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Abstract

Dynamic Modelling and Nonlinear Control of Vortex-Coupled Delta

Wing Systems

Mehrdad Pakmehr

The first part of this thesis proposes a control-oriented vortex-coupled nonlinear
retarded state space representation of free-to-roll motion of a delta wing. Linear,
nonlinear and neural network based parameter identification methods have been used to
approximate the rolling moment coefficient. Various experimental results validate the
proposed model.

In the second part, fast vortex-coupled delta wing roll dynamics with state delay
in is controlled using a robust adaptive output feedback control law. The controller has
been tested against modelling uncertainties in rolling moment coefficient. The controller
is shown to render the delta wing vortex-coupled roll dynamics globally practically
stable. Heuristic design process and parameter selection methods have been proposed for
easier implementation of this control algorithm. The results of the numerical simulation
demonstrate the applicability of this controller for different initial conditions.

The third part proposes a combinatory control strategy combined of a modified
state feedback stabilizing controller, as the internal loop, and a robust adaptive sliding
tracking controller. The robust adaptive tracking controller utilizes a special gaussian
radial basis function network for online estimation of unknown nonlinearity. To show the
capability of the proposed combinatory control structure, it has been implemented to the

delta wing dynamics to follow a complex reference trajectory. Implementing the
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proposed combined control structure enhanced the tracking performance in comparison to
the controller without internal loop. Adding two more control inputs enhanced the
tracking controller performance. The Heuristic design process and parameter selection
methods have been proposed for easier implementation of tracking control and combined

control structure.
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1 . Introduction

1.1 Motivation

The main objective of the project, started in Defence Research and Development
Canada (DRDC), is to develop novel flight control systems that can be embedded in the
structure of a delta wing to provide sufficient control authority through boundary layer
and vortex manipulation under subsonic flight conditions. This project aims to increase
our understanding of the issues surrounding subsonic active flow control. Another
objective of the project is to develop control schemes that take into account the
characteristics of the flow and the distributed nature of the micro-actuators and sensors. A

part of the second objective is the subject and motivation of the present thesis.

In the context of guidance and control of precision weapons, the new concept of
flight control of a weapon system by manipulation of the flow structure is studied in this
project with respect to a subsonic delta wing system. This enables the use of the empirical
and mathematical flow models available in this project, which are ideal for control

system design.

The concept of flight control by manipulation of the flow structure is based on the
idea that if forebody vortices can be manipulated to generate lifting forces through
perturbation of the flow at the nose of a missile then a means exists to control flight

without resorting to conventional canards or fins.



The design of a flight control system using actuation on the flow around a wing 1s
a very challenging problem that requires fundamental research work, numerical
simulation validation and, preferably, wind tunnel tests for the proof of concepts.
Underlying any active control system design is a model of the flow. The model may have
been obtained mathematically, with simplifying assumptions to render the problem
tractable, with flight data. Flight control system design strongly depends on wind tunnel
testing for a given airframe. Consequently, the dynamics of the missile system are bound
to be uncertain. The control scheme, then, not only has to cope with a highly nonlinear,
coupled behavior of the boundary layer with changing aerodynamic configurations, but
also with uncertain dynamic coefficients. From a control perspective, one approach to
tackle this challenging problem is to develop a robust adaptive control scheme that
achieves closed-loop stability through on-line identification and scheduling. This can be
achieved by judicious selection of the 1) flight envelope where the missile’s aerodynamic
behavior is, to some extent, predictable, 2) trim points, and 3) actuator and sensor
dynamics. Computational speed of the algorithms will be of prime importance given the

real-time control requirements of the missile.

1.2 Research Objectives

The objective of this thesis is three-fold: In the first part of the thesis, a control-
oriented dynamic model of a high performance 65-degree delta wing is proposed. This
model can be directly implemented for nonlinear control purposes of vortex-coupled
delta wing dynamics subject to delay. The proposed model relies on the nonlinear indicial
response method, in conjunction with internal state-space (NIRISS) representation. This

model proposes a control-oriented vortex-based nonlinear state space form of the roll



motion of a delta wing in high angle of attack flight condition. The relationships among
the vortex breakdown location, rolling moment coefticient and roll angle is developed
using a state-space model. Linear, nonlinear and neural network based parameter
identification methods are applied to approximate the uncertainties of the nonlinear
dynamic model, such as rolling moment coefficient. Experimental results are utilized to
verify the model.

In the second part, we investigate the applicability of the adaptive stabilizing
control approach presented in [66], for 4" order delta wing vortex-coupled roll dynamics
with state delay as the first application of this method in delta wing vortex-coupled
system control. We will test the controller against modelling uncertainties in rolling
moment coefficient and also left and right vortex breakdown locations as time varying
uncertainties. The parameter of this adaptive controller is updated robustly when the
bounds of these uncertainties are unknown. The heuristic design process and parameter
selection methods are proposed for easier implementation of this control algorithm. It
should be noted that we are applying this control scheme to a fast and high performance
delta wing dynamics in high angle of attack (AOA) and near-stall flight condition.

In the third part, we propose a combinatory control structure to control the
available high performance delta wing retarded dynamic system. The controller is a
combination of robust state feedback controller as the internal loop of the combinatory -
controller and a sliding adaptive tracking controller which uses a special gaussian RBF
neural network as the online estimator of the unknown nonlinearity. This controller is
applied to the vortex-coupled roll dynamics of the delta wing to track a complex

reference trajectory. This complex trajectory is chosen to show the ability of the proposed

(O8]



combinatory controller to control the delta wing for complicated manoeuvres since delta
wings are high performance aerial vehicles which are flying in high angle of attack flight
condition with subsonic or supersonic speeds.

The combinatory control input also is applied to 4" order delta wing vortex-
coupled roll dynamics with state delay, and 6" order delta wing vortex-coupled roll
dynamics with state delay and SMA micro-actuator dynamics, to check the effect of
perturbations as inputs to the vortex breakdown dynamics. The heuristic design process
and parameter selection methods are proposed for easier implementation of the

controllers with and without internal loop.

1.3 Literature Review

A non-linear indicial response (NIR) method, in conjunction with internal state-
space (ISS) representation (NIRISS) has been used in [10], [11] to describe the vortex
breakdown location over a delta wing. It has been found that for a delta wing, its leading
edge primary vortex behaviour has a dominant effect on its air loads [10], [11].
Consequently, the related air loads applied to the surface of the delta wing and the delta
wing attitude can be calculated in terms of the primary vortex breakdown location. In

[10], [11], a mathematical model for the case of free-to-roll motion has been presented.

Several methods can be found in the literature for the simulation and modelling of
vortex breakdown over delta wing and high performance aircraft dynamics and also
vortical flows. These methods include computational, neural-network and mathematical
methods. Several methods can also be found for the modelling of nonlinear flight
dynamics and system identification of nonlinear systems. In [12], a parabolic distribution

for the chord wise axial circulation distribution over slender delta wing has been



proposed. Leading-edge vortex breakdown locations have been predicted on the basis of
a critical value of the circulation. In [13], a method has been proposed to predict the
normal force coefficient acting on a delta wing under static or dynamic conditions. In
[14], the three dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations have
been used to numerically simulate nonsteady vertical flow about a 65-deg sweep delta
wing at 30-deg angle of attack. In [15], a conceptual model of the breakdown of a delta-
wing vortex as a symmetry-breaking subcritical bifurcation from an asymmetric unburst

vortex to a helically symmetric translating spiral burst form has been presented.

In [16], a specific neural network based model for the identification of non-linear
systems has been proposed. This neural network structure is able to identify a non—finear
state space model of the plant. Ref [17] investigates the identification of nonlinear
systems by neural networks. As the identification methods, Feedforward Neural
Networks (FNN) Radial Basis Function Neural Networks (RBFNN) Runge-Kutta Neural
Networks (RKNN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) based
identification mechanisms have been studied. In [18], wavelet-based neural network
(WNN) has been introduced for adaptive nonlinear system identification. Ref [19]
presents a stable, on-line identification scheme for multivariable nonlinear dynamic
system. Growing Gaussian Radial Basis Function (GRBF) network with all its parameters
being adaptable has been used to approximate an unknown nonlinear system. In [20], the
suitability of non-linear system identification modelling air vehicles of complex
configuration has been argued. The approach has been demonstrated through a laboratory
test rig. Extensive time and frequency-domain model-validation tests have been

employed in order to instil confidence in the estimated model.



One of the methods which have been used for modelling the uncertain
aerodynamics and nonlinear flight dynamics of high performance aircraft and delta wings
is nonlinear indicial response (NIR) method initiated by Tobak and his colleagues [35].
This approach represents aerodynamic responses, such as force, moment, etc., due to an
arbitrary motion input as a summation of nonlinear responses to a series of “step”
motions leading up to step onset. Three new important concepts were introduced in this
approach: (1) a nonlinear indicial response functional, (2) a generalized superposition
integral and (3) under conditions where Frechet differentiability is lost, i.e. at a critical

state, a splitting of the integral plus a transient term is proposed [10].

In [21]-[28], the nonlinear indicial response (NIR) method has been applied for
modelling the uncertain aerodynamics and nonlinear flight dynamics in different
situations. Ref. [29] demonstrates the use of a time-domain Volterra kernel
identification method which uses physically realizable inputs, and minimizes or

eliminates the need for analytical assumptions.

In [30], the state-space representation of aerodynamic forces and moments for
unsteady aircraft motion has been proposed. In [31], simplification of the equations of
motion of an aircraft, in a way that incorporates acroelastic effects, to facilitate the
development of reliable time-domain dynamic models, has been accomplished. In [32],
the state-space representation of an aerodynamic vortex lattice model has been
considered from a classical and system identification perspective. Ref. [33] presents an
alternative to traditional single frequency forced-oscillation testing by utilizing Schroeder
sweeps to efficiently obtain the frequency response of the unsteady aerodynamic model.

In [34], a short theoretical study of aircraft aerodynamic model equations with unsteady



effects has been presented. The aerodynamic forces and moments have been expressed in
terms of indicial functions or internal state variables. In [35], basic concepts involved in
the mathematical modelling of the aerodynamic response of an aircraft to arbitrary
manoeuvres have been reviewed. The original formulation of an aecrodynamic response in
terms of nonlinear functionals has been shown to be compatible with a derivation based
on the use of nonlinear functional expansions. In [36], the mathematical modelling of the
aerodynamic response of an aircraft to arbitrary manoeuvres has been reviewed. Bryan's
original formulation, linear acrodynamic indicial functions, and superposition have been
considered. Ref. {37] is a review of aerodynamic mathematical modelling for aircraft
motions at high angles of attack. The mathematical model serves to define a set of
characteristic motions from whose known aerodynamic responses the aerodynamic
response to an arbitrary high angle-of-attack flight manoeuvre can be predicted. In [38],
dynamic wind-tunnel test results of a 65-degree swept delta wing has been reviewed and
examined in light of the NIR theory, the existence of critical states with respect to roll
angle has been reported. In [39], critical-state transients for a rolling 65-degree delta wing

have been investigated.

Most of these modelling papers and methods are presented to build mathematical

models out of experimental data, which are not usable directly for control purposes.

Controlling delta wing, as a high performance missile or a UAV, has been
investigated recently. Several theoretical and experimental studies have been conducted.
Most of these researches involve study of wing rock phenomenon, wing flutter and limit
cycles. In Ref. [48], a research on the active control of aeroelastic structures has been

done which has been resulted in a new model for the control of delta wing flutter. Control



of wing-rock motion has been investigated extensively in the literature [49-59]. In Ref.
[49], based on the variable structure model reference adaptive control theory, a new
control system for the control of wing-rock motion of slender delta wings, using only roll
angle measurement, has been designed. In Ref. [50], adaptive control of feedback
linearizable systems is applied to designing the control of wing rock motion with the
extension of the technique to include tracking. In Ref. [51], based on a nonlinear model,
an adaptive control law for wing-rock control has been derived. In Ref. [52], control of

the nonlinear wing rock motion of slender delta wings using a nonlinear H_ robust

method has been presented. In Ref. [53], a theoretical analysis has been conducted to
determine the optimal control input for wing-rock suppression through a Hamiltonian
formulation. In Ref. [54], a model-error control synthesis approach has been used in
conjunction with a variable structure controller to suppress the wing-rock motion of a
slender delta wing. In Ref. [55], fuzzy logic-based roll controllers have been designed to
control wing-rock motion of a delta wing. In Ref. [56], a variable universe fuzzy control
design approach is utilized to improve both tracking precision and robustness of fuzzy
PD control for aircraft wing rock control. In Ref. [57], an RNN adaptive control system
has been developed for a wing-rock motion system. In Ref. [58], dynamic recurrent RBF
network control methodology has been proposed to control the wing rock motion. In the
proposed neural control structure, the recurrent dynamic RBF network performs
identification process in order to approximate the unknown nonlinearities of the physical
system. In Ref. [59], control of the non-linear wing rock motion of slender delta wing

configurations using a new non-linear suboptimal control technique, is discussed.



In Ref. [60] a robust adaptive tracking control strategy has been proposed and
applied for vortex-coupled delta wing roll dynamics, without delay, with parameter
uncertainty in the rolling moment coefficient. The robust adaptive tracking neuro-
controller employs a network of Gaussian Radial Basis Functions (RBF) to adaptively
compensate for the rolling moment coefficient. In Ref. [70], an on-line learning neuro-
control scheme that incorporates a growing radial basis function network (GRBFN) is
proposed for a nonlinear aircraft controller design. Ref. [71] is concerned with the
development of an adaptive control scheme applicable to strict feedback plants with time-
varying structure belonging to a class of feedback linearizable plants. In Ref. [72], an
indirect adaptive control system approach is proposed and demonstrated via nonlinear
six-degree-of-freedom simulations of a tailless fighter aircraft. Ref. [73] presents a direct
adaptive reconfigurable flight control approach and demonstrates its effectiveness via an
application to an advanced tailless fighter aircraft. An on-line neural network has been
used to adaptively regulate the error between the desired response model and the actual
vehicle response. Ref. [74] illustrates the application of an adaptive flight control and
guidance architecture to various unmanned aerial vehicles and weapons delivery
platforms.

The delay effect on the stability of systems with delays in the state and/or input, is
a problem of recurring interest since the presence of delay may induce complex
behaviours (oscillations, instability) for the (closed-loop) schemes. Furthermore, a
chaotic behaviour may appear if the delayed state is a nonlinear function [61]. The study
of time-delay systems has received considerable attention over the past years. In the

control theory literature, the problem of control and stabilization of uncertain nonlinear



time-delay systems has been dealt via a number of different techniques, mostly sliding
and adaptive control approaches. In Ref. [62], the output tracking control problem for a
class of non-linear time delay systems with some unknown constant parameters is
addressed. Such a problem is solved in the case that the non-linear time delay system has
full delay relative degree and stable internal dynamics. Ref. [63], investigates the issue of
the internal stability of nonlinear delay systems controlled with a feedback law that
pertorms exact input-output, linearization and delay cancellation. Ref. [64], considers the
sliding mode control of uncertain systems with single or multiple, constant or time-
varying state-delays, submitted to additive perturbations. In Ref. [65] a control strategy
combined of a modified output feedback stabilizing controller and a robust adaptive
tracking controller, which employs a network of Gaussian Radial Basis Functions (RBF)
to adaptively compensate for the rolling moment coefficient, has been presented, and
applied to the vortex-coupled roll dynamics of delta wing subject to state delay and SMA
actuator dynamics.

Any of the papers presented in this review does not present a control strategy to
control the retarded delta wing dynamics to follow a complex reference trajectory.
Robust adaptive tracking control of retarded systems with unknown time-varying

nonlinearity is still an unsolved problem in adaptive control field.

1.4 Thesis Contribution and the Outline of the Thesis

We first review some background material including delta wing dynamics and
vortex breakdown phenomena, adaptive neural controllers, delay systems, retarded
dynamical systems and also practical stability notion in Chapter two. In Chapter three, a

control-oriented dynamic model of a high performance 65-degree delta wing is proposed
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which can be directly implemented for nonlinear control purposes of vortex-coupled delta
wing dynamics subject to delay. The relationships among the vortex breakdown location,
rolling moment coefficient and roll angle are developed using a nonlinear state-space
model. Linear, nonlinear and neural network based parameter identification methods are
applied to approximate the rolling moment coefficient as unknown nonlinearity.
Experimental results from NRC-CNRC are utilized to verity the model. In Chapter four,
the applicability of the adaptive stabilizing control approach presented in [66], to the 4"
order delta wing vortex-coupled roll dynamics with state delay is investigated, as the first
application of this method in delta wing vortex-coupled system control. The controller is
tested against modelling uncertainties in rolling moment coefficient and also left and
right vortex breakdown locations as time varying uncertainties. The parameter of this
adaptive controller is updated robustly when the bounds of these uncertainties are
unknown. The heuristic design process and parameter selection methods are proposed for
easier implementation of this control algorithm. In Chapter five, a combinatory control
structure 1s proposed to control the available high performance delta wing retarded
dynamic system. The controller is a combination of a robust state feedback controller as
the internal loop of the combinatory controller and a sliding adaptive tracking controller
which uses a special gaussian RBF neural network, developed for the delta wing vortex-
coupled dynamics, as the online estimator of the unknown nonlinearity (C,). This
controller is applied to the vortex-coupled roll dynamics of the delta wing to track a
complex reference trajectory. The combinatory control input is also applied to 4™ order
delta wing vortex-coupled roll dynamics with state delay, and 6™ order delta wing vortex-

coupled roll dynamics with state delay and SMA micro-actuator dynamics, to check the
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effect of perturbations as inputs to the vortex breakdown dynamics. The heuristic design
process and parameter selection methods are proposed for easier implementation of the
controllers with and without internal loop. In Chapter six, conclusions and future
directions for the research are presented. In Appendix A, we present the definitions and
the properties which are the fundamentals for the controller proposed in Chapter 4. In
Appendix B, we present theories and proofs of the theories which are presented and

utilized in Chapter 4.



2 . Background Material

2.1 A Review on Delta Wing Dynamics

2.1.1 Whatis Delta Wing?

A delta‘ wing is a wing whose shape when viewed from above looks like a
triangle, often with its tip cut off. It sweeps sharply back from the fuselage with the angle
between the leading edge (the front) of the wing often as high as 60 degrees and the angle
between the fuselage and the trailing edge of the wing at around 90 degrees. Often delta-
wing airplanes lack horizontal stabilizers. Delta wings actually perform poorly at low
speeds and often are unstable (i.c., they do not stay in level flight on their own). Their

primary advantage is efficiency in high-speed flight [1].
2.1.2 Basic Aerodynamics of Delta Wings

Delta wings (Deltas) are symmetrical triangular wings designed to fly at subsonic
or supersonic speeds. At supersonic speeds the leading-edge can be subsonic, sonic or
supersonic, depending on the relation between sweep angle and speed.

Leading edges are generally linear, although there are cases of more complex

geometries, such as the ogive delta (Concorde SST), the gothic delta, the cranked delta
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(Lockheed CL-823), the double delta (SAAB Viggen), delta plus canards (North
American XB-70 and others).

Almost all delta wings fall into the category of low aspect-ratio wings. Their
aspect-ratio 1s defined by 4R = 4/tan(D), where D is the leading edge sweep angle (this
lead to AR less than 3 in most cases; about 1.8 in the case of Concorde). Wing thickness
is generally small.

The problem is to find the aerodynamic properties of the wing (Cr, Cq, Cp, C,
distribution, etc.), along with the lateral and longitudinal stability characteristics of the
wings at different operation points.

The technical literature on deltas is huge, and it is safe to say that all speeds and
sweep angles have been investigated (experimental, theoretical and computational
research).

2.1.2.1 Delta Wing in Subsonic Flow

Flows past delta wings are severely compounded by the leading edge separation,
by the roll-up structure of the concentrated vortices, and by the lateral and longitudinal
instability that is consequent to large sweeps, high-angle of attack, and sharp maneuvers.
Although the aerodynamics of the delta wing is nonlinear, most of the research has relied
for a long time on linearized small perturbation theory (shortly reviewed below).
Computational methods (ex. vortex lattice methods, panel codes) have proved

tremendously effective at low speeds and unsteady flows.

2.1.2.1.1 Linearized Theory

Linearized theory for the slender body with small angle of attack leads to a very

simple conclusion: lift is produced in the conical flow created by the streamwise variation
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of span b(x). There is one singularity at the apex of the delta, where the theoretical

pressure would be infinite.

The expression for the lift coefficient is C, =2« , that is correct only for very low
aspect-ratios (AR=1). The corresponding induced drag coefficient is C,, = C, /2, that is

just half the value that is expected at angle of attack « . The center of pressure is found at

2/3 chord from the pointed leading-edge, where the pressure is also singular.

2.1.2.1.2 Fuselage Effects

The effect of a fuselage can also be estimated by a more general formulation that
gives a lift coefficient in the wing-body configuration is lower that the wing-alone.
Lifting surface theory (for ex., vortex lattice method) is a better approach to the
prediction of the basic coefficients. There are also methods for arrowhead wings and
wings in yawed flow.

2.1.2.2 Delta Wings in Supersonic Flow

Delta wings are appropriate plan forms to fly at supersonic and hypersonic
speeds, therefore there has been a long time interest in investigating the effects of high
Mach numbers. The principle of independence allows investigating separately wings with
subsonic and supersonic leading edges (e.g. for which the normal Mach number is below

or above the speed of sound).

2.1.2.2.1 Separation Characteristics

In general, wings with subsonic leading edges are characterized by leading edge
separation; wings with supersonic leading edge are characterized a Prandtl-Meyer

expansion. The main parameters of the wing problem are sweep, free stream Mach
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number, angle of attack and wing thickness. The effects of all these parameters can be
collapsed in one single plane alfan-Machn, where the occurrence of subsonic or

supersonic flow can be diagnosed as function of the parameters.

2.1.2.2.2 Delta Wing with Subsonic Leading-Edge

The wing is inside the Mach cone if the sweep angle is greater than the Mach
angle, thus yielding leading-edges that are fully subsonic (Figure 1). Linearized theory
leads again to simplified expressions for the main aerodynamic characteristics, which are
quite powerful to describe the operation of the wing.

The lift coefficient depends on the aspect-ratio, according to en expression that is
fairly approximate for incidences less than 5 degrees. According to the theory, the strong
leading edge suction gives rise to a leading edge thrust that decreases the amount of drag

(in practice only a small amount of this suction can be realized.)

Mach line .-

Figure 1. Delta wing with subsonic leading-edge [2]

2.1.2.2.3 Delta Wing with Supersonic Leading-Edge
The leading-edge is inside the Mach cone, by virtue of the comparatively larger

sweep angle (Figure 2), in such a case there is no interaction of flows between upper and

lower surface.
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The pressure jump at any given point on the wind surface has a definite
expression, which is constant along lines through the wing vertex (conical flow). By
integration of the pressure jump one tinds that the lift coefficient is independent from the
sweep angle, and the lift-curve slope is also independent from the angle of attack for as

long as the leading edge is supersonic.

Mach line

Figure 2. Delta wing with supersonic leading-edge [2}

2.1.2.3 Flow Separation on Highly Swept Wings

Real cases of flow past slender delta wings (wings of small aspect-ratios) are
almost certainly separated, and to a great extent. Separation starts from the leading-edge
and produces a series of vortical regions that have a conical shape growing stream wise.
The angle of attack at which these vortices appear depends on the slendemess.

Separation is at the leading-edge when the leading edge is sharp, and leads to
performances largely independent from the Reynolds number. The presence of the
leading-edge vortices is the cause of a number of phenomena:

o The lift coefficient is larger than that predicted with linearized theory. This is due
to the suction effect of the separation vortices. The difference between the linear

value of the lift and its actual value is called vorrex lift.
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The leading-edge vortices induce a field of low pressure on the suction side of the
wing. The increased suction is a reason for increased lift (point above).

Stall occurs at a large angle of attack, because of the vortex instability, leading to
vortex burst. When the vortex core bursts the suction effect disappears. As vortex
burst far behind the trailing edge, the burst has little or no effect; vortex burst on
the wing itself will reduce the vortex lift.

The vortex pattern behind the delta wing depends on the slenderness, because
slenderness, together with angle of attack, is what decides the vortex burst.

Vortex asymmetry appears on very slender wings at lower and lower angles of
attack, because the vortex finds less physical limits for development, therefore
becoming soon unstable.

Flow separation characteristics depend on speed (Mach number), wing sweep,

angle of attack and wing thickness.

Wings with subsonic leading edge are dominated by leading edge separation.

Secondary separation appears at moderate to high angles of attack (Figure 3). Wings with

supersonic leading edges are characterized by a Prandtl-Meyer expansion behind the bow

shock and by an attached leading edge flow (Figure 4).

For more information about delta wing aerodynamics, refer to [2].
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Figure 3. Flow separation on delta wing with subsonic leading edge. A = attachment; S = separation; V =
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Figure 4. Flow separation on delta wing with supersonic leading edge. SW = shock wave, [2]
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2.1.3 High Angle of Attack Aerodynamics

2.1.3.1 Airfoil Flows
All airfoils stall past a critical angle of attack (angle corresponding to the
maximum lift). The (static) stall characteristics depend on the design (thickness, leading
edge radius, camber, trailing edge angle) and conditions of operation (ground, out of

ground, etc.). Figure 5, shows representation of stall of airfoils.

/5 e

1
20 40 ¢ 20 40 o

Figure 5. Static stall on airfoil [2]

2.1.3.2 Wing Rock
Wing rock is a rolling oscillation due to loss of damping at high angles of attack.
This often leads to loss of control. Two particularly important cases are the highly swept
wing and the slender body wing rock (for ex. forebody-delta wing).
2.1.3.3 Breakdown of Symmetric Flow
One of the features of high angle of attack flows is the appearance of
asymmetrical patters and thus non symmetrical loads (rolling moment, yawing moment,

side force, etc.).

Figure 6 shows how the breakdown in the symmetry flow on a wing-body

20



combination can be tackled. By using a spiral trip on the fuselage both yaw and rolling

moments can be greatly improved at high angles of attack.

triip on

Figure 6. Yawing and rolling moment on wing-body combination [2].

An extreme case of high angle of attack aerodynamics is the atmospheric entry of

the Space Shuttle (about 40 deg at hypersonic speeds M > 20).

2.1.3.4 Separation Characteristics

High-alpha effects are particularly pronounced on delta wings, on which they

have been studied for a wide range of aspect-ratio, Reynolds and Mach numbers. Three

cases are of special interest: leading edge separation; separation with shock; shock-

induced separation.

For more information about high angle of attack aerodynamics, refer to [3].

2.1.4 Vortex Shifting Concept using MEMS

The concept of using small actuators (micro-millimeter scale) to provide large

control forces for a large-scale system (meters scale) is of great interest in recent decades.
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This was theorized by using fluid separation phenomenon, vortex symmetry, and vortex
dynamics on a delta wing aircraft [4].

It has been known that the ensuing leading edge vortex flow is extremely
sensitive at the separation location of the free shear layer on a swept aerodynamic
planform. Sharp leading edges have a natural boundary condition of separation at the
sharp edges. For round leading edges, the genesis location of the free shear layer is a
complex curved line that runs along the leading edge from the apex to the wing tip.
Changing the surface boundary condition in quasi-steady state (i.e., expanding surface
curvature) near the separation line can cause a global change to the developing vortex. In
general, delta wing leading edges create symmetric pairs of primary and secondary
vortices [4].

The controlled separation of the thin boundary layer at the synthesis location of
the vortex pairs on a delta wing aircraft will allow the manipulation of pressure field
about the aircraft. By using micro actuators along the round leading edges to create
vortex shifts, a resulting loading change about the aircraft would occur. Although at first
glance this appears to be the mere adoption of vortex flap with MEMS, however, the
difference lies in the fact that the vortex being controlled is not “trapped” at the leading
edge. The round leading edge allows the manipulation of the vortex pairs on the entire
leeward side of the aerodynamic surfaces.

The length scale of the micro actuators will need to be compatible with the
boundary layer thickness. It was speculated from the beginning that the boundary
thickness would be the key to the flap/vortex interaction. The boundary thickness was

estimated to be between 100s of microns to 1-2 millimeter, depending on the length scale

22



of the aircraft and the Reynolds number. Figure 7, shows that pairs of vortex system

increase size and strength with increasing AOA [4].

Werle, 1958

Figure 7. Typical evolution of primary vortex pairs with increasing AOA on delta wings [4].

Thus, it was hypothesized that the vortex shifting mechanisms can be used to
replace or supplement conventional surfaces at high angles of attack where the latter

became ineffective due to trailing edge separation of the potential flow.

2.2 A Review of Nonlinear Adaptive Neural Control Scheme

Over the last four decades, adaptive control has evolved as a powerful
methodology for designing feedback controllers of nonlinear systems. However, most of

these studies assume that the system nonlinearities are known a priori, which is generally



not applicable in the real world. To overcome this drawback, from 1990s, there has been
a tremendous amount of activity in applying Neural Networks (NNs) for adaptive control.
With their ability to approximate nonlinear functions, neuro-controllers can fulfill the
control objectives by canceling or learning the unknown nonlinearities of the systems to
be controlled. NNs are especially suitable for the adaptive flight control applications
where the system dynamics are dominated by the unknown nonlinearities. Moreover,
among different choices of network structures, Radial Basis Function Network (RBFN)
has shown its potential for on-line identification and control, and hence arouses much

interest [3].
2.2.1 Adaptive Control of Nonlinear Systems Using Neural Networks

Adaptive control was motivated by the problem of designing autopilots for
aircraft operating at a wide range of speeds and altitudes in 1950s. However, it was only
in the 1960s, when Lyapunov's stability theory was firmly established, that the
convergence of the proposed adaptive control schemes could be mathematically proven.
Following this, in 1970s, complete proofs of stability for several adaptive schemes
appeared. Further, in the late 1970s and early 1980s, state space based proofs of stability
for model reference adaptive schemes appeared in the works of Narendra, Lin, Valavani
and Morse. Surveys of the applications of adaptive control are given in books edited by
Narendra and Monopoli and Unbehauen. Those early results on stability dealt with the
ideal case of exact plant model (no modelling errors). Since then, a considerable amount
of adaptive control research has been devoted to the development of robust adaptive

control systems, where closed-loop stability properties are retained in the presence of not
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only a large parametric uncertainty, but also of modelling errors. In the 1970s and 1980s,
there also has been a great deal of interest in the use of state feedback to exactly linearize
the input-output behavior of nonlinear control systems. The theory of linearization by
exact feedback was developed through the efforts of several researchers, such as Singh
and Rugh, Isidori, Krener, Gori-Giorgi and Monaco. All these efforts in research and
development has given substantial innovations and the fundamental issues of adaptive
control for linear systems, such as selection of controller structures, development of
adaptive law, etc., have been well established. These results have been reported in several
books dealing with the design and analysis of adaptive systems [5].

Although it is known that most practical systems are inherently nonlinear,
adaptive control of such systems was not seriously considered until the advances in
geometric nonlinear systems theory, such as feedback linearization, were made. With
these achievements, in the last ten years, adaptive control has evolved as a rigorous
control strategy for a reasonably large class of nonlinear systems. Many remarkable
results and new design tools, such as backstepping procedure, feedback linearization
techniques, have appeared in both Lyapunov and estimation based schemes. Some of

these methods are briefly reviewed in [5].

2.2.2  An Overview of Neural Networks in Adaptive Control

Artificial Neural Networks (ANNs) have emerged over the last three decades as
one of the most vigorous and exciting fields of modem science, because of their powerful

ability to learn, to generalize, and to adapt to unknown nonlinearities. In the last decade,

25



almost independent from the adaptive nonlinear control research, a tremendous amount of
activity in neurocontrol approach has been carried out.

Generally, for adaptive control purposes neural networks are used as
approximation models of unknown nonlinearities. The input/output response of neural
network models is modified by adjusting the values of its parameters. Although it is true
that polynomials, trigonometric series, splines, and orthogonal functions can also be used
as function approximator, neural networks have been found to be particularly useful for
controlling highly uncertain, nonlinear, and complex systems.

Neural control strategies can be broadly classified into off-line and on-line
schemes based on how the parameters of the network are tuned. When the neural
controller operates in an on-line mode, it has no a priori knowledge of the system to be
controlled, and the parameters of the network are updated during control system
operation, preferably in real-time. However, in the off-line control, the network's
parameters are determined from the known training pairs, and then those parameters are

fixed for control purposes.
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Figure 8. Adaptive inverse control system [5]
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Though the role of neural networks in the on-line and/or off-line learning are to
learn some underlying functions related to the system, the methodologies differ by the
way in which they are utilized. They range from learning the inverse dynamics of the
system without any guarantee of stability, the feedback linearization strategy to the direct
adaptive control that guarantees stability of the overall systems. Figure 8, shows a
schematic of adaptive inverse control system. In [6], Agarwal has given a comprehensive
classification of the neural-network-based control schemes proposed in the literature. In
Agarwal's work, the NN based control schemes are classified into two main categories;
one is called "neural network only as an aid", where the neural networks are used to
relieve the complex diagnostics, tedious modelling, unwieldy tuning, or excessive
computational effort in conventional control schemes. The other class comprises schemes
where a neural network is used as a controller and is updated using available input
signals. The data pairs for adjusting the network are obtained either from the real plant, or
using a model simulation. It can be seen from the literature that neural network based
adaptive control covers a very broad area, and in this section we introduce some of the
popular control strategies [5].

2.2.2.1 Neural Flight Control Systems Advantages

The implementation of on-line neurocontrollers in the autopilot control laws for
high performance aircraft has the following advantages: first, it can avoid the pre-
computation, storing, and interpolation between thousands of feedback gains of a typical
flight control system. Second, it has the ability to compensate for nonlinearities and

model uncertainties. Last, through on-line learning ability, the designed controller avoids
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the time-consuming gain recalculation following any modification to the aircraft or its

control system during the operative life [5].

2.3 A Review on Time Delay Systems, Stability and Control

Time-delay systems (TDS) are also called systems with aftereffect or dead-time,
hereditary systems, equations with deviating argument or differential-difference
equations. They belong to the class of functional differential equations (FDEs) which are
infinite dimensional, as opposed to ordinary differential equations (ODEs). Four points
may give a possible explanation of motivation for a continuous interest and development
in TDS:

(1) Aftereffect is an applied problem: it is well known that, together with the
increasing expectations of dynamic performances, engineers need their models to behave
more like the real process. Many processes include aftereffect phenomena in their inner
dynamics.

(2) Delay systems are still resistant to many “classical controllers”; one could
think that the simplest approach would consist in replacing them by some finite-
dimensional approximations. Unfortunately, ignoring effects which are adequately
represented by FDEs is not a general alternative: in the best situation (constant and
known delays), it leads to the same degree of complexity in the control design. In worst
cases (time-varying delays, for instance), it is potentially disastrous in terms of stability
and oscillations.

(3) Delay properties are also surprising since several studies have shown that
voluntary introduction of delays can also benefit the control (for instance, for ODEs:

damping and stabilization, delayed resonators, time-delay controllers and observers,
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nonlinear limit cycle control, and deadbeat control; for FDEs: finite-spectrum assignment
[7].

(4) In spite of their complexity, TDS however often appear as simple infinite-
dimensional models in the very complex area of partial differential equations (PDE):

Delays are known to have complex effects on stability. To deal with stability
problem of TDS, there are four general methods which have been widely used: 1- The
characteristic roots of retarded and neutral linear FDEs; 2- The Krasovskii-type approach;
3- The Razumikhin-type approach, control Lyapunov functions and input-to-state
stability; 4- Input—output stability [7].

During the last 10 years, many studies were devoted to the control of TDS. These
control methods can be categorized as follows: 1- Optimal control and the Bellman

equation; 2- Sliding mode control; 3- Time delay control; 4- Adaptive control.

2.4 Retarded Functional Differential Equations

A retarded functional differential equation (RDTE) describes a system where the

rate of change of state is determined by the present and past states of the system.

Suppose that # > 0 is a given number with understanding that # may be +co, and

R” is an n-dimensional linear vectorspace over the reals with norm H . Let ¢ denote the
vector space of continuous and bounded functions mapping the interval [—4,0] into R".

With the norm H . H given by

[ = sups s o,[©(0)

, Deq (2-1)

¢, is a Banach space.
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Definition: The relation
x=f(,x) (2-2)

is called RFDE where f:Rxc, — R" is a given function, the overdot represents the right

hand derivative with respect to ¢ and the function x, € ¢, is defined by
x,(0) =x(t+6), 8 € [-h,0] (2-3)

Definition: The function x:R — R" is a solution of the RFDE (2-2) with the initial

condition
x, =0;0eR, Deg, (2-4)

if there exist a scalar ¢ >0 such that x, ec¢, and x satisfies (2-2) and (2-4) for all

telo,0+5].

For more information about RFDE refer to [8].

2.5 Practical Stability Notion

Complete stability is a more desirable feature in applications than asymptotic
stability. Sometimes even instability may be good enough. Since the desired state of a
system may be mathematically unstable but the system may oscillate sufficiently near this
state so that its performance is considered acceptable. For example, an aircraft or a
missile may oscillate around a mathematically unstable course yet its performance may
be acceptable. Many problems fall into this category including the travel of a space
vehicle between two points and some problems in chemical processes. To deal with such

situations, the notion of practical stability is more useful, which we present it below [9].



Definition: The system (2-5)
Xx=f(t,x), x(t,) =x,,, 20 (2-5)
is said to be practically stable if, given (4, 4) with 0 <A < 4, we have |x0$ < A implies

]x(t)} < A4, t=t,for some £, € R.

For more information about practical stability refer to [9].



3 . Control-Oriented Modelling and
Identification of Delta Wing

Vortex-Coupled Roll Dynamics

3.1 Introduction

In order to reach the desired roll angle in a prescribed time and improve the
efficiency and other dynamic behaviour, control algorithms must be designed. As the
start up for control algorithms design, the objective of this chapter is to develop the state
space model for designing control algorithms to be applied to the vortex-coupled roll
dynamics of a 65-degree delta wing. The proposed model, in fact, integrates the vortex
breakdown location on the delta wing surface into the delta wing roll dynamics for
control purposes. In order to implement the controllers more efficiently, different

methods have been applied to approximate the uncertain parameters of the system.

In this chapter, a control-oriented dynamic model of a high performance 65-
degree delta wing is proposed which can be directly implemented for nonlinear control
purposes of vortex-coupled delta wing dynamics subject to delay. The proposed model
relies on the NIRISS method and represents a control-oriented vortex-based nonlinear
state space form of the roll motion of a delta wing in high angle of attack flight condition.

The relationships among the vortex breakdown location, rolling moment coefficient and

32



roll angle are developed using a state-space model. The model, in fact, integrates the
vortex breakdown location on the delta wing surface into the delta wing roll dynamics for
control synthesis. Linear, nonlinear and neural network based parameter identification
methods are applied to approximate the uncertainties of the nonlinear dynamic model,
such as rolling moment coefficient. The experimental results are utilized to verify the

model.

The experimental data available form Huang [10], in fact can be categorized into
4 different types as indicated in table 1, the main characteristics for these categories are

the initial roll angle and the trim point.

Category Initial Roll Angle Trim (attractor or
No. (release angle) equilibrium) Point
1 positive positive
2 positive zero or (near to zero)
3 negative zero or (near to zero)
4 negative negative

Table 1. Different categories of available experimental data

In our verification we have used 3 categories to show the credibility of the

proposed model. There are four key features in the proposed model:

1- Time delay (T); significant time lags in the vortex breakdown motions relative

to the body motions strongly influence the dynamic forces and moments [14];

2 -Uncertainty and nonlinearity due to the rolling moment coefficient (C,) and

vortex breakdown locations (X ,,,, X ,,, ) [40];

3 -Assuming C, as a function of (X, , X, ): C, = f(X,,,.X,.) [40];

4 -The model has multiple equilibrium points [38, 41], so we use different

(U8
[FS]



experimental datasets for the proposed C, equation in the model.

3.2 Description of Experimental Facilities

A comprehensive experimental study has been conducted to understand the flow
physics and to obtain a mathematical model in the non-linear region as described in [10],
[11]. A 65-degree delta wing model was used to simulate the free-to-roll experiments
conducted at the Institute for Aerospace Research (IAR) 2m x 3m and WL/SARL 7 ft x
10 ft wind tunnels. The experimental apparatus and model with MEMS actuators are
shown in Figures 9 to 14. Figure 9 shows 65-degree delta wing model. Figure 10 shows
the TAR’s wind tunnel facility. Figure 11 shows the half model experimental set-up.
Figure 12 shows the conceptual design of full wing model experimental set-up. Figure 13
shows the flow pattern with and without vortex flap. Figure 14 shows leading-edge
vortex flap, servo motors and mechanical actuator have been used in experiments.

Experiments carried out in IAR shows that taking the flow over delta wing at high
incidence, there may exist primary, secondary and tertiary vortices over the wing. The
presence of leading-edge vortices and particularly their breakdown is the main cause of
airloads’ nonlinearities and time dependence. Generally, the effect of secondary and
tertiary vortices on airloads is second order to that of the primary ones on the airloads.
Therefore, as a first order approximation, the presence of the secondary and tertiary
vortices is ignored [10].

In the experiments, the delta wing model (Figure 9) was released from an initial
roll angle with zero initial angular velocity and allowed to roll freely about its axis. The

system bearings introduced an approximately constant friction torque of about
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0.0461[kg.m] regardless of the angular velocity and load, while the moment of inertia of

the moving system was /, =0.00311[kg.m.s].

Observations in different experiments showed that, at a free stream velocity of

u, =91.44[m/ 5] the 65-degree delta wing configuration have multiple stable trim points

in roll (depending ono ) [10].

65
=
Ful
~ .
) ™ _J
& honping
20°
1

[
380 mm

80 nm

Figure 9. 65-degree delta wing model [10].

Figure 10. TAR wind tunnel facility [47].
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3.3 State Space Formulation of System

For control purposes and also numerical simulations of delta wing highly
nonlinear roll dynamics in high angle of attack flight condition, it is necessary to develop
an appropriate mathematical model; in this section we will propose a nonlinear vortex-
coupled state space model subject to delay. Using the approach presented in [30], we will

define the vector of kinematic parameters as the system input:

H = (a’ ﬂ’ A/&r’BI&r’COI&r’A/&r’rc[&r’rl&r7Xs'/&r’u) (3_1)

As in delta wing case, the rate of change of states are determined by the present
and past states of the system, so the system dynamics should be described by a retarded
functional differential equation (RFDE) [8], so the state space mathematical formulation

will be



dx

= f(x,,N,H
" J (%N, H)
y=g(x) xeR, ueR”", yeR’, Ne®R’ (3-2)
N=E(x,H)

where y is the output vector, N is the vector of vortex breakdown locations and the
function x, ec, is defined [8] as follows:
x(0)=x(t+6),0[-n0],n<T (3-3)
The initial condition will be defined as follows:
x,(O)=v(0), Oe[-n,0] (3-4)
¢, denotes the vector space of continuous and bounded function mapping the

interval [-77,0] into R". With the norm ”” given by

HCDH = SUDPger_p 0 ‘(D(H)

. Geg, (3-5)

¢, is a Banach space. 7 is the length of retardation. As 7 is finite, i.e. delay is

bounded, so the norm in (5) is equivalent to max,_, o ’CD(G)‘ .

3.3.1 Derivation of State Space Formulation

The procedure of developing the state space formulation of the nonlinear delta

wing vortex-coupled roll dynamics is illustrated in Figure 15.



Define X, and X, , develop x and x, based on integral term
in equation (3-6);

v

Simulate X, and X, ; compare new calculation with integral

term in equation (3-6);

y

Curve fit (Linear or nonlinear approximation) and RBFNN
approximation methods for C, as a function of X & X,

based on the response of (,and ¢ in Ref. [10] and other

available experimental data;

v

Develop x, and x, by combining equation (3-57), C,

and Ko & X, 5

v

Simulate 4 states with time delay; compare new calculations
with different categories of available experimental data
from X. Z. Huang [10].

Figure 15. Procedure of developing the state space formulation
Dimensionless Vortex breakdown location of free-to-roll motion over a delta

wing is given as [10]:

X0 = X, ((0) + X,GO) X, (p)+ [ X, (- 1)()dz (3-6)

where the first term represents the static value at time ¢, and the second and third terms
reflect the quasi-steady and unsteady effects.
Two vortices, the left and the right vortex, over the delta wing need to be

considered, thus, two vortex breakdown locations, X, and X, , which are representing

the left and right vortex breakdown positions subsequently, are to be calculated as:

X0 = X, ((0) + X, GO) X0+ [ X, (- o)(p)d (3-7)
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X (D)= X, () + X, () X (90)~ [ X, (- (o) (3-8)

The difference between X, and X, are the static terms X, and X, . The

dynamic terms have the same formulation, but opposite sign.
Figure 16 shows a schematic representation of vortex breakdown locations on the
delta wing and its effect on the rolling moment.

Lift

Right Vortex Br/eakd-own Locatiof///

Rolling Moment

Longitudinal Axis
Figure 16. Schematic illustration of vortex breakdown on the delta wing surface
The static term X is assumed to be in parabolic form [10], [11]:
['=C,+BX - AX? (3-9)
where I' depends on Leading Edge sweep angle and parameters 4, BandC, are defined in

[10] are experimentally obtained values. Using the formulation in [10], A and B for the
left and right vortices are as follows:

Ar=1.1sin(a(t))sin(Al()), Bi=4- Al (3-10)
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Ar = 11sin(@(@))sin(A(1)) , Br=4- Ar (3-11)

where effective leading edge sweep angle of the right and left halves of delta wing are:

Al(t) = Ay —atan(tan(o ) sin(¢(1))) (3-12)

Ar(t) = Ay + atan(tan(o ) sin(¢(¢))) (3-13)
where A, and o are half apex angle and structure angle. Critical circulation:

Lei(t) = 0.8cos[4(Ai(t) - A, )] ' (3-14)

Ler(t) = 0.8cos[4(Ar(t) = A, )] (3-1%5)

where, A, is obtained by experiments.

A, =20/57.3 [rad] (3-16)

The non-dimensional circulation at trailing edge (non-dimensional chord X =1) is

used to determine the distributions of circulation in chord wise in parabolic form [10].

2.65 3.5 "
LI =5 11(AD) + 57.3)(05([)-%) (3-17)
Col =T —Bl+ Al (3-18)
2.65 3.5
Ir(t)=5.1 1(Ar(t)+—5—7?)(a(t)~577) (3-19)
Cor =1r—Br+ Ar (3-20)

The solution of static term X, is determined as follows [10], which is one

possible method of determining X, .

If (B2 +4- Ar- Cyl —4- Ar-Te is greater than or equal to 0, then:
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Bi—| (B)? +441Cyi~ 4 ATl |

Xsi(t) = (3-21)
2 Al
Otherwise:
2 ! - C
o - Bia| (B2 +4 A1Cyt —4 ATl 522
2 Al
If (Br)? +4- Ar-Cyr—4- Ar-Ter 1s greater than or equal to 0, then:
Br— Br2+4ArC r—4 Arlcr ’ -
Xor(l) = \/|( ) 0 | (3-23)
2 Ar
Otherwise:
2
- Brry| (B2 +4 4rCor—4 ArTer | 24)

2Ar

In order to develop the state equations, let us first consider the integral term,

which is the dynamic term in the model of vortex breakdown location (equation (3-6)),

Let
In= f X (t=)(e)dr (3-23)
a(t) =1.65/ tan(a (1)) (3-26)
c=n/T (3-27)

T", in fact is a function [10] of roll rate (4), but in this research we will assume

T" is a constant and equal to 7':

T =T (3-28)
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as:

X (t-r) can be obtained from equation (12) in [10]:

1.65 . #(t—1)

= sin{ n
tan c(¢) T

X (t-1)=

u

) (3-29)

Using (3-26) and (3-27), equation (3-29) is simplified as follows:

X (t=1)=a(t) sin(c(t - 1)) (3-30)

Expanding (3-30), equation (3-31) is obtained:

X, (t—1)=a(t) sin(ct)cos(cr)—a(t)cos(ct)sin(ct) (3-31)

Substitute (3-31) for x (s-r) in (3-25), the integral term can then be represented

In = a(t)sin(ct) J:I_T cos(ct)p(7)dr — a(t)cos(ct) J‘[i]‘ sin(ct)d(7)dr

(3-32)
z(1) 7, (1)
That is
In=a(t)[sin(ct)z,(t) —cos(ct)z, (1)) (3-33)
In (3-33), let
x, (1) = sin(ct)z,(t) — cos(ct) z, (1) (3-34)
Then differentiating x,(¢) with regard to ¢, following holds
x, (1) =sin(ct)z,(t) — cos(ct)z, (1) + c(cos(ch)z,(¢) + sin(ct)z, (1)) (3-35)
(1)
In (3-35), let
x,(t) = cos(ct)z,(t) +sin(ct)z, (1) (3-36)

Combining (3-34) and (3-36), following holds
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x, (1) =sin(ct)z,(t) - cos(ct)z, (t)
x, (1) = cos(ct)z,(t)+sin(ct)z,(¢)

Xy (1) = {

(x5, (1)) 1s the vector of vortex breakdown related states. Rewriting (3-37), in

matrix form

(e (£)) = R(2(1)) (3-38)
(2(1)) = R (x5 (1)) (3-39)
where
' (Sin(ct) - c?s(ct)J (3-40)
cos(ct) sin(ct)
det(R) =1 (3-41)
P :( sin(ct) C?S(Ct)j (3.42)
—cos(ct) sin(ct)
The following integration formula will be used. Let:
W (1) = jo f(r)dr (3-43)
Then, differentiating (3-43) with regard to ¢, following holds:
Z—Vf =7 (3-44)
So for the function (3-45)
W= [ f()dr (3-45)

The derivative is
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aw 5
C=I0=fa-1) (3-46)

Based on the above integration formula, differentiate z,(¢f) and z,(¢) in (3-32)

with regard to ¢ respectively, following holds

Z, (1) = cos(ct)¢'(t) —cos(c(f - T))(/ﬁ([ -T) 247
2,(t) = sin(e)@(¢) - sin(c(t — TG(t — T) (547
Using (3-56), the following states has been defined
x; (1) = ¢(1) (3-48)
x, (1) =4(1) (3-49)
Writing (3-47) in matrix form, and using (3-49), following holds
(Z'(t)) [ () _[cos(ct)  —cos(ct) )| x, ()
l2,(0) Usin(er)  —sin(et) L x, (1 =T) (3-50)
That is
(:(t)) = EF (3-51)
Differentiate x,(f) and x,(¢) in (3-37) with regard to ¢ respectively
(6 ()= (xl (r)j :( c C.OS(CZ‘) ¢ sin(ct) j[zl (r)j
x,(t) —c sin(ct) ¢ cos(ct) )\ z, (1)
¢ (3-52)

sin(ct) —cos(et) \[ z,(t)
! cos(ct) sin(ct) J\ z,(¢)

Substitute (3-39) and (3-51) for (z(¢)) and (2(¢)) in (3-52) results in:
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(%50 (1)) = CR™ (X5, (1)) + DEF

That 1s

%,(t) =[cos(et) sin(e(t — 1)) —sin(er) cosie(t = T))]x, (t = 1) +ex, ()
i,(f) =[-coster) cosie(t — 1)) —sin(er)sin(e(t = T)x, (= T) —ex, (£) + x,(£)

Simplifying (3-54) and rewrite it, results in (3-55):

() = ex, (1)
() = - () +x, () +x,(t=T)

Xy (1) = {
The free-to-roll system equation of motion in [10] is assumed to be:
1,¢(t) + f.sign ($(1) + C,(1)gs b= 0

For the proposed model it is assumed as:

1,6(t)+ f.sign($(1) + C,(t)gs,b, = hu, (1)

where u,(¢) is input torque in the delta wing roll dynamics.

3.3.2 Summaries of State Space Formulation

3.3.2.1 Definitions of State Variables

The integral term in X, equation (3-33)

x,(t) = sin(ct)z, () — cos(ct)z, (1)

A component in x,(f) (equation (3-35))

x,(t) = cos(ct)z,(t) + sin(ct)z, (1)

Roll angle
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(3-55)

(3-56)

(3-57)



x5(1) = (1)
Roll angular velocity
x,(1) = $(0)

3.3.2.2 Vortex Breakdown Locations in New Form
Vortex breakdown locations in new form with control inputs and with

manipulating the integral term using state variables are as follows:

Ko () = Xg(O)+ X (D k, (D) x, (1) +a(0)x, (6) + b, (1) (3-58)

Xy () = X5, (0 + X, (O k, (0)x,(0) — a(®)x, (£) + by () (3-59)

N =[X,, (0, X, O (3-60)
where

k,(£) = 0.91/ tan(ax(1)) (3-61)

Angle of attack is considered as follows [10]:
a(t) = atan(cos(x,(1)) tan(o)) (3-62)

Sideslip angle is f=0. wu,(t) and wu,(r) are the control inputs in vortex

breakdown locations equations.

3.3.2.3 State Equations in Vector Form
Implementing the model easily for control purposes, the simplified state-space

model has been presented:
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X (1) =cx,(0)

() =—cx () +x, () +x,(t~T)

X, (1) = x,(2)

£,(0)= -GN 0~ (b, 1 2u,1 )sign(e, (D)%, (D) + ha ()11,

x(t) = (3-63)

where Q=g¢s,b, /1, and u(f) is the control input to the model. A schematic

representation of the above model is shown in Figure 17.

Input u (torque)

I S A —
) Model  ::| 1/| Model
4 i, GL >
dg/dt: i dgldt :
> Q*Cii | X4 i (X3)
i NIR models . GA | - L 1/s 1/s —
¢ i,/ GR . ‘
d¢/dt Xubr fo |«

Flow Dynamics

Figure 17. A schematic representation of nonlinear SISO model of free-to-roll delta wing dynamics

3.4 Model with SMA Micro-Actuators Control Inputs

Micromachined actuators have been used successfully to control leading-edge
vortices of a delta wing by manipulating the thin boundary layer before flow separation
[42]. It has been shown that using different distributions of MEMS actuators can increase
the maximum amount of rolling moment of the delta wing from 35 % to 55% [42].

To implement the dynamics of the SMA micro-actuator dynamics in the proposed

model we will assume to first order filters as follows:
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(5.0 = (=x5(O) + by u, (1) 84, q
X ()= (=%, (D) + Iy us (D) £, (3-64)

Using the data presented in [43], we will assume g, is equal to the time the
SMA micro-actuator flaps will react to their input commands. So its range will be:

[min(fg, )]<eq,, < [max(tg,,)] (3-65)

Implementing the model easily for control synthesis, the simplified state-space

model of vortex-coupled delta wing roll dynamics with delay and SMA actuator

dynamics will be:

x,(t) = cx, (1)

X)) =—cx, ) +x,@)+x,(t=T)

%, () = x,(t) R
)= -G 9Q(B, /20,1, ign(x, O)x, 0+ A (0 I, o0
x5 (8) = (= x5(0) + Ity (1)) €y

x5 (1) = (= x(8) + Iy () Eqp

i(t) =

Vortex breakdown locations in new form, without integral term and coupled with

SMA micro-actuators dynamics will be:

X (x() = Xy (e(0) + Xy (x () K, (D x, (D) + a(t) x, () + x5(1) (3-67)
Xy (x(0)) = X, (x(0) + X, (e(0)) e, (1) x4 (£) = a(t) %, (8) + x5 (1) (3-68)
A schematic representation of above model is shown in Figure 18. The two inputs

u,(t) and u, () are associated with the left and right vortex breakdown locations X,

and X, respectively. These two inputs can be considered as perturbation inputs.

r

Analyzing the output to u,(f) and u,(r), we know what eftects the vortex breakdown

locations have on the rolling motion of the delta wing.
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Perturbation u;

Inputto SMA: v,___, Firstorder

Input uy (torque)
filter

Aerodynami :: Mechanical
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sseussaumsEsEnansuvan l:l .:;$ ............................... EELEEE) s
Flow Dynamics
Input to SMA: v,__, | Firstorder
filtar

Perturbation u;
Figure 18. A schematic representation of nonlinear SISO model of free-to-roll delta wing dynamics coupled

with SMA actuator dynamics

3.5 Parameters and Calculations

3.5.1 Geometries of Delta Wing

Half apex angle

Jy =25/57.3 [rad] (3-69)

The chord ¢, is normalized into 1:

¢, =1 (3-70)
Wing span
b, =2tan(4,)c, =0.933 (3-71)
Wing area
s, = (0.580%0.622)/2 = 0.18 [m’] (3-72)



Moment of inertia

I =027[lb.in.s’]=0.00311[kg.m.s"]

W

3.5.2 Initial Values for Calculation

The initial values of various system parameters have been calculated using

the data reported in [10] as follows:
Structure angle:
0, =30/57.3 [rad]
Aa =19.80,—5.2 [deg]
For bevel angle of wing:
o =0,—(Aa/57.3) [rad]
Sweep angle:
A, =(/2)= 2, [rad]
Release time:
T =T [0.1,0.2][sec]
Bearing friction:

J. sign(x,(5) = (b, x,(t)/ 2u,,) sign(x,(1))
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3.5.3 Aerodynamic Parameters and Their Calculations

Free stream velocity:

u, =300 [ ft/sec]=91.44 [m/sec] (3-80)
Air density:
p=12[kg/m’] (3-81)

Dynamic air pressure:

g=0.5pu,’ (3-82)

3.6 Parameter Identification

System identification is defined as the experimental determination of values of
parameters that govern the dynamics and/or nonlinear behaviour, assuming that the
structure of the process model is known [44]. Since the control actions on a system
depend on the accurate knowledge about the system, in this section, rolling moment

coefficient (C,), considered as an uncertain parameter in our nonlinear model, will be

approximated by applying the following methods:
1- Linear Least Squares Approximation;
2- N order polynomial Approximation;
3- RBF Neural Networks Approximation;

In most of the researches has been conducted regarding delta wing roll dynamics,
rolling moment coefficient has been assumed as a function of roll angle [38, 39, 45], in

this research we will assume it as a function of left and right vortex breakdown locations.



3.6.1 Linear Least Squares Approximation

The rolling moment coefficient is a nonlinear function of vortex breakdown

location [10], for now, a linear correlation has been assumed:

AXvb= X, - X, (3-83)

G Xy Xy,) =6+ (AXVD (3-84)
where X, and X, represent the breakdown locations for the left and right vortices, e,
and e are calculated parameters using linear least square approximation of the

experimental data. Figure 20 shows C, time history, using linear approximation

technique.
3.6.2 N™ Order Polynomial Approximation

N™ order polynomial curve fitting for C, approximation as a function of vortex

breakdown position, has the following form:

vbr

N
GX X)) =¢ +Zei(va[' ~ X (3-85)
=

where x,, and x,, represent the breakdown locations for the left and right vortices, here
we have done a 5™ order approximation and e,,e .6, ,e;,¢e,ande; are calculated

parameters using available experimental data. Figure 27 shows C, time history, using 5t

order least squares polynomial technique.
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3.6.3 RBF Neural Network Approximation

Radial Basis Function (RBF) Regularization network has three desirable
properties [46]: (1) The regularization network is a universal approximator; (2)
Regularization network has the best approximation property; (3) The solution computed
by the regularization network is optimal.

This RBF neural network in fact approximates the rolling moment coefficient as a

function of vortex breakdown positions:

C =) (3-86)
N=[Xx,. X, ] (3-87)

For C, approximation purpose with RBFNN, as we are using two dimensional

input data, Regularization networks are utilized.

€\ (8) = %Z[d — RO )IGEN.N,) (3-88)
W :;%;[d, CF(R)L =120 N (3-89)
€, (N)= gw[(;(x,x,) (3-90)
GO -8 =GN =) (3-91)

G(X-N,) is Green’s function, which is only [46], depends on the Euclidian

Norm of the difference vector X -, in which & is input vector and ¥, is the centers

vector.
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G(N-N,) =exp(- = N-n) (3-92)
rhf’
dmax ~ ~
Ty = N (3-93)

where N is the number of centers and ¢ . is the maximum distance between the chosen

max

centers.

Matrix form of these equations has the following form:

d=[d,,d,,..d,] (3-94)
W, =(G+A0)7"d=[w, Wy, wy ]’ (3-95)
C,, =GW, (3-96)

where d is the target value vector which is experimental rolling moment coefficient (C, )
in this case. The data used as reference model are in fact the experimental data from
Huang [10]. A, the regularization parameter, is set to 0.5 with trial and error. Figure 34
shows C, time history, using Regularization Radial Basis neural networks
approximation.

Figure 19 shows C, time history using these three parameter identification

methods. As it is apparent from this figure, RBF NN approximation is better than
nonlinear polynomial curve fit and nonlinear polynomial curve fit is better than linear

curve fit.
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Figure 19. C, approximation using Linear, Nonlinear polynomial and RBFNN approximation methods

3.7 Experimental Verification of Numerical Simulation

To verify that the developed nonlinear retarded state space model captures the
dynamic behavior of the delta wing roll mode, simulation results are compared to delta
wing free-to-roll experimental results obtained from the experimental facility at IAR. For
numerical simulation the different initial conditions have been defined the same as the
initial conditions of various experiments conducted by Huang [10]. For easier verification
of the proposed model of free-to-roll dynamics with experimental data we assumed
u,(t) =u,(t) = uy(t) = 0 in equations (3-63), (3-58) and (3-59).

Simulation results for three different rolling moment coefficient (C))

approximations are shown in Figures 20 - 40.

For the first simulation which has been done using linear C, approximation, the

initial conditions are: v(8) = [x,(8), x,(0), x,(0),x,(8)]" =[0,0,—64 [deg], 0]" . Figure
1 2 3 4

56



20 shows C, time history, using linear approximation technique. Figure 21 and 22 show
the open-loop simulation and phase diagram of the plant with linear C, approximation as
the main uncertainty. Figure 23 shows state variables x(f) and x,(f) time history
obtained with the open-loop simulation and a linear C,approximation. Figure 24 show
the time history of left and right vortex breakdown locations respectively. It is apparent
that the vortex breakdowns are happening on the mid-chord of the wing, as we expect it,
when delta wing reaches to its trim point, in this case the trim point is almost -8-deg
which near to -1-deg trim point of the experimental data. Figure 25, shows vortex
breakdown locations versus roll angle. Figure 26, shows angle of attack (AOA) time
history, as it is apparent the delta wing does the maneuver in the 25-deg AOA.

For the second simulation which has been done using nonlinear C,

approximation, the initial conditions are: v(8) =[0,0,58 [deg], 0]" . Figure 27 shows C,
time history, using 5™ order least squares polynomial technique. Figure 28 and 29 show

the open-loop simulation and phase diagram of the plant with a nonlinear C,
approximation. Figure 30 shows state variables x,(f) and x,(f) time history obtained
with open-loop simulations and a nonlinear C, approximation. Figure 31 show the time

history of left and right vortex breakdown locations respectively. It is apparent that the
vortex breakdowns are happening on the mid-chord of the wing, and symmetrically so the
trim point will be near zero, when delta wing reaches to its trim point, in this case the
trim point is almost 1-deg which near to 0-deg trim point of the experimental data. Figure
32, shows vortex breakdown locations versus roll angle. Figure 33, shows angle of attack

(AOA) time history, as it is apparent the delta wing does the maneuver in the 25-deg



AOA, in this case the jump in angle of attack is less than the first simulation. It is
apparent from the figures that the delta wing free-to-roll experimental results validate the
proposed nonlinear model of the delta wing. Numerical simulations of the proposed

model with 5™ order polynomial approximation of C , shows superior dynamic behavior
when compared with the numerical simulations using the linear C, approximation, as

expected intuitively.

For the third simulation which has been done using RBFNN for C,
approximation, the initial conditions are: v(8) =[0,0,-38[deg], 0]" . Figure 34 shows C,
time history, using Regularization Radial Basis neural networks approximation. Figure 35
and 36 show the open-loop simulation and phase diagram of the plant with utilizing

RBFNN for C, approximation. Figure 37 shows state variables x,(¢) and x,(¢) time
history obtained with open-loop simulations and C, approximation using RBF neural

network. Figure 38 show the time history of left and right vortex breakdown locations
respectively. It is apparent that the right vortex breakdown happens far beyond the
trailing-edge of the wing, so the trim point will be negative; when delta wing reaches to
its trim point, in this case the trim point is almost -21-deg which near to -22-deg trim
point of the experimental data. Figure 39, shows vortex breakdown locations versus roll
angle. Figure 40, shows angle of attack (AOA) time history, as it is apparent the delta
wing does the maneuver in the 25-deg AOA, in this case the jump in angle of attack is
less than the second simulation. It is apparent from the figures that the delta wing free-to-
roll experimental results validate the proposed nonlinear model of the delta wing.

Numerical simulations of the proposed model with RBFNN approximation of C, shows
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superior dynamic behavior when compared with the numerical simulations using the

linear and nonlinear C, approximation, as expected intuitively.

x10°

. approximated C, |
— expenmentat C, |
—

rolling moment coef (C|)
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Figure 20. C, linear approximation
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Figure 21. Open loop simulation using C, linear approximation
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Figure 24. Left and right vortex breakdown positions time history with C[ linear approximation
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Figure 27. C, nonlinear approximation
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Figure 28. Open loop simulation using C, nonlinear approximation
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Figure 36. Phase diagram for the system with C, approximation using RBFNN
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Figure 40. Angle of Attack (AOA) time history with C, approximation using RBFNN

3.8 Summary

In this chapter a free-to-roll vortex based nonlinear retarded state-space modelling
and simulation based on the work done in [10]-[11] has been proposed. The relationship
among the vortex breakdown location, rolling moment coefficient and roll angle were
described with state equations, which constitute a plant model in nonlinear state-space
form enabling control synthesis for system with state delay. The proposed model was
validated and verified with delta wing free-to-roll various experimental results. Three
different methods were used for the approximation of the system uncertainty which was

rolling moment coefficient ( C,(X)). These methods are linear, nonlinear (Sth order

polynomial) curve fitting and also Radial Basis Function Regularization Neural Networks
(RBFNN). In the future, better parameter tuning is needed to increase the accuracy of the

model, especially correlations for C,(X). Other Neural networks (wavelet or MLP) can

be utilized for this purpose. Model can be extended for the system with time-varying state

delay.
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4 . Robust Adaptive Stabilization of
Vortex-Coupled Delta Wing

Systems Subject to State Delay

4.1 Introduction

The high angle of attack flight regime often includes complex phenomena such as
nonsteady flow, crossflow separation, and vortex breakdown. Modern tactical fighters fly
at high angles of attack in order to take advantage of the nonlinear lift generated from
vortices that form on their leeward sides. This results in a substantial improvement of an
aircraft’s manoeuvre and agility performance. However, at sufficiently high angle of
attack, vortex asymmetries can form and induce dynamic motions such as wing rock, a
sustained limit-cycle and yaw oscillation. Wing rock and other self-induced aircraft
motions can be difficult to control and may result in departure from controlled flight.

In this chapter, we will investigate the applicability of the adaptive stabilizing
control approach presented in [66], for 4" order delta wing vortex-coupled roll dynamics
with state delay as the first application of this method in delta wing vortex-coupled
system control. We will test the controller against modelling uncertainties in rolling

moment coefficient and also left and right vortex breakdown locations as time varying
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uncertainties. The parameter of this adaptive controller is updated robustly when the
bounds of these uncertainties are unknown. Heuristic design process and parameter
selection methods will be proposed for easier implementation of this control algorithm. It
should be noted that we are applying this control scheme to a fast and high performance
delta wing dynamics in high angle of attack (AOA) and near-stall flight condition. The
only application of the method has been presented in [66], for control of water-quality

dynamic model with very slow dynamics, i.e. the time scale has been measured in days.

4.2 Vortex-Coupled Delta Wing Dynamics

For the control synthesis, the simplified state-space model of vortex-coupled delta
wing roll dynamics which has been presented in Ref. [40] (Chapter 3) is modified by
adding some damping components and also redefining the bearing friction term in the

model:

X, (1) =cx,(f)
X)) =—cx () -5, %) +x,)+x,(t=T)

() =—€, %,(1) +x, (1) (41
X, () =-C,(N)gs,b, /1)~ (f./ 1) x, () +(h/ L, )u(t)
where vortex breakdown vector is defined as follows:
N =[X,, (0. X, (0O (4-2)
Bearing friction has the following form:
Jex ()= (b, /2u,)x, (1) (4-3)
A damping coefficient is selected as follows:
g,=02 (4-4)
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This small positive constant is introduced into the vortex coupled model in order to make
the system mildly Hurwitz. It is essentially a modelling approximation that facilitates the
control design approach to follow. As this term becomes smaller the system more closely
approximates the original vortex coupled model.

Vortex breakdown locations in new form, without integral term and with state

variables are as follows [40]:

X (1) = Xy (x(0) + Xy (x(D)) k, () x, (1) + a(t) x, (1) (4-5)

X, () = X, (x(0)) + X, (x()) k, (1) x, (1) — alt) x, (1) (4-6)
where

k, (1) = 0.91/ tan(a(1)) (4-7)

a(t) =1.65/ tan(a (1)) (4-8)

Angle of attack (AOA) is considered as follows [10]:

a(t) = arctan(cos(g(t)) tan(o)) [rad] (4-9)

Release time:

T" =T =0.1[sec] (4-10)

Rolling moment coefficient is a nonlinear function of vortex breakdown location

[10], for now, we assume it as a third order polynomial as follows:

CN =, +6,(X,, =X, )+, (X, = X,) +e (X —X,) (4-11)

vbr

where X, and X, represent the breakdown locations for the left and right vortices,
e,, €, e;ande, are parameters which have been obtained from a least squares curve fit of

experimental data.
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4.3 Robust Adaptive Stabilization Approach

4.3.1 Problem Statement

The adaptive control approach is applicable to state delayed systems of the form:

X(£) = Apx(0) + Dyx(t =) + By[u(t) + L(x,X,1)] (4-12)
x (0)=v(0), 0e[-n,0,,n<T (4-13)
Y1) =Cox(1) (4-14)

where x € ¢, is the system state, N € R’ is the vector of vortex breakdown locations on
the wing, ue@R™ is the control input and 7 is a bounded time delay. Matrices
Ay, Dy eR™™ B, eR™ and C, e R™" represent the system’s nominal matrices. All the

uncertainties and nonlinearities are lumped in the function L(x,N,f):c;x R xR - R”
which is continuous (known or unknown) in its arguments. It is assumed that L(x,¥,f) is
quasi-bounded and locally Lipschitz.

The system is considered as a matched uncertain system, i.e., the uncertainties lie

in the range of nominal input matrix, and the controller has been proposed based on this

fact.

The matrices, initial condition and uncertainties in delta wing dynamics can be

cast into the following form:
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0 ¢ 0 0 0000 0
e T T = I TN PRV T
140— 0 0 _..gd 1 s Lg = 0 0 (‘i 0 s L= q‘s\v w ( - )
0 0 0(f£/L) 0000 (1)
- [v
V(@) =004, 4] (4-16)
C,=[00d é] (4-17)

In this chapter we will only consider the SISO control problem. As such we
introduce two output matrix parameters d and e so that proportional and derivative action
can be obtained from the proposed output feedback controller. To control this system we
need to use practical stability notion. It is obvious that, in applications, asymptotic
stability is more important than stability. In fact, the desirable feature is to know the size
of the region of asymptotic stability so that we can judge whether or not a given system is
sufficiently stable to function properly and may be able to see how to improve its
stability. On the other hand, the desired system may be unstable and yet the system may
oscillate sufficiently near this state that its performance is acceptable. Thus it is clear that
we need a notion of stability that is more suitable in several situations than Lyapunov

stability. Such a concept is called practical stability [9].
The adaptive feedback control has the following form

u(t) = =Uly(0), u(1).1]

4-18
) = FLy(0), p(0),1]; plty) = R

This control strategy is developed based on measured output variables so that the

resulting closed-loop system is globally practically stable.

Consider the nonlinear retarded dynamic system
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X(f) = f(xt (t)>u(t):[)a x/” (6) = V(Q), 0 e [_7730] (4-19)

where f ¢, xR" xR —> R" is assumed to be quasi-bounded and locally Lipschitz.

The following results are based on the definitions and properties from Ref. [66]

summarized in Appendix A. It is assumed that the matrix A4, is a Hurwitz matrix and

that the retarded system considered satisfies the following assumptions:

Assumption 1

The uncertainties are matched and bounded. That is, there exist constants

¢, $€ R, such that

LG5 8.0

|<s+9x

, V(x,.N, 1) e, xR xR (4-20)
Assumption 2

Note that it is assumed that there exists [66] a matrix H, e ®R™” such that the

rational function matrix
T(s)= H,Cy(sI, ~ 4,)"' B, (4-21)

is strictly positive real (SPR). Then there exist [67] positive definite symmetric matrices

P, and @, such that
Bdy+ 45 =0, (4-22)
B, B, =H,C (4-23)

0“0 0~0

The matching condition (4-23) is required to ensure that the controller has access

to the uncertainty to reduce its destabilizing effect [66].
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Taking these properties and assumptions in to account we will have Theorem I (in

Appendix B) which is an improved Lyapunov-Razumikhin type theorem.

There are three methods to obtain H, as the key matrix in output feedback

control:

1- In our case as the rows of C, are linearly independent so (C,C; )" does exist,

and hence (C,C,")=1 [68], so we can obtain H, as follows:

H,=B,PC, (4-24)

It should be mentioned that we can obtain A, only if the matching condition
(4-23) has a feasible solution.

2- Defining a constrained linear matrix equality (LME) as follows:

P A, + A4 P, <0 (4-25)
subject to constraints

Hoco = BoTPo

. (4-26)
B=B'>0

to solve it with convex optimization tools, like YALMIP Toolbox, Matlab LMI Toolbox
or LMITools, operating in Matlab environment. If (4-23) has a feasible solution we will

obtain £, >0 and H,.

3- Using Kalman-Yacubovich-Popov or the positive real lemma [69] the

following LMI will be proposed as the equivalent of (4-21) and (4-22)
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B=5">0
_POAO _AOIPO ~"PoBo + (HOC())T 0 (4-27)
. >
~-B,'P,+H,C, 0

to be solved with convex optimization toolboxes. In case of feasible solutions we will

obtain £, >0 and H,.

By proposing the second and the third methods, which we do not need (Q,, in fact

we will decrease the number of the design parameters for the overall design procedure.
4.3.2 Robust Adaptive Stabilization

Before presenting the adaptive stabilization scheme, we present an output-
feedback controller to stabilize the system provided that the bounding set is known. Take

the following Lyapunov function candidate as ¥V (.):R" xR —> R,
V(x,t)=x"(t)Px(t) + f x"(@)Rx(6)d9; P,R>0 (4-28)
-

The following theorem summarizes a preliminary stability result.

Lemma 1 is the lemma which helps the usability of the method for the delta wing

application.

Lemma 1: The free nominal system (4,,0D,) is asymptotically stable if, given

positive definite symmetric matrices R in R""", there exist an inequality

PA +AP+R PD
Ao+ °}<0 (4-29)

D,P - R
which has a p.d.s. solution P e R™".
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Proof: The time derivative of Lyapunov function ¥(.) along any trajectory of the

nominal system would be
V() =x" (OPX(t) +x" (H)Px(t) + x"(H)Rx(t) - x"(t =mRx(t —7n)

Define z(t) =[x’ (¢t),x" (t — )] and write V()= z" (1)Hz(t) where

e PA,+ AP+ R PDO}

D,P ~R
a sufficient condition for asymptotic stability of the nominal system is the negative
definiteness of H :
H<0,P>0 (4-30)
This last inequality is an LMI in P and can be solved very efficiently by convex
optimization algorithms.

Theorem 2: Assume that the bounding set is known and subject to assumption 1
and 2. Choose the scalar pe(l,p) where p =4 (QO)/{?./lmax (PO)“DOH}. Then the

output feedback controller

u,(x,,1) = = Hyy(1)
_ l{gz N $ } (4-31)
[, 0-8)4,,(9)

is globally practically stable where A € (0,1) and I', € R, are design parameters.

Proof: Presented in Appendix B.

Remark: The major task of the controller in equation (4-31) is to suppress the
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uncertainty by using its maximum possible bound. It is realized, however, that z is
unknown when ¢ and ¢ are unknown. In order to implement equation (4-31) in the

absence of knowledge of the bounds outside the uncertainties, it is desirable to design an

adaptive scheme for g, .

For g > 0, consider the following adaptive scheme for u, where u, is replaced

by s,

uz(xmt) =—pu,H,y(1)

, ) ) (4-32)
frg=—guy +[Hoy| a(ty) = 1y

the system in equation (4-14) can be robustly stabilized.

The practical stability property of the system considered in equations (4-12 -
4-14) combined with the proposed adaptive controller give the following theorem.
Theorem 3: Subject to structural Assumptions 1 and 2, there exists a constant p,,

such that the closed-loop system consisting of the plant in equations (4-12 - 4-14) with

the feedback controller in equation (4-32) is globally practically stable.

It can be shown that uj (.) is continuous, quasi-bounded and locally Lipschitz.

Therefore a unique solution of the system:

x(t) = Ayx(1) + Dyx(t —=m7) + Bo[uj (x,,t)+ L(x,, Xvb,1)]
uy (%, 0) = = Hoy(1)

My =—g, + 1‘Hoy(t)“2 (L) = by
5, (0)=1(0) O<[-n.0]

(4-33)

exists on an interval [t,,t, + v),v >0, and thus Property 1 holds.

76



Proof: Presented in Appendix B.

These theorems (1, 2 and 3) in fact are similar to ones have been proposed

in [66]; here we have justified them for delta wing application purpose.

Figure 41 shows a schematic illustration of this adaptive controller applied

to the vortex-coupled delta wing dynamics.

Delta Wing -

Vortex-Coupled TN s ¥
Roll Dvuamics

wilx = —u H v(t) |e

o b= g U:‘/ B
A
7y 5

/s = fy = =g, +HHD}/“ *

A

Figure 41. Schematic illustration of the adaptive stabilizing controller.

4.4 Control Design and Parameter Selection

This section is about optimising the performance, by presenting an algorithm of
control design and parameter selection by doing a trade-off between the main parameters
which we will discuss their impact on the performance.

Two practical algorithms of control design and parameter selection procedure for
delta wing stabilization problem are presented. These algorithms are combination of Trial
and error, experience and heuristic.

Algorithm 1:

1. Set the initial conditions: x,(8)=[0, 0, x,(8), x,(6)];

2. Define the output matrix C,, by setting d and e ;
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W

Select a proper O, =& x1; £ >0, by setting £,s04__[0,1=4_[0,]1=¢&3

=

Compute P, using B4, + 4, B, = —(Q,, with the aid of MATLAB;

n

Compute H, as the main matrix in output feedback controller, using
H,=B,PC,".

Note: This matrix is the key matrix in matching condition and should satisfy the
following two conditions: a) with this #, rational function 7(s) in equation
(4-21) should be strictly positive real (SPR); b) the following inequality should

hold during the simulation process: |[H,y| < &,||x| where &, = HBg‘PO

6. Set u based on one of the following methods:

I. Select Ae(0,l) and I, e R, as design parameters in equation
(4-31); find proper ¢ and &, by trial and error, to define the bounds
of the uncertainties; then compute x,, using equation (4-31), and
select 4, > p,, as the initial value for the adaptation parameter
(ta = 1)

II. Just make an initial guess for z ;

7. Select a proper g > 0, as a gain in adaptation law;

8. Compute adaptation law using equation (4-32), as the control gain;
9. Compute control input using equation (4-32);

10. Apply the control input to the delta wing vortex-coupled roll dynamics;
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11. Check the performance, if it is acceptable using practical stability notion
and the designer engineering sense, then the process is ended, if not go to

step 1, and repeat the process to capture the required performance.

Algorithm 2.

1. Set the initial conditions: x,,(8)=[0, 0, x,(0), x,(&)];
2. Define the output matrix C,, by setting & and e ;
3. Compute P, and H, using convex optimization toolboxes, with the aid of

MATLAB. Define one of the following procedures to solve the
constrained LMEFEs:

I. Solving P4, +A P, <0 a a LME subject to constraints
H,C, = BOTPO; k= POT >0;
II. Solving the following LMI with convex optimization toolboxes:

~P A, -4 P, —PB,+(H,C,)
])OZR)T>O, OTO AOO 0=0 ( 00) >O
-BP,+H,C, 0
4. Make an initial guess for u;

5. Select a proper g >0, as a gain in adaptation law;

6. Compute adaptation law using equation (4-32), as the control gain;
7. Compute control input using equation (4-32);

8. Apply the control input to the delta wing vortex-coupled roll dynamics;
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9. Check the performance, if it is acceptable using practical stability notion
and designer engineering sense, then the process is ended, if not go to step
1, and repeat the process to capture the required performance.

For required performance the designer should trade off among the main
parameters, to be discussed here. The following notes are done based on various
simulations to study the sensitivity of the control process to the selective design
parameters and the effect of these parameters on control process:

Initial guesses for 4, does not affect the system performance, it simply influence
the implementation of the control action. Therefore simulations should be used to
determine a suitable initial guess for f,; as it has been stated in [66], and simulation
studies show.

By increasing e, with a constant d, i.e. adding more proportion of roll rate to
output, the output and control input reach to their steady-state level, faster. Roll angle and
roll rate decay to their steady-state level slower. The extremum of roll rate will be pretty
smaller, which is desirable, but the extremum of control input will be larger. The

extremums in vortex breakdown related states, i.e. x, and x,, will be smaller.

Changing &, results in changes in HQOH and ‘[E)H and hence in HHO

; and because

H, is not unique so we can optimise the performance via changing H,, with regard to
the fact that its variations won’t change the stability.

With larger amounts of £, states and control input reach to their steady-state level
faster, but with the cost of higher extremums in control input and roll rate. No difference

observed in reaching time of controller gain ( , ) to its steady-state level.
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With smaller amount of g, the states reach faster to their steady-state level, but
with the cost of more extremums in roll rate, and with regard to the fact that the control
input (u ) and controller gain ( x, ), decay to their steady-state level slower. No difference

observed in control input extremums.

To have an acceptable performance, one should trade off between the discussed
parameters as the main parameters, in a way to find the best combination of “time fo
reach steady-state level”, “extremums” and “oscillations” of the states, output, control
input and dynamic parameters. Figures 42 and 43 show comprehensive flowcharts of the
proposed algorithms of control design and parameter selection for practical application of

delta wing vortex-coupled roll stabilizing control.
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Figure 42. Flowchart of the first algorithm for delta wing stabilization control process application
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Figure 43. Flowchart of the second algorithm for delta wing stabilization control process application

4.5 Application to Delta Wing System

Two numerical simulations, has been done in MATLAB to show the applicability

of the controller to the retarded vortex-coupled delta wing SISO model. The parameters
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for  both  of  this  simulations has  been  chosen as  follows:
n=01L&=0.1,d=1,e=0.1, g=10,4,=80,A=1. The initial conditions (IC) for the first
simulation are: w(8): x,(0) = x,(0) = 0, x,() = 60 [deg], x,(0) = 80[deg/sec]. Results of the first
simulation with positive initial conditions have been shown in Figure 44 to 53. Figure 44,
shows the time history of output as a combination of roll angle and roll rate, as it is
apparent the output goes to its steady-state level pretty fast. Figure 45, shows the time
history of x, state, which is in the vicinity of its equilibrium point. Figure 46, shows the
time history of x, state. The delta wing is stabilized in a relatively short time period with
aforementioned initial conditions. Figure 47, shows the time history of x, &x, states.
Figure 48, shows the control input time history; as it is apparent the input control signal is
well damped. Figure 49, shows the time history of the adaptive controller gain ( x,); the
controller gain decays smoothly to a steady-state level. Figure 50, shows angle of attack
(AOA) time history, as it is apparent the delta wing does the manoeuvre in the 25" AOA.
Figure 51 and 52 show the left and right vortex breakdown locations respectively. It is
apparent that the vortex breakdowns are happening on the mid-chord of the wing, as we
expect from a stabilized delta wing. Figure 53, shows the time history of rolling moment
coefficient as a nonlinear function of left and right vortex breakdown locations (C,(})).
The oscillation is a result of oscillations in vortex breakdown locations.

For the second simulation the initial conditions:
v(0): x,(0) = x,(0) =0, x,(6) =—60 [deg], x,(0) = —80[deg/sec]. Results of the second
simulation with negative initial conditions have been shown in Figure 54 to 63. Figure

54, shows the time history of output as a combination of roll angle and roll rate, as it is
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apparent the output goes to its steady-state level pretty fast. Figure 55, shows the time

history of x, state, which is in the vicinity of its equilibrium point. Figure 56, shows the
time history of x, state. The delta wing is stabilized in a relatively short time period with

aforementioned initial conditions. Figure 57, shows the time history of x, and x, states.

Figure 58, shows the control input time history; as it is apparent the input control signal is

well damped. Figure 59, shows the time history of the adaptive controller gain ( 4, ); the

controller gain decays smoothly to a steady-state level. Figure 60, shows angle of attack
(AOA) time history, as it is apparent the delta wing does the manoeuvre in the 25° AOA.
Figure 61 and 62 show the left and right vortex breakdown locations respectively. It is
apparent that the vortex breakdowns are happening on the mid-chord of the wing, as we
expect from a stabilized delta wing. Figure 63, shows the time history of rolling moment

coefficient as a nonlinear function of left and right vortex breakdown locations (C,(X)).

The oscillation is a result of oscillations in vortex breakdown locations.

Simulation results show that the controller has an acceptable performance, since
roll angle has a practically stable convergence to the vicinity of its equilibrium point near
zero. Roll rate also converges to zero in a practically stable manner. The extremum in roll
rate simulations is acceptable since the delta wing dynamics is capable of doing high
performance manoeuvres. The other two states (vortex breakdown location related states)
also have stable convergence to the zero. Oscillations in the states and also vortex
breakdown locations are acceptable as we are using practical stability notion in the
presented controller. Both simulations show an acceptable combination of performance
criteria, i.e. “time to reach steady-state level”, “extremums” and “oscillations” in states,

control input, output and dynamic parameters.
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Figure 49. Variation of the controller gain £, , positive IC
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Figure 50. Angle of Attack time history, positive IC
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Figure 52. Right vortex breakdown position (X ,, ) time history, positive IC
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Figure 63. C,(N) time history, negative IC

4.6 Summary

In this chapter we showed the applicability of an existing robust adaptive
feedback stabilizing control strategy for the fast vortex-coupled roll dynamics of delta
wing subject to state delay in a high AOA flight condition. The controller renders the
closed-loop system globally practically stable. Simulations demonstrated the applicability
of the controller for the fast and high performance delta wing dynamics. The heuristic
design process and parameter selection methods have been proposed for easier

implementation of this control scheme. This approach can be extended to multi-input,
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multi-output (MIMO) model of delta wing vortex-coupled roll dynamics with state delay,

and also to the model with variable delay.
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5 . Robust Adaptive Tracking
Control of Vortex-Coupled Delta
Wing Systems Subject to State

Delay

5.1 Introduction

In this chapter, we will propose a combinatory control structure to control the
available high performance delta wing retarded dynamic system. The controller is a
combination of robust state feedback controller as the internal loop of the combinatory
controller and a sliding adaptive tracking controller which uses a special gaussian RBF
neural network as the online estimator of the unknown nonlinearity. This controller will
be applied to the vortex-coupled roll dynamics of the delta wing to track a complex
reference trajectory. This complex trajectory is chosen to show the ability of the proposed
combinatory controller to control the delta wing for complicated manoeuvres; since delta
wings are high performance aerial vehicles which are flying in high angle of attack flight
condition with subsonic or supersonic speeds.

The combinatory control input also will be applied to 4™ order delta wing vortex-

coupled roll dynamics with state delay, and 6" order delta wing vortex-coupled roll
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dynamics with state delay and SMA micro-actuator dynamics, to check the effect of
perturbations as inputs to the vortex breakdown dynamics. Heuristic design process and
parameter selection methods will be proposed for easier implementation of the controllers

with and without internal loop.

5.2 Delta Wing Vortex-Coupled Roll Dynamics

5.2.1 SISO Model

To implement the new control strategy, we repeat the modified state-space model

of vortex-coupled delta wing roll dynamics presented in Chapter 4:

(O =cx0)
55(0) == x,(0)~ £, %, () + x,(0) + 2, = T)

%,(8) =&, x,(0) +x,(0) -1
5,0 =G0~ £, %, () + (o)) 1,
where O =gs,b,/1,, vortex breakdown vector is defined as follows:
N =X, (0, X, (O] (5-2)
Bearing friction has the following form:
f.ox, (t)y=(b,/2u,)x,(1) (5-3)
Damping coefficient is selected as follows:
;=02 (5-4)

Vortex breakdown locations in new form, without integral term and with state

variables are as follows [40]:
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Ko () = X (x(0) + Xy (x(0) Ky (1) %, (6) + a(t) x,(£) (5-5)

X (1) = X, (x(0) + X, (x(0) b, (D) x, (1) = a() x,(2) (5-6)
where

k, ()= 0.91/tan(cx(t)) (5-7)

a(t) =1.65/ tan(a(t)) (5-8)

Angle of attack is considered as follows [10]:

a(t) = arctan(cos(@(¢)) tan(o)) [rad] (5-9)
Release time (delay in the model):

T =T =0.1[sec] (5-10)

Rolling moment coefficient is a nonlinear function of vortex breakdown location

[10], for now, we just assume it as a third order polynomial as follows [40]:

C/(N):eo +e (X,

v

b _var)""ez(va/Z _varz) 4"33(*)(‘4;/3 -X, (5-11)

vbr

where X, and X, represent the breakdown locations for the left and right vortices,
e,, e, e;ande; are tuning parameters, which are obtained by third order least square

estimation.

5.2.2 SISO Model with SMA Actuator Dynamics

To implement the dynamics of the SMA micro-actuator dynamics in the proposed

model we will assume to first order filters as follows;
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{)Q () =(=xs (D) +hyu, (1) &g, (5-12)

Xs (1) = (=x, (D) + by uy (1)) £,

Using the data presented in Ref. [43], we will assume ¢,,, is equal to the time the

SMA micro-actuator flaps will react to their input commands. So its range will be:
[min(zg,,)]<&g, <[max (g, )] (5-13)

Implementing the model easily for control synthesis, the modified state-space
model of vortex-coupled delta wing roll dynamics with delay and SMA actuator

dynamics will be:

%) =cx,(1)

X, (t) =—cx () —&, () + x, () +x,(t =T)
%,(1) = =&, %,(1) +x,(¢)

X,(0) =-CR)0- [, x, () +hu (D)/ 1,

X5 () = (= x5(0) + Ity (1)) Epy

X6 (1) = (= X5(1) + I ()] Egp4

(5-14)

Vortex breakdown locations in new form, without integral term and coupled with

SMA micro-actuators dynamics will be:
X (@) = X, (x(O)+ X, (x(O) K, () x, (D) + a(®) x, () + x5(1) (5-15)
X, () = X, (x(0)+ X, ((D) k(1) x, () —alt) x, (£) + x,(¢) (5-16)

The two inputs u,(¢) and u,(¢) are associated with the left and right vortex

breakdown locations X, and X, respectively. These two inputs can be considered as

perturbation inputs. We will define these inputs in section 5.5.
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5.3 State Feedback Stabilizing Controller

The state feedback controller has been presented in Theorem 2 in section 4.3.2. This
control input in fact will be used as the internal loop of the final combined control

structure which we are proposing in this chapter.

5.4 Tracking Controller Structure
We now design an adaptive sliding tracking controller. Rolling moment
coefficient (C,), as the main uncertain parameter, is estimated on-line in this controller.

The sliding controller is designed as if the parameters to be estimated were known
exactly, i.e. as if adaptation were successfully and exactly complete. Since this is initially
not the case, the system first wanders outside the boundary layer, and the information
thus generated is used to improve the parameters estimates. Conversely, the scheme
recognizes that once in the boundary layer no advantage is gained by further adaptation,
since even if the parameters of concern were exactly known, no improvement in tracking

performance could be guaranteed formally.
5.4.1 Preliminaries

For this system u(¢) is the control input, C, is an unknown non-linear function.
The control objective is to force the state vector, X = [x,(¢), x,(£)]" assumed available for
measurement to follow a specified desired trajectory X, =[x, (¢),x,()]" . Defining the
tracking error vector X(r)= X(f)— X ,(¢) the problem is thus to design a control law

u(t) which ensures that X(r) > 0 as t — o .
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Reference model which has been applied to the controller is as follows:

x, (0= xd(t0)+iA, sin(k,t)

x, () = i A4, k, cos(k,t) (5-17)

M
0=~ Ak sin(k,t)

i=1

A=A, k =i, i=12,..M

Seeking agility and high maneuverability capabilities of delta wing in high angle
of attack condition, a complex reference trajectory has been selected to show the
controller capability to control high performance delta wing.

Using the approaches presented in Ref. [76] and [77], the proposed robust

adaptive tracking controller structure is as follows:

Uppaer (1) = t g (1) + () 1y () + (1= m()) 1, (1) (5-18)

Here u (1) is a negative feedback term consisting of a weighted combination of
both the measured tracking error states and a tracking metric s(¢) to be defined below.
The term u ,(¢), represents the sliding component of the tracking control law, and
similarly the adaptive component is represented by u_,(t), which will attempt to recover

and cancel the unknown function C,. The function m(t) = m(X) is a continuous, state
dependent modulation which allows the controller for smooth transition between sliding

and adaptive modes of operation, chosen so that m(X)=0 on 4,, m(X)=1on A4 _,and
O<m(x)<lon A—4,.
A, can be chosen so to correspond to a unit ball with respect to an appropriate

weighted norm function. Thus, for example,

99



A=iwil-x,, <tfand A= [x - x,],, <1 (5-19)

Here ¥ is a positive constant representing the width of the transition region, X,

fixes the absolute location of the sets in the state space of the plant, and HX pr is a

weighted p-norm. In the limiting case

p=w=|X] , =max}, [—;7} (5-20)

i

N
=1

for a set of strictly positive weights {W,}

With these definitions, the modulation function can be taken as:

m(x(t)) = max(0, sat(

r(t)—1
¥ ) (5-21)

where 7(f) = ”X H-X 0” »and sat is the saturation function. When r(r) <1, meaning

that X e 4, , the output of the saturation function is negative, hence the maximum which
defines m(X) is zero, as desired. When r(¢) >1+Y¥ corresponding to X € A° (where
A€ is the complement of the set 4 in R",ie, A“=R"-4 ) the saturation function is
unity, hence m(X) =1, again as desired. In between, for X € A~ A4, , it is easy to check
that 0 <m(X) <1.

A useful tracking error metric for both sliding and adaptive control subsystems is

defined by

5(6) = O X = X,()+ A%, () (5-22)

where ®" =[4 1] and A >0. The equation s(¢)=0 defines a time-varying hyperplane

in M*on which the tracking error vector decays exponentially to zero [77]. If the
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magnitude of § can be shown to be bounded by a constant & (boundary layer), the actual

tracking errors can be shown [77] to be asymptotically bounded by:

FO@) <2 A, i=0.l...n-1 (5-23)

5.4.2 Gaussian Radial Basis Function Approximation

It 1s by now well known that three layer feed forward neural networks, i.e.
networks with one hidden layer of nonlinear nodes, can uniformly approximate
continuous functions over compact subsets of their domains. This holds both for
networks with hidden nodes which output smoothly saturating functions of their
argument, such as the standard “sigmoid” operating on the dot product of the input
signals and feed-in weights, as well as the “radial basis function” nodes, which output
nonlinear functions of the Euclidean distance from the network inputs to the
corresponding set of feed-in weights [76].

In the proposed adaptive controller, the online C, estimation will be implemented

by a gaussian radial basis function (RBF) Neural Networks specially developed for our
case using left and right vortex breakdown positions, which can be represented

mathematically as:

G0 =, A (X s Erers) (5-24)

i=l

inputs to the RBFNN::

X,=(a,b)cR & X, =(a,,b)cR (5-25)
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centers :

2

£, =a,+iA, A, =(b,—a,)/N, E,=a,+iN,, A, =(b,—a)/N (5-26)
gaussian RBFs:
g[, = eXp(*(th/ - 51,)/(2612 ))3 gr: = exp(_(var - grl)/(2gr2 )) (5_27)
Ag, =g,-8,
widths:

5-28
o,=(b,—a)/N2N*, o, =(b, —a)/\2N? (5-28)

where g and g, are the nonlinear functions implemented by nodei in two
subcomponents of the first hidden layer and Ag, is a linear combination of two
subcomponents of the first hidden layer in second hidden layer; & and £, represent the
input weights (or “center” in the radial basis function literature) of node i, and w,

represents the output weight for that node which is updated using the adaptation law.
Figure 64 shows conceptual illustration of RBF NN proposed for online
estimation of uncertainty, which is used in adaptive control component of tracking
controller. This figure shows two hidden layers of the network, first one is combined of
two sub-layers and the second hidden layer is a linear combination of these two sub-

layers.
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Figure 64. Radial Basis Function (RBF) neural network structure proposed for online estimation of rolling

moment coefficient.

5.4.3 Tracking Controller Subsystems

Using the metric s(¢) and the saturation function, the control subsystems defined

as follows:

a, (1) =[0 A)X(6) - &, (1) (5-29)
U,y (1) =—(k,s(t) +a, (1)) (5-30)
uy (1) =~k sat(s(t)/ &) (5-31)
1, (1) =C ()0 = (Z W, (1) Ag,)gs,b, (5-32)

Deadzone adaptation requires discontinuously starting and stopping the

parametric adjustment mechanism according to the magnitude of the error signal. These

103



discontinuities can be eliminated using the metric s(¢), by introducing the continuous

function s, defined as:
s,()=s(t)y—¢€ sat(s(t)/ ) (5-33)
Adaptation law:
W, =k, (1= m(0)s,08 (X 0, (X (D):Eia) (5-34)

Ag(vaI&r(X(t))>§l&r[) = Yl*N (5'35)

where k,,k  and k, are positive constants which should be chosen for each of the control
subsystems. &, should be selected sufficiently large for the sliding controller to

overcome the uncertainties.
5.4.4 Tracking Controller Stability

To prove the stability of the controller introduced above for the case where there
is no time delay a Lyapunov like function candidate has been proposed [76]. By using
Barbalat’s lemma [75] this establishes convergence of s, to zero. Hence the inequality

|s()| < & holds asymptotically, and the asymptotic bounds on the individual tracking errors

follow using (5-23). However, for the case where there is a time delay, such as the vortex
coupled model, the internal dynamics must also be stable for this method to apply.
Therefore, there is no firm stability guarantee for this case without some further analysis.
The controller for this case is essentially a design approach with no rigorous stability

proof.
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Figure 65 shows a flowchart which proposes the heuristic process for control

design and parameter selection sequence for easier application of this tracking controller

to delta wing vortex-coupled dynamics. More explanations will be presented in section

5.6 about how to select parameters.
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Figure 65. Flowchart for application of tracking control to the delta wing dynamics

To compare this controller with the adaptive controller presented in the Chapter 4,

we have assumed zero reference trajectory and applied the controller to the retarded

vortex-coupled delta wing SISO model. The simulation results of this controller for
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stabilization purpose have been shown in figures 66 to 69. Comparing these figures with
figures 45 to 48, we will notice that the performance of the adaptive stabilizer controller
presented in Chapter 4 is better. This is one of the reasons which we will use the
stabilizer controller presented in previous chapter as the internal 1obp of the final

controller to be presented in this chapter.

Roll angle time history
70 T T T T T
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w
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Figure 66. X,(f) time history, using NN adaptive controlier, positive IC
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Figure 67. x,(f) time history, using NN adaptive controller, positive IC
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Figure 68. x,(¢) and x,(¢) time history, using NN adaptive controller, positive IC

control input time history
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Figure 69. u(t) (control input) time history, using NN adaptive controller, positive 1C

Figures 72 to 82 show the results of the numerical simulation of tracking control

applied to the delta wing SISO model coupled with SMA actuator dynamics to track the

complex reference trajectory.

5.5 Final Controller Structure

The final robust adaptive tracking controller (combined controller) structure is

presented as follows:
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U(l) = Uy (8 + tg, (1)
= u, () +m(u, (1) + (1= m()u,, () +u,(x,,1)
= —(k,s(t)+a () —m()k, sat(s(t)/ ) (5-36)

N

+ (1= m()OQ W, (1) Ag)gs, b, — 1, Hyy(1)

i=l

The control inputs for the SISO model coupled with SMA actuator dynamics, are

as follows:
(1) = u(t) (5-37)
u, (1) = p,ut) (5-38)
Uy (1) = = p,,u(t) (5-39)

where p,, andp,,, are defining the effect of perturbation inputs on the vortex breakdown

location and also its effects on the control task.
Figure 70 is the illustration of the structure of proposed combinatory robust

adaptive tracking controller with internal loop.
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___>g:_|. e SN, RBFNN > i, L T i Vortex-Cloupled L

= e S | a i -

\if/ Adaptation 3 Roll Dynanucs

U 5
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Feedback pd

Figure 70. Conceptual illustration of the combinatory control structure.
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5.6 Control Design and Parameter Selection

This section is about optimising the performance, by presenting an algorithm of

the control design and parameter selection by doing a trade-off among the main

parameters; we will discuss their impact on the performance later.

The practical algorithm of the control design and parameter selection procedure

for tracking control of delta wing vortex-coupled dynamics, which is a combination of

Trial and error, experience and heuristic, is as follows:

1. Set the initial conditions: x,,(6)=[0, 0, x;(8), x,(O)];

2.  For the state feedback control component (internal loop):

L.

II.

11

IV.

VI.

VIL

Define the output matrix C,, by setting d and e ;
Select a proper 0, =&x1; >0, by setting £,s04_ [Q)1= 4,..[0,]=¢5
Compute P, and H, using one of the proposed methods, with the aid of

MATLAB.

Select A €(0,1) and I', € R, as the design parameters;
Find proper ¢and$, by trial and error to define the bounds of the

uncertainties;

Compute 4,, and select g, > g, ;

Compute state feedback control input: u,(x,,1) = =, H,¥(1);

3.  For the tracking control component:

L.

Define the complexity of reference trajectory by setting A and M ; then

compute [x,,X,,%,];
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1I. Choose A>0 and ¢;

HI. Construct error metric S and also s, ;
IV. Choose k,,k, and k, which are positive real constants;

V. Choose the number of neurons in RBF neural network: N ;
VI. Define centres and widths of gaussian RBFs;

VII. Construct gaussian RBFs: g,, g, &Ag,;
VIII. Compute adaptive parameter w, which is the output weight of the RBFs;

IX. Define W, X, & ¥ to be used in modulation;

X. Compute modulation: m(¢) = max(0, saz(

r(’;; by ) = X0 - x|,

XI. Compute linear feedback: u ,(¢) = —(k,s(t) +a,(£));

XII. Compute sliding control: u(t) = —k,, sat(s(t)/ &) ;

N
XII. Compute adaptive control: u, () =C,, (%)= W ()Ag)gs,b,, Which is

P
compensates for the unknown nonlinearity;
XIV. Compute tracking control input: u,, ., =u,,(t) + m(Ou, (#) + (1= m()u,,();
XV. Compute the overall control input:
Uy =1, (1) + m(Ouy, () + (1= m(O)u,, () +u,(x,,1)
Set p,, and p,, , which gives the perturbation intensity for left and right vortex

breakdown locations;

Compute the left and right vortex breakdown perturbation inputs:

uz([) = Pt (t) s Uy = — Pyt ([) s
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6. Apply the control inputs to the delta wing vortex-coupled roll dynamics
(x,N,C,a);

7. Check the performance, if it is acceptable using practical stability notion and
the designer engineering sense, then the process is ended, if not go to step 1,
and repeat the process to capture the required performance.

For required performance the designer should trade-off among the main
parameters, to be discussed here. The following notes are done based on various
simulations to study the sensitivity of the control process to the selective design
parameters and the effect of these parameters on the control process:

Initial guesses for x4, does not affect the system performance; it simply influences
the implementation of the control action. Therefore simulations should be used to
determine a suitable 4, as simulation studies prove it. By increasing e, with a constant
d , i.e. adding more proportion of roll rate to output (in internal loop). The extremum of
roll rate will be smaller, but the extremum of control input will be larger. The extremums

in vortex breakdown related states, i.e. x, and x,, will be smaller. Changing &, results in
changes in HQOH and “POH and hence in HHOH H, is not unique so we can optimise the
performance via changing H,, with regard to the fact that its variations won’t change the

stability. With larger amounts of &, states and control input reach to their steady-state
level faster, but with the cost of higher extremums in control input and roll rate.

A is a positive coefficient in error metric; increasing this constant results in a
better tracking performance, with the expense of increasing the control effort. ¢ defines

the width of a boundary layer, which is used to prevent discontinuous control transitions.
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For better performance of the controller, i.e. less tracking error, this parameter should be
smaller. &, in fact, determines the adaptation rate, increasing this constant the controller
adaptation rate increase; by increasing the complexity of the reference model, this

constant should be increased. k, is the linear feedback gain in tracker controller,
increasing this gain will enhance the tracking performance. k, is the gain of the sliding

controller; it should be selected large enough to overcome the uncertainties. N 1is the
number of neurons in RBF neural network; increasing this number increases the ability of
neural net for online estimation of unknown nonlinearity, but on the other hand, it will

increase the computational effort. o, ando, are the widths of proposed RBFs; they can be
set based on the speed of variation in nonlinearity. p,,, and p,, are defining the amount

of disturbances which are applying to the left and right vortex breakdowns to enhance the
controllability, but it should not be very high, since it will cause the instability of the

system. In the modulation function, ¥ is a positive constant, defines the width of the

transition region between A and A, sets; X, is the centers’ vector to be defined using
the reference model; W, define the weights for computing the p-norms in the modulation

function. These weights can be set using the range of change of the x,andx, in the

reference model.

To have an acceptable performance, one should trade off between the discussed
parameters as the main parameters in such a way to find the best combination of “error
and its rate”, “control effort” and “computational effort”. Figure 71 shows a flowchart

which proposes the process for the control design and parameter selection sequence. This
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algorithm helps easier implementation of the proposed combinatory control structure for

the delta wing vortex-coupled dynamics.
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Figure 71. Flowchart for application of the combined control law to the delta wing vortex-coupled

dynamics.

5.7 Numerical Simulation and Discussion

Different simulations have been done to show the controllers performance. The
initial conditions for all of these simulations set as:
W(O) 1 x,(0) = x,(8) = 0,x,(6) = 30 [deg], x,(9) = 100[deg/sec] . The complexity of the reference

trajectory has been defined by setting the related parameters to be 4 =0.05, M =6.
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For numerical simulation of tracking control of the delta wing SISO model
coupled with SMA micro-actuator dynamics, we chose

k, =1k, =1k, =10, A=20and £ =0.01 for the tracking controller; and also we assumed
P =Py =0.1 and g, =0.1. Simulation results for the controller have been shown in
Figure 72 to 82. Figure 72, shows the time history of the x,(¢) state and its reference;

tracking performance is not good. Figure 73, shows the time history of x,(¢) state and its
reference. Figure 74, shows the time history of x,(¢) and x,(¢) states. Figure 75 and 76,
show error and error derivative time histories. Figure 77, shows the control input time
history. Figure 78, shows the control input components time history. Figure 79, show the
sliding time history; as it is apparent variation is inside the proposed boundary layer but
there are some big jumps. Figure 80, shows the time history of the left vortex breakdown
location on the wing after implementing u, in the left vortex breakdown equation. Figure
81, shows the time history of the right vortex breakdown location on the wing after

implementing u, in the right vortex breakdown equation. Figure 82, shows the time

history of x;and x, states, which are the first order filters implemented for left and right

vortex breakdown locations consequently. Figures show that the controller is stable but
the tracking performance is not good enough.

The following two simulations are done by applying the proposed combinatory
control law to show the superior performance of this controller in comparison to the sole

tracker control. The output matrix for stabilizing controller is set as: C; =[0010 0 0].

For numerical simulation of controlling the delta wing SISO model, we chose

n=T=0.1[sec],A=0.5T, =15 and g, =256 for the stabilizing control, and
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k, =1k, =1k, =10, A=20and £=0.01 for the tracking controller. Simulation results for
the controller have been shown in Figure 83 to 93. Figure 83 shows the time history of
the x,(1) state and its reference, which tracking performance is quite good Figure 84,
shows the time history of x,(¢) state and its reference. Figure 85, shows the time history
of x () and x,(t) states. Figure 86 and 87, show error and error derivative time histories.

Figure 88, shows the control input time history. Figure 89, shows the control input
components time history. Figure 90 and 91, show the sliding time history and its zoomed

in figure; as it is apparent variation is inside the proposed boundary layer i.e. the
inequality ‘s([)‘ <& holds asymptotically. Figure 92, shows the time history of the left
vortex breakdown location on the wing. Figure 93, shows the time history of the right
vortex breakdown location on the wing. Figures show that the controller is stable and has
an acceptable and accurate tracking performance and also has enough robustness to
parameter uncertainties.

For numerical simulation of controlling the delta wing SISO model coupled with
SMA micro-actuator dynamics, we chose =T =0.1[{sec],A=0.5,T, =15 and g, =256 for
the stabilizing control, and k, =1,k, =1,k, =10, =20 and £ =0.01 for the tracking
controller; and also we will assume p,, = p,,, =0.1 and &g,y =0.1. Simulation results for
the controller have been shown in Figure 94 to 105. Figure 94, shows the time history of
the x,(¢) state and its reference, which tracking performance is quite good. Figure 95
shows the time history of x, () state and its reference. Figure 96 shows the time history
of x,(f) and x,(¢) states. Figure 97 and 98, show error and error derivative time histories.

This figure shows less tracking error in comparison to the case without perturbation
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inputs. Figure 99, shows the control input time history. Figure 100 shows the control
input components time history. Figure 101 and 102 show the sliding time history and it’s

zoomed in figure for better visibility; as it is apparent variation is inside the proposed

boundary layer i.e. the inequality ’s(t)’ <& holds asymptotically. Figure 103 shows the

time history of the left vortex breakdown location on the wing after implementing u, in

the left vortex breakdown equation. Figure 104 shows the time history of the right vortex

breakdown location on the wing after implementing u, in the right vortex breakdown
equation. Figure 105 shows the time history of x, andx, states, which are the first order

filters implemented for left and right vortex breakdown locations consequently. Figures
show that the controller is stable and has an acceptable and accurate tracking
performance and also has enough robustness to parameter uncertainties.

It is apparent from figures that the control scheme with perturbations applied in

vortex breakdown locations i.e. choosing p, andp,, >0, via SMA micro-actuators
performs better than the control scheme without perturbations i.e. p,,=p,,, =0. This has

been demonstrated in better tracking performance and less control effort for the same
numerical control simulation.

The figures which are relating to the simulation with combinatory control input
(with internal control loop) show enhanced tracking performance in comparison to the
simulations of the dynamic with tracking control (without internal control loop) as the
control input, and this shows the advantage of the proposed combinatory control structure

for vortex-coupled deita wing dynamics.
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Figure 105. x, and x, time history- controlled by combinatory control input

5.8 Summary

In this chapter, a combinatory control strategy combined of a modified state
feedback stabilizing controller, as the internal loop, and a robust adaptive sliding tracking
controller has been proposed, to be applied to the vortex-coupled roll dynamics of delta
wing subject to state delay. The first subcomponent renders the closed-loop system
globally practically stable. The second one is a robust adaptive sliding tracking controller
which utilizes a special gaussian RBF neural network for online estimation of rolling
moment coefficient as the main uncertainty of the model. The RBF network designed for
delta wing case is a four layer RBF neural network with two hidden layers, with left and
right vortex breakdown positions as the input to the first hidden layer. The second hidden
layer is a linear combination of the two sub-layers of the first hidden layer.

To show the ability of the proposed combinatory control structure we implement
it to control the delta wing for following a complex reference trajectory, since delta wings
are high performance aerial vehicles which are flying in high angle of attack flight

condition with subsonic or supersonic speeds.
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Implementing the proposed combinatory control structure (controller with internal
loop) enhanced the tracking performance in comparison to the controller without internal
loop.

Adding two more control inputs as a fraction of the first control input in the
combinatory control structure (can be interpreted as perturbations in the vortex

breakdown dynamics), i.e. choosing p,, andp,,, >0, enhanced the tracking controller
performance in comparison with the case without perturbations, i.e.p, =p,, =0. The

combinatory controller in both cases showed accurate tracking performance and fulfilled
the related requirements, but the second one was better due to its better tracking
performance and less control effort. Delta wing simulation study demonstrated good
performance of the proposed combinatory control structure.

Heuristic design process and parameter selection methods have been proposed for
easier implementation of tracking control (controller without internal loop) and
combinatory control structure (controller with internal loop).

The presented approach can be extended to multi-input, multi-output model of the
delta wing roll dynamics. More efficient control inputs also can be designed to be applied

to left and right vortex breakdown locations.



6 . Conclusions and Future Work

6.1 Conclusions

In Chapter 3, a free-to-roll vortex based nonlinear retarded state-space modelling
and simulation based on the work done in [10]-[11] has been proposed. The relationship
among the vortex breakdown location, rolling moment coefficient and roll angle were
described with state equations, which constitute a plant model in nonlinear state-space
form enabling control synthesis for system with state delay. The proposed model was
validated and verified with delta wing free-to-roll various experimental results. Three
different methods were used for the approximation of the system uncertainty which was

rolling moment coefficient ( C,(N)). These methods are linear, nonlinear (5™ order

polynomial) curve fitting and also Radial Basis Function Regularization Neural Networks
(RBFNN). In the future, better parameter tuning is needed to increase the accuracy of the
model, especially correlations for C,(X). Other Neural networks (wavelet or MLP) can
be utilized for this purpose. Model can be extended for the system with time-varying state
delay.

In Chapter 4, the applicability of an existing robust adaptive feedback stabilizing
control strategy for the fast vortex-coupled roll dynamics of delta wing subject to state
delay in a high AOA flight condition has been shown. The controller renders the closed-
loop system globally practically stable. Simulations demonstrated the applicability of the

controller for the fast and high performance delta wing dynamics. The heuristic design
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process and parameter selection methods have been proposed for easier implementation
of this control scheme. This approach can be extended to multi-input, multi-output model
of delta wing vortex-coupled roll dynamics with state delay.

In Chapter 5, a combinatory control strategy combined of a modified state
feedback stabilizing controller, as the internal loop, and a robust adaptive sliding tracking
controller has been proposed, to be applied to the vortex-coupled roll dynamics of delta
wing subject to state delay. The first subcomponent renders the closed-loop system
globally practically stable. The second one is a robust adaptive sliding tracking controller
which utilizes a special gaussian RBF neural network for online estimation of rolling
moment coefficient as the main uncertainty of the model. The RBF network designed for
delta wing case is a four layer RBF neural network with two hidden layers, with left and
right vortex breakdown positions as the input to the first hidden layer. The second hidden
layer is a linear combination of the two sub-layers of the first hidden layer.

To show the ability of the proposed combinatory control structure we implement
it to control the delta wing for following a complex reference trajectory, since delta wings
are high performance aerial vehicles which are flying in high angle of attack flight
condition with subsonic or supersonic speeds.

Implementing the proposed combinatory control structure (controller with internal
loop) enhanced the tracking performance in comparison to the controller without internal
loop. Adding two more control inputs as a fraction of the first control input in the
combinatory control structure (can be interpreted as perturbations in the vortex

breakdown dynamics), i.e. choosing p, and p,, >0, enhanced the tracking controller

performance in comparison with the case without perturbations, i.e. p, =p,, =0. The
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combinatory controller in both cases showed accurate tracking performance and fulfilled
the related requirements, but the second one was better due to its better tracking
performance and less control effort. Delta wing simulation study demonstrated good
performance of the proposed combinatory control structure. The heuristic design process
and parameter selection methods have been proposed for easier implementation of the
tracking control (controller without internal loop) and the combined control structure
(controller with internal loop). The presented approach can be extended to multi-input,
multi-output model of the delta wing roll dynamics. More efficient control inputs also can

be designed to be applied to left and right vortex breakdown locations.

6.2 Future Work

In this section, we state the possible future directions for the approaches proposed in
this thesis. Future directions are as follows:

o Further analysis on the stability of the proposed combined control law.

e Analysis of the internal dynamics (zero dynamics) of the vortex-coupled delta
wing system with combinatory control input.

e Developing control schemes for the MIMO model of vortex-coupled delta
wing roll dynamics.

o Extending the developed control schemes for the model with tfime-varying
delay in the states of the proposed model.

o Using other neural networks, i.e. wavelets and MLP, in modelling and also
adaptive control of vortex-coupled delta wing roll dynamics.

e Extending artificial neural network (ANN) control to handle unmodelled

dynamics and multiple equilibria.
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Integrating outer-loop flow control schemes with inner-loop shape memory
alloy (SMA) actuators.
FExperimental implementation and verification of closed loop system with the

proposed controllers.
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Appendices

7.1 APPENDIX A

Definitions and properties from Ref. [66] which are used in Chapters 4 and 5 are

summarized below:
Definition 1: The solutions x(z,,v)(t) of equation (4-19), are said to be
uniformly ultimately bounded if there exist & >0 and 7 =7(0,d) >0, independent of 7,

such that x,(¢,,v) <o forall t>1, +T(0,0) Vvec, v <o.

1%

Definition 2: The retarded system in equation (4-19), is said to be globally

practically stabilizable with respect to the closed ball G(p,,) if and only if given any

p,, € (0,0), there exists a feedback control ¥(.):c, xR - R" for which the following

properties hold:

Property 1: Given £, € R and v(,) € ¢, the closed-loop system

x(t) = [ (x, (1), (x,,0),1)
has a solution x(z,,v)(t) € R" forall v(¢,) e, >1,.

Property 2: Given [ € (0,0) there exist p e (0,00) such that for all solutions
x(t,, v eR", vt ec,,t > t,,

V)| <1=|x@)| < D), Vielt,.t)
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Property 3: Every solution x(z,,v)(t) € R", v(t,) € c,,t > t,,can be continued over
[£5,0).

Property 4: Given any p,, > p,,, there exists a o(p,,)>0 such that for every
solutions x(t,,v)(t) e R", v(t,) e c,,t > 1,,

M) <I=x()eGlpy), Vizt,+T(py,.D)

Property 5: Given any p,, > p,,, there exists a o(p,,) >0 such that for every
solutions x(¢,,v)(1) e R", v(t,)) e c,,t > 1,

V1, € Glo(p, ) =x() e Glp,,). Vi1,

7.2 APPENDIX B

Theories and proofs which are used in Chapters 4 and 5 are as follows:

Theorem 1 [66]: Let ¢, >1 be a constant scalar. Assume that there exist a

continuously differentiable function V. (x,£):R"xR —> R, and strictly increasing

continuous functions y,(.):R" — RN*,i=1,2,3, vanishing identically at the origin, i.e.

class « functions [67], such that
() timy 7, (e =0, =123

7D <V (et < 7y (Jx

), V(x,t)e R"xR (1)
(2) There is a scalar ¢, > 1/¢, such that

V.= sup V[t+8,x(t+8)] <qV[t,x(t)] @)
de[-1,0]
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Atany ¢ 21, implies
%= sup (0 <qif <71 a7, ()} 3)
el-7,

(3) The derivative of the Lyapunov function ¥ (x,f): %" xR - R along the

trajectories of the retarded uncontrolled system satisfies

V(x,t) < —y,(|x]) 4

whenever

= swp [0 < pa0h p=aig: 285 121 (5)
el-n,

Then the zero solution of equation (4-19) is uniformly asymptotically stable.

Proof of Theorem 2:
u,(.), which is continuous, quasi-bounded and locally Lipschitz is a unique

solution of the system [66]:

3(1) = Agx(£) + Dyx(t = 1) + Bylu, (£) + L(x,%,1)]

(6)
x, (@)=v(0); 6Oe[-n,0]

The following Lyapunov function candidate (V;(.):R" xR, — R, ) has been
presented:

V,(x,t) = x" (£)P,x(1) (7)

Considering the stabilization of the nominal free system

x = Apx(1) + Dyx(t —17); x, (6) =v(0); 0 €[-17,0] (8)

The Lyapunov derivative ¥,(.) along the solutions of equation (8), satisfies
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Volet) =" R 4 + 45 Bx(t)+ 22 (OB Dt 1) )
which has been shown in [66] that

7y 00.) <~ (O (10)

where p, € (0,1) . This guarantees the desired uniform asymptotic stability of the nominal
uncontrolled system.
Now, for a given p, >0, the Lyapunov derivative for the system in equation (6)

satisfies [66]

V. (60 =V, (x,0)+2x" (OBBu,+2x" (RB,L (11)

It has been shown in [66], that Vsmb (x,6) <0, and hence using uniform

boundedness property, Property 5 will be established.

Proof of Theorem 3:

Consider the composite Lyapunov function candidate V,(.) :R"xRxR, —> R, :

Vol ) = Vo (6, 0) +V, (1151)

T A N2 (12)
=X (OFRx(0)+ (1, (D + f1)
Define Z =[x" (¢), u,(t) - i2,]" and choose

7, (|Z]) = min {[zmm(PO),1]|2]yT}y2(||E[|)=min {[ZW(PO),I]”EHT}. So that

V. (x,p,,t) satisties Theorem 1.
For a given p >0 and a realization of o eI, the Lyapunov derivative

V()R xRxR, -> R, for the system described by the equation (4-33), is given by

147



V(o p100) = 26" (B0 + 2014, (6) = 1 (0)iz, (1) (13)

Using equations (4-31), (4-32), and (22) presented in [66], it can be shown that

uZ([) —u, ()= ~(y = ) Hoy(1)
= (1, — [y Ho[Cyx] (14)
|y < 6,

where &, =B 7|

Using equations (14) with the aid of Theorem 2, algebraic manipulation of

equation (13) leads to

V (x,p44,0) -0 QO+ O+ (15)

where @ = mBgE)

Hy _/A‘o

>

Y’ Qé{(l’A)ﬂm(Qo) 0

} and W =2[0 24,g} since
0 g

(1-A)A,, (Q,) >0, choosing g >0, guarantees that Q>0. It directly follows that
V (x,u,,0) is negative definite for all (x,,,1) € R" x Rx R, such that
Lo ()@ —28/2,6,|®]-T >0 (16)

Thus the uniform boundedness in property 2 is satisfied by selecting

Ja,laN, if T<A
py=4" 2 1" ‘ (17)
Ja,lagl  0f T>A,

where a, = git, | 1., (Q), &, T/ 4,,(Q) and A, = a4 a] +a, . The remaining part of

the proof is very similar to that of Theorem 2 presented in [66].
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