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ABSTRACT

Difficulties in the Learning and Teaching of Linear Algebra — A Personal

Experience
Michael Haddad

Two different personal experiences of teaching Linear Algebra are analyzed —

(1) teaching a ;:ollege-level linear algebra course and (2) being the instructor in a pre-
designed experiment that investigates a geometric approach to the concepts of vector and
linear transformations using the dynamic geometry software Cabri-géomeétre II. The
analysis is conducted within a framework of three perspectives on students’ difficulties in
learning Linear Algebra: (a) the nature of Linear Algebra, (b) the didactic decisions made
in teaching Linear Algebra, and (c) students’ ways of thinking and their mathematical
backgrounds. The historical look at the subject’s development reveals that the content of
an undergraduate linear algebra course is often the end product of a long process of
intellectual struggle and research into deep mathematical problems with which students
may never become acquainted in the course of their studies. The experiment tries to
build up concepts using geometry instead of giving the final product, but fails to
eliminate the structural approach. As a result, students still struggled with concepts. The
detailed discussions of the situations result in an “interpretive understanding” of the
situations. Recommendations on improving college-level Linear Algebra courses, such

as the concentration on computations, and future research projects are given.

iii



ACKNOWLEDGEMENTS

[ would like to thank Dr. Anna Sierpinska, without whom this thesis would not
have been possible. Her advice, guidance, support and patience have been greatly

appreciated.

I would also like to thank Dr. Tommy Dreyfus for his advice and help during the

sessions.

I want to thank my mother Zahira, my brother Marwan and my sister Maha for

believing in me.

I would like to dedicate this thesis to the memory of my father, Samir. [ know he

is proud.

iv



Table of Contents

Abstract
Acknowledgements
List of figures

Introduction

Chapter I — A Framework of Analysis
1.1 The Nature of Linear Algebra as a Source of Students’
Difficulties
1.1.1 Historical Development of Linear Algebra
1.1.2 Consequences of a Complex Historical Development for
the Understanding of Students’ Difficulties

1.2 Methods of Teaching and Contents of Linear Algebra as a
Source of Students’ Difficulties

1.3 Cognitive Sources of Students’ Difficulties

Chapter II — The First Experience: MATH 204
2.1 Course Format and Course Content
2.2 Type of Student
2.3 Consequences of Teaching Too Many Topics
2.4 Consequences of the Axiomatic Approach
2.5 Proofs

2.6 Conclusions and Recommendations

\'s

20

21
25

26
28
29
30
36
38
45



Chapter III — The Second Experience: An Experimental Introduction

to Linear Algebra with Cabri 49

3.1 The General Overview of the Experiment 52
3.2 Detailed Analysis of the Experimental Sessions 56
3.2.1 Session I 58

3.2.2 Session II 69

3.2.3 Session III 89

3.2.4 Session IV 106

3.2.5 Session V 134

3.2.6 Session VI 160

3.3 Conclusions and Recofnmendations 177
3.3.1 Problems with the Experiment 178

3.3.2 The Role of the Instructor 183

3.3.3 Students’ Understanding 184
Chapter IV — Conclusions and Recommendations 188
References 192



List of Figures

Fig. I-1
Fig. I-2
Fig. I-3
Fig. I-4
Fig. I-5
Fig. I-6
Fig. II-1
Fig. II-2
Fig. II-3

Fig. II-4
Fig. II-5
Fig. II-6

Fig. O-7

Fig. II-8

Fig. I1I-9

Fig. II-10
Fig. II-11
Fig. III-1
Fig. II-2
Fig. III-3

Fig. ITI-4

Visual representations of a vector v and a number k in CR2
Operations in CR2

Students’ diagram for the solution of Problem 1(a)

Students’ diagram for the solution of Problem 1(b)_

Given configuration for Problem 2

Students’ diagram for the solution of Problem 2

The possibilities of going from T(v) to T(kv)

The possibilities of going from T(v) and T(w) to T(v+w)
Similar triangles are created to help visualize the preservation of
dilation in a linear transformation

Configuration at Line 77

Configuration used after Line 107

Arrows show the sides being compared in the similarity
proportion

Arrows show the sides being compared in the similarity
proportion

Configuration after line 119

Configuration for Example 3

Configuration after Line 197

A linear transformation

Diagram drawn on paper by Jack

Diagram drawn on paper by Jill

For the vector v below the horizontal line L, the SHEAR-4
macro produces S(v) to the right of v for eyes in line with L and
seeing v above L.

For the vector v below the horizontal line L, the SHEAR-4

72
73
74

76

77
79
79
84
85
92
92

96



Fig. III-S
Fig. II-6
Fig. II-7
Fig. I11I-8

Fig. ITI-9
Fig.IV-1
Fig. IV-2
Flg IV-3a
Fig.IV-3b
Fig. IV-4
Fig. IV-§
Fig.IV-6
Fig. V-1
Fig. V-2

Fig. V-3
Fig. V-4
Fig. V-5
Fig. V-6
Fig. V-7a
Fig. V-7b
Fig. VI-1
Fig. VI-2
Fig. VI-3
Fig. VI-4

macro produces S(v) to the left of v for eyes in line with L and
seeing v above L.

Configuration used in Problem 1(a) (Reflection)

Opening configuration of Problems 1(b) (Shear, where q = 1.3)
Unlabeled vector is produced using SHEAR-4 with q =0.5
Unlabeled vector to the far right is produced using SHEAR-4 with
q=-0.8

Final configuration of Problem 1(b)

Opening configuration of SHEAR problem

Students’ setup for checking for preservation of dilation
Configuration to be checked for preservation of vector sum
Vector sum is not preserved

Configuration drawn by students for Worksheet #3
Configuration drawn by Jack on paper

Configuration of the problem after axes were moved

Opening configuration of Problem 1(a)

Before (dotted) and after (solid) positions of vectors after
students moved v, to get T(v) on the parallel line

Wrong perpendicular line is drawn

Demonstration of what a projection is

Students’ solution to Problem (a)

Starting configuration for Problem (b) after discussion

T(v) is the projection of v

T(v) is the projection of w,

Opening configuration for Activity 1

Opening configuration for Activity 2

Opening configuration for Activity 3

Opening configuration for Activity 4

97
98
98

99

101
107
107
109
110
116
118
119
136

139
140
141
146
148
153
153
162
164
169
169



Introduction



My aim in this thesis is to analyze my two very different experiences as a Linear Algebra
teacher. The first experience was teaching a college-level Linear Algebra course offered
at Concordia University. The second experience was being the instruc;or in a tightly
controlled experiment in which topics in Linear Algebra were introduced geometrically
using the software Cabri-géométre II. In this thesis I plan to analyze the two approaches
to the teaching of Linear Algebra from the point of view of the difficulties that students
were encountering in each. I am going to be looking at three sources of their difficulties:
(1) the nature of Linear Algebra, (2) the way Linear Algebra is taught, and (3) how

students learn and cope with Linear Algebra.

In Chapter I, I will discuss the above sources of difficulties in greater detail, thus
setting up a framework for my analysis of the two teaching experiences. The discussion
on the nature of linear algebra will be a historical look at the subject’s development. A
forceful conclusion gained by this perspective will be that the content of an
undergraduate linear algebra course is often the end product of a long process of
intellectual struggle and research into deep mathematical problems with which students
may never become acquainted in the course of their studies. The concepts taught to
students may appear simple but, outside of their proper context of application, they
appear meaningless and incomprehensible. On top of this “objective” factor of difficulty
of the linear algebra courses, there are other elements, such as certain teaching methods

or approaches and students’ study habits and past mathematical experience.



In Chapter II, I will analyze my experience teaching the college-level course
MATH 204 Vectors and Matrices, using the “grid” of analysis developed in Chapter I. I
will discuss the course format, the type of students that take this course, and the content
of the course. Examples of student responses will illustrate my arguments, and I will

give recommendations on improving the course.

In Chapter III, I will analyze my experience as the instructor in an experiment
specially designed as a result of the concerns discussed above. The experiment was
designed by a group of researchers at Concordia University, and my roie in the project
was being the instructor during the experimental sessions. The analysis will be very
detailed account of what happened during the sessions and will involve many quotations

from the transcripts. Recommendations for future projects will also be given.

In Chapter IV, I will discuss the overall teaching of Linear Algebra and whether

the results of the experiment did really answer our concerns of the way this complex

subject is presently being taught.



CHAPTER |

A Framework of Analysis



Introduction

The applications of Linear Algebra are many and varied. These days students of
different disciplines --e.g., biology, economics, computer science, engineering, etc. -- are
now required to take linear algebra courses. As a result, students usually enroll in a linear
algebra class in their first year of undergraduate studies so as to complete the
requirements for their core courses in their respective majors. This is in sharp contrast to
the late 1950’s when mathematics majors took their first linear algebra course in the first
year of their graduate years. (Carlson, 1993) Since the course material is still as complex
as it was in the 1950’s, the students who study linear algebra today are, as Carlson (1994)
points out, “generally not mathematically mature.” From my own learning experience,
the concepts did not start to make sense to me until the third Linear Algebra course,

which I was taking concurrently with an Abstract Algebra class.

What makes the concepts of Linear Algebra so complex? Why do first-year
undergraduate students have trouble comprehending them? Is Linear Algebra being taught
to promote the understanding of these concepts? What are the consequences of trying to
learn Linear Algebra at this early stage? These questions can be separated into three
interconnected perspectives: (1) the nature of Linear Algebra, (2) the teaching of Linear

Algebra, and (3) how students learn and cope with Linear Algebra.



“The nature of Linear Algebra” suggests that the complex concepts involved in
Linear Algebra are a source of students’ difficulties in learning the content. The historical
development and its consequences on the students’ learning of Linear Algebra will be

discussed.

“The teaching of Linear Algebra” refers to the didactic decisions made and the
teaching methods used that are blamed for causing students’ difficulties in leaming Linear

Algebra.

“How students learn and cope with Linear Algebra” points to the students’ ways
of thinking and their mathematical backgrounds that are blamed for the difficulties in

learningLinearAlgebra.

[ am going to use the existing knowledge and opinions about the nature of Linear
Algebra, the teaching of Linear Algebra, and students’ thinking and coping with Linear
Algebra as being sources of students’ difficulties. I will analyze my personal experience

as a teacher against this background.

The focus will be on mathematical rather than sociological or psychological
factors. Students’ difficulties will be explained not by psychological or sociological

theories, but by (a) the difficult nature of the concepts involved, (b) the didactic decisions



concerning its introduction, and (c) the history of students’ understandings of prerequisite

notions.

I shall be using what Carr and Kemmis (1986) would describe as an “interpretive”
framework in my analysis of the two teaching approaches in which I participated as a
teacher. In other words, I will try to understand why the students did the mistakes that

they did and to find what is creating the stumbling blocks for them.

In order to achieve this goal, I have to become aware of the “subjective meaning”
of the ideas and concepts that the students have. “Actions, unlike the behaviour of most

objects, always embody the interpretations of the actor, and for this reason can only be

understood by grasping the meanings that the actor assigns to them.” (Carr and Kemmis,

1986, p. 88)

In reality, for an “interpretive understanding” of a situation to be valid, it must
have the approval of the person who did the act. I can give reasons to what happened,
justify them from videos, tapes, and transcripts, and compare them to similar cases, but
unless the person who did and said these things confirms my reasons, my “interpretive
understanding” is just an interpretation, and not some kind of “truth”. After all, these
actions and words are that person’s, and he/she is the only one that knows the true

meanings behind them. (Carr and Kemmis, 1986)



In other words, I am claiming that my analysis is only one possible interpretation
of the students’ understanding of concepts or lack thereof. The analysis is based on my
interactions with the students during the experiment or class, reading the transcripts and
reviewing the video and audio tapes of the sessions. There were few instances during the
experiment where the students confirmed my interpretation of their knowledge, but most
of the analysis is based on interpretations after the fact. For this reason, the experiment

is open to different interpretations.

1.1. The Nature of Linear Algebra as a Source of Students’ Difficulties

What makes the concepts of Linear Algebra so complex? To answer this question, one
must look at the nature and historical development of Linear Algebra. Its development is
different and unique compared to the types of mathematics encountered by students up
to their first year of university. For example, Calculus was borne out of the necessity to
solve specific problems such as: (1) find the slope of the tangent line to a curve
(Differential Calculus), (2) find a rate of change (Differential Calculus), and (3) find the
area under a curve (Riemann sums), or (4) find the velocity, given the acceleration
(antiderivatives). On the other hand, Linear Algebra was developed mainly, as Dorier
(1995a) would say, to unify and generalize concepts in mathematics. In other words, one
of the main tasks of Linear Algebra was not to solve new problems (except in the
Functional Analysis for non-countable infinite dimensions), but instead to “simplify”

problems already solved. Common aspects of different methods, tools, and objects that



already existed in varied mathematical settings were identified and abstracted to form a
unified and generalized theory. This theory could then be adapted to other branches of
mathematics and thus simplify and introduce new methods for problem solving. (Dorier,

1995a).

1.1.1 Historical Development of Linear Algebra

Methods of solving linear equations had existed since Ancient Chinese times, however,
the history of Linear Algebra started with the publishing of René Descartes’ La
Géometrie in 1637. The introduction of analytical geometry and the Cartesian plane
created an “algebraization of geometry™ in which every geometrical curve can be expressed
as an algebraic equation in two variables. These new ideas created a split in the

mathematical thinking of the 1600s.

First, the concept of ‘analysis’ changed. Prior to Descartes, ‘analyzing’ a problem
required two steps that were inseparable. First, one had to translate a geometrical
problem into algebraic equations (“analysis’). Then, after algebraically manipulating and
solving the equations, one had to interpret the results geometrically (‘synthesis’). (Panza,

1996) But now, according to Newton,

“... ‘analytical’ procedures are completely distinct from their
possible geometrical (or mechanical) applications or
interpretations. An equation, a finite symbolic expression, or
a series is considered as an autonomous object. ..."analysis’ is
a self governing field and gains its mathematical meaning
without the employing of any interpretation or construction.”

(Panza, 1996, p.243)



Second, up to that point in time, the line and the circle were considered as basic
figures of Geometry, but analytical geometry separated the two concepts as first order
and second order equations, respectively. With the line being the most basic entity of

algebra (first order equation), questions of linearity began to be raised.

The Algebraization of Geometry and its Influences

From Descartes’ La Géometrie till 1750, work was done to improve techniques for
solving systems of linear equations. In 1750, Gabriel Cramer published Introduction a
["analyse des courbes algébriques, in which he introduced the use of determinants to
solve systems of linear equations. Also in 1750, Cramer reformulated an inconsistency

recognized since 1720 that became known as Cramer’s paradox.

At that time, it had been known that two distinct algebraic curves of order n

intersected in n’ places. It had also been accepted that to determine a curve of order n, it

points. The paradox occurred for n >2.

was necessary and sufficient to know n(n2+ 3

For example, if n=3, then nine (9) points are enough to define the curve. This contradicts
the first proposition, which says that two distinct curves of order 3 can have nine 9
points in common. Therefore, nine (9) points are not sufficient to determine the curve

since it could be one of two distinct curves.

10



Ideas of linear dependence began to emerge for the first time in Leonhard Euler’s
explanation of Cramer’s paradox. The results were published in the treatise Swr une
contradiction apparente dans la doctrine des lignes courbes (1750). Euler showed that n
equations in 7 unknowns will not always have a unique solution since one equation could
be “comprised” in one of the others. In other words, one equation could be obtained from
the others by multiplying one equation by a scalar and/or adding it to a second equation.

For example, in solving the following system of linear equations

X+ y+z= 1 1)
Ix+ y+z= 2 2)
X —4y =2z = -1, 3)

one determines that the solution is x = 1 —2z/3 and y = z/3, where z is any real number.
Although the system has three equations and three unknowns, there is more than one
solution because equation (3) is equal to —3 times equation (1) added to equation (2). In

other words, equation (3) “depends” on equations (1) and (2).

Despite his explanations, Euler’s ideas were neglected and were not investigated
further. Instead, Cramer’s theory of determinants flourished and started its own branch
of mathematics that included linear equations. The issue of undetermined and
inconsistent linear systems was ignored for the next century. This meant that the concept

of dependence was also disregarded since it arose only in the context of inconsistent and

dependent systems.

11



In the meantime, other developments were occurring in different branches of
mathematics that would eventually be integrated in our modern-day linear algebra.
Analytical geometry generated the study of linear substitutioﬁs --i.e., change of
coordinates. The study of linear substitutions was a precursor of what is called today

linear transformations.

The calculations involved in the linear substitutions of variables resulted in long
and complex equations that were difﬁqult and tedious to manipulate. As problems
became more complicated, the mathematicians looked for techniques that would help
them in having better organization and more control over their work. One result was to
represent expressions by arrays of their coefficients. An important development was the
realization that one can create a calculus on these representations which gives results that
would be extremely difficult to obtain through direct manipulations of the original
expressions. Thus, the concept of matrix was developed as a result of the need to

generalize and manipulate complicated algebraic expressions.

At first, the concept of matrix and the concept of determinant were not clearly
distinguished from each other. One fundamental reason was that the multiplication of
matrices was seen as a local process, not as an algebraic operation in itself. But by the
mid-1800s, matrices began to be observed as a mathematical entity or generalized number.
This was due to the acceptance of imaginary numbers by mathematicians and the

discovery of quaternions (3-dimensional complex numbers) by Hamilton, which helped in

12



expanding the field of algebra, in general.

Although generalizations to n-dimensional space had been done earlier —e.g., by
Euler, in an algebraic context, most mathematicians did not go beyond 3-dimensional
space because they saw geometry as the science of the physical space and more than
three dimensions did not make physical sense to them. Cayley was one of the first
mathematicians to break that barrier. In his paper Sur quelques résultats de géométrie de
position (1846), he described how one can work in a space of an arbitrary dimension and
get a result in 3-dimensional space. The use of n-dimensional spaces became justified in
the 19th century as a result of the following events:

1. The discovery of non-Euclidean geometries and the advancement of
projective and algebraic geometry started discussions on the foundations of
geometry. If one can disregard one of Euclid’s postulates to create a geometry
that does not agree with our visual and physical world, why cannot one

expand algebra into the nth-dimension?

The discovery of quaternions opened the way to many discoveries of new

N

types of algebra.

The second half of the 19th century saw the development of n-dimensional

geometry based on analytic geometry and the theories of determinants and matrices.

(Dorier, 1995b)

13



Coordinate-Free Geometry and its Influences

Meanwhile, not everyone had embraced the idea of the “algebraization of geometry™.
Many mathematicians wanted to go back to the basics of “coordinate-free geometry™.
Gottfried Wilhelm Leibniz expressed his criticism in a letter to Christian Huygens written

in 1679, but was not published until 1833:

“I am still not satisfied with algebra because it does not give
the shortest methods or the most beautiful constructions in
geometry. This is why | believe that as far as geometry is
concerned, we need still another analysis which is distinctly
geometrical or linear and which will express situation directly
as algebra expresses magnitude directly..... Algebra is the
characteristic for undetermined numbers or magnitudes oniy,
but it does not express situation, angies and motion directly.
Hence it is often difficult to analyze the properties of a figure
by calculation, and still more difficult to find very convenient
geometrical demonstrations and constructions even when
the algebraic calculation is completed.” (Cited in Crowe, 1967,

p-3)

Although Leibniz failed to create a geometrical system in which the symbols
representing geometrical entities can be added, subtracted and multiplied, he inspired

many mathematicians in the 19th century to search for such a system.

According to Crowe (1967), there were three major ideas that influenced the
creation and development of vectorial systems: one was related to viewing some physical
magnitudes as vectors, another to geometric representations of complex numbers, and the

third to a coordinate-free “geometric algebra” (Leibniz’s idea mentioned above).

Representing physical entities such as velocity and force by a parallelogram was

not uncommon in the 16th and 17th centuries (since it made physical sense), but the idea

14



of the addition of the lines did not emerge until the creation of vectors. Therefore, the
concept of the parallelogram had an important, but indirect influence on the development
of vectorial systems, “for it was the first and most obvious case in which vectorial

methods could be brought to the aid of physical science.” (Crowe, 1967, p.2)

The acceptance of complex numbers was very slow. Between 1799 and 1828, in
efforts to legitimize these numbers, five mathematicians (Wessel, Burée, Argand, Mourey,
and Warren) worked independently of each othgr on setting up the principles of a
geometric representation of complex numbers. But these principles did not get widely
known and accepted by mathematicians until Gauss wrote about them in 1831. The
acceptance of complex numbers opened the door for expanding the notion of “number” to
also include vectors. Thus, the groundwork for vectorial geometry had been laid. (Crowe,

1967, p. 5; see also Dorier, 1995b)

Two early vectorial systems were created by August Ferdinand M&bius ( 1827)
and Giusto Bellavitis (1833). The pre-occupying concern of these early systems was the
notion of equal vectors. In his Barycentrische Calcul (1827), Mébius was one of the first
mathematicians to give direction to a line segment by designating “ a line segment from a
point A to a point B by the notation AB and stated that AB = -BA ...” (Dorier, 1995b, p.
9) In Calcolo delle Equipollenze (1833), Bellavitis based his “vectors” on the behaviour
of geometrically represented complex numbers. The difference was that he viewed his

lines as entities, not as representations. (Bellavitis never accepted imaginary numbers as

15



mathematical entities.) Although both Mébius and Bellavitis defined the addition and
multiplication of their “vectors”, their systems could not be extended to the 3-

dimensional space. (Crowe, 1967)

The first vectorial system that could be generalized to n-dimensions was
Hermann Grassmann’s Calculus of Extension. His ideas and principles for this system
were first developed as early 1832. By the time Grassmann wrote his Theorie der Ebbe
und Flut in 1840 (this work was not published until 1911), he had already developed
methods that are equivalent to today’s vector addition, the two major kinds of vector
products, and vector differentiation. When Grassmann extended his system to 3-
dimensional space, it resulted in his book Lineale Ausdehnungslehre (“linear theory of

extension”) in 1844, and later modified in 1862.

Grassmann used a philosophical approach to present his work in Lineale
Ausdehnungslehre. Grassmann claimed that his discovery is an independent field of
mathematics, even though it could be applied to geometry, mechanics, and other scientific
fields. He believed that geometry is a science independent of mathematics and that his
“theory of extension” is thé mathematical model to be applied to it. Grassmann’s theory
was self-contained; thus it included many preliminary definitions and introduced new

notations, words, and concepts. (Dorier, 1995b)

Since Grassmann’s work mixed mathematical results with philosophical

16



considerations, mathematicians rejected it because they found it to be confusing and
unclear. However, today, Grassmann’s work is considered to be one of the first unifying
and generalizing theories in mathematics. “Grassmann’s theory contained the bases for a
unified theory of linearity, as it introduced, with great accuracy and in a very general
context, elementary concepts such as linear dependence, basis, and dimension.” (Dorier,
1995b, p.18) His theory provided a framework for generating a rich model for linearity
by defining the essential objects and proving most of the elementary properties of finite-

dimensional vector spaces.

Although Grassmann’s results correspond to the modern theory of vector spaces,
it had no direct influence on its creation since most of these concepts were reestablished
independently of his work. Nonetheless, Grassmann’s work was the first theory to use

the axiomatic approach. (Dorier, 1995b)

Giuseppe Peano wrote a condensed version of Grassmann’s work called Calcolo
geometrico (1888). At the end of his work, he gave an axiomatic definition of a “linear
system”, which is considered to be the first modern definition of a vector space. But

again, at the time it appeared, his work was not followed by other studies.

Other Italian mathematicians, Cesare Burali-Forti (1897) and Roberto Marcolongo
(1909), also published works with the axiomatic approach, but once again they were

ignored. Their work is nevertheless significant because (1) unlike Peano, they opened

17



their treatises with an axiomatic presentation of their linear system, and (2) it showed that

axiomatic approach was beginning to be more widely used.

The Creation of Linear Algebra: A Unifying and Generalizing Theory
Since the 18th century, mathematicians have been interested in differential equations.

Their study led to the creation of a branch of mathematics called functional analysis

around the turn of the 20th century.

In 1822, while solving differential equations by power series, Joseph Fourier was
led to the method of solving systems of countably infinite linear equations in countably
infinite unknowns. Because of the lack of understanding of the convergence of power
series, Fourier was not able to give a correct solution. As a matter of fact, the solution of
infinite linear systems was not researched for about the next fifty years. It was not until
1886 that a text with consistent results was published. After that, many mathematicians
worked on infinite linear systems. They used Fourier’s ideas, but they changed the
restrictive boundary conditions on the power series so that the convergence of the infinite
determinant was guaranteed. In fact, up to the 1920s, mathematicians researched most of
the known concepts and methods of the finite dimensional case --e.g., the theories of
determinant, matrix, and quadratic and bilinear forms -- in the context of countably infinite
dimension; thus creating the framework for a unified theory of linearity. Nonetheless,

some of the methods became highly technical and difficult to manipulate, which led to

18



inaccuracies. Slowly, mathematicians moved away from the use of determinants and
began to consider more and more general vector spaces. Eventually, this led to the

axiomatization of functional analysis.

Stefan Banach (1920-1922) and Hans Hahn (1922 and 1927) took the final
decisive steps towards the axiomatization of functional analysis independently of each
other. Banach wrote in the introduction of his book Théorie des opérateurs linéaires

(1932):

“The present book follows the goal of estabiishing a few
theorems valid for various functional fields, which | wili
specify. Nevertheless, so that | do not have to prove them
separately for each field, which would be painful, | have
chosen a different method, that is: | will consider in a
general sense the sets of elements of which | will postulate
certain properties, | will deduce some theorems and then |
will prove for each specific functional field that the chosen
postulates are true.” (Cited in Dorier, 1995b, p.29)

Although some of the axioms that Banach presented were redundant and some
were missing, he demonstrated the effectiveness of the axiomatic approach. Since he was
dealing with functional spaces of uncountably infinite dimension, an axiomatic approach
was the better choice. Banach’s book “gave the general framework and most of the
results of axiomatic functional analysis and infinite-dimensional linear algebra; this book
was an enormous success and rapidly opened a new era in these two fields of

mathematics.”(Dorier, 1995b, p.29)
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1.1.2 Consequences of a Complex Historical Development for the
Understanding of Students’ Difficulties

As was shown above, it took nearly three centuries from Descartes’ La Géometrie for
linear algebra to come into existence. It was a long and winding road that raised many
discussions, debates, and disagreements along the way. But finally, a unifying and
generalizing theory emerged. This theory, as one can expect, is abstract, which is one of
the fundamental reasons of why students have difficulty in learning linear algebra. First-
year university students do not have a sufficient mathematical experience; thus they have
not enough knowledge to ébstract from. Also, as Harel (1989) points out, high school
mathematics does not involve abstract systems and does not train students to generalize
specific situations and problems. Yet, a review of the textbooks of a first course in linear

algebra found the following implicit assumptions were made: beginning students

“a) are capable of dealing with abstract structures without
extensive preparation.

b) can appreciate the economy of thought when particular
concepts and systems are treated through an abstract
representation.” (Harel, 1989, p.140)

Another reason for students having difficulty in learning linear algebra is the
axiomatic character of the theory. As was shown in the above historical review, the
axiomatization of functional analysis resulted from a gradual movement away from the
use of determinants (a mostly computational theory) to the consideration of vector
spaces (a generalizing and unifying theory). An understanding of the axiomatic theory

requires that the learner has access to multiple models which implies the ability to use
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different languages which in turn implies the ability to use different representations. The
question, then, is how to make the students see that “two externally different

representations indeed represent one and the same ‘thing’. (Hillel & Sierpinska, 1994)

Finally, throughout the historical development of linear algebra, mathematicians
had to overcome many obstacles and change their way of thinking about certain concepts
—i.e., accepting imaginary numbers, quaternions, matrices, and vectors as mathematical
entities and recognizing vector spaces. These were people with extensive mathematical
knowledge. So, it is only natural to expect difficulties in student understanding of such
complex topics, especially with students with a limited mathematical background. How

should then linear algebra be taught to promote maximal student understanding?

1.2. Methods of Teaching and Contents of Linear Algebra Courses as Sources of
Students’ Difficulties

Finding ways to teach linear algebra to bromote maximal student understanding is an

ongoing investigation, but what is known is that some of the present didactic methods are

not effective.

First, as mentioned above, abstract concepts are introduced quickly, not taking
into account the students’ previous mathematical experience and knowledge. In a first-

year linear algebra course, most of the students’ mathematical experience has been
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computational. Which is the reason why, according to Carlson (1993), students usually
have no trouble with solving systems of linear equations and using matrix algebra. But
when the topics of subspaces, spanning, and linear independence are studied, students
become confused and disoriented. “The traditional reliance on the abstract, axiomatic
approach in the presentation of the ideas of linear algebra often leaves beginning students
with little understanding of the concepts and little idea of how they are related to their

previous knowledge of mathematics.” (Carlson, 1994, p.371)

When using the axiomatic approach, the final product is taught, while the process
is ignored. Since the concepts are introduced in an abstract setting, students usually are
not aware of the construction process, although some might understand the resulting
abstraction. (Harel, 1989) This creates gaps in the students’ mathematical knowledge and
prevents them from making connections to their previous experiences, which gives rise to
a lack of motivation. Carlson (1993) points out that mathematicians learn in a
constructivist way: Starting with a stimulus (a talk, lecture, paper, or thought), they do
examples, make conjectures, solve problems, prove theorems and communicate with
colleagues. As was seen in the historical development of linear algebra, concepts took
years to develop and become accepted in the mathematics community. During this time,
mathematicians discussed, argued, and wrote papers about these notions. Most
mathematicians had to change long-held beliefs to be able to understand and accept new

ideas. So, how can we present to students in one 75-minute lecture the final products of a
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long process of development and expect them to understand it right away?

Second, linear algebra is presented with little or no examples of its applications,
resulting in a loss of student motivation. Part of the problem is that the applications of
linear algebra are many and varied (since it is a unifying and generalizing theory).
Therefore, the teacher must find examples of applications that are relevant and familiar to
the students. By the same token, for the students to appreciate the power of linear

algebra, they must be well versed in_many fields.

But one has to be careful not to assume that applications alone will increase the

students’ appreciation and understanding of the abstract nature because

“a) students do not see the necessity of dealing with abstract
concepts for treating a limited scope of situations, and

b) applications may help to illustrate ideas, but do not help
one in understanding the construction process of
concepts.” (Harel, 1989, p.141)

There are so many fields to which linear algebra can be applied that it is impossible to
study all in a class. Thus, students are exposed to a few examples of application
problems (if any) and then are expected to appreciate the abstract nature of linear algebra
that allows them to solve problems that could have been easily answered using more
familiar and less complex algorithms and procedures. At the same time, these algorithms
and procedures are the final products of a long process of development. Using them to

solve application problems will not provide a better understanding of the concepts
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involved, but instead supplies a motivation (a very important requirement for learning)

for the need to use these methods.

Third, linear algebra is taught with no visual interpretation. Except for the unit on
directed line segments, all topics are presented algebraically. Harel (1989) refers to results
of research projects that indicate both high school and university students have trouble
comprehending algebraic systems that cannot be easily represented visually or concretely.
Carlson proposes “emphasizing a geometric interpretation of the properties _of R",
eigenvalues and eigenvectors, and orthogonality. This is important, both for its
conceptual utility and as a tie to our students’ prior experience with geometry.” (Carlson,

1993, p.32)

Finally, very often teachers and textbooks of linear algebra ask the wrong
questions. Many assigned problems are asked in such a way that students follow a
certain procedure or algorithm, instead of testing the students’ understanding of the
concepts. A typical question, as can be seen later in the chapter, is to prove that a subset
of a given linearly independent set is linearly independent. Students are told to solve this
problem by showing that the trivial solution is a unique solution of the homogeneous
system --i.e., showing that the coefficients can only be zero in the linear combination
kivi+ kovat ....... + kv, = 0. Thus, students are taught to follow a certain procedure so
that their result is consistent with the definition of /inear independence. A better

question would be to ask to find, if possible, a linearly dependent subset of a linearly
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independent set. Leaving the students to work on this problem on their own and then
discussing with them the results could give the students a better chance to see the

difference between a dependent and independent set of vectors.

1.3. Cognitive Sources of Students’ Difficulties

It is believed that when students do not understand the mathematical concepts for any of
the above reasons, they create for themselves an obstacle of formalism . This means that
the students are working on the level of the form of expressions, ignoring the “semantics™
or the grammar of mathematics. For example, they cannot distinguish between “belongs
to” a set (¢ ) and “contained in” a set (<). To them, ve {u,v,w} and v <{ u,v,w } mean
the same thing. Usually this is witnessed when the students do not understand the
concepts involved in a certain problem. In their solutions, they write a lot of
mathematical symbols and notations because it looks “mathematical”™ even though it does
not make sense. Specific examples of this situation will be given in the next section.
Student learning is also hindered when students bring into the classroom years of bad
habits. First, they learn by memorizing algorithms; thus students learn concepts as being
a result of a procedure, instead of understanding the concept itself. Second, students do
not like reading mathematical textbooks (although admittedly, some are not well written).
So, they just rely on looking at examples and learning the process. Third, students are
-concemed only if the final answer is correct, but not in why it is; thus gearing their

studying towards passing the final exam, whether the concepts were understood or not.
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CHAPTER I

The First Experience: Math 204



Introduction

This chapter will look at my experience in teaching a college-level Linear Algebra course,
MATH 204 Vectors and Matrices course offered at Concordia University. MATH 204
is a college-level course that is a pre-requisite to the first-year university Linear Algebra

course.

I am not the author of the course outline, which has been in use at Concordia for
the last twenty years. I have taught this course twice; first during the Summer 1996
session and then in the Fall 1997 semester. The materials used in this chapter are from

the latter experience.

The chapter will be divided into several sections, including the course content and
format, the type of students who take the course and the consequences of teaching
different topics. Each section will be analyzed separately, making frequent references to
the framework of analysis discussed in the previous chapter. I will show how the three
sources of students’ difficulties in linear algebra , —i.e., the nature of linear algebra, the
way it is taught, and how students learn — interact with each other and I will discuss the

resulting problems. I shall conclude the chapter by making recommendations on how the

course could be improved.
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2.1 Course format and Course content
MATH 204 Vectors and Matrices runs for thirteen weeks, with a midterm test given in
Week 7 and the last week reserved for review for the final exam. Some sections meet

twice a week for a 75-minute lecture (total of Zyz hours/week), while others meet once a

week for a two-hour session. Depending on the course section, the actual time for

teaching new topics is 11 or 11 yZ weeks (22 or 28 % hours).

In this short time, the instructor is required to teach the following major topics:
systems of linear equations, matrices and matrix algebra, determinants, vector geometry in
2- and 3-space, vectors in R", vector spaces and subspaces, linear independence,

eigenvalues and eigenvectors, and conic sections.

Comment

There is a problem in the course design and in the teaching of linear algebra if teachers
realistically expect students to fully understand so many complex topics in such little
time. Not only is the number of topics being taught ridiculously high, but the nature of
some these notions is very complex --i.e., vector space, subspace, linear independence.
These subjects, which took hundreds of years to develop, are covered in two weeks.
These concepts require thinking in terms of algebraic structures, which has yet to develop

in the type of students enrolled in MATH 204.
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2.2 Type of student

Students who enroll in MATH 204 are majoring in either (a) mathematics, (b) the applied
sciences (e.g., engineering, computer science, Physics, etc.), or (c) non-math disciplines
(e.g., psychology, sociology, history, leisure science, etc.). Students in the math and
science oriented programs usually take this course because they have been out of school
for a few years and/or they need it to be fully accepted into their university program,

whereas the non-math majors take the course as a credit requirement in math for their

respective discipline.

Comment

In other words, students enrolled in this course either lack the skills or have not had many
recent experiences in mathematical thinking, reasoning, and generalizing. Bombard these
students with new and complex topics and one will end up with a lot of confused and

frustrated students who have build obstacles for themselves and a bad attitude towards

linear algebra.
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2.3 Consequences of teaching too many topics
As a result of teaching too many topics in a short period of time, important notions and
ideas are covered superficially, while others are omitted completely. For example, the

concept of linear independence is introduced with the following definition:

“If S ={w, vy, ..., v} is a nonempty set of vectors, then the
vector equation

Kiva+ kavat ... +kve=0
has at least one solution, namely
ki=0,k2=0, ...., k= 0.

If this is the only soiution, then S is called a linearly
independent set. If there are other solutions, then S is calied

a linearly dependent set.” (Anton, 1994, p.232)

Meanwhile, because of the shortage of time, the concept of basis is omitted. Although it
is possible for students to learn the idea of linear independence/dependence without the
notion of a basis, the relevance of the definition is not obvious when basis is not taught.

A very common consequence of teaching this definition without the notion of basis is that
the students learn (through no fault of their own) that linear independence means that the
coefficients are equal to zero in the equation k;vy+ kavo+ ....... + kv, = 0, but they do not
understand that this is the only solution to this equation. Students also have no idea as to
what this result actually means in terms of the relationship between the vectors, and
therefore make their own interpretations of the definition. This is illustrated in a

student’s response to a homework problem.
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An example of a student’s response

The following homework problem was assigned:

“‘Show that if S={wvy, va, ...., vi is a linearly independent set
of vectors, then so is every nonempty subset of S.” (Anton,
1994, p.240)

A student responded in this way:

“if S={ vy, Va, ...., v} is linearly independent
kvt kvt ... +kv.=0

k=0k=0,..., k=0
Any subset will equal zero because all the k's are 0. This
makes the subset linearly independent.”

Analysis

From this answer, it was not clear whether the student does not have a clear
understanding of the concepts of sets and linear independence/dependence or if the
student understands the concept of linear independence/dependence but does not have the
ability and training to express his thoughts and ideas in a correct mathematical language.
What was meant by “any subset will equal zero™? Is the student able to distinguish
between the concepts of sets, vectors, and real numbers? Is the student talking about the
number of elements in the sets? Or is there a reference to the values of the constants k
(“because all the k’s are 0”)? Does the student know that linear independence requires

the uniqueness of the trivial solution? Or does it mean that since the coefficients k, must

lBecu.xsct!:n:prol:leuint.helsookgivesasetofrvectots.tbediscalssionoftl:issolutionwillrcveue!hcusual notation of

v,, where O<rsn to v, where Oansr
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all be zero for the vector equation k;vy+kowe+....... +kava = 0 (O<ns=r) to hold, then every

nonempty subset of S is linearly independent but the student cannot express it correctly?

Follow-up session

To answer these questions, a meeting was arranged with the student. The student was
not told about the situation with the homework problem. All that was known was that
there will be a few questions asked about linear algebra. The meeting was held two days
after the final exam. The student was asked the following question (a variation of the

homework question):

“Can you give an example of two linearly dependent vectors
from a set of three linearly independent vectors?”

At first, the student did not understand the question, which I must admit is rather
unclear. I explained the question, but the student did not know how to proceed. So, I
asked what linear independence means. The response was that it was vectors that “have

nothing to do with each other. No common points,” and drew the following diagram:

[ —

+
E
§
i
i

[ETE———

L, then, told him that it is possible to have linearly independent vectors

that start from the same point. The student asked, “You mean like this?” and drew this

diagram:
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Then, the student proceeded to do the problem of finding two linearly dependent

vectors from the three linearly independent ones and started to draw:

-
”
ve

« /i
\\//

I warned the student that the problem involved the space R or higher, but his

diagram is in R2.

L, then, tried a different approach. I asked the student to define linear
independence in terms of an equation. The student did not remember and had to look it
up in the textbook. During the discussion, I realized that the student had the
misconception that linear independence/dependence depended on the value of the
expression k;vy+ kowp+ ... +k.v,. Ifthe expression equaled zero, then the vectors are
linearly independent, otherwise they are linearly dependent. This finally explained what
was previously meant by “any subset will equal zero because all the k’s are 0.” His
- reasoning was that since it was given that k;=0, k;=0, ...., k, = 0, then any nonempty

subset will make the expression k;vy+ kova+ ....... + kova (O<ns=r) equal to zero (since the

k’s are all zero); thus making the subset “linearly independent”.
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-Analysis
From the initial approach to the problem, it is evident that the student is not clear on the
concepts of vectors and linear independence. The student is mistaking vectors for linear

equations and treating linearly independent vectors as an inconsistent linear system.

Another oversight by the student that indicated a lack of understanding was that
the student tried to solve the problem in R? instead of R®. I believe that both stumbling
blocks —i.e., (1) the belief that lingarly independent vectors are parallel, and (2) not
realizing which space one is in — probably could have been avoided if the student had
known and seen examples that a basis is a set of linearly independent vectors that
generates the whole space, and hence the maximum number of linearly independent

vectors in R® is n vectors.

Other observations and comments on skipping the notion of a basis

Another problem that could result, if instructors are not careful, from skipping the
concept of basis, is encountered during the eigenvalue/eigenvector section. The students
are assigned homework problems that ask them to “find the bases of the eigenspaces.”
Since they have not seen this term before, I have to show them how to find the bases
without really explaining what a basis is. This problem could be avoided by carefully

choosing homework problems that do not have the word “basis” in them. Unfortunately,
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the majority of the problems in most texts have this word in the eigenvector problems

since this unit is introduced after the concept of basis had been studied in the text.

A consequence of telling the students how to solve the problem without
explaining the concept of a basis is that the students will memorize the steps of a typical
problem without comprehending what they are finding. I believe this will create problems
for the students in future linear algebra courses when they are formally introduced to the
concept of a basis. By then, the students will probably have the pre-conceived idea that a
basis is the result of the trick of substituting “1” for the free variable of an eigenvector.

To them, a basis becomes associated with the eigenvalue problem and is considered to be
an answer to a school exercise rather than a general concept that is encountered in many
contexts — e.g., eigenspaces, basis of R", bases of general vector spaces, basis of the
solution space of a homogeneous system of equations. This is analogous to the problem
faced by high school students when finding the solution to a system of linear equations.
They associate the solution as being the x and y values resulting from the elimination
method learned in class, instead of the idea that the x and y values are a pair of numbers
that satisfies both equations, and are represented by the point of intersection of the two

lines in the graphical representation.

This situation does not create conceptual problems for the students, but instead

exploits a problem in how students learn math. They believe that math is about
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processes and procedures, instead of ideas and concepts, and thus all they have to do is

memorize the steps to a problem.

2.4 Consequences of the axiomatic approach

Another topic that is introduced quickly and covered in one week is the axiomatics of
vector spaces. A vector space is defined as a structure composed of a set in which two
operations are defined, called vector addition and scalar multiplication, and which satisfy

certain given axioms.

Examples of students’ responses

A typical exercise would give a certain set of vectors and define a set of operations and

ask the students to determine whether the set is a vector space:

“Determine whether the set of all pairs of real numbers (x,y)
with operations (x.y) + (X, y) = (x+x",y+y’) and k(x.y) = (kx.y) is
a vector space with respect to those operations.” (from the
Final Exam)

A couple of students’ responses:

1. %(x+y) + (X\Y) = (x+X',y+y’) & k(x,y) = (kx.y)
k(x,y) = (ikx,ky) fails this axiom"

2. “(x+y) + (x.y) = (x+x,y+y)
if k(x,y) = (kx,y)
(lox,y) +(x.y) = (kx+x' y+y)
‘> ku = k(u) not working
<. K(x,y) = (kx,y) is not a vector space.”
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Analysis

These examples of student responses show that the students do not understand the
concepts of vector space, computation rules, and axioms . The first student thinks that
the property k(x,y) = (kx,ky) is one of the axioms that determine a vector space, while
the second student thinks that the property k(x,y) = (kx, y) is the vector space being
tested. It could be argued that the second student does not know the proper language in
which to write his conclusion, but the previous steps show that the student does not
know the axioms and does not know how to check them. Some might say that the
student does not memorize well and has weak algebraic skills. But I say, how could one
memorize a list of meaningless rules? Why is it important for vectors to follow these

rules? Why is it important for something to be a vector space?

The concept of vector space is so abstract that the students cannot relate to it.
They are still in the process of getting to grips with a vector being a directed line segment
that the idea of a vector space other than R — e.g., nxm matrices — is very confusing. On
top of that, after spending a few weeks learning how to add vectors and multiply by a
scalar in R", they are now being told that they have to use new rules for each problem.
To make things worse, none of the examples in the assigned problems turn out to be
vector spaces --1.e., the students do not see an example of a vector space with non-
standard operations. I do not know how students are expected to understand this

difficult and abstract topic when they have nothing to draw on from all of their previous

37



knowledge. This is definitely a flaw in the teaching of linear algebra, and I believe that

vector spaces should not be taught at this early level.

2.5 Proofs

Another concern in MATH 204 is proofs and their role in the course. Since their
secondary or college math courses, students have always disliked proofs because they
have never seen or have ever understood their purpose. They believe that the role of a
proofis to verify that a statement is true, and if they already believe that it is true (there
is no need to doubt a theorem), then there is no need for a proof. Therefore, students

already have a negative attitude towards proofs.

MATH 204 is the first course in which students experience different types of
proof. Up to this point, geometric deductive proofs and verification of trigonometric
identities are the only kinds of proof that they have substantially worked with, although
they might have occasionally seen other types. In both cases, the objective is clear. In
the geometric proofs, the ‘given’ and ‘prove’ statements are clearly defined and in the
trigonometric identities case, the equation to be verified is given. But in linear algebra,
students encounter new and different types of proofs. The different methods of proving
is something new to them and making it even worse in their minds is that there is no
preset algorithm for finding and writing the proofs. Consequently, they have to decide

which method to use each time. This again highlights the problem in student learning in
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that they prefer to memorize steps and procedures instead of tackling a problem by using

their knowledge of mathematical concepts and ideas.

Students have trouble deciding which method of proof to use because they do not
know how to extract information from the question and they also cannot distinguish
between (a) proving by satisfying certain definitions and axioms and (b) proving

conditional statements —e.g., if.. then... statements.

Proving by satisfying certain definitions and axioms

During the course, students encounter two different variations of this type of proof:

(1) proving that a given object belongs to a given category of objects by showing
that it satisfies the defining property of this category: -e.g., Prove that, if B

is any matrix then BB 7 is symmetric.

To prove symmetry, one sets up the proof to satisfy the definition of
symmetry —i.e., (BBT)T=BBT . Most students have no trouble with this

type of proof.

(2) proving a structural property of operations on a certain category of objects

(e.g., that some two operations on matrices commute): — e.g., prove (Ar)" =
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(A")T for any invertible matrix A .

The difficulty with this type of proof is that unlike trigonometric proofs, the
equation presented to the students is not the one that they use in their proof.
They have to set up a new equation —i.e,, AT (A")T = |, -- according to the
definition of the inverse of a matrix. This task becomes even more difficuit for
the students if they do not realize that the statement (AT)" = (A™") T refers to the

inverse of the transpose of A.

Proving conditional statements
When proving conditional statements, most students do not realize that what they have
to prove depends on the given conditions, and if those conditions are changed, then the

whole problem changes. This is evident from the final exam.

Examples of students’ responses

The following problem was given:

“Let u,v,w be vectors of a vector space V over R, show that
u-v, u-w, v+w are linearly dependent.”

There were two misprints in the problem. It should have read “...., show that u-v, w-u,

v-w are linearly dependent”. In this case the three given vectors are indeed dependent:

? Teachers have to be consistent with the terminology being used. Note that the
problem talks about ‘linearly dependent vectors’, whereas the textbook defines a ‘linearly
dependent set of vectors’
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their sum is the zero vector. But many students did not question the fact that it is not
possible to do the question as it was written and just assumed that u, v, w are linearly
independent because all of their homework problems had this assumption. The students’
responses showed many typical mistakes, misconceptions, and obstacles that are

commonly encountered in linear algebra.

One such obstacle is the obstacle of formalism. The following examples of

student answers illustrate this:

1.since ku+ kxv+kaw=0,
ki, k2, ks= (0,0,0)
so ki=0, k>=0 and k=0
= kiu-v) +ka (U-w) +ks (v + w)=0 are linearly
dependent.”

2. “let’'s say u-v = u-w
< U-U-v=-w
< U-U = viw
But u-u=0
therefore they are linearly independent.”

3. “For the vector to be linearly dependent
k¥ke....... +ke= 0

Vi=KiVi+ KaVa ...l kv,

.vr = k1V1 + k2v2 ------------- krv-r
where Kk is not equal to 0

let’s take some scalar t

so,

= thu+tv+taw=0

= t(uv), t(u-w), tx(v+w)

= tu-tiv, tau-tw, tsv+tsw are linearly dependent if

&t &tzm O
[T 1 0]
lo -1 1]
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1 1 0
=R#Rs [0 1 1]
o -1 1]

1 1 0]
o 1 1]~
0 o 2]

Analysis
The first student assumes the linear independence of the vectors u,v,w, just like in the

homework problems. The obstacle of formalism is seen in the statement ki, ks, k3=
(0,0,0). The student’s conclusion satisfies the definition of linear independence, but the
student declares the equation linearly dependent (another example of the obstacle of
formalism) because that is what the question asks. The student probably believes that if

one follows the procedure that is learned in class, then the right answer will be obtained.

The second student assumes the equality of the vectors. Algebraic manipulations
are made and an answer of “0” is obtained. The student then declares the linear
independence of the vectors because the student remembers “something™ has to equal to

“0” in the definition.

In trying to explain his reasoning, the third student also shows symptoms of the

obstacle of formalism. He lists r equations in r unknowns. He writes that the sum of the
k’s cannot equal zero for linear dependence to be true. The ‘implies’ symbol (=) is used

repeatedly, and equations are written that do not make sense. The student states what
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has to be shown—e.g.,t; & t, & t; = O — and then sets up the matrix to be reduced.
Using elementary row operations, the student correctly shows that the vectors are
linearly independent (because of the misprint in the question). The student is probably

taken aback by the result and stops without making a conclusion.

In all three examples, the students have a vague recollection that in linear
independence/dependence proofs, it has to be shown that the constants are equal to zero,
but they do not really understand the concept (although it could be argued that the third
student knew what he/she was doing). So, they develop an obstacle of formalism by

writing statements and symbols just to make the solution look mathematical.

Other concerns arising from proofs

Proofs also bring out another difficulty in student learning -i.e., generalizing. Many
students have trouble distinguishing between proving a general statement and showing
that the statement is true for some particular values of the variables. The following

examples of students’ answers show this fact (along with the obstacle of formalism and

operation mistakes):

Examples of students’ responses
The problem is the same as the erroneously formulated one discussed in the previous

section:
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“Let u.v.w be vectors of a vector space V over R, show that u-
v, u-w, v+w are linearly dependent.”

The following are samples of students’ answers:

1. "Let u=(1,2,1), v=2,1,1), w=(1,1,2)
Uv=(12)-2°1)-(1°1)

= -1

Now u-v = v-u
Sov-us=@°1)-(1-2)-(1-1)

=-1

U-w = wW=-u

(T2 N=-1D=(11)=(12)-2~ 1)
-3=-.3

VW = Wty

(2°1)+(1°1)*(15°_2g=(1’--2)+(1-1)+(2-1)

If u-v, u-w and v+w were linearly independent the answers
would of been =0, but it is not.”

2. “if we said that u, v, w are not zeros
= (u-v) and (u-w) and (v+w) are linearly dependent iff (if
and only if) the resuit of these operation are zero

For example
2 -1 [2 -] P 0
lo 5] “ o -3 o of

-2 -1 2 -11 _ [0 0],
lo | " [o =] = Jo o

Analysis
The first student assigns values to the vectors, but then uses the dot product instead of

vector addition. On top of that, the student is showing examples of the commutative

property. Since the results of the calculations were not “0”, then the vectors are declared
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linearly dependent. Again the student vaguely remembers that “something” has to be

equal to “0” for vectors to be linearly independent.

The second student does the opposite. The student also remembers that
“something” has to equal to “0”, but thinks that this proves linear dependence. One
interesting surprise is that this student used 2x2 matrices for the vectors u, v, w. This is

something that was rarely seen in class and homework assignments.

The above two examples and the previous three all support the argument that the
introduction of the definition of the linear independence out of any context of its possible
uses leads to major misconceptions by the students. The five students had five different
interpretations of linear independence and what has to be equal to “0”. Only one student

was close to the correct meaning.

2.6 Conclusions and recommendations

All of the discussed examples demonstrate how the three sources of difficulty --i.e., the
nature of linear algebra, the way it is taught, and how students learn -- are intertwined. It
was shown that when complex and/or abstract topics are taught in a very short period of
time, sometimes using poorly chosen and badly written questions, the concepts are lost

on the students and obstacles of formalism are formed.

45



Coming into this course, most students already have weak study skills and habits
in mathematics. These students do not attempt to read the text and if they do, it is only
to look at solved examples, instead of reading about the concepts involved in solving a
particular problem. Therefore, when students are required to learn very complex and
abstract concepts (the nature of linear algebra) in a badly designed course, their study
skills do not improve. On the contrary, this only supports their already poor habits by
gearing their studying towards passing the Final Exam in lieu of understanding the
concepts. They just study and memorize previous exams. Every semester, the Final
Exam has had for the most part the same type of questions as the previous semester --
e.g., solve the system of linear equations, find the determinant, find the equation of the
plane that passes through three given points, find the eigenvalues of a matrix, etc. This is
clearly another flaw in the course design. Consequently, because of the shortage of time
and the resulting lack of student understanding in such a setting, teachers tend to change
their teaching philosophies and start to cater to the students’ need to pass the Final Exam

instead of promoting students’ understanding of the mathematical concepts.

Therefore, in order to promote student understanding in college-level linear algebra
courses, I am proposing a change in the course content and in the way this material is
taught. I support the proposals in Carlson, Johnson, Lay & Porter (1993), but they are

geared towards a first-year university course and MATH 204 is a college-level course.
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I believe, just as Carlson et al. (1993), that there is too much emphasis on
axiomatics at this early stage of linear algebra. Students have trouble understanding and
visualizing these abstract concepts, and the questions being asked of them do not help
their cause. Some people might argue that it is possible for students to abstract at this
level if they are given the proper tools. But I think that it is not a question whether
students can or cannot abstract, but it is a question of whether there is a need for them to
abstract. By requiring the students to abstract, will they be better off in their
understanding of math and have better tools to solve t_heir problems with? Or is it just
creating unnecessary confusion and frustration for most students and building a bad

attitude towards linear algebra, and math in general? I believe in the latter.

I think that at this level the emphasis should be on the practical aspects of linear
algebra, such as systems of linear equations, matrices and matrix algebra, determinants and
vectors in R? and R®. Half of the course time is already being spent on the first three
topics, but a lot more time is needed to work with vectors. This extra time should be
used to study vectors both analytically and geometrically and more importantly on the
connection between the two representations. This will allow the students to get a better

feel and understanding for vectors.

Understanding the notion of vector in different representations will help in
learning the concept of linear independence. As was seen in the examples in this chapter,

the concept of linear independence is practically non-existent in students when introduced
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as a definition with the notion of a basis. I suggest teaching the topics of basis and linear
independence after the notion of vector has been properly introduced both analytically
and geometrically. Students should be given a chance to slowly construct their
understanding through a broad experience in meaningful contexts. This goal cannot be
achieved through giving the students a formal definition followed by a series of exercises

of verification if a given object satisfies this definition.

The way MATH 204 is now designed, the proofs required of the students are
mathematically useless and meaningless: they are no more than another type of exercise,
serving only the institutional purposes of evaluation and selection of students. Even
though it was shown that part of the difficulty is the problem of how the students
themselves learn math, using a “constructivist” approach could make students see the
need for proofs. The activity of proving could be used in teaching so as to actually
enhance the students’ understanding, if proofs appeared as tools in solving investigative
problems and trying to find out for oneself, ( not for the mark or the teacher) if a given
conjecture is true. Questions starting with “Is it possible that ?”, leading to conjectures
and their refutation or confirmation, could have a better effect on students’ understanding

than the usual “prove that...™ questions.
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CHAPTER Il

The Second Experience: An Experimental
Introduction to Linear Algebra with Cabri



introduction

In view of the difficulties in the learning and teaching of Linear Algebra discussed in
Chapter I and the availability of mathematical software, a research project was designed
and implemented to test an alternative way to present certain topics. Anna Sierpinska,
Tommy Dreyfus and Joel Hillel started work on the project in September 1996. I joined
them in January 1997. The goal was to design about five to seven sessions that would be
tested on two students in March 1997. I was to be the instructor in the experiment. This

is the second teaching experience that I will analyze.

The design of the experiment took into account the previously discussed a priori
sources of student difficulties in learning Linear Algebra. Reasons behind decisions made

in the design have been discussed in Sierpinska, Dreyfus & Hillel (1999) and will not

reviewed here.

The goal of the project was to expose the students to the notions of vectors, linear
transformations and eigenvectors in the dynamic geometry environment of Cabri-
géométre II. In this environment the 2-dimensional vector space was represented by an
arrow, the Cabri “vector”, stemming from a distinguished point “O”, called the origin.
The arrow was meant to represent the arbitrary element of the 2-dimensional vector
space. Thus, geometrically, a vector was given by a position with respect to the origin,

but this position was not immediately described by a pair of numbers; there was no a
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priori system of coordinates. The two vector space operations, vector sum and scalar
multiplication, were introduced in geometric terms as the diagonal of the parallelogram
formed by the two vectors and a dilation of a vector by a factor k, respectively. Linear
transformations were introduced as those that conserve the operations of vector addition
and dilation. Eigenvectors appeared implicitly in questions about the existence of
invariant lines of linear transformations. The introduction of the arithmetic representation
of vectors as strings of numbers was to be done later in the sessions. in the context of the
notion of “the coordinates of a vector with respect to a basis”, where “basis” referred to
a pair of non-collinear vectors on which axes could be constructed (using the command
“New Axes” in Cabri). The notion of basis was not to be isolated as a separate concept
during the sessions. Matrix representations of linear transformations were to be
introduced after the students would have understood that, in the vector plane, a linear

transformation is completely determined by its images on a pair of non-collinear vectors.

“The idea was to separate the notions of vector, linear
transformation and eigenvector from their representations in
the form of arrays of numbers with the purpose of facilitating
the students’ understanding of these representations as
relative to the choice of basis.” (Sierpinska et al., 1999, p.
12)

In view of the complex nature of Linear Algebra, the project was trying a
coordinate-free geometric approach to the introduction of the concepts, thus leading the
students via a route favored by Leibniz. Also, with this approach and the aid of Cabri, it

was hoped that the didactic situations would shift from the traditional Socratic method of
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teaching to a more discovery-oriented atmosphere, creating a learning environment in

which the students would be less likely to develop the obstacle of formalism.

The approach used in this experiment is very different from the one used in
MATH 204, however, both designs use a structural approach to the concepts of Linear
Algebra. In particular, both use axiomatic definitions; the definition of vector space and
linear independence in MATH 204, and the definition of linear transformation in the

experiment.

In this chapter, first a summary of the contents of the sessions will be given,
followed by a discussion of the students’ backgrounds and a description of the physical
conditions of the experiment. The main body of the chapter will be a detailed analysis of
each session. Assessment of the experiment concludes the chapter along with some

recommendations.

3.1 The general overview of the experiment

The experiment consisted of seven two-hour sessions. The first session introduced the
students to a representation of R* in Cabri, labeled CR2. Session II presented linear
transformations while the third session discussed the invariant lines and characteristic
values of a linear transformation. Session IV began with the introduction of the

coordinates of a vector. The rest of the session, along with Session V, was devoted to
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defining a linear transformation by its values on a basis. Arithmetization began in Session

VI when linear transformations were represented by an array of numbers. In Session VII,

the students were tested on the knowledge they had acquired.

In this thesis, I will focus on the students’ understanding of vectors, operations on

vectors and linear transformations only.

The aims of Session I were (1) to build a model, called CR2, for R_2 in Cabri, (2) to
define the operations of CR2 (dilation and vector sum), (3) for students to conclude that
any vector can be obtained by using the two operations of CR2, and (4) for students to
develop some notion or intuition of coordinates of a vector in an arbitrary basis. The
session ended with the problems of composition and decomposition of vectors. In the
first problem, the students were expected to use both operations and to drag the vectors
so that they can conclude that any vector in CR2 can be constructed from any two non-
collinear vectors. In the second problem, the students were asked to decompose a given
vector vinto a linear combination of two vectors v; and w». It was hoped that they would

develop some preliminary notion of coordinates of vector in an arbitrary basis.

The aims of the second session were (1) to clarify certain concepts and ideas that
might have been previously misunderstood, (2) to introduce the notion of linear
transformation, and (3) for students to come up with an algebraic definition for linear

transformation. A tree diagram was produced that showed the different ways in which a
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transformation can behave with respect to vector operations: conserve them or not. The
students were then engaged in verifying a series of examples of transformations for their
behavior with respect to the operations. The terminology of “conservation of
operations” was not used; the language was guided by the paths on the diagram and led to
informal phrases such as “the transformation goes from vectors v and w to v+w by
vector sum / not by vector sum”, and “the transformation goes from v to kv by dilation
with the same factor k/ not by dilation / by dilation but not with the same factor”. A

linear transformation was identified as a special case among these possible behaviors.

The aims of the third session were (1) to clarify any misunderstood concepts and
ideas, and (2) for students to be able to verify if a certain transformation is linear. Using
the testing procedure from the previous session, the students were to find out if a

reflection and a shear were linear transformations.

The aims of the fourth session were (1) to review what and how to check if a
given transformation is linear, (2) to define a system of axes in Cabri, (3) to define the
coordinates of a vector in this system, (4) to calculate the coordinates of a vector sum and
a dilated vector, and (5) to define a linear transformation by its values on a basis. The
students redid the linearity test on the shear transformation because of a technical glitch
during Session III. After being introduced to representing vectors in a coordinate system
and applying the two operations in this environment, the students were given the

problem of constructing vector T(v) after they had randomly placed the five vectors v, Va,
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T(v1), T(v), and v on the screen, and asked to assume that T is a linear transformation.
This problem will be labeled the “Linear Extension Problem™ (or LEP), because, in fact, it

consists in linearly extending a transformation of a basis to the whole vector plane.

The aims of the fifth session were (1) to clarify certain concepts and ideas that
might have been previously misunderstood, (2) to continue laying the ground for an
analytic-arithmetic representation of vectors and linear transformations, (3) for students
to be able to find the linear transformation,. given the images on a basis, and (4) for
students to be able to define a specific linear transformation by configuring its images on a
basis. The students went through a series of activities that cleared up misconceptions
that were picked up along the way. They were then given problems of configuring
VECtors vy, V2, Wy, and w; (where wy and w; are assumed to be the images of v; and v
under a linear transformation) so that a transformation of a certain kind (e.g. a projection,
or a shear) or having certain properties (e.g. a single invariant line with a given

characteristic value) would be obtained.

The aims of the sixth session were to clarify any misunderstood concepts and

ideas through a set of activities. These involved the notion of what defines a specific

linear transformation.

The seventh session was a test session and the instructor was not present. In the

first part of the session the two students worked on a problem together. They had to
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verify a certain transformation for linearity and find its invariant lines. After that they
were asked to write individual reports of their solution. In the second part of the session
the students worked on a similar problem individually, in separate rooms. The aim of this
arrangement was to find how much each of the students can do on his or her own without

the support of the interactions with an instructor and another student.

3.2 Detailed analysis of the experimental sessions

The focus of my analysis will be on the concepts of vector and linear transformation. As
mentioned in Chapter L, the analysis will be using an “interpretive” approach, making the
experiment open to different interpretations. Therefore, I tried to present my analysis in
such a way that it is possible for the Reader to make their own interpretation. The

discussion of each worksheet, problem and activity is broken into three parts:

1. The Design section defines the problem and the researchers’
expectations of how the students will solve it.

2. The What happened part describes the “action” from my point of view.
A lot of detailed quotations and conversations are included. This is to
try to put the Reader in the frame of mind of the situation. This way
the reader gets a better understanding of my analysis and is put in a
position to make his/her own interpretation and critique. I also wanted
to show the difficulties, be they technical, conceptual, or physical, that
are encountered during the implementation of research projects. This is

a side of research that is usually not portrayed in the final reports.
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3. The Analysis section has two perspectives: (a) at the time of the
experiment and (b) after a detailed analysis of the transcripts and other
material. When there is a discrepancy between the time frames, it is

pointed out.

Before getting to the analysis, an introduction to the students’ backgrounds and a
description of the experimental setting are in order. The two students, whom I shall call
Jack and Jill, had finished taking the MATH 204 course, previously described, in
December 1996. Both had received a B grade (equivalent to 73% —77%). Jack was in an

engineering program, and Jill was in liberal arts.

The experiment took place in a small room. The computer was on one side of the
room, facing a wall, with three chairs in front of it. Directly behind the chairs, there was a
small table that was used for discussions not involving the computer. When the students
turned around and sat at the table, their backs were to the computer and they faced a
small board, hung on the opposite wall. Next to the board, there was a desk, at which I

sat when the students were required to work on their own.
The video camera was placed between the table and the board and off to the side

(in front of the desk). There were two audio tape recorders placed next to the computer.

When the students sat at the small table, one tape recorder was also transferred there.
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The sessions took place in March 1997, every Monday and Wednesday. The

sessions started on a Monday and also ended on a Monday, seven sessions later.

During the sessions, besides the two students and myself, there was at least one
other person in the room. Tommy operated the camera every Monday, while Anna did it
every Wednesday. There was one session when both were present at the same time. On

two separate occasions, there was a different third observer each time. The students were

introduced to every person in the room.

Most of the interaction was between the students and myself, while occasional

interjections were made by Anna and Tommy. The third observer and the students did

not communicate.

3.2.1 Session |

After months of discussions, preparations and speculations on how the students could
possibly react to the planned activities and problems, the day finally arrived when all of
our theories began to be tested. I was excited about this new approach to teaching Linear
Algebra; after all it helped me during the design sessions to get a clearer understanding and
a better feel for some of the concepts. So why shouldn’t it do the same to others? But

along with every exciting situation, there is also an element of nervousness. Because we
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were testing new teaching approaches to enhance the leaming of Linear Algebra, I did not
want to ruin the results by telling the students too much or not enough information during

our interactions.

When I arrived at the testing room, the equipment (computer, video camera, audio
recorder) was already set up. The two students, Jack and Jill, soon arrived. After the
initial introductions and paper work (the reading and signing of the consent forms by the

students), we were ready to get started.

Part of the intentions of the first session was to build a model called CR2 for R?
with Cabri and then to define its operations. These aims were met by first explaining to
the students on the board that CR2 consisted of a Cabri screen with a fixed point O
called “the origin”, and two types of objects. The first type, called vectors, are
represented by arrows starting at the point O, while the second, called numbers, or
scalars, are represented by the coordinate of a moveable point on a separate number line
(see Fig. I-1). The students then learned how to draw vectors in Cabri and create the
number line using a macro named SCALAR. When the students were asked to sit at the
computer, it was decided that Jack would control the mouse and that Jill would read the

instructions from the worksheets.
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3.4

FiG. I-1: Visual representations of a vector vand a number k in CR2

Going back to the board, I introduced the two operations of CR2, vector addition
and dilation. 1 defined the vector sum v+w as the vector that is represented by the
diagonal of the parallelogram built on v and w and the dilated vector kv as the vector that
lies on the same line as v, whose orientation depends on the sign of the scalar k, where
the value [k| is the ratio of the lengths of kv to v (see Fig. I-2). The students seemed to
have no trouble in completing the worksheet in which they learned how to use the Cabri
commands VECTOR SUM and DILATION in two separate exercises and solve a

problem on finding the value of the dilation factor k.

we
ol kv
- H \4
-~ 13
- 13
vy :'
‘%ﬁ ) i
o o kv
vectar sum vew oltatad vecter kv, 00 Dilatad vector kv. k@

FIG. I-2: Operationsin CR2

60



At this point, we were an hour into the session. I was thinking that everything is

going quite smoothly. In fact, the students were mastering the Cabri commands quicker

than I expected'. And then it happened — trouble — Worksheet #3!

Worksheet #3

The second set of aims of this session were for the students to conclude that any vector
in CR2 can be obtained from any two given fixed non-collinear vectors by using the two
operations and to start developing some kind of notion or intuition of coordinates of a
vector in an arbitrary basis. In Worksheet #3, the students were required to solve two
problems. The first involved the composition of vectors, while the second required the

decomposition of a vector into a linear combination of two given ones.

Problem 1

Design

Problem 1 asked the students to name the vectors that can and cannot be obtained from

(a) one given vector and (b) two given vectors “through the operations of vector sum and

scalar multiplication™.

! One of my main concerns for introducing computers in a mathematics classroom has always been that a
lot of time would be wasted while the students learned the commands and/or language of the software; until

now.
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The problem was not expected to be solved by using Cabri constructions. It was
hoped that the students will be able to extrapolate from the experience they had had in
visualizing each of the operations in Cabri and imagine what vectors could be obtained
through these operations starting from one or two vectors. But the students were not
told to not use the computer. In fact, they were free to play with some representations
of, say, the vector sum of two vectors with the same direction (obtained by dilating the
same vector), just to get some initial ideas from which to generalize to the case of dilating
by all possible scalars and adding pairs of all possible resulting vectors. It was hoped that
the students would eventually come to the conclusion that any vector in CR2 can be
obtained from any two given non-collinear vectors through a sequence composed of the

two operations.

Problem 1(a) — What happened

The students may have thought that this is an exercise in Cabri constructions and not a
theoretical question, for they immediately turned to the computer and, starting to answer
part (a), they proceeded to construct the origin O with vector v stemming from it. Then
they drew a line through O and v. Another vector w was drawn with its endpoint on the

line. Finally, they measured the lengths of vectors v and w (see Fig. I-3).
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FIG. I-3: Students’ diagram for the solution of Probiem 1(a)

Problem 1(a) — Analysis

In a sense, the students’ solution was correct: From one vector v, by dilation and vector
sum any vector w with the same direction can be obtained. So it is, indeed, enough to
draw a line through O and v and put a vector with its endpoint on this line. However,
this reasoning introduces an object from outside CR2: the geometric line. One would
rather expect the line in the direction of v to be defined as a result of operations in CR2,
as the set of all vectors of the form kv, where k is any scalar. In the students’ solution,
the operations and the structure of CR2 are completely lost. Some of this structure
could have appeared in the solution if the students had tried to represent w as a multiple
of v. The students appeared to do one step in this direction: They measured the lengths
of v and w. But they stopped there. Maybe they were just remembering measuring the

lengths in a previous exercise (where the equality of vectors was discussed).

Problem 1(b) — What happened

In answering part (b) the students drew vectors OV and WU from different origins. They

were not supposed to do that! Then I thought that it would be interesting to see what is
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going to happen next. They found the vector sum U+V relative to point O. Then, the
number line was constructed, a point placed on OV (no idea why; it could have been a

clicking mistake), and finally, vector OV was dilated by a scalar (see F ig. [-4).

U+V

)

FIG I-4: Students’ diagram for the solution of Problem 1(b)

Problem 1(b) — Analvsis

In their procedure, the two operations were used separately. There was no attempt to
combine the vector sum and dilation; thus indicating that the concept of a linear
combination was non-existent. In retrospect, analyzing my own understanding during the
linear algebra courses that I took, a linear combination was the expression
ajvita;vyt....+tav,.  From the given, I was able to solve for the missing “values” (eg,
given the independent vectors vy, v,,..., v, and vectorv, find a,, a,,..., a, such that v=
a,vi+avt....+agvy). But it had no meaning outside this type of exercises. It was not
until I started working with vectors visually that I grasped the concept. Also to be fair to
the students, we might have expected too much of them. We jumped from Worksheet #2,
in which they learned about each operation separately, to Worksheet #3, in which they

were expected to form linear combinations. Although linear combinations were never
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mentioned as a name for an object, it was assumed that that the students will discover

that they could produce them as a sequence of the two operations.

I believe that we should have expected that the students will want to solve the
problem with a substantial aid of Cabri and should have provided them with the
possibility of creating linear combinations on the screen. For this purpose they would
need two independent variable scalars, so putting two number lines on the screen with the

SCALAR macro would have been helpful.

The other interesting point observed from their solution was the use of separate
origins to draw vectors. I think that it was only natural for the students to be curious
about vectors starting from different points. In a way, there was a contradiction in the
experiment design. One of the main purposes of the experiment was to develop the
synthetic thinking of the students by freeing them from the constraints of coordinates.

But then, we turn right around and require that all vectors start from one given point.

Problem2

Design
Problem 2 required the students to open a file with the configuration in Fig. I-S and to

decompose the vector v into a sum of the multiples of the vectors v, and v, —i.e., find the
numbers a, and a; such that v=a,v;+a,v,. The simplest possible configuration was given

with v between v, and v; in the first quadrant.
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FIG. I-5: Given configuration for Problem 2

We expected them to draw the parallelogram with vector v as its diagonal and its
sides along vectors v; and v,. After measuring the lengths of the sides, they would divide
the results by the lengths of v; and v, to obtain the absolute values of a; and a,. The signs

of the coefficients would be decided to be positive in view of the position of v.

What happened (part )

The students started by measuring the lengths of v; (2.83 cm), v» (4.19 cm), and v (6.13
cm). They did not know how to proceed using Cabri. During their discussion, Jill
suggested several times to “put v; on the v-line”. So, when they resorted to pen and
paper, Jack and Jill wrote:

vi=283cm

v.=4.19cm

v =613cm

a; (2.83) +a; (4.19)=6.13

6'13 = 146 2
4 719 /

6.13

2 283
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Analysis (part )

The students’ behavior brought to our attention another unanticipated problem. The
students, especially Jill, considered vectors as lengths without direction. In other words,
direction does not matter. One can move a vector around a circle with radius equal to its
length and centre O and still have the same vector. So, her solution made perfect sense.

And since both a;v; and a,v; had to add up to v, she divided a, and a, by two.

What happened (part IT)

When the values did not work in their equation, Jack realized that a combination of the
operations is in order when he stated that v is not v; plus v, but a factor times v; plus a
factor times v,”. The students continued by drawing the lines through v and parallel to v;
and v, and later the line through O and v; to complete a parallelogram. They added point
P at an intersection and measured the sides (see Fig. I-6). Jack calculated the values of a,
and a, correctly, but then again resorted to the idea of vectors as lengths by writing
“0.42(4.19) + 1.69(2.83) = 6.13”. Since the equation did not work out, Jill decided to

keep the value of a, and to solve for a; —i.e., “1.69(2.83) + a(4.19) =6.13".

Analysis (part IT)

As stated above, a major misconception that was discovered from these problems was the
students’ perception of vectors. To them, vectors have lengths only. Their direction is

implicit. I believe that part of this problem is that in our everyday activities and language,
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people speak of vectorial quantities as magnitudes only. For example, velocities are
treated as speeds. Also , people talk about the amount of force being applied, but not in
which direction. If they happen to mention a direction, it is usually a general one such as
up, down, forward, or backwards. Even then, I do not think that they realize that the

direction and the amount of force are together as one entity.

FIG. I-6: Students’ diagram for the solution of Problem 2

But again, was it realistic for us to expect the students to understand these
concepts? At the beginning of the session, they were introduced to two types of objects,
vectors and numbers. It was shown that the macro SCALAR generates the numbers,
with the value printed on the screen. Although the concept of the direction of a vector
was talked about implicitly, the students were only shown how to measure the length of a
vector. After going through several exercises of calculating the value of the dilation factor
k on the screen, they were given a problem that asks to find the value of the scalars that
make the linear combination v = a,v;+a,v, true for a given v, v, and v,. I believe that it is

only natural for students to plug in numbers into an equation. Since Jack and Jill were not
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shown how to represent vectors “numerically” (one of the experiment’s objectives was to
introduce coordinate—free vectors), then it is reasonable for them to use the lengths of the
vector in the equation. Two questions are raised: Are the students completely missing
the concept of a vector or do they understand that a vector has both length and direction,

but do not know how to represent them numerically?

3.2.2 Session i

Because of the misconceptions that arose in Session I, it was decided to add to the
second session a few teacher-led exercises to clarify the notions of (1) a vector is not only
determined by its length, but also by its direction, (2) a vector sum does not have a length
equal to the sum of the lengths of its components, and (3) if two vectors are in-line with
each other, then one is a multiple of the other. These exercises went smoothly and were
effective in clarifying the misconceptions. At the end of the second exercise, Jill

commented, “That was good. I see it better now.”

It was time to introduce linear transformations. But first we had to acquaint the
students with the notion of a fransformation. This was not done by a formal definition,
but rather by metaphorical language and visualization using two examples. I

demonstrated to the students the results of two different transformations? of the plane

? The transformations were not demonstrated in the same Cabri file. The students were not asked to decide
whether S=T or not, given v, T(v), w, S(w) on the same Cabri screen.
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when applied to any vector v. It was pointed out that under the first transformation the
image R(v) is always a 60° rotation of v, while under the second transformation the vector
vis projected and the image P(v) is always on a pre-drawn line.

The session then switched to the blackboard where a discussion was held on the
possible behaviors of transformations with respect to the operations of dilation and
vector sum. A tree diagram was produced to show the different possible ways of
obtaining an image with respect to each operation: (1) T(kv) can be created from T(v)
either by a dilation or not by a dilation; and if the former, by a dilation with either a factm_'
k or not by k (see Fig. II-1), and (2) T(v+w) can be constructed from T(v) and T(w) either

by vector sum or not by vector sum (see Fig. II-2).

v dialation -by ~k > kv
T) | T
T(v) — T(kv)
by dilation not by dilation
with dilation factor = k with dilation factor=k

FIG. ll-1 —The possibilities of going from T(v) to T(kv)
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T\ VT
T(v), T(w) — T(vtw)
by vector sum not by vector sum

FIG. II-2 - The possibilities of going from T(v) and T(w) to T(v+w)

The students were then told that they are going to see several transformations that
illustrate some of the above possibilities. Turning back to the computer, the intention
was for me to demonstrate the first example so that the students can be shown how Cabri
is used to test if T(kv) is the dilated vector T(v) by factor k and also if T(v+w) is indeed
the vector sum of T(v) and T(w). The method for testing for the preservation of dilation
was: (1) apply the transformation to a vector v to produce T(v), (2) dilate both vectors v
and T(v) by factor k, thus creating vectors kv and kT(v), and (3) apply the transformation
to vector kv to see if the resulting vector T(kv) always coincides with vector kT(v), as k
and v vary. Similarly, the vector sum test was: (1) apply the transformation to the given
vectors vand w to obtain vectors T(v) and T(w), (2) construct the vector sums v+w and
T(v)+T(w), and (3) apply the transformation to vector v+w to see if the resulting vector

T(v+w) always coincides with vector T(v)+T(w), as v and w vary.
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Example 1

Design
This example required the use of the macro LINE-3, which rotates any vector v by a 45°

counter-clockwise angle and then dilates it by a factor of 1.5. This, of course, is a linear
transformation. One goal was to show the students that T(kv) and kT(v) are the same
vector by constructing both vectors and observing that they coincide, no matter what the
position of v and the value of k were. Similarly, the procedure was to be repeated to

show that T(v+w) and T(v)+T(w) are also the same vector, for any vand w.

To help the students visualize the preservation of dilation by a linear
transformation, segments vT(v) and kvT(kv) were to be drawn to create a pair of similar
triangles (see Fig. II-3). By altering the value of k, the students would observe that
triangle kvOT(kv) always moved in proportion to triangle vOT(v); thus creating a nice
dynamic picture. In other words, vectors v and T(v) were always stretched by the same

factor.

167

T(kv)

T(v) \‘\

FIG. iI-3 - Similar triangles are created to help visualize the preservation of dilation in a
linear transformation.
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What happened

The example began with me setting up the Cabri screen:

43°
1.3

143 k

T(v)

s

FIG li-4 - Configuration at Line 77

75. M*  So we’'ll put two numbers here. And then I'm going
to put our vector... Label this point v and this point
O. Now transform this vector. (applies LINE-3 to v).
So now this red vector is the image of v which |
will call T(v). Now | am not going to tell you what
this transformation does. I'll move this around
[vector v] and ask you if you have any idea about
what this transformation does.

76. Jill: What do you mean what it does?

77. M:  What is the relation between v and its image T(v)?
(see Fig. [1-4)

After a few suggestions,

81. M: At this point we are not interested in what it does.
It is just to show you that we have a certain
transformation, then we aiways have the vector and
its image. What we are really interested in is the
relationship between T(v) and T(kv)...

* M is Me (Michael); AS is Anna Sierpinska; T is Tommy Dreyfus
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Through a discussion, the students determined that kT(v) and T(kv) are equal and

they learned a method to verify this conclusion using Cabri.

107. M: O.K. So the relation between these two is a
dilation. Let's check something else though. | am
going to draw a line segment between this and this
[endpoint of vector v and endpoint of vector T(v)
and endpoint of vector kv and endpoint of vector
T(kv)]. So we have a line between v and its
image. And a line between kv and its image. | am
going to drag this point (k). What is happening?

(see Fig. II-5)

108. Jack: If k is moving, the two triangies are not equal but
they have, uhm, they remain at the same angle.
And the relationship of the sides of the triangles
are the same.

109. M.: What do you call that relationship?

110. Jack: Congruent?

111. Jill: They are depending on each other? When the
factor changes they are changing but still they are
equal in proportion?

112. M.: O.K. So what is changing in proportion?

113. Jill: k... No. T(kv), the transformation of kv and the
vector kv.

114. M.: So the two images in other words?
1158, Jill: Yes. s

T(kv)ls k

v kv

FIG. lI-5 -~ Configuration used after Line 107
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After dragging point k some more and reminding them that the triangles are called

similar triangles,

121. M.: So what can we conclude about the behaviour
with respect to dilation? The dilation factor of k
and seeing these images, can you make any
conclusion ... a statement about this...

122. Jill: When the vaiue of k changes (silence); basically
what | said before. The value of k changes then kv
changes in proportion with the transformation of kv.
Is that what you asked for?

123.M.: Are they changing in proportion? Is kv in
proportion to this one [(T(kv)]? Or to what?

124. Jack: T(kv) is proportional to T(v) by k factor.

125. M.: Good. And what else? This [T(v)] is proportional
to this one [T(kv)]. And...

126. Jack: There is the same relationship between v and kv
and T(v) and T(kv).

127. M.: And that same relationship is ...
128. Jack: The dilation factor.

It was time to look at the behaviour of the transformation under the vector sum
operation. A smooth discussion ensued. The students confirmed that T(v+w) is equal to

T(v)+T(w) and learned how to verify it using Cabri.

Analysis
As was intended, we started Example 1 with the emphasis on the notion of applying the
transformation to the whole plane (Lines 75 — 81 above). Unfortunately, the language

used may not have been very clear —e.g., “it is just to show you that we have a certain

transformation, then we always have the vector and its image.”
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Our intention in drawing the two similar triangles was not only to create a nice,

dynamic picture when k is varied, but also to show that both v and T(v) are being

stretched by the same factor; thus creating the proportion %"I;I = E[IF(TK‘;L kl. Inother

words, the ratios were a comparison of the corresponding sides of the two triangles (see

Fig. IT-6).

FIG lI-6 — The dotted lines show the sides being compared in the similarity proportion

Jack had no trouble visualizing this, but Jill saw it differently. She focused on the

relationship of the sides within the same triangle, thus creating the proportion

[TCvy - Td) I constant. In this case, the constant is equal to 1.5 (the dilation factor of

™ |kvi

the transformation). In other words, the ratios were a comparison of “side a” and “side

b” of the same triangle (see Fig. II-7).

Jill focused on the movement of the triangle changing size—i.e., the vectors kvand
T(kv) — that when she created her ratios, she compared the sides of the same triangle. Not

that it is wrong to see it that way, but throughout the whole discussion she was not able
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to see it the other way, even though I tried to steer her in that direction (Lines 112- 123
above). Jack was able to snap out of the hypnotic state created by the triangle’s
movement and focus on the relationship of the corresponding sides of the triangles.

Maybe his stronger geometric background helped him visualize both ways (Line 124).

FIG lI-7 - Dotted lines show the sides being compared in the similarity proportion

My mistake was that once Jack said the intended answer, I shifted my attention
to him and ended the discussion (Lines 125-128). Although I was probing Jill all along, I

left her hanging without any confirmation on her misunderstanding.

Examples 2 & 3

Design

The aim of these examples (including Example 4) was for the students to practice the

process of testing the linearity of a transformation, although they were not told that that
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was what they were doing. They were trying to find the appropriate cases on the tree

diagrams.

Example 2 used the macro QUADRATIC-7. The macro is designed to rotate any
vector v by a 45° counter-clockwise angle and then dilate it by a factor of |v|]>. In this
transformation, T(kv) is produced from T(v) by a dilation by a factor not equal to k. It

also does not conserve the operation of vector sum.

Example 3 employed the macro Translate-tip, which translates the tip of v by a
given vector a —-i.e., T(v) =v+a. This transformation follows the “not by dilation” and

“not by vector sum” branches in Figs. II-1 and II-2 above.

What happened

With my instructions, Jack set up the configuration for testing the behaviour of the

transformation in Example 2 with respect to dilation.

118. M.: ...Let us vary k. (Jack moves ‘k’ along the number
line) It would probably be easier if you draw the
line segments between v and T(v), and kv and

Ttwv). (see Fig. II-8)
120. Jill: So they are not...

121. Jack: Yes. They are changing. (Moves ‘k’ very slowly,
stops at the point where k=1) It's the same now.

122. Jill: Dilation by a factor not equal to k.

(...)
133. Jack: If the dilation factor were equal to k, we would
aiways have similar triangles. But we dont.
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134. M. O.K. Good. Let us check for vector sums. (AS
suggests skipping this part) We’'ll try another one.

~18%

T(kv)

T(w)
FIG. -8 ~ Configuration after Line 119 (Note: a ghost number appears on the screen

upon activating macro Quadratic, we had no way of getting rid of it)

Again I instructed Jack in setting up the opening configuration for testing the

behaviour of the transformation in Example 3 with respect to dilation (see Fig. I1-9).

o TEV)

FIG. 1I-9 - Configuration for Example 3

135. M: ...Now drag 'k".

136. Jack: it is just like the other one. | don't think it is
dilated by factor k.

79



137. M.: So what is this relationship? What case do we
have? How does the transformation behave with
respect to dilation?

138. Jack: Dilation factor different from k.

139. M.: Do you agree, Jili?

140. Jill: Yes.

141. Jack: Because | think if it were dilated by a dilation
factor k, T(v) would be on the same line as T(kv).
But it's not.

142. Jack: If it were the dilation factor k, then T(v) would be
on the same line as T(kv). But as | was saying, it is
not.

143. Jill: it will keep the same angle.

144. Jack: kv is always on the sa}he line as v. But T(kv) is not
on the same line as T(v).

145. M.: So you are saying that is a dilation by a factor not
equal to k, or ...?

146. Jack: Yes. Maybe it is not even a dilation. No, | mean,
it is. No. What | am sure of is that it is not by factor
k

147. M.: Why don't we click (uncovers the figure from
Example 2) Refer to that figure here. This was the
case, we said, of what?

148. Jack: Dilation with a dilation factor different than k.

149. M.: So if you move k around, observe T(v) and T(kv).

150. Jack: They are on the same line.

151. M.: And the other one, if you go back (back to figure in
Example 3) and move k around, are they the same
case?

152. Jack: No. And...

1583. Jill: But they are both not...

154. Jack: And | think T(kv) is not obtained by a dilation of
T(v). Because they are not on the same line. So
we don't aiways get T(kv) by a dilation.

155. M.: Do you agree, Jill?

166. Jill: | think they are both a dilation by a factor not
equal to k.
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157. M.: So you are saying it is this case here. (points to the
‘dilation not by factor k’ branch on the tree
diagram) but is it a dilation? To get this case, it
has to be a dilation. Do you agree that it is a
dilation but not by a factor k?

158. Jill: It can't be a dilation.
159. M.: So which case is it in this diagram?
160. Jill: Not by dilation.

161. M.: What do you think would happen to the vector
sum?
)

166. Jack: | think it would be ‘not by vector sum’.

167. AS: Yes, it's true and let's skip that part, let's go to the
next example and do the vector sum there. We've
only got haif an hour.

Analysis

Our intention in introducing the dynamic similar triangles was to create a nice, visual
image to help in the understanding of the concept of linearity of transformations with
respect to dilation. Example 2 demonstrated that that the moving image was useful in
distinguishing between a dilation by factor k and a dilation by a factor not equal to k

(Lines 119-133 above).

What we did not anticipate is that the dynamic picture would detract the students
from the idea of dilation. Since the triangles could be drawn in the configuration of
Example 3, the students attention was so focused on the movement of these triangles that
they did not notice that T(kv) was not on the same line as T(v). Their first reaction was
that it was the case of a dilation by a factor not by k (Lines 135-140). Since Jack has the

ability to visualize both ways of comparing “similar” triangles as mentioned in the
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analysis of Example 1, he felt that something was wrong (Lines 141-146). He became
confused with the definition of dilation, although in past examples he always confirmed
that a dilated vector is on the same line as the original vector. After comparing Examples

2 and 3, he was able to see the difference (Line 154).

The same could not be said of Jill. Her main concern was the triangles themselves.
She focused on the shapes of the triangles —i.e., the angles—instead of the sides. When
the students were explaining how the case of dilation by factor k would look like, Jack
talked about the vectors being on the same line, while Jill talked about the triangles having
the same angles (Lines 142-143). When Example 2 and Example 3 were compared, she
still had doubts that they are not the same case since both of the transformations did not
result in similar triangles. For her, both examples were the case of a dilation by a factor
other than k (Lines 151-156). It was not until I explained to her that for a transformation
to be that case, it has to be a dilation first that she agreed (probably reluctantly) that it
was the case of “not by dilation”. It seemed that Jill’s main concern is the movement of

the triangles, not the position of the vectors.

In both examples, the check for the behaviour of the transformation under vector
sum was skipped because we were running short of time. Unfortunately, this led the
students to believe that it is only necessary to check for one of the operations. This

problem was to surface in a later session.
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Example 4
This example involved the macro SEMILINEAR, which sends the zero vector onto the

zero vector and rotates any non-zero vector v by a 90° counter-clockwise angle and then

dilates it by a variable factor ¢, where c = El: and v=(x,X;). This transformation

Iv

conserves dilation but not vector sum.

What _happened
After setting up the Cabri screen, I asked the students about the behaviour of the

transformation with respect to dilation. Jack, without hesitation, constructed the similar
triangles and noted that it is the dilation by factor k case. He added, “But if we want to

be really sure, we can dilate T(v).” Jill did not say a word the whole time.

To test the vector sum case, some of the vectors were hidden, leaving only three

vectors, v, T(v), and w. Jack produced the vectors T(w) and T(v+w).

188. Jack: ...if we move v, we see that T(v) changes and
T(v+w) changes also. So it means that they are
always vector sum. Because they keep changing
at the same time (Jack drags v so that it overiaps
with, probably, w and then stops for a while,
contemplating).

189. Jill: They are in proportion.
190: M.: So do you agree with him?
191. Jill: Yes.

192. M.: So what were we checking? What did you want to
check?
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193. Jill: We wanted to check if the transformation of v and
vector v are uhm .. If they are proportional to the
transformation of vector sum v+w. Well... the sum
of the transformations and the sum of the vectors...

194. M.: Why don't you look at the diagram and see what
happened.

195. Jill: The vector sum of the transformations and the
vector sum of the vectors...

196 AS: | dont think you have the sum of the
transformations. Did you get...

197. Jack: Yeah we did not..._So let’s find this vector.

He produced T(v)+T(w). It was almost overlapping with T(v+w), but it was

obviously shorter and slightly to the right of T(v) (see Fig. II-10).

-1.13

FIG. li-10 - Configuration after Line 197

199. M.: So what can you conclude? What case is this?

200. Jack: That the vector sum of T(w) and T(v) is not equal
to the transformation of the vector sum. We don't
get T(v+w) by vector sum.

201. M.: Right. O.K. Questions?
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We then turned to the board, where I defined a linear transformation by

highlighting the appropriate branches on the tree diagrams (see Fig. II-11).

v dialstion -by-k -> kv

T} v T

T(V) — T(kv)

by dilation not by dilation

\‘\‘
\\
with dilation factor = k with dilation factor= k
vV, W e - viw
T\ | T
T(v), T(w) —— T(vtw)
\\‘

by vector sum not by vector sum

FIG. I-11 - A linear transformation.
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Analysis
Jack seemed to understand the concept of the linearity of transformations (although we

have not used the term /inear yet). He was quick in making the conclusions, although he

had to be reminded to produce T(v)+T(w).

Jill was still not clear on the concept, as witnessed by her silence in the first part
of the example and her confusion in the second. She was so mesmerized by the moving
vectors that she called any relationship “proportional”. In Line 189 above, she said that
v, T(v), and T(v+w) are “in proﬁortion” because she saw all three move when vector v

was dragged. Of course, T(v) and T(v+w) moved because they are dependent on v.

Again I made the mistake of not confirming Jill’s understanding at the end of the
example. In Lines 189 — 196, I was leading her through the discussion, but once again as

soon as Jack came up with the intended response, I concluded the example.

We later felt that defining linear transformations on the board using the tree

diagrams was meaningless to the students.

Worksheet 1

Design
After defining linear transformations using the tree diagrams, the students were given

Worksheet #1:
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“Write the definition of a linear transformation in an
algebraic language. The definition should start with the
words; “A transformation T is linear if ......>. Use symbols
suchas: T v w kK ( ) + = »

By comparing the results of the above examples with the tree diagram, the

students were expected to write the equations T(kv) = kT(v) and T(v+w) = T(v) + T(w).

What happened

Jill was still reading the question when Jack wrote T(v) + T(w) = T(v+w). He said, “So
that’s all about the vector sum. Now you do the second.” Jill was thmkmg out loud
while writing an equation part by part. As she was saying her thoughts slowly, Jack was
completing her sentences. She finally wrote the equation T(v) = T(kv). Jack said, “But
we have to put... But this is not equal. It’s T(kv) that’s equal to kT(v).” Jill then asked
if she can look at the sketches. She wanted to see the diagram of the similar triangles. She

could not find the diagram, so she drew it on paper.

229. Jill: | see it like this. When this (moves her pen along v
and kv as if imitating the effects of dragging 'k’ on
the screen) then this (makes rhythmic movements
along v, kv and T(v), Tk(v) (i.e., T(kv)))

230. Jack: (Fixes Jill's equation to look like k(T(v)) = T(kv))

231. Jill: | wouldn't write it like this... (reads Jack’s formula
and then comes back to her diagram, trying to
translate from the formula to the diagram) kv is
here...

232. Jack: But you see kv over v is equal to kT(v) over

(crosses out ‘kT(v)) T(kv) over kT(v)... No, (crosses
out k' in the denominator) That's the same thing.
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Jack had written the equation —tz = 'I.‘r(:cv\;) . Jill agreed with him. They, then,

called me over to discuss their results. Jill explained, “I knew what I was trying to say

but it is the writing of it in a formula type of thing that I had trouble with.”

Analysis
It is clear that Jack was grasping the definition of linear transformation, but Jill was still

confused and not confident in her understanding. Jack showed that he was able to switch
easily between a visual representation and an algebraic one. On the other hand, Jill was so
mesmerized by the moving pictures that formulas did not mean much to her. She was
able to understand the equation when it was written as a proportion since it was derived
directly from the diagram. It would have been interesting if she had tried to write the

formula for the vector sum. Would she have written proportions?

When Jack wrote the ratio kTV- = T_;:;) ,» we accepted it. We did not point out

that the ratio should be of the lengths of the vectors —i.e. -l%' = % — thus

compounding to the already misunderstood concept of a vector. First, we show them
that a vector has both length and direction, but we do not show them how to write it.
That is because to represent a vector algebraically requires the introduction of a

coordinate-system, which contradicts the aims of the experiment.



3.3.3 Session |l

I began Session III by interviewing Jack and Jill about their understanding of linear
transformations. They sat at the small table and were given a reproduction of the tree
diagrams that were developed in Session II. I was to correct the students if they had

made a mistake concerning the meaning. Otherwise, they were allowed to use any form of

expression they liked.

After clarifying and/or conﬁrming_ their understanding, the students were to

continue with Worksheet #1 left from the previous session.

Parts IT and IIT of this session involved the introduction of invariant lines. This

topic will not be analyzed in this paper.

Episode 1

What happened
Sitting at the table, facing the board with our backs to the computer, I asked the students

if they could give a definition of a linear transformation.

3. Jack: Linear transformation is when... the
transformation... the vector sum of two vectors that
are transformed... is equal to the transform of the
vector sum of the vectors... T of u plus T of v
equals T of (makes gestures imitating brackets with
his hands) u plus v.

4. M.: OK... So that, do you agree with that?

5. Jill: (looks surprised; slight pause, then seems to recite
what Jack has just said) um... OK... transformation
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of say vectors v and w are equal to the
transformation of v+w (she looks up to me for
approval).

6. M.: (sensing that she is reciting) One more try?
7. Jill: Then what | am saying is not right?

8. M.: Yeah, that's okay...

9. Jill: OK... I can... say only if | see it...

10. M.:  If you want to draw something... there's paper... it's
right here.

11. Jill: OK... (Makes gestures: palms of the hands
straightened and close to each other and then
moving forward and away fromn each other, as if
simulating two vectors with common origin moving
along straight iines. But decides not to draw and
instead gives the condition for vector sum; this
time it sounds less like reciting) The translation...
the transformation of v plus the transformation of w
equals to transformation of v plus w.

I got confused with the wording. Thinking she said that the sum of vand w is
equal to the transformation of v plus w —i.e., v+w = T(v+w) --, I asked her to repeat
herself. She decided to draw the situation. After thinking for a while, she asked Jack to

help her remember the situation. The following short discussion ensued:

20. Jack: Yeah, and we did the vector sum of the transform
of v and transform of w, and if it's equal the
transform of v+w, it means that it is linear...

21. M.:  OK, would you like..., so that she sees it better...
Can you draw the situation for her?

22. Jack: (draws a diagram) OK this is u, no v, this isw...OK
let's say this is the vector sum of v+w.. OK.. if we
transform v, OK... let’s, | don't know, rotate it, this is

T(v) and let's rotate w again. (see Fig. ITI-1)

They both continued to explain that if T(v+w) equaled T(v) + T(w), then it would

be linear.
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31. M.: OK so is this the only thing that would make a
linear transformation?

32. Jack: No, there is also by dilation.

33. M.:  OK... what about dilation?

34. Jack: OK if we dilate the vector by k... and we transform
vector T(kv), it's supposed to be equal to the
transform of v by k.

35. M. (to Jill) OK... do you agree with that?

36. Jill: Yeah.. we have v and kv (draws v and kv), | don't
remember the transformation...

37. M.:  Somry, you don't remember? Remember what...
38. Jill: The transformation... like T(v)
39. M.:  You mean... where the image would be...

40. Jill: Right.

After I'told her to use any transformation, she drew the diagram in Fig. ITI-2.

44. Jill: OK, so transformation of v by factor k would be
transformation of kv.

45. M.: OK... so?
46. Jill: So they are equal and they are proportional...
47. M:  OK, so what is proportional?

48. Jill: Um... the transformations of... um... They are by
the same factor k.

49. M.: OK...
50. Jill: Umm, | have trouble wording it.

51. M.:  So if you extended this by k that you showed here ..
(pointing to v and kv line)

§2. Jill: OK.. right.. and so this will extend by the same
factor.
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FIG. lii-1 - Diagram drawn on paper by Jack

FIG. lli-2 - Diagram drawn on paper by Jill
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Analysis
The above discussion confirms the conclusions about the students’ understanding of

linear transformations after completing Session II. Jill understands visually as seen in her
need to draw diagrams to explain herself (Line 9 and Lines 35-52). Her understanding of
linear transformations is based on the image of the moving similar triangles. This is seen
in Line 11 above when she imitates the similar triangles image with her gestures even
though we were discussing the vector sum case. When asked to explain the dilation case,
she immediately drew the diagram and said that kT(v) and T(kv) are equal and
proportional (the “buzz” word). When asked what is proportional, she could not word
her explanation. I think that is because she is visualizing in her mind the two sides
extending, but at the same time she sees the proportion formula, which compares the large
triangle to the small triangle. She sees the comparison of the sides of the big (moving)

triangle. Therefore, she cannot put it into words.

On the other hand, Jack can explain himself verbally, with formulas, and
graphically. As for his understanding of linear transformations, I believe that he
understands both conditions individually, but he might think that only one needs to be
tested. This could be the reason why he gave only one condition when defining a linear
transformation (Line 3).

At the time when the experiment was being conducted, we thought that the

students did not understand the idea of a transformation being applied to the whole plane.
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The language they spoke indicated that the transformation is the same as the image. Jack
talked about the “transform of v’ (Lines 20,22,34) and Jill explained, “The
transformation. .. like T(v).” (Line 38) But now I believe that Jack (I’m not so sure about
Jill) understood that a transformation is applied to the whole plane, but did not have the
proper vocabulary to express himself correctly. When I asked Jack to draw the vector
sum case for Jill, he used a specific transformation (rotation) to draw the images of
vectors vand w. He could have easily drawn random vectors T(v) and T(w), but instead

he showed that the relation between any vector and its image is preserved (Line 22).

Worksheet 1

Design

In this worksheet, the students were given the descriptions of two transformations and

were asked to find out if they were linear. The students were expected to use the testing

method of Session II.

In problem 1(a) the transformation was a reflection. It required the use of the
‘reflection’ command under the TRANSFORM menu. It constructs an image vector that

is a reflection of a given vector v through a given line L.

In problem 1(b) the transformation was a shear. In linear algebra, the shear

" transformation can be defined as follows: Let u be a non-zero vector and q a scalar.
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The shear with factor q in the direction of u is the linear transformation S of the
vector plane for which S(u)=u and S(w,) =qu +u,, where u, is the rotation of u

by 90°. But this definition could not be given to the students in the experiment because
they did not have the necessary background to understand it. So a geometric description
of the transformation was given: a shear with factor q (q>0) in the direction of a line L
is a transformation such that for any vector v in the plane, the line through the tips of v
and its image S(v) is parallel to L, the ratio of the distance from v to S(v) to the
distance from the tip of v to L is constant and equal q, and the vector S(v) is to the
right of v when one’s eyes are positioned in line with L and so that v is above the line.
For this session, the shear transformation was programmed in Cabri by a macro
construction labeled SHEAR-4. The parameters for this macro were a line L through
the origin and a positive number q. The output was supposed to be the image of v
under the shear with factor q in the direction of L. Unfortunately, there was an error in
the design of the macro®, and the vector S(v) was not always appearing to the right of v

(see Figs. I1I-3,4). This made the transformation not linear: it failed to conserve scalar

* SHEAR-4 was designed to produce the image using the following steps: (1) v is orthogonally projected
onto a line K perpendicular to L through O; obtaining vector wy, (2) Vector w; is reflected in the angle
bisector of lines L and K and dilated by q; producing vector w;, and (3) the vector S(v) is the vector sum of
v and wz. The error occurred because for any pair of intersecting lines, there are two angle bisectors and
Cabri was randomly making the choice of the angle, depending on the position of v, the value of g, and the
inclination of line L. In SHEAR-11, the revised macro used in Session IV, a reflection by —90° replaced
the reflection in the angle bisector. This took care of the problem but required an extra parameter (-90 °) to
activate the macro.
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multiplication. We were not aware of this flaw, and it caught us by surprise during the

session.

q-!2

A L
/\.

S(v)

q-l.z

N\ Ve )

FIG. III-3 - For the vector v below the horizontal
line L, the SHEAR-4 macro produces S(v) to the
right of v for eyes in line with L and seeing v
above L.

FIG. III-4 - For the vector v above the horizontal
line L, the SHEAR-4 macro produces S(v) to the
leftof v foreyes in line with L and seeing v
above L.

What happened

The students started by reading Problem 1(a) and the description of the reflection

transformation. Following the instructions, they created the diagram in Fig. III-5. Jack

suggested that they “have to check if it’s [the case of] ‘by vector sum’ and ‘by dilation’

when it’s a reflection.” Jill agreed and started to read the definition of reflection again. In

the meantime, Jack was moving the endpoint of vand T(v) moved accordingly.

72. Jack: Hey watch on.. like in a mirror...

73. Jill:
74. Jack: Yeah...

75. Jill: But you know what...

Yeah, that goes through...

76. Jack: They willi always be equal, there will always be the
same angle between the two.

77. Jill:

This is probably linear.
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78. Jack: So. | think it will be linear because reflection
doesn't change iength or anything. | think this is
linear.

/T

FIG. HI-5 - Configuration used in Problem 1(a) (Reflection)

They started Problem 1(b) by reading the instructions on how to apply the shear
transformation. They produced the figure in Fig. III-6. Jill read the description of the
shear transformation and a discussion between the students ensued on how it applies to
their figure on the screen. Jack understood the fact that the tips of vectors v and S(v) will
always lie on a line parallel to line L. In discussing the role of q, Jill suggested to “put a

new number q.” Jack put the number 0.5 on the screen and used it as the parameter q to

produce the unlabeled vector in Fig. ITI-7.

111. Jack: ... You see here... it's always equal. They're
always on a parallel line but for it to be linear it
means that it's supposed to be dilated by a factor k.
But we see that this is factor k and it has no
influence on the vectors (moves k along the
number line and nothing changes with v and S(v)).
it's only by the number q, but number q it only
means that the distance between the points...

112. Jill: The distance between the endpoints of S(v) and v

is equal to q times the distance from the endpoint
of v to the line L.
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113. Jack: Yeah. To get this we have to multiply by this
number by the distance of v (moves the cursor
along vector v as if indicating that ‘the distance of
v’ is the tength of vector v), like the distance
between this and this [vector v and unlabeled
vector] is half of the length of vector v, and
between this and this [vectors v and S(v)] is 1.3 of
vector v... But this does not mean that it's linear
because if it were by dilation, the vector S(v) was
supposed to be on the same line (points to the
uniabeled vector) and it's not... :

-107 k

13

o L

N\

S(v) v

FIG. l1I-6 — Opening configuration of Probiem 1(b) (Shear, where q = 1.3)

-107 k
oS

1.3

N

S(v) v

FIG. 1li-7 - Unlabeled vector is produced using SHEAR-4 with q=0.5

98



Jill did not understand. Jack explained how the distance between the tips of an
image vector and vector v is equal to the distance from the endpoint of v to line L times
the corresponding q. This time Jack correctly pointed to the perpendicular distance
between endpoint v and line L. He went on to explain how the tips of the images will
always be on a line parallel to line L. But Jack was still not sure about the linearity of the
transformation. They decided to try a negative value for q. They typed the value -0.8

and produced another image whose tip was on the line parallel to line L (see Fig. ITI-8).

-107 k

13

o L
\

S(v) v

FIG. lii-8 - Unlabeled vector to the far right is produced using SHEAR-4 with q = -0.8

138. Jack: Two different vectors we will get {when using
different values for q], but | don't think it’s linear,
because it's not ‘by dilation’, these vectors
(pointing to the three image vectors) are not in
line, and you cannot get (Silence. Jack starts
moving k on the number line.)

139. Jill: No.. no..

140. Jack: But there is a number that | think its proportional
or ... it's not v by that number... No, | think there is
something wrong with this figure...

(..)

143. Jack: (Silence, moves the pointer from one vector to

another) This foliows some other rule... (Long
silence).
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At this point, I decided to start the discussion. I joined the students in front of
the computer and asked them about what they have discovered. They explained how an
image is formed under a shear transformation. Jack added that he was not sure if it was

linear because

152. Jack: When a transformation is linear it means that it
has to be dilated by k and by vector sum.

1583. M.: Yes, that's what we said before.

154. Jack: But as v and the others are not the same dilation.
Because it depends on q, basically. What we know
is that they'll always be on the same line. The
endpoints of these will always be on a line parallel
to L. We get any vector we want, but um... it
doesn't mean it's linear.

(-..)
157. AS: They are confusing q with k.

158. M.: Ok... qis not.. Ok.. q is just a parameter to give you
the image... Ok.. so if you do change q you are
getting a different transformation..

159. Jack: It’s not.. ah.. it's not k

160. M.: it'snotk..

161. Jack: | tried to move k and it has no effect whatsoever
on the transformation...

162. M.: Well... why do you think that?

163. Jack: Well... | ah... it [kK] can be anything but it [the
vectors] won't change if it [k] does... we don't need
k for getting something that...

164. M.: Why did you use k before... in the previous
examples?

165. Jack: Um... kS(v) must equal S(kv).. (Jack & Jill giggle,
realizing their mistake).
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They went ahead and produced vectors kv and S(kv). But because of the design
error discussed above, S(kv) was not in line with S(v) (see Fig. I1II-9). Jack correctly

concluded that the transformation was not linear.

k -147

Sv) Vv

FIG. -9 - Final configuration of Problem 1(b)

I then turned the discussion back towards Problem 1(a). Jack retrieved the figure
with the reflection and proceeded to add the number line and produce vectors kv and
T(kv). By moving k along the number line, they both concluded that it is the ‘dilation by
factor k’ case. When asked about the vector sum case, Jill said that a new vector w was
needed and that “the sum of the transformation of w plus the transformation of v was
equal to transformation of v+w”. I then asked them if they are sure that this would

happen.

221. Jack: Oh.. its um.. if we use dilation to see if it was ah...
linear so if we use vector sum we are supposed to
get... to draw the same conclusion... we are
supposed to find that T(v)+T(w) is equal to T(v+w).
I don't think... they both have to be true.

222. M.: OK. So is the other one true. The sum..
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Jack constructed vectors w, T(w), v+w, T(v+w) and T(v)+T(w) and concluded

that the vector sum case is satisfied.

227. Jack: ...So it is linear... We proved it by dilation and
vector sum. That’s all! So dilation and vector sum
are ways to see it's linear.

228. T.: Ok, so can | interject one question on the activity
just done? You just said you did it by dilation and
you did it by vector sum.

229. Jack: Yes...
230. T.: Ok if we do one of these [linearity tests], would that
satisfy you?

231 Jill: | think so...
232. T.: Either one...
233. Jill: Yes...
234. Jack: Yes... Ok because | don't think...

235. Jill: | don't think they could be linear in one way and
not the other.

236. Jack: Exactly.
237. M.: Ok

Analysis
At the beginning of Problem 1(a), Jack suggested doing the dilation and vector sum tests

for the reflection transformation but did not act on it. Instead, he (and Jill) concluded that
the transformation is linear because the vectors v and T(v) will always have the same
length (Line 78). He compared this transformation to a rotation transformation which is
linear and always produces an image vector T(v) equal in length to vector v. In all the
examples of non-linear transformations that they have seen, the length of T(v) was

variable according to the position of vector v. Therefore, the present situation fit the
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criteria for it to be a linear transformation. According to Rumelhart (1980), the students
have developed their own schemata of what a linear transformation represents, and the

reflection transformation fit that prototype.

Confusing parameter q for factor k could represent an obstacle that we had not
seen before, but it does confirm Jack’s understanding of linear transformations. In Line
111, he states that for the transformation to be linear, it had to be dilated by a factor k.
But when he moved k along the number line, nothing_ happened. He repeats several times
his concerns that the transformation is “not by dilation” since the image vectors are not in
line (Lines 113 and 138). He knows that there should be a variable number that will make
the picture move proportionally, but this is not happening (Line 140). He is so puzzled
that he concludes that “this follows some other rule.” (Line 143) Refering to Rumelhart’s
(1980) prototype theory, this time the present situation did not fit the criteria of a linear
transformation. “If a promising schema fails to account for some aspect of a situation,
one has the options of accepting the schema as adequate in spite of its flawed account or
of rejecting the schema as inadequate and looking for another possibility.” (Rumelhart,

1980, p. 38) Jack decided the latter.

Jack and Jill did not realize that they had not created the vectors kv and S(kv)
since they thought that parameter q was the factor k. Was this just an innocent slip up
because of the lack of practice that they have had and the long time in between Sessions II

and III (from Wednesday to Monday)? Or was it deeper than that? Is there no
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connection between what they do on the computer and the formulas -- i.e., between
performing the linearity tests and the equations of the conditions of a linear
transformation? Is any scalar value a dilation factor? What is a parameter? At this point
I cannot tell what is the reason(s) behind the students’ confusion, but we have to
remember that a dilation is in itself a linear transformation; thus making the factork a

parameter of the transformation.

In discussing Problem 1(a) we realized that the students had the misconception
that it was sufficient to do only one operational test when checking for linearity. Jack
even said at one point that he does not think that “both [tests] have to be true” (Line
221). After performing both tests, Jack said, “ So dilation and vector sum are ways to see
if it’s linear.” (Line 227) It seems that, for the students, these procedures are individual
tests that are done in Cabri to see if a transformation is linear and not the conditions that

a transformation must follow to be called linear’.

* There is no way to explain to the students at this stage of their mathematical studies that both conditions
are necessary in the definition of linear transformations. It was possible to give an example of a
transformation satisfying the dilation property but not the vector sum condition (‘Semilinear’). But, since
every transformation which satisfies the vector sum condition satisfies the dilation condition for rational
scalars, things may go wrong only with irrational scalars. This implies that an example of a transformation
satisfying vector addition but not the dilation condition cannot be constructed (and certainly cannot be
represented in Cabri which has no representation of irrational numbers) (see Sierpinska, Dreyfus and Hillel,
1999).
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When Tommy asked them if they would be satisfied with the results of only one
test, Jill said that she would be since a transformation cannot be “linear in one way and
not the other” (Line 235) Obviously, she had forgotten the Semi-linear example (Example
#4) in Session II. But when nobody corrected her mistake and I even said okay (Line
238), the students thought that their reasoning was correct. This problem will come up in

the next session.

This little incident shows the delicate line between a classroom situation and an
educational experiment. A classroom teacher would have quickly corrected Jill’s mistake,
whereas a researcher is more interested in how students acquire knowledge and therefore
he/she sometimes decides not to correct the students. The problem is the students do not
distinguish between a classroom and a research setting. To them, whatever the authority

figure says is true and their silence is a sign of confirmation.

By the end of the session, we felt that Jill was being left out during the
worksheets. Jack was much quicker in making a plan to solve the problem. Since he was
also in control of the mouse, he was going ahead with his plan without waiting for Jill. He
also was not listening to her suggestions. We decided that Jill would take control of the

mouse in the next session to slow the pace down to her level.
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3.2.4 Session |V

As promised, the Shear transformation was re-looked at since the macro SHEAR-4 in
Session IIT was giving a non-linear transformation. In this session the revised macro
SHEAR-11 was used to investigate the linearity of the shear transformation and its
invariant lines and characteristic values. The invariant lines discussion will not be

analyzed here.

What happened

We sat at the computer, but this time Jill was in control of the mouse. Since it was her
first time using Cabri, she had trouble drawing a vector. Everybody in the room gave
advice. It got so noisy that Jill, sighing heavily, said, ““ everybody talking at once.” After

some time, the investigation finally began.

92. M.: OK. So now you've constructed a vector and you
got its image under the shear transformation.(see

Fig. IV-1) How would we know if this shear
transformation is a linear transformation?

93. Jack: If... what we can do is that we can use the
dilation... we dilate... the v and then we’ll dilate
S(v) if... if... they'’re on the same line it means that
S(v) is a linear transformation.

94_ Jill: If the dilation stays each on its own line.

(-)

97. M.: It's not only a dilation but it has to be in proportion.

98. Jack: The same factor.

99. M.: Exactly.
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FIG. IV-1 —Opening configuration: the SHEAR problem

With Jack’s instructions, Jill constructed the configuration in Fig. IV-2.

- 133

FIG. IV-2 - Students’ setup for checking for preservation of dilation.

109. Jack: ... Now we’ll move k to see if they are proportional.
110. Jill: Yeah.

111. Jack: ... They're on the same line. So it's proportional,
so it means that... S(v) is a linear transformation.

112. M.: So why do you think that they are moving at the
same rate?

113. Jack: Because... like if we... drew a line between the
endpoint of kS(v) and kv, and the v and S(v), the
two lines wouid be parallel. So it means that every
time they are getting bigger it always has the same
rate.

114. M.: Right. But... [silence]
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Then I proposed to them that their construction would work for all transformations,

linear or not. A discussion ensued. At the end, Jack said:

122. Jack: [When the transformation was not linear] it was not
on the same line so... and it was... and sometimes
it was on the same line but it was much bigger
than the other things which was not... maybe it was
dilated but not by a factor k which meant that it

- was not linear. 1 think if it's on the same line and
it's proportional, it means that it's always that it's
always... linear.

123. M.: OK. | agree with what you said because this is what
the definition of a linear transformation, but what
I'm saying is the steps you took... I'll always get this
proportionality and can you.. can you find out

why? Maybe you can use that diagram [the tree
diagram from Session II] to see what you did?

With the aid of the diagram, Jack noticed the mistake. He explained it to Jill. Although

she repeated the explanation in her own words, she still dilated S(v).

143. M.: No. See what happened? You used the wrong...
you used the dilation. You dilated this way.
Transform kv...

144. Jack: What we have to do now...

145. Jill: ... to see if it's on the line.

146. Jack: Yeah. We have to do this again. Select SHEAR-
11 from the macros menu and click on L. angle, q,
v...S.

147. Jill: Like can't we just...

148. Jack: No. We have to use... because we have... we
must use... shear...

After constructing S(kv), they concluded that dilation was preserved under the

shear transformation.
169. M.: ... OK. And so now, is this a linear transformation?
170. J&J: Yes.

171. M.: OK. And so you don't have to check for the sums?
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172. Jack: No. because... We found if it... we find if it's linear
by dilation or by the vector sum. Because... we
cannot find that the transformation is linear by
dilation and it won't be linear by vector sum.

173. Jill: That's what Dr. Dreyfus asked us last time. It could
be linear with one and not linear when you try to
prove it the other way.

At this point, I reminded them of the semi-linear transformation (Example 4) from
Session I. I opened a new Cabri file and I demonstrated how the macro is used. We
proceeded to check for the preservation of the operations. There was no problem with

the dilation.

To check for the vector sum, the following configuration was produced (see Fig.
IV-3a). After the vector sum T(v)+T(w) was constructed, they concluded that the vector
sum was not preserved (see Fig. IV-3b). I asked them if the whole transformation was
linear. They said no. Jack concluded that both tests have to be done and that since only
the dilation test worked, that was probably why the transformation was called semi-

linear.
1)

(V+w 7

v+¥

(¥)

FIG. IV- 3a - Configuration to be checked for preservation of vector sum.
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FIG. IV-3b - Vector sum is not preserved

They proceeded to test the vector sum of the shear transformation. They had no
trouble concluding that shear is a linear transformation. Jack said, “This transformation is
completely linear”, as opposed to “semi-linear”.

Analvsis

At the time of the experiment, we thought that the students did not understand the
concept of applying a transformation to the whole plane because of the language that they
were using. They were interchanging the words “transformation” and “S(v)” as if they
were the same word. In this session, Jack twice said, “S(v) is a linear transformation’
(Lines 93 &111), indicating that the image vector represents the transformation. But now
I believe that Jack (I am not sure about Jill) understood that a transformation is applied to

every vector in the plane but did not have the proper vocabulary or symbols to express

* Throughout the analysis, I will talk about the students’ misconception that an image vector represents the
linear transformation — i.e., T = T(v). This is correct if one considers v to be a general or arbitrary vector;
however, I do not believe that the students can distinguish between a specific vector and a general vector,
which is why I consider their interpretation of T = T(v) to be 2 misconception.
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himself correctly. In my discussions with them, I never stressed the fact that T
represents the transformation and T(v) represents a vector. The only place that they saw
the distinction was in the instructions of the worksheet. I am a firm believer that students
do not learn proper terms and symbols on their own. They have to be told of the correct
way of saying things (verbal interpretations) and how to write them symbolically,
otherwise they will write them in any way they want. I think that is because students
believe that math is about correct answers, and as long as the final answer is correct, then

that is what matters.

But as important as the idea of applying the transformation to the whole plane is
the concept of linearity. I do not think that Jack has fully internalized the concept of a
linear transformation yet. It seems that he can explain definitions (Line 122) and
concepts (Line 113) correctly, but has to go through a process to retrieve them. But even
then, it seems that he has trouble applying these definitions and concepts to his work.
This is seen from the beginning when he tried to describe the preservation of dilation
under the shear transformation (Line 93). He said that if kv and kS(v) are on the same
line, then shear is a linear transformation. He also only mentioned the ON-LINE
property of a dilation, but not the RATIO property. I had to remind the students of the

dilation factor k (Line 97).

When the students proceeded to draw the figure for the dilation test, they created

vector kS(v) instead of S(kv) to do the “similar triangle” test. This is consistent with
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Jack’s explanation of the dilation test discussed above (Line 93). When Jill moved k along
the number, obviously the vectors moved in proportion. Since the transformation passed
the visual test of their schema for a linear transformation, they declared that shear is a

linear transformation.

When confronted with the fact that their construction will always give the
proportional image, whether the transformation is linear or not, Jack defended his
conclusions very well with a good explanation of linearity visually (Line 122). H_e gave
counter-examples when he described the Translate-tip and Quadratic examples from
Session II (Examples 2 &3). But he still did not realize that kS(v) had been constructed
instead of S(kv). It seems that he understood the final results of the dilation test, but does
not know how to get there by himself. It was not until I referred him to the tree diagram

that he realized the mistake.

The difference between Jack’s and Jill’s comprehension of linear transformations
is that Jack understood some of the ideas and concepts, but had not fully internalized
them. In other words, he could not recall information immediately and could not apply
concepts and definitions to procedures because he did not see the connection. They were
separate entities in his mind, but with some help, he was able to make the connections.
On the other hand, Jill’s base knowledge on linear transformations was far smaller than
Jack’s that it was very difficult for her to make connections between different concepts

and procedures. She still made the same mistake of producing kS(v) instead of S(kv), even
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though a few minutes before she was able to explain linearity tests and equations (Lines

143-148).

After proving that the shear transformation preserved dilation, the students were
asked if it was necessary for them to check the vector sum property. Jack said that it
was not needed because a transformation that is linear under dilation but not linear under
vector sum did not exist (Line 172). Obviously, he had forgotten about the Semi-linear
example fr_pm Session II (Example 4). I could think of two possible reasons for this: (1)
When first introduced in Session II, the semi-linear example had no meaning to the
students. It was just another example of a possibility on a tree diagram. They did not
know what a linear transformation was or that we were leading them to it. Thus, it did
not leave a lasting impression on them. On the other hand, the translate-tip and quadratic
examples (Examples 2&3) had left an impression because the similar triangles diagram did
not work. That is probably why Jack was able to recall these two examples earlier. (2)
The students did not realize that the two tests went together and thought of them as two

independent tests.

Jill's response in Line 173 brought back ghosts from the previous session. She
was referring to the episode in Session III in which Tommy had asked them if it was
necessary to check the conservation of both operations to determine the linearity of

transformation. When they had said that only one check was needed, he did not correct
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them; thus they took their answer to be right. But here Jill took it a step further and said

that the second operation did not even have to be conserved.

Worksheets #1 & #2

After completing the activities for the shear transformation, the students were handed
Worksheet #1. They constructed a coordinate system based on two non-collinear vectors
v; and v,. Through a construction, the students were led to the conclusion that any vector
vis equal to av,+bw,, where (a, b) is an ordered pair of numbers, representing the position
of v with respect tov; and v. In the discussion, I formally defined for them that the

ordered pair (a, b) is called the “coordinates of vector v in the basis <v;, v,>”.

In Worksheet #2, the students discovered that the coordinates of v+ w are (a +c,
b+ d) and the coordinates of kv are (ka, kb), where (a, b) and (c, d) are the coordinates of

vectors v and w, respectively, and k is any scalar.

Both worksheets were completed successfully that an analysis is not warranted.

Worksheet #3

Design
The theme of Worksheet #3 was the Linear Extension Problem (see Section 3.1 of the

present chapter). The problem for the students was: Given the images of a pair of non-
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collinear vectors under a linear transformation, to find the image, under this
transformation, of an arbitrary vector. More precisely, the students were told to
construct five different vectors from the origin in a new Cabri figure. The vectors were
labeled vy, vz, T(v1), T(v2) and v. The students were to assume that T(v;) and T(v;) are
the images of v; and v, respectively, under a certain linear transformation. The question
was: “From the information given, would you know where should the vector T(v) be?

Can you construct it?”

The students were expected to construct a coordinate system on basis <v;, v,>
and to find the coordinates (a, b) of v. Since v=av, + bv, and the transformation is linear,
then

T(v) = T(awv; +bwy)
=T(av1) + T(bvy)

=aT(w) + bT(w)

The students would then dilate T(v;) and T(v;) by factors a and b, respectively. Vector

T(v) would be the vector sum of the resulting vectors.

We wanted the students to work completely on their own. I was not supposed to
give any hints towards the solution of the problem. A discussion of their results was to
follow only when they had finished the problem. No discussion was to be held if the

students did not finish by the end of the session.
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What happened
Following the instructions, the students created the configuration in Fig. IV-4. Jill started

to read the question,

E

Tvly

T(v2)
FIG. IV-4 - Configuration drawn by students for Worksheet #3

272. Jill: (reading) “... The question is: From the information
given, would you know where should the vector
T(v) be? Can you construct it?"

273. Jack: (after some thought) | don't think we couid
construct it because we've only... we put T(vs) and
T(v2) ... | think that's supposed to be the same
transformation but we put it at random. You know
we don't really know where to put the four vectors.
So T(V1)...

274. Jill: (reading) “ Would you know where should the
vector T(v) be?”

275. Jack: Put... like T(v,) and T(v;) are supposed to be the
images of v, and v; by the one linear
transformation but T(v.) could be this, could be
that, you know it’s not... it's not like it's um... um...
it's not like it's it’s real... it's a real transformation.
So v, could be any...T(v) could be anywhere...
since... there’'s not a real transformation... well not
a real transformation but...

276. Jill: You mean we could've put v, there?

277. Jack: Yeah... If we knew where to put T(v,), where to put
v, and... and the coordinates, that would make
more sense but since it's... we put it wherever we
wanted. We don't know if T is linear or... | don't
know if... | don't think we could construct T(v).
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At this point, Anna reminded them that they were assuming that the
transformation was linear’. After a short discussion between the students, Jill asked if

they could move the vectors around. Anna told her that that would change the

transformation. Jack agreed.

290. Jack: Exactly. So if we move them I think that... they're
supposed to be the same transformation but um...
| don’t know, | don't... | don't think we have enough
information to get T(v). { a long silence, kept
looking at the tree diagram) Since.:. the only
thing we know is that since it's linear kT(v) is equal
to T(kv), like kT(v,) is equal to T(kv,) and if we had
v and v: [v,+v3]... the transformation of v; and v»

[T(vi+vy)] is equal...
291. Jill: | think... both...
292. Jack: ... to the sum of T(v:) and T(v2). But...

293. Jill: But you have to have... think that they are direct
images.

294. Jack: But we don't know if it's by rotation or... either as |
told you, do you remember when you ... we
could’'ve put T(vs) here, T(v2) there, | don't know...
we could've... we put the vectors wherever we
wanted.

This discussion between them went on for a quite while, in which Jill kept
insisting that “assuming you have done the transformation” and Jack continued to argue
that “it’s not like it [the transformation] really means something [e.g., a rotation, a

reflection, etc.]”. Jill redrew the configuration on the worksheet to explain the

” From this point on, all our discussions will involve linear transformations. Therefore, any talk about
transformations implies linear transformations.
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assumption of a linear configuration. To explain his point, he drew a different
configuration and asked her to find T(v) (see Fig. IV-5). She saw his point and agreed
with him. That was when we decided to break the “no hints” rule. I asked them what the
information can they get from the problem. Jack said that since it is a linear
transformation, they can get T(v;) + T(v;) and T(v;+v»). At this point Anna told them
that they could find the coordinates of v in the basis <v;, v»>. Ralph sounded surprised

when he said, “Oh, we have to use coordinates.”

3]

T(v2)

FIG. IV-§ - Configuration drawn by Jack on paper
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FIG. IV-6 - Configuration of the problem after axes were moved.

Jill drew the axes on v; and v,. After finding the coordinates of all the vectors, she
moved the axes so that they looked like the ordinary, orthogonal axes (see Fig. IV-6).

Using the coordinates, Jack wrote down the following information on the worksheet:

T(Vl) = -0.78V1 +0.25 Va
T(Vz) = -0.39\’1 - O-87V2

vi =(1,0)
V2 =(O’ 1)

v =-0.09v; + 1.09v,

Looking at his equations, he said:

347: Jack: ...So it means that... what happened to v, is

that... that, well, minus... by .78... but initially v,
was (1,0)... right? And by the transformation it
became -.78. so it means that... it was...
substracted by .78. And they add .25 to v.... to v,.°

* These calculations and the ones following will be shown clearly in the analysis section.
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The students stared at the screen, mumbled to each other, and sat in silence. After

a while, Jack proposed

355. Jack: ... v, was one, right? And it tumed into -.78...
which got subtracted by -.87 and added by .25. If
we do the same to v maybe we’ll get T(v). And if
we do that like... v; is zero minus .39... one minus
well... 1.87. If we do that to v we’ll get T(v). That
means T(v,) is equal to...they don't have the
same... but | think that's supposed to be the same...
it's supposed to be the same transformation.

The students reread the problem. Jack said that he could find the coordinates of
T(v). He started to do calculations on the screen. Meanwhile, Jill was looking at
Worksheet #1. She wrote the equation v=av, + bv,. Then she applied the
transformation T to the equation and wrote “Tv = Tav, + Tbv,”. She showed the
equation to Jack. He told her that it made sense, but explained again what he was trying

to do:

371. Jack: What | did is... Well | moved v;... from v; to... was
transformed into T(v,), like their x-coordinate...
equals one, then it tumed to -.78. And we say it
was -1.87. Because (looking at Worksheet #2)... |
think they give the addition...

(--.)

377. Jack: (Doing calculations out foud)...So, if what I'm
doing is correct, T(v) wouid be... would have these
coordinates. So T(v)... -1.87... and 1.34. So it
would be... (a long silence)... if we use T(v,) plus
T(vd)...no. If we do T(v,) plus T(v.), the vector sum,
we have T(v9) plus T(v2) and... well... no. (a shorter
silence) | don't know but | think what | am doing is
correct. Well, I'm not sure. But maybe...

At this point I told them that they had a few more minutes left and if they could

wrap things up. Jill said that they had an idea. Anna asked her about it.
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386. Jill: Because from our other formula av, + bv,, we get
v. ‘Cause we have our transformation by a factor a
of vi and a transformation of v. by a factor b, we
get out transformation of v.

387. Jack: vi... well when it's transformed... the coordinates

will be changed. If we apply the same...
operations on v, you should get T(v).

Anna reminded them that T is assumed linear and asked them about the factor in

Jill’s equation.

396. AS: ... You have T of av: on the screen. You have
T(v4), how can you get T of av; on the screen?

397. Jill: By putting in our av and then transforming our av.

398. AS: You can use the fact that T is linear.

After a few answers that were going mnowhere, I asked them how they got the

equation. Jill explained:

410. Jill: Basically from this one... the one we did
beforehand a factor a and a vector... when we
did the dilation...plus the factor b on v, would give
usv. |just... so ! just thought of our transformation
of av: plus our transformation of bv-...
transformation of v.

411. Jack: Can we have like -.09 multiplied by -.78 plus 1.09
multiplied by .25... no by T(v,), forv.

Because it was difficult to follow the numbers he was trying to say, I asked him to
write it down. He wrote “Tv = -0.09(-0.78, 0.25) + 1.09 (-0.39, -0.87)”. Anna said that

they had the coordinates and that they will draw it on the screen next time.
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Analysis
At the time of the experiment we were surprised that Jack was stuck on the fact that he

had to assume that the transformation was linear and that it was Jill who was more open-
minded about the random placement of the vectors. But after careful analysis of this
worksheet, I believe that it was Jack’s understanding of concepts that created this
stumbling block. In the discussion between them on this subject, Jack was very adamant
about the fact that the transformation was not ‘real’ -i.e., not concrete (Line 275). He
insisted that by randomly placing the vectors, he cannot tell the type of transformation.
Was it a rotation? A reflection, perhaps? (Line 294) I believe this shows that Jack
understood the fact that a transformation is applied to the whole plane and that there is a
preservation of a relationship between vectors and their images. The only problem was
that randomly placed vectors do not fit his schema of a linear transformation. He believed
that a linear transformation had to make visual sense, where he can see how each image

was similarly created from its corresponding vector.

On the other hand, I think that it was Jill’s lack of comprehension of these ideas
that made her accept the assumption that a linear transformation had been applied to their
configuration (Line 293). She took the problem at face value without questioning it. This
is a perfect example that shows how Jack’s thinking and Jill’s thinking are at different
levels. She thinks in very specific terms. She takes one problem and/or situation at a
time. She does not generalize. For example, when she wanted to explain her point of

view to Jack, she drew the exact configuration from the screen on a piece of paper. When
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he drew for her a different configuration, she got convinced of his concemn and said,
“That’s why you’re saying [it is not linear]... I’m saying it [that it is linear] looking at
this one [the configuration on the screen].” Consistent with previous cases, a concrete,

visual image was again needed for Jill to understand a point.

Further proof that Jack understood the conservation of the relationships between
vectors was when he agreed with Anna that moving the vectors around changes the
transformation (Line 290). Surprisingly, he did not object when Jill, after cong;rucﬁng the
axes on v; and v2, moved them to create a perpendicular pair. Maybe for him, the axes
and vectors are not connected, even though one was defined on the other. This could be
explained from an incident that occurred in Worksheet #1. After learning about the
coordinate axes in Cabri, the students moved them so that they were perpendicular to
each other. When asked about why they did it and if it made a difference to the problem,
Jack replied that the solution was not affected and that ever since he was a kid, they had
always used perpendicular axes. Unfortunately, that problem was introducing the notion
of coordinates in a basis. Therefore, changing the axes around did not matter since just the
basis was changing. He must have thought the same way in Worksheet #3, not realizing
that he was contradicting his beliefs about transformations. This highlights the fact that

he lacked connections between concepts.

When Anna told them that they could use coordinates, he sounded surprised. He

did mention coordinates before (Line 277). I believe at the time he was so bothered by
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the idea of being able to create a linear transformation by randomly placing vectors that
the idea of the coordinates was secondary and was later lost when he was trying to justify

his objections to Jill.

After finding the coordinates of all the vectors, Jack showed that he understood
Worksheet #1 by expressing them as linear combinations. The following is a detailed and

organized description of his analysis in Lines 347, 355, 371 and 377:

Given the following vectors:

T(Vl) = -0.78V1 +0.25 V2
T(v2) =-0.3%9v; - 0.87v,

vi=(1,0)
v2=(0, 1)

v =-0.09v; + 1.09v,"

What happened to v

The coordinates of v; (1,0) became the coordinates of T(v;)
(-0.78, 0.25). The ‘operation’ was a subtraction of T(v;)
and v;:

-0.78—-1=-1.78
0.25-0=0.25

Therefore, (-1.78, 0.25) represents the transformation.

Since T:vy — T(v;)
(1,0) +(-1.78, 0.25) =(-0.78, 0.25)

then T.v —— T(V)
(-0.09, 1.09) +(-1.78, 0.25) = (-1.87, 1.34)
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Therefore, T(v) =(-1.87, 1.34)

What happened to vz

The coordinates of v, (0,1) became the coordinates of T(v>)
(-0.39, -0.87). The ‘operation’ was a subtraction of T(v)
and v:

-0.39-0=-0.39
-0.87-1=-187

Therefore, (-0.39, -1.87) represents the transformation.

Since T: V3 —» T(Vz)
(0,1) +(-0.39, -1.87) = (-0.39, -0.87)

then T:v —— T(v)
(-0.09, 1.09) + (-0.39, -1.87)) = (-0.48, -0.78)

Therefore, T(v) = (-0.48, -0.78)

His analysis of the problem clearly showed that he understood that a

transformation is applied to every vector, but created his own “rules”. In matrix algebra,
the transformation is represented by a matrix A, whose columns are the coordinates of the
images of the basis. The image of any vector can then be obtained by multiplying matrix
A and the vector. Obviously, Jack did not know this. But he knew that when a
transformation is applied to a vector, an image, with different coordinates, is obtained.

He also knew that a transformation is applied to the whole plane; thus every vector is
affected in the same way. So, to find out what happened to each vector, he subtracted the
coordinates. That is probably because students usually associate “change” with

subtraction. Clearly, Jack lacked the proper algebraic interpretation of vectors and linear
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transformations, but the way he manipulated the coordinates in his calculations was
consistent with what he had just learned in Worksheet #2, —i.e., (a, b) + (¢, d) = (a+c,
b+d). His systematic approach of applying the same “change” to the vectors shows, I

think, that Jack is starting to get an intuitive feeling for a transformation matrix.

At first, he thought that if you did the above calculations separately, first using
T(v1) and then T(v2), then the two resulting T(v)’s would be equal (Line 355). This was
Just like the linearity tests, where two separate operations were done and ended up w:th
the vectors overlapping. But when he actually did the calculations, he realized something

was wrong but could not see what it was (Line 377).

Unfortunately, other misconceptions and lack of knowledge prevented him from
solving the problem correctly. Just as before, he still worked with one vector operation at
atime. He did not combine dilation and vector sum together in the same problem. In fact,
in this problem, he did not even mention dilation. He referred back to Worksheet #2, in
which they had found the rules of both operations in coordinate notation, but applied
only the vector sum (Lines 371 - 377). Later on, while the students were discussing their
equation “Tv = Tav, + Tbv,”, Anna asked, “What can you do with this factor [a or b]?”
She reminded them that the transformation was linear and referred them to the
configuration on the screen, since they had a better feeling for linear combinations visually
(Line 396 - 397). Still, they did not realize that they could pull the factors out. This

could be because (1) previously, they had seen dilation in the context of the equation
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T(kv) = kT(v) only and not as a component of a linear combination, (2) the context of the
factor had changed —i.e., k was a scalar on a number line, a and b are coordinates, and/or

(3) the way the equation was written, no parentheses were used.

The difference between Jack’s and Jill’s problem solving techniques is that Jack
tries to back up what he is doing --i.e., it has to make sense to him--, whereas Jill works
more on intuition. Even though she was the one who came up with the formula “Tv =
Tav; + Tbv,”, shfe did it by placing a T in front of each term of the linear combination v =
av; + bv, because she was transforming the vectors (Line 410). If she had used the proper
way of applying a transformation —i.e., T(v) = T(av; + bv;) -, then maybe they would

have realized sooner about pulling out the factors.

It was only when I focused their attention to the formula that Jack proposed
substituting the values into the equation (Lines 410 — 411). Up to that point, he did not
think that the equation was important. He was sticking to the idea of changing the
coordinates. When Anna asked them about the idea that they had had, Jill talked about
the equation, while Jack mentioned the coordinates (Lines 386 — 387). My teaching
intervention (because I was acting as a teacher more than as a research at this moment) of
turning their attention to the equation provoked a type of interaction that has been labeled
by Wood (1998) as a “focusing pattern™. In this form of communication, students are not

led to the solution by a series of questions, but instead their attention is focused on an
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idea/process that they have to re-explain themselves. This promotes revaluation of the

students’ own thinking and understanding.

The session ended after Jack wrote the equation “Tv = -0.09(-0.78, 0.25) +
1.09 (-0.39, -0.87)” and Anna telling the students that they now have the coordinates of
vector v. I think that she assumed that they would know how to do the algebra from

there. From what we have seen so far, I would not count on it.

Worksheet #1 (from Session V)

Design

In Session IV, we saw that the students still did not think in terms of linear combinations,
which translated into not using both operations at the same time. To begin Session V, we
designed a worksheet to help the students to overcome these difficulties and to guide

them towards a geometric solution of the problem in Worksheet #3, as promised.

Worksheet #1 consisted of four activities. The first three activities conveyed
notions that were needed to solve Activity 4, which was the exact problem from

Worksheet #3 (Session IV). The four activities were:

“ACTIVITY 1

Open a new CABRI figure.
Put the origin O and draw two vectors, vand w.
Construct the vector 2.1v—3.7w on the screen.
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ACTIVITY 2

Open Figure V.1 from the desktop.

You are given two vectors v; and v,.

Construct a vector v whose coordinates in the basis
<V1, V2> are (’1.2, 2.3).

ACTIVITY 3

Open Figure V.2 from the desktop.

Under a certain linear transformation T, the vector
v; got transformed into T(v;) and v, got transformed

into T(vy).
Construct the vector T(2.4v; — 3.1v;).

ACTIVITY 4

Open Figure V.3 from the desktop.

Under a certain linear transformation T, the vector
v; got transformed into T(v;) and v, got
transformed into T(v>).

Given the vector v construct the vector T(v).”

Upon completion of the worksheet, a discussion was to follow, in which I had to
make sure that the students understood that a linear transformation can be completely

determined by giving the images of two non-collinear vectors.

What happened

The students completed the worksheet without any major incidents, but a few interesting

observations were made.

After reading Activity 1, Jack remarked, “So it’s a vector sum of dilated vectors.”
In Activity 2, they put the axes, but did not use them. After constructing the required

vector v, Jack wanted to move the axes to make them perpendicular. He could not
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because we had fixed the given vectors v; and w so that they will not be moved. Jack

recognized right away that Activity 4 was the same problem as the one in Session IV.

In all of these activities, it was Jack who came up with the plan. Then, he would
explain to Jill what to do. Sometimes, they had to go over the plan a couple of times for
her to understand it, but then, as seen before, she would do the same mistake in the
construction. This could be attributed to her lack of understanding, but at the same time
she had not yet mastered the Cabri commands. On several occasions, her reactions
reflected her uneasiness with the software. When her dilated vector went off the screen
and Jack told her that is because vector w is too big, she sighed, “Oh, boy!” And when he

told her that they had to do a vector sum, she exclaimed, “Oh, my god!”

Upon completing the activities, I sat with them at the computer. I asked them

about the first activity. Both of them had no trouble explaining what they did.

229. Jack: Well, we found that...

230. Jill: ... the sum of the dilations of vector v and vector
w.

231. Jack: You mean that we have to dilate v and w and
then... do the sum of those two vectors.

I concluded by telling them, “The point of this is that you can do both

operations... you can work them together”.
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I then asked them about what they learned from Activity 2. Jack had trouble with
wording his explanation, but essentially he said that the coordinates of a vector v are the
factors in the linear combination of v in basis <v;, v»>. He realized that both Activities 1
and 2 gave the same result. When I asked him about the methods used in each activity, he
said:

250. Jack: The only thing is that we have to... draw the
axes... because they gave us the numbers in
coordinates. That's the only thing.

(...)

254. Jack: ...Like the first activity, if they give us “Draw the
vector that is 2.17, that's the coordinates in the
basis <v, w>. Or (2.1, -3.7)... it’s the same thing.

But when Tommy asked him about what he did after drawing the axes, Jack
realized that they were not used and said, “In fact we don’t... the axes is just to see

where it will go, but it’s not... it’s not that important.”

Next, I asked them about their construction in Activity 3. Jill explained that they
did the dilations of the transformations, and then they took their vector sum. Looking at
their diagram, I asked them about the factor being on the outside of the label. Jack

explained that —3.1T(v;) was the same as T(-3.1v,) since the transformation was linear.

After explaining their procedure for Activity 4, I wanted them to make a
conclusion about what determines a linear transformation. I started to ask that if they
were given v;, v and their images, when Jack interrupted me and explained the whole

procedure again, concluding, “... since we have the coordinates of v, we will be able to get
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T(v) just by dilating T(v;) and T(w) by those factors.” I asked Jill if she agreed, and she
said that she did not understand my question. So, we turned to the green table, and I

wrote the following and asked her to complete the equation:

Given Vi, V2, T(V1), T(‘&)
v=av; +bw in basis <v;, v»>
T(v) =

She wrote:
v=awv; +bw

T(v) =aTwv; + bTw,
T(v) = T(aw1) + T(bv2)

When I asked her about the difference between the two equations that she wrote,
she explained that they were the same. She went on to explain that T(v) can be obtained
by either (1) finding the vector sum of the transformations of the dilated vectors v, and vy,
or (2) dilating the transformations of v; and v,, and then adding the resulting vectors.

Then I asked them about which method was used in their solution. She said that they had
used the first method. Jack agreed, but after some discussion, he said that the first

method could be used only if they had a macro of the transformation.

Wrapping things up, I asked them:

317: M.: So what we can conclude from here is that we can
get an image of any vector as long as we know
what?

318. Jack: The coordinates on its own basis.

319. M.: So all we need is the coordinates? All | need is
(a,b)?

320. Jack: No, but you need also (looks through some
papers)...
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321. Jili: It's linear, too.

322. M.: Yeah, right. Yeah... To determine any
transformation... the image of a transformation...
you need the images of the basis vectors and the
coordinates of the vector. And you can find the
image.

Analvsis

At the end of Session IV, we thought that Jill began holding her own during their
discussions. From these activities, things went back to what they were before, with Jack
coming up with the plan first and telling Jill what to do on the screen. One could sense

that she was still not comfortable with the software and the concepts.

From Activity 1, I think that they finally understood that both operations could

be used at the same time. (Lines 230 —231).

After discussing Activity 2, Jack seemed to understand the connection between
the first two activities (Line 254). But, at the beginning, he did two things typical of
students: (1) assumed that if coordinates were given, then axes are needed (Line 250), and
(2) tried to make the axes perpendicular to each other, even though different axes were

discussed when coordinates were introduced in Worksheet #1 of Session IV.

Activity 4 showed us that the students were now comfortable using the linearity

equations and could switch from one to the other. But they still had trouble relating their
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written work to Cabri. Jill had done this mistake several times before. Although Jack

also made the same mistake, he was able to correct himself.

From my concluding remarks, it was agreed that given the images of the basis
vectors, the image T(v) of any vector v can be constructed (Line 322). Even though I
did mention “to determine the transformation”, my emphasis was on constructing the

image of a vector. This could be part of the reason why the students had trouble with

Worksheet #2 (see next section).

3.2.5 Session V

Worksheet #2

Design
In this worksheet, the previous problem was reversed. Instead of finding the

transformation given the images of the basis vectors, they now had to define a given linear
transformation by its images on a basis. In other words, they had to find a configuration
of v, v, w;, and w, so that a specific transformation is obtained. The question of the
uniqueness of the configuration was to be brought up in the discussion after the

completion of the worksheet.

The students were given the following problem:

“Open Figure V.4.1 from the desktop.
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In this figure you have six vectors and a line. You can move these
vectors around, but the line is fixed.

We assume that these vectors are: v;, v2 — two non-collinear vectors
which are regarded as a basis; wi, w. — regarded as images of v; and
vz in some linear transformation T. Check this: move the endpoint of
v so that v overiaps with v,: observe that T(v) overlaps with w;; move
the endpoint of v so that v overlaps with v>: observe that T(v)
overiaps with w-.

Different configurations of the vectors vi, v2, w, and w- usually give
different linear transformations. Check this: move the endpoints of
vectors v,, v2, Wi, W2 and observe that T(v) changes.

The question is: Can you find a configuration of the vectors v, va,

wi, w2 that would make the transformation into

(a) a shear along the given line L?

(b) a projection” onto the given line L? (Open Figure V.4.2 from the
desktop to work on this question b).

Call the teacher when you are done.”

To solve Problem (a), we expected the students to build the shear transformation

using one of these two methods:

1. Apply the SHEAR-11 macro to v; using a number q that must be numerically
edited on the screen, and then redefine the endpoint of w; to be the endpoint of

the image of v; under shear. Repeat the procedure for v; and w;.

2. Put vectors v; and w; on the line L and making them equal. Draw a parallel
through the endpoint of v; and redefine the endpoint of w; to lie on this line.

To answer Problem (b), the students were expected to create a projection by

drawing a line, perpendicular to line L, through the endpoint of v;, and then to redefine the

® All projections are assumed to be orthogonal.
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endpoint of w; to be the intersection point of line L and the perpendicular line. They had

to repeat the procedure for v, and w;.

Problem (a)

What happened
Jill opened the required file with the configuration in Fig. V-1. Both students started to

read the problem. As instructed, Jill moved vector v to overlap with v;.

FIG. V-1 - Opening configuration of Problem (a)

10™. Jack: Like the... so T(v) would be equai to w, right?
11. Jill:  Well we can see by...

12. Jack: Yeah. We have observed that T(v) overiaps with
wi. Yeah. (reading) "Moving the endpoint of v so
that v overiaps with v."

13. Jill: (moves v to overlap with v,)

14. Jack: We see that T(v) overlaps with w.. (reading)
"Different configurations of the vectors v, v, w., w>
give different linear transformations. Check this:
move the endpoints of v., v2, wy, w, and observe
that T(v) changes.”

** In the transcript for this session, the line numbers were reset to start at 1 at the beginning of Worksheet
#2.
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Jill moved the vectors around the screen. The students discussed the problem

represented on the screen.

26. Jack: ... But you see v is never moved. v is not supposed
to move, right? v is never moving. It's only T(v)
that changes. Here the question is ...

27. Jill: (reading) “ Can you find a configuration of the
vectors v,, v, wi, w2 that would make the
transformation into — a shear along the given line
L.I

The students did not remember the details of the shear transformation and
retrieved the handout with its description. A discussion ensued on what a shear was and
how to proceed to solve the problem. Although the factor q was mentioned briefly, most
of the discussion involved the parallel line condition of the shear transformation. Jack
came up with the plan of drawing a line paralle! to line L, redefining the endpoint of v on
the parallel line, and moving v;, v;, w;, W, so that the tip of T(v) would also be on the
paraliel line. But it took Jill some time to understand what Jack wanted to do. At some

point during the discussion, Jill asked:

61. Jill: What are we looking for?

62. Jack: We have to find a configuration of vectors v, v-,
ws, w2 that gets us a shear along the given line L.

63. Jill: So we can put um...
64. Jack: So once we get the parallel line that is parallel to
L. So we should put... we could draw a parallel

line and then move v and T(v) so that T(v) and v is
on the same line.

The students had trouble remembering how to draw a parallel line through v.

When they finally did it, it was not through v, so Jack suggested putting v on the line and
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moving “w;, w; so that T(v) is on the line too.” After some more difficulty with
remembering the Cabri commands, Jill redefined the endpoint of v on the parallel line.

100. Jill: There!
101. Jack: And then you ... and then let's move v.. va....

102. Jill: There! (moves v along the paralle! line and
watches T(v) move along with it around the screen
but not on the line) (whispers something to Jack)

103. Jack: Ok. So now... you want to do um... you're going to
redefine this again... redefine T(v)? Yes. You
could do that. Just like... just like... do what, like
you did. Maybe it'll work.

104. Jill: Um... T(v) is on the line.

After redefining T(v), Jill moved v;, but T(v) did not move like before. They both
giggled, and Jack said, “Maybe, I think we shouldn’t have done that.” At this point,
Tommy interrupted them and told them that they were allowed to move any vector
except T(v). He explained that it was a flaw in the design that enabled them to redefine

T(W).

They restarted the problem in a new file and quickly redefined the endpoint of
vector von a line parallel to line L. They started moving the other four vectors to get T(v)
on the parallel line (see Fig. V-2). During their discussion on whether the tip of T(v) was
actually on the parallel line, the factor q was mentioned. Jack said, “We don’t need q

there.” Later in the discussion, his reasoning was explained:

152. Jack: ... Because it's any number q, you know? That's
what we’'re looking for basically. It has to be on the
line. So we know. But now it's not. (Jill had moved
the vectors). Put it...

153. Jill: So make it move...
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154. Jack: ... such that the line through the endpoint v and
T(v) is parallel to L. We've got that aiready. So
it’s...

185. Jill: The line through... like here you mean?

156. Jack: Yeah. it's parallel to L so it's um... it's shear along
the given line L. That's all they asked for. They
don't ask for q, vq, whatever... Now we have to do
for projection onto the given line L.

FIG. V-2 - Before (dotted) and after (solid) positions of vectors v, and T(v) after
students moved v,, to get T(v) on the paralie! line.

Problem (b)

What happened
Jill opened the appropriate file to reveal the same starting configuration as before (see Fig.

V-1). The students did not remember what a projection was and there was no previous
handout for it since it was introduced as a demonstration. After a brief interruption
caused by Jill’s nosebleed, I explained a projection to the students. Using v; as an

example I told them that if you take the line perpendicular to line L through the endpoint
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of v;, then the projection would be on line L, from the origin to the intersection with the

perpendicular line. I used my finger to point at the vectors on the screen while I talked.

They proceeded to solve the problem.

During their discussion, it became clear that Jill still did not understand what a
projection was. At one point, she thought that the only condition for a projection was
T(v) being on line L. Jack, gesturing and pointing to the screen, explained the
transformation to her again. This time she had trouble drawing the appropriate
perpendicular line (see Fig. V-3). She finally said, “ I'm not sure what we’re doing here. I

don’t know... I don’t understand what we’re trying... Projection onto the given line L.”

FIG. V-3 - Wrong perpendicular line is drawn.

I sat with them at the computer and took control of the mouse. I erased all the

lines they had drawn to get back the original configuration:

223. M.: ... what a projection is... Ok. Let's do it for v;...
Now when you.... Let's project this vector on this
(applies macro PROJECTION-1 to v;). Ok. So this
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is your image, this shouid be T(v,). Now the way
this was constructed is if you take a perpendicular
line from this point to this line. (see Fig. V-4)

224. Jill: That's with that.

225. M.: So when you do this, then you... the vector that is
on line L from the origin to there is the projection.
So you see if | move v;, now I'll see that the image
always is perpendicular to that line. So you are
clear what a projection is?

FIG. V-4 - Demonstration of what a projection is.

After answering yes, I explained what the question was asking:

231. M.: This is the projection of v, (points to the vector on
the screen). Ok. Now we want you to configure v,
V2, Wi, W, this line, place them on the screen,
arrange them so that you have a projection, a
linear transformation that is a projection.

232. Jack: So that the line that pass through T(v) and v is
para... is perpendicular to L.

233. M.: Are you clear or stili...?

234. Jack: Clear.

235. Jili: I'm not sure what we’re being asked to do.

236. Jack: Like we... well... like let's say this is v, T(v)s
supposed to be like that. Like if we draw a ... draw
the line between the endpoint of T(v) and v it's

supposed to be perpendicular to L. You know like
it's supposed to be a right angie.
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237. Jill: Ok

238. Jack: A right triangle. So that we have to move like
those four points so that we get the same thing for
v and T(v). T(v)'s supposed to be on the line and
per... it's supposed to be perpendicular to L.

2398. M.: Do you...?

240. Jill: So if we stick our T(v) on this line...

241. Jack: Yeah. But you're not supposed to move your T(v),
you're supposed to move your vi's.. And T(v)s
supposed to be on the line and it's... it’s parallel...
it's perpendicular.

242. Jili: Just put a line perpendicular to L with T(v) to the
line.

243. Jack: Yeah.

Jill drew the line perpendicular to line L, passing through v. They moved vectors

V1, V2, W, W5 50 that T(v) became the projection of v.

255. Jack: ... There it is. Voila!
256. Jili: But as soon as we move ali these...

257. Jack: Yeah. It will move, of course. But that's what
they...

258. Jill: Ok. So we positioned it.

259. Jack: Yeah, That's what they asked you for, Since...
260. Jill: So couldn't we have...

261. Jack: Yeah. You can move any, any...

262. Jill: We didn't have to put it in relation to v. We could
have put it with any other point.

263. Jack: Exactly. No. Waell...

While they were talking, Jill was moving the vectors around. Then the students

reconfigured vy, v;, w;, W, so that T(v) is once again the projection of v.

273. Jack: Well, you see if you move the vectors, T(v) won't
be the projection anymore.

142



274. Jill: Which ones did we put...

275. Jack: Cause that's all they asked us for. We don't have
to do anything eise. We have to find a way that
T(v) is a projection. And there are many ways we
can do that.

Jill was moving w; slowly around the screen and was thinking out loud. She then

asked Jack,

282. Jill: Projection of wy on...?

283. Jack: No, it's not w we're looking for... it's the projection
of v we're looking for.

284. Jill: So if we were to put w: on our line (moves the
cursor from the tip of w: to the perpendicular line),
it would be the projection of w;? [f we did our
line...

28S. Jack: Yeah. But it's not... yeah but exactly. | guess
we're done.
Discussion of Problem (a)
What happened
I sat with the students at the computer and retrieved their configuration for the shear
transformation (see Fig. V-2). I asked them to explain what they did. Jack said that since
in a shear transformation the line through the tips of v and T(v) was parallel to line L,

they drew a line parallel to L, through v, and moved the other vectors to get T(v) on the

line. Ithen asked them if they would still get a shear if v was moved. Jack answered:

297. Jack: Well um... like you can try but for this specific...
no, like it's very specific. It's only for this v that it
works because of where v, and v. are.

298. M.: Ok. So you're saying that...

299. Jack: Like for this one it works but if v's somewhere else
it won't work.
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We both agreed that what they had created was a transformation that works for
only one vector. When I reminded them that a transformation should work for all vectors,
Jack agreed. So I asked them, “What would you have to do to make it a transformation

that will work for any v?’

310. Jack:-Well like if that... like if it was supposed to be a
transformation on any v there should... there
shouid be this... there should be the same
relationship between like v...

(---)

314. Jack: Ok. Like v is ... like in function um... is in relation
with v: and v.. Ok? So ... T(v) would have to be
like ... the same relation between w; and w.. |
think w4 is T(vs) and wa is T(v2).

315. M.: Ok
316. Jack.: So there should be the same factors or the same
vectors on...

317. M.: Do you agree with what he said?

318. Jill: Yeah. They would have to be ... | think like... The
same kind of proportion with v to be... to be the
same... to be the same... relation to T(v)

319. M,: So yeah, w; represents what?

320. Jack: The transformation of vi.

321. M.: Ok. And w- represents...?

322. Jack: The transformation of va.

323. M.: Ok. Now, looking at the configuration here, is w:
the same transformation as w;? The same
transformation as T(v)? In other words, was w;
obtained by the same transformation as w,was
obtained?

324. Jack: it doesn't look like it, like it was. Like everything
like this is, like what we did like it's not linear or
something but not... | doubt it.

325. M.: Ok. So now if you wanted to make this a shear...

326. Jack: Yeah.

327. M.: ... atransformation that is... that works for all
vectors v, what shouid be done?
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328. Jack: There should be the same relationship between...
like v is equal to av. plus bv; so that T(v) would be
equal to... would be equal to aw; plus bw-.

329. M.: Ok

330. Jack: Like the same coordinates... not the same
coordinates but the same factor.

331. M.: Right. Ok. And w, should be...?
332. Jack: Transformation of v;.

333. M.: Ok. So in this particular case you should have...
how shouid you configure w;?

After a long silence, Jack said something to the effect that there should be the

same relationship between v; and wy, and v; and w,. He came up with the following plan:

343. Jack:...v, and w, are supposed to be on the same line
parallel to L and w and v are supposed to be on
the same line parallel to L, so that if we move v,
we'll always get T(v) as a shear along ... L of v.

They followed the plan by placing the endpoints of vectors w; and w; onto their
respective parallel lines (see Fig. V-5). I wanted to show them that what they had created
was not a shear because w, and w, were not redefined on the parallel lines; thus will not
follow the movements of v; and v». So I asked them to move vector v around , thinking
that T(v) will move off the line. I was surprised when it did not (at that moment, I did
not realize that I should have asked them to move v; or v, instead). I did not pursue the
matter.

I decided instead to go on to the projection problem. I asked them if they knew
what their mistake was. Jack explained that since v is equal to av; + bvs, they should have

also made the transformations of v; and v, into projections, whereas they only made T(v)
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into a projection. I then asked them, “What do you think will determine a certain

transformation?”

FIG. V-§ - Students’ solution to Problem (a)

387. Jill: What do you mean by ‘determine’?

388. M.: Yeah. OK. In other words. Let's see. Determine
means, how will you obtain a certain
transformation? What do you have to do?

389. Jill: Oh! The two points are on the lines parallel to
your ...

390. Jack: No but...

391:. M.: But in any situation, any linear transformation, if |
ask you...

392. Jack: By doing the same transformation on v, and v..
And that way we’'ll get v.

393. Jill: Ok

394. M.: So the positioning... what determines a certain
transformation is the positioning.

395. Jack: Yeah. Of...
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396. M.: And what’s important is the positioning of...?
What's the real important...

397. Jack: What do you mean?

398. M.: Could v, and v2 be anywhere and you still get the
same transformation?

399. Jack: Well the... they could be ... well they can be
anywhere but the transformation of v is... the
transformation has to be the same. Like it's not... it

doesn't really matter where v, and v are but it's like

the transformation of v, and v. are supposed... are
supposed to be the same transformation. it's
supposed to be constant

Asking him to clarify what he means by “constant”,

405. Jack: v; and w- are supposed to be... like there's
supposed to be the same relationship between v,

and ws, and vz and w.
406. M.: Ok. | think what you're trying to say...
407. Jili: | don't understand...
408. M.: So it's really the positioning of...
409. Jack: The image.

410. M.: Yeah. The image. Ok, in relation to v, and v-...
and they have to be the same transformation.

At this point, Tommy and I discussed if they should start Worksheet #3. But we
decided that with fifteen minutes left, it was not worth it, and instead, the students (at

their own request) should fix the projection problem.

Jill opened a new starting configuration. She drew three perpendicular lines to line
L, through vy, v2, and v (see Fig. V-6). Jill, like before, started to move the vectors Vi, Vs,
w1, W2 to get T(V) as a projection. Jack explained to her that if they made w; and w; the

projections of v; and v, then T(v) will automatically become the projection of v. Just like
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the shear, they placed w; and w; as projections instead of redefining them. In the ensuing

discussion, I asked them about their method:

FIG. V-6 - Starting configuration for Problem (b) after discussion.

438. M.: Why do think you got it [T(v)] automatically there
(as the projection of v]?

439. Jack: Because v is equal to, well, av, + bv; so that... so
we know that T(v) is equal to... vector sum of aT(v,)
+ bT(v2) so if we get T(v2) and T(v,), like the image
of v, and the image of v, we'll get T(v).

I then asked them that if v; or v, were to be moved, would the transformation still
be a projection. They tried it and noticed that it did not. The students decided that w;

and w; had to be redefined as the projections of v; and v».

The students proceeded to redefine the vectors. They ran into some technical

difficulties while applying the commands. We all tried to fix it, but time ran out. So I

148



concluded by saying, “As long as you have w; and w; as the same transformation, you’ve

created a particular transformation.”

As the students were putting on their coats, Tommy remarked that there was no
problem with the projection, but what they did in the shear problem was not a shear.

Jack quickly said that he knows because “it was not the same q.”

Analysis
Problem (a) clearly shows that both students still did not have a good grasp of the

concept of a linear transformation, although Jack had a much better understanding than
Jill. I think they both understood that when T(v) moves and v stays in the same position,
the transformation is changing. But the fact that they redefined T(v) onto the parallel line
shows that they still did not understand that the relationship between v and T(V) resulted
from the relation between vy, v;, w;, W2, and the only way to move T(v) was by moving vy,
V2, W1, Wz. This makes me wonder whether the little “exercise” in the introduction of the
problem had any effect on the students. When Jack stated that they observed that T(v)
overlapped with w, when v was placed on v; and the same happened with v, and w,
(Lines 12 and 14), was he merely repeating what was written in the problem or did he

understand the relationships between the vectors (as his statements in Line 10 and 26

indicated)?
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Whereas I am sure that Jill did not understand the idea behind this demonstration,
I am not so sure about Jack. Throughout the whole problem, he would say things that
showed that he did not understand the concepts, but in his next statement he would
demonstrate an understanding of the ideas, or vice versa. One example is when at first he
correctly planned to move vy, v2, Wi, w; to make T(v) a shear (Line 62), and then
suggested moving both v and T(v) onto the parallel line (Line 64). Even though Jack kept
suggesting to move v, vz, wy, and w,, but by quickly agreeing with Jill’s idea of redefining
T(v) to the parallel line (Line 103) makes me wonder again about how strong was his

understanding and whether he was just reading the instructions.

When the students redid the shear problem by moving v;, v, w;, w; so that the tip
of T(v) is on the parallel line, they solved the problem for only one vector —i.e., the
current position of vector v. Jack was fully aware that they created an ‘one-vector’
transformation, as seen in their discussion with me of the shear problem (Lines 297 —
299) and when they were solving the projection problem (Lines 255 — 259, 273 - 275).
His reasoning was that “that is what they ask for.” After a careful analysis of these
sessions, I believe that Jack had every right to have this misconception. There are at least

two factors that contribute to this misunderstanding:

First, the language being used is not very clear in nature. For example, under a
projection, the resulting image is the projection of vector von line L. Under a reflection,

the image is the reflection of vector vabout L. T(v) is the shear of vector vunder a shear
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along line L with some factor q. When I was explaining what a projection was to the
students, I told them that the resulting image was called the projection (Line 225) and that
they had to arrange vectors v;, v., w;, w, “so that you have a projection, a linear
transformation that is a projection.” (Line 231) Seeing how the words projection,
reflection, and shear refer to both the transformation itself and to the image, I believé that
it was natural for the students to assume that finding “a configuration of the vectors vv,,
V2, Wi, W, that would make the transformation into a ...” meant making only T(v) into the
desired transformation. To the students the equation T = T(v) is true. Therefore,
under their definition of a transformation, what they did was correct, and Jack was right
in saying that the factor q is not needed since they were applying the shear to one vector

only. As long as the tip of T(v) was on the parallel line, a factor q existed (Lines 152 —

156).

Second, in previous problems the students were asked to find only one vector.
For example in the Worksheet #3 of Session IV, they had to find the position of T(v) for a
givenv, given the positions of the basis vectors and their images. The exact wording was:
“From the information given [a configuration of vectors v, v, w;, w;, and v], would you
know where should the vector T(v) be?” So, in this problem, they did the same thing:

they constructed vector T(v) for the given vector v.

During the projection problem, it became clear that Jill was very lost. Maybe her

nosebleed had been an omen of the things to come. Not only did she not understand what
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was required of them, she did know what a projection was. After my initial explanation
to remind them of the projection, the students worked for several minutes before Jill
declared that she did not understand what they were trying to do. She got a clearer
picture of a projection when I sat down with them and showed them a concrete example
(Lines 223 —225), which supports our observations from previous sessions that Jill

needs visual images to understand.

The conversatﬂion in Lines 231 — 243 shows the widening gap between Jack’s and
JilI’s understanding. Jack understood what a projection was (Line 236) and except for the
misconception of T = T(v), knew what to do to solve the problem (Lines 238 and 241).
Both Jack and I took turns describing what was required of them to Jill. In Lines 240 and
242 when she asked that if T(v) should be on line L, reaching the perpendicular, I think
she finally understood what a projection does, but her other misconceptions about the

relationships between the vectors prevented her from fully understanding the problem.

In their conversation in Lines 255- 285, they were talking about two different
things. They both agreed that there was more than one answer to the problem. Jack said,
“And there are many ways we can do that [a projection].” (Line 275), meaning that there
are many configurations of v;, v,, w;, w, that will give a projection. (Is this his idea of
different bases?) Because Jill did not understand that the relationship between v and T(v)
was dependent on the positions of v;, va, Wy, W,, she thought that T(v) can be the

projection of any vector as long as it is on line L and reaches the perpendicular line
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through the desired vector (see Fig. V-7a,b). I think that is what she meant when she said
that they did not have to do this problem with respect to v, but could have done it instead

with respect to any other vector (Lines 262 and 284).

FIG. V-7b - T(v) is the projection of w,
I believe that the wording of the problem could have contributed to and enhanced

this misunderstanding. At the beginning, the students were asked to move the vectors v;,
V2, W, W, around the screen and to observe that T(v) changes. When v; was moved, T(v)

was the only other vector that moved. When v, was moved, again T(v) was the only
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other vector that moved. The results were the same when w; and w; were moved. For
someone having trouble with the concepts of linear combinations and relationships
between vectors could easily conclude that T(v) was also the image of vectors v;, v5, wy,
w2. Maybe the explanation that the transformation changed because the relationship
between the basis vectors and their images had been changed could be added to the
problem. I am not sure how effective this addition would to someone at JillI’s level of

understanding, but I think it would definitely help someone who is at Jack’s level.

Our discussion on the shear problem shed a lot of light on Jack’s understanding
and misconceptions. It seems that he understood that a transformation is applied to all
vectors all along, but solved the problems for one vector only because he thought (rightly
so, as shown above) that is what we had asked for. When I asked him about what should
be done to make the transformation work for any vector v, he replied that if it was
supposed to be on any v, then there should be the same relationship (Line 310). Not only
he knew that a transformation applies to any v, but he also knew about the preservation
of relationships. . Unfortunately, he thought that the relationships were the equations v=
av; +bw, and T(v) = aw; + bw, (Line 314). When I asked Jill if she agreed with him, she
said something about “the same proportion”, indicating that she is completely lost (Line

318).

On the other hand, I believe that Jack’s thinking is progressing along a natural
path. Jack’s algebraic thinking was replacing his geometric thinking. At first, he thought

that a transformation had to be something concrete —i.e., rotation, reflection. He resisted
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the idea of randomly placing vectors to define a transformation because it did not make
sense visually. He was able to overcome this obstacle by justifying the transformation
through equations. So now, the visual relationships between v; and w,, and v» and Wy

were being replaced by the algebraic relationships v = av; + bw; and T(v) = aw; + bws.

Jack’s misconception about the relationship between the vectors led him to
another misunderstanding. He thought that there were two bases —i.e., v was in basis <v;,
v»>, and T(v) was in basis <w;, w,>'! . Even though there were signs in his conversations
that alluded to this idea, we did not realize this misconception at the time (it became
apparent in Session VI). Throughout the entire session, he referred to the relationships
between v, v; and v,, and T(v), w; and w, (Lines 314, 328 and 439), but he never once
mentioned that w, can be written in terms of v; and v;. In fact, in Line 314 he said that w|
is T(v1) and w; is T(v»), showing that he viewed w; and w as, in a sense, “independent”
of v and v,. Ibelieve that he used the following logic in his reasoning: He knew that the
factors in the equation v=av, + bv; represent the coordinates (a, b) of vector v in basis
<vi, v»>. Using the same logic for the equation T(v) = aw; + bw,, vector T(v) must have
coordinates (a, b) in basis <w;, wo>. Ifit was in basis <v;, v;>, then T(v) would have the

same coordinates as v.

! The students were not explicitly taught the notion of basis. The terminology of “bases” was introduced
only in the context of “coordinates of a vector in a basis”, and the non-collinearity condition of the vectors
of the basis, although mentioned, was not discussed and appeared natural: collinear vectors would not
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Jack still did not have a complete understanding of transformations. He has bits
and pieces of information about them, but he has not made the connections to bridge these
ideas. When he faced a contradiction or a difficulty, he simply picked the simplest and
most convenient explanation. This is illustrated when he was éxplaining that since
v=av; + bv; and T(v) = aw; + bwy, then the relationship is preserved by having “the same
coordinates... not the same coordinates but the same factor” (Lines 328 — 330). Since the
idea of coordinates was confusing him (because he was, naturally (see Note 13), not sure
about what a “basis” is), he decided instead to call a and b factors.

Sensing that Jack was really close to the correct answer, unconsciously my
interaction with the students changed (From Line 319 and on). I ceased to be a researcher
and became a teacher. Ibegan asking direct questions, hoping to, as Wood (1998) would
say, “funnel” the students to the desired solution. After establishing that w; and w, are
the images of v; and v,, I tried to guide them to the proper relationships by asking them
whether all of the images were obtained by the same transformation (Lines 319 — 323).
Despite answering that they were not, Jack still referred to the wrong relationships (Line
328). As can be seen and as Wood (1980) points out, funneling does not promote

understanding. It requires students to answer a series of questions that lead to a desired

define two separate axes. It is therefore quite justified that, for the students, a “basis™ was just a pair of
vector used as a reference for another vector.
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solution, but students do not see the overall picture. They are only concerned with

answering one question at a time.

I'tried leading them again, but this time I only asked them about w;. After
thinking for a few minutes, Jack noticed that each vector and its image must be on the
same parallel line (Line 343). Even though they did not take into account the factor q,

through my own confusion, I was not able to disprove their configuration.

In our summing up discussion, I asked the students about what determined a
transformation. By answering that vand T(v) had to be on the same parallel line (Line
389), Jill showed that she was still applying a transformation to one vector. On the other
hand, Jack understood that the basis vectors and their images must have the same
relationship between them (Lines 392, 399 and 405). My “funneling” approach
continued. I kept asking the same question —i.e., “what is important is the positioning of
...” -- until I got the desired answer —i.e., “the positioning of the images” (Lines 394 —
410). Jill was completely lost during this questioning period. At one point, she even said
that she did not understand (Line 407). But since I was in my “teacher” mode, I ignored
her because I was focusing on Jack, who was so close to the answer. Teachers usually
say that they are happy if they reach at least one student. Well, I was going for the

minimum.
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One conclusion that can be made from this worksheet is that the students were
not able to reverse the given problem. As stated before, this problem is the opposite of
the problem in Session IV. It is also a more complicated problem that needs a higher level
of thinking since the students need to think in a more general way. In Session IV the
students were given the basis vectors and their images, and the students had to find the
position of T(v) for a given vector v. In other words, they had to position one specific
vector. Although T(V) represents the image of every vector in the plane, the method
employed required the use of the coordinates of a particular vector v. This process could
easily be interpreted as applying the transformation to only one vector and gives the
impression that T(v) = T. But now in Session V, the students were given a specific
transformation, and they had to configure the basis vectors and their images so that the
given transformation resulted. This was a much harder problem since they were required
to move vectors around (in the previous problem, all vectors were fixed). There were also
infinitely many correct configurations, as long as the relationships between v; and w,, and
v, and w; were the desired transformation. Therefore, for people that have yet to master
the concepts of linear combinations and basis vectors, it is very difficult, if not

impossible, for them to do this problem globally.

One could also describe their difficulties by stating that the students have trouble
thinking in terms of sets. This explains why they had trouble with linear combinations
and the idea of a basis. But the difficulty of thinking in terms of sets could also explain

why Jack was able to see the correct relationship only after I asked him about the
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configuration of v; and w; alone (Line 331). When I asked them about the relationships
off all vectors (Line 323), he still thought that the equations v= av; + bv; and

T(v) = aw, + bw; had to preserved (Line 328).

Finally, this worksheet showed that Jack and Jill were working at two different
levels. He was working at a conceptual level, whereas she was working on an intuitive
level and following procedures. Luckily for her, she was in control of the mouse.
Otherwise, Jack would have left her completely behind. Throughout the sessioq, Jack
would quickly come up with an idea, but he would have to say it several times before she
would act on it because she would be trying something on her own. An example of this
occurred after redefining v onto the parallel line during the shear problem. He told her to
mOVe Vectors vy, vz, Wy, W, but she was preoccupied with moving v along the parallel line

and watching T(v) move around the screen (Lines 100 — 102).

Some people might argue that maybe it would have been better for Jill nof to be in
control of the mouse. They might say that by being in control of the mouse, she became
mesmerized by the moving vectors and became preoccupied with working the Cabri
commands correctly, leaving her no time to think about the concepts. Although it is true
that both these things did happen to Jill, I believe that with Jack in control of the mouse,

he would not have waited for her to catch up. That is precisely why we put her in charge

of the mouse at the beginning of Session I'V.
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3.2.6 Session VI

Worksheet #1

Design
From the previous sessions, it became apparent that that the students did not have a clear

understanding of (1) a transformation was applied to every vector in the plane, and not
just to one or two vectors., and (2) a transformation could be defined in different ways,

but if that definition changed, then so did the transformation.

Four activities were designed to clarify these concepts for the students. I was
supposed to lead them through the activities so that we could discuss the different

notions while doing the problems.

In Activity 1, the students were to determine whether a given vector v and its
image represent a shear transformation. The students were expected to test for both the
parallel line and the factor q conditions. We wanted the students to move v around the

screen so that they understand that a transformation worked for all vectors.

In Activities 2 — 4, the students were given configurations of six vectors, v;, v», wy,
w2, vand T(v), in which w; and w, were the images of v; and v;, respectively. In Activity
2, I was to move vector v around the screen, and the students were to determine whether

the transformation T was also changed since T(v) also changed positions. In Activity 3, 1
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was to move w; and then v, and again they had to determine if T changed. In both these
activities, the students were expected to find out that by changing the relationship
between the basis vectors and their images was the only way to change a transformation,

whereas moving v merely indicated that the coordinates had changed in the same basis, but

not the transformation.

Activity 4 combined the previous activities. They again had to determine whether
the given configuration was a shear. The configuration was built such that v, and w;
overlapped and the tips of v, and w, were on the same parallel line to v;. The design of
this configuration was made such that w, could move freely on the line it was on, but
when v, was moved along the same line, w; also moved, keeping the same distance
between the two endpoints. Thus, the students had to determine the status of the
transformation when I was to move vector w,, which would still give a shear but with a
different factor q. Finally, I was to move v,. This time w, would move with v,, which
meant that the transformation remained unchanged. The students were then expected to
conclude that a transformation remained the same as long as the relationship between its

basis vectors and their images was preserved.

What happened

To begin Activity 1, I opened the file with the configuration in Fig. VI-1. I told them that
these vectors are linked with some kind of transformation and if they thought that this

transformation is a shear. At first they said that there was no line for it to be parallel to.
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Itold them that they could add things to the diagram. It was decided that a line should be
drawn, but Jill was surprised that segment between v and T(v) should be drawn first. She
said that then it would not be parallel to the horizontal line. Jack explained that the lines

had to be parallel, not necessarily horizontal. He went on to instruct her on how to draw
the parallel lines. As soon as the lines were drawn, he said that they had to find the value °
of q. I told him that we will get to that later, but first I wanted to clarify with Jill if she
thought that in a shear transformation, the parallel lines had to be horizontal. Jack said

that they only had to be parallel, and I confirmed.

v

FIG. VI-1 - Opening configuration for Activity 1

29. M. Ok. Yup. As long as these two lines are parallel,
then it could be a shear. Now, are they always
paraliel?

30. Jack: What do you mean by “always paraliel*?

31. M.: | mean, it looks parallel now, but will it always be
paraliel?

32. Jill: Do you mean, will they ever cross?
33. M.:  Ah, no.

34. Jack.: Oh, you mean if we move v?

35. M.: That's right.

36. Jack: They won't.
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Jill moved v around the screen, and Jack remarked, “It seems like they’re always

parallel.” Then I asked them:

41. M. Now, why is it important to know if it's always
parallel?

42. Jack: So it means that it's always a shear whenever... |
think, since it's always parallel it means that... like
v is equal to av,, av,, so that, like v, and v- that
makes up v... well that which we don’t see now...
are a shear also.

.-)

45. M: ... | don't know if you answered what | wanted,
besides mentioning v, and v.. Now, my question,
why did you have to check it for different v's?

46. Jack: Because we wanted to know if it ... only because v

is like... in position of shear. So we checked it and

realized it was always a shear so it means that it

will always be parallel. Because, just like on

Monday [Session V], we did... we positioned v a

certain way and it was... the transformation was

right, but if you moved v, it wasn't working

anymore. So it means it was not.... Since we

moved v, we realized that it's always constant...
the transformation is always constant.

I told them that the point was that a transformation has to act on all vectors.
Since by leaving vector v in one position, you would not know if the transformation was

the same on another vector. That was why you had to move v around.

We decided that it was time to check for the factor q by calculating it. Again, they
had trouble remembering what the factor q represents. But once they figured it out, they
came up with a plan of how to calculate it. I helped them with the Cabri commands, and

we printed the value on the screen. Then Jack said:

94. Jack: Yeah. We have to use another vector to see if q is
constant.

95. Jill: (working on the computer)
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saying:

96. Jack: Move it. Change v.

97. Jill: Move it?

98. Jack: Yeah. To check if it's going to be the same. We
see that our q is changing. | dont think it's
supposed to change if it was a real shear.

99. M.: Do you agree?

100. Jill: Yes, because that line should be the same
distance, although these will move, that's how q
stays the same.

101. M.: What line should be the same?

102. Jili: Like one line will be the same distance from the
other parallel one.

103. Jack: The ratio of these lines.
104. Jill: Yeah. Yeah.

They both agreed that this transformation was not a shear. I concluded by

0 vl

vl

(¥)

FIG. VI-2 - Opening configuration for Activity 2

107. M.: So it satisfies one of the conditions of a shear, but
not both. Ok. And another thing you should
always remember is that a transformation should
work on all vectors. Ok. ‘Cause now you have a
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certain q, but you're not sure this q is always the
same, so you test it for all vectors. Ok?

I opened the configuration for Activity 2 (see Fig. VI-2), where w;, w,, and T(v)
are the images of v;, v, and v, respectively, under the same transformation. I moved
vector varound the screen and told them to notice that T(v) was also changing. I asked
them if the transformation was changing, too. Jill said that she did not understand what I
meant by “changing the transformation”. I asked Jack to explain it to her, but he could

not. So I tried to explain using a concrete example, asking them to pretend that a rotation

had occurred between every vector on the screen and its image. When vector v was

moved, was T(v) still a rotation of v, i.e. “is T(v) still the image of v under the same

transformation as it was before?” Jack replied:

119. Jack: Well for me, | don’t think it's the same
transformation, ‘cause if it were, the image of v,
and v, would move too.

120. M.: Why would you say that?

121. Jack: Because we know that v is... is the vector sum of

av, plus bv: so... it implies that if v changes v, and
v: are supposed to change if v is changing.

Jill was also not sure if v; and v, should change or not. So, I wrote the equation v
= av; + bv; on a piece of paper, and I said that v was defined according to the <v;, v»>. As
I moved v around on the screen, I asked them about what was changing in the equation.

Jack quickly replied that the coordinates a and b were changing. I continued:

128. M.: .. Now if these change (circling a and b in the
equation)... can you explain why you're saying that
v, and v should also change?

129. Jack: (after some thought) Yeah, it's true. Well maybe

v and v, are not supposed to change. Maybe it's
um... (silence)...
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I then asked them to explain how to find T(v), given v;, v and their images. Jill

wrote the equations “T(v) = Tav; + Tbv; “and “T(v) = aT(v;) + bT(v2)”.

136. M.: ... Now looking at these formulas and looking at
what | am doing here (moving v), do you think it's a
different transformation?... and this is one case, my
first v (leaves v in one position), and | get a certain
transformation, on this basis. And | find another v
(moves v to another position and leaves it there),
giving a new image. Is this the same
transformation?

137. Jack: It can be the same transformation if T(v) and the v
are the same... like for T(v) is aw; + bw,.

138. AS: You mean if a and b are the same?

139. Jack: Yes... like v has a and b in the basis v, vz, but |
think T(v) is supposed to have the same
coordinates in the basis w, wo.

140. Jili: Here it's the factor that change a and b, and it's
Jack: Yes... like v has a and b in the basis v,. v-,
but | think T(v) is supposed to have the same
coordinates in the basis wi, w». not the vector.

141. M.: What | understood from Jack, correct me if I'm
wrong, you're saying that v has the basis v, v....

142. Jack: Yes.
143. M.: ... but T(v) has the basis... What's the basis of T(v)?

144. Jack: w; and w-.

I thought for a while on how to respond. I then told them directly that the basis
of T(v) was <v;, v>. I explained that since we were finding our coordinates of every
vector with respect to the axes, then the coordinates were respect to v; and v», which

meant that the basis was always <v;, v»>. Then, Anna added:

150. AS: We have to make a distinction between image and
transformation because we call T(v) the
transformation of v. We should be saying image of
v under the transformation. So when we ask is the
transformation the same, we're talking about the
whole... what binds the v and T(v) and not about
the concrete T(v) connected to the concrete v
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which has coordinates a and b, concrete numbers.
And now if we re-ask the question...

Jack was still not sure whether the same transformation was used to get w, and
T(v). So, I moved vector on top of v», and he observed that T(v) and w; overlapped. I did
the same thing for v; and w, and the students agreed that it was the same transformation.

Then I asked them if they knew what the transformation between v; and w; was.

169. Jack: Well it can be either a rotation or... it looks like a
rotation... by 80 degrees.

170. M.: Ok. And between v, and w.? Now remember we
said that w; and w; are the images of v, and v
under the same transformation.

171. Jack: Yeah. But it's... something else then.

172. M.: So if you're saying this is a rotation by 90...

173. Jack: ... this should be rotated by 90 also. It's not a
rotation by 90 degrees. It's another transformation.

They also wondered if the transformation was a projection or a shear. I asked
them about other transformations that they have learned. Looking through the notes,
hesitantly Jack said, that it was a reflection. After reading the description, he realized
that an angle bisector could be drawn. I constructed the angle bisector, and Jack declared,
“So this is the symmetry axis and it’s... so it’s always the same transformation.” To
probe their understanding, I asked them about the need to move v. Jack replied that it
was to see if the transformation was working for any vector, but Jill was still not sure. I

explained again:

194. M.: So when | move v (moves v), it couid be this vector
(stops moving v), this vector (moves v to another
position), and so on and the image is always the
reflection. Ok? So by moving... when we have a
case like this when we have... when we've defined
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a basis and we have the images of the basis...
when a transformation’s defined on these, then
when moving v we're not changing the
transformation. We're just checking it for any
vector in the plane.

19S. Jack: But if when we’re moving v, v, and v, are moving,
does it mean that it's not a trans... not the same
transformation.

196. M.: When you move v...?

197. Jack: Yeah, and like v. and v.... the images are moving.

198. M.: Welil, you see v is defined on these two...
199. Jack: Ok.
200. M.: ... so when you move v, it will not...

201. AS: What depends on what? If v, was dependent on v,
then it wouid move. But it's v that depends on v,.

202. Jack: But without a line, it was quite hard to see that it
was a reflection.

From the way he abruptly changed the topic, I assumed that he understood. So, I
began Activity 3 by opening the configuration in Fig. VI-3, in which the vectors had the

usual relationships between them. Then I moved w; around the screen.

204. M.: ... Now, if | move, say w;, T(v) moves. Am |
changing the transformation?

205. Jack: Well | think... now you are because it's not the
same... like w; does not have the same relationship

with v, as v, with w.. S0 now it's not the same
transformation.

Jill agreed. They also said the same thing when I moved v;.
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FIG. VI-3 - Opening configuration for Activity 3
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FIG. Vi4 - Opening configuration for Activity 4

Activity 4 started with the configuration in Fig. VI-4. I had to explain that v; and
its image w; were the same vector, and thus were overlapping in the diagram. The

students had to determine if the transformation was a shear. After a short silence,

221. Jack: | don't know, but if we move v... on v.... and T(v)
is equal to w., we can see if it's a shear... oh no... |
don't know.

222. M.: You can control the mouse.

223. Jil: Ok.... I'd like to do what we did last time, putting in
our line.
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But, as before, she wanted to draw the line through the origin first, instead of the
line through v and T(v). Jack corrected her, and helped her with the commands. They
found out that the lines would always be parallel. Next, they calculated the factor q by
measuring the distance between the endpoints of v, and w, and dividing it by thé
measured distance between v, and the line containing w;. They determined that it

remained constant. I continued:

256. M.: Ok. So now we've determined that this is a shear.
Now what happens if | move w: a little bit to the
right?

257. Jack: It's not a shear anymore.

258. M.: Why?

259. Jack: Because now w: is not a shear along L of v.. It's
something... it's not a transformation... it's not the
same transformation and it's not the same constant.

So therefore T(v) is not the same transformation...
of v.

Jill disagreed, and said that the factor would stay the same. Jack suggested to
change w,, then move v and to check if the value of q changes. They both concluded that
they are both shears, but with different q’s, and thus they were different transformations.

L, then, asked:

278. M.: So when you moved your w», you changed the
transformation by changing the q. Let's move v:
now. (moves v;) Reactions? What's happening
when you’re moving v.?

279. Jack: Actually nothing happens.

280. M.: Why?

281. Jack: Because when we’re moving v, the image is
moving too. Because it's... w.; becomes the shear

of v.. So whenever we move vz, w: it's still the
same image of the same transformation.
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282. M.: Ok. And this goes back to what you said before. w-
is dependent on v, so when you move v anything
that's dependent on it will move. But when we
move w»... So the transformation doesn't change
as long as... what happens?

Jack explained that the transformation does not change as long as w; is found by
the same.transformation as before. I concluded the worksheet by saying, “So as long as

you preserve the relationship, the transformation doesn’t change.”

Analysis

From the beginning, the students confirmed our suspicions that they still did not
understand that “finding a transformation” meant finding a transformation that works on
all vectors. As soon as they drew the parallel lines in Activity 1 to check for a shear, Jack
wanted to find the factor q. When asked whether the lines were always parallel, he
answered, with surprise, “Oh, you mean if we move v?” (Line 34) Then he guessed that
they will not stay parallel, but again seemed surprised that they did (Line 36). I think
this shows that Jack knows that a transformation is applied to every vector, but does not
understand that “giving a transformation” means giving the relationship of the
transformation, and not just one image. By saying that the lines will not stay parallel
showed that he was comparing it to the Activities in Session V. In those examples, he
had found a configuration for only one vector, and when he had moved v, the
transformation did not work. Further proof that he understood the conservation of
relationships is in Line 42. Although in this statement he did not answer the question

that was being asked, he knew that the basis vectors and their images (not shown in the
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figure) had to be related by a shear also. He finally answered my question, in his own

way (Line 46), about the importance of knowing that the lines are always parallel.

I think the idea of checking a transformation for all vectors was finally understood
by Jack, but not so much by Jill. Jack suggested using another vector by moving v to see
if q changes, but Jill did not understand When Jack re-explained why they had to do it,
she agreed, saying that the distances have to be equal. Jack corrected her by saying that
the ratios of the distances had to be constant (Lines 94 — ‘l 04). Jill knew something had
to stay constant when vector v was moved. I think that it is ironic that the one time
ratios were part of the explanation, Jill, who seemed to explain everything by things
“being proportional”, did not mentioﬁ the subject. I believe that is because the

configuration for Activity 1 did not have the usual similar triangles picture.

Although Jack understood that a transformation applies to all vectors, when I
moved vector v in Activity 2, it showed that both students did not know what it means to
“change a transformation”. I think that at this point they still thought that if T(v)’s
position on the screen changed, then the transformation had also been changed, regardless

of its relationship with vector v. This is due to the misconception that the transformation

and the image represent the same thing and are interchangeable.

To explain the meaning of “changing a transformation”, I had to use the concrete

example of a rotation to tell them that if the relationship between every vector and its
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image, which must be the same for each pair, was not preserved, then the transformation
had been changed. Jack said that in that case, the transformation was not the same
because when v changes, then v; and v; also change (Lines 119 — 121). This is something
that he had mentioned before, but I either did not pick up on it at the time or I dismissed
it as another case of Jack not being able to express himself properly and correcting
himself in his next statement. But this time I questioned him about it. Did he undertand

which vectors depend on which? Did he think that coordinates (a, b) stay constant and

the basis vectors move?

Jack realized his mistake when I made them compare the linear combination of
v=av; + bw, to the movements on the screen. He could not say why he thought that it
was the vectors that changed and not the coordinates. To show the students that the
reason why T(v) also moved was because a and b changed, I asked them to compare
the movements on the screen with the equations that Jill had written —i.e.,

T(v) = Tav; + Tbw;, = aT(v;) +bT(vz). But, instead, another unanticipated misconception
popped up. Jack had thought that v was in basis <v;, v,> and T(v) was in basis <w,, w,>
(Lines 136 — 144). As discussed earlier, there were signs of this misconception in
previous sessions, but we had not caught on to them at the time, and so this came to me
by surprise. After thinking for a while, I decided to tell them straight out that the basis
for all the vectors on the screen was <v;, v.>. At this point, Anna also decided to claify

another misconception by explaining the difference between a transformation and an
image (Line 150).

173



After some more explanations, the students were asked to find a name for the
transformation. Jack was either still shaky on the idea that the transformation had to be
the same between all vectors and their images or still did not think in terms of sets, and
only looked at each pair of vectors as individual cases. I think if it was not for my major
hint about the “same transformation” (Line 170), Jack was about to guess a different

transformation for v; and w; than the one he chose for v; and w, (Lines 169 — 173).

It took them a whﬂe to guess that the transformation was a reflection. One reason
was that not only was the reflection line was not shown, but it was not horizontal. As
seen in many instances before, students prefer to see things horizontally and vertically.
We saw it with the students changing their axes to the preferred “right-side-up”
orthogonal axes, Jill not being sure if a transformation was a shear if the parallel lines not
being horizontal, and now the students not being able to recognize a reflection because the
mirror line was not horizontal. I think that this preference of orientations being
horizontal and/or vertical is a natural occurrence in humans that cannot be avoided. That
is why a geometric approach to vectors with a software like Cabri is useful in making
students see that other coordinate systems do exist, and thus help in the understanding of

the notion of different bases.

After concluding that the transformation was always a reflection, I emphasized
that every vector had to be checked by moving v around the screen (Line 194). I think an

effective method of showing why v has to be moved is to place the vector in one position
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and say that this one vector. Move v to another position and declare that this is another
vector, and so on. I believe that the idea of stopping the movement in several different
positions is understood better than the continuous movement of v around the screen.
Stopping the movement gives the impression of different cases, whereas continuous

movements give the impression of one case only.

Jack still had trouble accepting that v; and w» did not change when v was
moved. He went back to the incorrect notion that v; and v» must move with vector v.
Anna and I explained to him that it was a matter of what vectors depend on what (Lines
195 - 201). This is something that Jack had done throughout the whole experiment.

After we thought that he understood a certain concept, he would say something that
would show a lack of comprehension. I think that this indicates that Jack’s understanding
had not been fully interconnected. In his mind, he has several notions about
transformations, of which some were correct while others were wrong. He could tell
when there was a contradiction between his concepts, but he could not tell which ones
were right and which one were wrong because he still did not have the necessary

connections between all of his ideas.

Activity 3 showed that the students were beginning to realize that preserving the
relationship between all vectors and their images was necessary to keep the same

transformation (Line 205).
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It was Jill who came up with the correct idea of checking for a shear in Activity 4
(Line 223), but again she did not know how to proceed. On the other hand, although Jack
came up with the wrong plan (Line 221), he was able to adapt his thinking according to
the plan. In other words, he could jump from one idea to another in a split second. This
again shows that concepts were clear in his mind, but he could not go from one to the
other on his own. But once he was guided to the required notion, he had no problems

adjusting his thinking.

Lines 256 — 259 show that Jack really understood the need to preserve the
relationships between vectors in order to maintain the same transformation. When Jill
disagreed with him, he suggested moving vector v to see if the transformation applied to
every vector. When vector v, was moved and w, changed with it, he realized that it did
not matter if the vectors were moved, but as long as the relationship between the vectors
and their images remained unchanged then the transformation was still the same (Lines

278 —281),. I brought their attention to the notion of a vector being dependent on

another in Cabri (Line 282).

It seems that these activities revealed many unintended conceptions in the
students, which in turn made us do extensive explanations and design special “remedial”
activities. I believe that this was both necessary and beneficial to the students. Today’s

educationists find many arguments to support the claim that students learn better when
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they find out the facts themselves. I totally agree, but at some point there should also be
some guidance from teachers. Since students, given the time, could discover a “million”
things from an activity, the teacher is needed to help them decipher between the relevant
and the irrelevant information and draw consistent conclusions that would also be
pertinent from the point of view of the target knowledge which the teacher knows and the
students do not. Students have all the right and reasons for initially missing the point. In
other words, a teacher is needed to summarize concepts and to lay to rest the unintended
conceptions. After five sessions of yvorking for the most part on their own, I believe that
these activities showed us that it was the right time for us to intervene and clarify certain
notions. This occurred several times during the activities. The notion of having two
conditions satisfied to obtain a shear was explained in Line 107. I emphasized on a
couple of occasions that a transformation was applied to all vectors (Lines 107 and 194).
I explained that all vectors are in basis <v;, v»>, while Anna explained the difference
between a transformation and an image of a vector (Line 150). The idea that some vectors
depend on other vectors was first brought up by Anna (Line 201), and then reiterated i)y

me at the end (Line 282). I believe that this session brought all the loose ends from

previous sessions together.

3.3 Conclusions and recommendations

The aim of this research project was to test an alternative way, namely a geometric
approach, to introduce topics in Linear Algebra. The motivation was the disenchantment

with the current approach to the teaching of this subject. Thus, the design team wanted
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to explore a coordinate-free introduction, with the aid of the dynamic geometry software

Cabri, to the concepts of vectors and linear transformations, with the intention of

introducing a coordinate system later on.

As it turned out, this approach was not as successful as was hoped. One positive
aspect is the use of Cabri, or any good software. The motivation and interest of the
students was definitely enhanced with the use of Cabri. I believe that it was also very
beneficial for them to see a different representation of the concepts of Lineali Algebra.
Unfortunately, as it turned out, one interpretation was not enough for them to grasp the

notions of vector, linear combination, and linear transformation.

My analysis was done using an “interpretive understanding” approach.
Therefore, the following conclusions and recommendations are based on my best

interpretation of why things happened the way they did.

3.3.1 Problems with the experiment

One of the aims of this project was to introduce the notion of vector using a visual image
instead of coordinates. From the different ways of representing a vector, it was decided
to choose the representation by arrows that start from the same origin O and go offin a
direction a certain length. That was the whole introduction. Equality of vectors was not
mentioned. This is in sharp contrast to the historical development of vectors. The

primary concern of the first vectorial systems of both Mobius ( in 1827) and Bellavitis

178



(in 1833) was the notion of equal vectors. On top of that, while the students were
instructed on how to measure the length of a vector vusing Cabri, the question of
“measuring” the direction was not discussed. It was assumed that the students knew the

difference between a scalar and a vector. So, it was only natural that Jack and Jill thought

of vectors as lengths only.

Some might recommend to show vectors as representations of translations. It is
deﬁni_tely a better idea, however, I still believe that our approach to vectors is a good way
to represent them, but a better introduction is needed. We cannot make any assumptions
about the students’ background knowledge since they all have had different experiences, if
any, with vectors. I think that no matter which representation is used, we still need to
talk about the topic and have students do activities (similar to the ones used in Session 1))
that bring out the question of vector equality. After all, this notion was the pre-

occupying concern for Moébius and Bellavitis.

Another topic with a bad introduction, if it can be called that, was linear
combinations. We did not want to give it a name, but instead we wanted the notion to
develop in the students as part of a natural progression of applying one operation after
the other. As a result, during the first five sessions, the idea of a linear combination was
non-existent. They used each operation separately. The notion of linear combinations is
totally new to the students in terms of a visual representation. To promote its

understanding, I suggest that one should either (1) introduce activities like the ones from
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Session V at the beginning to help students combine the operations in the same problem

or (2) introduce linear combination as one more concept.

A major misconception of students was that a linear transformation is applied
only to one or two vectors in the planie. This occurred despite promoting the idea of a
global transformation right from the beginning when transformations were first
introduced. One reason was that the students did not realize that vector v on their screen,
by being created independently of all other constructions on the screen except for starting
at the “origin”, and variable, represented all vectors in the plane. To them, the Cabri
arrow represented one vector that could be stretched and draged at will around the screen.
To avoid this kind of interpretation, during an activity, we should move v to one place
and stop, then move v to a different place and stop, and so on. To be effective, the
instructor should point out that each placement of vector v is a different vector. I am not
sure if students have other stumbling blocks that will prevent them from seeing vector v

as a general vector, but it seemed to work when I finally did it in Session VL

A second reason for not globalizing transformations is the students’ notion that
the transformation and the image are the same —i.e., T=T(v). This could be seen in the
language that the students used. To be fair, I was just as guilty as they in promoting that
idea through my word choices. This is something hard to avoid because of the differences
between mathematical and everyday usage of words. The only thing to be done to reduce

this problem is for teachers to be extra careful with their words and to correct students
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when words are misused. Hopefully, that will make students aware of the differences and

make them correct the teachers as well.

A third reason for not visualizing a global transformation comes from the
students’ mathematical background. In high school mathematics, all transformations are
local and are seen in the context of geometric figures. This is usually illustrated as a
triangle in a Cartesian plane that has been translated, reflected, rotated or dilated to

another position in the plane. The coordinate axes remain unchanged.

An unintended concept that arose was the idea that a linear transformation has
two bases —i.e, v isin basis <v;, > and T(v) is in basis <w,, w,>, where w; and Wy
are the images of v; and w,. This misunderstanding comes from the fact that the notion
of basis was not separately introduced to the students, but only in the context of
“coordinates of a vector in a basis”. Geometrically, the coordinates were obtained by
decomposing a vector v into a linear combination v= av; + bvs, and then (a,b) were the
“coordinates of v in the basis <v;, v> . So naturally, when T(v) was generated from
T(v) = aw; + bw,, the students felt free to use the same language and say that “T(v) has

coordinates (a, b) in basis <w;, wy>*.

I also believe that the introduction of the similar triangles backfired on us. We
introduced it to show the students a nice, dynamic picture of proportional change. I think

we overused the geometric approach in this instance. Jill, the weaker student, was so
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mesmerized by the movements that for the rest of the experiment, everything was
“proportional”. Alternatively, Jack used the visual image as a shortcut to check for
linearity. He was so preoccupied with looking at their movement that at one point he did
not realize that a vector and its dilation were not even on the same line. I do not think

that the similar triangle image should be used in the future.

Another change that I recommend is the name of the “dilation” operation. I think
that it is conﬁx;ing to have an operation named after a transformation. In Cabri, the
“vector sum” command is in the CONSTRUCTION menu, whereas “dilation” is under
the TRANSFORMATIONS heading. The usual term of “scalar multiplication” should be
used and a special macro designed to perform this operation. The macro should then be
put into the same menu as ‘vector sum’. This way the two operations are a “sum” and a
“multiplication” and both are algebraic terms, as opposed to one being algebraic and the

other geometric.

Despite the misconceptions created by the geometric approach (which approach
does not lead to misconceptions?), I still support this new way of introducing topics.
What has to change, I think, is that both geometric and algebraic ways should be
employed in a Linear Algebra course. Introducing a topic in one interpretation limits the
understanding of certain concepts. For example, we expected the students to use
equations for linearity structurally to be able to construct the image vector. But students

are used to putting in numbers into equations. Coupled with the fact that coordinates
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were not introduced, the students resorted to substituting lengths for vectors in the

equations; thus helping in creating the misconception that vectors are lengths only.

Aside from the “common” algebraic and geometric representations, it is also very
important to include a verbal interpretation. It is very important to be able to describe
the concepts clearly and to express oneself correctly. Language can lead thought towards

a more precise and consistent knowledge.

3.3.2 The Role of the instructor

In a research experiment, the instructor walks a thin line between the role of a researcher
and the role of a teacher. A researcher’s role is to find out how students learn
mathematics and what is the nature of the difficulties they encounter, but a teacher has
the responsibility of bringing the students to some pre-determined knowledge and
understanding. Therefore, the instructor in an experiment has to decide when to correct
the unintended students’ conceptions and when to keep silent. But the students do not
know of these distinctions between the roles, and may take silence as a confirmation of

their answers. This occurred a couple of times during our experiment.

Instructors in a research have to be careful not to lead students through question

so that they can be “funneled” to the solution. They should try to focus the students’
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attention on the important parts of a solution. This is true for a classroom teacher as

well.

3.3.3 Students’ understanding

As one could tell from the analysis of the experiment that Jack’s and Jill’s understanding
of concepts were totally different. Jill, I believe, for most of the experiment was lost in
terms of understanding the concepts. She worked on intuition (an important aspect in
problem solving) but had a lot of misconceptions that prevented her from understanding
the concepts. Some of her misconceptions were preconceived before the experiment,
while others were borne out of the activities. This is partly due to her weak background

and also to the design problems discussed above.

Even though Jack had some of his own misconceptions —e.g., the transformation is
the image (T=T(v)) idea —, I believe that Jack’s learning was following the path presented
to him. Jack had many concepts about transformations in his mind. Some of these ideas
about linear transformations were true, while others were misconceived. But like any
other novice learning something new, he had no connections between these ideas. The
lack of bridges between notions prevented him from seeing contradictions in his
responses. And when he actually did notice a contradiction, he took the easier or more
recent explanation. This explains why throughout the whole experiment, Jack would give

correct responses, but in the next sentence, he would contradict himself. He was jumping
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from one concept to another, instead of taking a leisurely walk across a bridge. I guess the

same could be applied to Jill, except her little conceptual islands were too few and farther

apart.

No obstacle of formalism was detected in the experiment. This is due to two
factors. First, there was not a lot of written problem solving in the experiment to indicate
if such an obstacle existed. Second, the obstacle of formalism usually occurs in a loose
classroom situation whefe students work more independently rather than in a closely
monitored atmosphere where an instructor checks every move that is made.

As an overall assessment on their understanding, I would say that Jack and Jill
went up the hill to fetch some knowledge. Jill, with a little push from us, fell down, but

Jack did not come tumbling after.
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CHAPTER IV

Conclusions and Recommendations



I have discussed students’ difficulties in learning Linear Algebra from three perspectives:

1. The nature of Linear Algebra — Linear algebra is a product of a long process of

development and intellectual struggle of several generations of outstanding
mathematical minds. The result, for now, is an abstract “unifying and
generalizing” theory with many ramifications and a wide range of

applications.

2. The teaching of Linear Algebra — Courses in linear algebra are often aimed at
presenting the concise and apparently simple general theory without giving
the students a chance of experiencing the above mentioned process of
genralization and unification and appreciating its applications. The first
course in structural theory of linear algebra is given too early for the students

to have anything to unify or generalize and apply the theory.

3. How students learn and cope with Linear Algebra — Besides bringing with

them bad study habits, as a result of the two factors above, students develop

the obstacle of formalism. The theory appears to them as a formal play on

meaningless strings of symbols.

Using these sources of students’ difficulties as a framework, I analyzed two of my

own different experiences in teaching Linear Algebra: (a) teaching MATH 204 - a college-
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level course, and (b) conducting experimental sessions on a geometric approach to vectors

and linear transformations.

My analysis concludes that MATH 204 is in need of a curriculum change. There
are too many topics taught in too little time. Some of these topics are complex, abstract,
and unnecessary at that stage of most students’ educational careers, or any stage for that
matter. Linear algebra is being taught through an axiomatic approach and concepts are
introduced by definitions. Aside from the one week in which vector geometry is taught,
the rest of the course employs algebraic representations of the concepts. The course is
usually geared towards a final exam, almost the same from year to year. This, in turn,
promotes memorization of procedures and solutions, instead of understanding the

concepts behind the solutions.

In terms of the content of Linear Algebra classes, I believe a college-level course,
like MATH 204, should concentrate only on systems of linear equations, matrices and
matrix algebra, determinants, and vectorial geometry. The first two topics are strictly
computational, thus agree with the students’ mathematical background knowledge. On
top of that, many application problems can be presented using these two topics. As for
the vectorial geometry, most students at this level have seen little or no geometrical
representations of vectors. In a college-level course, I would concentrate on the notions
of vectors and linear combinations, geometrically, algebraically, and verbally. I would

leave the concept of linear transformations for a first-year university course, and at that
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level, the notion should be studied only in R®, practically as a multiplication by a matrix.
There is no sense in introducing linear transformations if the concepts of vectors and
linear combinations are not fully understood. As for the concepts of vector spaces and
subspaces, and the structural notion of linear transformation of vector spaces, I would
recommend that they be left for a second-year university course or higher. These ideas
are only useful for very high level mathematics. In other words, I recommend that Linear
Algebra courses follow a similar path to its development. After all, linear algebra took a
long time to become accepted for a reason - it involved very complex and abstract topics

that need time to be accepted and understood.

In view of these concerns, a research project was launched to test an alternative
way, namely a geometric approach, to introduce the concepts of Linear Algebra. Two
students, who had successfully completed MATH 204 (the final grade of both was B)
two months before, were involved in six sessions in which the concepts of vectors and
linear transformations were introduced in a coordinate-free environment with Cabri. This
approach did not fare any better than the algebraic approach. The students never grasped
the concept of vector, which in turn prevented them from understanding linear
combinations, which then made the notion of linear transformation difficult to
comprehend. These difficulties occurred partly because the experiment did not properly
introduce the notions of vectors and linear combinations. The designers assumed that the
students understood what vectors were. They also hoped to build the notion of linear

combination as a natural progression of the two vector operations, but this is difficult
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without a solid understanding of vectors. Another reason for the misconceptions is the
lack of an algebraic interpretation. I believe that more than one representation is
necessary to promote a better understanding of the concepts. It was seen in MATH 204
with a strictly algebraic approach and with the experiment using geometric
interpretations. Moreover, the notion of linear transformation was introduced by its

formal definition, for which the students were not conceptually prepared.

Seeing that students struggled in these two very different environments, one has to
look at what they had in common to find out the essence of these difficulties. In both
teaching situations a structural approach was used. Axiomatic definitions of vector space
and linear independence were given in MATH 204 and of linear transformations in the
experiment. It seems that the main problem is that students have trouble thinking in
terms of structures. They think at the level of elements of structures: individual vectors,
operations on concrete vectors. They see properties of operations as properties of
actions, not as axioms that could define an abstract structure such as a vector space. This
way of thinking is usually seen in the “proofs” in MATH 204 where students find it
difficult to know what they are supposed to prove and how to prove it. In the

experiment, Jack and Jill had the same trouble in showing that a transformation was linear.

What is the solution? Do we give up the structural approach? Would that be the
same as giving up on Linear Algebra altogether? But one has to wonder whether the

general vector space theory really is the essence of Linear Algebra. Could a kind of
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“calculus™ approach to this extremely complex subject be possible? Until an answer is
found, I would stick as much as possible with computational problems, especially in a
college-level course, and leave the structural approach to the higher level courses, whose

students are ready for and need these complex and abstract concepts.
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