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ABSTRACT

Multi-layer Switching Control

Idin Karuei

In this thesis, adaptive control of systems using switching techniques is investigated. It
is assumed that the plant model belongs to a known finite set of models. It is also as-
sumed that a set of controllers which solve the robust servomechanism problem for the
family of plant models and a set of simultaneous stabilizers for certain subsets of plant
models are given. It is shown that by using the above set of controllers and simultaneous
stabilizers and choosing a proper switching sequence, one can minimize the number of
switchings to destabilizing controllers. This can significantly improve the transient re-
sponse of the system, which is one of the common weak points in most switching control
schemes. Simulation results show the effectiveness of the proposed method in improving

the transient response.
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Chapter 1

Introduction

The control of a partially known plant has received considerable attention in the adaptive
control literature. One of the relatively new lines of research in this area is switching con-
trol which was motivated to weaken the classical a priori information required in classical
adaptive control and can be traced back to [1]. During the past several years, switching
control schemes have been developed to accomplish a wide variety of tasks which would
not have been possible using traditional adaptive control methods {2], [3], [4], [5S], [6],
[71, [8], [9], [10], [11], [12], [13]. On the other hand, when traditional adaptive control
methods are ineffective due to large variations of system parameters, switching control
can be applied to achieve the adaptive control objectives. Switching control is a combina-
tion of continuous dynamics with switching events which are logic-based [14]. Switching
control methods have also been effectively used for fault recovery in control systems,
when the set of possible failures is finite [15]. Another important application of switching
control is in piece-wise affine and piece-wise linear approximation of nonlinear systems

[16], [17], [18].



Switching control of systems using family of plant models was first introduced
by Miller and Davison [4]. In this approach, it is assumed that the plant model always
belongs to a finite set of known models called the family of plant models, or simply a
family of plants. The changes of dynamics of the system are formulated by a sudden
change from one of the plant models to another one in the set. Also a high-performance
controller is designed for each plant in the family. When the plant changes, the current
controller can no longer stabilize the system. There are different ways to observe this.
In [19] and [8] for instance, performance indices are defined based on the identification
error of the models. Their controllers, however, can be adaptive or fixed. The active
controller is selected by using a hysteresis algorithm. The system will switch to a new
controller if this new controller’s performance index plus the hysteresis constant is less
than the current controller’s performance index. It is shown that adaptive models can be
used in parallel to fixed models in order to achieve a good performance. In {4] some
parameters related to each member of the family of plants and the closed-loop system
corresponding to each plant model with its high-performance controller are defined. For
each controller a so called “auxiliary signal” is built, which will then be compared to
a filtered version of the output of the system. The switching controller operates in two
phases: in phase 1 an upper bound on the magnitude of the initial state at any arbitrary
time-instant is obtained. After phase 1 the system starts switching between each controller
one-by-one and monitoring the corresponding auxiliary signal but at the same time some
virtual auxiliary signals corresponding to other plant models whose controllers are to be
examined one-by-one are also generated. If the norm of the output hits the auxiliary signal
of the current controller, this controller is known to be destabilizing the unknown plant and

as a result the system switches to another controller. Now it will monitor this controller’s



auxiliary signal and it will continue until it switches to a controller whose plant output
magnitude does not meet the corresponding auxiliary signal. In this approach, there is
no priority for any controller over the others. The auxiliary signal of a controller that
is stabilizing the system is defined such that the absolute value of the output will never
hit it which guaranties that after any change in the dynamics of the unknown plant, the
algorithm will switch to each controller at most once. In contrast there are other works
like [20], [21], and [22] which represent a scheme that may switch to each controller
more than once. In this scheme, some generic assumptions such as observability and a
known set of plant models are relaxed by allowing for cyclic switching at the expense
of not guaranteeing that each controller is tried out only once. It will be seen later that
this approach cannot be used in the proposed multi-layer switching control because in a
multi-layer switching scheme it is essential to assume that if the plant switches from a
controller to another one, that controller is either a destabilizing one, or a simultaneous

stabilizer in the higher layers as will be discussed later.
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Figure 1.1: Switching control structure with a family of four controllers.

In [23], [24] and then in [12] and [25] a high level controller called “supervisor”



and a family of controllers are introduced which solve the reference tracking problem of
a plant with unmodeled dynamics. In this work the process is assumed to be SISO and
linear. The transfer function is modeled by a union of a number of subclasses and each
subclass is stabilized by one of the members of the family of controllers. The supervisor’s
role is to choose one of the controllers at each time instant to stabilize the system based on
some logic. The controllers are selected by comparing normed-squared output estimations
errors which are defined as performance signals. This switching control method can deal
with parametric uncertainty, unmodeled dynamics, and exogenous disturbances which
cannot be stabilized by linear feedback theory when the uncertainties are not sufficiently
small. It is also shown that this method is very useful for uncertain non-minimum phase

systems that cannot be stabilized by classical adaptive controller methods.

o A A
Plants

Figure 1.2: Morse’s switching control with three controllers that can stabilize three sub-

classes of plants.

Switching control can be used for both discrete-time and continuous-time systems.
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The application of computers and sampled-data systems has grown in practical control
systems. This is due to the fact that computers and digital circuits can be easily pro-
grammed and used in different environments. Problems arise in the presence of unmod-
eled or changing dynamics. When classical adaptive control methods fail to stabilize such
discrete-time systems, discrete-time switching control can potentially stabilize the system.
In [26] a discrete-time supervisory control is given for tracking the reference input of a
family of plants. The switching method of [12] is modified for discrete-time models in
this paper. This method guarantees globally bounded states and zero-offset tracking.

By the late 80s a new trend in control of uncertain MIMO systems started as this
type of systems have enormous real-world applications. For example, in [27], [28], [29],
[30], [31], [32] the conventional adaptive control methods are extended to decentralized
systems by making additional assumptions in the interconnection strength and the inter-
connection input channel while the a priori information for classical adaptive control of
centralized systems are also required. In and [20] [22] the authors focus on generalizing
the previous switching methods for MIMO (Multiple Input Multiple Output) plant mod-
els. Improvements in decentralized control motivated decentralized structures in switch-
ing control of MIMO systems [33]. In decentralized control of large-scale interconnected
systems, it is desired to design a set of local controllers for the individual subsystems
which solve the decentralized robust servomechanism problem for a given set of refer-
ence inputs and disturbance signals [34], [35], [36]. It is shown that when changes in
dynamics of the system or uncertainty are too large to be stabilizable by a fixed decen-
tralized controller, switching control methods can be very effective [13], [33]. In this
approach the plant is assumed to belong to a so called “family of plants” and a set of

decentralized controllers is designed for each plant model. A switching mechanism is



then used to switch between the candidate controllers to stabilize the system and achieve
the desired reference-tracking and disturbance rejection objectives. Decentralized control
systems have a more complex structure than the centralized counterparts. The pseudo-
decentralized switching method proposed in [13] uses a set of upper bound signals for
different control agents, which are to be compared to the system outputs. This method
uses a modified version of the switching mechanism given in [4]. Switching occurs when
all control agents hit their corresponding upper bound signals. As a result, a weak link
between the control agents is required. The decentralized switching control proposed in
[33], on the other hand, requires a set of stabilizing local control agents, i.e., the set of
possible plant models need not be known.

As discussed earlier, switching control can be considered as an alternative to clas-
sical adaptive control methods with the following pros and cons. One of the advantages
of switching control compared to the conventional adaptive control is its effectiveness
for stabilizing non-minimum phase systems. Secondly, switching control design is, in
general, simpler than the conventional adaptive control counterparts because the design
procedure has only two steps: designing a set of candidate controllers which solve the ro-
bust servomechanism problem [11], [20] for all possible plant models, and then applying
a proper switching mechanism. Furthermore, switching control can be applied to the sys-
tem with unknown high-frequency gain sign and also unknown relative degree [37], [38].
More importantly, switching methods are very useful for highly uncertain systems which
are known to be difficult to control by applying traditional adaptive techniques. Perfor-
mance of the switching controller depends on each individual controller as well as the
switching rule. Moreover, in presence of any error in polarity of the input or output signal

and also any type of fault occurrence, switching control methods are proven efficient [15].



Therefore, switching control can also be very effective in fault recovery problems.

However, the main disadvantage of switching control is its bad transient response
in general. Several methods have been proposed to tackle this shortcoming of switching
control [19], [39]. One of the main reasons for undesirable transient response is that in
the transition from the initial controller to the final one, the system may switch to several
destabilizing controllers. This is due to the fact that the system may switch to several non-
matching controllers and each switching to a controller which fails to stabilize the system
would cause an undesirable overshoot in the output signal. This gives the motivation to the
present work to improve the transient performance by reducing the number of switchings
to unstable controllers so that the method can be widely used in practical applications.

In this thesis, a method is proposed to improve the transient response of the switch-
ing control systems by reducing the number of switchings to destabilizing controllers. The
proposed method utilizes different layers of controllers with different properties. This is
an extension of the switching method introduced in [4], which assumes that the set of plant
models {P;:i=1,2,...,p} is given and upper-bounds on the disturbance and reference
input magnitudes are available. It is also assumed that each plant is controllable and ob-
servable. The plant may change slowly and the changes of the plant are unknown. When
a change in dynamics of the plant or any other parameter like polarity occurs, the switch-
ing system intelligently chooses an ordered subset of the set of all controllers, switches
to each of them one by one and waits for a finite time on each controller until stability or
instability is sensed. If the system is known to be unstable at the most recent switched
controller the best matching controller is determined and will be switched to immediately.
It is to be noted that the proposed multi-layer architecture can be applied to any switching

mechanism that does not switch more than once to each controller. In other words, one



can use switching control methods other than the one given in [4] as long as it has the
above mentioned property.

Switching in the system occurs when the norm of the error signal becomes greater
than or equal to the corresponding upper-bound signal. In this proposed multi-layer
scheme, p — 2 layers of controllers are designed, where p denotes the number of mod-
els in the family of plants. Layer k € {2,...,p — 2} consists of a set of controllers which
have the property that each one stabilizes k plants in the family and destabilizes the re-
maining p — k plants. Layer 1 consists of a set of p controllers, where each one solves
the robust servomechanism problem for one of the models in the family. The main dif-
ference between the previous switching methods and the proposed one is that the addi-
tional controllers which represent layers 2,..., p — 2 are used to improve the transient
response. Throughout this thesis, the previous switching control methods will be referred
to as single-layer switching.

The idea is based on the information gained after each switching event. In single-
layer switching methods the unknown plant is a member of a set and each time the system
is known to be unstable with a controller, only one of the possible plant models will
be taken out of that set and the set will become smaller by each switching to an unstable
controller. By this definition any single-layer switching mechanism that does not switch to
a controller more than once is a special case of multi-layer switching with an incomplete
structure. In multi-layer switching some of the controllers can stabilize more than one
plant. As a result, if one of such controllers destabilizes the system, more than one plant
is taken out of the set. By choosing a smart switching scheme the number of switchings
to unstable controllers will be decreased. It is shown in this work that this number is at

most one when certain number of controllers of the multi-layer structure exist. It is also



shown that the number of unstable switchings is less than or equal to that of single-layer
methods for the cases when a subset of the required controllers for complete multi-layer
structure exists.

This thesis is organized as follows. At first, the single-layer methods are shown
which are the starting point for this work in Chapter 2. A detailed survey on the single-
layer switching methods that are the basis of this thesis is included with a numerical
example to show the pros and cons of switching control. Chapter 3 and Chapter 4 contain
most of the contributions of this work and include new theoretical results. A simple ideal
method of multi-layer switching together with some examples is given in Chapter 3 whose
effectiveness is illustrated through a numerical example that compares it to the single-
layer method. In Chapter 4 a more general method is given that can be used for systems
with a large number of plants and controllers or a set of controllers in different layers that
do not have the ideal structure. The formulation given in this chapter makes multi-layer
and/or single-layer switching control more applicable in practice. Conclusions and future

work are discussed in Chapter 5.



Chapter 2

Single-layer Switching Control

Classical adaptive control tehcniques are widely used to stabilize systems with uncertain
dynamics. For systems with abrupt parameter changes, however, traditional adaptive con-
trol methods are usually ineffective. Such abrupt changes can be due to fast change of the
environment under which the system is operating. They can also be due to fault occur-
rence in the system. Furthermore, many adaptive techniques fail to control non-minimum
phase systems, systems with unknown high frequency gain sign, or systems with unknown
relative degree. Switching control is an alternative to classical adaptive control that can
solve this type of problem more efficiently. In switching control, it is often assumed that
the plant model belongs to a known set of models, e.g. see [4]. Any possible change in
dynamics of the system is characterized by a model in the set. A family of controllers is
then designed with the property that each controller can stabilize one and only one of the
plant models in the given set. Changes in dynamics of the plant may happen at anytime
and once they occur, the current controller can no longer stabilize the plant. The system

should now switch to another controller. This method of switching is only dependant on
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the reference signals, output signals, and the inputs to the plant which are the outputs of
the active controller. p boundary signals which are also referred to as “auxiliary signals”
are generated from the outputs, reference inputs, and the outputs of the controller which
are related to p different models in the set. The output of the system, or a filtered version
of it (for avoiding the discontinuity) is compared to the auxiliary signal related to the ac-
tive controller while all other auxiliary signals are generated in parallel. If the output of
the system meets the boundary which is the auxiliary signal of the current controller, that
controller is known not to be the stabilizing one that the system will switch to another
controller. The method presented in [4] guarantees that each controller is tried out at most
once. They have proven that the auxiliary signal is hit by the filtered output if and only
if the controller does not stabilize the plant. Since each controller can only stabilize one
of the plant models, the system will eventually switch to the correct matching controller.
Throughout this thesis a switching scheme with a set of controllers that have one-to-one
correspondence with the models in the family will be referred to as single-layer. A Multi-
layer switching, on the other hand, has a control structure that consists of the single-layer
controllers as well as a set of simultaneous stabilizers as will be discussed léter. In this
chapter the single-layer switching scheme of [4] is presented, which will be compared to

the multi-layer switching in Chapter 3.

2.1 Switching Control Structure

The switching control configuration consists of several controllers which are designed to
meet some specifications. For a plant characterized by a set of p plant models, a set of p

controllers is also required. Each controller can be adaptive or fixed, continuous-time or

11



discrete-time, and should stabilize one and only one of the plant models. The switching
mechanism given in section 2.4 is particularly given for LTI controllers.

The controller is made of two parts: the set of non-switching controllers, and the
supervisor which performs the switching mechanism. For a switching system with no
controller preference such as the one given in [4], the supervisor is very simple. It should
switch to each controller one by one in any arbitrary order. Note that the model indices in a
single-layer structure are assigned arbitrarily, for simplicity and without loss of generality,
the supervisor is assumed to switch in an ascending order until it reaches the last controller

and then it rolls back to the first one.

2.2 Problem Formulation

It is assumed that the current plant P(z) belongs to a known finite set of plant models
given by

Vi:P(r)elI={P;:icp} (2.1)

p={1,2,...,p} (2.2)

It is also assumed that each plant model in the above set is described by the following

state-space equations

x=Ax+Bu+ Ew (2.3a)
y=Cix+Fw (2.3b)
e=Yref—Yy (23C)

where i € p and x(r) € R™ is the state, u(¢) € R™ is the control input, y(¢) € R” is the

output, w(z) € R is the disturbance signal and e(z) € R” is the error.

12



It is assumed that for each i € p there exists a high performance controller K; of the

form

= GiZ+Hiu+Jinef (2.4a)

u=Kiz+Ly+Myres (2.4b)

This set represents the family of controllers and is denoted by ®.
The index of each controller represents the plant that can be stabilized by that con-
troller, e.g. K; stabilizes plant model P;, and destabilizes the other plants in the set.
The closed-loop control law corresponding to the controller K; can be written in the
following form [4]
ii =Ky (2.5)

which results in a stable system corresponding to the controllable and observable plant P;

as follows
= A~if+giﬁ—|—E,'W (2.6a)
y= ~i)z‘*‘Diyref“*“F‘iw (2.6b)
where
y
X u
X= , = , V= z 2.7
Z Z
Yref
and
C 0
5 A 0O 5 B 0 -
Al _ 9 Bi = b i = I bl
0 O 0o I
0 0

13



0 F;

- . E; .

Di = 0 3 El = , I'j = 0 ’
0

1 0

_ L K M;

i =
H, G; J;

Definition 1 Throughout this paper, a switching to a destabilizing controller will be

called an unstable switching.

Figure 2.1 shows an architecture of eight controllers for eight plant models where the

plant models are represented by black circles and controllers are represented by triangles.

2.3 Single-layer Switching Algorithm

According to the above formulation, the controllers have no preference over each other
therefore the switching method is very simple. The controllers are put in a desired order
and will be picked one-by-one when the system is known to be unstable. Instability is
observed when the norm of the outputs of the system hits a boundary function.

Assume that the plant is stabilized by controller ij. Once a change in model oc-
curs, the new plant model is known to be one of the remaining p — 1 models p — {i1} =
{i2,13,...,ip}, which results in instability of the closed-loop system. The following as-

sumption is made for the development of the proposed algorithm.
Assumption 1 Each plant can be stabilized by one and only one controller.

It is to be noted that the models are meant to be chosen far enough from each other so that

each controller can stabilize only one of the models in most cases.
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Plants

Controllers

Figure 2.1: A single layer switching structure for eight plant models.
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Algorithm 1

1) Set i the same as the index of the current controller. If the system becomes unstable at
controller K; go to next step else repeat 1.

2Q)Ifi=pseti=1elseseti=i+1.

3) Switch to controller K; and go to step 1.

Example 1 Assume that there is a family of 8 plants as shown in Figure 2.2. Initially,
the actual plant model is P7 which is stabilized by controller K;. Assume that the plant
model changes to Py at time ty which is the new unknown plant. The system becomes
unstable and it switches to Kg. The system becomes unstable and switches to K| and
becomes unstable again and then goes to K> which causes again instability of the closed-
loop system. After another switching to a destabilizing controller K3 the system eventually

switches to the correct controller which is K4.

2.4 Switching Mechanism

The switching instants will be obtained by using the same approach as in [4]. The method
consists of two phases. Because the initial states of the system cannot be known and are
affecting the whole system, at first, a bound on the initial condition is obtained which is
possible and then an upper-bound function is introduced using the information gained in
the previous phase which will be compared to the norm of the output of the system or a
filtered version of that. If the norm of the output of the system meets the upper-bound,
the current controller is known to be destabilizing the system and it should be switched
to another controller. The desired controller is found by continuing switching between

different controllers.
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Controllers

Figure 2.2: Single layer switching. Dark dashed arrows represent unstable switchings and

dark solid arrow denotes a stable switching.
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Note that there are p auxiliary signals for a family of p plant models. The sig-
nal related to the plant that can be stabilized by the current controller is chosen as the
upper-bound while other auxiliary signals are also generated at the same time for next

switchings.

2.4.1 Finding a Bound on the Initial Condition

The following result from Lemma 1 of [4] given in Appendix A provides an upper-bound

for the initial condition with u(.) =0
T -
O < o, [ Iy(D)lPdT+ 0B ek
where
T !
W; = / ATCICATdr,
0
0, = the smallest singular value of W,

o, = 2/06,'3,
T 2
o = (2/a) | [ JICeMt=DE \ax+ || | dr

b = upper-bound on disturbance.

With 4i(z) = 0 for r € [0,T] and T is an arbitrary time chosen for the first phase, and

2(0) =0, find

T
- 2
9'—/0 Iy(7)lI*dz (2.10)

and define the following ¢ upper-bound signals for all stable closed-loop configurations:
i(t) = Airi(t) + Vi lKi(F — Divies) | + %sb , 1 €[0,7)

ri(0) =0 (2.11)

18



where from Lemma 2 of [4] given in Appendix A there exist A; < 0 and ¥;, > 0 such that

At BRI | <y, At 2.12)
and

Y = Vi | Bill (2.13a)

Y = Yi | Ei + BiKiF| (2.13b)
Define

P
Hi = o, 6 + aizbz]z
Assuming that ||w(z)|| < b, if the actual plant model is P;, it follows from (2.8) that

IXO) < w

2.4.2 Searching for the Correct Controller

In this phase, control action is applied and the upper-bound signal introduced in [4] is

given by

Fi(t) = Airi(t) + Yo lii(r) — Ki(5(2) — Diyres) || + visb (2.14)
with initial condition

r(T*) = ri(T) + 1,7 (2.15)

Each closed-loop controller-plant pair has an upper-bound signal which is a function of
the norm of the error. It is often desired to use a smooth error signal by applying a filter

as follows
F=A#(t)+ (A —A)|5(t) — Dyrerll, H(T)=0 (2.16)

19



where 1 < min{A; : i € p}.
Each time the filtered error signal meets the upper-bound signal corresponding to
the current controller K; instability is detected. In other words, the system will switch to

another candidate controller when
#(t) = |Cillri(e) + || Elib + € (2.17)
and € is an arbitrary positive value [4].

Theorem 1 Using the switching sequence of Algorithm 1, and the switching instants t;
which represent the times that the filtered signal meets the upper-bound corresponding to
the it" switched controller with ty := 0, the system will eventually switch to the correct

controller and never switches twice to any of the controllers.

Proof of Theorem 1: The proof follows immediately from the results of Theorem 1 in [4].

2.5 Numerical Examples

An example is given in this section to clarify the idea of switching and show its effective-

ness and weaknesses.

Example 2 Consider the following unstable non-minimum phase plant:

s—1
P:Am, 1<A(t)<6

A family of four plant models P; = {P1,P,,P3,P4} is then considered as follows

s—1

Pi=05670

, P =2P,, P3 =4P|, P4 = 6P,
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The high-performance controllers of first layer are obtained as follows

44852 + 4505 — 18
1 =

31s(s—9)
K, — L 4485% + 4505 — 18
2 31s(s—9) 7
K — L 448s% + 4505 — 18
4 31s(s—9)
K, — 1 4485% + 4505 — 18
6 31s(s—9)

Assume that initially the actual plant model is Py and at some point of time it changes
to P4. When it becomes unstable, the system will switch from K, to K, then to Ki, and
finally to K. The first two switching instants are unstable. Now assume that the plant
model changes again from Py to Py. The switching method switches from K4 to K1, then
to Ky, and finally to K3. Two unstable switchings occur using the single-layer method.
Figures 2.3 and 2.4 show the high magnitude of the transient response due to switching

to destabilizing controllers.

In this section a practical example is given to clarify the method.

Example 3 The plant is a mass-spring-damper structure as shown in Figure 2.5 .

It is a linear system which can be represented by the following state-space model.:

X =Ax+ Bu

y=Cx
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Figure 2.3: Closed-loop simulation results for Example 2, using the single-layer scheme,

when the plant model changes from Py to Py. (a) Output signal; (b) switching instants.
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Figure 2.4: Closed-loop simulation results for Example 2, using the single-layer scheme,

when the plant model changes from Py to Ps. (a) Output signal; (b) switching instants.
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1 Il’l1 m2
1 2
u u

Figure 2.5: Mass-Spring-Damper system of Example3
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where

0 1 0 0 0 0 0 0
AR SRR Y L AR CRN i 0 0
i M M M M W
0 0 o 1 0 0 0 0
A= Al fl j2 fl ’B: 1
s T Tl a0 0 b0
0 0 0 0 0 1 0 0
2 2 2 2

and
001000

C=
0 00O0T1O0

The changing parameters are as follows: M, m', and m* are the masses, k' and k*
are the spring coefficients, f' and f? are the damper coefficients, and b' and b* are the
polarity of the inputs which can be 1 or —1.

The family of the plants contains 4 plant models:

Py: My = 1.7363, m} = 0.1874, m3 = 0.1333, k} = 0.1897, k¥ =0.1751, fl =
0.2787, f} =0.5716, bl = b3 =1

Py: My = 0.1692, m} = 1.7363, m3 = 1.3011, k) = 0.1603, k3 = 0.9085, f} =
0.5873, f3 =0.4125, b} =b} =1

Py: My = 1.7363, m} = 0.1874, m3 = 0.1333, k} = 0.1897, k% =0.1751, f} =
0.2787, f3 =0.5716, b} = b3 = —1

Py: My =0.1692, m} = 1.7363, m3 = 1.3011, k} = 0.1603, k3 = 0.9085, f} =
0.5873, 7 =0.4125, b} = b2 = -1

Four controllers are enough for the above family of plants. These controllers can be

described by state-space models, where u is the input vector, e is the error signal, and z is
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the state of the controller. The controllers are designed using continuous linear-quadratic-
gaussian control synthesis (LOG) in MATLAB. These are optimal dynamic controllers and

are as follows:

Controller 1:

[0 0 09945 —0.1049 —1231 —2588 —1.748 -1249 —03228 —0226 |
0 0 01049 -09945 —09134 —3924 002395 -0.226 -2.263 —0.8544
0 0 -2054 -0517 0 0 1 0 0 0
0 0 -0517 -2.065 0 0 0 0 1 0

5 o 0 0 -1562 —1.461 0 1 0 0 0 0
0 0 —05019 —06663 -02101 -04897 0.1093 0.1605 0.1009  0.3292
0 0 -1743 L1115 0 0 0 1 0 0
0 0 -—148 -09841 -02191 -1.101 -276 -2.736 —0.3228 —0.226
0 0 —1015 -1.766 0 0 0 0 0 1
| 0 0 -05686 —1574 04005 03642 0.02395 -0.226 -3.576 -5.143 |
o o
0 0
2054 0517
0517  2.065
R = 1562 1.461 oo 1 00 00000 00 o000
05019  0.6663 0010000000 O 0 0
1743 1115
04938  0.8792
1.015  1.766
| 06735 0.5796 |
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Controller 2:

[0 0 —09984 005587 0.1081 —0.1393 —2387 —2266 -0.3979 —0.2724 W
0 0 005587 —09984 —03737 —0.1911 0.006612 —02724 -2.182 =-2.197
0 0 -2201 —0.2079 0 0 1 0 0 0
0 0 -02079 —2.154 0 0 0 0 1 0
o |0 0 0765 -l4od 0 1 0 0 0 0
T 0 0 —04199 06978 —6317 -5909 09476 3471 5.37 2.438
0 0 -—1.943 —0.4467 0 0 0 1 0 0
0 0 -1563 —04765 02004  0.199 248  —2.604 —03979 —0.2724
0 0 -—04584 —1841 0 0 0 0 0 1
| 0 0 —03904 1453 03245 01259 0006612 -0.2724 -2.88 2514 |
S .
0 0
2201 0.2079
02079  2.154
. 07635  1.404 o 1000 000D O O e 00
0.4199  0.6978 01 0000000 O 0 0
1.943  0.4467
0.5644  0.4207
04584  1.841
| 0.4462 0.4547 |
Controller 3:
$3=81, k=R, 0=-01, K3=-K;
Controller 4.

S4=8 ,Ri=Ry,04=~-0, K4 =-K;

Assume that initially the plant model is P| and the controller is K. The plant model
suddenly changes to P3 so that the system becomes unstable. After the upper-bound is hit,
the algorithm switches to ky and then goes to Ks. The transient response can be seen in

Figure 2.6.
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Figure 2.6: Closed-loop simulation results for Example 3, using the single-layer scheme,

when the plant model changes from P; to P3. (a) Output signal; (b) Switching instants.
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Chapter 3

Multi-layer Switching Control

One of the problems of switching control methods is the bad transient response which is
mainly contributed by unguided switching to destabilizing controllers before the system
locks onto the correct controller. When the plant dynamics change from one model to
another one, the system may switch to some other destabilizing controllers until it finds
the correct controller. Addition of other layers of controllers can potentially reduce the
number of “unstable switchings”.

The first layer is just the same as the set of controllers as in a single-layer method.
The second layer contains controllers that can stabilize two and only two of the plant
models and so on the n/" layer is a set of controllers that can stabilize n and only
members of the family of plants. It can easily be seen that there can be at most p layers of
controllers for a family of p plant models. It will be shown later that layer p which is made
of only one controller is useless in all cases because switching to this controller does not
make any changes while it adds some time to the transient response and a non-necessary

stable switching which does not gain any information about the system. Layer p—1 is
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not necessary in most of the cases according to the algorithm given in the following parts
which means that the structure is made of p — 2 layers of controllers in almost all cases.

The controllers on the first layer are chosen by solving a desired optimality prob-
lem because there is no condition for them except stabilizing their related plant. It is to be
noted that single-layer structure is a special case of multi-layer structure. It will be shown
later that another condition in single-layer methods can be relaxed in a multi-layer algo-
rithm. In single-layer each controller should only stabilize one of the plants which may
result in sub-optimal controllers in some cases when the optimal controller for a plant can
stabilize another plant. The problem rises when the supervisor switches to a controller
that is not the matching controller for the plant but is stabilizing it. In advanced multi-
layer algorithm however, these cases are taken into account in a way that the designer just
needs to design optimal controllers. The algorithm works in a way that controllers in the
first layer that can stabilize more than one plant are used in a way that the supervisor does
not get trapped.

The initial point of the system is considered to be a controller in the first layer
because they are chosen to get the best performance that is defined for the system. When
the plant changes, the system becomes unstable. There are several other controllers that
may stabilize or destabilize the plant. None of these controllers are preferred to others
in a single-layer algorithm which is based on stability of the plants, but a multi-layer
algorithm can choose the controllers wisely so that the number of unstable switchings is
decreased and the transient response is improved as a result.

In this chapter a multi-layer structure is introduced and a simple algorithm of switch-
ing is given that will be shown to be an acceptable solution to improving the bad transient

response of the so called “single-layer switching” methods through some examples.
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3.1 Problem Formulation

It is assumed that the current plant P(¢) belongs to a known finite set of plant models
given by
Vi:P(t)eTI={P;:i=1,2,...p} (3.1)

p={1,2,...,p} (3.2)

It is also assumed that each plant model in the above set is described by the follow-

ing state-space equations

%= Ax+Bu+Ew (3.32)
y=Cx+ Fw (3.3b)
e :yref——y (3.3C)

where i € P, x(r) € R is the state, u(r) € R™ is the control input, y(¢) € R” is the output,
w(t) € R is the disturbance signal and e(z) € R” is the error.
As in the previous works, it is assumed that for each i € p there exists a high per-

formance controller K; of the form

Z:GiZ+Hiu+Jiyref (3.4a)

u=Kiz+Ly+Myrf (3.4b)

This set represents the first layer of controllers in our proposed multi-layer architecture
and is denoted by @,
@ ={K;:iep}, N(P®i)=N(p) (3.5)
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where N(.) gives the number of the elements of a set. On the other hand, the set of

controllers of layer k,k = 2,..., p is denoted by @y, as follows
@, = {Kiyiy...i.li1,02, . - -, ik € P} (3.6)

where i;, j = 1,...,k are distinct integers and the indices of each controller represent the
plants that can be stabilized by that controller, e.g. K ;,...;, “only” stabilizes plant models
P;,P;,...,P;, and destabilizes the other plants in the set.

According to the above definition in each layer k € p, there exist N(®;) x k combi-
nations of stable closed-loop configurations, e.g. each controller on layer k can stabilize
k plant models and therefore has k stable closed-loop configuration which should be then
multiplied by the number of the controllers on that layer. The total number of all stable

configurations corresponding to all controller layers is given by

p—2
o=y N(P)xk
k=1
The closed-loop control law corresponding to the controller K; ;, ;, can be written in the

following form [4]

i=Ki, i G.7)

which results in a stable system corresponding to the controllable and observable plant

P;:je€ {i1,iz,...ix} as follows

)?:Aji+3jﬁ+lfjw (3.8a)

§=Cix+Dypr+ Fw (3.8b)
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where

Y
X u
_f: 3 I/~£= ) j}: Z (39)
z Z
Yref

and

C; 0
B, 0| _
Aj=  Bj= Ci=]o0 1]
0 0 0 I
00
F.
0
0

J
 Ej= , Fi=

bl

. Liliz...ik Kiliz...ik Miliz...ik
Kiiy..ip =

I Hiiy i Giigiy  Jigin..iy
According to the above formulation, there are different layers of controllers which are
used in the multi-layer switching method. It is desired now to find a switching path which
consists of at most one unstable switching in general, between the controllers of different
layers.

Figure 3.1 shows an architecture of controller layers for 6 plant models where the

plant models are represented by black circles and controllers of layer 1,2,3 and 4 are

represented by triangles, squares, pentagons and hexagons, respectively.
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Figure 3.1: Four layers of controllers for six plant models.

3.2 Multi-layer Switching Algorithm

Unlike the set of controllers in a single-layer structure that are the same in the case that
each one can stabilize only one plant, in a multi-layer structure the controllers are at dif-
ferent sets which categorize them according to the number of plants they can stabilize. It
results in more switching options that can be confusing but, using the following defini-
tions, a simple algorithm is given that guaranties the number of unstable switchings to be

less than or equal one.

Definition 2 Any controller whose indices include all but one of the indices of another
controller is called a “parent” of that controller. For instance, K, ;, . , is a parent of
K i;. i,. On the other hand, any controller in a layer other than layer one is a “child” to

its parent in the lower layer.
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Definition 3 Any two controllers in the same layer which have only one uncommon index
are called “sister” of each other, i.e. all but one of the plant models that can be stabilized
by a controller, can also be stabilized by its sister in that layer. It is to be noted that
in a multi-layer switching structure, sister controllers potentially have a unique common

parent.

Definition 4 A “child-parent switching route” is a switching path from a controller in
one of the higher layers to a controller in the first layer that consists of only child-parent

controllers.

Definition 5 A structure that is made of all possible controllers in different layers is
called an ideal structure. Notice that an ideal structure has p— 1 layers and Zfz—ll (

=0

2P 2 controllers.

Assumption 2 i) There exists a controller in layer p — 2 which destabilizes two of plant
models and stabilizes all other models.

ii) Each of the plant models is destabilized by at least one controller in layer p — 2.

iii) There exists a child-parent route from any of the controllers in layer p — 2 to at least

one controller in the first layer.

Algorithm 2

1) If the system became unstable at controller K;, set 1 =1 and I := {i2,is,...,ip}. It is
known that the plant model belongs to the set {P;i € I}.

2) Switch to a controller in layer p — (I + 1) which destabilizes P;,. The other plant
model which is also destabilized by this controller is denoted by P,-kl. If the closed-loop

system becomes unstable, the actual plant model is identified to be P,-kl. Switch to Kik, and
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stop. Otherwise, set I:=1—{iy,} and 1 :=1+ 1. Let the current controller be denoted by
K;. Goto step 3.

3)Ifl = p — 1 stop. Otherwise go to step 4.

4) Switch to a parent controller of Kj in layer p — (I + 1). The plant model which was
stabilized by the previous controller but is destabilized by this controller is denoted by
Pik,- If the closed-loop system becomes unstable, the actual plant model is identified to be
P;, . Switch to K;, and stop. Otherwise, set I:=1—{iy,} and ] :=1+1. Let the current

controller be denoted by K;. Go to step 3.

It can be verified that using the switching sequence described in Algorithm 2, it is
guaranteed that the system will eventually switch to the correct controller with at most
one unstable switching, provided all required controllers in different layers exist. This
is due to the fact that on the first switching instant or any child-to-parent switching the
system either becomes stable or unstable and because there is only one plant that can be
stabilized by the child but can not be stabilized by the parent, instability causes the plant
to be known and the next switching would be the last switching which results in stability.
In other words, when a controller can stabilize the system the algorithm switches to its
parent and if the parent controller destabilizes the system the first unstable switching has
happened and also the plant model is known to be the plant with the uncommon index
of the child controller and the parent controller. Therefore it would be the last unstable
switching as well and the next switching is a stable switching to the matching controller

on the first layer.

Example 4 Assume that there is a family of 6 plants as shown in Figure 3.2. Initially,

the actual plant model is P4 which is stabilized by controller K4. Assume that the plant
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model changes to Py at time tg which is the new unknown plant. The system becomes
unstable and it switches to K123 which stabilizes P1, P», P3, Pg and destabilizes P4 and
Ps. The system becomes stable and switches to K123 which is the parent of the previous
controller Kg123. The system remains stable and should switch to a parent of the current
controller. The current controller has three parents K5, K13, and Ky3. Assume that
the system switches to Koz. The system becomes stable and should switch to one of the
parents of Ky3. Assume that it switches to K3. This controller destabilizes the system and
it is the only time the system becomes unstable. At this point, the new actual plant model

is identified to be Py and the system switches to K».

Layer 4
Controllers

Layer 3
Controllers

Layer 2
Controllers

Layer 1
Controllers

Plants

Figure 3.2: Switching in four layers. Solid arrows represent stable switchings and dashed

arrow denote an unstable switching.



3.3 Structure of Layers

A multi-layer structure can contain several controllers for a family of plants. It is not
necessary to have all these controllers in order to reduce the number of unstable switchings
to less than or equal one. Assume that the conditions of Assumption 2 are met. Then, once
the plant model changes within the known set of plant models, it is guaranteed that the

system will switch to the correct controller after at most one unstable switching.

Remark 1 [t is to be noted that the number of all possible controllers for layer k that can
stabilize k plant models and destabilize the remaining p — k models is equal to W;;iLk)'
Thus, the total number of all possible controllers in the proposed multi-layer structure is

equal to

p—2
p!
2 =R
k=1

More specifically, the number of all possible controllers for layer p — 2 is equal to
@. However, it can be easily verified that only fix( %Ll) controllers for layer p— 2
would suffice, where fix(.) represents the nearest integer towards zero. Similarly, the
maximum number of required controllers for layers 2,3,...,p— 2 is equal to p — 2. Since

designing simultaneous stabilizers for layers 2,3,...,p — 2 can be difficult in practice,

one may design at most p — 2 required controllers for each layer.

Example 5 Assume that a family of seven plants T1 = {P,P,,P3, P4, Ps,
Pg, P} is given. The proposed multi-layer architecture consists of five layers. There can

be 7—§§ = 21 controllers on the highest layer theoretically but only 4 of them are necessary.
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The conditions of Assumption 2 can be satisfied in different ways. For instance, one can
choose the set of controllers {K12345,K34567,Ks6712,K71234 } to represent ®s. The next
layers should then be designed in a way that child-parent routes exist from all controllers
of @s to those of layer 1. ®4 = {Ka345,K3456,Ke712,K7123} is one of the several choices
for layer four. Since pair Ky345 and K3456 and pair K¢712 and K7123 have common parent,
a smart choice for controllers of the third layer would be ®3 = {K345,K712}. Layer
two can then be chosen as @) = {K34,K71}. Finally, the first layer should have seven

controllers as in a single-layer architecture.

3.4 Switching Mechanism

The switching instants will be obtained by using the same approach as in [4]. The method
consists of two phases. First, a bound on the initial condition is obtained and then the

desired controller is found by switching between different controllers.

3.4.1 Finding a Bound on the Initial Condition

The following result from Lemma 1 of [4] given in Appendix A provides an upper-bound

for the initial condition with u(.) =0

T ~
O)I < aiy [ ()T (3.10)
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where T is a desired time that phase 1 lasts and

T ’
W, = / eAiTCl/»CieAdeT,
0
o, = the smallest singular value of W,

o, = 2/0(,'3,
T 2
o, = (2/ 0ty) /O [ bICe = DE T+ |F]| | dt

b = upper-bound on disturbance.
With i(z) = 0 forr € [0, 7] and z(0) = 0, find
d 2
0:= [ Iy(@IPds (3.12)

and define the following ¢ upper-bound signals for all stable closed-loop configurations:

Fiivigein(8) = AT vtz i () F W jiginenin), 1 Kirin.oosie = Djyreg) |
+Y(j,i1i2...ik)3l~7, t€10,7]
?jirig...ix (0) =0 (3.13)
where from Lemma 2 of [4] given in Appendix A there exist A ;,;,..;, <0 and Ysirizi); >

0 such that

JeFrBifa @] < y .9, P04 614
and

Ysiviain)y = Yjrinia-rit), 1B (3.15a)

Ysiviaoni)s = Yiriaorie)y |E;j+ BjKii,..i. (3.15b)
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Define
#0911
W = 0,6+ b2
Assuming that ||w(z)]| < b if the actual plant model is P;, it follows from (3.10) that

Ix(0)} < u;

3.4.2 Searching For The Correct Controller

In this phase, control action is applied and the upper-bound signal introduced in [4] is

given by

Fhriviz.oi () = AT joirige i () V5 i1 igenig), 1 (E) = Rigig...iy () — Djyres)|

+ Y isizeie)s D (3.16)
with initial condition
Piivigie(TT) = Fjiyip.in(T) + Y(j,iliz...ik)leljrj’iliz"'ikT#j (3.17)

Each closed-loop controller-plant pair has an upper-bound signal which is a function of
the norm of the error. It is often desired to use a smooth error signal by applying a filter

as follows
F=AF(t) + (A = )|IF() — Dyrer|l, HT)=0 (3.18)

where A <min{A;:i € p}.
Each time the filtered error signal meets the upper-bound signal corresponding to

the current controller K; ;, ;, and plant P; (j € {i},i2,...,ix}), instability is detected. In
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other words, the system will switch to another candidate controller when
7(t) = |ICllr i (1) + | FjllD +-€ (3.19)

and ¢ is an arbitrary positive value [4].

The switching sequence of MULTI LAYER ALGORITHM requires that the system
switches from the higher layer controllers to the lower layer ones even if the system
is stabilized in a higher layer. Unlike unstable switchings, stable switchings cannot be
identified through the upper-bound signals. In order to detect stability, a sufficiently long
time-interval will be used such that if the norm of error does not meet the upper-bound
signal, the system is stable. This time-interval can be obtained by considering worse case
scenario associated with initial conditions, reference input and disturbance signal. It can
also be obtained experimentally. This time duration will be called maximum time for

stability and will be denoted by #;.

Lemma 1 The controller K;;,..;, destabilizes the system iff the filtered error signal meets

any of the upper-bound signals corresponding to P;, ,Py,,...P; and controller K, ;, ;.

Proof of Lemma 1: Suppose that the current controller is K;,;, . ;, which can stabilize both
P;, and P;,. For simplicity and with no loss of generality, it will be assume that C;: i € p
has a unit norm. The upper-bound signals ;, ;,i,...;, and 7y, ; i, i, are used as in [4] and are

obtained from (3.13) and (3.16). Two new upper-bound signals are defined as follows

i';l Mg 0y (t) = A’.11.2--»1.1("1/'1 Jia. g (l)

(3.20)
+ ’y(l'll'z...ik)z ”ﬁ(t> - Ki1i2-~ik (y(t) - Djyré’f(t))” + Y(l'liz,..ik)3b
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i.;2,i1i2...ik(t) = A’ill.2-~-ikr;2,i1iz...ik (t)

F Yigin.in) 1) = Kyt F() = Dyref O + Viria...ix) b

where

Yivigin); = max(?’(il,iliz...ik)l ) Y(iz,iliz...ik)l)v
Yivigein)y — max(?’(il,iliz...ik)zv Y(iz,iliz...ik)z)a
’}/(iliz...ik)3 = max(’}/(il,iliz...ik)y y(iz,iliz...ik)3)7

A’iliz.“ik - max(lil,iliz...iy A’i2,i1i2...ik)'

Since (3.14) holds for the new upper-bound signals, either r;, ji...i, OF v

PR oF: )
1,0182-+ 0k ¢

(3.21)

(3.22a)
(3.22b)
(3.22¢)

(3.22d)

n

be chosen as the upper-bound signal for P;;. A similar discussion can be made for the

upper-bound signals of plant P;,. In other words , there exist time instants 7, > 71 and

T4 > T3 such that

K1) = Fiy igin..ie (1) + | B | b+ € & F(12) =17 (1) + |Fi, 1D+ €

i1,010p. 0k

F(T2) = Fiyiyiyiy (13) + | By | B 4 € 5 7(Ta) = sy i (Ta) + | Py B+ €

Subtracting (3.21) from (3.20) results in:

/ /

1
rll,ll,llig...ik riz,i],iliz«ulk

— koelilizmik

where ko > 0 for 7}, ; i, i > T iy diyigeii

/
i2,01,i182.. .0k

/

r +ko > iy iy ivin...ig
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because A;,..;, <0

It follows from (3.23) that if #(z2) = ], ; ;. ;. (T2) + || Fy, 1D+ €
Ve>0:3e' =e+ko+ || —F|b>0
and 375 > T4 such that

F(15) =] (75) + ||F, 1B+ €’

R
=y i ivin i (T5) + ko + ||y ||+ | By — Fy |+ £
since || F, || + ||y — Fpll > || |, then
F(T5) > 7l iy iy, (75) + ko + || Fiy (R
> ’”fz,il,i,iz...ik(fs) + kel 4 | F, Ib+e
= rzl'l,il,iliz...ik(TS) + || By 1B +e
It follows from (3.27) and (3.29) that
F(13) =1 i i (3) + 1P B+ €
= 3% < T5 1 7(T6) = 1}y jy1y...,(T6) + | Fiy D+ €

Substituting 7, = ¢ into (3.23) results in
’7(16) :riz,iliz...ik(r6> + ”F;Z ”E +&=

F(T1) = Fiyiyiy..i(T1) + || Ib+e

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

This implies that if the filtered upper-bound signal meets the smaller boundary signal cor-

responding to the closed-loop pair (K;,;,. .,

P;,), it will definitely meet the other bound-

ary signal corresponding to the closed-loop pair (K;,;,. i, Pi;), so that #; = min(71, 73).

According to Lemma 1, for the higher layer controllers the smallest upper-bound signal

associated with each controller and its corresponding plant models is used to be compared

to the filtered signal as it results in smaller time instants.
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Theorem 2 Using the switching sequence of Algorithm 2, and the switching instants t; =
min(z; | +14,t;) where t; represents the time instants given in Lemma 1 (ty :=0) and t; is
the maximum time for stability, the system will eventually switch to the correct controller

with no more than one unstable switching.

Proof of Theorem 2: The proof follows from Lemma 1 and the results of Theorem 1 in [4].
It is to be noted that using the above algorithm the system cannot switch to more than one
destabilizing controller because the first unstable switching causes the switching route to

be ended by a last switching to the matching controller which stabilizes the system.

3.5 Numerical Examples

The following example shows the effectiveness of the proposed multi-layer switching
structure in improving the transient response. It is the same example given in Chapter 2

which is used here to compare multi-layer switching to single-layer switching.

Example 6 Consider the following unstable non-minimum phase plant which was given

in Chapter 2:
s—1
—
(s—2)(s+1)

A family of four plant models P; = {P|,P,,P3, P4} is then considered as follows

P l<A(r)<6

s—1

=6

P, = 2P, Py = 4P| P4 =GP
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The high-performance controllers of first layer the same controllers given in Example2:

44852 4+ 4505 — 18
Kl = )
31s(s—9)

1 4485 +450s—18

KZ =3 )
31s(s—9)

448s5% + 4505 — 18

31s(s—9) 7

448s* + 4505 — 18
31s(s—9)

K=

X
X
X

2
1
4
1
K4=g

The second layer consists of three controllers

45.31s% +325.55% +853.252 + 11845+ 610.3

K->, =
12 = T 09 8153 — 237.5552 — 515.65— 670.1
Kon — 22.65s" +162.75° +426.75s% + 591.8s + 305.1
BT T @E 20813—237.552—515.65 — 670.1
K 0.2758s* +53.15° +224.355% 4+ 4255 + 253.6
3 =

st +14.453 — 124.452 — 470.95 — 872.1

It can be easily verified that controller Ky, stabilizes the plant models Py, Py and destabi-
lizes P3, Py. Similarly, (Ky3,P), (K23,P3), (K34,P3) and (K34, P4) are stable closed-loop
pairs while (K3,P1), (K23,P4), (K34,P1) and (K34,P3) are unstable pairs. Assume that
initially the actual plant model is P) and at some point of time it changes to P4. It was
seen before that in the single-layer approach the system will switch from K to K, then to
Ks, and finally to K. The first two switching instants are unstable. In the multi-layer ap-
proach the system will switch from K to K3, and then to K4. The only unstable switching
corresponds to Ky3. Figures 2.3 and 3.3 show that the maximum amplitude of transient
response is reduced by 90% compared to the single-layer method of [4].

Now assume that the plant model changes again from P4 to P3. The single-layer

method switches from Ky to K1, then to K>, and finally to K3z. Two unstable switchings
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occur using single-layer method. However, the proposed multi-layer algorithm will switch
from K4 to K»3. The system becomes stable and then switches to K. It is to be noted that
in this case no unstable switching occurs using multi-layer algorithm. Figures 2.4 and
3.4 show that the maximum amplitude of the transient response is 350 times smaller than

that of the single-layer method of [4].

60 T T T T T T
40

20

y(t)

-80

-100

-120
0

K4
Switching
instant
instants K23} |

K1 4
0 5 10 15 20 25 30 3?

Figure 3.3: Closed-loop simulation results for Example 6, using the multi-layer scheme,

when the plant model changes from P to Py. (a) Output signal; (b) switching instants.

The second example in this chapter compares the results of the multi-layer switch-

ing algorithm to a former single-layer counterpart for the practical example given in the
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Figure 3.4: Closed-loop simulation results for Example 6, using the multi-layer scheme,

when the plant model changes from P4 to P. (a) Output signal; (b) switching instants.
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previous chapter.

Example 7 Assume the model given in Example 3. The first layer is made of the same four
controllers given in Example 3. The second layer can be formed by two more controllers

which are defined as below:

Controller 12:
10
Si2= , Rip =
00 01
—0.1017 0.0001648 —1.679 0.007127
Q= , Kp=
—0.0002642 —-0.07448 —0.009605 —-1.089
Controller 34:
S34=812 , Ry=Rp

Qu=-01» , Ku=-Kp

Assume that initially the plant model is Py and the controller is K;. The plant model
suddenly changes to P3 so that the system becomes unstable. This is the same scenario
as in Example 3. After the upper-bound is hit, the algorithm switches to k4 and stays at
this controller until it is known that the closed-loop pair is stable. It then switches to K.
The results can be seen in Figure 3.5 which shows great improvements in the transient

response.
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Figure 3.5: Closed-loop simulation results for Example 7, using the multi-layer scheme,

when the plant model changes from Pj to P3. (a) Output signal; (b) Switching instants.
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Chapter 4

Possibility Vectors and Switching

Matrices

As discussed earlier, it is assumed that the unknown plant is always a member of a finite
set of plants. When the system becomes unstable it will switch to another controller
and continues this process until the actual plant is determined. This procedure can be

formulated using a so called possibility vector as follows.

4.1 Switching Information

The information gained from the system can be organized using matrices and vectors in

order to simplify the switching algorithm and improve it.
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Definition 6 The potential plant models can be represented by a vector:

vi(7)
t {(t) =0, P;isnotpossible
(1) = v () | wi(r) i p @1
: y;(t) =1, P;ispossible
I Yp (1) |

which is called the possibility vector at time t. It is to be noted that the set of potential
plant models at each time is a subset of the family of plants. Also, notice that after each
switching instant this set can change, depending on the stability or instability of the system

in the switching instant.

Definition 7 Each controller K can be represented by a vector:

w
Yy — 1)5{ | UiK =0, Kdestabilizes P; @)
: Ul-K =1, K stabilizes P;
vp

which is called the stabilizing representation vector of K. Notice that the representation

vector for each controller can be obtained off-line.

Definition 8 A stable switching to a controller K can be denoted by a diagonal matrix:
Ag = diag(Yk) 4.3)

which is defined as the stable switching matrix of K.

Definition 9 An unstable switching to a controller K can be represented by a diagonal

matrix.

Vi =1-Ag (4.4)
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which is defined as the unstable switching matrix of K.

After each switching instant, the number of potential plant models is decreased,

regardless of the switching being stable or unstable.

Theorem 3 If the system switches to controller K at time to and it is known at time t; >
to that the system is unstable and no switching occurs in between to and t|, then the

possibility vector will be

‘P(l‘l) = VK‘P(IQ)

Proof of Theorem 3: Since no switching occurs for #p <t < 1, the possibilities stay
unchanged in this time interval. Consider the representation vector of controller K defined
by (4.2). Att =1
v¥ =1 = P; s stabilized by K
= P; is not possible = y;(t) =0,Vi € p
and
vE = 0= P; is destabilized by K

= possibility of P; is not changed

= Yi(t) = wi(to), Vi€ p
This implies that ¥(z) = Vg'¥(1).
Theorem 4 If the system switches to controller K at time ty and is known at time t; > ty

that the system is stable and no switching occurs in between ty and t1, then the possibility

vector will be

"P(tl) = AK‘P(lo)
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Proof of Theorem 4: Consider the representation vector of controller K defined by (4.2).

Atr=n

vE = 0= P is destabilized by K

= P; is not possible = y;(¢1) =0,Vi€ p
and

vK =1 = P; is stabilized by K
= possibility of P; is not changed

= y(t) = yi(t),Vi€ p

This implies that ¥ () = AxW¥(1p).

4.2 Switching Algorithm Using Possibility Matrix

Formulation of the switching algorithm can be simplified by using switching matrices
and possibility vectors. The following assumption is made for the development of the

algorithm.

Assumption 3
i) For each plant P; there exists a controller K; that can stabilize it.

ii) For each plant P; there exist p— 2 controllers as K' | K?,... ,KP~2 such that

Vi:l<j<p-2=

Sum(VKjAKj+1AKj+2 .. .AKP—ZY,Ki) =1
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where sum(.) is the sum of all elements of a vector and Yk, = not(Yk,) and not(A) is the

logical “not” of all elements of A.

Algorithm 3

1) If the plant was known to be P; and the system became unstable at time t set the possi-
bility vector (4.1) with w;(t) =0and y;(t) =1:j# i

2) If sum(W¥(¢t)) > 1 go to step 3. Else find a controller K that Yg = ¥(t) and switch to
K if it is different from the current controller and stop.

3) Switch to a controller K such that sum(Vg'¥(t)) = 1.

4) Wait until the possibility vector changes due to Theorem 3 and 4 then go to step 2.

Algorithm2 given in the previous chapter is a special case of this algorithm.
Theorem 5 The controllers needed for algorithm 3 exist if assumption 3 holds.

Proof of Theorem 5: The switched controller in stage 2 of the algorithm always exists
because of part (i) of the assumption. The existence of the controllers in stage 3 can be

easily concluded from part (ii) of the assumption.
Theorem 6 Using the algorithm 3 at most one unstable switching occurs.

Proof of Theorem 6: Switchings are made only on stage 2 and 3 of the algorithm and the
possibility vector is updated on stage 4 due to stability or instability.

If the system switches in stage 2 because sum(*¥(¢)) = 1 only one possibility is true
and no instability will happen after that.

If the system switches in stage 3 and becomes unstable the new possibility vec-

tor would be Vk'¥(r) where K is the switched controller. The algorithm ensures that
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sum(Vg'¥(¢)) = 1 which means the algorithm will stop at stage 2 with no more instabil-

ity as said above.

Example 8 Consider a family of 8 plants with 6 layers of controllers in the following

sets:

®, = {K,K>,K3,K4,Ks,Ks,K7,Kg }
®; = {K»,Ke7}

@3 = {K234,K236, K567}

@4 = {K1234,K2367, K2567, Ks678

@5 = {K12345,K23678, K12567, Kas678}

D = {K123456, K123458, K123678, K125678, K345678 }

Assume that the plant is stable at Ky at first. The plant changes to P, at time ty and the

switching algorithm begins. In step 1 the possibility vector ¥(1p) =[11101111] is
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set. Step 2 will be ignored because sum(\¥) # 1.

[ 1 0000O0O0O W
01 000O0O00O0
0000O0O0O0O0O0
0000O0OO0O0O

AK 563 = =

00001000
0000O0T1O00PO
000O0O0O0OT1DPO

(00000001 |

sum(Ag,,s6,5'¥ (t0)) = 6 = sum (¥ (1)) — 1

According to the above equations, in step 3 the system will switch to K1»s¢78 and will wait
at step 4 until it is known to be stable at time t| and the possibility vector is updated:
W(1;)=[11001111). The algorithm goes back to step 2 again. The if statement is not
met and it moves to step 3. sum(Ag,,s, ¥ (t1)) =5 = sum(¥(t1)) — 1 and the system will
switch to Ky»5¢7. Assume that at t, it is known that the closed-loop system has been stable.
The new possibility becomes W(t;) =[1 100 1 1 1 0)'. Step 2 will be ignored again. Let
the next controller in Step 3 be K»567. Assume that the system is known to be stable at time
13 withW(t3) =[0100 1 110] in step 4 and goes back to step 2. Still sum(¥(t3)) # 1 and
another step will be taken. The next candidate controller would be Ksg7 in step 3. At time
14 the system is known to be unstable so that ¥(t4) = Vg,67=[0100000 0]. This time
in step sum(¥(t4)) = 1 which makes the system switch to K5 in step 2 with Yg, = ¥(14)

and stop.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Switching control of a family of plants and its advantages and shortcomings were investi-
gated in this work. Switching control methods can outperform traditional adaptive control
techniques when the plant is highly uncertain and/or the a priori information required in
conventional adaptive control methods is not available. The main shortcoming of switch-
ing control methods, however is the bad transient. A brief history of switching control, its
development and main problems were given in Chapter 1. The existing switching control
methods for a family of plants were referred to as “single-layer switching” as in these
methods one controller is assigned to each plant model. Thus, the controllers can be con-
sidered as being arranged on a so called “single layer” with a one-to-one correspondence
with the plant models.

In family of plants approach, a set of plant models represent parameters variations

of the plant. It is to be noted that in practice, parameters of the system vary in a compact
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set. However, one can choose a finite set of values for each parameter to formulate the
problem in the family of plants context. Thus, the model of a system with changing
dynamics is assumed to be jumping from one member of the family to another. A set of
controllers with the same size as the set of plants is then used to stabilize the time varying
or uncertain plants. Each controller could stabilize one of the members of the family of
plants. Different algorithms are proposed to switch among the controllers using different
methods of evaluation based on the error signal or the outputs of the system as a test
on performance of each controller until the unknown plant is stabilized. Although it has
some advantages compared to the classical adaptive control in the sense that the required
a priori information about the plant is reduced and it can stabilize plant models with very
big changes in their dynamics, the switching control methods suffer from bad transient
response. This is discussed in detail in Chapter 2 with illustrative examples to support the
claim.

The method proposed in Chapter 3 and reformulated in Chapter 4, targets the bad
transient response which is mainly because of switching to destabilizing controllers. The
idea behind this method is that by switching to controllers that can stabilize more than one
plant model in the family of plants, the number of switchings to destabilizing controllers
in the transition to find the correct controller can be reduced. The proposed algorithm
uses a special architecture of controllers, namely “multi-layer” structure, so that in each
layer a set of properly arranged simultaneous stabilizers is used. The main property of
the proposed algorithm is that each switching to a stabilizing controller makes the system
one step closer to finding the correct controller and switching to a destabilizing controller
can point the decision maker unit to the correct controller. As a result, provided all re-

quired simultaneous stabilizers exist in different layers, the system can find the correct
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controller with at most one unstable switching. If, on the other hand, some of the required
simultaneous stabilizers do not exist, one can still take advantage of multi-layer structure
and improve the transient response by reducing the number of unstable switchings, as
discussed in Chapter 3.

The multi-layer switching algorithm can only be used for families of plants with
more than three members because the number of layers in a family of p plants would be
p—2 and if p = 3 then the multi-layer structure would be the same as the single-layer one.
The simulation results in Chapter 3 show 90% reduction in the magnitude of the transient
response compared to the single-layer counterpart proposed by Miller and Davison [4] for
a given example, which indicates effectiveness of the multi-layer structure in improving
the transient response. It is to be noted that most of the given examples have a family
of four plants which is the minimum size for effectiveness of a multi-layer structure as
discussed in Chapter 3. The more the number of the plants in the family is the better
the results of the algorithm would be compared to the single-layer switching because the
average number of unstable switchings would increase in a single-layer structure when the
number of plants increases but it is always less than or equal 1 for multi-layer structure.

The main issue in multi-layer switching architecture is designing the higher layer
controllers, i.e. the controllers that must stabilize more than one plant model. As shown
in Chapter 3 and Chapter 4 there is no need to design all the controllers in higher layers to
take advantage of the proposed algorithm. Furthermore, the controllers on higher layers
are, in fact, simultaneous stabilizers only, i.e. they are required to stabilize a proper subset
of family of plants and do not need to solve the reference signal tracking of disturbance
rejection problem. This simplifies the design problem to some extent but in general design

of simple simultaneous stabilizers can be a hard task. It is also shown in Chapter 3 that
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some controllers on higher layers can be used instead of others when a good switching
method is proposed. In some cases one or more layers can be omitted completely.
Multi-layer switching structures are a general form of single-layer structures. The
work done here can even be used for single-layer methods. There is an assumption in
many single-layer algorithms that each controller in the set can stabilize one and only
one plant of the family which makes the controllers be sub-optimal instead of optimal
controllers for each plant. If the optimal controller of a plant can stabilize another plant as
well, the single-layer switching algorithm may be trapped into non-optimal controllers in
some cases which is a weak point of them. On the other hand, if the multi-layer switching
method is used even for those cases with one layer of controllers, the switching routes will
be chosen in a way that the system does not lock onto a controller unless the plant model

is clearly known which means that the switching will end up in the optimal controller.

5.2 Future work

The proposed multi-layer switching, like any other switching control method, has differ-
ent design components, the most important of which are controller design and switching
scheme design. Proper design of these components plays an important role in the overall

performance of the system.
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5.2.1 Design Tools

Digital systems have been widely used in recent years because generally they are cheaper,
more reliable, and easy to implement in practice. Discrete-time controllers can be used in-
stead of the continuous-time controllers in multi-layer switching structures using a switch-
ing scheme similar to the continuous-time case. It is to be noted that in a sampled-data
system, an LTI discrete-time controller with a hold operator act as continuous-time linear
time-varying controller for the original continuous-time system and it is known that such
controllers have several advantages in decentralized control of large-scale systems. Thus,
one can use the discrete-time version of the proposed method in a decentralized control
configuration.

Combining the conventional adaptive control methods with multi-layer switching
control can also be an interesting area for research. Each controller in the family of plant
models can be an adaptive controller that stabilizes a bigger subclass of plants and is more
robust compared to a simple controller. Especially, the controllers on higher layers can be
designed using the adaptive control theory.

The multi-layer switching control proposed in this thesis uses a set of continuous-
time LTI candidate controllers. One can apply the discrete-time version of the switching
algorithm for the sampled-data system with a set of discrete-time candidate controllers.
Particularly generalized sampled-data hold functions (GSHF) can be used to gain much
better control performance [40].

Recently some types of time varying controllers such as GSHFs (Generalized Sam-
pled Data Hold Function) have attracted many researchers. They are functions that can be

used instead of a zero order or first order hold function in a discrete time system and are
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proven to be a way of stabilizing systems. They can sometimes replace a digital controller
that has many benefits. Using GSHFs together with multi-layer switching schemes can be
very practical in the future of controlling digital systems with uncertainties and changing
parameters.

Control of large-scale MIMO systems have resulted in a new area of research called
Decentralized Control. Instead of using a complex centralized controller, several smaller
controller agents are made to cooperate on stabilization and tracking problem of the whole
system. Decentralized controllers have shown more robustness while they are easier to de-
sign because they are smaller in degree and number of inputs and outputs. Decentralized
switching controllers have been previously used in switching control [33], [13]. They have
been proven to be a good way to solve switching control problem for large-scale systems
and can be used as powerful tools for designing the controllers in a multi-layer switching
structure too. Of course the switching method should be modified for this purpose but the
main algorithm remains unchanged.

Unlike single-layer switching control which has a simple structure and algorithm,
multi-layer switching structure and algorithm needs more work which can be difficult
for cases with a large number of plants in the plant model set. Switching control, and
multi-layer switching in particular, has a nature that acts like a state machine or automata.
Considering this, the use of DES (Discrete Event Systems) can improve previous single-
layer and/or multi-layer switching schemes. It can make the algorithms simpler by using
the definitions and rules of DES which are well known in recent years. DES can help
improving multi-layer switching in two major ways: minimizing the structure concerning
any given specification for the system and programming the supervisor using a computer

equipped with DES softwares. Although there can be many controllers on layers of the
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structure, one may want to use a small subset of them in a way that there exists an al-
gorithm of switching that meets the specifications that should be met for the system, i.e.
the maximum number of stable and/or unstable switchings. The algorithms given in this
work is in an abstract mathematical form which is easy for a designer to understand but
hard to translate to machine languages. When the plant model set has many plants in it,
the algorithm can be given to a computer in DES format with a general concept and the
computer will generate a supervisor that matches the structure given to it. For example,
when there are 10 plant models and a structure of 8 layers, instead of thinking and decid-
ing the switchings at any given instant, DES can design the supervisor using basic rules
that are generalized for any number of plants and any given structure which are of course

given to the computer using DES.

5.2.2 Other Switching Mechanisms

Although the methods that do not guarantee to switch to each controller at most once
like [20] do not seem to be suitable for multi-layer switching, with some changes in the
switching scheme they may become useful. They can be combined together with the other
methods to make them more robust but the total number of switchings would be increased
a lot for sure. It is to be noted that switching to controllers on higher layers gains more
information about the system sometimes.

Throughout this work the plants are considered with the same probability of hap-
pening but the probability of each plant of the family can be different to others in practice.
A switching method that takes this issue into account will show much better results. This

is the motivation of assigning probability to each plant. The possibility vectors can be

64



changed to probability vectors. It can be added to single-layer switching also.
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Chapter 6

Appendix A: Upper Bound

The following results are Lemma 1, Lemma 2 and Theorem 1 of [4].
Lemma 1 Suppose that u(.) = 0. Then for every T > 0, there exist constants o

and 0y, so that for every initial condition x(0) and every disturbance w € PC.,, we have

T
I(0)]] < 06:'1/0 ly(2)I1d T+ o sup|w(z) |

Proof. Fix T > 0, and let x(0) and w € PC., be arbitrary. Since u(.) = 0, it follows
that
W(t) = Cietx(0) + | /0 ' MO Bpn(2)d T+ Fpw(1)] =: y1() + ya ).
So
yi(t) = (1) = x2(1),
which means that
T T T
B= [ @ Pdr<2 [ p@IPd+2 [ (o) Par.
Define

T !
W = / ATC'CATdT;
0
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then

B = x(0)'Wix(0).

Let a;; = the smallest singular value of W;; then

B — 0t [1x(0)|* = x(0)'[W; — a1 1]x(0) > 0,

B aullO)]
Hence,
WO < /a) [ Iv@)lPdz+C/a) [ Ia(o)d.
Now

1
20l < (/0 |Cie D E: | d+ | Filsupllw(T)]],
so if we define oy, := (2/0t;,) and
T gt
o, = (2/oy) [ [ Gt IE e+ ||,

then the result follows.
Lemma 2. There exist constants ¥, %,, ¥, and A; < 0, so that for every @, y,

w € PC and initial condition £(0), the solution of (4) satisfies
l ~ ~
()11 < %, 1£(0) [l +/O My |a(1) — Ki(3(7) — Direr (D)l + ¥ Iw(7) T

fort > 0.

Proof. We can write (4a) as
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Since A; + B;K,C; is stable, there exist constants ;, > 0 and 4; < 0 so that ||e(“ii+§ikici)’ I <

¥, fort > 0. Hence,

()] < %16'1”][)?(0)” + %, /Ot i=1)
(Bl (%) ~ Ri(5(2) = Dives ()| + |+ B |w(D) e,

t>0.

If we define ¥, := %, || B:l|,and ¥, := ¥, ||Ei + BiK;F;|, then the result holds.

Theorem 1. Suppose that y,. s, w € PCw, and that ||w(r)|| < b for ¢ > 0. For every
initial condition x(0), when Controller 1 is applied to the plant, the closed loop system
has the following properties:

(i) the gain eventually remains constant at an element of {K; : i € p}, and

(ii) the state X is bounded.
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Chapter 7

Appendix B: MATLAB Codes

7.1 Multi-layer Switching Code

clc clear warning off;
>LOADING THE SYSTEM...’;
load system4x2_6.mat;

CTRL{12}=degree_equalizer (CTRL{12},CTRL{1});

CTRL{34}=degree_equalizer (CTRL{34},CTRL{1});

'LOADING COMPLETED.’

) 3

[A,B,C,D]=ssdata(PLNT{1});
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[S,R,Q,K]=ssdata(CTRL{1}); [n,m]=size(B); [r,n]l=size(C);

s=size(S,1); Dbar=[zeros(r,r);zeros(s,r);eye(r)];

% simulation parameters:

dt=10; N=2000; Yr=[]; T=[]; timeT=10*dt; settling_time=50%dt;

F=0; E=0; epsilon=.1; b=10; %hhhthhlhhhhhhhhhh tuning

CTRL_DATA=[1 1 00; 2 2 00; 3 3 00; 4 4 00;
12 1 2; 34 3 4];

number_of_controllers=size (CTRL_DATA,1);

’CALCULATING THE BOUNDING PARAMETERS...’

lambdaa=inf*ones(34,2); for jj=1:6
j1=CTRL_DATA(jj,1);
for j2=1:2
(33 32
PLNT_DATA=CTRL_DATA(jj, j2+1);
if PLNT_DATA==00
alphal(j1,j2)=inf; alpha3(j1,j2)=inf; gammal(jl,j2)=inf;
gamma2(j1,j2)=inf; lambdaa(jl,j2)=inf; Kbar{jl,j2}=inf;
settling_time(j1,j2)=NaN;

else
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[Alphal,Alpha3,Gammal,Gamma2,Lambdaa,KBar,Settling_time,NormC]=
boundset4x2 (PLNT{PLNT_DATA},CTRL{j1},timeT,b,epsilon);

if size(Alphal,2)==0
[Alphal,Alpha3,Gammal,Gamma2,Lambdaa,KBar,Settling_time,NormC]l=
boundset4x2(PLNT{PLNT_DATA},CTRL{j1},timeT,b,epsilon);

end
alphal(j1,j2)=Alphal; alpha3(j1,j2)=Alpha3; gammal(jl,j2)=Gammai;
gamma2(jl1, j2)=Gamma2; lambdaa(jl,j2)=Lambdaa;

Kbar{j1, j2}=KBar; settling_time(jl,j2)=Settling_time;

Norm_C(j1)=NormC;

end
end

end

lambda=min{(min(lambdaa)) ;

save system4x2_2_BOUND.mat alpha* gamma* lambda* Kbar*

settling_time* Norm_Cx ’CALCULATIONS COMPLETED.’

lambdabar=lambda-1;  %kkkhhhhhhhhhhhhhhhhhhhhh tuning

»INITIALIZING...’
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% initial plant

settled=1; stateO=state; counter=0;

Y=[]; Ul=[1; % for the record

[A,B,C,D]=ssdata(PLNT{1}); number_of_inputs=size(B,2);
number_of_ourputs=size(C,1); [S,R,Q,K]=ssdata(CTRL{1});
x0=zeros(size(4A,1),1); zO=zeros(size(S,1),1); yO=zeros(size(C,1),1);
yref=ones(size(C,1),1);

%»x0=[0;0]; z0=[0;0;0;0]; y0=0; yref=1;

z=z0; y=y0; xbar0=[x0;z0]; record_rbar=[]; record_r=[];

record_state=[]; conditionl=0;

theta=0; stateOO=state; PP=size(T,2)-1; PP=5000;

PLANT=PLNT{new_state}; ’INITIALIZING COMPLETED.’ ’ °’

Tkt Tl oo oo o ToTo o oo o o o o T T oo To o o T fo o Je oo e de. END- OF  INITIALIZATION
Tl Il ol T To oo ToToToToToTo o To fo o To T To T Jo T T Fo o Jo Fo o o Fo oo oo oo o oo STMULATION BEGINS

’SIMULATIONS STARTED. ..’

for i=1:PP Y%size(T,2)-1

[state i-PP]
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[A,B,C,D]l=ssdata(PLNT{1}); a=size(A,1); u_dim=size(B,2);

[S,R,Q,K]=ssdata(CTRL{state}); s=size(S,1);

if state0"=state
settled=0; % we are in switching mode
counter=0; % ready to count

else

counter=counter+1l; % counting just started

end

if counterxdt>max(settling time(state,:)*2); %h%hh%k#h% TIME
settled=1;

end

stateO=state; % history of state

x0=xbar0(1l:a,:);

Tttt el oo oo T To T To T To T To To T To o to o 1o 7o 7 CONTROLLER. PHASE I
if i*dt<=timeT % time T in the paper

u=zeros (number_of_inputs,1); u0=u;

yo=y;

[x,y]=timeresponse (PLANT,x0,u0,u,dt);
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z0=z; % phase one, controller is off and u=0 goes to plant
z=z%x0;

xbar=[x;z];

Yol ToToto o ToloToto oo Tototo oo Jototo o oo o Jodo 1o e o 1o 26 /o e CONTROLLER PHASE 1T

else
[z_void,u]l=timeresponse (CTRL{state},z0,y0-1,y~1,dt);
yO=y; xbarO=xbar; z0=z; J, previous amount of the parameters
SYS=feedbackseries (PLANT,CTRL{state});
[xbar,yl=timeresponse(SYS,xbar0,yref,yref,dt);

end

x=xbar(l:a,:);
z=xbar(at+l:a+s,:);
zdot=(z-z0)/dt;

ubar=[u;zdot]; ybar=[y;z;yref];
Y=[Y yI;

U1=[U1 ul;

if i*dt<=timeT % time T in the paper

theta=theta+norm(y,2)"2*dt; %page 203, integrating...

end
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TolototolotoTototo o Tots folototo oo Toto o Too To ToJodo o Todo o o Toto o o To o do oo Filtered Signal

if i*dt<=timeT % Time T in the paper
rbar=0;

else
rbar=filtering(rbar,yref,ybar,Dbar,lambda,lambdabar,dt);

end

ol lootodo Totototododo o o e ododoloto o dododotolotole o e lote otodolo END of Filtered Signal

T I Tt T el o oot Tt T T o o oo o o o ot To T To o fedo o Auxiliary Signals
for jj=1:number_of_controllers

j1=CTRL_DATA(jj,1);

for j2=1:2

if alphal(j1,j2)<inf

if i==
r(j1,j2)=0;
elseif i*dt<=timeT % Time T in the paper
r(j1,j2)=auxiliary(r(j1,j2),yref,ubar*0,ybar,Kbar{jl, j2},
Dbar,lambdaa(jl,j2),gamma2(j1,j2),dt);
r0(j1,32)=r(j1,j2);

rj1j2=r(j1,j2);
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elseif (i-1)*dt<=timeT 7 means (i+1)*dt>=timeT and i*dt<=timeT
mu(jl,j2)=sqrt(alphal(jl,j2)*theta);
r(j1,j2)=gammal(j1, j2)*exp(lambdaa(j1, j2)*timeT)*mu(jl, j2)+r(j1,j2);
else
r(ji1,j2)=auxiliary(r(j1, j2),yref,ubar,ybar,Kbar{j1,j2},
Dbar,lambdaa(j1,j2),gamma2(j1,j2),dt);

end

else 7 when alphal==inf ==> no such combination
r(j1,j2)=NaN;

end

end%j2=1:4
end’%jl=1:24

Tohtotootolilolohtohotololotolofotolotolololololololofoloholololotedere End of Auxiliary Signals

record_rbar=[record_rbar;rbar];
record_r=[record_r;min(r,[],2)°’];

record_state=[record_state;state];
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h
)
)
h
h
h

end

Tl ool o ToToto 1o 1o o o oo ToToTo oo o o o o T o Te oo Za ot Conditions and Switching
condition=rbar>(min(r(state,:)*Norm_C(state)+ 20 ));
states4x2; 7% this is for multi-layer simulations
if condition % this is for single-layer simulations
state=state+1;
if state>4
state=1;
end

end

Tl Il tototo oo to oo TotoTo o tototo oo fotofotoote. End of Conditions and Switching

>SIMULATIONS COMPLETED.’ ’ °

save iRESULT

7.2 Bounding Function Parameters Code

function [alphal,alpha3,gammal,gamma2,lambda,Kbar,

settling_time,NormC]=boundset4x2(PLNT,CTRL,T,b,epsilon)

[A,B,C,Dl=ssdata(PLNT);

%Adaptive Control of a Family of Plants,

%Miller and Davison, Page 201-202
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[S,R,Q,K]=ssdata(CTRL); [n,m]l=size(B); [r,nl=size(C); s=size(S,1);

Abar=[A zeros(n,s);zeros(s,n) zeros(s,s)]; Bbar=[B
zeros(n,s) ;zeros(s,m) eye(s)]; Cbar=[C zeros(r,s);zeros(s,n)

eye(s);zeros(r,n) zeros(r,s)]; Dbar=[zeros(r,r);zeros(s,r);eye(r)];

Kbar=[K Q -K;R S -R];
Y%Kbar=[-K Q K;-R S R];
%hsyms X;

#W=eval (int (expm (A*x)*expm(A*x) ,0,T));

Chat=[-(2%A)’ eye(n) zeros(n,n) zeros(n,n);
zeros(n,n) —-(2%A)’ zeros(n,n) zeros(n,n);
zeros(n,n) zeros(n,n) 2xA eye(n);
zeros(n,n) zeros(n,n) zeros(n,n) zeros(n,n)];

eChat=expm(Chat*T) ;

W=(eChat (2*n+1:3*n,3*n+1:4*n));

alpha3=svds(W,1,0); %smallest singular value of W

alphal=2/alpha3;

alpha2=0; % for the case that F==E==0
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if size(S,2)==0
S=zeros(1,1); R=eye(1); Q=zeros(1,1);
Kbar=[K Q@ -K;R S -R];

end

lambda=max (real (eig(Abar+Bbar*Kbar*Cbar))) ;

gammal=0;

for i1=1:2 dt=.01;

for i=1:2000
t=1*dt;
matrix_plot(i)=norm(expm((Abar+Bbar*Kbar*Cbar)*t));
gamma_plot (i)=gammal*exp(lambdax*t) ;

end

[max_matrix0,i_max]=max(matrix_plot-gamma_plot);

max_matrix=max(matrix_plot); t_max=dt*i_max;

gamma=max_matrix/(exp(lambda*t_max)); gammal=gamma;

end
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gamma2=gammal*norm(Bbar,2); gamma3=0;

SYS=feedbackseries(PLNT,CTRL); settling_time=settling(SYS);

NormC=norm(Cbar,2);
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