NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Time Inconsistency Analysis and Correction for

MSC-2000 Specifications

LiXin Wang

A Thesis
In
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montreal, Quebec, Canada

July 2005

© LiXin Wang, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10254-3
Our file Notre référence
ISBN: 0-494-10254-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared
By: Mr. LiXin Wang
Entitled: Time Inconsistency Analysis and Correction for MSC-2000 Specifications
and submitted in partial fulfillment of the requirements for the degree of
Master of Applied Science
complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair

Examiner

Examiner

Supervisor

Approved by

Chair of Electrical and Computer Engineering

20

Dean of Faculty

ABSTRACT
Time Inconsistency Analysis and Correction for MSC-2000 Specifications

LiXin Wang

Message Sequence Charts (MSC) plays an important role in the software life cycle. It is
widely used in the requirements, design, and test phases for different purposes. Therefore,
it is crucial to insure the correctness of MSC specifications. For that, one has to validate
these MSC specifications as early as possible in the development cycle. An important
aspect of MSC-2000 specifications correctness is time consistency, including absolute
and relative time constraints. The time consistency of Basic MSCs (bMSCs) and High
Level MSCs (HMSCs) has been investigated in the last few years. However, a very little
effort and research have been devoted for the purpose of investigation and diagnosis of

causes of inconsistencies, and also strategies to correct these inconsistencies.

This thesis focuses on the consistency checking of MSCs, analyzes and categorizes the
causes of time inconsistencies, and provides solutions to correct time inconsistencies. For
bMSCs, we classify partial order, propose solutions to identify i‘nconsistency, and provide
four correction policies for the different types of inconsistencies. For HMSCs, we
decompose them into different simple paths, provide checking algorithms based on the
type of the simple paths, and use different correction strategies for these inconsistent
paths. Our approach helps MSC developers to insure the correctness of MSC

specifications, thereby improving its quality and also that of the resulting software. A

111

tool, called MSCTICC, implementing our algorithms has been developed and assessed in

this thesis.

v

ACKNOWLEDGEMENTS

I wish to express my sincerest gratitude to my thesis supervisor, Dr. Ferhat Khendek, for
his guidance and assistance. He has supported me academically and financially through
the years. I am most impressed by his insight and ability to develop new ideas. I am
especially grateful for his patience and encouragement throughout this research. The
thesis would not have been possible without the substantial time and effort hé has

devoted to it.

I would like to thank Christophe Lohr who gave me many helpful ideas about time
consistency checking and tracking algorithms. I also thank him for proofreading my
proposal for the bMSC and HMSC inconsistency. 1 also thank my friends Tong Zheng,
XiaoJun Zhang and Yang Liu for their advice and help when I entered the Telesoft

research group.

At last, I would also like to thank my wife Hu. I owe her a great deal for her endless love
and understanding in every situation. I am indebted to her for giving me comfort and

taking care of our baby so that I could finish my thesis. I dedicate this thesis to her and to

my son QiQi.

Table of Contents

LISE Of FIGUTES .t eeeieie ettt ettt e st e e e e e e e e sasaaenaenes X
LISt OF TaDIES ..ottt et xi1
L. INEOAUCHION Lottt ettt b e et e st e e e st e enbeaneean 1
1.1 MSC roles in the software life cycle ... 1
1.2 MOEIVALIONS .evinieiiieieatiieteeeiee et ee ettt eese et eee e s ssaeesaeeenseeneasmeeenseeneennenes 3
1.3 Contributions of the thesis ...t 5
1.4 Organization of the thesisocociiiiiiiiii e 6
2 Message Sequence Charts Languagecccooviieriiiiiiiciiiinicieeeie e 8
2.1 TNErOAUCTION eeiiiiiiiii ettt e e st et e e e e e raaessebeeenenas 8
2.2 Basic MSC ...t 10
23 High LeVEl MSC oottt 14
2.4 TINE COMCEPLS .vveerireerieaniirieesieeeteassteesaeeeneeesstessaasseesseasseasssesaseassreesnnsanseas 17
2.5 Semantics of timed MSC ... 19
2.6 Time consistency of Basic MSCscccccoviiiiincenenn. cereeaere et eaae e 21
2.7 Time consistency of High Level MSCSc.ooovvvviiiiiiieeeeeer e 26
2.8 CONCIUSION ..ttt ettt sttt e et e eseesnenee 31
3 Time inconsistency analysis and correction for bMSC specifications 33
3.1 IntrodUCtionoeoviviiiiiiiiieeeee e et ettt aeaeaaas 33
3.2 Directed orders vs. deduced Orderscoeceeieiiiininiiinie e 35
3.3 Time inconsistency checking for BMSCSccoooiieiiiiiiiiiiie, 42
3.4 Inconsistent bMSCs correction POLICIEScoooevvieeiireiiiiieiienereeiree e 53
3.5 Algorithms to check inconsistency and correction policiesccoue.... 57

vi

3.0 DHSCUSSION - e e e e e e e e e eaeeeeeneeenaaeeanee 63

4 Time inconsistency analysis and corrections for HMSC specifications 65

4.1 INrOAUCHION ...oiiiiiiiiiiiii ettt et e e e 65

4.2 Time inconsistency for HMSCS......ccooioiiiiiiiiie e 66

4.3 Algorithms to correct inconsistency for HMSC ... 75

4.4 DISCUSSIONL w..eeiiiiitieetee ettt ettt e et et ee it e e e es e et e eae e esteesateeeeaeaeseeeebeeeneeenneees 82

5 The MSCTICC tool and case StUAIESc.c.eeruireiiiiiiniiieiiecceei et 83

5.1 The MSCTICC toOl OVEIVIEWviciiieiiaiiiieie ettt eaeeaeerae e ees 83

5.2 CaSE STUAIES ..eeevivieiieeeiieie ettt teie ettt ie et et te e st e s e ese s easeenseaneeeseeeraneas 86

5.2.1 Test case 1 — The automatic call back serviceccocceevernnnn.. 86

5.2.2 Test case 2 — A communication setup protocolccoeeeennee. 90

5.3 Strengths and limitations of the tool ..., 93

6 CONCIUSIONS ...iiiiiiiiiiiiieeiiee et et e vt e ette et ea v e steaaereatseeetasmeeanseasssaasseaanssanssreanseenssenn 96

| 6.1 ContrIDULIONS .. nie et 96

6.2 Future work T 97

BiblOZraphy et e et e e aa e e nanteenaae s 99
Appendix A Textual Syntax of a Simplified MSC ..., 102
APPENAIX B ettt ettt e et e e aseeeaanens 104

1. B.1 Calculating deduced order time constraints from directed order time constraints

.. 104
2. B.2 Proof for Proposition 3ccocoiiiiiiiieeiieie ettt 106
3. B.3 Proof for Proposition 4ccoiiiiiiiiiriiieeic ettt 108
4. B.4 Proof for ProposIition 5 ..ot e 108

Vil

5. B.5 Proof for Proposition 10

6. B.6 Proof for Proposition 11

Viii

List of Figures

Figure 1.1 MSCs roles in the software life cycle......ccoovveneiiiiiiiinieee 3

Figure 2.1 An MSC specification in MSC/GR and MSC/PR formats..........cccoeceerrennenn. 9

Figure 2.2 Basic MSC CONCEPLS .oeieieiieiiiiieeiiiiie ettt eieae e e e e e s s 10
Figure 2.3 bMSC conditions (a), and Instance creation (b)ccooveeevieiiieciricieieeen. 12
Figure 2.4 MSC timer events and aCtIONScceoeeiriiiiienerernie et ece e e ene s 13
Figure 2.5 bMSC INliNe EXPreSSIONS ..c.ouuiiiiiuierriirriiieeieerieaniteeaenieeeneesasseeeaseeenseesanns 15
Figure 2.6 An HMSC eXampPlec.coooiiiiiiiiiiiiiiiiiiienececieee e e 17
Figure 2.7 A bMSC with time CONStralntscccoovoeiiieiirieniiie e et 18
Figure 2.8 A bMSC complete directed constraint graph and its distance graph 23
Figure 2.9 The Floyd-Warshall Algorithmccooeoioiiiniiieeiiee e 24
Figure 2.10 A bMSC and its event-order table with time constraints 25
Figure 2.11 The distance graph and 1ts MatriX........oooveviiiieerie e 25
Figure 2.12 The distance graph and its matrix after applying FW algorithm 25
Figure 2.13 The reduced time CONSITAINES «...oeovioviriiiiiieieeieieeie e 26
Figure 2.14 A strongly consistent HMSCooiiiiiiiiiiie e 29
Figure 2.15 A weakly consistent HMSC with an alternative composition 30
Figure 2.16 An inconsistent HMSC with @ 100pooooeeiiiiiiiiiiicec e, 30
Figure 3.1 Time inconsistencies it bIMSCScoooiiiieoiieiieeee e 34
Figure 3.2 MSC M1, directed order, and deduced order time constraints 39
Figure 3.3 An example of deduced order time constraintcccceeeveveecririeeennenne. 41
Figure 3.4 An example for proposition 3c..ccoiiiiiiiiiiniiie e 44

X

Figure 3.5 Decomposing a bMSC into multiple cycles ..o 45

Figure 3.6 An inconsistent bMSC and its negative cycles........coooooiiiiiiiiniinniinccnes 47
Figure 3.7 An example for tracing back inconsistent cycle...........coeveniriiiiiniinnicnnns 49
Figure 3.8 Parts of distance graph matrix D for MSC case Icccoccoeeeiiciiininnnnnnnn. 50
Figure 3.9 Parts of predecessor matrix P for MSC case 1ccococooiieiiiiiiiiniinnnninn. 50
Figure 3.10 MSC case 2 SPECIfICAIONooiiuiriiniiiiiiiiieie ettt 51
Figure 3.11 Parts of predecessor matrix P for MSC case 2cccceiiiiiiiiiiiiiennns 52
Figure 3.12 Apply Policy 1 in INSTANCE T...ervreviieiiiieiiieeiee et 54
Figure 3.13 Apply Policy 1 in iNSTANCE Jooccevvieiiiriiiiiriieeciieeieece st 54
Figure 3.14 Apply Policy 1 to correct absolute time constraintsccccooeeeeneerecnns 55
Figure 3.15 Apply Policy 3 on message M2ccocuiiiiiiiiniiiiiiaiie et 56
Figure 3.16 Apply Policy 4 0n a BMSC. ..o 57
Figure 4.1 An inconsistent HMSC with an inconsistent bMSC ..o 69
Figure 4.2 An inconsistent HMSC path with a node in @ I00p ..c..ooveeiieiiiiiiiiee 71
Figure 4.3 An inconsistent MSC with tim¢ conflict between bMSCs ... 73
Figure 4.4 An inconsistent HMSC a simple pathcocconiiiiiiiinniiiiee 74
Figure 4.5 An HMSC with flow path ..o 80
Figure 5.1 The MSCTICC tool architecturecocoeioiviiiiiiniiiiii e 84
Figure 5.2 A test case for HMSC CallBackccoooeioiiiiiiiiieeee e 87
Figure 5.3 A test case for HMSC Connnection_Setup&Communication 91
Figure B.1 Connected directed order time constraints and the deduced order.............. 105
Figure B.2 Directed order, deduced order time constrain and their distance graph 107
Figure B.3 The shortest path and its break-downcoocoovieiiiiiiiiiieee 111

Figure B.4 A simple path with n bMSCs

X1

List of Tables

Table 5.1 The running result of HMSC CallBackccccooviviiiiiaviiniiien,

Table 5.2 The running result of HMSC Connnection_Setup&Communication

X1l

Chapter 1

Introduction

1.1 MSC roles in the software life cycle

A reactive system interacts with its environment. It receives inputs that may arrive in a
continuous way and in unexpected sequences from the environment [17]. Examples of
reactive systems are telephony systems, air traffic control systems, traffic light control
systems, etc. Most reactive systems can be seen as real-time systems and have to satisfy

certain timing and concurrency requirements.

Software processes involve a set of activities that encompass the entire software life cycle
[7]. The major phases are software requirements gathering and analysis, design,

implementation, testing, operation and maintenance.

In the requirement phase, software engineers gather requirements from stakeholders,
specify software features, and prioritize these features. The artifact of this phase is the
requirement specification that is used to describe the behaviors and the properties of the
system. In the design phase, the system specification is used to describe the high level
architecture of the system, the interface between the components of the system, and the
behavior of each component. In the implementation phase, the design is coded in a
concrete programming language. Testing comes as the next phase. The software

produced is tested to ensure its conformance to the functionality and performance

requirements specified in the requirements documents. Maintenance is conducted during

the entire software life for modifications and updates.

Requirements specifications and system design specifications have to describe the system
unambiguously. Therefore, formal languages are necessary for writing the specifications.
Formal methods are mathematics based techniques [22]. Formal methods are based on
formal languages. Formal specifications are analyzed to discover inconsistencies or

design errors.

As a formal language, the graphical and textual notation called Message Sequence Charts
(MSC) [10] was initially developed by International Telecommunication Union —
Telecommunication Standardization Sector (ITU-T) as a companion to the Specification
and Description Language (SDL) [11]. MSC has become one of the key notations for the
requirement, design and test phases, especially in the telecommunication field. In the
different phases of the software development cycle, MSC specifications serve different
purposes and exhibit different levels of details as indicated in Figure 1.1. MSCs are used
in the requirements phase to describe use cases or scenarios, and to describe the
interactions between a system and its environment, The crucial step is then to translate
the MSC model into an architectural model supporting the design of the implementation.
To ensure the conformance, we can verify system design specification against the MSC
requirement specification. Given target architecture, an SDL specification can be

generated from the detailed MSC specification [24]. The MSC specifications can also be

used as test cases for testing purpose. Therefore, MSC specifications take a central role in

the development process, and their correctness is crucial.

/—~ Requirement
Initial requirements / \
Analyzed scenarios Design
Architecture (Process and_— \
communication structure)
Implementation \
Testing —\

Operation
and
Maintenance

Test cases

Figure 1.1 MSCs roles in the software life cycle

1.2 Motivations

To be useful in a development process, MSC specifications must not contain semantic
errors. They have to be validated. An MSC specification may contain semantic errors or
logical inconsistencies, so its accuracy has to be checked. Any error detected in the
earlier stage will get a high pay-off since MSCs are used as the basis of the design [3].
The introduction of the time constraints in MSC-2000[10] raises the time consistency

issue of the MSC specifications.

Several criteria for the correctness, such as the absence of race conditions, process
divergences, confluence and inferences [2, 3], matching templates [16], etc., have been

established, and techniques for checking these criteria have been developed. Some tools,

such as MESA [15], have been developed for the validation. However, in these works,

the timing constraints and requirements are not considered.

Tong Zheng in his PhD research has investigated the validation of timed MSC
specifications [26, 27]. He developed techniques and algorithms to validate the time
consistency of MSC-2000 spectfications. He treated events in MSCs as basic units and
defined the semantics for bMSCs and HMSCs with compositional constructs. He
proposed sufficient and necessary conditions for a bMSC and for an HMSC consistency.
Following these conditions, he designed algorithms to check the consistency. In summer

2002, we implemented and integrated the algorithms into the tool MSCTCC [23].

However, there has been no effort in the works mentioned above to diagnose the reason
for time inconsistency and no research has been done to provide potential solutions to
correct the time-inconsistent MSCs. This lack of effort and research on the time

inconsistency of MSCs initiates the research topic of this thesis.

In this thesis, we investigate further the validation of the timed MSC specifications. One
of our goals is to analyze the different the causes for inconsistency. The results of the
analysis form the basis for the algorithms and solutions used in the correction of
inconsistent bMSCs. Another goal is to develop algorithms for diagnosing the
inconsistent bMSCs to find out the causes for time inconsistency if an inconsistent bMSC
is detected. Therefore, the last and the most important goal is to find methods to correct

inconsistent bMSC specifications.

As HMSC is concerned, our purpose is to find appropriate approaches to transform
weakly consistent and inconsistent HMSCs to strongly consistent HMSCs. If an HMSC is
partially consistent (weakly consistent) or totally inconsistent, the HMSC is not valid
from the semantics point of view. These errors and inconsistencies make the HMSC
specifications un-implementable, or result in undesired implementations. Especially,
when MSCs 1s worked with SDLs to transfer the MSC specifications to SDL
architectures, the inconsistent time constraints in MSCs can cause the SDLs to be invalid.
Our purpose 1s to correct these time inconsistencies in HMSCs and to provide potentially

consistent ones.
1.3 Contributions of the thesis

We analyze the reasons for time inconsistency in bMSCs and HMSCs. Based on these
analyses, we propose a solution by transforming a bMSC specification to a bMSC
distance graph and ‘provide inconsistent cycles tracing-back algorithms to identify these
inconsistent traces. Based on the types of inconsistencies, we develop four policies for

different cases to correct the inconsistent bMSCs.
For an HMSC, we decompose the HMSC graph into different paths. By analyzing these
path consistencies, we figure out the reasons for inconsistency. For different types of

paths, we propose algorithms and potential correction solutions for inconsistent HMSCs.

The contributions of the thesis are summarized as follows:

1. We analyze and categorize the causes for time inconsistency of MSCs.

2. We propose algorithms for checking and tracing back the inconsistencies of time
constraints in bMSCs.

3. We develop strategies and policies to correct inconsistent MSCs.

4. We propose algorithms for checking and correcting the inconsistencies of time

constraints in HMSC

1.4 Organization of the thesis

We introduce the MSC language in Chapter 2. The basic MSC constructs such as
messages, events, instances, timers, inline expressions, and High-Level MSC are
introduced. Most importantly, we present the time constraints of MSC-2000 and the time
consistency concept, some related works and methodologies that are useful in consistency

checking for bMSCs and HMSCs.

We describe time inconsistency and correction for bMSCs in Chapter 3. In this chapter,
we first provide different definitions of temporal order time constraints; then we propose
the checking methods to figure out the causes for inconsistency of bMSC specifications.
We also propose four correction policies according to the causes for inconsistent bMSCs.

Lastly, we develop checking and correction algorithms for these proposals.

The HMSC specifications inconsistency problem is discussed in Chapter 4. We analyze
the causes for inconsistency of HMSCs. Then, the checking and correction methods are

proposed. Finally, the algorithms for these methods are presented.

In Chapter 5, we introduce a tool developed for the purpose of checking time-
inconsistency and the correction for bMSCs and HMSCs. The architecture and

development issues are discussed. Two case studies are presented as well.

In Chapter 6, we summarize the contributions of this thesis and discuss some future

work.

Chapter 2

Message Sequence Charts Language

2.1 Introduction

Message Sequence Charts (MSC) [10] 1s a graphical and textual representation of an
interchange of a finite number of messages between a finite numbers of processes. MSC
was initially developed by ITU-T as a companion to the Specification and Description
Language (SDL) [11]. MSCs are often used in combination with SDL. MSC has gained
popularity in the telecommunication field for its intuitive graphical expression and the

underlining formal semantics.

The main area of application for Message Sequence Charts is as an overview
specification of communication behavior of real-time systems, in particular
telecommunication switching systems. Message Sequence Charts may be used for
requirement specification, simulation and validation, test-case specification and

documentation.

The first recommendation for MSC was approved in 1993. It contained textual syntax
definitions, but a formal semantics was missing. In the second recommendation of
MSC’96, the formal semantics based on process algebra was defined. Moreover, MSC’96

standard has introduced the high level MSC (HMSC) where bMSCs can be composed

using a set of operators. The latest version MSC-2000 standard adds timing constraints

and data.

A simple basic MSC specification in both graphical (MSC/GR) and textual (MSC/PR)

format is shown in Figure 2.1.

mscdocument example;

inst i;

instj;

msg ml;

language C,

msc bMSC;
i: instance;

label a out m1 to j time@/5,10];
endinstance;
J- instance;

label bin ml from i time[l,2] a, time@/[6,8] ;
endinstance;
endmsc,

MSC example

Figure 2.1 An MSC specification in MSC/GR and MSC/PR formats

On the one hand, the MSC/GR is an intuitive description. It is easy for system analysts,
designers and testers to specify behavior requirements, designs, test cases and understand
them. On the other hand, the MSC/PR is a textual alternative used to describe a system,
and it is an input for automatic tools for manipulation. In this thesis, we use MSC/GR for
illustration; while developing the tool MSCTICC, we use MSC/PR as an input. The

simplified syntax used in this present thesis is described in Appendix A.

In following sections of this chapter, we introduce the MSC language and time

consistency concept.

2.2 Basic MSC

Basic Message Sequence Charts (bMSC) is the core part of Message Sequence Charts.
The bMSC is used to express the behavioral requirements in terms of scenarios that the

system is required to exhibit.

A bMSC is concerned with communications and local actions only. The basic concepts
in bMSC are instance creations and terminations, environment, timer handling, message

events, conditions, inline expressions, etc. The basic MSC concepts are described in

Figure 2.2.
bMSC name Instance name
« /
Absolute time | MSC bMSC /
constraint i ;
\ | Message
s+@[5,10]
[1.2] ¢ |
¥ Environment
/ /
Realtive time
constraint

Figure 2.2 Basic MSC concepts

The basic constructs of bMSCs are instances and messages that describe the
communication events. MSC instance plays an important role in the MSC specifications.
An instance may be a subsystem, a process, or a thread. An instance can even be a use
case [12]. An instance is represented by an axis that is delimited by a start and end
symbol. The head symbol determines the start of the description of an instance within the

MSC. The end symbol stands for the end of the description of the MSCs. The time is

10

running from top to bottom along an instance axis. Events in one instance are totally
ordered according to their positions from the start to the end symbols on the instance axis.
A message has a send event and a receive event on both ends. The send and the receive
events of the message are called message pair events. The send and receive events
provide a total order assumption between these two events. Both events of a message can
happen in an instance or environment. A message 1s represented by an arrow from its
output to input. Every event has a unique event name in the bMSCs. Every message has a

unique message name attached on that arrow.

In a bMSC, the system environment is represented by a frame symbol that forms a
boundary. There is no assumed ordering among the environment between the sending and
receiving events. However, it is assumed that the environment behaves according to the

bMSC specification.

In addition to exchanges of messages, a bMSC may contain conditions that describe the
state of the instance, actions, timers, and instance instantiation and termination.
Conditions are used to describe the state in the bMSC. The main purpose is for
documentation. There are three types of conditions: global, partial, and local. A global
condition is used to describe the global system state of all instances in the bMSC. A
partial condition is used to describe the partial state of some instances in the bMSC. A
local condition describes a private state of the specific instance. In Figure 2.3(a), the init
is a global condition to indicate the current state of instance // and /2. The wait is a local

condition to express the state of the instance /2 after the message Y is sent.

11

MSC condition MSC inst_create
I 12

 —
mi b e
. g ——

m2
el Y e2 >

wait
] _

(2) (b

Figure 2.3 bMSC conditions (a) and Instance creation (b)

In bMSCs, an instance may be created by another instance. No event can take place in a
created instance before its creation. An instance stop is the counterpart of the instance
creation. When it stops, an instance terminates its lifetime. Figure 2.3(b) shows that
instance i creates instance j. After sending message m2, the instance j terminates its

execution.

Timer events are used to define certain time related requirements. There are three types
of timer operator: starttimer, stoptimer, and timeout. A starttimer is used to set with
duration to initiate a timer. When the time specified by the duration expires, the timer
encounters a timeout. However, before timeout happens, this timer can be stopped or
reset. In Figure 2.4, timer 7/ with duration 10 is started in instance // and then it is
stopped. In instance /2, timer 72 is started, and it is stopped after the default time

duration expires.

12

An action is an atomic internal event in one instance. In Figure 2.4, the two internal
actions are also expressed in the bMSC. One is the formal action of assigning 0 to

variable a, the other is the informal action that express ‘processing’ in a string.

msc example1
i1 12
a:=0
— m1
T1[10] % T2
- T2
‘processing’
E I

Figure 2.4 bMSC timer events and actions

An important concept in MSCs is the ordering of events. It is the basis of the temporal
ordering and timing concept. The ordering of events in MSC is determined by three rules.
The first rule is that events on the same instance are ordered according to their positions
along the instance axis. The second rule is that a message sending event always precedes
its corresponding receiving events. The third rule is that the events happening on the
created instance are behind its creating event. Coregions are introduced to relax the order

on some parts of the instance axis. Within the coregions, the events are not ordered.

Inline expressions define event compositions in a bMSC. There are five inline operators:
parallel, alternative composition, iteration, exception, and optional region. The operator

par defines the parallel execution of MSC sections. A parallel inline expression defines a

13

parallel behavior in a bMSC where no ordering is defined between events in different
sections. The operator a/t defines alternative scenarios. An alternative inline expression
defines alternative execution of a behavior of a bMSC. The operator /oop defines an
iteration scenario. An iteration inline expression defines iteration execution of a section
of a bMSC. Events in the iteration area will be executed many times (0 to infinity). The
operator exc stands for the exception cases in the MSC. An exception inline expression
defines exceptional behaviors in a bMSC. Either the events in the exceptional area will be
executed, or the rest of the MSC specification will be executed. The operator opt is an
optional section of an MSC specification. An optional inline expression defines an

operational behavior in a bMSC. The inline expressions are described in Figure 2.5.

2.3 High Level MSC

High-Level Message Sequence Charts (HMSC) describes graphically how the basic
MSCs are combined. HMSC hides low-level details and improves the readability of a
system. An HMSC is a directed graph where each node is a start symbol, an end symbol,
an MSC reference, a condition, a connection point, or a parallel frame [10]. There is only
one start symbol; however, there could be zero to many end symbols in an HMSC. The
MSC reference may refer to a bMSC or an HMSC. The condition indicates a global
system state or guard and imposes restrictions on the MSCs that are referenced in the
HMSC. The parallel frame contains several HMSCs that execute in parallel. We consider
that the MSC references of HMSCs in the parallel frame are interleaved. The connection

points are used to improve the layout of HMSCs. However, the connection points do not

14

msc Par msc Alt
"1 2 1 12
[process 1 { l process 2 process 1 ‘ l process 2
e0 - m100 e el |l m100 ed
par alt
el m1 »| €5 el m1 > €5
e2 m2 »| €6 e2 m2 » €6
200 200
- m e7 - m e’
e3 e3
T I]]
msc Loop Msc Exc
11 12 1 12
[process 1 process 2 { process 1 l process 2
€0 | m100 oa €0 | m100 3
alt exc
el m1 » e5
———————————————— el m1 »| 4
e2 m2 »! €6
m200 m200
- e7 ed
e3
R N]

msc Opt

|

process 1

process 2

e2 ~
I
12
[process2 |

opt
when x>0 >
m1
et > eS
m2
- e4
e2
] I

Figure 2.5 bMSC Inline expressions

15

affect the semantics of HMSCs. In addition, HMSCs can describe systems in hierarchical

manner by combining multiple HMSCs within a single HMSC.

HMSCs are viewed as roadmaps composed by bMSCs. HMSC provides three operators
that are sequential (seq), alternative (alt), and iterative (loop) operators to structure

referenced MSCs. They are similar to the corresponding operators - inline expressions of

bMSC.

A sequential HMSC operator defines the sequential execution of several bMSCs. The
bMSCs will be executed one by one in the order specified by the HMSC. An alternative
HMSC operator defines alternative executions of bMSCs. Only one of the altermative
bMSCs will be executed for each execution trace. The iteration HMSC operator defines
the iteration execution of bMSCs. The parallel HMSC operator defines the parallel

execution of bMSCs or HMSCs.

In an HMSC, nodes are connected by flow lines. The flow lines indicate the possible
executton sequence of the nodes. Two nodes connected by a line are concatenated
process by process. This concatenation means that all the events in the first node are not
guaranteed to occur before the events in the second node if the two events are not in one
process. This concatenation is called weak concatenation. A node may have more than
one outgoing flow line meaning that the successors of the node are alternatives. A cycle
connecting several nodes expresses a repetition. In this way, the non-determinism and

infinite behavior can be expressed in HMSCs.

16

An HMSC is shown in Figure 2.6. The symbolsV, A and O represent a start symbol, an
end symbol and a connection point, respectively. §1, S2, §3, and §4 are bMSCs or
HMSCs. The control flow goes to §7 and sequentially goes to S2. An alternative operator
following S2 and comnection point directs the control flow to S§3 or §4. There is an
iterative operator, specifying a free loop from S3 to connection point. The end symbol is

interpreted after executing S4.

msc hmsc_example

Figure 2.6 An HMSC example

2.4 Time concepts

The MSC-2000 specification introduces some new concepts that make the MSCs more
powerful and flexible for specifying systems. These new concepts include data, time,
control flow and object orientation in MSC documents. We are more interested in the
time constraints added in the MSCs. The time constraints are used to support the notion
of qualified time for the description of a real-time system with a precise meaning of the

sequence of events in time.

17

According to MSC semantics, MSC events such as message input/output, timer events

and actions are instantancous, 1.¢. they do not consume time.

The MSC-2000 standard specifies time constraints: relative time constraint and absolute
time constraints. A time constraint is an interval with minimum (lower) and maximum
(upper) bounds in a time domain. Relative time constraint defines the minimum and
maximum bound for the delay between two events. It represents the relative timing
relation between two events. Absolute time constraint represents an absolute time interval
at which an event occurs. The absolute time represents the global clock value of the
specified system. To distinguish absolute and relative time constraints, an @ sign is used

before an absolute time constraint, and an & sign is used before a relative time constraint.

Figure 2.7 shows a basic MSC with time constraints. At the time point interval between
10 and 12 time units, instance j sends a VERIFY message to instance 4. Then instance &
sends an OK message back with the minimum delay of 2 and the maximum delay of 4

time units.

msc PROCESS_PIN
i K
[Aam | [Bank |

a@[10,12] ——— VERIFY |,

OK

dle—"|°

Figure 2.7 A bMSC with time constraints

18

Another concept is time measurement. Measurement is used to express the delay of two
events that can be expressed as &, or to measure the absolute time of an occurrence of an

event, denoted as @t.

Time constraints in MSC-2000 are more general and convenient than timers because
timers can only specify timing requirements in an instance while time constraints can be
used to specify timing requirements in different instances. For instance, to specify a delay
between two events, a timer has to be set immediately after the first event, and then a
time-out event has to be placed immediately after the second event. Using time
constraints, the delay can be specified by a relative time constraint between these two
events. Actually, time constraints in an instance can be seen as high level requirements,

while timers can be seen as low level implementations of the requirements.

2.5 Semantics of timed MSC

In the MSC-2000 specifications, the semantics of a timed MSC is mentioned briefly as
event traces with special time events between normal events [10]. For example, a trace
for the MSC in Figure 2.7 1s {qa, t;, b, 1, ¢, t3 d}, where f; represents the time intervals.
The triple {b, t;, ¢} means, for example, that event ¢ occurs after the event b in time ¢,. If
there is no time interval between two normal events, it means that the two events may
occur simultaneously. A trace always begins with a normal event. Figure 2.7 of MSC can

also be expressed as one trace {a, any time, b, 2, ¢, any time, d}.

19

The drawback of the informal semantics of the MSC-2000 specification is that the event
traces do not mention how an MSC corresponds to traces, and the information about the
absolute time constraints are lost. To overcome the drawback, it is proposed for a model

of partial order with time constraints for MSC specification in [27].

We extend the concept in the two documents above and the time measurement concept to

include the absolute and relative time constraints in the time trace definition as follows.

A timed trace of an MSC is defined as a sequence of timed events {(e;@t;), &T),
(e:@1)...&T,, (e@t,)} With U:;l{ei} =E, t;e Time, T;= |ti-t;|, such that for all instances i

andj, 0<i<n 0=<j<n:

ifel- < €, then t; < l‘j,'

t; € Die);

lt-tj| € T(e,ey);

o ¢ must grow over all bounds in an infinite sequence of timed events.

We define the set of traces as Tr(l,)={w | wis a trace of I}.

For example, in MSC example (see Figure 2.1), the timed MSC has a set of traces, such

as {(@@5), &2, (b@7)}, {(a@5), &1, (b@6)} and so on.

For another example, in MSC PROCESS PIN in Figure 2.7, a possible timed trace is

{(a@10), &t), b, &2, ¢, &t;, d}, where ¢; stands for the time interval of message pairs a

20

and b, and ¢, stands for the time interval of message pairs ¢ and d. Many other traces may

satisfy the definition of timed trace in this MSC.

A timed labeled partially ordered set (timed Iposet) is used to define the semantics for a
timed MSC. An Iposet defines causal orders between events. Sequential (seq), alternative
(alt) and iterative (loop) compositions are also well defined to express the semantics of

HMSC.

An HMSC is a directed graph that is composed of a set of nodes, and every node is a

bMSC. The semantics of an HMSC is defined as a set of timed Iposet {27].

The semantics of timed MSC provide a foundation for the time consistency of MSC-2000

specifications.

2.6 Time consistency of Basic MSCs

The problem of time consistency of MSCs has been investigated by several research
groups [2][5]. In the latest research work done by Tong Zheng [26], the time consistency
of absolute and relative time. constraints in bMSCs is analyzed. Key points of this
approach are the following: (i) the timed bMSCs specification is transformed into a
simple temporal problem (STP) represented by a directed graph and is further

transformed into a distance graph; (ii) then the Floyd-Warshall Algorithm is applied to

21

compute the shortest paths of all pairs in the distance graph. According to [4], if there are

no cycles with negative costs in the graph of shortest paths, the bMSC is consistent.

A bMSC can be modeled as a directed constraint graph G = (V, E). The graph G consists
of a set of vertices V and a set of edges £, such that each edge £ is a connection between
a pair of vertices in V. The nodes are events, and there exists an edge from e; to ¢; if e
happens before e;. Relative time constraints can be labeled above the edges of two
causally ordered events. A special event ey 1s added to the bMSC graph and is defined as
the starting event that happens before any other events; therefore, it is expressed as time
zero. In this way, any absolute time constraint can be translated into a relative time

constraint between the event and event ey. The number of the vertices is written as |V].

Let Time represent time domain, e.g. non-negative real or integer numbers. Let T(Time)

[12 %4

be a set of time intervals that can be open denoted as “(” or), or closed denoted as “[”
or “}” . We treat time domain as the domain of non-negative real numbers, then the time
constraint is [1,) or (0, o). For the events that have no absolute time constraints, we can
express the absolute time constraints of these events with [1,) or (0, «0), because the ep
happens before any events. Here, time [1,) is equal to time (0, o) because algorithms
mentioned in this thesis assume a discrete time domain. In a bMSC specification, if one
event occurs before another event and if there is no relative time constraint specified
between the two events, we can express the causal order as [1,). If two events have no

precedent relationship with each other, we express the time constraint as (-co0,) between

the two events, which means the two events can happen at any time in any order.

22

A bMSC specifies a directed constraint graph that could be either a sparse graph (with
few edges), or a dense graph (with many edges). However, in order to apply algorithms
described in the following discusston, we need to transform the directed constraint graph
into a complete graph [21] in which all nodes (events) are connected with each other.

This is done by a classical transitive closure operation.

A complete directed constraint graph and a distance graph corresponding to the MSC M1
are shown in Figure 2.8. For example, event s; and event s, are unordered; therefore, the
timed constraint between s; and s, is (-00,00). It is the same case for the time constraint r)
and r,. Event s, time constraint is not specified; thus, the time constraint between ey and

5218 &[1,).

MSC M1
i
5@[5,10] - —
1 S2
[
[3.4] # 7_4 11@(6.8]
777777 L@[7,11}
[| [
(@ (b) (©

Figure 2.8 A bMSC complete directed constraint graph and its distance graph

The simple temporal problem is to decide if each node can be assigned to a value such
that thé time constraints between nodes are all satisfied. If such assignments exist, the
associated bMSC is consistent. As discussed in [8], the consistency can be decided by the
Floyd-WarshalI Algorithm to compute all pairs of shortest paths in a corresponding
distance graph. If there are no cycles with a negative cost in the distance graph, then the

bMSC 1s consistent. If a bMSC is consistent, a unique interval for each event be obtained,

23

in which each value can be assigned to the event so that the graph (and the corresponding
bMSC) is consistent. Such an interval is defined as a reduced absolute time constraint. In
the same way, a unique interval between every two events can be obtained, and the

interval is defined as a reduced relative time constraint.

The Floyd-Warshall all-pairs-shortest-path algorithm has the complexity O(n’) [20]
where # is the event number. The algorithm is shown in Figure 2.9. The main idea is that
each successive assignment needs to be checked against previous assignments and is

guaranteed to remain unaltered.

Assume that the edge, i—j is labeled by an interval, [a;;, b;].

All-pairs-shortest-paths algorithm
1. fori:=1tondod;=20
2. forij:=Itondodj=aj

3. fork:=Itondo

AN

. forij:=I1tondo

et

dyj = min{dy, dy+dy};

Figure 2.9 The Floyd-Warshall Algorithm

An MSC and its corresponding distance graph are shown in Figures 2.10 and 2.11
respectively. In Figure 2.10, the MSC example is expressed as an enhanced-event-order

table with time constraints. The bMSC is transformed into a distance graph and matrix as

24

shown in Figure 2.11. The Floyd-Warshall Algorithm is applied on the distance graph
matrix to compute the all-pair-shortest-path. The result is depicted in Figure 2.12. The
reduced absolute time constraint and the reduced relative time constraint are shown in
Figures 2.13. Event a has the absolute time constraint @[5, 7]; event b has the reduced
absolute time constraints @[6, 8]. The reduced relative time constraints are also obtained.

The reduced relative time constraint between a and b is &[1, 2].

MSC example
i j
a@[5,10] a B
(2] a | @[5,10] True &[1,2]
.¢ ,,,,,,,,,,,,,,,,,, b@[6.8] b | False @[6,8]

Figure 2.10 A bMSC and its event-order table with time constraints

€o a b
€0 0 10 8
a -5 0 2
b -6 -1 0

Figure 2.11 The distance graph and its matrix

€o a b
Co 0 7 8
a -5 0 2
b -6 -1 0

Figure 2.12 The distance graph and its matrix after applying Floyd-Warshall algorithm

25

MSC example

a@I5,7] —
2] ¢
b@i[6,8]

Figure 2.13 The reduced time constraints

2.7 Time consistency of High Level MSCs

An HMSC can be expressed as a directed graph G = (§,D,L), where § is a finite set of
nodes; Dc§ x S is the set of directed edges; L is a function that maps each node in Sto a
bMSC. An HMSC can have only one start node that has no incoming edges. An HMSC

may have several or no end nodes.

An HMSC can be decomposed into finite or infinite paths. Along each path, bMSCs are
composed sequentially. The consistency of an HMSC is defined in terms of consistency

of its paths.

A loop in an HMSC may generate an infinite number of paths. It is not possible to check
all the paths because of the infinitive number of paths. Therefore, we check the

consistency of an HMSC by checking its simple paths and the type of the paths.

A simple path of an HMSC is defined as a finite or an infinite sequence of nodes

50S7...Sx..., In which sy 1s the start node, si#s;, if i# j, and (s;, s;+7) € D, i > 0. A simple

path end with an end node s,, or ends with a loop [27].

26

A simple path is consistent if and only if the corresponding lposét, obtained by

composing sequentially all the bMSCs in the path, has a trace.

An HMSC’s semantics are based on a set of labeled partial order sets (Iposet). The time
consistency of the HMSC is defined in terms of these Iposets. To facilitate the
development of algorithms, we define the consistency of an HMSC based on the

combination of the consistencies of paths in the HMSC.

In an HMSC, bMSCs can be combined sequentially along paths, alternatively by
branches, or repeatedly by cycles. We define sequential composition (seq), alternative
composition (alt), and iteration (loop) of bMSCs in terms of their corresponding

operations on labeled partially ordered sets (Iposets) [26].

For two MSCs A and B, we define the following mappings:
o M[Aseq B] = M[A] M[B], where “*” is a concatenation meaning 4 and B are
sequentially connected;
o M/[A alt B] = M[A]#M[B], where “#” is an alternation meaning 4 and B are
alternative;
o Mlloop<ij>A] = M[A’]#M[A”?#....#M[A’], where 4’ means 4 can repeated
sequentially 1 times.

M represents a Mapping function. For >0, we define M/4"]= M[A] 'M[Ak‘l 7, M[A°]=¢.

27

The HMSC consistency can be classified as strong consistency, weak consistency and in-

consistency according to the result of the HMSC path consistency.

An HMSC is strongly consistent if and only if all its paths are consistent. If some paths
are consistent and some are not, then the HMSC 1s weakly consistent. If all the paths are
not consistent, the HMSC is called inconsistent. The formal definition and checking

algorithms are proposed in [26] and implemented [23].

The main steps of checking techniques are: first, apply the Deep-first-search Algorithm
[21] to traverse the HMSC to determine all the simple paths. In each simple path, all
bMSCs are composed to form one bMSC. Then, the algorithms used to check time

consistency of bMSC are applied.

For example, the HMSC HI in Figure 2.14 has two bMSCs L; and L, connected
sequentially. The HMSC can be represented as M[L; seq L] = {L3;L+}; moreover, the
HMSC HI can be decomposed into only one path {L;L,}. Based on the simple path
{L;L4}, we compose one bMSC as described in Figure 2.14(d). We apply the checking
algorithm for bMSC time consistency as described in Section 2.6. We conclude that the
bMSC is consistent. Because the only path is consistent, we claim the HMSC is strongly

consistent.

28

HMSC H1

i i
MSC L, 5 @[2.3] L [

. . mt
' j (2 ¢ " @04.5)

5:@15.10]. .=
1,21 # S2@[5.10};
@I6.8] (1.2] #

@[8.8]

(© (d)

Figure 2.14 A strongly consistent HMSC

Let us consider another example. Figure 2.15 depicts an HMSC specification with
alternative composition. The HMSC begins and branches alternatively into two bMSCs L,

and L,, and then finishes with an end node. The HMSC H? is represented as

o M[L#HL={L,; L>}.

Therefore, the HMSC H2 can be decomposed into two paths {L,} and {L,}. The bMSC L,
and L; are checked by the algorithms as described in Section 2.6. We conclude that bMSC
L, is consistent, but bMSC L; is not consistent. Thus, the path {L,} is consistent, but the
path {L,} is not. In combination of the consistencies of the two paths, the HMSC is

weakly consistent.

29

HMSC H2
MSC L, MSC L,

h 4 s1@[5,10). $,@[5,6] .

L4 @D [1.21 t (1,21 #
r1@[6,8} @[2,3]

Figure 2.15 A weakly consistent HMSC with an alternative composition

In Figure 2.16, HMSC H3 is an MSC with a path with a loop. The HMSC can be
represented by:

o M [(loop<0,00>M)] = (M, MM, MMM,}.

There is a loop in the simple path. The bMSC M will repeat infinitely. After MSC M is
executed three times, the absolute time constraint of sending message m/{ will be
violated. Because the upper bound of the absolute time constraints are not infinite and the
path will not be consistent after it goes loop unfolding three times MMM, it is said to be

inconsistent.

HMSC H3 MSC M

@68

Figure 2.16 An inconsistent HMSC with a loop

30

2.8 Conclusion

MSC can be specified in a graphical and a textual format. MSC-2000 includes all the
constructs in MSC-96, and some new constructs such as data, time, control flow, and
guard conditions. Time constraints in MSC-2000 are more general and convenient than
timers because time constraints can be used to specify timing requirements in different
instances. Time constraints in an instance can be seen as high level requirements, while

timers can be seen as low level implementations of the requirements.

We provide a definition of time trace for semantics of timed MSC. The semantics of an

HMSC is based on a set of timed Iposets of bMSCs.

Simple temporal problem (STP) techniques are used in transforming a bMSC into a
directed constraint graph and further into a distance graph. Then All-pair-shortest-path

algorithm is used to check the consistency of the bMSC.

An HMSC time consistency can be based on the consistency of paths in the HMSC. An
HMSC can be decomposed into finite simple paths. A simple path can be sequentially
composed by bMSCs and can form an Iposet. Then the consistency checking algorithm of
bMSCs can be applied on this simple path. Based on the consistency of paths in an
HMSC, we categorize the time consistencies as strongly consistent if all the paths are
consistent, weakly consistent if at least one path is consistent, or inconsistent if no paths

are consistent.

31

After we introduce the MSC-2000 language and time consistency, we will explore the
time mconsistency and correction methods of bMSCs in Chapter 3, and we will discuss

the time inconsistency and correction strategies of HMSCs in Chapter 4.

32

Chapter 3

Time inconsistency analysis and correction for bMSC specifications

3.1 Introduction

Time consistency is an important requirement in real-time systems, distributed systems,
and communication systems. Time consistency exists in basic-MSCs (bMSC) and High

level-MSCs (HMSC).

A timed MSC is consistent if and only if a timed trace exists [26]. For example, in Figure
2.1, we can find a trace {a@/5/, &I, b@/[6]}; therefore, we claim the MSC example is

consistent.

An MSC specification is inconsistent if there are conflicts among different time
constraints and we cannot find a timed trace. We categorize the time inconsistencies
according to the causes. The types of time inconsistency that may occur in bMSCs are as
follows.

- First, absolute time constraints do not conform to the causal order of events. For
example, in the MSC N1 shown in Figure 3.1(a), event ¢; happens before event e;
as indicated by the arrow from e; to e,. However, the absolute time constraint for
event ¢; and e, are @[6, 8] and @[1, 2] respectively. The order defined by time
constraints contradicts the causal order between events e; and e;. Therefore, we

cannot find a timed trace for the MSC NI.

33

- Second, absolute and relative time constraints are not consistent with each other.
In Figure 3.1(b), the absolute time constraint of event e; 1s @[2, 2] and the
relative time constraint between e; and e; is [1, 2]. The two time constraints imply
that the absolute time constraint of e, should be @] 3, 4]. However, the calculated
time constraint of e; @[3, 4] contradicts with the specified absolute time
constraints e, @[6, 8]. Therefore, we cannot find a timed trace for MSC N2.

- Last, relative time constraints are not consistent with each other. For example, an
inconsistency between relative time constraints is shown in Figure 3.1(c). Events
e;, €> and ey occur in that order. The relative time constraint between ¢; and e, is
1, and the relative time constraint between e, and es is 2. The two specified
relative time constraints determine that the delay between e; and e, should be 3,
which contradicts the value of 2 for the relative time constraint specified in the

MSC N3. There is no timed trace in the MSC.

MSC N1 MSC N2

e@[2,2}----
(12] #

(a) (b) ©

Figure 3.1 Time inconsistencies in bMSCs

The problem with checking time consistency has been investigated by different groups
[2, 3, 15, 27, 25]. However, in undertaking these investigations, the research groups did

not intend to explain, and their results did not show the causes of the inconsistency of the

34

MSC. There is no research to show which MSC traces are not consistent, nor how to
correct these inconsistent traces. In this chapter, we try to propose some solutions to solve

the problem of inconsistencies of bMSCs.

The rest of the chapter is organized as follows. In Section 3.2, we define different partial
orders and time constraints to form the basis for the further discussion of time
inconsistency. In Section 3.3, we illustrate the criteria used in checking into and tracking
back to the causes for the inconsistencies of bMSCs. In Section 3.4, we propose some
correction strategies for the inconsistent bMSCs. In Section 3.5, we provide several
algorithms for the checking, tracing back, and correction procedures. We conclude this

chapter in Section 3.6.

3.2 Directed orders vs. deduced orders

MSC diagrams are graphical representations of the scenarios or the executions of

communication systems. The representations are formally defined in the MSC-2000

specifications [10].

In our research, we have considered bMSCs containing instances and messages, and

HMSCs composed of bMSCs only, so that we can focus on the most important aspects of

time consistency.

35

A specification designer can specify the time constraint between two events e; and e; by
drawing it on the bMSC according to MSC-2000 rules. This is a directed order or input
order time constraint ¥{e;e)). It reflects the directed causal time constraint of events in a

graphical representation of the MSC.

Between ¢; and e; there could also exist a sequence of other events {ey, e, e, ...} defining
other traces starting from e; and leading to e;. Collectively, these other traces of time
constraints, defined by the succession of intermediate events, are called a deduced order
or calculated order time constraint between e; and e; The intermediate events {e;, e, e,
...} also have their own time constraints defined by the designer. The deduced order time
constraints /(e;, e;) between e; and e; are defined as the sum of time constraints related to

intermediate events {e, €, €y, ... }.

Sometimes, the MSC time requirement cannot satisfy both the directed order time
constraint V(e; e;) and the deduced order time constraints I(e; ¢;). This is a typical case of

a time inconsistency.

We extend timed Iposet [26] to more accurately express different time orders. An Iposet
defines causal orders between events. A bMSC can be defined as a tuple with directed

order events and deduced order time constraints as follows.

An MSC M is a 8-tuple (P, A, E, <, [, L, B, T), where

e Pisaset of instances or processes,

36

A is a set of labels,

E is a set of events,

< cF x E is a partial order between events on E; < is a union of directed order
(<) and deduced order(<"),

[: E—>A is a labeling function that associates an event to a label,

L: E—P is a mapping function that assigns an MSC instance to each event,

B: E>T(Time) is a function that associates an event with a time interval within
which the event must occur; this time interval is called the absolute time
constraint,

T: ExE—>I(Time) is a function that associates with a pair of events a time interval
that defines the delay between the two events; T =V U I, where V stands for

directed order time constraint, and [stands for deduced order time constraint .

Definition 1: Directed order, denoted as <, is simply the union of the orders, i.e., < = <,

U {<p| Vpiep} U <<; U <<, where <., <p, and <,are defined as:

e and [are sending and receiving events of the same message. In this case, the
events e and [are said to be a ‘message pair’; or one says that event e directly
causes event f. Let <. = {(ef) | e<f A L(e)£L()} denote the communication
directed order between a sending event and a receiving event.

e and [belong to the same instance with e appearing above f'in the instance life-
line. Then, e and f are in the local directed order. Let E, = {e | eeE A L(e)=P;}.

Let <p;, = <\ (E, xE,) denote the local directed order of instance P; [16].

37

e e indirectly causes f. e and f are in different instances, and e and f are not a
matching pair but there is a relative time constraint specified between e and f. Let
<<= {lef)|e<<f AlLle)+ L(f)} denote the indirect causal order, where
e<<f stands for that e indirectly causes f.

s fis an event with absolute time constraint, and e stands for the absolute time zero.
Let <, ={(e,f)|le<f} denote f happens after e. Then, e and f are called absolute

directed order.

Directed order (denoted by <) is a direct causal relation between two events. For
example, considering the MSC M1 of Figure 3.2, we have E={s,, r;, 52, 72}, P={i, j, k},
<~{(snrr), (52,72}, <i =<k = o, and <; = {(r;,s;)}. The directed order < reflects the
way the MSC is depicted. The directed order time constraints are V(ey,s;)=[5,10],
Vieor)=[6,8], V(eps2)=[9,10], V(eor)=[11,13], V(s,rp=[1,2], V(r;s2)=[3.4],
V(sar)=[2,3], V(s;,72) = [5,10] where ¢, stands for the special event absolute time zero.
The directed order time constraint of message pair s; and »; is V(s;,#;)=[1,2], and the
directed order time constraint of message pair s; and ry is V(sa,#2)=[1,2]. The directed
order < is depicted in Figure 3.2(b). The local directed order time constraint between r;
and s, 1s V(r},5,)=[3,4]. The indirect causal order time constraint between s; and r; is
V(s,r2) = [5,10]. The absolute directed order time constraints are V(egs;)=[5,10],

V(€0,V1):[6,8], V(eo,Sz):[g,IO], and V(eo,rg):[l 1,13]

38

MSC M1

[11,13]
or [10,20]
or[11,15]
or [11,19]

s@po.10)] B4

[2.31¢ 2
R@11,13]
]

(¢} Part of deduced order time
constraints

(a) MSC specifications {b) Visual order time constraints

Figure 3.2 bMSC M1, its directed order and deduced order time constraints

Deduced Order is the cycle free relation and is a transitive closure of the directed order <
without the inputted directed orders. Therefore, The deduced order is calculated from the

existing directed order. The formal definition is as follows.

Definition 2 4 deduced order, denoted as <', is defined as a partial order existing
between two events, e; <"ep = {(ei er) | (e<eir)) and (eirj<eir3)..and (eqn<ey)} where

€ €i+/, ..Ciin €k EL, €, F €ir] ...Ci1n F €k

The deduced order time constraint is the time constraint between the two deduced order
events, and is calculated along the transitive closure paths. Using the distance graph of a
bMSC, we can calculate the deduced order time constraint by summing the directed order
time constraints. Two cases are involved in calculating the deduced order time constraint
from directed order time constraints. In case 1, the local directed order time constraints
and the matching pair directed order time constraints are all specified. In case 2, the input

indirect causal order and some local directed and matching pair directed order time

39

constraints are specified. The details of the calculation process are shown in Appendix

B.1.

However, there may be many different deduced orders between two events connected and
calculated by different directed orders. We only consider the shortest one by using the

All-pairs-shortest-path algorithm as described in Section 2.6.

A part of the deduced orders of the MSC M1 is depicted in Figure 3.2(c). The deduced
order time constraints are I(s;,s;)=[4,6], 1(s;72)=[6,9], and I(r;,r;)=[5,7]. Because the
deduced order is a transitive closure of the directed input order without the original input
directed order, there may be multiple deduced order time constraints depending on which

paths the deduced order is calculated from.

For example, there are deduced order time constraints between ey and r;:

- I(ep,r;)=[6,12] by calculating from path e)—r/;

There are deduced order time constraints between e and s;:
- I(egs2)=]9,12] by calculating from path ej—r;—s,;0r 1s

- I(eps,)={9,16] by calculating from path ej—s;,—r;—s,.
The deduced order time constraints between ey and r; are:

- I(egry)=[11,13] is calculated from path ey—s,—r;; or

- I(ep,r2)=[10,20] by calculated from path ey~—s;—r, or

40

- I(eg,r2)=[11,15] is calculated from path ej—r;—s,—r,; or

- I(ep,r2)=[11,19] by calculated from path ey—s,—r;—s—r2

The following section describes how to calculate the deduced order time constraint from

the input directed order time constraints.

For example, in MSC M2 in Figure 3.3(a), the directed order time constraints are
V(eg,r)=[6,8] and V(s;,r;)=[1,2] as shown in Figure 3.3(b). A special event e, is added to
the distance graph. Using the distance graph and matrix in Figure 3.3(c) and (d), after
applying the Floyd-Warshall All-pairs-shortest-path Algorithm, we can do computation
based on the two input directed order time constraints to get a deduced order time

constraint I(ey,s;)=[4,7]. Therefore, the s; absolute time constraint is @[4,7].

-1 0 o0
3] B -1 0
Sq

(1.2

5]

(a) MSC specifications (b) Directed constraint graph (c) Distance graph (c) Distance graph matrix

Figure 3.3 An example of deduced order time constraint

If a timed bMSC has a timed trace, the bMSC is time consistent [9]. The main issue is the
following: if we cannot find a timed trace to fulfill the bMSC, how we can find the cause
of the inconsistency and how we can propose solutions to correct the bMSC

specification?

41

The intuitive observation leads us to the conclusion that the directed order and the
deduced order are in relationship. So, in the following discussion, a correction method is
proposed in order to keep all the directed order time constraints and all the deduced order

time constraints consistent with each other.

3.3 Time inconsistency checking for bMSCs

A distance graph of bMSCS can be decomposed into elementary cycles. The cycles
considered here consist of connected edges with directed orders and deduced orders

among events, or several connected edges with directed order among events.

The process used to detect inconsistent traces is an approach of decomposition of
distance graphs. The main idea is to decompose a timed distance graph into elementary

cycles in order to isolate inconsistent cycles and to correct them.

Proposition 3 gives criteria for checking the inconsistency between the directed order

time constraint and the deduced order time constraint.

Proposition 4 focuses on the elementary cycle consisting of a deduced order plus the
directed order between two events. This proposition shows how the inconsistency of an

elementary cycle can impact the bMSC global inconsistency, and vice versa.

42

Proposition 5 describes how to track back inconsistent cycles in the decomposition

process.

Proposition 3 A bMSC is consistent if and only if each directed order time constraint and
all of its corresponding deduced order time constraints overlap with each other, and the

deduced order time constraints also overlap with each other.

Proof. The proof'is given in Appendix B2.

The deduced time constraint (absolute or relative time constraint) is the intersection of
the overlapped time constraints. For example, considering the specification MSC M3
shown as Figure 3.4(a), when a special event e is added, the distance constraint graph is

shown in Figure 3.4(b).

In MSC M3, the directed order time constraints are V(ey,s;)=[5,10], V(eqr)=[6,8], and
V(s;r;)=[1,2]. However, there are also three deduced order time constraints depending
on how the orders are calculated. For example, the first deduced order time constraint
I(eg,7)=[6,12] is based on V(ey,s,)=[5,10] and V(s,,»;)=[1,2], and the deduced order time
constraint {6,12] is overlapped with the directed order time constraint [6,8]; therefore,
using proposition 3, we get the reduced time constraint I(s;r;)=[6,8]. The second
deduced order time constraint I(ey,s;)=[4,7] is based on V(ey,r)=[6,8] and V(s;,r;)=[1,2],
and the deduced order time constraint [4,7] is overlapped with directed order time

constraint [5,10]; therefore, using definition 2, we get the deduced order time constraint

43

I(eg,r1)=[5,7]. The third deduced order time constraint I(s;r;)=[1,3] 1s based on
V(e s;)=[5,10] and V(eyr;)=[6,8], and the deduced order time constraint [1,3] is
overlapped with directed order time constraint [1,2]; therefore, using proposition 3, we
get the reduced relative time constraint I(s;r;)=[1,2]. All three deduced order time
constraints are overlapped with the corresponding input directed order time constraints

meaning that the graph is consistent.

MSC M3
€
! i
@I5,101.'— I [5.10]
121§ 6.8)
.................... "@ies) .
[1.2]
L8]
(8) MSC specifications (b) Directed constraint graph

Figure 3.4 An example for proposition 3

Proposition 4 For a bMSC with n events, we can decompose its complete distance graph
of the bMSC into (2"-n -1) cycles so that detecting the bMSC consistency is equal to
détecting these cycles’ consistency. The bMSC is consistent if and only if all these cycles
are cousistent. In other words, if there is any inconsistent cycle, the bMSC is not

consistent.
Proof. The proof is shown in Appendix B3.

For example, the bMSC M3 of Figure 3.5(a) can be transformed into a directed constraint
graph as shown in Figure 3.5(b), and then transformed into a distance graph as shown in

Figure 3.5(c).

44

The distance graph of the bMSC can be decomposed into:

1.

a cycle formed by ey, s; events (see cycles in Figures 3.5 (d)),

a cycle formed by s, r; events (see the cycle in Figures 3.5 (¢)),

a cycle formed by ey, r; events (see the cycle in Figures 3.5 (f)), and

a cycle formed by ey, s; , ¥; events (see the cycle in Figure 3.5(c); to make
computation easy, we view the clock-wise cycle in Figures 3.5 (g) and the anti-

clock-wise cycle in 3.5 Figures 3.5 (h) as one cycle).

There are 2° ~3-1=4 cycles.

In summary, to make MSC M3 consistent, all the 4 cycles cannot have a non-negative

cost.

€ €o
S St t P 10
10
P) 6 8 -6
1 Sq
2
Fq Ty
] (@

MSC M3 o
5,1
$1@[5,10] ;- [>.10]
1.2] (6.8]
S
[1,2]
1
(a) MSC specifications (b) Directed constraint graph (c) Distance graph

€9

(d) (e

)]

Figure 3.5 Decomposing a bMSC into multiple cycles

45

It would be useful to consider another example. The MSC M/ in Figure 3.2 has five

events e, s;, #1, S2, and r,. There are 2° —5—1=26cycles that are required to check

consistencies.

In conclusion, for a complicated bMSC specification, we can decompose the bMSC into
finite number of small simple cycles and check the consistency of the cycles one by one.
If there are inconsistent cycles, we have to correct these cycles until all the cycles in the

MSC become consistent.

Although Proposition 4 is a possible checking method, the complexity O(2") of the
computation makes the method impractical for the detection of the consistency of all the

cycles. This inspires us to find a more practical method to reduce the complexity.

It is enough to consider the time consistency of only minimum-weight elementary cycles
computed by the Floyd-Warshall Algorithm for all-pairs-shortest-path. This minimum-

weight reduces the complexity significantly from O(2") to O(n’).

Theorem 3.1[8] indicates that a given STP (simple temporal problem) is consistent if and
only if its distance graph has no negative cycles. The former work {25] transforms a
distance graph to a distance matrix and applies the Floyd-Warshall (FW) Algorithm to
compute the all pair shortest paths. If a negative value exists in the diagonal element of

the matrix, the inconsistency of the bMSC is detected. The problem in the algorithm is

46

that it cannot, in the feed-back, identify precisely which sub-cycle(s) cause the

inconsistency problem.

For example, in the MSC NI in Figure 3.6, the shortest path from ey to e, is 4 when we
apply the Floyd-Warshall Algorithm along the path from ey to e; to e,. However, a
negative cycle exists along trace ey to e; to e,. By applying a tracing-backing algorithm
that we provide in Proposition 4, we can determine that the negative cycle comes from

trace ey to e; to e,. In this way, we can figure out the cause for the inconsistency.

MSC N1
_[ﬂ i €o €9
@22] 2
[1,2] i
777777 ,@[6.8] ? 4 |6
e
@8.10] 5
e,@[12,15] €5 €,
@) ®) ©

Figure 3.6 An inconsistent bMSC and its negative cycles

The following proposition gives a solution to track the inconsistent cycles in order to

decrease the complexity of the checking process.

Proposition 5 By imposing a predecessor matrix on the Floyd-Warshall Algorithm[20]
and by applying a tracing-back algorithm to bMSC’s complete distance graph, we can
not only detect inconsistency existence in the bMSC but also identify the inconsistent

cycles by expanding the sub-traces from the last negative cycles.

47

Proof. The proof is shown in Appendix B4.

If we find a negative value in the distance matrix when applying the Floyd-Warshal
Algorithm, we can track back from the predecessor matrix and figure out from which
cycle the negative value comes. By doing so, we can identify the cause of the

Inconsistency.

Let adjacency matrix W=(w;) represent the graph of a bMSC. Also, let d,-j(k) be the weight
of the shortest path from vertex i to vertex j going through intermediate vertices chosen
in the set {/,2,..i-1,i+1,...j-1,j+1,...n} by the k steps of the Floyd-Warshall algorithm.
When k=0, the path from vertex i to vertex j has no intermediate vertex numbered higher

than 0, and therefore has no intermediate vertices at all. Thus, d;”=w.

The Floyd-Warshall algorithm [20] in a recursive way is given as:

{ Min(d;*?, dy™*V+d, ") if k> 1

i g% =
Equation 1: d; L wy if k=0

The inconsistency cycles back-track searching process can be calculated based on a
predecessor matrix. The predecessor matrix P is constructed on-line just as the distance
matrix is constructed. We compute a sequence of matrices P(O), P(U, ..p™ , Where p=p™
and pij(k) is defined to be the processor of vertex j on the shortest path from vertex i with

all intermediate vertices in the set {/,2,...,k}.

The recursive formulation p,j(k) is given in the Equation 2:

48

pi " if (@Y < @i +d, V) AND k> 1)
if ((d" > (dy*"+dy*") AND k> 1)

[
Equation 2: p, = { &
| @ ifk=0

When £=0, the shortest path from i to j has no intermediate vertices at all. For k> 1, if we

take i—k—7 as the shortest path from i to j, the processor of j is .

We provide an example to illustrate the process of tracing-back the cycle with a negative
value. The bMSC case 1 in Figure 3.7 has four events with absolute time constraints.

However, there are inconsistencies between those events.

MSC case_1
i j
L] [l

e, @[3.4} m.‘
e, @[4,5]

my e, @[6,7]

e, @[1,2] 4

S .

Figure 3.7 An example for tracing back inconsistent cycle

By applying the algorithms of Proposition 5, the distance matrices and the predecessor

matrices are shown in Figure 3.8 and Figure 3.9.

The original matrix W k=0
0111234 0111213 1}4
010141257 01041257
113100 |21}4 11310111214
2 0-11-1]0(-2-1 21-1(-1]0]-2]-1
3/4| -1} 0|3 31-4|-11-2]1013
4 1-6|-2]0|-1]0 41-61-21-4|-110

49

k=1 k=2
0l1[2[3]4 0[1]2]3]4
0l0]4|2]5]7 ol2[1]0]1 1
1|30 [-1]2]4 I [5{2]3|21=2
2[4 l-1]2]-1]1 21-6|-3]-2]-3]-3
3l4l-1]2]0]3 3016|3433
416 | 2[4la]o 4185|655

k=0 k=1 k=2
0111234 01142 0j112

0 0 0
1 0 1 0 1 0
2 2 1 2 1
3 0 3 0 3 0
4 0 4 0 4 0

Figure 3.9 Parts of predecessor matrix P for MSC case_1

When d” = -2 < 0,
P:/M) =g

Plzm) =0

P’ =0

Poz(o) =

Therefore, L(2)={2,1,0,2}.

When dy™ = -3 <0
P =0
P 30(1} =
Pozm =
P_U(U =

Therefore, L(3)={3,0,2,3}.

50

From the distance graph matrix D and the predecessor matrix P, we get:

When d,? = -5 <0

p41(]) =)

pwm -0

P04m =g

p.w(” -

Therefore, L(4)={4,0,2,4.

In summary, there are three inconsistent cycles, {e; — e;— ep—ez}, {€3— ep— er— ez},

and {e,— eg— e;— ey4}.

We consider another example of time inconsistency between different relative directed

order time constraints. The MSC case_ 2 is shown in Figure 3.10.

MSC case 2

Figure 3.10 MSC case_2 specification

The directed order relative time constraint of sending-receiving events message pair from
e; —ey 18 &[2,2]. The local directed order relative time constraint in the instance i from
e;—ey i1s &[1,1]. The input order pair directed order relative time constraint e;— ey is

&[2.2].

51

The algorithms in Proposition 5 are applied to the bMSC distance graph. When k=0, and
k=1, there are no negative cycles. However, when k=2, d(e4e4)(2) = min (d(e4e4)m ,d(e4e2)(1)

+ d(esey)V)=min(0, -2+1) = -1 < 0.

When k=0, all entries in the predecessor matrix are &. By computing the predecessor

matrix, the following matrix, when k£ = [in Figure 3.11, is calculated as:

k=0 K=1
01112314 011121314
0 0
1 1
2 2 1
3 3 1 1
4 411

Figure 3.11 Parts of the predecessor matrix P for MSC case 2

When d[4,4]” < 0, the algorithm of Proposal 5 is applied to the predecessor matrix of
k=1, we get:

pad? =2

pll =@

DoV =1

P.’zm =

pM(U =

Therefore, L(4)={4,2,1,4} . We conclude that there is a negative cycle among events 4 —

2— 1 —4.

52

Moreover, an MSC specification designer can also impose some policies to further
decrease the complexity. For example, in MSC M3, which is shown in Figure 3.5 (a), if
the MSC designer decides that the events in instance i cannot be changed, and the relative
time constraint cannot be changed either, thus, only cycles described in Figures 3.5 (f),
and (c) need to be checked. Considering the Floyd-Warshall algorithm used in the
procedure, this decision will dramatically decrease the computation of the time

consistency checking.

3.4 Inconsistent bMSCs correction policies

Based on the causes of time inconsistency, the MSC specification designer may be asked
to choose a correction procedure to eliminate the inconsistency of the MSCs. We propose
four correction policies that apply to all inconsistent bMSCs, but the policy or the
combination of policies applied to a specific specification are determined by the MSC

designer.

Policy 1 - Absolute Time Correction: Let us assume that an MSC designer decides that
some absolute time constraints in one specific instance are changeable. The absolute
time constraints are removed. The new relaxed time constraints are imposed on the MSC
specification. We can apply the FW Algorithm to find out the absolute time constraint in

the instance.

53

For example, the MSC N; in Figure 3.12(a) is not consistent. We can apply Policy 1 on

events e; in instance i as described in Figure 3.12 (b) and (¢). The absolute time of event

e; is removed. By applying the Floyd-Warshall Algorithm, we get e; absolute time

constraint @/4,7].

MSC N2

e@22k
[1.2]

MSC N2

(a)

(d)

(b)

Figure 3.12 Apply Policy 1 in instance i

We can also apply Policy 1 on event e; in instance j, and we get the new MSC as

described in Figure 3.13(a) and (b). By applying the Floyd-Warshall Algorithm, we get €;

absolute time constraint @3, 4].

MSC N2

(2) (b)

€o
i j "
@22 - /

(c) (d) (e)

Figure 3.13 Apply Policy 1 in instance j

54

In another example, the MSC case [in Figure 3.14(a) is detected the presence of the
negative cycles {e;esep ez}, {eseperest, {eqepesreq}. From these messages, the MSC
designer can identify that the common events are ey and e;. The MSC designer can then
decide to apply Policy 1 on event e; of the instance i to relax on the absolute time
constraints as described in Figure 3.14(b). The FW algorithms is applied to the MSC and

gets the consistent MSC as described in Figure 3.14(c).

MSC case_1 MSC case_1 MSC case_1
i j i i i i
e @[3,4] e, @[3,4] e, @[3.4]
1 1
e; @[4.5] e, @[4,5} e, @[4,5]
e.@I6.7] n; e.@[6,7] m; €,.@[6.7}
@12 e - &@I7.0d
() (b) (c)

Figure 3.14 Apply Policy 1 to correct absolute time constraints

Policy 2 - Local Directed Relative Time Correction: Let us assume that an MSC
designer decides that it is possible to change the relative time constraint in a specific
instance. We can apply the FW Algorithm to calculate the reduced relative time

constraint.

Policy 3 - Matching Pair Relative Time Correction: Let us assume that an MSC
designer decides that it is possible to change the relative time constraint between the
matching pair of events of some messages. We can apply the FW Algorithm to calculate

the matching pair relative time constraint.

55

For the MSC N2 in Figure 3.6, we can change strategies by applying Policy 3 on message
pair events e; and e; as described in Figure 3.15. After applying the Floyd-Warshall

algorithm, we get e; and ¢; relative time constraint &[4, 7].

MSC N2
2 8

2,2
e1@{2.2} 0 © a \-

-2
2
e
-4

(a) (b) (c) (d) (e)

Figure 3.15 Apply Policy 3 on message m2

Policy 4 - Indirect Causal Order Time constraint Correction: Let us assume that an
MSC designer decides that the indirect causal order time constraint between two
instances is changeable. We can apply the FW Algorithm to get the reduced indirect

causal order time constraints.

For example, MSC case_2 in Figure 3.10 is not consistent. After applying the back-
tracing algorithms of Proposition 5, the system designer gets the information that there is
a negative cycle {e,, e, e, e4}. The designer may decide to apply Policy 4 on the event
e; to e4. The relaxed time constraints are shown in Figure 3.16 (a). After applying the FW
Algorithm, the designer gets a result that the consistent time constraint between e; to ey is

&[3, 3] as Figure 3.16 (b). Thus, the MSC is consistent.

56

MSC case_2 MSC case_2

(a) Before applying Policy 4 on indirectly (b) Apply Policy 4 on indirectly causal
causal order between events e and e, order between events e, and e4

Figure 3.16 Apply Policy 4 on a bMSC

3.5 Algorithms to check inconsistency and correction policies

According to Proposition 4, to find the causes of time inconsistency in a bMSC, we
theoretically need to check all the (2"-n-1) cycles in the distance graph of the bMSC, and
then correct the inconsistent directed order time constraints or deduced order time

constraints. The complexity of the checking algorithm will be O(2").

However, we can check inconsistency in an STP network by applying the Floyd-Warshall
algorithm to its distance graph to reduce the complexity. Next, we can apply the methods
in Proposition 5 to trace back the cycles with negative value, and then impose the
correction policies decided by the MSC designer to correct these inconsistent cycles until
all the cycles are consistent. In this way, we can reduce the complexity to O(n?). This can
be achieved in the following steps:

e Step 1: First, we transform a bMSC specification to a complete directed constraint

graph G with special event ey as the starting event. Next, we transform the

57

directed constraint graph to a complete distance graph expressed in an adjacent
matrix W. Then, the Floyd-Warshall algorithm is applied to compute the value of
elements in the matrix. If a negative value is detected, an inconsistency cycle
occurs. Then the algorithm in Step 2 is applied. We can apply the tracking back
algorithm to find the inconsistent paths according to Proposition 5. Otherwise, if
no negative cycle is detected, this bMSC is consistent.

e Step 2: If some paths are inconsistent, one policy or a combination of policies is

used for correcting the inconsistent specification until all the paths are consistent.

The detailed algorithm is as follows.

Step 1: A bMSC graph is represented by an adjacent matrix W=(w;;). Assume the input is
di=0 1if i=j; or else, d;= wy, 1f i # j. Based on Equation 1 given in Section 3.3, we can
construct the matrix D(n) = (dl-j(")). The bottom-up procedure can be used to compute the

values d[j(k) in an increasing order of k. Its input is an # X rn matrix W,

The predecessor matrix P is constructed on-line just as the matrix D is. We compute a
sequence of matrices P”, P, ... P™ where P=P™ and p;/* is defined to be the processor
of vertex j on the shortest path from vertex / with all intermediate vertices in the set

{1,2,....k}. The recursive formulation pij(k) 1s given in the equation 2 in Section 3.3.

When k=0, the shortest path from 7 to j has no intermediate vertices at all. For k> 1, if we

take i—k— as the shortest path from i to j, the processor of j is k.

58

Let L be a vector of size n of linked lists used to store the indexes of events involved in
negative cycles. For instance L[i]={i,/,k,i} represents the negative cycle i—j—k—1i.
Algorithm: TimeConsistentChecking(in W, in-out P)

1 n<rows[W]
2 Let isConsistent be true

D(O) —W

Go

4 fork—ltn

5 do fori<1I ton

6 do forj—Iton

7 if ((@df" > @i +d "))
P A= @ +d)
9 P, =k;

10 end i

1 end do

12 if (d#<0) then

13 L[] =}

14 isConsistent = false

15 do Tracking_back_Path(P(k),i, i L™ [i])
16 end if

17 end do

18 end for

19 return isConsistent

Algorithm: Tracking back Path (in P, i, j, inout L)
20 Letx=Py
21 if x!= T then

22 L.add(x)

23 Tracking back Path (P,ix, L)

59

24 Tracking back Path (Px,j, L)

25 endif

Step 2: If some inconsistent cycles are detected in Step 1, based on the error messages
that indicate which paths have negative cycles and therefore are inconsistent, the designer
is asked to input a correction policy or a series of predefined correction policies to correct
the inconsistent bMSC until the designer gets a consistent bMSC. By following the
policy(s) chosen by the designer, we can apply the following algorithms to get the
corresponding reduced relative time constraints and absolute time constraint. The

algorithms for the four correction policies are as follows.

Policy 1 - Absolute Time Correction Algorithm: In this policy, we assume that some
absolute time constraints in one specific instance are changeable. We get rid of the
absolute time constraint of events, and then get a new MSC. By applying the FW
Algorithm, we can find out the absolute time constraint in one Speciﬁc instance.

Algorithm: AbsoluteTimeCorrection(in W, int n, in L)

26 input a instance name and event names on the instance
27 get ride of the absolute time constraint of the events and modify the graph matrix
28 check if the modified matrix is consistent after applying the Floyd-Warshall Algorithm

29 if (the matrix has no negative cycles) then

30 report the recommended reduced absolute time constraint to the designer
31 else

32 continue to apply the Policy 1,2,3, or 4

33 endif

60

Policy 2 - Local Directed order Relative Time Correction Algorithm: We assume

that the relative order time constraint in a specific instance is changeable. We relax the

relative time constraint, and then we get a new MSC. By applying the FW Algorithm, we

can determine the relative time constraint.

Algorithms: LocalRelativeTimeCorrection(in W, int n, in L)

34

35

36

37

38

39

40

41

42

43

44

input the instance name and event names of the relative time constraint on the instance
find the cycle C that the relative time constraint fit in
get ride of the time constraint between these events and modify the graph matrix
check if the modified matrix is consistent by applying Floyd-Warshall’s algorithm along the cycle C
if (the cycle has no negative value) then
report the recommended reduced relative time constraint to the designer
continue to apply policy 1,2,3, or 4 on the other negative cycle
else
the policy is not applicable on the relative time constraint
con(inue to apply the Policy 1, 2, 3, or 4

end if

Policy 3 - Matching Pair Relative Time Correction Algorithm: We assume that the

relative time constraint between matching pairs of events of some messages Is

changeable. We can relax the absolute time constraint of the event, and then we get a

new MSC. By applying the FW Algorithm, we determine the matching pair relative time

constraint.

Algorithm: MatchingPairEventsRelativeCorrection(in W, int n, in L)

45

input the message name of the message and get the matching pair event names

46 find the cycle C that the relative time constraint fit in

47 get ride of the time constraint between these events and modify the graph matrix

61

48

49

50

51

52

53

54

55

check if the modified matrix is consistent by applying Floyd-Warshall’s algorithm along the cycle

if (the cycle has no negative value) then

report the recommended reduced relative time constraint between matching pairs to the
designer

continue to apply the Policy 1,2,3, or 4 on other cycles
else

the policy is not applicable to the matching pair relative time constraint

continue to apply the Policy 1, 2, 3, or 4
end if

Policy 4 - Indirect Causal Order Correction Algorithm: We assume that the relative

order time constraint between two or more instances is changeable. We can relax the

absolute time constraint, and then obtain a new MSC. By applying the FW Algorithm, we

can ascertain the indirect causal order time constraints.

Algorithms: IndirecCausalOrderTimeCorrection(in W, int n, in L)

56

57

58

39

60

6/

62

63

64

65

66

input event names of the relative time constraint
find the cycle C that the relative time constraint fit in
get ride of the time constraint between these events and modify the graph matrix
check if the modified matrix is consistent by applying Floyd-Warshall's algorithm along the cycle C
if (the cycle has no negative value) then
report the recommended reduced relative time constraint between the indirect causal pairs
continue to apply the Policy 1,2,3, or 4 on other cycle;
else
the policy is not applicable to the matching pair relative time constraint
continue to apply the Policy 1, 2, 3, or 4

endif

62

In step 1, the running time of the TimeConsistentChecking algorithm is determined by the
triple nested loops in line 4-6. Each execution in line 7-9 takes O(1) time, so the
algorithm of this step runs in a complexity of O(n?). The Tracking back_Path algorithm
will traverse n vertices of precedence matrix P in the worst case. Therefore, the
complexity is O(n). The TimeConsistentChecking algorithm calls on the
Tracking back Path algorithm at each step and in the worst case, the overall complexity

is O(n*).

In step 2, the complexity of all the correction policies 1s determined by Floyd-Warshall’s

algorithm. Therefore, the complexity of step 2 is O(n’).

In summary, the complexity of the overall running time is O(n* + n’)=0(n") for n events

1n the worst case.

3.6 Discussion

There are many causes for time inconsistency in bMSCs, such as absolute time causal
order conflicts, relative time constraint conflicts along some paths, relative and absolute
time conflict, etc. Directed order time constraint and deduced order time constraint are
defined to find the causes for inconsistency. We can calculate the deduced order time
constraints based on the directed order time constraints. The visual and the deduced order
time constraint have to be overlapped to meet the requirements of the sufficient and

necessary condition for the time consistency.

63

In order to trace the inconsistent part of a bMSC, we have to decompose a bMSC into
finite sub-graphs and check each cycle. A more efficient method 1s to use feed-back
messages to display inconsistency information and to provide correction decisions

according to designer policies.

When inconsistencies in a bMSC are found and the causes of the negative cycles are
detected, we define four correction policies. If an MSC designer determines that it is
necessary to change the absolute time constraint of one or some events, Policy 1 is
applied. When the designer decides to change the local directed order time constraint in
one or more specific instances, Policy 2 is applied. When the designer wants to change
relative time constraints of a message pair, Policy 3 is applied. If the designer needs to

change the deduced order of time constraints, Policy 4 is applied.

We have built a tool named MSCTICC (MSC Time Inconsistency Checking and
Correction) that implements these solutions. In this tool, we implement the time
inconsistency checking, inconsistent cycles tracing back, and the correction policies

algorithms.

64

Chapter 4

Time inconsistency analysis and corrections for HMSC specifications

4.1 Introduction

A real-time distributed system can be specified and designed using HMSC. HMSC
expresses high level functional requirements and constraints. A timed HMSC is
composed of a set of bMSCs together. Time constraints are specified within bMSCs and
may cause time conflicts within bMSCs and also between bMSCs in an HMSC. This is

the problem of time inconsistency of HMSCs.

If there are some errors in an HMSC concerning time constraints, the errors can cause
partial inconsistency (the HMSC i1s called weakly consistent) or total inconsistency (the
HMSC is called inconsistent). The HMSC is not valid from the semantics point of view.
These time inconsistencies make the HMSC specifications un-implementable, or result in
undesired implementations. Especially, when HMSCs are working with SDLs to transfer
the MSC specifications to SDL architectures, the inconsistent time constraints in HMSCs
can cause the SDLs to be invalid. The goal of this thesis is not only to validate the time
consistency in HMSC but also to correct the inconsistency until a consistent one is

achieved.

The rest of the chapter is organized as follows. In Section 4.2, we introduce the time

inconsistency and analyze the reasons that may cause the time inconsistency in HMSCs.

65

Based on the analysis, we propose correction solutions according to the types of the paths
of the HMSC. In Section 4.3, we describe algorithms for checking inconsistencies in
HMSCs and for correcting these inconsistencies. We discuss the related work in Section

4.4.

4.2 Time inconsistency for HMSCs

The consistency of an HMSC is defined in terms of the consistency of its paths. A path is
consistent if and only if the corresponding Iposet, obtained by composing sequentially all

the bMSCs in the path, has a timed trace.

An HMSC can be strongly or weakly consistent (depending on whether all parts or only
some parts of the specification are consistent respectively), or inconsistent. The general

and special case algorithms are proposed [26].

An HMSC is like a roadmap for a system. An HMSC specifies a set of scenarios (paths)
to be implemented in the requirement and design specification. If all the scenarios are
mandatory and have to be implemented, and if every scenario (path) is time consistent,

we claim the HMSC is strongly consistent.

Sometimes, an MSC specifies that at least one path is time consistent but not all paths are

time consistent. Under this circumstance, some scenarios conform to time consistency

and other scenarios do not. In this case, we claim that the HMSC is weakly consistent.

66

Otherwise, if we cannot find any path that satisfies the time constraints, we claim that the

MSC is inconsistent.

If an HMSC is inconsistent, we have to refine some time constraints of bMSCs in some
paths until the HMSC becomes consistent for all the time constraints of all the paths;
otherwise, if the HMSC is weakly consistent, we have to identify which paths are

inconsistent and correct the time constraints until time consistency is achieved.

Several causes of HMSC inconsistency are identified. One such cause may be that there
are inconsistent bMSCs existing in the HMSC specification. The loop paths may also
cause inconsistency if the absolute time constraints of some events in a loop restrict the
occurrence of the loop. Another potential cause may be that the conflicts of time

constraint exist among bMSCs in a path of a HMSC.

Intuitively, we analyze the causes of the inconsistency of HMSCs and propose some
solutions to correct the inconsistent HMSC step by step until consistent ones are

achieved.
As defined in Section 2.7, a simple path of an HMSC is defined as a finite or infinite

sequence of nodes. The simple path begins from a start node and end with an end node or

a loop. It is a prefix of a path. There are no identical nodes in a simple path.

67

If a simple path is consistent, all the composed bMSCs has to be consistent. Otherwise, if
there is any bMSC that is not consistent, it implies that the HMSC path cannot be

consistent.

According to Definition 4 in [26], a simple path 1s consistent if and only if the Iposet,
obtained by composing sequentially all the bMSCs Iposets, has a timed trace. If a bMSC
in a path of HMSC is not consistent, there is no timed trace in the bMSC. Thus, when it is
combined with other bMSCs to form a simple path, the composing lposet will not have a

consistent timed trace.

For example, in Figure 4.1, to make HMSC H4 consistent, both MSC N5 and N have to
be consistent. Because of the inconsistency of MSC Ng, there is no timed trace in MSC
Ng that conforms to the time constraint requirements. Therefore, there is no timed trace in
HMSC H4 when the two bMSCs are sequentially composed together. The HMSC is not

consistent in this case.

To facilitate further discussion in differentiating the type of inconsistencies of simple
paths, we extend the concept of simple path into simple path with loop (called flow path),

loop path, and simple path without loop (called combinational-flow-loop path).

Definition 6 Let H = (S,D,L) be an HMSC. 4 flow path of an HMSC is defined as a finite

sequential composition of node sys;...s, where sy is the start node; s, is the end

node; (s;,s) & D, in which s; #s;, if i #], s;€ S, s5;,€ S, 0<i< j<n; and (sysi+;) € D.

68

A flow path begins with a start node and end with an end node. Further more, there are no

node(s) in loop(s). Therefore, a flow path contains only a finite node of paths.

HMSC H4 in Figure 4.1 is an example of an HMSC with a flow path {N;N4}. The HMSC

is sequentially composed of MSC N; and N, without loops.

HMSC H4
v MSC Na MSC Ny
i j i i
s@[2.3] — L] 5:@15,10] —
12l # @[4.5] 1.2l # @[15,16]
41 , T2 s
"""""""""""""""""""""""""""""""""""""

Figure 4.1 An inconsistent HMSC with an inconsistent bMSC

An alternative composition of an HMSC can be decomposed into two flow paths. For

example, the HMSC H?2 in Figure 2.15 can be decomposed into two flow paths {L,;} and

{L>}.

Definition 7 A loop path is defined as a sequence of nodes s;...s,, in which s is the start

event, (s;, Si+;) € D, 0 <i=<n; the path can end a loop such that (s,,s;) €D.

A loop path is a simple path ending with a loop. The HMSC in Figure 2.16 is an example

of a loop path. The HMSC has only one path where MSC M repeats infinitely.

69

Definition 8 4 combinational-flow-loop path is a sequence of nodes s;...s,, in which s;
is the start event, s, is the end node, and there are nodes s; and s; such that (s;,s;)) €D, s; #

s, ifi#j, and s;€8§, s;€S, 0<i<j<n

An example of a combinational-flow-loop path with a node in a loop is shown in Figure
4.2. The node bMSC N5 is in a loop followed by bMSC Ny and an end node. Another
example of a combinational-flow-loop is shown in Figure 2.6. The connection point is a

node 1n a loop but also in the simple path {s/, 52, connection point, s4, end node}.

We can check the time inconsistency of a path in an HMSC according to the type of the
path. Furthermore, we can apply different correction policies and strategies according to

the type of inconsistent paths.

A loop path and a combinational-flow-loop path are most often used to express scenarios
where the bMSCs in the loop will repeat in an infinite number of times in HMSCs. We
discuss this type of time inconsistency in the following section first, and then we discuss

the inconsistency of normal path.

Loops in an HMSC may cause inconsistency if events in a loop are constrained by
absolute time requirements. In an HMSC, a loop path generates an infinite number of
paths. When a loop is repeated, an HMSC is composed sequentially of bMSCs. All the

occurrences of events in a bMSC are constrained by their time constraints. The absolute

70

time constraint of an event and the relative constraint between two events are not changed

in the iteration of the loop.

Intuitively, if the upper bounds of all the absolute time constraints are infinite in a
consistent bMSC, events in the bMSC can be repeated infinitely without violating their

absolute and relative time constraints in the discrete time domain.

HMSC H5
MSC N MSC N,

s1@[2,10].

Figure 4.2 An inconsistency HMSC path with a node in a loop

In the combinational-flow-loop path H5 as described in Figure 4.2, the HMSC HS can be
decomposed into a simple path {N5 - Ns}. The N stands for the MSC N; in a loop and
will repeat an infinite number of times. If the MSC Ns does not contain absolute time
constraints, the instance i can send a message m; an infinite number of times and the
HMSC describes an infinite number of paths NsNg, NsNs5Ns... etc. However, the absolute
time constraint @[2,10] restricts instance i to sending message m/ only 9 times because
our time domain is fixed to non-negative integers. Then all the paths N5'Ns (i>9) are not

consistent.

71

Moreover, the consistency of such a combinational-flow-loop path may also be affected
by the absolute time constraints of the bMSCs following the loop. Due to the absolute
time constraint in MSC N, the message m2 must be sent within time [3,8]. Since sending
message ml has to occur before sending m2, mi can only be sent within time [2,7]. That

is 6 times at most. So, all the paths Ns'Nj (i>6) are not consistent.

Based on the intuitive analysis of the examples above, we describe a basic requirement of

HMSC consistency of loop path as follows.

If an HMSC is strongly consistent, all events of the bMSC in every loop path must have
mfinite upper bounds in their absolute time constraints so that there will always be time
points for the events when the loop is repeated. Moreover, if an event e is in a bMSC that
follows a loop and the event e occurs causally after an event fin the loop, the occurrence
time of e has to be later than the occurrence of . The upper bound of the absolute time

constraint for e has to be infinite also.

For example, in the HMSC H5 of Figure 4.2, the upper bounds of event s; and »; in
bMSC Ns have to be infinite to keep the loop consistent; moreover, the events s, and r; in
bMSC Ng are causally after the event s; and 7, in the loop. The upper bounds of s, and r,

have to be infinite also to keep the HMSC time consistency.

In a simple path of an HMSC, the consistency of each bMSC component does not

guarantee the overall consistency of the HMSC. For example, the HMSC H6 in Figure

72

4.3 consists of a sequential composition of MSC N; and MSC N;. The time constraints in
MSC N; and Ng are consistent respectively. However, when MSC N; and N are
composed sequentially, the absolute time constraints of events s; and s, contradict their
local directed order along instance i lifeline, and the absolute time constraints of events r;
and r, contradict the local directed order along instance j lifeline. Therefore, the HMSC is
not consistent even though the bMSC components are consistent. Additional work should

be done to ensure the consistency of the HMSC.

HMSC H6
MSC N, MSC Ny

i j i j
5@15.10] — 5@[2.3].— —

[1.2] ¢ [1,2] ¢
" @[6.8] F@4.5]

A

Figure 4.3 An inconsistent HMSC with time conflict between bMSCs

To determine the cause for inconsistency in a simple path of an HMSC, we need to check

every sub-simple path also. A sub-simple path is a sequential part of the simple path.

Definition 9 Let H = (5,D,L} be an HMSC, and let a simple path be soSi...Si.iSiSi+1...51.15;

Si+1...Sn. A sub-simple path is a sequential of node s;5+;...5,.18;, in which (s;, si+1) € D, s; #

s, ifi #j, si€S, s;€8,and0<i< j<n

73

HMSC H7

MSC Ng
R i |
$@[5.7] I
[1.2] ¢
1 @[5, 8]

MSC N10 MSC N11

@3] — s @[11]

1,2 [1.2] #
na ¢ @I4,5] R@[2,3]

Figure 4.4 An inconsistent HMSC with a simple path

Proposition 10 A4 simple path of HMSC is consistent if and only if all of its sub-simple

paths are consistent.

Proof. The proof'is shown in Appendix B.5.

For example, in the HMSC H7 of Figure 4.4, the consistency of HMSC needs all the

stmple sequential sub-simple paths {NoN,o}, {N;oN,; i}, {NoN;pIN;;} to be consistent.

Proposition 11 70 find out the causes of the inconsistency of a simple path composed of
n consistent bMSCs sequentially, we have to check the sub-simple paths n % (n-1)/2

times.

Proof. The proof is shown in Appendix B6.

74

For example, in Figure 4.4, bMSCs Ny, Ny, and N;; are consistent, and their reduced
absolute time constraints can be calculated by applying the FW Algorithm to those
bMSCs. However, when they are composed sequentially to form one HMSC, we check
sub-simple paths {NoNjo}, {N1oN;i}, and {NoN;oN;;}. We get the result that sub-simple
path {NyN;y} is inconsistent, sub-simple path {N,oN;;} is inconsistent, and sub-simple

path {NoN,;oN,,} is inconsistent. Therefore, there are 3*2/2 =3 checking processes.

The strategies used to correct the inconsistent HMSCs are applied according to the
decision of the MSC specification designer. Based on the consistency result report of sub-
simple paths, the MSC designer can judge which bMSCs cause the inconsistency. Then,
all the absolute time constraints of the bMSCs are removed, and a new timed lposet is
composed based on the new specification with the changed timing requirement. And then
the FW Algorithm is applied to the new bMSC. The reduced absolute time constraints
can be achieved if the new Iposet is consistent. Otherwise, a new correction policy needs

to be further applied until we get a consistent one.

4.3 Algorithms to correct the inconsistency for HMSC

If an HMSC is inconsistent- or weakly consistent, to ascertain the cause of the

inconsistency and then to correct the inconsistency, we first check every bMSC and

correct any inconsistent bMSC. Next we decompose the HMSC into paths; we check the

time consistency of every simple path. Based on the type of the path, different correction

75

policies are applied to any inconsistent ones until a consistent path is obtained. This

procedure can be achieved in the following steps:

Step 1: We find out all bMSCs by using Deep-first-search (DFS) algorithms to traverse
the directed graph of the HMSC with the bMSCs as nodes. Then, we check the
consistency of every bMSC and correct the inconsistent bMSCs using algorithms as
described in Chapter 3.

Algorithm: Check&Correct bMSCs()

For (each bMSC) do
If (the BMSC is not consistent) then
Travse graph to find all bMSCs;
Apply bMSC Checking&Correction Algorithms;
Apply Floyd Warshall Algorithms to get reduced absolute time constraints of the bMSC;
CorrectinconsistentHMSCPath()
End If
End For

End Algorithm

Step 2: We traverse the HMSC to determine all simple paths and check the consistency of

each path and correct the inconsistent paths.

If a simple path ends with a loop or it is combinational-flow-loop path, we determine

whether all the absolute time constraints of events of bMSCs in the loop has infinite

upper bounds and we also determine whether the upper bounds of events reached from

76

the loop are also infinite. If they are not, we have to correct their upper bounds so that

they are infinite.

If a simple path does not have a loop, we compose all bMSCs of the path into a bMSC
and check its consistency. If it is not consistent, we apply error detection algorithms in
the following way: we combine every two sequential bMSCs into one bMSC and check
the bMSC consistency; we combine every three sequential bMSCs into one bMSC. until
all n sequential bMSCs of the HMSC form a bMSC and ascertain the bMSC consistency.
After reading the error messages of inconsistency, a designer makes a judgment about
which bMSCs cause the inconsistency, and inputs the names of the bMSCs that are
changeable. The absolute time constraints of events in the changeable bMSCs are
removed and a new HMSC path is formed. The new path is applied the checking and

correction algorithms until it becomes consistent.

Assume an HMSC is inconsistent or weakly consistent, the detailed algorithm for

correction is as follows.

Let Simple_Path[n] be the path sequentially composing of bMSCs.
Loop__ Path[n] be the path with a loop.
S be the stack to hold node bMSC.
Algorithm: CorrectinconsistentHMSCPath()
Travse Graph To_Find simple Path();
For (Each simple_path in Loop_Path[n]) do

For (each node s such that s& Loop Path) Do

77

For (each event e; in s) Do
If ubr; # o then
Assign ubr; =
End IF
End For
End For

End For

For (Each path in Simple_Path{n]) do
For (Each path in Loop_Path/n]) do
Calculate the Afetr loop Path
For (each node s such that s€ After loop Path) Do
For (each event e; in s) Do
If ubr; + oo then
Assign ubr; = oo
End IF
End For
End For
End For

End For

For (Each path in Simple_Path{n]) do
* For (each node x in the path from begin to the second node to the end) do
For (next node to x in the path to the end) do
1. Check the simple path consistency
2. Input which bMSCs are changeable, and apply Step-by-step
correction algorithms to correct the bMSC

End For

78

End For

End For

Algorithm: Travse_Graph_To Find Path()

S.Push(beginning node),

For (each neighbor w to vertex v) do
If (there is an element x == w and x € §) then

Put elements from x to the top element in the stack S into Loop Path
End If
S.Push(w)

End For

IF (top element x == end element of the graph)
Put elements in the stack to Simple_Path

End IF

S.Pop()

End Algorithms

In the aforementioned algorithms, Check&Correct_bMSCs checks the time constraints of
each node. For each node, in the worst case, the complexity of checking and of correction
of the bMSC inconsistency is O(n*). Therefore, if there are m bMSCs, the complexity is

O(m><n4), where m 1s the number of bMSCs, and n is the event number in a bMSC.

In Step 2, in the algorithm Travse Graph_To Find Path, the deep-first-search

complexity is ® (1 + n), where 1 is the edge number, n is the vertex number {7]. Because

n>1 in HMSC graph, the overall complexity is © (n).

79

The algorithm CorrectInconsistentHMSCPath checks the stmple path in a mx(m-1)/2,
where m is the number of bMSCs. The complexity of checking and of correction of the
bMSC inconsistency is O(n*); therefore, the complexity is O(m® x n*). If there are x loop
paths; each path has y bMSCs; each bMSC has n events. The complexity is O(x X y X n)
= O(|z]’), where |z| is the maximum number of X, y, and n. Therefore, the overall

complexity of algorithm CoorectinconsistentHMSCPath is O(m2 x nh).

In summary, the complexity in the two steps of the correction of the inconsistency is

O(m2 ><n4) , where m is the number of bMSCs, and n is the event number in a bMSC.

We take HMSC HS8 in the Figure 4.5 as an example to illustrate the algorithms. The
HMSC HS8 is composed sequentially with bMSCs N;,, N3 Nis and Njs. We apply the

checking and correction algorithms as follows.

HMSC H8 MSC Ny, MSC Ny3

s:@[3,10]

MSC N14 MSC N15

$:@[2,6] " s«@[4.5]

Figure 4.5 An HMSC with a flow path

Step 1 checks the consistency of all the bMSCs based on the algorithm in Chapter 3.

80

Step 1: Check&Correct_bMSCs
bMSC N;; is consistent.
bMSC N,; is consistent.
bMSC N, is consistent.

bMSC N,s is consistent.

In Step 2, the HMSC is traversed to find all paths. The path consistency is checked based

on the type of the path.

Step 2. Traverse_Graph _To Find Path
Sequential Simple Path[l] = {N; N3N N;s).
CorrectinconsistentHMSCPath.
Sequential Simpe Path[1]= {N;-N;;N;4N;s} is not consistent.
{N;>N;3} is consistent.
{N3N4} is consistent.
{N14N;s} is consistent.
{N12Nj3N .} is consistent.
{N3N N5} is consistent.

{N;>N ;3N N5} is not consistent.

After doing an analysis of the results, the designer decides to correct the MSC NI2 or
MSC N5 and gets the following results:

Solution 1: If the MSC designer decides that bMSC N> is changeable, the algorithms will
calculate that bBMSC Ny, for event s, @[1, 2], ri@f2, o).
Solution 2. If the MSC designer decides that bMSC N5 is changeable, the algorithms will

calculate that bMSC N5 for event s @6,), r{@[7,).

81

4.4 Discussion

There are several causes for time inconsistency in HMSCs. It is necessary to ensure an
HMSC strongly consistent before it is used in system design and implementation. In
order to change weakly consistent and inconsistent HMSCs so that they become strongly

consistent, we have to find all the inconsistent paths or sub-paths.

An HMSC can be divided into loop paths, combinational-flow-loop path, and flow paths.
In loop paths and combinational-flow-loop paths, the upper bounds of all the events in
the loop(s) have to be infinite in order to keep the loop consistent. In the flow paths, the
sub-simple paths have to be checked to detect all the potential bMSC nodes that cause the

inconsistency. The correction strategies are then applied to the bMSCs on the paths.

Our approach can give a recommendation to make the HMSC strongly consistent. The
tool MSCTICC implements HMSC correction algorithms based on the approaches

proposed in this chapter.

82

Chapter 5

The tool MSCTICC and case studies

5.1 The tool MSCTICC overview

The algorithms described in the previous sections have been implemented as a tool
named MSCTICC in C++. We reused the work of MSC2SDL of the Telesoft Research
Lab at Concordia University. The parts of the works that have been reused are the bMSC

and HMSC parser, the event builder, and the event-order-table builder [24].

We use the MSC-2000 standard textual formats to represent the MSC specifications with
time constraints. The input specifications are either bMSCs or HMSCs. The main

modules and sub-modules are shown in Figure 5.1.

The functionalities of the main module and sub-module are as follows:
(1) Dispatcher: distributes input of bMSCs or HMSCs into the proper processing path
according to the type of the MSC.
(2) bMSC Processor: analyzes bMSCs.
- bMSC Parser: checks the syntax of the input bMSCs.
- Event Builder: builds the internal presentation of the bMSC events.
- Enhanced-event-order-table Builder: builds an enhanced event-order-table with

time constraints.

83

(Ams'\élsgasmsc)

MSCTICC Architecture v
Dispatcher
Y A
bMSC Processor HMSC Processor
————————————— - e A
: 1. bMSC Parser : : 2. Event Builder | i 1.HMSC Parser [2. Graph-Builder '
_____________ B U (R SO
[3. Enhanced-Event- ! [LMSC Processqr | |4 Global_Event_ 1
| _order-table Buider_| | PMOC Processor | order_Table_Builder |

______ e N 2. Paths- |
| 1. Distance-graph- | [2. Time-Consistency- | ! 1. Path Decomposer 1| Consistency-Checker |
| _matrix-generator , | Checker | oo T T

_______ | TimSCgrn\AsiSsct:enc | 4. Inconsistent- |
| 3. Inconsistency- a Inconsistency- | IL __Processor :l _ _J”L E’fttDEQE)SirJ

| MSC-Diagnoser [| Correction-Processor | | | =2 = -2 — — —— .=
—————— - — | 5. Inconsistent-Path- |

| Correction_Processor |

]

Consistent MSCs

Figure 5.1 The MSCTICC tool architecture

(3) bMSC Time Consistency Processor

- Distance-graph-matrix-generator: generates a distance graph matrix based on the
enhanced event-order-table.

- Time-consistency-checker: applies the Floyd-Warshall algorithm on the Distance-
graph-matrix.

- Inconsistency-bMSC-diagnoser: lists all the inconsistent cycles in the bMSC for a
system designer to decide correction policies.

- Inconsistency-correction-handler: applies different policies to the bMSC until it

finds a consistent bMSC.

84

(4) HMSC Processor:

- HMSC Parser: checks the syntax of the input HMSCs.

- Graph Builder: builds the internal presentation of HMSCs.

- Global Event Order Table: merges individual event order tables into a global one.

(5) HMSC Time Consistency Processor:

Path Decomposer: decomposes an HMSC into different paths.

- Path-consistency-checker: checks the consistency of each path according to the
type of the path, such as a loop path or a sequential path.

- Inconsistency-path-diagnoser: Lists the inconsistent loop paths and the sub-paths
of each sequential path for the designer to apply the correction policies.

- Inconsistency-correction-handler: applies the change policy to the bMSCs of

different paths until the HMSC becomes a consistent HMSC.

The execution flows are described as follows.

First of all, the Dispatcher analyzes the input type files. Then,

(1) If the input is a basic MSC file, the control flow goes to the bMSC Processor. The
bMSC Processor parses the inputs, checks the syntax of bMSCs, and then builds the
internal presentation of MSC events and the Enhanced-event-order-table. Next, the
system transforms the table into a distance graph matrix and applies Floyd-Warshall
algorithms to check if the bMSC is consistent. If it is not, the system lists all the negative

cycles of the system to provide a decision choice for the system designer. The designer

85

then applies different correction policies to the distance graph matrix and checks the
consistency on the new bMSC recursively until the bMSC becomes consistent.

(2) If the inputs are a high level MSC file and a set of basic files, the Dispatcher module
sends them to the HMSC parser, which checks the syntax of the HMSC. The HMSC
Processor builds the internal presentation of the HMSC as a graph and then calls the
bMSC Processor to process each referenced bMSCs as described in bMSC processing.
Next, the HMSC Processor combines individual enhanced-event-order-tables into a
global one. The system decomposes the specification into different paths and checks the
consistency of each path. If there are some paths that are not consistent and if the path
has a set of bMSCs within a loop, the corrections are applied to the absolute time
constraints of all events within the loop; if the path is a sequential path, the designer
checks the errors message and applies the correction policy on some bMSCs until the

path becomes consistent.

5.2 Case studies

We present two applications in this section.

5.2.1 Test case 1 — The automatic call back service

In this case, we study one feature of interaction IN service. Automatic Callback allows a

user to easily call another user who is often on the phone. When a caller dials another

internal extension and finds it busy, the caller dials some digits on his phone or presses a

86

special Automatic Callback button. The caller’s phone will try to connect automatically
to the other phone in a loop way. When the called person hangs up, the phone will give a
message to the caller’s phone, and the caller gets a special ring. This feature saves a lot of

time by automatically retrying the call until the extension is free.

The time constraints are specified in the HMSC. In the MSC tryl, the sending event e/
should happen in the absolute time constraint [3, 10] and the receiving event should
happen in [4,12]. The MSC busyresponsel specifies that the first send event e/ should be
in the time range [3, 5]. In the MSC Aonhook, in instance A, the second sending event e2
should be in the time constraint [2, 6], the receiving event is in [3,8]. The MSC Ring

specifies that the receiving event e3 in instance 4 should be at [4, 5], the sending event e4

is in [6,10].
MSC try1 A B MSC try2 B
HMSC CallBack Calling Called Calling (Called
party party party party
e1@[3,10] oo Fg - e1@(3,10]

{1.2]

MSC busyreiPZ

Calling
party

MSC Aonhog\k MSC ring

B] B
Calling Called Calling Called
party party party

release e3@[4,5}------
ringback

e4@[6,10]

Figure 5.2 A test case for HMSC CallBack

87

The running result is shown in Table 5.1.

Table 5.1 The running result of HMSC CallBack

(1) Checking HMSC time consisyency:
2) Path 0 is: tryl busyrespl Aonhook try2 connect ring is not consistent.

3) The current path is inconsistent.

4) Under the current path,Before&InLoopPath 0 is: tryl busyrespl Aonhook try2 busyresp2 is not
consistent.

) L e B o e o S ee O

(6) Conclusion: The HMSC: callback. hmsc is inconsistent.

@) a2 B O

(8) The HMSC is not stronly consistent.

) Please follow the following message to correct the specification.

(10) In a loop, the upper bound of event el in bMSC try2 is not infinite.
(1) Then, set the upper bound of event el in bMSC try?2 to infinity.
(12) In a loop, the upper bound of event €2 in bMSC try?2 is not infinite.
(13) Then, set the upper bound of event €2 in bMSC try2 to infinity.

(14) In a loop, the upper bound of event el in bMSC busyresp2 is not infinite.
(15) Then, set the upper bound of event el in bMSC busyresp? to infinity.

(16) In a after-loop, the upper bound of event €3 in bMSC ring is not infinite
(17) Then, set the upper bound of event €3 in bMSC ring to infinity.
(18) In a after-loop, the upper bound of event e4 in bMSC ring is not infinite
(19) Then, set the upper bound of event e4 in bMSC ring to infinity.

(20) HMSC simple path: tryl busyrespl Aonhook is not consistent!!!!!!!
2 HMSC simple path: busyrespl Aonhook is not consistent!!!!!!!

(22) If press 'q' to quit, or Input the bMSC name that can be changed: Aonhook
(23) If press 'q' to quit, or Input the bMSC name that can be changed: q

(24) The recommended bMSC Aonhook event el is @[12,inf]
(25) The recommended bMSC Aonhook event e2 is @[13,inf]
(26) The recommended bMSC Aonhook event e3 is @[14,inf]
27 The recommended bMSC Aonhook event in env is @[11,inf]

(28) The HMSC is strongly consistent now.

The system decomposes the HMSC into different simple paths. After checking all simple
paths, i1t finds that some of the paths are inconsistent. We get a simple path {tryl

busyrespl Aonhook try2 connect ring} is not consistent in line 2, and a combinational-

88

flow-loop path {tryl busyrespl Aonhook try2 busyresp2} is not consistent in line 4.

Therefore, we get the conclusion that the HMSC is inconsistent as indicated in line 6.

The system traverses the HMSC to find all the bMSCs, and then checks all the bMSCs,
and does not find any that are inconsistent. Therefore, the system moves to check and

correct the paths’ inconsistency.

The system finds a loop {try2 busyresponse2}. It finds that the upper bounds of events e/
and e2 in MSC try2, and e2 in bMSC busyresponse2 are not infinite. Therefore, it sets
these upper bounds to infinity. It also finds that the upper bound of event e3 and e4 in
bMSC ring is not infinite. Because the bMSC ring follows the loop path {try2
busyresponsel}, the upper bounds have to be set to infinity. These messages are clearly

indicated from line /0 to 19.

Then, the simple path {zryl busyresponsel Aonhook try2 ring} is checked. From the
diagnostic messages of line 20 and 2/, the MSC designer can easily decide that the bMSC
Aonhook causes the inconsistency in this path. The designer inputs the bMSC name into
the correction procedure in line 22 and 23. The system obtains the time constraints of the
events of bMSCs in line 24 to 27. Then, the system concludes the HMSC is consistent as

indicated in line 28.

89

5.2.2 Test case 2 — A communication setup protocol

This case describes a communication protocol involving the connection request, confirm
and communication process. When a system is in Disconnected state, a connection
request is initiated. As described in bMSC Connection _request, instance i sends request
message m; to instance j, and the instance j sends back an acknowledge message m; to
instance i. The absolute time constraints are specified for the four events. The absolute
time of send event F; for message m; 1s @)[3,4], and the absolute time of receive event
E; for message m; is @[4,5]. The absolute time of send event E, for message m; is

@] 6,7], and the absolute time of receive event E, for message m/ is @[1,2].

In the Wait for Response state, the connections is confirmed. In the MSC
Connection_Confirm, the instance i sends two confirm messages m; and m; in a relative
time &[1,1]. For the second message m;, the send and receive time constraint is &[2,2].
The relative time for sen_dv event £, of the first message and the receive message of the

second message m; is &[2,2].

Then the system is in the Connected state, and communications begin. As MSC
Communication describes, the instance i sends packages m; and m; to instance j, and
receives messages m and my from instance j. The relative time constraints are specified

in Figure 5.3.

After applying the MSCTCC tool, we get the following result.

90

HMSC Conn_Setup_Communication

Disconnected

MSC Connection_request MSC Communication

S EI0] N

CMSC Connection_request>

[12]

Y e@i4s)

[12]
E.@[8.7]

L3

< Wait_for_Response > E. @[2

v .

(MSC Connection_confirm)

Connected

L5

CMSC Communication)

Au

Figure 5.3 A test case for HMSC Connnection_Setup& Communication

Table 5.2 The running result of HMSC Connnection Setup& Communication

) Checking HMSC time consisyency:

2) Path 0 is: Connection_request Connection_confirm Communication is not consistent.
3) The current path 1s inconsistent.

6] I B B I B B o O
(5) Conclusion: The HMSC: Conn_Setup Communication.hmsc is inconsistent.

6) L e o e
(7N The HMSC is not stronly consistent.

®) Please follow the following message to correct the specification.

9) Cycle E2 E1 EO E2 is inconsistent

(10) Cycle E3 EO E2 E3 is inconsistent

(11) Cycle E4 EO E2 E4 is inconsistent

(12) Basic MSC Connection_request is not consistent. Please correct it.

(13) Please input 'q’ to quit, or input a policy number(0,1,2,3,4): 1

(14) Input the instance name to apply Policy 1: i

(15) The events in this instance are E1 E2

(16) Please input the event name with absolute time constraint in this instance: E2

(17 The recommendation for the correction is:

(18) The absolute time constraint of event E2 is @[7,inf)

(19) Cycle E4 E2 E1 E4 is not consistent.

(20) Basic MSC Connection _confirm is not consistent. Please correct it.

(23] Please input 'q' to quit, or input a policy number(0,1,2,3 4): 4

(22) Input the first event name: E1

(23) Input the second event name: E4

24) The relative time constraint between events E1 and E4 &T[E1,E4] is [3,3].

(25) Cycle E6 ES E1 E2 E6 1s not consistent.

(26) Cycle E7 E3 E2 E6 E7 is not consistent.

27) Basic MSC Communication is not consistent. Please correct it.

91

(28) Please input 'q' to quit, or input a policy number(0,1,2,3.4): 2

29 Input the instance name to apply Policy 2: 1

(30) The events in this instance are E1 E2 E3 E4

31) Input the first event name: E1

(32) Input the second event name: E2

(33) The recommended relative time between events E1 and E2 &T[E1,E2] is [9,12]
(34) Cycle E7 E3 E2 E6 E7 is not consistent.

35) Still inconsistent. Continue to apply Policy 1, 2, 3, or 4.

(360) Please input 'q' to quit, or input a policy number(0,1,2,3,4): 3

37) Input the message name to apply Policy 3: m2

(38) The send event name : E6

39) The receive event name: E2

(40) The last recommendation to apply Policy 2 correction is as following:

41) The relative time constraint between events E6 and E2 &T[E6,E2] is [2,3].

(42) The HMSC is strongly consistent now.

The HMSC is decomposed into only one flow path. The time consistency checking
algorithms obtain an error message, which indicates that the flow path
{Connection_request Connection_confirm Comminication} is not consistent as indicated

in line 7.

The system traverses the HMSC to find all the bMSCs, and then checks all the bMSCs,

and finds some inconsistent bMSCs and begins to correct them.

The system, then, checks all bMSC nodes one by one. The causes for the inconsistency
are listed in line 9, /0 and /1 for bMSC Connection request. The MSC designer decides
to apply bMSC correction Policy 1 to the bMSC on instance i and on the events £;. Then
the system applies correction algorithms and obtains the events absolute constraints in

line /8. Then, the MSC Connection_request is consistent.

92

The system continues to check the next bMSC and ascertains that the MSC
Connection_request 1s not consistent. The cause of the inconsistency is given in line /9.
The MSC designer decides to apply bMSC correction Policy 4 on events E; and E,.
Therefore, the system gives the correction time constraints on the relative time constraint

between E; and E, 1n line 24.

The system detects that the bMSC Communication is not consistient. The cause is listed
in lines 25 and 26. The MSC designer decides to apply bMSC correction Policy 2 to
events on instance i between £/ and E2. Therefore, the recommended relative time
constraints between E/ and E2 are listed in line 33. However, the system gives another
inconsistent cycle as indicated in line 34. The designer decides to apply Policy 3 to the
message m2. The designer gets the recommendation of the relative time constraint on

sending and receiving events as indicated in line 4/.

The system checks the simple of HMSC and finally gets a consistent specification as

indicated in line 42.

5.3 Strengths and limitations of the tool

In the above two cases, we apply the tool MSCTICC in the following way.

First, we check the consistencies of all the bMSCs. If a bMSC is not consistent, we can

track back the negative cycles existing in the bMSC. According to the causes in the

93

bMSC, we apply four policies or the combination of the policies to correct the bMSC

until we get consistent bMSC.

Then, we check the HMSC path consistency. If there is a loop path or a combinational-
flow-loop path, the tool will set all the upper bounds of the events in the loop to infinity.
A simple path is then checked with an algorithm to ascertain if the simple path is
consistent. All the sub-paths are checked and the possible inconsistent bMSC nodes are
listed for the designer to give the correction possibilities. The designer then relaxes the
absolute time constraints of the bMSCs, and a path with new timing requirements is

applied by the checking algorithm until the path becomes consistent.

In this way, all the bMSCs and all the loops and sequential paths are made consistent.
The designer gets a recommendation about how to change the MSC specification to meet

the timing requirement.

There are strengths and limitations:

Strengths:
1. The tool handles the bMSC relative and absolute time constraints. It handles
inline expressions including seq, alt, loop, and opt.
2. The tool handles the HMSC with seq, alt, and loop operators.
3. The tool can check the consistency of bMSCs and HMSCs,

4. The tool gives the causes for inconsistency and initiates policies for correction,

94

5. The consistent MSCs output would be an input for the MSC to SDL translation.

Limitations:

1. The tool inherits the limitation of the previous works from the TeleSoft Group.
That is, this tool does not allow declarations in bMSCs. Thus it requires an msc
document to be included in the input MSC files;

2. Time constraints associated with orderable events other than input/output are not
implemented in this version.

3. In bMSCs, no nested inline expression is allowed.

4. Multi-instances for one process are not handled in this tool.

5. Only time constraints inside bMSC are considered, but the time requirement
between the bMSCs 1s not considered.

6. Timer in bMSCs is not considered in the current work.

95

Chapter 6

Conclusions

6.1 Contributions

In this thesis we have developed a tool for time consistency checking and inconsistent

MSCs diagnostics and correction.

A bMSC specification is first described as an enhanced-event-order-table with time
constraints, and then transformed into a distance graph matrix. The simple temporal order
theory is applied to the checking process for consistency analysis based on the distance

graph matrix.

The different temporal orders and time constraints have been defined and various criteria
are analyzed to find the causes for time inconsistencies for basic MSCs. By applying
different diagnostic methods to the matrix of the distance graph, we can trace back all the
negative cycles in the distance matrix. Therefore, we can exhibit which part of the

bMSCs cause the time inconsistency.

Four correction policies have been proposed for the MSC designer. If the MSC designer
decides to change an absolute time constraint on an instance, Policy 1 is applied. If the
relative time constraint on an instance is changeable, Policy 2 can be applied. If the

relative time constraints on the message pair are changeable, Policy 3 is applied. If any

96

other two events’ relative time constraints can be changed, we can apply Policy 4. The

algorithms for the correction processes are illustrated in the thesis.

As for the HMSCs, they are decomposed into different simple paths. We propose an
approach to differentiae different simple and corresponding algorithms to check the time
consistency path by path. According to the type of the simple path, different correction

policies can be applied to correct the paths until consistency is reached.

We provide a very innovative and promising tool based on approaches discussed in the
thesis. The tool can help the MSC designer to obtain a consistent MSC specification. This
way, system development can be made much easier, and errors can be detected and fixed

at every stage of the software development.

6.2 Future work

Our approaches so far cover only a subset of the MSC-2000 specifications. There is still

further research to be done. This may cover:

¢ Allowing MSC references in bMSCs, HMSC references in HMSC, etc. Parallel
operators of inline expressions and HMSC would also be interesting extensions.

Further, the exc inline expression may be further developed.
e External date type: Current work allows only for limited date types and data

manipulation, such as integer, time and simple operations. Complex systems need

97

more advanced data types and operations that may be defined in other languages,
such as C and ASN.1. Handling imported data definitions and functions in MSC
will make our approach more powerful.

HMSC specification with time constraints in a finite loop is not handled by our
approach. Further investigations need to be carried out.

The consistency of time constraints in MSCs raises new implementability issues.
Further work should be done to investigate whether other kinds of time
constraints can be guaranteed under a given architecture.

The time constraints between bMSCs in an HMSC should be explored in future

work.

More complicated cases with time requirements need to be tested.

98

Bibliography

[1] R. Alur and D. L. Dill: A theory of timed automata, Theoretical Computer Science,
Vol. 126, Number 2, pp. 183-235, 1994.

[2] R. Alur, G. J. Holzmann, D. Peled: An analyzer for Message Sequence Charts,
Processing of 2" International Workshop on Tools and Algorithms for the Construction
and Analysis of Systems(TACAS’96), LNCS 1055, pp. 35-48, 1996.

[3] R. Alur, K. Etessami and M. Yannakakis: Inference of Message Sequence Charts,
22™ International Conference on Software Engineering, pp. 304-313, 2000.

[4] J. Cameron, N. D. Griffeth, Y. J. Lin, M. E. Nilson, W. K. Schnure, H. Velthuijsen: A
Feature Interaction Benchmark for IN and Beyond. Feature Interactions in
Telecommunications Systems, ISO press, pp. 1-23, 1994.

[5] R. T. Casley: On the specification of concurrent systems, Ph.D Thesis, Stanford
University, 1991.

[6] T. H. Cormen. C. E. Leiserson, R. L. Rivest: Introduction to Algorithms, second
edition, MIT Press, pp. 120-134, 2001.

[7] G. Cugola, C. Ghezzi: Software Processes: A retrospective and a path to the future,
Software Process: Improvement and Practice, Vol.4, No.3, 1998.

[8] R. Dechter, I. Lmeiri, J. Pearl: Temporal Constraint networks, Artificial Intelligence
49, pp. 61-95, 1991.

[9] E. Harel, O. Lichtenstein and A. Pnueli: Explicit clock temporal logic, 5™ IEEE

Symposium on Logic in Computer Science, pp.402-413, 1990.

99

[10] ITU-T, Message Sequence Chart — MSC-2000, ITU-T Recommendation Z.120,
November 1999.

[11]ITU-T, Specification and Description Langage — SDL-2000, ITU-T
Recommendation Z100, November 1999.

[12] F. Khendek, S. Bourduas and D. Vincent: Stepwise Design with Message Sequence
Charts, Proceedings of FORTE’ 2001, Cheju Island, Korea, August 2001.

[13] R. Koymans: Specifying real-time properties metric temporal logic, Real-time
Systems, 2(4) , pp.255-299, 1990.

[14] R. Koymans, J. Vytopyl and W.P. de Roever: Real-time programming and
asynchronous message passing, 2™ ACM Symposium on Principles of Distributed
Computing, 187-197, 1983.

[15] S. Leue and H. Ben-Abdallah, MESA: Support for scenario-based design of
concurrent systems. In Proc. 4™ Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems, LNCS 1384, pages 118-135, 1998

[16] V. Levin, D. Peled: Verification of Message Sequence Charts via Template
Matching, FORTE, pp. 139-154, 2000.

[171 Z. Manna and A. Pnueli : The Temporal Logic of Reactive and Concurrent Systems,
Specifications, Springer-Verlag, pp. 150-180, 1992.

[18] Z. Manna and A. Pnueli: Modes for Reactivity, Acta Informatica, 30, pp. 609-678,
1993.

[19] J. S. Ostroff: Temporal Logic of Real-time Systems, Advanced Software

Development Series, Research Studies Press (John Wiley & Sons), England, 1990.

100

[20] K. H. Rosen: Discrete Mathematics and its Applications, McGraw-Hill, 5-th edition,
ISBN 0-07-242434-6, 2003.

[21] C. A. Shaffer: A Practical Introduction to Data Structures and Algorithm Analysis,
Second Edition, Prentice Hall, p360-361, 2000.

[22] J. M. Wing: A Specifier’s Introduction to Formal Methods, IEEE Computer, 23(9),
pp- 8-24, 1990.

[23] L. X. Wang: Implementation of Time Consistency of MSC-2000 Specifications,
Internal Report for NSERC Undergraduate Research, Department of Electrical and
Computer Engineering (ECE), Concordia University, Summer 2003.

[24] X. J. Zhang: The MSC2SDL2004 Tool User Guide, Department of Electrical and
Computer Engineering, ECE, Concordia University, Summer 2004.

[25] X. J. Zhang: Automatic Generation of SDL Specifications from Timed MSCs,
M.A.Sc. Thesis, Department of Flectrical and Computer Engineering, Concordia
University, 2004.

[26] T. Zheng, F. Khendek: Time Consistency of MSC-2000 Specifications, Computer
Networks, Volume 42, Issue 3, pages 303-322, 2003.

[27] T. Zheng: Validation and Refinement of Timed MSC Specifications. PhD thesis,

Department of Electrical and Computer Engineering, Concordia University, 2004.

101

Appendix A

Textual Syntax of a Simplified MSC

<msc>::=<msc statement>*

<msc statement>::=<instance name>:<instance event list>
- . - +
<instance event list> ::= <instance event>

<instance event>::=<orderable event> | <non-orderable event>
<orderable event>::={<event name><message event>|
<action>|
<timer statement>}[time<>time dest list]
<message event>::=out<message name> to {<instance name>|envl|}|
in <message name> from {<instance name>lenv}
<action>::=action<action name>
<timer statement>::=starttimer<timer name>|
stoptimer<timer name>|
timeout<timer name>
<time dest list>::=<time interval>[<event name>][,<time dest list>]
<time interval>::=<singular time>|<bounded time>
<singular time>::= ‘[’<time point>]’
<time point>::=[@]<time value>
<bounded time>::=[@]{ ‘[’| ‘C}[<time point>],[<time>]{ ‘]’ | *)’}
<non-orderable event>::=<shared msc reference>|<shared inline expr>|<coregion>

<shared msc reference>::=reference<msc reference name>[time<time interval>]

102

<shared inline expr>::={loop[<loop boundary>] begin<instance event list>
loop end[<time interval>]|
alt begin <instance event list>
{alt<instance event list>*}
alt end [<time interval>]
par begin <instance event list>
{par<instance event list>*}
par end {<time interval>]}

<coregion>::=concurrent<orderable event>* endconcurrent

103

Appendix B

B.1 Calculate deduced order time constraints from directed order time constraints

Case 1: The local directed order time constraints and the matching pair directed order
time constraints are all specified. For a constraint graph in Figure B.1, assume that there
are (n+1) events connected by directed order s. Directed order time constraints are
Vlenel=llurl, Vi(eses)=[louzl, ..., V(ewew)=[lnu,]. Let Le; enr))=[xy] be the

deduced order time constraint(see Figure B.1(a)).

The lower bound of the deduced order time constraint can be calculated as the sum of all
the lower bounds of all the directed order time constraints, whereas, the upper bound of
the deduced order time constraint can be calculated as the sum of all the upper bounds of

all the directed order time constraints.

According to Theorem 3.1[8] we get following inequations:
urtuyt . Fu, + (-x) >0 (1)
YD) A) 20 (2)

(1): x<(u;+uy+....+uy,) (;vee Figure B.1(b))

(2): y=(l;++....+1l,) (see Figure B.1(c))

Inequations (1) and (2) stand for: I(e; e, /)= ({;+L+....+1,), (u;+ur+....+u,)].

104

Case 2: The input indirect causal order and some local directed and matching pair
directed order time constraints are specified. Let V(eg, ere))=[li+ 1, ur+;], with ke[1,n-1], be
the directed order time constraints (see Figure B.1(a)). Assume that these directed order
time constraints are given by the designer, except V(e;;e)=[l;,u;], which remains an
unknown time constraint. Moreover, assume that the directed order time constraint

I(e; e,+1) = [x,y] 1s also given.

According to Theorem 3.1 in the paper [8]:
wytuyt . g Fu, H(-x) >0 (1)
VHCE) L)+)+ A ()20 (2)

So: (3): x - (u;tus+ . up g ‘up . Hu,) < u; (see Figure B.1 (b))

(4): I; < (;+1+....+1,)-y (see Figure B.1(c))

Theses two inequations stand for the I(e; e)= x-(u;tus+.. vy ‘s +uy), (L+0H+.. .+,

) -yl

Figure B.1 Connected directed order time constraints and the deduced order

105

We can apply the All-pairs-shortest-path algorithm along the specified paths formed by
these events {e; e, es,...e,4+,}. For example, let I(e; e,+;)=[x,y] be the deduced order time
constraint(see Figure B.1(a)). When we apply the All-pairs-shortest-path algorithm along
pathe; — e; — e;—e; ... — e, — ey, we achieve the shortest path between any
events in the distance graph; therefore, we get the reduced relative time constraint
between e; and e,+;. This procedure is also applicable to Case 2. We can get any deduced
order time constraint based on the other path’s time constraint by applying the All-pairs-

shortest-path algorithm. [End of Cases]

B.2 Proof for Proposition 3

Proof of “overlapping between visual and causal order implies bMSC consistency”.

Let x and y be two events, and let x causally happens before y (see Figure B.2 (a)). Let
V{(x,y)=[{,,u;] be the directed order time constraint between x and y. Let I(x,y) = [{,,u;]
be one of the corresponding deduced order time constraints . If there is an overlapping
between [/;,u;] and [l uz] (i.e. [, u;]N[,us]#9), then u; > [and uy > 1;. So, u;+(-1;) >0
and the corresponding cycle (see Figure B.2 (b)) is a positive cycle. Moreover, u; + (-/;)
> 0 and the corresponding cycle (see Figure B.2 (¢)) is also a positive cycle. According
to the Theorem 3.1 [8], a given simple temporal problem (STP) T is consistent if and only
if its distance graph Gy, has no negative cycles. In the same way, if [/;,u,] is one of the

deduced order time constraints, the above inequalities still hold. Therefore, if all the

106

directed order time constraints and the corresponding deduced order time constraints are

overlapping, we can conclude that the bMSC is consistent, and vice-versa.

Proof of “bMSC consistency implies overlapping between visual and causal order, and

between deduced orders”.

If the bMSC i1s consistent, then there is no negative cycle according to Theorem 3.1[8].
Considering the directed order and the corresponding deduced order time constraint, it
means u; + (-/;) > 0 and u,+ (-Iz) > 0. This condition means that the directed order time

constraint and the corresponding deduced order time constraint are overlapping.

Let us assume that [/;,u,] is the directed order - time constraint, [/5,u;] is the deduced order
time constraint. Then the overlapping time constraint is [/;,u;] as shown in Figure B.2 (d)
1s the reduced time constraint. Because /,<u; as the assumption, u;+(-/;)>0. There is no
negative cycle exist in the distance graph. Therefore, the bMSC is consistent. [End of

Proof]

X X
fl1,ug} Uy
[l2,uz] -I2
y Y
(a) {b)

Figure B.2 Directed order , deduced order time constrain and their distance graph

X
-l
1
Q lz Uz

C o
Uz
@ ()

107

B.3 Proof of Proposition 4

Proof: By Theorem 3.3 (Decomposability) [8], any consistent Simple Temporal Problem
is decomposable into substructure based on the constraints in its distance graph. We
conclude that, a bMSC as a STP distance graph can be decomposed into sub-graph cycles
and further consider theses cycles’ consistency. According to Theorem 3.1{8], a given
STP is consistent if and only if its distance graph has no negative cycles. In other word,

the bMSC is consistent if and only if all these cycles are consistent.

Let a bMSC have n events, every two events can form a cycle, so there are C(n,2) cycles;
every three events can form two cycles, so there are C(n,3) cycles; every four events can

form two cycles, so there are C(n,4) cycles ... every n events can form two cycles, so

there are C(n,n) cycles. Therefore, we may have (ZC(n,k)—n—l) cycles. By

k=0

theorem Z C(n,k)=2"[10], we can get: (2" —n—1). [End of Proof]

k=0
B.4 Proof of Proposition 5

Proof: Let’s consider a bMSC and its corresponding complete distance graph VG:(V,E),
where:
V={eneserese.},
E={(eg.e;), (eney), ... (enen), (ere2) (ere3). (erey)...(eres), (erer)(eres)...(eren),(ene)),
(en€2)...(enen+1)}

108

Relative time contraints are:
T(elyez):Wu:M/z(O), T(eyer)=wy=-1,",
0 0
T(epes)=wi=u;3", T(eser)=ws=Iz/),
T(€1,€n): Wln:uln(O)y T(en; e]): WnI:“ln[(O):

ey

0 0
T(en-1,€n)=Wen- 1jn= Un-yn' "> T(€m 1)W1 = ~lnn1),
Let adjacency matrix W=(w;;) represents the graph.

Also, let d,—/k) be the weight of the shortest path from vertex 1 to vertex j going through
intermediate vertices chosen in the set {/,2,..i-1,i+1,...j-1,j+2,...n} by the k steps of the
Floyd-Warshall algorithm. When k=0, the path from vertex i to vertex j has no
intermediate vertex numbered higher than 0, and therefore has no intermediate vertices at

all. Thus, d;¥=w;.

Let’s define the Floyd-Warshall’s algorithm [20] in a recursive way by :

(k)_ 4(min d,-j-(k'“, dik(k'1)+dkj("‘1)) ifk>1

Equation 1: d;; L wy if k=0

Further, let’s assume condition: d; <0 , and d;*% >0 s ...a’i,»(o)ZO where £>1. For the

pair (i, i) where i<n, let’s consider all paths from 1 to 1 whose intermediate vertices are

taken from V = {[,2,.k-1,k+1,..n}, and let p be a minimum-weight path from V;

109

furthermore, path p is simple, because we assume that weight of p is d;*” > 0 (Figure

B.3 (a)).

We break path p down into i — k and k£ — i (see Figure B.3 (b)). By Lemma 25.1[8], sub-
paths of shortest paths are also shortest paths. According to the lemma, p; is a shortest

path from i to k. Similarly, p» is a shortest path from & to i. We can conclude from

Equation 1 that dii¥ = d;*"+d,* <.

In the same way, we continue to break down p; and p; into further shortest paths p,,, p;2
and p3,, p2, until that:

. 0
n path P, di=wy= dix(),

(0), and dky=wky= dkym) s

in path p;;, dy=wu= du
in path P22, dyj:Wyj: dyj(a),

in path p;3, di=w;= dﬁ(o) as shown in Figure 10(c).

In conclusion, we can get di,-(k) = d,»x(o) + dxk(o) + dky(o) + dyj(o) + dﬁ(o) < 0, which means that
there is cycle with negative cost. This inequation indicates that the path i—x—k—y—j—i

is inconsistent.
The inconsistency sub-traces back-track searching process can be calculated based on the

predecessor matrix. The predecessor matrix P is constructed on-line just as the D matrix

1s constructed. We compute a sequence of matrices pY , pY ,....,P™ where P=P™ and

110

p,-j(k) is defined to be the processor of vertex j on the shortest path from vertex i with all
intermediate vertices in the set {/,2,...,k}.
The recursive formulation pl-j(k) is given in Equation 2:
[Y if (@ <@ +a*") AND k211)
Equation 2: p,/*= 3k i@ > @ P +d) AND k> 1)
\ & ifk=0
When k=0, a shortest path from i to j has no intermediate vertices at all. For k> 1, if we

take i—k—7 as a shortest path from i to j, the processor of ji1s k. [End of Proof]

i

(@) di*" =0 (b)dif <0 (c)

Pa

Figure B.3 The shortest path and its break down

B.S Proof of Proposition 10

Proof: Let H=(S,D,L) be an HMSC, a simple path is sequential of nodes sys;...s, (>0).

If part: If the HMSC simple path sps;...s, is not consistent, it means at least one sub-path

508 ...8, 18 not consistent.

111

Only if part: If some sub-paths are inconsistent, because a sub-simple path is a prefix of a

simple path, then the simple path would not be consistent.

If we find an HMSC simple path to be not consistent, we have to check all the sub-simple

paths time consistency and figure out the inconsistent sub-simple paths. [End of Proof]

B.6 Proof of Proposition 11

Proof: Let there be n consistent bMSCs A4;, A, A3, ..., A, as Figure B.4. When these
bMSCs are composed sequentially to form a simple path, the simple path is not
consistent. From the Proposition 10, there must be some sub-simple paths that are not
consistent. To find the causes for the inconsistency between any two bMSCs, we need to
form sub-path between 4; and 4, 4; and 43, ..., 4,.; and A,. Therefore, we have (n-1)
sub-paths. Similarly, to form three bMSCs path, we have A; , 4, and A3 , A, , A3, and A4
yeeey An2, Any, and A,, therefore, we have (n-2), and so on, until 4,, 4y, ... 4, form a
simple path. Totally, we have (n-1) + (n-2) + (n-3) +'(n—4) +...+2 +1 =n(n-1)/2. [End of

Proof]

Figure B.4 A simple path with n bMSCs

112

