Br Op Cond Log Grb
T3 1d DON’T CARE | DON’T CARE | DON’T CARE 1
T3 st DON’T CARE | DON’'T CARE | DON’T CARE 1
T3 la DON’T CARE | DON'T CARE | DON'T CARE 1
T3 DON’T CARE add DON’T CARE | DON’T CARE 1
T3 DON’T_CARE addi DON’T CARE | DON’T CARE 1
T3 DON’T CARE or DON’T CARE | DON'T CARE 1
T3 DON’T CARE ori DON’T CARE | DON’T CARE 1
T4 DON’T CARE | DON’T CARE br DON’T CARE 1

Default 0

INC4

Ctrl Stp Ld St Arith Op Br Op Cond Log INC4
TO DON’T CARE | DON’T CARE | DON’T CARE | DON’T CARE 1

Default

77

Gre

Ctrl Stp Ld St Arith Op Br Op Cond Log Gre
T3 DON’T CARE not DON’T CARE | DON’T CARE 1
T3 DON’T CARE neg DON’T CARE | DON’T CARE 1
T3 DON’T CARE | DON’'T CARE br DON’T CARE 1
T4 DON’T CARE add DON’T CARE | DON’T CARE 1
T4 DON’T CARE or DON’T CARE | DON’T CARE 1

Default 0

ADD

Ctrl Stp Ld St Arith Op Br Op Cond Log ADD
T4 DON’T CARE add DON’T CARE | DON’T CARE 1
T4 DON’T CARE addi DON’T CARE | DON’T CARE 1
T4 1d DON’T CARE | DON’T CARE | DON’T CARE 1
T4 1dr DON’T CARE | DON’T CARE | DON’T CARE 1
T4 st DON’T CARE | DON’T CARE | DON’T CARE 1
T4 str DON’T CARE | DON’T CARE | DON’T CARE 1
T4 la DON’T CARE | DON’T CARE | DON’T CARE 1

Default 0

NOT

Ctrl Stp Ld St Arith Op Br Op Cond_Log NOT
T3 DON’T CARE not DON’T CARE | DON’T CARE 1

Default - 0

NEG

Ctrl Stp Ld St Arith Op Br Op Cond_Log NEG
T3 DON’T CARE neg DON’T CARE | DON’T CARE 1

Default 0

OR

Ctrl_Stp Ld St Arith_Op Br Op Cond_Log OR
T4 DON’T CARE or DON’T CARE | DON’T CARE
T4 DON’T CARE ori DON’T CARE | DON’T CARE

Default

O =

78

CONij,

Ctrl Stp Ld St Arith Op Br Op Cond Log CONip
T3 DON’T CARE | DON’T CARE br DON’T CARE 1
Default 0
READ
Ctrl Stp Ld St Arith Op Br Op Cond_Log READ
Tl DON’T CARE | DON’T CARE | DON’T CARE | DON’T CARE 1
T6 1d DON’T CARE | DON’T CARE | DON’T CARE 1
T6 1dr DON’T CARE | DON’T CARE | DON’T CARE 1
Default 0
WRITE
Ctrl Stp Ld St Arith_Op Br Op Cond _Log WRITE
T7 st DON’T CARE | DON'T CARE | DON’T CARE 1
T7 str DON’T CARE | DON'T CARE | DON’T CARE 1
Default 0
WAIT
Ctrl Stp Ld St Arith Op Br Op Cond Log WAIT
Tl DON’T CARE | DON'T CARE | DON’T CARE | DON’T CARE 1
T6 1d DON’T CARE | DON’T CARE | DON'T CARE 1
T6 1dr DON’T CARE | DON’T CARE | DON’T CARE 1
Default 0
BAout
Ctrl Stp Ld St Arith Op Br Op Cond_Log C2out
T3 1d DON’T CARE | DON’T CARE | DON’T CARE 1
T3 st DON’T CARE | DON’T CARE | DON’T CARE 1
T3 la DON’T CARE | DON’T CARE | DON’T CARE 1
0

Default

79

END

Ctrl Stp Ld St Arith Op Br Op Cond Log Rin
T4 DON’T CARE Not DON’T CARE | DON'T CARE | 1
T4 DON’T CARE Neg DON’T CARE | DON’T CARE | 1
T4 DON’T CARE | DON’T CARE br DON’T CARE | 1
TS DON’T CARE Add DON’T CARE | DON'T CARE | 1
T5 DON’T CARE Addi DON’T CARE | DON'T CARE | 1
T5 DON’T CARE Or DON’T CARE | DON’T CARE | 1
T5 DON’T CARE Ori DON’T CARE | DON’T CARE | 1
TS la DON’T CARE | DON'T CARE | DON’T CARE | 1
T7 1d DON’T CARE | DON'T CARE | DON’T CARE | 1
T7 1dr DON’T CARE | DON'T CARE | DON’T CARE | 1
T7 st DON’T CARE | DON’T CARE | DON’T CARE | 1
T7 str DON’T CARE | DON’T CARE | DON’T CARE | 1

0

Default

80

Appendix B

YERBOSE MESSAGES OF PROOF PROCEDURE

<<HOL message: inventing new type variable names: 'a>>
Definition has been stored under "opcode_def".
> val opcode = |- opcode = CONCRETE "opcode" ["add"; "mul"] : thm
<<HOL message: inventing new type variable names: 'a>>
Definition has been stored under "ALU_beh_def".
>val ALU beh =
|- lintrp assgn code x y z.
ALU beh intrp assgn (code,x,y) z =
~stateVariable z A
TABLE intrp assgn [vtt code] z [[conctv "add"]; [conctv "mul"]]
[add txy; mul txy](add txy):thm
<<HOL message: inventing new type variable names: 'a>>
Definition has been stored under "ALU_str_def".
>val ALU str=
|- lintrp assgn code X y z.
ALU_str intrp assgn (code,x,y) z =
?sig_add sig_mul.
mdg_transform intrp assgn ([x; y],mdg add) sig_add A
mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul A\
mdg_mux assgn
(code,
[(string_to_val "add",sig_add);
(string_to_val "mul",sig mul)]) z : thm
<<HOL message: inventing new type variable names: 'a>>
Definition has been stored under "FA_str_def".
>val FA str=
|- tassgn a b cin s cout.
FA str assgn (a,b,cin) (s,cout) =
p g sig.
mdg_xor assgn (a,b) p Amdg_and assgn (a,b) g\
mdg_and assgn (p,cin) sig /A mdg_xor assgn (p,cin) s /\
mdg_or assgn (g,sig) cout : thm
<<HOL message: inventing new type variable names: 'a>>
Definition has been stored under "wires_4 def".
> val wires_4 =
|- tassgn x x0 x1 x2 x3.
wires_4 assgn x x0 x1 x2 x3 =
wire assgn X 0 x0 /\ wire assgn x 1 x1 /A wire assgn x 2 x2 N\
wire assgn X 3 x3 : thm
<<HOL message: inventing new type variable names: 'a>>
Definition has been stored under "RCA4_str_def".

81

>val RCA4 str=
|- lassgn a b cin s cout.
RCAA4 _str assgn (a,b,cin) (s,cout) =
720 al a2 a3 b0 b1 b2 b3 cO cl c2 s0 sl s2 s3.
wires assgn a [a0; al; a2; a3] A
wires assgn b [b0; bl; b2; b3] A\
wires assgn s [s0; s1; s2; s3] A
FA_str assgn (a0,b0,cin) (s0,c0) A
FA_str assgn (al,b1,c0) (s1,c1) A
FA_str assgn (a2,b2,c1) (s2,c2) A
FA_str assgn (a3,b3,c2) (s3,cout) : thm
<<HOL message: inventing new type variable names: 'a, 'b, 'c, 'd>>
Definition has been stored under "RCA4 beh_def".
> val RCA4 beh =
|- lassgn a b cin s cout.
RCA4 beh assgn (a,b,cin) (s,cout) =
I't.
Tsw.
(sw=
NBWORD 5
(BNVAL (val_to word (assgn a t)) +
BNVAL (val_to_word (assgn b t)))) A
(MDG_value to bool (assgn cout t) = MSB sw) A
(val_to_word (assgn s t) = WSEG 4 1 sw) : thm
> val assum = fn : int -> term
>val UNDISCH N TAC=fn:
int -> term list * term -> (term list * term) list * (thm list -> thm)
>val RW_HYP TAC=fn:
thm list -> term list * term -> (term list * term) list * (thm list -> thm)
<<HOL message: inventing new type variable names: 'a, 'b>>
>valit=
Proof manager status: 1 proof.
1. Incomplete:
Initial goal:
lintrp assgn code Xy z q.
ALU_str intrp assgn (code,x,y) z ==>
ALU_beh intrp assgn (code,x,y) z

: proofs
OK..
2 subgoals:
>valit=
TABLE intrp assgn [vtt code] z [[conctv "add"]; [conctv "mul"]]
[add txy; mul txy](add_txy)

82

0. mdg_transform intrp assgn ([x; y],mdg_add) sig_add

1. mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul

2. mdg mux assgn
(code,
[(string_to_val "add",sig_add); (string_to_val "mul",sig_mul)])
z

~stateVariable z

0. mdg_transform intrp assgn ([x; y],mdg_add) sig_add
1. mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul
2. mdg_mux assgn
(code,
[(string_to_val "add",sig_add); (string_to_val "mul",sig_mul)])
z
: goalstack
OK..
Meson search level: ..

Goal proved.
[...] |- ~stateVariable z

Remaining subgoals:
>valit=
TABLE intrp assgn [vtt code] z [[conctv "add"]; [conctv "mul"]]
[add txy; mul txy](add txy)

0. mdg_transform intrp assgn ([x; y],mdg_add) sig_add
1. mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul
2. mdg_mux assgn
(code,
[(string_to_val "add",sig_add); (string_to_val "mul",sig_mul)])
z
: goalstack
OK..
2 subgoals:
>valit=
table intrp assgn [vtt code] z [[conctv "add"]; [conctv "mul"]]
[add txy; mul txy](add txy)t

0. mdg_transform intrp assgn ([x; y],mdg_add) sig_add

1. mdg transform intrp assgn ([x; y],mdg_mul) sig_mul

2. mdg mux assgn
(code,
[(string_to_val "add",sig_add); (string_to_val "mul",sig_mul)])
z

83

compatible assgn assgn

0. mdg_transform intrp assgn ([x; y],mdg_add) sig_add
1. mdg transform intrp assgn ([x; y],mdg_mul) sig_mul
2. mdg_mux assgn
(code,
[(string_to_val "add",sig_add); (string_to_val "mul",sig_mul)])
z
: goalstack
OK..
Meson search level: ..

Goal proved.
[...] |- compatible assgn assgn

Remaining subgoals:
>valit=
table intrp assgn [vtt code] z [[conctv "add"]; [conctv "mul"]]
fadd txy; mul txy](add_txy)t

0. mdg_transform intrp assgn ([x; y],mdg_add) sig_add
1. mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul
2. mdg mux assgn
(code,
[(string_to_val "add",sig_add); (string_to_val "mul",sig_mul)])
z
: goalstack
OK..
2 subgoals:
>valit=
outTable intrp assgn [vtt code] z [[conctv "add"]; [conctv "mul"]]
[add txy;mul txy](add txy)t

0. mdg_transform intrp assgn ([x; y],mdg_add) sig_add

1. mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul

2. mdg_mux assgn
(code,
[(string_to_val "add",sig_add); (string_to_val "mul",sig_mul)])
Z

3. ~stateVariable z

transitionTable intrp assgn [vtt code] z
[[conctv "add"]; [conctv "mul"]] [add_tx y; mul txy](add txy)t

0. mdg_transform intrp assgn ([x; y],mdg_add) sig_add

84

1. mdg_transform intrp assgn ([X; y],mdg_mul) sig_mul
2. mdg_mux assgn
(code,
[(string_to_val "add",sig_add); (string_to_val "mul",sig_mul)])
z
3. stateVariable z
: goalstack
OK..
Meson search level: ..

Goal proved.
[....]
|- transitionTable intrp assgn [vtt code] z
[[conctv "add"]; [conctv "mul"]] [add txy; mul txy] (add txy)
{

Remaining subgoals:
>valit=
outTable intrp assgn [vtt code] z [[conctv "add"]; [conctv "mul"]]
[add txy; mul txy](add txy)t

0. mdg_transform intrp assgn ([x; y],mdg_add) sig_add
1. mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul
2. mdg mux assgn
(code,
[(string_to_val "add",sig_add); (string_to_val "mul",sig_mul)])
z
3. ~stateVariable z
: goalstack
OK..
1 subgoal:
>valit=
mdg_mux assgn
(code,[(string_to_val "add",sig_add); (string_to_val "mul",sig_mul)])
Z ==>
outTable intrp assgn [vtt code] z [[conctv "add"]; [conctv "mul"]]
[add_txy; mul txy](add_txy)t

0. mdg_transform intrp assgn ([x; y],mdg_add) sig_add
1. mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul
2. ~stateVariable z
: goalstack
OK..
3 subgoals:
>valit=
assgn z t = intrp mdg_add (PROD_VAL (assgn x t) (assgn y t))

85

9.

NN WD —O

mdg_transform intrp assgn ([x; y],mdg_add) sig_add
mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul
~stateVariable z

~(assgn code t = CONC_VAL "add")

~(assgn code t = CONC_VAL "mul")

compatible assgn assgn

concreteVariable code

list_all_distinct [CONC_VAL "add"; CONC_VAL "mul"]
list_holds_all (ofConcreteSortSym (sortOfVariable code))
[CONC_VAL "add"; CONC_VAL "mul"]

list_holds_all (var_has_sort (sortOfVariable z))

[sig_add; sig_mul]

10. !t

(if assgn code t = CONC_VAL "add" then
assgn z t = assgn sig_add t

else
(assgn code t = CONC_VAL "mul") A\
(assgn z t = assgn sig_mul t))

assgn z t = intrp mdg_mul (PROD_VAL (assgn x t) (assgn y t))

9.

NN WDND—mO

mdg_transform intrp assgn ([x; y],mdg_add) sig_add
mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul
~stateVariable z
~(assgn code t = CONC_VAL "add")
assgn code t = CONC_VAL "mul"
compatible assgn assgn
concreteVariable code
list_all distinct [CONC_VAL "add"; CONC_VAL "mul"]
list_holds_all (ofConcreteSortSym (sortOfVariable code))
[CONC_VAL "add"; CONC_VAL "mul"]
list holds all (var_has_sort (sortOfVariable z))
[sig_add; sig_mul]

10. 't.

(if assgn code t = CONC_VAL "add" then
assgn z t = assgn sig_add t

else ‘
(assgn code t = CONC_VAL "mul") A\
(assgn z t = assgn sig_mul t))

assgn z t = intrp mdg_add (PROD_VAL (assgn x t) (assgn y t))

0.
1.
2.

mdg_transform intrp assgn ([x; y],mdg_add) sig_add
mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul
~stateVariable z

86

assgn code t = CONC_VAL "add"
compatible assgn assgn
concreteVariable code
list_all distinct [CONC_VAL "add"; CONC_VAL "mul"]
list_holds_all (ofConcreteSortSym (sortOfVariable code))
[CONC VAL "add"; CONC_ VAL "mul"]
8. list holds_all (var_has_sort (sortOfVariable z))
[sig_add; sig_mul]
9
(if assgn code t = CONC_VAL "add" then
assgn z t = assgn sig_add t
else
(assgn code t = CONC VAL "mul") A
(assgn z t = assgn sig_mul t))
: goalstack
OK..
1 subgoal:
>valit=
mdg_transform intrp assgn ([x; y],mdg mul) sig mul ==>
(assgn z t = intrp mdg_add (PROD_VAL (assgn x t) (assgn y t)))

Nonsew

mdg_transform intrp assgn ([x; y],mdg_add) sig_add
~stateVariable z
assgn code t = CONC_VAL "add"
compatible assgn assgn
concreteVariable code
list_all distinct [CONC_VAL "add"; CONC_VAL "mul"]
list holds_all (ofConcreteSortSym (sortOfVariable code))
[CONC_VAL "add"; CONC_VAL "mul"]
7. list_holds_all (var_has_sort (sortOfVariable z))
[sig_add; sig_mul]
8 It
(if assgn code t = CONC_VAL "add" then
assgn z t = assgn sig_add t
else
(assgn code t = CONC_VAL "mul") A
(assgn z t = assgn sig_mul t))
: goalstack
OK..
1 subgoal:
>valit=
mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul ==>
(assgn z t = intrp mdg_add (PROD_VAL (assgn x t) (assgn y t)))

AN el Rl

0. compatible_assgn assgn /\ ~stateVariable sig_add /\
(ranFunc mdg_add = sortOfVariable sig_add) A

87

.
(vt=TERM_PROD (TERM_VAR x) (TERM_VAR y)) A
wellTypedTerm (TERM_FN mdg_add vt) A
I't.
assgn sig add t=
intrp mdg_add (MDG _term_val intrp assgn vt t)
. ~stateVariable z
. assgn code t = CONC_VAL "add"
. compatible_assgn assgn
. concreteVariable code
. list_all_distinct [CONC_VAL "add"; CONC_VAL "mul"]
. list_holds_all (ofConcreteSortSym (sortOfVariable code))
[CONC_VAL "add"; CONC_VAL "mul"]
7. list_holds_all (var_has sort (sortOfVariable z))
[sig_add; sig mul]
8. It
(if assgn code t = CONC_VAL "add" then
assgn z t = assgn sig_add t
else
(assgn code t = CONC_VAL "mul") A
(assgn z t = assgn sig_mul t))
. goalstack
OK..
1 subgoal:
>valit=
compatible_assgn assgn /\ ~stateVariable sig_add N\
(ranFunc mdg_add = sortOfVanable sig_add) A
(?vt.
(vt =TERM_PROD (TERM_VAR x) (TERM_VAR y)) A
wellTypedTerm (TERM_FN mdg_add vt) A
It.
assgn sig add t=
intrp mdg_add (MDG _term_val intrp assgn vt t)) ==>
mdg_transform intrp assgn ([x; y],mdg_mul) sig mul ==>
(assgn z t = intrp mdg_add (PROD_VAL (assgn x t) (assgn y t)))

N L AW N

~stateVariable z
assgn code t = CONC_VAL "add"
compatible assgn assgn
concreteVariable code
list_all_distinct [CONC_VAL "add"; CONC_VAL "mul"]
list_holds_all (ofConcreteSortSym (sortOfVariable code))
[CONC_VAL "add"; CONC VAL "mul"]
6. list_holds_all (var_has_sort (sortOfVariable z))
[sig_add; sig_mul]
7.t

N =o

88

(if assgn code t = CONC_VAL "add" then
assgn z t = assgn sig_add t

else
(assgn code t = CONC_VAL "mul") A
(assgn z t = assgn sig_mul t))

: goalstack

OK..

1 subgoal:
>valit=
assgn z t = intrp mdg_add (PROD_VAL (assgn x t) (assgny t))

nhwbh=o

o

8.
9.
10.

11.

12.

~stateVariable z
assgn code t = CONC_VAL "add"
compatible_assgn assgn
concreteVariable code
list_all distinct [CONC_VAL "add"; CONC_VAL "mul"]
11st holds all (ofConcreteSortSym (sortOfVariable code))
[CONC_VAL "add"; CONC_VAL "mul"]
list_holds_all (var_has_sort (sortOfVariable z))
[sig_add; sig_mul]
It.
(if assgn code t = CONC_VAL "add" then
assgn z t = assgn sig_add t
else
(assgn code t = CONC_VAL "mul") A
(assgn z t = assgn sig_mul t))
~stateVariable sig_add
ranFunc mdg_add = sortOfVariable sig_add
wellTypedTerm
(TERM_FN mdg_add (TERM_PROD (TERM_VAR x) (TERM_VAR vy)))
It'.
assgn sig_add t' =
intrp mdg_add (PROD_VAL (assgn x t') (assgn y t'))
mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul

: goalstack

OK..

Meson search level:

Goal proved.

|- assgn z t = intrp mdg_add (PROD_VAL (assgn x t) (assgn y t))

Goal proved.

|- compatible_assgn assgn /\ ~stateVariable sig_add N\
(ranFunc mdg_add = sortOfVariable sig_add) A

89

(?vt.
(vt =TERM_PROD (TERM_VAR x) (TERM_VAR y)) A
wellTypedTerm (TERM_FN mdg_add vt) /A
It
assgn sig_add t=
intrp mdg_add (MDG _term_val intrp assgn vt t)) ==>
mdg_transform intrp assgn ([x; y],mdg_mul) sig mul ==>
(assgn z t = intrp mdg_add (PROD_VAL (assgn x t) (assgn y t)))

Goal proved.

|- mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul ==>
(assgn z t = intrp mdg_add (PROD_VAL (assgn x t) (assgn y t)))

Goal proved.

|- mdg_transform intrp assgn ([X; y],mdg_mul) sig_mul ==>
(assgn z t = intrp mdg_add (PROD_VAL (assgn x t) (assgn y t)))

Goal proved.
|- assgn z t = intrp mdg_add (PROD_VAL (assgn x t) (assgn y t))
Remaining subgoals:

>valit=
assgn z t = intrp mdg_add (PROD_VAL (assgn x t) (assgn y t))

mdg_transform intrp assgn ([x; y],mdg_add) sig_add
mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul
~stateVariable z
~(assgn code t = CONC_VAL "add")
~(assgn code t = CONC_VAL "mul")
compatible assgn assgn
concreteVariable code
list_all_distinct [CONC_VAL "add"; CONC_VAL "mul"]
list_holds_all (ofConcreteSortSym (sortOfVariable code))
[CONC_VAL "add"; CONC_VAL "mul"]
9. list_holds_all (var_has_sort (sortOfVariable z))
[sig_add; sig_mul]

10. It.
(if assgn code t = CONC_VAL "add" then

assgn z t = assgn sig_add t
else

(assgn code t = CONC_VAL "mul") A

(assgn z t = assgn sig_mul t))

NN R WD —O

90

assgn z t = intrp mdg_mul (PROD_ VAL (assgn x t) (assgn y t))

mdg_transform intrp assgn ([x; y],mdg_add) sig_add
mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul
~stateVariable z
~(assgn code t = CONC_VAL "add")
assgn code t = CONC_VAL "mul"
compatible assgn assgn
concreteVariable code
list all distinct [CONC_VAL "add"; CONC_VAL "mul"]
list_holds_all (ofConcreteSortSym (sortOfVariable code))
[CONC_VAL "add"; CONC_VAL "mul"]
9. list_holds_all (var_has_sort (sortOfVariable z))
[sig_add; sig_mul]
10. It
(1f assgn code t = CONC_VAL "add" then
assgn z t = assgn sig_add t
else
(assgn code t = CONC_VAL "mul") A
(assgn z t = assgn sig_mul t))
: goalstack
OK..
1 subgoal:
>valit=
mdg_transform intrp assgn ([x; y],mdg_add) sig_add ==>
(assgn z t = intrp mdg_mul (PROD_VAL (assgn X t) (assgn y t)))

NN RO = O

mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul
~stateVariable z
~(assgn code t = CONC_VAL "add")
assgn code t = CONC_VAL "mul"
compatible assgn assgn
concreteVariable code
list_all_distinct [CONC_VAL "add"; CONC_VAL "mul"]
list_holds_all (ofConcreteSortSym (sortOfVariable code))
[CONC_VAL "add"; CONC_VAL "mul"]
list_holds_all (var_has_sort (sortOfVariable z))
[sig_add; sig_mul]
St
(if assgn code t = CONC_VAL "add" then
assgn z t = assgn sig_add t
else
(assgn code t = CONC_VAL "mul") A
(assgn z t = assgn sig_mul t))
: goalstack
OK..

NounkBbhDe=oO

oo

\O

91

1 subgoal:
>valit=
mdg_transform intrp assgn ([x; y],mdg_add) sig_add ==>
(assgn z t = intrp mdg_mul (PROD_VAL (assgn x t) (assgn y t)))

0. compatible assgn assgn /\ ~stateVariable sig_mul N\
(ranFunc mdg mul = sortOfVariable sig_ mul) A
vt
(vt=TERM_PROD (TERM_VAR x) (TERM_VAR y)) A
wellTypedTerm (TERM_FN mdg mul vt) A
It
assgn sig mul t=
intrp mdg_mul (MDG_term_val intrp assgn vt t)
~stateVariable z
~(assgn code t = CONC_VAL "add")
assgn code t = CONC_VAL "mul"
compatible assgn assgn
concreteVariable code
list all distinct [CONC_VAL "add"; CONC_VAL "mul"]
list_holds_all (ofConcreteSortSym (sortOfVariable code))
[CONC_VAL "add"; CONC_VAL "mul"]
8. list holds all (var_has_sort (sortOfVariable z))
[sig_add; sig_mul]
9.
(if assgn code t = CONC_VAL "add" then
assgn z t = assgn sig_add t
else
(assgn code t = CONC_VAL "mul") A
(assgn z t = assgn sig_mul t))
: goalstack
OK..
1 subgoal:
>valit=
compatible assgn assgn /\ ~stateVariable sig_mul A
(ranFunc mdg_mul = sortOfVariable sig_mul) A
(7vt.
(vt=TERM_PROD (TERM_VAR x) (TERM_VAR y)) A
wellTypedTerm (TERM_FN mdg_mul vt) A
I't.
assgn sig mul t=
intrp mdg_mul (MDG_term_val intrp assgn vt t)) ==>
mdg_transform intrp assgn ([x; y],mdg_add) sig add ==>
(assgn z t = intrp mdg_mul (PROD_VAL (assgn x t) (assgn y t)))

Nk —

0. ~stateVariable z
1. ~(assgn code t=CONC_ VAL "add")

92

assgn code t = CONC_VAL "mul"
compatible_assgn assgn
concreteVariable code
list all distinct [CONC_VAL "add"; CONC_VAL "mul"]
list_holds_all (ofConcreteSortSym (sortOfVariable code))
[CONC_VAL "add"; CONC_ VAL "mul"]
7. list_holds_all (var_has_sort (sortOfVariable z))
[sig_add; sig_mul]
8. It
(if assgn code t = CONC_VAL "add" then
assgn z t = assgn sig_add t
else
(assgn code t = CONC_VAL "mul") A
(assgn z t = assgn sig_mul t))
: goalstack
OK..
1 subgoal:
>valit=
assgn z t = intrp mdg_mul (PROD_VAL (assgn x t) (assgn y t))

ISP S

~stateVariable z
~(assgn code t = CONC_VAL "add")
assgn code t = CONC_VAL "mul"
compatible_assgn assgn
concreteVariable code
list_all_distinct [CONC_VAL "add"; CONC_VAL "mul"]
list_holds_all (ofConcreteSortSym (sortOfVariable code))
[CONC_VAL "add"; CONC_VAL "mul"]
7. list_holds_all (var_has sort (sortOfVariable z))
[sig_add; sig_mul]
8. It
(if assgn code t = CONC_VAL "add" then
assgn z t = assgn sig_add t
else
(assgn code t = CONC_VAL "mul") A
(assgn z t = assgn sig_mul t))
9. ~stateVariable sig mul
10. ranFunc mdg_mul = sortOfVariable sig_mul
11. wellTypedTerm
(TERM_FN mdg_mul (TERM_PROD (TERM_VAR x) (TERM_VAR y)))
12. 1t
assgn sig mul t'=
intrp mdg_mul (PROD_VAL (assgn x t') (assgn y t'))
13. mdg_transform intrp assgn ([x; y],mdg_add) sig_add
: goalstack
OK..

SNk —O

93

Meson search level:
Goal proved.
|- assgn z t = intrp mdg_mul (PROD_VAL (assgn x t) (assgn y t))

Goal proved.
[ceenenne] :
|- compatible_assgn assgn /\ ~stateVariable sig_mul /\
(ranFunc mdg_mul = sortOfVariable sig_mul) A
(?vt.
(vt=TERM_PROD (TERM_VAR x) (TERM_VAR y)) A
wellTypedTerm (TERM_FN mdg_mul vt) A
I't.
assgn sig mul t=
intrp mdg_mul (MDG_term_val intrp assgn vt t)) ==>
mdg_transform intrp assgn ([x; y],mdg_add) sig_add ==>
(assgn z t = intrp mdg_mul (PROD_VAL (assgn x t) (assgn y t)))

Goal proved.

|- mdg_transform intrp assgn ([x; y],mdg_add) sig_add ==>
(assgn z t = intrp mdg_mul (PROD_VAL (assgn x t) (assgn y t)))

Goal proved.

|- mdg_transform intrp assgn ([x; y],mdg_add) sig_add ==>
(assgn z t = intrp mdg_mul (PROD_VAL (assgn x t) (assgn y t)))

Goal proved.
|- assgn z t = intrp mdg_mul (PROD_ VAL (assgn x t) (assgn y t))
Remaining subgoals:

>valit=
assgn z t = intrp mdg_add (PROD_VAL (assgn x t) (assgn y t))

mdg_transform intrp assgn ([x; y],mdg_add) sig_add
mdg_transform intrp assgn ([x; y],mdg_mul) sig_mul
~stateVariable z

~(assgn code t = CONC_VAL "add")

~(assgn code t = CONC_VAL "mul")

compatible assgn assgn

concreteVariable code

list_all distinct [CONC_VAL "add"; CONC_VAL "mul"]
list_holds_all (ofConcreteSortSym (sortOfVariable code))

NI R WD =O

94

[CONC_VAL "add"; CONC_VAL "mul"]
9. list_holds_all (var_has_sort (sortOfVariable z))
[sig_add; sig_mul]
10. 't.
(if assgn code t = CONC_VAL "add" then
assgn z t = assgn sig_add t
else
(assgn code t = CONC_VAL "mul") A
(assgn z t = assgn sig_mul t))
: goalstack
OK..
Meson search level: ...

Goal proved.
|- assgn z t = intrp mdg_add (PROD_VAL (assgn x t) (assgn y t))

Goal proved.
[...]
|- mdg_mux assgn
(code,
[(string_to_val "add",sig_add); (string_to_val "mul",sig_mul)])
7 ==>
outTable intrp assgn [vtt code] z [[conctv "add"]; [conctv "mul"]]
[add txy; mul txy](add txy)t

Goal proved.
[....]
|- outTable intrp assgn [vtt code] z [[conctv "add"]; [conctv "mul"]]
[add txy; mul txy](add txy)t

Goal proved.

[...]

|- table intrp assgn [vtt code] z [[conctv "add"]; [conctv "mul"]]
[add txy; mul txy](add txy)t

Goal proved.
[...]
|- TABLE intrp assgn [vtt code] z [[conctv "add"]; [conctv "mul"]]
[add_txy; mul txy](add_txy)
>valit=
Initial goal proved.
|- lintrp assgn code xy z q.
ALU_str intrp assgn (code,x,y) z ==>
ALU beh intrp assgn (code,x,y) z : goalstack
>val alu_rws =

95

[|- lassgn a b cin s cout.
RCA4_str assgn (a,b,cin) (s,cout) =
7a0 al a2 a3 b0 b1 b2 b3 cOcl c2 s0 sl s2 s3.
wires assgn a [a0; al; a2; a3] A
wires assgn b [b0; bl; b2; b3] A
wires assgn s [s0; s1; s2; s3] A
FA_str assgn (a0,b0,cin) (50,c0) /\
FA_ strassgn (al,bl,c0) (sl,c1) A
FA_str assgn (a2,b2,cl) (s2,c2) A
FA str assgn (a3,b3,c2) (s3,cout),
|- tassgn a b cin s cout.
RCA4 beh assgn (a,b,cin) (s,cout) =
It.
sw.
(sw=
NBWORD 5
(BNVAL (val_to_word (assgn a t)) +
BNVAL (val_to_word (assgn b t)))) A
(MDG _value _to_bool (assgn cout t) = MSB sw) N\
(val_to_word (assgn s t) = WSEG 4 1 sw)] : thm list
<<HOL message: inventing new type variable names: 'a>>
>valit=
Proof manager status: 2 proofs.
2. Completed:
|- lintrp assgn code Xy z q.
ALU_str intrp assgn (code,x,y) z ==>
ALU beh intrp assgn (code,x,y) z
1. Incomplete:
Initial goal:
lassgn a b cin s cout.
RCA4 str assgn (a,b,cin) (s,cout) ==>
RCA4 beh assgn (a,b,cin) (s,cout)

: proofs
OK..
2 subgoals:
>valit=
val_to_word (assgn s t) =
WSEG 4 1
(NBWORD 5
(BNVAL (val_to_word (assgn a t)) +
BNVAL (val to_word (assgn b t))))

0. wires assgn a [a0; al; a2; a3]
1. wires assgn b [b0; bl; b2; b3]

96

wires assgn s [s0; s1; s2; s3]
FA_str assgn (a0,b0,cin) (s0,c0)
FA str assgn (al,bl,c0) (sl,cl)
FA_str assgn (a2,b2,cl) (s2,c2)
FA_str assgn (a3,b3,c2) (s3,cout)

bbb

MDG value _to_bool (assgn cout t) =
MSB
(NBWORD 5
(BNVAL (val_to_word (assgn a t)) +
BNVAL (val to_word (assgn b t))))

wires assgn a [a0; al; a2; a3]

wires assgn b [b0; bl; b2; b3]

wires assgn s [s0; s1; s2; s3]

FA_str assgn (a0,b0,cin) (s0,c0)

FA_str assgn (al,bl,c0) (sl,cl)

FA str assgn (a2,b2,cl) (s2,c2)

. FA_str assgn (a3,b3,c2) (s3,cout)
: goalstack

[closing file "aluScript.sml"]

>valit=() : unit

SLALN O

