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ABSTRACT
Analysis of Product-separable 2-D IIR Discrete Filters with Feedbacks for Variable
Characteristics
Jun Xiao

In order to design 2-D digital systems with variable characteristics, product-separable
IIR filters with feedbacks in each dimension are studied. The stability and response of
such syétems with different situations are analyzed and discussed.

Belonging to one of the methods of generation of VSHP in z-domain,
product-separable IIR filters with dimensional feedbacks offer variable characteristics.
The variable feedback gain in one-dimension is analyzed with all the other coefficients
based on Schussler’s Theorem. The stable conditions for the feedback in terms of other
coefficients are obtained and hence a stable range of the feedbac‘k gain is determined.

Within the stable range of feedback in each dimension, different filters” 2-D
frequency responses have been studied and observed with different situations. Significant
variable characteristics and different 2-D symmetries are shown with stable responses.
Relations between the feedback and responsé are discussed. Furthermore, to extend this
analysis to higher order systems, a computerized analysis method and algorithm is
proposed and implemented. This approximation method can work with any order of [IR
or FIR filters and has low computation complexity.

More complex systems with variable characteristics can be composed and examples

of Image Processing with these filters are simulated as space-domain applications.
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CHAPTER 1 Introduction

1.1 Importance of 2-D filtering

Nowadays, two-dimensional (2-D) digital filters are widely used in the image
processing, telecommunication, radar systems, medical diagnosis and other applications
where 2-dimensional data array is used.

The transfer function of these filters can be described as:

N
: -m _-n
menzl 22
_ m=0n=0
H(z,,z,) =

J : .
i
22,477

i=0 j=0

Mk

(1.1)

When ag #0 and a; =0 for i#0 and j#0, it is a 2-D FIR (Finite Impulse Response) filter,
otherwise it is a 2-D IIR (Infinite Impulse Response) filter.

In order to design a 2-D system optimally satisfying the specifications, the
characteristics, (which include magnitude response, phase or group delay, etc.), need to
be variable. First, one can choose a certain type of filter, and then change one or more of
the coefficients of the transfer function as shown in Fig.1.1. This can give variable
characteristics but also simultaneously change the pole-zero locations of the system. For
FIR filters, there is no stability problem to worry about because they are inherently stable
with any set of coefficients. The main job then is to find an algorithm to vary the

characteristics of the filter according to the specifications. But usually the order of this

1



kind of filters is so high that it is difficult to implement them.

The IIR filters, on the other hand, are more suitable to achieve this job. With lower
order, and by adding one or more feedback paths as shown in Fig.1.1, it is easy to obtain
variable characteristics. However, IR filters can be unstable while changing any of the

coefficients. So the main concern is to ensure the stability.

. -
L »

Tab Vb Tbc Vc

o)

<

Fig.1.1 Signal-flow graph of a basic structure

The overall transfer function is:

v. T,T
Tac=;—“=——1j}”} (1.2)
bc™ ¢ch

Without lose of generality, consider T,; =1 in (1.2). In order to obtain variable
characteristics, one of the transmittances needs to change. It is easy to make T,; a variable
quantity. When T, =0, it is required that 7. must be stable.

For 1-D systems, there exists an extensive literature about both analog and discrete
filters with variable characteristics. The stability has already been investigated in these

researches. But for 2-D system, the stability test procedure can be so complex that it is

impractical to conduct the test every time when any coefficient is changed. So one can



obtain the ranges of one or more coefficients, which ensure the system to be stable.

In 2-D systems, the frequency response is a function of two independent variables.
For 2-D discrete systems, one can focus on the plane with each dimension ranging form
—n to m. Although the magnitude frequency response of 1-D system is always
symmetrical about the origin, the symmetry of 2-D magnitude response is more than this.

In this thesis, the main concern of variable characteristics is about magnitude and its

symmetry, group delays will also be discussed in some cases.

1.2 Stability of 2-D IIR systems
In 1-D IIR systems (both analog and discrete), the transfer function is a relative
function without any common factors between the numerator and the denominator.

Mathematically,

Na (S)
D,(s)

H,(s)= (13)

describes the transfer function in the analog domain with N,(s) and D,(s) to be relatively
prime. In order that this system is stable, all the zeros of D,(s) must be strictly located in
the left-half of the s-plane, namely, D,(s) must be a strict Hurwitz polynomial (SHP) [1].

Likewise, there is

H,(z) = g—d% 14)

which is a transfer function in the discrete domain with Nuz) and D4(z) to be relatively

prime. In order of this system to be stable, all the zeros of D,(z) must be strictly located

3



inside the unit circle, or Dy(z) must be a Schur polynomial [2].
In 2-D analog systems, a popular method of discrete filter design is starting from an
analog filter transfer function and then use the well-known generalized bilinear

transformations [2]:

—b, v
s, =k 220 =1, (1.52)
z, +q,;
the stability conditions being:
k>0, la|<1, |p|<1 (1.5b)

Then the corresponding discrete filter transfer function can be obtained. So one can

consider the stability of analog systems first. There is

N, (s158,)

H (s,,5)=
a( : 2) Da(SI:SZ)

(1.6)

being the transfer function. According to [4], if both the even and the odd parts of the

denominator polynomial become simultaneously zero at any specified set of points but

not in their neighbourhood, it belongs to the non-essential singularity of the first kind.

And if both the numerator and denominator become zero simultaneously at any specified

set of points, it is called non-essential singularity of the second kind (NSSK).

Specifically,

(a) if Dy(570,520)=0 and H,(519,52¢) 30, it has non-essential singularity of the first kind at
(S10,520);

(b) if Du(s10,520)=0 and H,(s19,529)=0, it has non-essential singularity of the second kind

at (570,520);



The definition of a 2-D polynomial to be an SHP is: if 1/ D,(s;,s;) does not have any
singularity in the region { (5,55 | Res; == 0, Res; == 0, | 55| < <o, | s3] < < }, then
Dy(s1,52) is an SHP.

So the polynomial of a denominator having occurrence of non-essential singularity of
the first kind is not a SHP and hence the filter is not stable. However, even if a
polynomial is an SHP, it may also have the occurrence of the non-essential singularity of
the second kind. And the NSSK can also make a system unstable. Therefore, having to be
an SHP as the denominator is only a necessary condition for a 2-D system to be stable.

Then the Very Strict Hurwitz Polynomials (VSHP), which does not have any of the
two kinds of singularities, is defined [4]: if 1/ D,(s1,53) does not have any singularity in
the region { (51,52) | Re s; = 0, Re sy = 0, | 51| < o9, | s3] < o0}, Dyfsy,s7) is a
VSHP.

From above, a VSHP must be an SHP first. So once a polynomial has been ensured
to be an SHP, the remaining job is to inspect the absence of singularities at the
combination points including infinity. To do this, one can substitute the original variable
that tends to be infinity with their reciprocals. There are three possibilities to consider:

(a) 51~ 20, sy=finite, inspect D,(1/51,52);
(b) s;=finite, s, oo, inspect D,(s;,1/s2);
(c) s7-90, 520, inspect D,(1/s;,1/s3);
According to the bilinear transformation, zero and = in s-domain correspond to 1

and —1 in z-domain, which stand for the DC and the highest frequency components of a

5



discrete system. So the study of VSHP shows the importance in 2-D analog-to-digital

filter design.

1.3 Some properties of VSHP [4]

Property I:

That D,(s5,s5) is a VSHP, is the necessary and sufficient condition for H,(s;,s2) to

have no singularity in the closed right-half biplane { (5;,55) | Re s; = 0, Res; = 0, | s4]

go",!s;l goo}

Property II:

If D(s;0,5200= Di(s1,52)*Da(s},s3) is to be a VSHP, the necessary and sufficient

conditions are that D;(s;,s;) and D,(s1,57) are individually VSHPs.

Property III:
oD oD
If Dy(sy.59 is a VSHP, 22a(51:82) g ODa(81:80) o oico VSHPs.
0s, 0s,
Property IV:

Consider D,(5;,53) to be a VSHP, then the polynomials E;(s;) and Fy(s;) ( i=0,1,....p
and j=0,1,...,q ) defined below are SHPs in s, and s; respectively, where:

D,(s;,8,) =E, (s,)s{ + E, (5)sf + .+ E\(5,)8, + Ey(s,)



or D,(sy,s,) = F, (s,)s + F , (s)s7 + ...+ E(s))s, + F,(s,)
Ei(sy) and Fy(sy) (i=0,1,....,p and j=0,1,...,q ) are the polynomial coefficients of the

powers of s; and s, respectively.

Property V:

, F.(s
Ei(s5) and ——’—(1—) (i=0,1,....,p and j=0,1,...,q ) are minimum

The functions
E._(s;) Fj—1(5'1)

reactive positive real functions defined below in s, and s; respectively.

Definition 1: A rational function F(s) = with real coefficients is a positive real

P(s)
0(s)
function, if and only if

(a) P(s)+Q(s) is an SHP;

(b) Re F(s) = 0, for Res = 0.

Definition 2: F(s) is a minimum reactive positive real function, if there is no pole or zero

on the imaginary axis of s.

1.4 Methods of generation of VSHP
Based on the properties of VSHPs (which are omitted here) [4], there are different

methods to generate this kind of polynomials, some of which are briefly reviewed below:

Method I

Consider D,= AWA's, +BAB's, +RT R*' +G



= A5, +Bis, +R, +G
where A, Bjand R are lower triangular matrices given by (1.7, 1.8, 19),and Gis a

skew-symmetric matrix given by (1.10) and they are:

a, 0 .. .. 0
a, a, 0 .. 0

A=} .. (1.7)
_aln aZn ann_
i 11 0 j
b12 b22 o ... 0

B=]| .. (1.8)
_bln b2n bnh_
_ru 0 -
By Tyn 0 .. 0

R=|... ... . . .. (1.9
Py Tap e e Py
[0 g2 813 gln_
— & 0 8x o 8

G=|-g5 —8»n 0 (1.10)
— 81w T & ~ 8 0 R

and W, AandT are diagonal matrices:

v =diagly, v, - v, (1.11)

A=diagld, A, .. A,] (1.12)



U =dagly, 7, .. 7.] (1.13)

If all the Wy, A;and Y ; are positive, A,, BandR, are positive-definite matrices,
and they are realizable in circuits. By making some of W;, AM;and ¥; to zero and I to
null matrix, determinant of D, becomes either an even or an odd polynomial. VSHPs

can be obtained by taking derivatives as shown in the example:
1 Ofly; O |1 a 1 04 Of1 &
D, = s + S,
a 00 w,j0 1 b 00 A, |10 1
1 0 '
N 77 O |1 ¢ . 0 g
c 00 y, 010 1 -g 0
By making ¥, to zero, s;° term will be zero. And if W,=0, parameter a will not be in
the determinant. Likewise, A, and M, equals zero can cause that s;° term will be zero

and b does not show up in the determinant. The results in D;is:

s+ A, + ays,+bAs, tcy, +g
ay,s,+bls, +cy,—g a‘ws +bAs, +cly +v,

Therefore the determinant of Dj:
det D, =y, 4 (a—b)’s,5, + [ (@ =) + 7,15, + Al (b =€)’ + 7,15, + (17, + 87)
isaVSHP if a==bh, v ,70.
If v ,=v.= 0,ab, one can obtain an even polynomial:
M, =y A(a-b)ss,+g°
Therefore a VSHP can be generated as:

o Tk, %AS/[—“ =y, Ak (a-b)s;s, + by A(a-b)s, +ky A(a-b)'s, + g° (1.14)

1 2

M, +k

Method II



This method starts form the VSHP,
D(s,,8,) = a;,5,8, + a8, + ay, S, + ay, (1.15)
and one can get the reactance function [4],

dy18185 + Ay

G(s1,8,) = (1.16)
Ay + 615
Then by choosing b;;>0, b;p>0, bg;>0 and bgp>0, one can use the transformation,
= byy8,5, + by (1.17)
bios; + by,

and substitute variable s; in (1.16) to get a VSHP with s; of order one and s, of order two.
Likewise, by using following transformation with ¢;;>0, ¢;0>0, co;>0 and cgp>0,,

Cy18:8, +C
S = 1171~ 2 00 (118)
Cio81 t+ Co18,

a VSHP can be obtained with s; of order two and s, of order one.
For specific order of s; and s2, the procedures above can be repeated accordingly. The

sum of the numerators and the denominators gives a VSHP.

Method 111

For the 2-D systems with product-separable [5] denominators described as
Dai(s1)Daa(s2), the condition is that D,j(s;) and D,y(s;) are SHPs in s; and s, domains
respectively. Instead of using method I, according to Schussler’s theorem [6], one can
generate Schur polynomials in discrete domains directly as following:

Let D(z) be a real polynomial of degree n, described as

10



D(z)=icvz“ =cl_nI(z—-zm)=Fl(z)+F2(z) (1.19)
v=0 v=1
where F;(z) is a mirror-image polynomial defined as
F(z)= Z:;dvz” with d, = %(cv +c,.,) (1.20)
and F(z) is an anti-mirror-image polynomial defined as
F,(z) = Z:;gvzv with d, = %(cv —c,.) (1.21)

The necessary and sufficient conditions for D(z) to be a Schur polynomial are:

o
C

n

Condition 1: <l1;

Condition 2: (a) For n even:

ni2

F@)=k]]E" -2a,z+1) (1.22)
i=1
(n=2)/2
Fy(2)=(z" -1 [[(z*-2B,z+1) (1.23)
i=1
with  1>a,>p, >a, >, > ... > [ >a, >-1 (1.24)
(b) For n odd:
(n-1)/2
F(2)=k,(z+1) 1—[(22 —20,z+1) (1.25)
i=1
(n=1)/2
F(@)=0c-D ] -28z+) (1.26)
i=1
with  l1>a, >0 >a,>f6,>... >y > oy > 1 (1.27)

Working backward through the theorem one can construct stable 1-D filters for each

dimension, and hence construct a stable separable 2-D discrete system.

11



1.5 Symmetry of 2-D systems

There are different kinds of symmetries of frequency response of 2-D discrete
systems [7,15]. Not to name all the categories exhaustively, but only the important ones
are introduced.

With two dimensional radium frequency variables ® ;and @ , with ranges from — = to
T, one can construct a close square of plane. The symmetry is based on this plane and its
coordinates.

1.5.1 Rotational symmetry

Let the origin be the rotation centre and the rotation angle is & /2 radians, it is a
four-fold symmetry:
H, (o, 0,) = Hy(-0,,0,) = H,(-0,,~0,) = H,(@,,~a) (1.28)

1.5.2 Centro-symmetry

If the rotation angle is 7 radians, it is a two-fold symmetry:
H,(o, 0,) = H;(~0,,~0,) (1.29)

1.5.3 Reflection symmetry

Reflections about the @, axis, @, axis, or ® = ®; line or ® ;=- ®,line, the symmetry
can be any of the following:
H, (o, 0,)=H (-0, 0,)
H,(o,,0,)=H (0,~»,)

H,(o,0,)=H (0,,0,) (1.30)

12



H,(0,,0,)=H,;(-0,~o,) (1.31)

1.5.4 Quadrantal symmetry

If the symmetry is about the ® , and @ , axis simultaneously, there is:
Hy(o,,) = H,(~0,0,) = H,(-0,,~0,) = H,(®,~®,)

1.5.5 Diagonal four-fold reflection symmetry

Likewise, if the symmetry is about © ,=®, and ® ;= w ;line simultaneously, there is:
H,(o,0,)=H,(0,,0,) = H;(-0,,~0,) = H ;(-0,,~®,)

1.5.6 Octagonal symmetry

If both Quadrantal and Diagonal symmetry hold simultaneously, there is:

H,(o,0,)=H,(~0,0,)= H(®,,0,) = H,(~0,~,)
= H,(-0,~®,) = H ;(®,,~®,)

1.5.7 Circular symmetry

9 (& +@; =1)
Hy(o,0,)=<: : (1.32)
a (0} + @2 =)

The relationship between the symmetry and the 2-D filter will be discussed in

Chapter 3.

1.6 Separable and non-separable 2-D transfer functions

For both analog and discrete transfer functions of 2-D systems, they can be classified

13



into two groups: product-separable and non-product-separable. If the transfer functions

Nal(sl) Na2(s2) (133)

are like H,(s,5,) = .
Dal(sl) DaZ(s2)

Na'l(Zl).Ndz(Zz) (1.34)
D, (z)) Dyy(zy)

H,(z,,z,)=
they can be studied as two cascade independent 1-D systems working in different
dimensions. For this case, the stability problem can be simplified to the stability of both
of the 1-D systems. So once both of their denominators are SHPs in s-domain or Schur
polynomials in z-domain, the whole system will be stable.

For discrete separable transfer functions, since each 1-D system has the frequency
response symmetry about the vertical axis, the 2-D response symmetry will be about both
horizontal and vertical axes.

The 2-D transfer functions that can not be written like (1.33) or (1.34), are

non-product-separable. For this case, one must consider conditions of VSHP in analog

domain.

1.7 Scope of this thesis

In this thesis, a 2-D product-separable discrete system design with variable
characteristics is discussed. The stability with ranges of one or more coefficients of the
system is to be discussed.

In Chapter 1, the background knowledge of 2-D IIR filtering has been introduced,

especially, the original stability theorem about VSHP from analog domain. Also the 2-D

14



symmetries in frequency domain as well as product-separable and non-product-separable
2-D transfer functions are introduced.

The 2-D digital filter VCTR structure is described in Chapter 2. Since this structure’s
stability analysis can be decomposed into 1-D systems, Schussler’s theorem, which is
also a special case of VSHP corresponding to analog domain, is introduced and
mathematically expressed in this chapter. Then analysis with typical numerators and
general denominators up to 2" order is discussed.

Chapter 3 extends the analysis form 1-D to 2-D by combining different typical filters
such as Biquadratic filters with variable but stable value of feedback gain. Low order
filters and different situations are simulated. The variable response are observed and
studied in detail.

Further analysis for higher order is in Chapter 4. An algorithm is proposed and
simulated for arbitrary order of filters. 2-D responses of higher order filters including FIR
filters with feedbacks are observed and studied.

In Chapter 5, responses of composed 2-D filters with component filters with variable
characteristics are briefly discussed. Some of the stable 2-D IIR filters are applied in
image processing. The stability and variable effect are further confirmed with practical
’applications.

The conclusions and future works are discussed in Chapter 6.
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CHAPTER 2 Product-separable 2-D Transfer Functions

2.1 Introduction
Since product-separable 2-D transfer functions are concluded with (1.33) and (1.34),

it can be shown in Fig.2.1:

Vin Vout

—_— Ni(s1) > N, (s2) . »
Dy (s1) D, (s3)

S — Ny (z1) »  Ny(2) >
D D

V. 1(z1) 2(22) Vo

Fig.2.1 2-D product-separable system

For the analog transfer functions, the stability discussion about VSHP can be
simplified into 1-D stability with SHPs. And also the design of 2-D variable
characteristics can be simplified to two 1-D variable characteristics. In order to design
1-D analog variable transfer functions (VCTF) [5], a most often used method is to add a
variable feedback to the IIR filter (shown in Fig.2.2). By adjusting the gain of the

feedback, variable characteristics can be obtained.

16



PRESUURR—. S

v N (s) >
X(s) D (s) Y(s)

Fig.2.2 1-D analog IIR filter with variable feedback

The transfer function of the system is,

H(s)=— O __
D(s) - kN(s)

2.1
with D(s)-kN(s) being an SHP to make it stable.

However, by using the bilinear transformation to obtain the corresponding
product-separable discrete systems, the k parameter will be dispersed into coefficients of
different order of z'!. This can cause difficulties of VCTF design for discrete filters [5].

So a 2-D discrete product-separable IIR VCTF will be discussed. And the stability

will be ensured based on Schussler’s theorem as a special case of VSHP by using method

111 [4].

2.2 The structure considered

A 2-D discrete VCTF can be designed directly in z-domain as shown in Fig.2.3.
This is a product-separable system with a variable feedback gain attached to each 1-D
filter. Likewise, by adjusting the feedback gain, variable characteristics of the system can

be obtained. In order to make the system stable, the analysis is to obtain the constraint of

17



the variable gain k in terms of other coefficients of the filter.

«—— <«
v Ny (z) Lyl Na(22) >
X(z1, ) i) D, (z3) Y (21, )

Fig.2.3 2-DIIR VCTR system to be analyzed

According to method III in 1.4, the condition of VSHP for this case is equivalent to

Schussler’s theorem in both 1-D discrete systems.

2.3 Schussler’s Theorem for 1-D systems

The basic necessary and sufficient conditions for a 1-D IIR discrete system to be
stable is that all the poles are located within the unit circle in z-domain.

Let D(z) be a real polynomial of degree n, described as

D(z) = icvz” =cﬁ(z—zm) (2.5)
and
D(z) = Fy(z2) + F,(2) (2.6)

where F(z) is a mirror-image polynomial defined as
n X 1
F(z)=)Yd,z" with d, = —2-(cv +c,.,) Q2.7
v=0

and F>(z) is an anti-mirror-image polynomial defined as

18



F,(z)= Z g,z" with d, = %(cv ~c,.,) (2.8)
v=0

For D(z) to be a stable polynomial, characterized by lzm <1 V v, itis necessary
and sufficient that:

Condition la: The zeros of F;(z) and F(z) are located on the unit circle;

Condition 1b: They are simple;

Condition 1c:  They separate each other.

These conditions are equivalent to the following of the function Fy(z) / Fa(z) [or Fa(z)
/Fi(@) ]

Condition 2a: The poles and zeros of F;(z) / F2(z) are located on the unit circle, they are
simple.

Condition 2b:  If a pole of Fy(z) / Fa(z) [or Fa(z) / Fi(z) ] is located at e’*” , the angle of
the residue of Fi(z) / F2(z) [or Fa(z) / Fi(z) 1is ¥ ..

Condition 2¢:  The slope of the imaginary part of F;(z) / Fa(z) [or F2(z) / Fi(z) ] on the
unit circle e’ in dependence of @ is always positive.

The theorem is equivalent to the well-known properties of a Hurwitz polynomial [4].
F1(z) / Fa(z) correspond to the even and odd part of a Hurwitz polynomial, respectively;
F1(z) / Fy(z) is the discrete counterpart of a reactance function in the continuous domain.
In [6] it has been mentioned, if and only if the zeros of Re{D(’?)} and of Im{D(’*)}

separate each other, the system will be stable. Fig.2.4 demonstrates possible locations of

pbles and zeros of F(z) / F(z) .
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It is possible to prove the theorem by transforming the mentioned properties of a
Hurwitz polynomial into the z-domain using the bilinear transformation. The proof can

also be found exclusively in the z-domain.

A
Im

1 1

-1 1 Re -1 1 Re

Fig.2.4 Poles and zeros of Fy/ F,, if D(z) =z" and n =4 or n=5

2.4 Stability conditions of 1-D systems
According to Schussler’s theorem, a further more mathematical expression can be

derived as following [8]:

o
C

n

<1 ;

2

Condition 1:

Condition 2: (a) For n even:

nl/2
F(2) =k ][> -2a,z+1) ‘ (2.9)
i=1
(n-2)/2
Fy(z)=(z"-D []*-2Bz+1) (2.10)
i=1
with 1>a,>p,>a, >, > ... >f,.>a, >-1 (2.11)
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(b) For n odd:

(n-1y/2

F(2)=k,(z+1) [](z* -2,z +1) (2.12)
i=1
T (n-1)/2
F(2)=0-D) ]G -2B,z+1) (2.13)
i=1
with I>a,>p,>a,> 5, >.... >a,, > P >-1 (2.14)

Since each pair of complex conjugate zeros on the unit circle can be described as a factor

of (z>~2¢z+1) with @ to be the common real part of the them. This can be shown in

Fig.2.5:

B
»

Fig.2.5 Poles and zeros of Fy/ Fp, if D(z) = 2" and n =4 or n= 5,
their real parts separate each other on the real axis between —1 and 1

Therefore, the parameters of «, and B, , which correspond to the real part of those
zeros and poles, can be extracted with the coefficients of the polynomial and the stability

conditions can be directly applied on those coefficients.
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2.5 Stability conditions of 1-D for different numerators

v .| N(z)
D (z)

A\ 4

Fig.2.6 1-D discrete system

For each 1-D block as Fig.2.6, similar with (2.1) the transform function of the whole

N@z) _ NE@) (2.15)

block is: H{(z) = D(z)-kN(z) D,(z)

In order this system to be stable, the denominator of H(z) must satisfy the stable
conditions. Consider different numerators N(z) and general forms of D(z)s, one can get
the following conditions for the coefficients. The first and second order systems are

considered only, because higher order systems can be cascaded using such blocks.

2.5.1 Typical forms with order up to 2

I Low-pass filter (order of 1)

N(z)=z+1

Assume: {D(z) = ayz+ay

Therefore: H(z)= N(z) = z+1 (2.16¢)
D(z)-kN(z) (a,—k)z+(a,—k)

D;i(z)=(ay—k)z+(ay —k) (2.164d)
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According to Schussler’s Theorem, there is:

Dd(Z)=Fi(Z)+F2(Z) (2166)

FI(Z)=l(a1 +a, -2k} z+1) (2.16f)
Which 2

172(2):%(611 —a,(z-1) (2.162)

There is no parameter of a and £ ,but zero points of +1 and —1 are already separated with

each other on the unit circle. So the only stability condition is:

<1 (2.16h)

II Low-pass filter (order of 2)

NG =G+ =20 241 2.17%)
Assume: )

D(Z) =arz" +a1z+ (217b)
Therefore: Dy(z) = (ay - K)z* +(ay — 2k)z + (ag ~ k) 2.17¢)

Fi(2)=(a, +a,-2k) 22 + —20=20) 4 2.17d)
And 2 (a, +a, —2k)

Fz(z)=%(az —a)(z? -1) (2.17)
Therefore, o =K 2.179)

a, +a,—2k

There is no B, but zeros of F»(z) are +1 and —1. So the stability conditions are:

a, — k

<1 2.17g)

a, — k

a, -2k l

<1 (2.17h)
a, +a, - 2k|
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III High-pass filter (order of 1)

Assume:

Therefore:

Then

The condition is:

{N(z)=z—1

D(z)=ayz +ay
Dd(z) = (al ——k)Z-l- (ao +k)
F@) =2 (@ +a,)(z+D)

F,(2) =§(al —a, ~2k)z~1)

ao+k‘<l

a, —

IV High-pass filter (order of 2)

Assume:

Therefore:

And:

Therefore,

Conditions are:

{N(z)=(z——l)2 =72 -2z+1

D(z) = a222 +mz+ag

Dy (z) = (ay —k)z* +(ay +2k)z +(ag — k)

1 Aa, +2k)
E(@)=— —2k)| 22 +—1——r—z+1
1(2) 2(“2 4, )|iz + @ +a, —2k)Z }

F(2) =—12-<a2 —a)(z 1)

—a, -2k

o =—
a, +a,—2k

V__Band-pass filter (order of 2)

(2.1%)
2.1%)

(2.18¢)

2.18)

(2.1%)

(2.189)

(2.19%)
2.1%)

(2.19¢)

2.19d)

2.1%)

(2.19f)

(2.19%)

2.19%)
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{N(z) =(z+D)(z-1) =2 -1

Assume: ’
D(Z) =a,z" + a1z + a
Therefore: D,(z)=(a,-k)z* +a,z+(a, + k)
F(2) = l(a2 + ao)(z2 + 20, zZ+ IJ
And: 2 a, +a,
Fy(2) = 5 (@ - ay - 2K)(" =)
Therefore, o = — 4
a, +a,
[
a, +k <1
a, -k
Conditions are:
a,
<1
la, +a,

VI Band-elimination filter (order of 2)
{N(z) = (24 )z=j)=22+1

Assume: 5
D(z)=ayz" + qz+ ay
Therefore: D,(2)=(a, -k)z* +a,z+(a, — k)
2
E(2) =l(a2 +a, —2k)(zz +—-ﬁ—z+1J
And: 2 a,+a,—-2k
1
F(&)=3(@-a)E -
— —4
Therefore, a, = @ +a,— 2k
To = IZ <1
Conditions are: !
o |

(2.200)
(2.200)

(2.20¢)

2.20d)

2200)

(2.20f)

(220g)

(2.200)

(221a)
221)

(2.21c)

221d)

221)

.21f)

(221g)

Q21)
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2.5.2  The Generic Biquadratic Transfer Functions

The Active Switched Capacitor filter’s transfer functions are biquadratic in z-domain
[9], which are widely used in application of Integrated Circuit design:

N(iz) v+e ' +8&°

H(z)= D(z) 1+ az! + ,Bz"2

(2.22)

The numerators of generic biquadratic transfer functions are listed in Table.3.1.
These are the same used in active switched capacitor filters. The LP and BP functions are
particularly interesting in that there are several different forms which can be used, the
notch filter and all-pass filter are not included here. These forms are referred to in
Table.2.1 as LP;; and BP;; , where i denotes the number of 1+z" factors and j the number
of z! factors.

Table 2.1 Generic Biguadratic transfer functions

Generic Form Numerator N(z)
LP20 K(1+z1)?
LP 11 Kzt@a+z?)
LP 10 K(1+z™1)

LP 02 Kz?

LP 01 Kzt

LP 00 K

BP 10 K1+z")@a-zh
BP 01 Kz'(@-z1)
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BP 00

K-z

HP 20

K(1-z1)?

Note: LP20, LP10, BP10, BPOO and HP have been analyzed equivalently in the 2.5.1.

equivalent to:

Therefore:

Then:

Therefore:

Conditions are:

I LP02

Assume:

equivalent to:

|
|

N(z)=z"(z"+1)

D(z)=a,+a;z”" +a,z”

N(z)=z+1

D(z) = a,z” + a,z + a,

2

D,(z)=a,z’ +(a,~k)z+ (a, — k)

F(2) = %(a2 ra, -k 2022k

a, +a,—k

F() = (@, ~a, + B -

alz

{
{

k—aq

a,+a,—k

a, — k <1

a,

@k <1

a,+a,—k

N(z)=z"

D(z)=a,+az" +a,z"

N(z)=1

D(z)=a,z’ +a,z+a,

2

(2.23a)
(2.23b)

(2.23¢)

(2.23d)

(2.2%)

(2.23f)

(2.239)

Q23%)

(2.24q)
(2.24p)
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Therefore: D,(z)=a,z* +a,z +a,

F(z) == (a, +a, - k)(2* +
Then: 2 2
Fy(2)= %(az — gy +B)(z* =)

-a
Therefore: a, = .
a,+a, -k
a, — k
0 <1
Conditions are: a;
a
1 <1

III _ LPO1 (order of 1)

{N(z) =7

D(z)=a,+a,z”

Assume:

N(z)=1

equivalent to:
D(z)=az+a,

Therefore: D,(z)=az+a,~k
F(z)= l(a1 +a,-k)z+1)
Then: 2

Fi(2) = 20y~ ay + Kz = 1)

o~k <1

The condition is:
a
1

IV._ LPO1 (order of 2)

N(z)=z"

D(z)=a,+az" +a,z”

Assume: {

2a,
+a,—

z+1)

(2.24¢)

(2.24d)

(2.24¢)

(2.24f)

(2242)

Q.24%)

(225)
Q2%)

(2.25¢)

2.25d)

225%)

(2.25)
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. N(iz)=z
equivalent to:
D(z)=a,z* +az+a,
Therefore: D,(z)=a,z* +(a, - k)z +a,
R@) =1 +a)z + 28 )
Then: @+ o
1
F,(2) =§(a2 —a,)(z* 1)
k-
Therefore: a, = il
a, +a,
_.a_o < 1
. a,
Conditions are:
a, — k
<1
a, + a,

V_ LPO0OQ (originally order of 1 for D(z))

N(z)=1

Assume:
{D(z) =a +a,z”

1

equivalent to:

{N(z) =z

D(z) =a,z +q,
Therefore: D,(z)=(a,=k)z+a,
1
Fi(2) = 3 (a + ay = k)(z +1)

Thene:
Fy(2) = (@ = ay = F)(z =)

a<1

The condition is:

a —

(2.263)
226)

(2.26¢)

(26d)

(226)

(2.26)

(2.26g)

(2.26%)

(2.27a)
(2.27b)

(2.27¢)

2.27d)

(2.27)

(2.27f)
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VI LP0O (originally order of 2 for D(z))

Assume:

equivalent to:

Therefore:

Then:

Therefore:

Conditions are:

VII__ BPO1

Assume:

equivalent to:

Therefore:

Then:

N(z)=1
D(z)=a,+a;z" +a,z”’
N(z) = z*

D(z) =a,z’ +a,z+a,

D,(z)=(a,-k)z" +a,z+a,

1 2a
F](z)=—£(a2+ao—k)(zz+a—2+—a;——:-—1;2+1)
1
Fz(z)zg(az—ao"k)(zz_l)
—da
Q= !
a,+a,—k
To__1<1
a, — k
9 <1
a,+a,—k
N@)=z"(z"-1)
D(z)=a,+a,z" +a,z”"
N(z)=1z-1
D(z) = a,z* +a;z + a,
D,(2)=a,z’ +(a,—k)z+(a, + k)
1 2a, -2k
F(2)=—=(a, +a, +k)(z> + —1—"—2z+1
1(2) 2(a2 a, )z a, v, —k )

Fi(2) =5 (@, = a, = bz =D

(22%)
Q.2%)

(2.28¢)

(2.28d)

2.28%)

(2.289)

(2289

(228%)

(2.2%)
(2.2%)

(2.29¢)

(2.2%9)

(22%)
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k-a,

Therefore: oy =———— (2.291)
a,+a, +k
a°a+ AP (229)
Conditions are: 2
_ @k |y (2.29%)
a,+a,+k

2.6 Summary and discussions

In this chapter, first the product-separable 2-D transfer function has been discussed.
Then the discrete structure considered in this thesis is given. To conduct the
product-separate 1-D stability analysis, the well-known Schussler’s theorem is introduced.
Since the situation is equivalent to VSHP analysis of method III [4], the mathematic
stability conditions of 1-D system are given. Lastly different numerators were considered
with general denominators to find their constraints.

All the analysis result above are summarized in Table.2.2:

Table 2.2:  Summary of analysis of different filters

Class ??T:el?i N(z) D(z) Constraint of k
Typical LP (order a, -k
forms of z+1 az+a, <1
of 1) a—k
transfer
functions a —k
(Same LP (order ao — <!
order for of 2) 22 +2z+1 | a,z° +az+a, ?
both N(z) | “LP20” | a -2k |,
and D(Z)) a2+a0—2kl
HP (order a, +k
- 1
of 1) z—1 az+a, s <
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a, — k
HP (order a° 1< 1
of 2) 22=2z41 | a2t +az+a, |1, °
“HP}J a, + 2k |< 1
lla, + ay — 2k|
( a, + k
BP (order a—(’-_—lg“ <1
of 2) z2 -1 az’vazva, |1,
“BP10” Dl<
1192 + a,
a, -k <1
BE (order ” S a, -k
z°+ a, 1 0
of 2) a, |<1
L a, +a, — 2k‘
Generic
. . _ a
Biquadrati | LP0O (1) 1 a, +a,z” °k <1
a —
¢ transfer !
functions
aO
Z <1
a —
LP0O (2) 1 a,+az" +a,z ?
% <1
a, +a,—k
-k
LPO1 (1) 2! a, +ayz! Ll P
aq
EL < 1
a
LPO1 (2) z7! a,+azt +az? |4
a, - k
<1
a, + a,
a, -k <1
a
LP11 z'l(z"+1) a,+az +az? | S ?
___aL.k—- <1
|a. +a, - k
a, -k <1
a
LP02 72 a,+a,z" +a,z? | 3 ?
a,

a,+a,—k
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BPO1 z”l(z"l -1) | a, +az7" +a,z7

a,+a,+k

From above, by using the stable conditions of the 1-D discrete system, the constraints
of k are related with all of the coefficients of the filter. So for any given filter with a
certain set of coefficients, k must be bound within a certain range to make the system
stable. And the adjustment of k to obtain variable characteristics can be safely done
within these ranges.

For the whole product-separable 2-D system, the two 1-D filters and their feedback
gains are not necessary to be the same. According to the 2-D system speciﬁcaﬁon, they
can be chosen differently and their corresponding stable ranges can be obtained

differently. By adjusting both of them, one can obtain 2-D variable characteristics.
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CHAPTER 3 Response of low-order filters

3.1 Introductions

Having established the range of k to ensure overall stability of a filter, now the effect
of k with the resulting magnitude response needs to be studied. Both 1-D and 2-D
frequency responses of low-order filters with variable characteristics are illustrated and
studied. 1-D responses with various and stable k values show variable magnitude

contours while 2-D responses give us variable 2-D characteristics and symmetries.

3.2 1-D Response with stable range of k
Considering all-pole Butterworth filters” denominators of 2" order, there is
D(z)=(2+~2)z* +2-2 3.1)
For denominators of order 2, substitute the Generic Biquadratic transfer functions in
Table 2.2, examples of results are listed in Table 3.1:

Table 3.1 _ Stable conditions of k for Generic Biquadratic Butterworth filters

Ne.lme of N(z) D(z) Constraint of k
filters
LP0OO (2) 1 a, +a,z”" +a,z7 k< 2~20rk > 4
LPO1 (2) 7l a,=2-+2 ~4<k<4
a, =0
LP11 27z +1) a, =2++2 — 22 <k<2
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LP02 77 ~2J2 <k < 4
LP20 (z71 +1)° k<1

1
HP (2‘1—1)2 k < 5
BPO1 27z -1) 22 <k<2
BP10 2?2 -1 ~2 < k<22

Since the stability theorem has been proven, the main concern in this simulation is
not to verify the result but to show the general effect of the analysis. Of course the
simulation result must not show any contradiction to the theorem.

According to Table 3.1, the k values are taken from the stable ranges and each k can
have a corresponding system frequency response curve. So one can take parameter Kk,
radius frequency w and the absolute response and draw them in 3-dimensional coordinate.
Those responses in unstable areas of k are forced to be minus showing like gaps.

First, the stable area is divided with m and the step value of £. Then one can start
from the first step greater than the lower border of the range and stop by the first step less
than the higher border. For the open area like Butterworth LP0O0, 0 and 8 are considered
as the lowest and highest interesting stable k values and the same kind of scan is done as
above.

The following figures show the 1-D frequency response within stable areas:
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iy stable values caloulated, | T

Fig.3.1 Butterworth of LP0O (2)

K/@nly stabls valiies ‘ealtdlated 4 g wil~ T

Fig.3.2 Butterworth of LP01(2)
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K Orify. stable values calculated:

Fig.3.3

wole

Butterworth of LP11

wree O g

Butterworth of LP02
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K+ Only stabls vahieg caloulated 40 Wi~

Fig.3.5 Butterworth of BP0l

As one can see from the figures above, even in the frequency domain, the unstable
area of k is likely to have the trend to reach infinite value. At the border between the
stable area and unstable area, the response tends to be significantly great. Obviously the
smaller step value is choose, the closer it will approach the border and also the greater
response can be obtained. But it will still be finite.

So in the stable area, those different k values can allow us to obtain different system
response characteristics in frequency domain according to the design requirement without

worrying about the stability.

3.3 Specifications for 2-D filter design

Not to mention all of the specifications for 2-D filter design, only those important are

listed below:
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3.3.1 Quadrantal frequency requirements

-% O % S

I PassBand [T Transtion Band £ Stop Band
Fig.3.6 Quatrantal requirements for typical filters
(a)Low-pass; (b)High-pass; (c)Band-pass; (d)Band-elimination

The mathematic descriptions for the requirements are:

Low-pass filter:

Hia,0 :
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High-pass filter:

Aw,oy={

Band-pass filter:
0’ |a)i | S a)iisl
H(ay, ;) =41, 0, S|o| <o,
0, @0 S|oy| <7
Band-elimination filter:
1’ la)ll < a)iisl
H(@,, @,)=10, 0, <|o|<o,
1’ a)iis2 = a)z =z

3.3.2 Circular frequency requirements

Let ®, =~} + o (3.2)

Substitute (3.2) into the descriptions above, one can get 2-D circular symmetry of

different filters. The shapes are either circles or rings.

3.4 Frequency responses of various filters with k;=k,

Now the 2-D frequency responses of the different types of filters can be examined,
with each having the types of numerators listed in Table 3.1. In each case, the range of
values of k selected will be within the stability range. The same type of filters is used in

both the domains z; and z; initially.
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3.4.1 LPO0OO0 with different values of k

ALY

w2 T 5 5 Wi Wi it @

W2 o T

(a) ki=k,=0; (b)k1=k>=1.8; (0)ki=k,=-1.8

2-D Butterworth of LP00
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3.4.2 LP01 with different values of k

Fig.3.8  2-D Butterworth of LP0O1

(a) ki=ko=0; (b)k1=k,=2.5; (0)k1=kp=-2.5
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3.4.3 LP02 with different values of k

a

W2 e 8 T

Fig.3.9  2-D Butterworth of LP02

2 o 2
(©) WA~ R

(a) k1=k,=0; (b)ki=k,=2.5; (O)k1=k=-2.5
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3.4.4 LP11 with different values of k

Fig.3.10

2-D Butterworth of LP11

@ Wl Dt

©) Wl D s

(2) ki=k;=0; (b)k;=k,=0.7; (c)ks=ko=-1.7
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3.4.5 LP20 with different values of k

LS s S

0 Y

£,
W -1
Wt e R : : A (C) -3 -2 -1 . 8} 1 2 3
wi-m~ R



W2 e

B & 5 SR 3 2 4 @8 Tt 32 3

a

wiwmx WS sk (@ 0 2 0 8 TUE3
wl femsm

Fig.3.11  2-D Butterworth of LP20
(2)k1=ky=0; (b)k;=k,=0.3; (c)k;=ky=0.7; (d)ki=k»=-0.3; (e)ki=k,=-0.7

With different stable k values, and because of the same low-pass filters with same
coefficients and feedbacks, the response shows octagonal symmetry. The center part
always shows near-circular symmetry and the contour is composed of circle-like patterns.

And also by changing k within the stable range given in Table 3.1, one can get
near-circular symmetry when k>0. By increasing positive k value, the pass-band
frequency shrinks and the transient-band becomes wider. While k<0, by increasing the

absolute value of k, the pass-band inflates and transient-band becomes sharper. And
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simultaneously the flatness within the pass-band is worse.

3.4.6 HP with different values of k

o

W
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L

Wl T T ()
Fig.3.12  2-D Butterworth of HP
(a) k1=k2=0; (b)k1=k2=0.2; (C)k1=k2=0.4; (d)k1=k2=-0.2; (C)k1=k2=-0.5

For high-pass filters with different stable k values, the response remains octagonal
symmetry. When k>0, by increasing positive k value, the pass-band frequency shrinks
and the transient-band becomes slightly wider. While k<0, by increasing the absolute
value of k, the pass-band inflates and the transient-band becomes slightly sharper. And

simultaneously the flatness within the pass-band becomes worse.
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3.47 BPO1 with different values of k

Fig.3.13  2-D Butterworth of BPO1

© s .s-f’*‘n

(a) klzkzzo; (b)k1=k2=05, (C)k1=k2=-1 5
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34.8 BP10 with different values of k
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W g

©)

Fig.3.14  2-D Butterworth of BP10
(a) k1=k2=0; (b)k1=k2=0.1; (C)k1=k2=0.5; (d)k1=k2=—0.5 5 (C)k1=k2=-1.5

For band-pass filters with different stable k values, the response remains octagonal
symmetry. When k>0, by increasing positive k value, the pass-band frequency shrinks
and the transient-band nearly remains the same. While k<0, by increasing the absolute

value of k, the pass-band inflates and the transient-band becomes much sharper. And the

flatness within the pass-band is sustained.
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3.5 Frequency responses of various filters with k,; %k,

Now the same type of filters in z; and z, domains is considered, but with different

values of k’s. They are discussed below.

3.5.1 Dimension-unbalanced LP00

W2 4 -5 Wit~ g

Wi s

Fig.3.15  2-D Butterworth of LP00  k; =1.5, kp=-2

3.5.2 Dimension-unbalanced LP01

e ot 0

2

B e

Fig.3.16  2-D Butterworth of LP01  k; =2.5, k,=-2.5
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3.5.3 Dimension-unbalanced LP02

Fig.3.17  2-D Butterworth of LP02

3.5.4 Dimension-unbalanced LP11

Fig.3.18  2-D Butterworth of LP11

k1 :2, k2=-2

T R B ¢

ki =1.5, ko=-2
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355 Dimension—unbalanced LP20

s .
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% 0k 4
T th
z g |
A E 4
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WL 4 B — (a) = 2 b g 1 2 3
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2t
% £ o
& i
= F
1t

W2

Fig.3.19  2-D Butterworth of LP20  (a)k;=0.7, k,=0.1; (b)k;=0.97, k,=0.1

For low-pass filters with different k’s, quadrantal symmetry holds. By changing one
of the two dimensional feedbacks, the response of this dimension changes significantly.
Increasing a positive k value can obtain a narrow pass-band in this dimension, which can

satisfy some special requirement.

54



3.5.6 Dimension-unbalanced HP

() g

Fig3.20 2-D Butterworth of HP  (a)k;=0.45, k;=0.2; (b)k;=0.45, ky=-0.4

Likewise, for high-pass filters with different k’s, quadrantal symmetry holds. By
changing one of the two dimensional feedbacks, the response of this dimension changes.

Decreasing a k value can obtain a wider pass-band in this dimension.
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3.5.7 Dimension-unbalanced BPO1

HET )

Fig.3.21  2-D Butterworth of BPO1

3.5.8 Dimension-unbalanced BP10

k1 =1, k2=-1
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Fig.3.22  2-D Butterworth of BP10  (a)k;=0.5, k,=-0.5; (b)k;=0.5, ko=-2.5

For band-pass filters with different k’s, quadrantal symmetry holds. By changing one
of the two dimensional feedbacks, the response of this dimension changes. Decreasing a
k value can obtain a wider pass-band in this dimension.

In this section, since k;j#k, , not octagonal but quadrantal symmetry holds.

Dimension-unbalanced variable characteristics can be observed.
3.6 Frequency responses of combinations of filters with k;=k;

Now, different filters with the same feedbacks are considered. In view of large

number of possibilities, some representative filters are selected.

57



3.6.1 LP20/HP

W2 i oL~

* © W e

Fig.3.23  Butterworth of LP20/HP (a)k;=k,=0.4; (b)ki=k,=0.1; (c) k1=k,=-0.3
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For low-pass and high-pass filters with same k values, quadrantal symmetry holds.
By changing the two dimensional feedbacks simultaneously, the response changes
according to the rule of each dimension. Decreasing the k values can widen the

pass-bands in both dimensions.

3.6.2 LP20/BP10

WE R 6 % Wi et
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wl g

Fig.3.24  Butterworth of LP20/BP10  (a)k;=k,=0.4; (b)k;=k,=0.2; () ki=k»,=-0.5

For low-pass and band-pass filters with same k values, quadrantal symmetry holds.
The response changes according to the rule of each dimension. Decreasing the k values

can widen the pass-bands in both dimensions.

3.6.3 HP/BP10

W g

W2 R 5 _5 Wi (a)
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1 sigmes

Fig.3.25 Butterworth of HP/BP10 (a)k;=k;=0.4; (b)k;=k,=0.1; (c) k;=k,=-0.5

For high-pass and band-pass filters with same k values, quadrantal symmetry holds.
Decreasing the k values can widen the pass-bands in both dimensions.

In this section, even with k;=k, , different filters still offer dimension-unbalanced

variable characteristics. But quadrantal symmetry always holds.

3.7 Frequency responses of combinations of filters with k; 7k,
Now, different filters with different feedbacks are considered, with values that point

to the opposite side of each other dimensions.
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3.7.1 LP20/HP

W2 Yok 5 B W1‘-Jt~1t (b) _3 T _1 ..1 1
Wi B

Fig3.26 Butterworth of LP20/HP  (a)k;=-0.4, ko=0.4; (b)k;=0.95, k;=-0.9

For low-pass and high-pass filters with different k values pointing to the opposite
sides to each other, quadrantal symmetry holds. The response changes according to the
rule in each dimension. While decreasing the pass-band of low-pass filter and increase it

for high-pass filter, a near-fan-filter can be obtained(see Fig 3.26 b).
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3.7.2 LP20/BP10

. 1

5 ® 2 4
Fig3.27 Butterworth of LP20/BP10 (a)k;=-0.5, k=0.5; (b)k;

e R

=0.95, k,=-0.95

Likewise, for low-pass and band-pass filters with different k values pointing to the
opposite sides to each other, quadrantal symmetry holds. While decreasing the pass-band

of low-pass filter and increase it for high-pass filter, a near-fan-filter can be obtained.
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3.7.3 HP/BP10

ETR

W

5

W2l

®

Wil

Fig.3.28 Butterworth of HP/BP10  (a)k;=-0.5, ko=0.5; (b)k1=0.95, k,=-0.95

For high-pass and band-pass filters with different k values pointing to the opposite

sides to each other, quadrantal symmetry holds. The response changes according to the

rule in each dimension.

In this section, different filters with k; 7k, give us dimension-unbalanced variable

patterns but quadrantal symmetry remains.
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3.8 Summary and Discussions

In this chapter, Low-order filters such as Generic Biquadratic Butterworth are
considered. With values inside the stability range of k, 1-D frequency magnitude
responses have been shown without any singularity. Also the 1-D variable magnitude
characteristics within the whole stability area of k are displayed.

Then two kinds of general 2-D frequency specification of filter design are introduced,
namely quadrantal and circular frequency requirements.

In order to show the effects of 2-D variable magnitude response with stable value of
k, different situations are considered: Same filters in z; and z domains with the same
values of k; Same filter with different values of k; Different filters with same k’s;
Different filters with different k’s.

For the first situation, octagonal symmetry (both quadrantal and diagonal four-fold
reflection symmetries) is obtained inherently. Near-circular symmetries can also be
observed. The variable characteristics are dimension-symmetrical.

For other three situations, quadrantal symmetry always holds and many kinds of
variable dimension-unbalanced characteristics are obtained.

In all these situations, the 2-D magnitude responses vary significantly within stability
range of k. Hence different kinds of 2-D requirements can be achieved or approached.
The rough characteristics of relations between the responses and the change of k values

are observed and briefly discussed.
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CHAPTER 4 Analysis and Response of Higher Order Filters

4.1 Algorithms for higher order filters

Having obtained 2-D variable characteristics with lower order filters, theoretically
one can build higher order VCTF systems by cascading more than one of such
lower-order systems with their feedback k’s. Adjusting these different k values can be
done. However, for higher-order systems considered in D;(z;) or Dy(z,) the evaluation of
k will be quite difficult. So for higher order systems, high-order filters as a whole with
unique feedbacks need to be considered.

For higher-order filters, the product decomposition of the polynomials is difficult and
hence the complexity of the analysis increases significantly. In order to extend such an
analysis to IIR filters or even FIR filters with non-zero feedbacks, which make them the
same order of IIR systems, one needs to simplify the analysis of product-separable 2-D
IIR filter design for higher orders. Aﬁd this method also needs to be automatically
adaptive from one set of coefficients to another.

A computer assisted analysis always serves this purpose. In this chapter, a
computerized analysis methodology and algorithm are proposed and the 2-D response of

medium order filters are studied.
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4.1.1 Algorithm Selection

Based on the purpose of this computerized system, the requirement can be described

as following:

@) System must be adaptive for any 2-D product-separable filters with any orders;

(i)  Computation result must give correct stable range area for any input set of
coefficients;

(ii1) ~ The computation complexity shall be as small as possible;

According to the properties of Schussler polynomial and also that they are sufficient
and necessary conditions, as long as one finds the zeros of the mirror-image and
anti-mirror-image polynomial of the denominator on the unit circle, one can easily
determine if it is stable or not. And to find out the zeros for the two polynomials with

order as same as the denominator, there are two possible methods:

Method 1: Just like the analysis carried out, one can use a certain computerize algebra
equation solving program to get the answers for the mirror-equation and
anti-mirror-equation as following:

According to (1.19)~(1.27), with given conditions including parameter k and D(z)’s
coefficient elements, the final coefficients of denominator [D(z)-kN(z)] and its
mirror-image and anti-mirror-image polynomials contain k and those elements. Then one
can get a bunch of equations with unknown variables of @ ; and 8; . For order less or

equal to 3, single-variable/single-order equations can be obtained, which are easy to
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solve.

Therefore one can get single-variable/single-order equations with variable of k
according to (1.24) and (1.27) so that the stable ranges are obtained. However, with order
of five or higher, multi-variable/multi-order equations with @ ; and B, are obtained,
which are too complex to solve with either derivation or computerized algebra programs.

So this method can be accurate but only works with lower orders. The computation

complexity depends on the specific one-variable/one-order algebra derivation program.

Method 2: To avoid solving those multi-variable/multi-order equations and make this
method universal with any order, an approximation way can achieve this purpose.

For a certain value of k and a certain set of coefficient values, the program detects if
those stable conditions of the system are satisfied or not. Or with a certain given range of
k, the program can scan with certain step values through the range and output the
approximately stable sub-ranges among it. These ranges can allow the designer to have a
rough idea about the available ranges of k. Any chosen k value can be further verified
with the same program to ensure it finally.

The algorithm is this: For a certain set of k and coefficients, mirror-image and
anti-mirror-image polynomials are determined. Then one can scan the upper semi-circle
of the unit circle from —1 all the way to 1 with an adequate small step values as shown in
Fig.4.1. Every complex z value is taken into the two polynomials and we get an array for

each polynomial. Consider functions:
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G (2)= lFl (z)l = idvzv “.n
And G,(z) = ‘Fz(z)l = i g,z (4.2)

For |z| =1 and Im(z)>0, as shown in Fig.4.1, one can get a non-negative curve,
which may touch the horizontal axis at certain points. And if those location points for

G(z) and Gy(z) are all their zeros and they separate each other, this situation will satisfy

the stability conditions.

4
v

Re

-1

Fig.4.1 Variable z picked from —1 to 1 on the unit circle with
small step value of Az

In order to determine if a very low point of the curve is a zero point or not, it is
assumed that in the very close neighbourhood of a real zero point or a regional lowest
point of this function, the curve is monotonous with each side of the zero point. The small

neighbourhood here means that it is far less than the minimum distance between any two

ZEeros. IAZI << ‘zi -2z,

,(i # J), z; and z; denote any zeros.
So in computerized approximation, the fist scan step value must be far less than 1

to ensure that at least three of the step points can be located inside a zero candidate
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point’s left and right neighbourhoods. The zero candidate neighbourhoods can be
detected by getting the derivative from the samples of the curve. Then the regional lowest
bottoms are picked as zero candidates. Because of the monotonous characteristics, one
can use a much less step value to re-scan between the left and right point beside the zero
candidate point. And then the newest zero candidates are picked with their own neighbour
points at this stage, because it is known that the real zero point may be located between
these neighbour points. Then one can continue this work by decreasing the step value for
each stage until a preset threshold value is reached. The threshold value depends on the
precision of the computer system or, for example 10 or even smaller. Once the threshold
is reached and this point can be approximately regarded as a zero point, otherwise the

candidates will be discarded.

200 400 B0 80a’ 100D

i(lz=1)

Fig.4.2 Example of Gi(z) along semi unit circle, n=6, |Az| = 0.001x, i: Sample number
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Gx(2)

o 200 05, B0 800 o
i (jzi=1)

Fig.4.3 Example of Gy(z) along semi unit circle, n=6, |Az| = 0.001x, i: Sample number

Fig.4.2 and Fig.4.3 show examples of 6 order with Az = 0.001, G;(z) can have two
zero candidates and can eliminate the false one, while G2(z) has 3 zeros.

The remaining thing is to pick a certain step value of £ and do the scanning within
the interesting range. Each k& is inputted to the program above and marked as stable or
unstable based on the result of the judgment. A sub-range that starts from the first
encountered stable & value and ends at the last consecutive stable one is the approximate
stable area of k. Still the step value of k needs to be small enough, say, |Ak| << to
avoid possibly having some unstable areas between two neighbour samples of k. (C,
denotes the average value of the coefficients)

This method is easier to implement. It also shows a great improvement of
computation complexity because of Schussler’s theorem. Comparing with the basic

stability theorem, the scan is in 1-D domain (the semi unit circle) only, while for the other
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the whole area inside the unit circle needs to be scanned, which is 2-D domain and the
zeros need to be found out. So the computation complexity relation ratio of them is
approximately 2r:# (r denotes the scan points on the semi unit circle).

The disadvantage of this method is that it is an approximation. One cannot get a
determined cut-off point through it. The computer precision, choose of step values and

threshold values of zero affect the computation time and the boarder’s clearance.

4.1.2 Implementation and simulation

4.1.2.1 Algorithm flow chart

Fig.4.4 shows the flow chart of the algorithm(method 2):

The simulation programming is done with Matlab 7.0.
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( Start )

A

Input: n, coefficients of N(z) and

D(z), scan range and step of k

v

Calculate G1(z) and Gy(z) with small
step Az along the Semi unit circle

v

Find out all zero-candidates of G1(z) and G,(2)
by taking differentials with a single k value

v

Re-scan Gy(z) and Gy(z) with smaller step Az
within the newest left and right neighborhoods
along the Semi unit circle and get the current

<The last lowest value?
N

.| Determine the real zero points of G(z)

and G(2) by taking differentials

v

Determine the stability of this k with numbers
and locations of G;(z) and G,(z)’s zero points

v

A

Go to the nextk

y

Collect the stable ranges of k

A 4

End

Fig.4.4 The flow chart of the algorithm
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4.1.2.2 Implementation examples

A 6™ order Butterworth low-pass filter with pass-band of 0.5% is chosen. The
coefﬁciénts of N(z) and D(z) are obtained form Matlab function butfer( ) and listed in
Table.4.1. The calculated stable range of k is shown in Fig.4.5. The range of k is chosen
from —4 to 4 because there is no more stable area far away from the average level of all
the coefficients. The system frequency response for all the stable area of k is shown in

Fig.4.6 (it is forced to zero within the unstable area).

Table 4.1 Example of high order coefficients

Order #. Oth Ist 2nd 3rd 4th 5th 6th
N(Z) coefficients | 0.0296 0.1775 0.4438 0.5918 0.4438 0.1775 0.0296
D(z) coefficients | 1.0000 0 0.7777 0 0.1142 0 0.0018

Stable dangeiofk
Ty T T rf I o e T
4 3 2 B T x 3 3 4

Fig.4.5 Calculated stable range of k (Ak = 0.08, |Az | = 0.001x)
With smaller Ak one can get closer to the real boarder, so the stable range of k for
this filter is approximately within —1~1. The actual running time of this example by using

PC (Intel Pentium CPU, 1.4GHz, 256MB SD RAM, Windows XP) is 8437 ms.
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K tﬁnly stable vales calculited ' Vo g

Fig.4.6 1-D response with stable range of'k
As one can see form Fig.4.6, with different stable k values, the shape of the 1-D
response of the system changes accordingly and remains stable.

Simulation results have been verified by comparing the them with the derivation

results obtained in Table.3.1.

4.2  2-D response of higher order filters
42.1 IR filters

The 6™ order Butterworth Low-pass and High-pass filters are chosen here. And for
simplicity, only same filters with same k values for two dimensions are illustrated. The

variable k value are picked within their calculated stable ranges.
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Fig.4.7 2-D response with 6D order Butterworth low-pass filters(0.57)

(a)k1=k2=0; (b)k1=k2—_—0.05; (C) k1=k2=0.55; (d) k1=k2=-0.55

For the low-pass filters, the positive feedback values give us smaller pass-band with
near-circular symmetry, the edge of the pass-band is rounded off. While the negative
values sink the iow—frequency in the pass-band and make the filter become
near-band-pass filter. The flatness in the stop-band remains.

Like low-order responses, the octagonal symmetry holds and near-circular symmetry

can be obtained with certain k values.
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Fig.4.8 2-D response with 6™ order Butterworth high-pass filters(0.5)

(@)k1=ko=0; (b)k;=k,=0. 3; (c) ki=k,=-0.7
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For the high-pass filters, the positive feedback values give us smaller pass-band with
the pass-band edge being rounded off, while the negative values sink the high frequency
in the pass-band and make the filter become band-pass filter. The flatness in the
stop-band remains. The octagonal symmetry holds and near-circular symmetry can be
obtained with certain k values.

As one can see from above, since higher-order filters’ pass-band characteristics are
affected by multiple poles, once the locations of these poles change and the shape of the
response becomes complex patterns.

Furthermore, instead of putting a feedback to get variable characteristics by changing
all the poles, one can also work inside the IIR filter’s coefficients. Any change of the
numerator does not affect the stability hence it is not the concern. And it also may ruin
the stop-band flatness because the zero locations are changed. So when working with the
denominator, each time only one coefficient needs to be changed and this coefficient is
regarded as a variable ;. By using the similar algorithm the stable range of this
coefficient can be obtained.

Fig.4.9 and Fig.4.10 show examples of 6™ order Butterworth filters with modified

but still stable coefficients:
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Fig.4.9 2-D response of modified 6™ order Butterworth low-pass filter

Coefficients a; and a3 are changed to 0.5558 and 0.2959

Wit i

wl: -11~1[

Fig.4.10 2-D response of modified 6™ order Butterworth high-pass filter

Coefficients a; and a3 are changed to 0.467 and 0.3965

By cérefully changing one or more coefficients of the denominator under the stability
conditions, one can get variable characteristics like very-near-circular symmetry with

unchanged stop-band flatness.
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422 FIR filters

Since there exists a large variety of kinds of FIR filters, so once the stability

detection is solved, one can even use an FIR filter with a feedback loop, which makes the

whole system become an IIR system. The analysis method can be used the same way

with D;(z;))=1 and Dy(z,")=1.

The following example of 6™ order FIR filters are generated by Matlab function

firhalfband( ). The coefficients are shown in Table.4.2.

Table 4.2 Example of high order FIR coefficients -

Order of z. 0Oth Ist 2nd 3rd 4th 5th 6th
N(z") coefficients | -0.0635 0 0.3007 | 0.5000 | 0.3007 0 -0.0635
D(z") coefficients | 1.0000 0 0 0 0 0 0

P
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Fig.4.11 2-D magnitude response of 6" order FIR high-pass filters with feedbacks

(a) FIR with feedback k;=k,=0; (b)k;=k,=0.1
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Fig.4.12 1-D group delay of 6™ order FIR high-pass filters with feedbacks

(a) FIR with feedback k=0; (b)k =0.1



As one can see from Fig.4.11 and Fig.4.12, by using FIR as the original filters,
variable magnitude of near-circular symmetry can be obtained. And also since a small
value of feedback is used, the 1-D group delay of the new constructed IIR filters is near
copstant. Since the 2-D system studied is product-separable, the 2-D group delay is
simply the two 1-D group delays in each dimension.

Since FIR filters have the advantages including linear phase and constant group delay,
which is suitable for application of image processing without worrying about the stability,
one can take this advantage and get variable magnitude characteristics simultaneously

with stable response.

4.3 Summary

In this chapter, first a computer assisted analysis algorithm has been discussed and
proposed to conduct the analysis and get the approximate stable ranges of feedback gain.
Two methods have been discussed and the approximation method is chosen, which can
work for filters with any orders with relatively low computation complexity. This
algorithm is based on the same stability theorem used for analysis with 2-D lower order
[IR systems. Implementation and simulation are conducted with high order frequency
response samples and low-order analysis results in Chapter 3.

By using this algorithm, the analysis is then extend to higher order systems
composed of high order IIR or even FIR filters with unique feedbacks, which are able to

be adjusted to offer us variable characteristics uniquely.
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The high order 2-D frequency responses are illustrated first with 6™ order
Butterworth filters with same variable feedbacks in both dimensions. Different k values
change the pass-band characteristics significantly. Multiple patterns with octagonal or
even near-circular symmetries can be obtained. Thereafter by changing one or more
coefficients of the denominator, one can get very-near-circular symmetrical response.

Having solved the stability detection for any order of IIR filters, FIR filters with
feedbacks are also studied. With Dy(z;)=1 and Da(z;)=1, variable characteristics of
2-D response of FIR filters are observed. But most importantly, by using small values of
k, a near-constant group delay in each dimension can be obtained while pass-band
characteristics are changed significantly. It is enlightening to make balance between 2-D

response of magnitude and dimensional group delay in 2-D filter design.
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CHAPTER 5 2-D Applications and Simulations

5.1 2-Dfilters derived from low-pass and high-pass filters

Having obtained 2-D low-pass and high-pass IIR VCTF filters, one can then derive
other 2-D filters such as band-pass and band-elimination filters by connecting them in
parallel and cascade respectively. For simplification, same k values are used for both
low-pass and high-pass filters.

6™ order Butterworth low-pass and high-pass filters are still considered with certain
cut-off frequencies. For band-pass filters, the two pass-band frequencies overlap to get a
common pass-band as shown in Fig.5.1, while band-elimination filters are built with

non-overlapping pass-band frequencies to get a common stop-band as shown in Fig.5.2:
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Fig.5.1 2-D band-pass filters built with 6™ order Butterworth filters

Pass-band: 0.3n~0.87; (a)k=0; (b) k=0.5; (c)k=-0.5

86



As one can see from above, for composed 2-D band-pass filters, positive k values
strengthen the corners of the four pass-band areas while negative values sink the centers

of the areas. Octagonal symmetry holds still.
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Fig.5.2  2-D band-elimination filters built with 6" order Butterworth filters

Pass-band: 0~0.3x, 0.57~7; (a)k=0; (b) k=0.5; (c)k=-0.5

For composed 2-D band-elimination filters above, positive k values round off the
borders of the pass-band while negative values sink the center of the areas. Octagonal
symmetry holds.

So for composed 2-D filters, by adjusting the two feedbacks, significantly variable
characteristics of the component filters are obtained. Some other specific 2-D filters can

also be expected by using different filters and different connections.

5.2 Space-domain response

According to digital image processing [11], images are applied to the stable systems
to verify the effect of the 2-D processing. Some systems analyzed to be stable are
simulated. For simplification, only square black/white digital images are used and their

FFT [10] are taken. Then they are multiplied by the systems’ frequency responses. For
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filters other than high-pass, the 2-D frequency response at origin is scaled to 1 in order to
keep the DC level of the image. For high-pass filters, the images are highlighted to be
displayed properly. After taking I-FFT [10] of the product matrices, the time/space [11]
domain matrices are displayed, which are the processed images.

Fig.5.1 shows two 256x256 pixel original images and their noised images with

additive normally distributed noise (zero-mean,c = 15)

(2)

(®

Fig.5.3 (a) Image Lena and Photographer; (b) Noised added images

In order to avoid signal aliasing [10], the images are first zero-padded before being
processed. The results will have black backgrounds around the images, which can be

ignored in image processing.
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Fig.5.4 (a) Image denoised with 2-D LP11 Biquadratic filters (ki= k,=0.2)
(b) Output matrix values

With low-pass filters like LP11 with a feedback loop, as shown above, the noised

images are denoised by removing some high-frequency signals. The matrices show the

stable responses in space domain.
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Fig.5.5 (a) Original images processed with 2-D BP01 Biquadratic filters (ki= k,=0.2);
(b) Output matrix values

With BPO1 with feedback loop, which is a band-pass filter, the lowest and highest

frequency signals of the images are removed. The remaining contours of the images show

the medium frequency signals and the matrix show the stable response.
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Htness level

Fig.5.6 (a) Processed with 2-D Butterworth high-pass filters (2™ order, 0.05 =, k;=

k,=0.1); (b) Output matrix

With wide pass-band high-pass filters like 2" order Butterworth ( 0.05 7 )with
feedback loop, the processed images contain more medium frequency signals as shown

above. The matrices show the stable space-domain response.
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Brightness level

Fig.5.7 (a) Processed with 2-D Butterworth band-elimination filters ( 0.15 7~0.5 m);

(b) Output matrix

With band-elimination filters with feedback loops, the processed images lose some of

medium frequency signals as shown above. The matrices show the stable response.
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Fig.5.8 (a) Plain white and template images; (b) Processed with LP00-LP02
Biquadratic filters (k;= k»=0.1); (c) Output matrix values

Eolumn

With plain white image and template images, dimension-unbalanced 2-D filters with
same feedback values are applied. The processed images show the corresponding

characteristics. For the white plain image that represents constant strong low frequency
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impulses, and for the template image that stands for strong signals for all frequency

components, there is no singularity in the space-domain response.

5.3 Summaries

In this chapter, 2-D band-pass and band-elimination filters are first built with
low-pass and high-pass filters containing feedbacks. The same feedback values for the
two component filters are considered and the 2-D responses are illustrated. These changes
of feedback hence cause variable characteristics of the built filters as shown in frequency
domain. Different changes of the pass-band characteristics with positive and negative
feedback values are observed and discussed.

Then in order to briefly illustrate the applications in image processing field, which
represents space-domain response, some of the 2-D filters with stable k values in
previous chapters are used to process digital images.

For 2-D low-pass filters, the most frequent application is image denoising. Images
with additive random noise have been denoised by the low-pass filters with feedbacks.
Also for other filters like high-pass, band-pass and band elimination filters with
feedbacks, the corresponding effects are shown after the processing with original images.

To further emphasis the stability warranty in the system design in time/space domain,
a white plain and a template images, which represent strong signal impulses, are

processed and no singularity occurs.
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CHAPTER 6 Conclusions

6.1 The investigations carried out

For 2-D system designing with IIR VCTF filters, it has always been a main concern
that the system stability needs to be known. The complexity of stability analysis limits
the use of IR filter bank. A simple and solid way of stability analysis is needed.

The product-separable 2-D discrete VCTF system is composed with two cascaded
1-D IIR systems with a feedback for each system has been analyzed. This stability
analysis is strictly based on Schussler’s theorem and one of the methods of generation of
VSHP. The results focus on the feedback value range with respect of coefficients of the
1-D sub-systems.

After the introduction of the theorem, an equivalent and more explicit expression is
given, which plays an important role in the following analysis. For simplification, typical
types of 1-D filters with order up to 2 such as Generic Biquadratic filters are considered.
Conditions of feedback value k are obtained with respect of typical coefficients of the
system’s numerator and general form coefficients of the denominator.

The 2-D system stable conditions rely on their two 1-D sub-systems. Conditions of k;
and &, can vary with different forms of filters chosen. Butterworth filters are considered
for purpose of simulations. Once the denominator is determined to be Butterworth’s form,

the equations of k can be solved and the range for stability is obtained for each type of
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Biquadratic Butterwoth filter. Then different combinations of non-singularity 2-D
frequency response are simulated with certain stable feedback values.

Before observing 2-D frequency responses in Chapter 3, some important
specifications for 2-D filter design like quadrantal and circular frequency requirements
are introduced. The observation starts from lower order 2-D filters response with real
numbers. Four different situations are considered, namely: same filters in z; and z,
domains with the same values of k; same filters with different values of k; different filters
with same k’s; different filters with different k’s. Octagonal, quadrantal and near-circular
symmetries can be observed and many kinds of variable dimension-unbalanced
characteristics are obtained.

In all these situations, the 2-D magnitude responses vary significantly within stability
range of k. Hence different kinds of 2-D requirements can be achieved or approached.
The corresponding trends of changes with positive and negative k values within
pass-band are observed and briefly discussed.

In order to simplify the analysis with this theorem and also make it adaptive for any
order including high orders, a computerized analysis method has been proposed and
simulated. The algorithm of this method is one of approximation and is analyzed. It has
less computation complexity than other methods and most of its computations focus on
the semi-unit circle with the two mirror-polynomials. The principle is strictly based on
the stability theorem in Chapter 1 and 2. With any input of coefficients the approximate

stable range of k can be obtained. The algorithm is verified with the analysis results in
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Chapter 2 and also with high order examples.

Since the stability analysis for this kind of 2-D IIR system is completed, and also a
computerized approximation is proposed and proven to be robust, the design work can be
extended to wider scopes and higher efficiency. The simplicity of the stability analysis
can also allow medium or higher order IIR and FIR system consideration for special
applications. The higher order 2-D frequency responses are illustrated in Chapter 4 with
IIR and FIR ﬁlfers with feedbacks. Similar observations and discussions are conducted
and the characteristics of near-constant group delay are emphasised.

So for both lower and high order systems, 2-D separable digital filters with variable
feedbacks, one can obtain variable characteristics with stable systems. The magnitude
characteristics can cover most of the symmetry specifications.

Then in Chapter 5, further stability verification is done by composing 2-D filters with
the fundamental filters and using different 2-D systems to process digital images. The
2-D frequency responses of designed filters are shown with same variable k values in the
component filters. The symmetries and changes of the characteristics are corresponding
to the two filters.

For applications in image processing, different 2-D filters with feedbacks are applied
to images. Corresponding results like denoising or contour extraction are observed and
the stability in space domain is confirmed with template image processing.

So, the strict and efficient stability analysis for product-separable discrete 2-D filter

design with variable characteristics has been achieved.
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6.2 Related and future works

There exist many researches about 2-D VCTF filter design from analog domain, and
by using generalized bilinear transformations, the 2-D VCTF digital filters are obtained.
The design of 2-D discrete VCTF IIR filters with dimension-independent feedbacks
directly in digital domain is firstly studied in this thesis.

Having done all these analysis, proposal of algorithm, simulations and observations,
future works related to this thesis could be focused on with the following aspects:

(1) Research of relationship in detail between the feedback, coefficients and the

characteristics of response. which can allow us to reach the specification easily;

For different kinds of given filters, a mapping can be established between the
feedback gain and the pass-band frequencies, flatness within pass-band and variance
of group delay, etc; And glso in some cases the relationship between the feedback and
the symmetries of frequency response can be studied in details, say, the extent of
approaching to circular symmetry. Such a relationship can also lead to algorithms for
us to design dynamic adaptive 2-D filters with this structure.

(i1) _ Research of similar structures with additional variable numerators in each

dimension;

Since the studied system structure has variable denominators, which mainly
changes the pass-band characteristics because of variable locations of poles, one can
also consider simultaneous changes in the numerators. Therefore variable stop-band

characteristics can also be obtained because of the changes of the zero locations.
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(ii1) Research of non-product-separable digital IIR systems with additional universal

feedbacks for variable characteristics:

So far only product-separable systems have been considered, if an additional
feedback gain is applied for the whole system, it will become a non-product-separable
system. Predictable variable characteristics will be obtained and the stability needs to

be studied.
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