A Soft Real-Time Self-Planned Multi-Agent Framework

De Jin

A Thesis
in
The Department
of
Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science
Concordia University
Montreal, Quebec, Canada

September 2005

© De Jin, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-34593-1
Our file Notre référence
ISBN: 978-0-494-34593-1
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

A Soft Real-Time Self-Planned Multi-Agent Framework
De Jin

This thesis presents a real-time multi-agent framework targeted for soft real-time
applications. Such an application involves missions each with a soft deadline. A mission
is decomposed into phases. The work in each phase can be performed differently,
depending on the remaining time. A tradeoff between the quality of the result and the run
time requirement is permitted. To make use of this tradeoff, our framework provides a
planner that dynamically manages the selection of solution to be used in a phase, based
on its knowledge of the deadline and runtime system state. Therefore, the planner may
select a faster solution with inferior results in order to meet the mission dgadline. This
model leads to a real-time self-planned multi-agent framework that is presented as a set
of application programming interfaces for the application designer. An implementation of
this framework on the Real-Time JVM is also presented. Use of the framework is
illustrated with an example intelligent security monitoring system. Finally, an evaluation
of the overhead of the planner and its effect on the overall deadline miss rate is reported.
Preliminary expeﬁmenta1 studies reveal that the planner overhead is rather insignificant,
and the self-planned approach can potentially improve both the quality of the result and

the deadline miss rate.

- i -

Acknowledgments

I would like to express my gratitude and respect to my supervisors Dr. Hon F. Li and Dr.
Rajagopalan Jayakumar for their invaluable guidance, encouragement and support during
the whole period of my research work. Dr. Li and Dr. Jayakumar not only teach me
knowledge at class, during meetings and through emails, they also try their best to
enlighten me of how to do research, how to analyze and solve a problem.

I would also like to thank my colleagues in Distributed Systems research team for
their suggestions, discussions and help on my thesis.

Finally, I wish to thank my parents and my wife and my forthcoming baby.

-V -

Table of Contents

Chapter 1 Introduction 1
L1 IMIOTIVALION. eeeiteieiiecteeie et et teseee e e te e s e e teeree e e s e eeensaesatesseereeseseasenneenneenseenes 1
L2 Related WOTK. . ..ottt eve et 4

1.2.1 Traditional Real-Time SYStemc.cccovvreriinerieienreeeetiecetee e crese e 5
1.2.1.1 On-line Admission Control with different QoS levels....................... 5
1.2.1.2 On-line QoS Negotiationccccecerevriererieienisreseneeieeretree e 6
1.2.1.3 Feedback Control Real-Time Scheduling.........cccccceeevevvevrinvinrernnnnee. 8
1.2.1.4 SUIMMATYoviiiiiiieniinninecteieceeneenreseeneseeeseestassestnssassnssassseassnensenns 10

1.2.2 Real-Time AL SYStEM.......cceeeviiniiniiiieriaieenreeeneesieee e err e eseesrssssae et sreesesees 11
1.2.2.1 Anytime AlgOrithmcocoveviniinininiccceeceeeeee e 12
1.2.2.2 Multiple and Approximate Methods...........cccceevvreurirnvinvreceerenennee. 12
1.2.2.3 SUMMATY .ccvviiiiiriiiieiiniieinreestesieneseesseessessseresesseeseessesssesssnsaennens 14

1.2.3 Real-Time AI System vs Traditional Real-Time System........................... 16

1.3 CONIIDULIONS. .« et et ta s st sbe e st ens s sbesanas 17

Chapter 2 Self-Planned Multi-Agent Mission Model .19

2.1 Application Agents and Planner Agentcocueceveniercenienninseeresesieseeceeeerenens 23
2.1.1 Application and MiSSIONc.cccccuvrerrerienenrerininneeieenenreseessereeseseeseerssenes 23
2.1.2 Alternative SOIUHONc..ooviiirieieieieieteiiiecctere ettt ere et eaeereene e 27
2.1.3 Quality and its RANKINGccvecieeereiirenieiriesiir et eer et e 29
214 PIANNET ..ottt ettt eeae et e b bt s reenseeae e eresnnen 30

2.2 Interface between the Application and the Planner.............cc.ocoevvvvvviivcvervennnnne.. 31
2.2.1 Design INtErfaceevvvureueirerinierieeneirerinieissesesneseeseseseesser s esesseeesessenss 31
2.2.2 Runtime INterface........ccceveeiivvricieririnieissesisceiieee et es et 33

2.3 Comparison with Other Strategies Using the Same Principleccccocveuvenne..e. 35
2.3.1 SIMILALIEIES c.veoueereeiirieniiereieceereesteseessasseaesessaeneesssesresenessessesseesssssssensens 35
2.3.2 DIffETENCES ...covveiereneeririeneeneeteiniceteassesteesteansesaesessessessassesessssessensessessssenns 36

Chapter 3 Design of Self-Planned Multi-Agent FrameWorkcoveiecseeeererssscsansene 39

3.1 Agent Management Platformi..........ccccocuivierinieniniinniiniice et 41
311 ATCHITECIULE ...c.veeueeiereeerenrinieneeetestenrestessenesrtesaesesnnesaasseessensensessessensenseesseseas 41
3.1.2 Communication SUD-SYSTEML........ccvevereerereirerrierisssrereseresserseseseresererssesnenens 43

3.2 Soft Real-Time Self-Planned Multi-Agent Framework..........c..ccccoovvvevverennnee. 45
3.2.1 Real-Time Service AZENLScccceeriererierienrereeirastreeeeesiesrerereeseeseeseaneas 47
3.2.2 Task Planner.......cccccovieiiriiiiiinictrenesieesteetnesneseineser e e e s ebes s neas 48

3.2.2.1 States of the Planmner..........cccocvveeenriirnienienienininieeieeerecee e 48
3.2.2.2 Input for the planner.........cccoceiiiivienininiiinieieenienietentenee e 49
3.2.2.3 Planning al@orithm..........cccceviviniinniicmniiienceeneseerese e 51
3.2.2.4 Output from the planner.........cccceevveverriiiiieniieiniie e cere e 53
3.2.3 General Application AZEnt.........ocueveervrvervinierineieirireneereeecneeereereseessenas 53

3.2.3.1 General Application Agent Modelc.cocceveevanennnnneeniisienenene, 54

3.2.3.2 Design of the General Application Agentcceccevvveverververnnenenn. 55

3.2.4 Protocol for Main SeIviCescceoveririeienismriierreenieeseentesesesesesereseeneens 58

3.2.4.1 Process Plan EXCEPLION.......cccvcrevierieciinieneniennienieiteseesreeeteereeneenne 58

3.2.4.2 Initializing a Mission INStance.........c..cccooeeveevereecvecieeececr e 59

3.2.4.3 Switching from One Phase to the Next Oneccocevvvvviveneenennee. 60

3.2.4.4 Kill MISSION ...cveviiiniirerrieninenieninsiaseseeneesssnnseessensesssesnessessesssessenes 61

3.3 Services from the Developer’s PErspectiveocceeeieceeeieneeeeeerieececiccecieeeeneens 62
Chapter 4 Case Study: Intelligent Security Monitoring System .. 66
4.1 Intelligent Security Monitoring System (ISMS)..........ccecemevnineneseieieieee e 66
4.2 The Development Of ISMS ..ottt cre st saeareens 67
4.2.1 Defining Each MISSIONcc.ccvrieirinieniienteieninsesreese s ereereseeereeseeseeneens 67

4.2.2 Defining Each SOIUtION.......cccccociiiiiiiiniriirieeieereeee et 70

4.2.3 Implementing the application agentsc.ccvceverrenrerenieesieecsiee e 72

4.2.4 Implement each role...........ccooviiiiiiiiniiiiiiiicece e 73
Chapter S Performance Evaluation . .76
5.1 Overhead of the Planner...........c.coiviririniniiniiineiineseeeee ettt 76

5.2 Impact of the Planner on Average Quality and Deadline Missing Rate 78
Chapter 6 Conclusion and FUTUIE WOFKeeoeeseoccsisaricsscsscssrssssssssassessessassasases 82
BiblIOGEAPHRY «..u.naennannennnnerorvnssecacsarsaississssssssissssssssssssssassasssssssnssnsansastanssssassesasssssssassssassnes 83

-Vi_

List of Figures

Figure 1-1
Figure 1-2
Figure 2-1
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-13
Figure 3-14
Figure 3-15
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4

Runtime and quality results of this algorithm from Zilberstein [11]........cccoeveneneenn. 13
Multiple methods for a sensor interpretation application from Decker [14] 14
State Diagram of the Self-Planned Multi-Agent Model........cccoooenuerrvecrerecccnnne 32
Architecture of Agent Management Platformm..........coereeeiercecicnrnreiceienceeeen 42
User Interface of the Agent Platformcouecvcvveeeiivieiecoreicee et 43
Intra-platform Communication Sub-SYStem.......c.cceverrceierrrnererinrneeceeieereresrnnes 45
Class Diagram of AGENLSccccuuruererireniererenseisesninsenseenssnssssessssesesessaresssesssseeses 48
State Diagram of Task PIanmer..........ccccvevvveveiiniereneniernneniieieineeeteete st sseresreseenessennan 49
State Diagram of General Application Agent.......c..cccueivrirrerereesrersirerreerereereeeenenns 55
Architecture of Application AZENLoevreenirierarinenrrenrrrstesssseresesessee s 57
Class Diagram of Application AZeNL.........ccevueerererrerarriniereiesieeeserseesrerasesrennns 57
Switching from one role t0 the NEXL........cccicverrerreererreiienirrenrinesnesissesssssseesesesenas 58
Planming eXCeption PrOCESSINZ........vvvtrerrrerierrrerrerseeerersessesssseoseesessersessenssrsosesennns 58
KiIl @ MUSSION ceeonventeneenieeenirieier e eeert et ve e ste e s s e st sse st es e e e e st sane b ensentsaeerssssnsensane 61
Class diagram of mission sKeleton........ccuceererirrirniciennie st 64
Class diagram of scheduler & task planner............cccceermrireeecriesennrcrinniesseniens 65
Structure of SAMPIE MISSION cuvviverirriricinriniiricisenttieeaeresereererastessenresesseessessnsane 77
Execution Time of Single Mission in Different Situationsccccoeveeveeveeereevinnnn. 78
Average Deadline Missing Rate........coccovvevenrernennninnsecse s eresscrssnsesseesenns 79
Average Mission QUALILYc.cceiriereiiiriennie et ste s e e snrsresse e enea 80

- vii -

List of Tables

Table 3-1 Features of Real-Time JVM...................
Table 3-2 Static Input Parameters for Task Planner
Table 4-1 Application agents and roles.........c..cu....

- viii -

...

List of Scripts

Script 1-1 Sample Anytime Algorithm from Zilberstein [11]........cccooveverierieerereeeeeeeeereens 13
Script 3-1 Planning ALGOTIthINcovvvveeeeennnnreeesesesannesseossssesseeseseesssseeessessssessessmmssssseseess 52
Script 4-1 Defining fingerprint verification MiSSION.c.oceueeeererreeereeeereererissererereeesensesesens 69
Script 4-2 DefiNiNg PHASES.....ccccocieitrtiiertererririrteseeesesseststessssessastessessessessessesessssresressssessonsessnns 69
Script 4-3 Defining sOIUtion = Tccocuiiiniierieiincerccierereneseerere s seenesesresessessssssnessaesssesesen 71
Script 4-4 Defining SOIUtION - 2 ...ccuicciiiniiiiimnenirercetetrieeeererreerteeest e eea e seeesessssassenssssasssssesssnens 71
Script 4-5 Implementing appliCation AZeNt........ccceereeremriircerrreinresesretesseeerssnsrersssesssnsssnsssens 72
Script 4-6 Implementing application roles — L....cceceeoieceeiincinieiieeeee et 74

_ix -

Chapter 1

Introduction

1.1 Motivation

In recent years, the increasing use of personal computers, Ethernet applications and so on
is rapidly making reactive systems (that depend strongly on an external stimulus or a set
or sequence of external stimuli) more open, distributed and cost-effective. Hence,
reactive distributed applications such as multimedia, complex information retrieval, and
system monitoring and controlling are becoming increasingly common and necessary.
Multi-agent systems [1] are systems composed of multiple interacting computing
elements known as agents. Agents are computing subsystems with two important
characteristics: Autonomy — an ability to be active without relying on direct and
continuous intervention of its environment; and Sociality — an ability to interact‘v.vith
other agents in ways analogous to human interactions in society for cooperation,
coordination, negotiation, and so on. These features of the agent-oriented paradigm allow
for a greater level of decentralization, a desirable characteristic in an open distributed
environment. So, the multi-agent model can be meaningfully applied to cépture the
presence of the abovementioned applications because of the extensibility, flexibility, ease
of use and naturally distributed nature of this paradigm.

An important characteristic of many open reactive applications is that they have soft

real-time constraints and flexible, rather than strict, functional requirements. Soft
real-time constraints mean that failure to meet a deadline is not necessarily considered to
be a failure of the application or system; and flexible functional requirements mean that
acceptable results are diverse and may differ in quality aspects. These characteristics are
useful in managing agent activities in the resulting application design. For example, when
an agent does not have enough time to complete its task, we can either assign more
resources (CPU, Memory, Bandwidth, etc.) to it, or simplify its task at the expense of a
lower quality level of its results. Dynamic allocation of more resources to an agent may
not be feasible in a resource-tight environment and the additional resource management
also will incur non-negligible management overhead. Hence managing the quality of
results or services of agents may be a reasonable alternative strategy to be applied in such
applications.

Under quality-time tradeoff, an agent can perform the task faster or slower and try to
meet the deadline eventually. Quality-time tradeoff is widely used in soft
real-time/flexible output systems. This principle can make soft real-time applications
more adaptable to their run-time environments. Based on the available remaining time
and resources, these systems produce the output with different qualities. The goal of
using such principle is to optimize the system response in the presence of soft deadline
expectations. Hence, this principle can be well used in managing/scheduling agents to
complete their tasks involved in common or distinct missions.

When designing a distributed soft real-time multi-agent system, such as the

-2-

abovementioned applications, one approach is to build it from scratch by incorporating
the quality-time tradeoff features in agent designs. Obviously such an approach will
complicate the underlying agent design required to provide the functional outputs to the
application. Not only that an agent has to perform its mission but also manage its course
of action depending on the remaining time available. A reasonable alternative is to
develop a soft real-time agent management framework that has built-in quality-time
tradeoff management and agent scheduling services so that different applications can be
built on top of it without having to custom design each quality-time tradeoff detail. This
thesis is dedicated to the design of such a framework and the demonstration of its use.

In both the real-time system research [2-7] and the real-time Al research [8-16]
communities, there are numerous reported uses of quality-time tradeoff to handle soft
real-time constraints. Nevertheless, there are relatively few systematic research efforts on
practical methodologies for applying this principle in a soft real-time application
development process. For example, research work from the traditional real-time
community is mainly process-based, which, as we mentioned before, lacks the ability to
deal with open distributed environments. Additionally, most research work from the
real-time Al community focuses more on individual, so-called sophisticated, agent and
the coordination of a small group of these agents to handle specific application
requirements. The flexibility and extensibility of their solutions are limited. So to develop
a general solution, a new soft real-time agent model along with a framework is needed.

The following are important focuses in our research quest:

-3

(1) An agent programming model that combines all meaningful mainstream
techﬂologies from relevant research communities.

(i) A simple but effective real-time multi-agent self-management framework to
support a wide spectrum of soft real-time multi-agent applications.

With these two focuses, we hope to develop a model that is flexible and easy to use,
and also will not incur much degradation in performance in the resulting implementation.
In this thesis, an agent-programming model called SPMM is proposed. SPMM not only
provides a soft real-time agent-programming model integrating multiple technologies
related to agent-based systems, but also provides an easy to use programming
environment for implementing the resulting design. In particular, SPMM provides a
role-based agent behavior model in abstraction, a model that supports the analysis and
design of multi-agent systems from the perspective of agent-oriented software
engineering. As illustrated through a case study on an intelligent security monitoring
application in this thesis, SPMM demonstrates flexibility and extensibility in dealing with
different kinds of applications and also helps developers to better achieve the
aforementioned goal — low deadline missing rate, high-average-quality output and high

system utilization.

1.2 Related Work

This section presents some important related research reported in the literature.

1.2.1 Traditional Real-Time System

In order to cope with changing load and failure conditions and to maximize system
utilization, the principle of quality-time tradeoff is widely used in the traditional real-time
community. Depending on different assumptions on task properties and available
resources, this principle can be applied at different stages of the lifecycle of a real-time
task. For example, admission control based on the resource requirements applies the
strategy in managing task admission, and on-line negotiation applies this strategy in
managing task execution. However, no matter where the strategy is applied, it is
commonly assumed that a soft real-time task can have different quality levels associated
with different deadlines and resource requirements. The following reviews several

instances of applying quality-time tradeoff.
1.2.1.1 On-line Admission Control with different QoS levels

Admission control manages the set of tasks to be supported by the system. Traditional
on-line admission control assumes that a task arrives with a fixed QoS requirement (and
therefore a fixed resource requirement); and based on resource availability, a task may be
admitted or rejected. However, in on-line admission control [2] with QoS modeling, a
task has several different output qualities each of which is associated with the required
execution time and resources. Intrinsically the model assumes that task requirements are
deterministic and known in advance. Task arrival time is unpredictable. The system

admits a newly arrived task only if it is feasible; that is, the requirements of one of the

quality levels can be met by the system state.

Although on-line admission control with different QoS levels allow the system to
dynamically manage its commitments to an open environment, it does not have the
provision to manage subsequent changes of system state that may jeopardize its
commitments. In particular, subsequent to admission, due to inaccuracy of both task
requirements and runtime resource estimates (including network bandwidth and
computational bandwidth), an admitted task may miss its deadline unless further quality
degradation and management actions are taken. Providing quality consideration in
admission control is a first step but not a complete solution to manage tasks; especially

those that may have a longer time span or more complex mission requirements.
1.2.1.2 On-line QoS Negotiation

On-line QoS negotiation extends admission control with dynamic changes of the QoS
levels of a task when the QoS that was accepted during admission becomes difficult to
achieve. Such changes include increasing the QoS level of a task when the system is
underutilized or decreasing the QoS level of a task when the system is overloaded. Such a
strategy can improve the overall performance of the system and maximize the system
utilization. The following is a typical example of on-line QoS Negotiation strategy [3].

QoS negotiation: This strategy involves a mechanism for QoS (re)negotiation as a
way to ensure graceful degradation in case of overload, failures, or violation of

pre-run-time assumptions. In this model, a distributed application involves a single

overall mission (e.g. flight control, shipboard computing, automated manufacturing and
so on). A mission is composed of a set of tasks, each of which requires a set of
resources/services. Tasks can arrive at any node of the system. There are no precedence
constraints among different tasks.

There are several QoS levels for each task. These levels are specified upon task
arrival as alternative acceptable performance levels for the task. Each QoS level has
different resource requirements and a corresponding benefit (called reward) of executing
the task at that QoS level. The higher reward the task has, the more important it is. Each
QoS level may involve a set of modules that may be different from the one in the other
QoS level. Within a given QoS level, finishing the set of modules by the deadline
accomplishes the task.

A node can accept a task in which case a QoS contract is said to be signed by
promising to execute the task at one of its specified QoS levels. Alternatively, the task
may be rejected in which case no contract is signed. There is a penalty if the task is
rejected and a different (higher) penalty if the QoS contract is violated. The latter allows
a node to break the contract unilaterally and offer compensation.

At each node, there is a local scheduler, which schedules the tasks for maximum
reward. It upgrades the task with the largest reward differential between QoS levels when
the system is underutilized, and downgrades the task with the smallest reward differential
when the system is overloaded. Underutilization is measured by idle time, while overload

is measured by deadline misses. When tasks execute at a level that is lower than the

-7

maximum QoS level declared in their contract, the system is said to have an unfulfilled
potential reward (UPR). A global scheduler periodically migrates tasks from nodes with

high UPR to nodes with low UPR to balance the load and gain higher global reward.
1.2.1.3 Feedback Control Real-Time Scheduling

In order to meet performance constraints in open environments where both load and
available resources are difficult to predict, this strategy assumes that task execution times
are unknown or variable. In other words, this solution meets performance guarantees
without accurate knowledge of task execution parameters. Unlike ad hoc algorithms (e.g.
the previous two strategies) based on intuition and testing, this solution has a basis in the
theory and practice of feedback control scheduling. Based on a set of control equations, it
applies control theory to attain scheduling guarantees. Dynamic changes of QoS are the
common factor between this approach and the earlier examples. Depending on the
feedback from system load and resource state, QoS applied to different tasks is adjusted
to ensure schedulability of the tasks. An example is the Distributed Feedback Control
real-time Scheduling (DFCS) [4] described below.

DFCS: In DFCS, a distributed application operates in an open environment where both
the system load and the available system resources are difficult to predict. The
application uses two sets of metrics: primary metrics that are maintained at specific levels,
such as global or local deadline missing rates; and secondary metrics that are variable,

such as CPU utilization.

The application involves a set of tasks that arrive at nodes in arbitrary patterns. For
each task T;, there are N different QoS service levels (N > 1). Task T; running at service
level g, 0 < g < N, has a deadline Dq] and execution-time C{q]. The required CPU
utilization, J(q) = Ci[q)/Dilq], of the task is a monotonically increasing function of the
service level g, which means that a higher QoS will require more CPU utilization.

In this solution, two controllers (a distributed controller and a local controller) are
introduced in order to dynamically adjust the QoS levels of tasks based on the changing
environment. The responsibility of the Distributed Feedback Control System is to limit
the global missing rate of the application, control the overall service level of the system,
and balance the system load by migrating tasks among nodes. It includes two main parts:
a miss rate controller, which takes care of system overload; and a utilization controller,
which manages the utilization of the system. On the other hand, the responsibility of a
Local Feedback Control (LFC) system is to control the miss rate of locally admitted tasks,
and to control the secondary metric. Three important parts are included in the local
controller: a miss rate controller, which takes care of local overload; a utilization
controller, which manages the local node utilization; and a Service Level Ratio Controller
(SLR), which addresses the CPU utilization as the secondary metric.

The distributed controller manages the local controllers via the QoS set point. The
entire control system of the local node becomes an actuator of the distributed controller to
control the state of one local node. The local controller manipulates its actuators in the

LFC to achieve the target QoS set point.

1.2.1.4 Summary

In summary, we would like to pinpoint the key differences between the above strategies
and their main drawbacks when these models are used to develop new soft real-time
applications in open environments.

Comparison of Different Strategies: The above-mentioned approaches involve a tradeoff
between quality and time. All of them intend to deal with dynamic systems with some
unpredictable features, such as unknown task arrival patterns or unpredictable system
load or resource status. On-line admission control focuses more on controlling a task
before its execution rather than during its execution. It admits a new task by matching
one of the different resource requirements of the task with the current available resources.
Also, it assumes that resources can be reserved for a task and the admitted task can
execute without violating a priori assumed load and failure conditions. However, on-line
QoS negotiation and Feedback Control scheduling propose mechanisms to ensure
graceful degradation in case of overload, failure, or violation of pre-run-time assumptions.
Moreover, in Feedback Control scheduling, the performance of the real-time system is
modeled in some coarse-grained manner that represents the relation between aggregate
QoS and aggregate resource cohsumption. This is as opposed to QoS negotiation, a
fine-grained model that requires knowledge of individual task execution times.
Additionally, in Feedback Control scheduling, feedback is used as a primary mechanism
to adjust resource allocation in the absence of a priori knowledge of resource supply and

demand. However, as an optimization-based QoS adaptation technique, QoS negotiation

-10-

assumes accurate models of application resource requirements.

Key Issues: Generally, all of these three approaches belong to process-based strategy. In
such strategies, the design process involves functional decomposition of the system. It is
unnatural to handle the inherent complexity of open and dynamic systems. In addition,
these approaches focus more on individual tasks. A general assumption is usually made
that there is less dependency between different tasks. In other words, these approaches
have a relatively weak ability to deal with systems having complex task structures and
dependencies. For a real-time system in an open environment, however, this is usually the
case. Its tasks normally have sophisticated data or functional dependencies. So, these
approaches will face difficulties when they are directly used for the abovementioned soft

real-time applications.
1.2.2 Real-Time Al System

Traditionally, artificial intelligence techniques have not been utilized in real-time
environments due to their highly unpredictable performance. Generally this is a result of
the types of problems that Al research focuses on — the problems with complex
algorithms and facing unpredictable environments. A major step forward in real-time Al
research is represented by the use of approximate algorithms. To date, real-time Al
research has been interested in two main types of approximate algorithms: Anytime

Algorithms and Multiple (Approximate) methods.

211 -

1.2.2.1 Anytime Algorithm

An anytime algorithm [10-12] is an iterative refinement algorithm where a “default”
answer is first generated and then refined through multiple iterations. It is also true that
the quality of the solution increases proportionally to the amount of time (number of
iterations) the algorithm is executed. In addition, anytime algorithms always produce a
result regardless of when they are interrupted.

Figures 1-1 and 1-2 provide a detailed example taken from Zilberstein [11] of an
anytime algorithm and its performance profile. Figure 1-1 is a simple anytime algorithm
for solving the Traveling Salesman Problem (TSP). This algorithm quickly constructs an
initial tour, registers that result (making it available should the algorithm be halted), then
repeatedly chooses two random edges and decides if switching them will result in a better
tour. Figure 1-2 shows the runtime and quality results obtained by running this algorithm

on randomly generated inputs and stopping it at a randomly generated time.

1.2.2.2 Multiple and Approximate Methods

The multiple method approach [8, 13—16] does not rely upon continuous processing to
solve a problem. Rather, a set of methods is available to solve a task. Each method has

different characteristics that make it more or less appropriate given the current conditions.
Every method solves the same problem, but varies in the amount of time it needs to

produce the result and the quality of the result. There is a quality-time tradeoff between

-12-

methods where a shorter execution time is achieved through reducing the quality of the

result.

AnyTime TSP(V, iteration){
T = Init Tour(V)
cost = COST(T)
Register Result(T)
for i=1 to iteration{
¢l =Random_Edge(T)
¢2 = Random_Edge(T)
diff = COST(T) — COST(Switch(T,el,e2))
if diff > 0 then{
T = Switch(T,el,e2)
cost = cost - diff
Register Result(T)
}
Signal(Termination)
Exit() }

Script 1-1 Sample Anytime Algorithm from Zilberstein [11]

0608 —

Figure 1-1 Runtime and quality results of this algorithm from Zilberstein [11]

13-

Figure 1-3 provides an example from Decker et al. [14] of multiple methods for a
sensor interpretation application. This figure shows two grammars describing
characteristics of hypotheses necessary to identify a particular vehicle type. In the case on
the left a number of intermediate objects are hypothesized from the low-level sensor data,
then combined together to hypothesize a vehicle object. In the caée on the right, the
intermediate levels are bypassed and a vehicle is hypothesized based just on the low-level
sensor data. This second method is able to hypothesize the vehicle more quickly, but with

reduced certainty and precision.

Figure 1-2 Multiple methods for a sensor interpretation application from Decker [14]

1.2.2.3 Summary

This section presents the key differences between the strategies that trade off quality with
time in real-time Al applications. Also, it discusses the main drawbacks of these
strategies when they are applied in developing new soft real-time applications.

Comparison of Different Strategies: In real-time Al systems [9], the focus is usually on

-14-

high-level goal achievement. For this reason, often in real-time Al, loose definitions of
real-time are used. One common (and usually implicit) definition is that the system
statistically (e.g., on average) achieves the required quality value by the required time,
but no guarantee is made about any particular task in a lower granularity. Additionally,
the anytime algorithm and approximate processing approaches have the characteristic that
the system nearly always produces some quality value for tasks, although the value
achieved may or may not be useful, given the criteria for high-level goal achievement.
Anytime algorithms have the advantage of always delivering some (feasible) result.
So, in some sense, they are a naturally usable strategy. Another potential advantage of
anytime algorithms is that a single version and hence the same piece of code is sufficient
to handle the degradation required in the absence of adequate time or resources. On the
other hand, the multiple method approach does not rely on the existence of an iterative
refinement algorithm that produces incrementally improving solutions as the runtime
increases. Instead, it involves different methods or solutions to handle the task at hand.
These approaches should serve as alternative or complementary strategies, depending on
the actual application needs.
Key Issues: Anytime algorithms assume that subsequent iterations | produce
incrementally better solutions. However, for most soft real-time applications working in
an open environment, this assumption may be too strong. In some cases, it is difficult to
find algorithms whose expected quality improves in a predictable, monotonic fashion in

such systems. Another assumption that anytime algorithms rely on is that they can work

- 15 -

effectively in all environmental situations. This may not always be the case. Many of
these applications face different and dynamic environments. It is hard to find one
algorithm that works well in all kinds of environments.

The multiple methods approach is based on the assumption that the execution
properties, such as duration, quality and dependence, associated with tasks are fairly
predictable. In other words, this approach needs a complete and fine-grained task model.
For many soft real-time agent-based systems in open environments, however, it is
difficult to have complete knowledge of task properties during design time because these
systems normally are large scale and subject to change at launch time. Moreover, this
approach is based on a centralized task control mechanism that is responsible for global
task planning. For a large-scale system with complex task structure and a great number of

agents, the resulting performance may be compromised.
1.2.3 Real-Time AI System vs Traditional Real-Time System

The above-mentioned strategies from both real-time Al community and traditional
real-time community are actually alike in terms of objectives, the applied principle and
the methodology of performing quality-time tradeoff. All these strategies aim to develop
real-time systems with strong capability to support the emerging generation of complex
and dynamic applications with timing constraints. When more ‘time and resources are
available, the system produces higher quality results or services.

However, the detailed strategies from the real-time Al community are slightly

-16-

different from the ones from the traditional real-time community. Traditional real-time
systems research has focused on developing low-level runtime system mechanisms to
support predictable execution of traditional periodic control tasks that have only minor
data dependencies. On the other hand, real-time Al systems research focused on more
complex tasks that involve sophisticated dependencies. Normally, for real-time Al
applications, the selection of suitable sub-tasks involves complex reasoning and planning
algorithms. The difference between the characteristics of these sub-tasks can be dramatic.
However, by simply loading different sets of modules of a task at run-time, traditional

real-time applications have limited capabilities to change the characteristics of the task.

1.3 Contributions

This thesis proposes a self-planned multi-agent mission model (SPMM) involving

multiple agents that integrate many key attributes in previous models and paraliel

computing in order to address the needs of soft real-time applications in an open

distributed system. The following are intrinsically incorporated:

(i) An application consists of multiple types of missions that can be invoked
periodically or sporadically. The expected deadline of a mission is known a priori.

(i) Each mission consists of many phases; each phase has multiple solutions. A
solution can be obtained by functional decomposition into a task graph or data
decomposition involving parallel tasks. Functional decomposition leads to

multiple possible solutions with differing runtime needs and resulting qualities.

-17-

Data decomposition can be performed at different granularities of data, leading
also to quality-time tradeoff.
(iii)) Admission control is exercised at mission invocation time.

Under SPMM, self-planned quality-time tradeoff is applied at every phase of a
mission with the ultimate goal of meeting the soft deadline constraint of the mission. To
facilitate application development, a corresponding self-planned agent framework (SPAF)
is proposed and implemented. The framework consists of two parts: a soft real-time agent
platform that provides key agent services, and a self-planner that performs quality-time
tradeoff dynamically during the lifetime of a mission instance. A role-based agent
behavior model [18, 19] is used in the framework. Through this combination, SPAF
provides a complete solution to assist designers in developing application agent codes.
The planner provided by the framework has an application interface that allows the
developer to specify important attributes used by the planner in optimizing the
quality-time tradeoff at runtime.

The rest of the thesis is organized as follows. Chapter 2 gives a detailed description
of our soft real-time multi-agent model. Chapter 3 presents the design of oﬁr soft
real-time multi-agent framework.. Chapter 4 describes the usage of the framework
through a sample application — Intelligent Security Monitoring System. In Chapter 5, we
evaluate the performance and effectiveness of our framework and analyze the test results.

Finally, in Chapter 6, we conclude our thesis with an indication of future researches.

-18-

Chapter 2

Self-Planned Multi-Agent Mission Model (SPMM)

This chapter introduces the details of our soft real-time Self-Planned Multi-Agent
Mission Model (SPMM). A multi-agent system is characterized by the use of multiple
types of agents playing different roles in order to fulfill the needs of their
application-specific missions. Naturally agents interact in social groups throughout their
lifetime. Various role models [18, 19] have been proposed in multi-agent design. Role
design in agent-oriented software engineering bears resemblance to functional
decomposition in parallel programming. By decomposing the application needs into roles
and assigning them to agents, an abstract design can be concretized before passing it to
the developer for agent code generation. Since our interests lie in open system
- applications in which the external environment provides the stimulus that triggers the
launching of missions, periodically or sporadically, an application is modeled using
missions each involving multiple agents at different phases. The model should be able to
support varying degrees of complexity in agent dependencies within a phase and between
phases.

Consider an intelligent security monitoring system. In this application, multiple
security devices are installed in many places of a building. For example, surveillance

cameras are installed in the lobby and in the hallways, image scanning devices are

-19-

installed in front of rooms for access control. All the data captured by the security devices
are processed by the application on the server side. Periodically, the sﬁrveillance
cameras will take the image of the scene and send the data to the server for image
analysis. Additionally, the image scanning devices on the doors perform the image
scanning and send the data, such as fingerprint image, to the server for personal identity
validation. Due to the heavy computation work of image analysis, a single server can
hardly finish the whole computation task on time, so a distributed multi-server system is
needed to distribute and parallelize the computation of the task. The aforesaid features of
a multi-agent system are desirable for the above application. So, a multi-agent system on
the server side processes all the image analysis/validation requests. There are some
interesting features to observe.
@) In the system, each monitoring device is linked to a complex task (referred to a
mi_ssion) on the server side. For example, a surveillance camera in the lobby is
linked to an image analysis mission on the server side; an image scan device on a
door is linked to a fingerprint validation mission on the server side. Because each
device works independently and concurrently, each mission on the server side is
also performed independently and concurrently.
(ii) The monitoring devices periodically capture the image infoﬁnation of the scene or
sporadically accept a request from the user. So the related missions on the server
side are invoked sporadically or periodically.

(iii) All these missions are time-bounded. For instance, the lobby monitoring mission

-20-

(iv)

v)

(v)

(vii)

(viii)

runs periodically, so an execution of the mission should be finished before the
next period. Also, a person requesting a fingerprint validation should not wait for
too long for passing through the door. So, the fingerprint mission should also be
time-bound. However, missing a deadline will not cause system failure. So each
mission has a soft deadline.

Multiple copies (instances) of the same mission may run on the server side. For
instance, multiple copies of the fingerprint validation mission may be executed to
serve multiple fingerprint validation requests from different doors.

All the security devices can be used only after they are properly installed in the |
right place. So, their related missions can be invoked only after being created
correctly.

For each mission, several phases exist during the execution. Completing all the
phases accomplishes the mission. For example, the image-processing mission can
include the following phases: image sampling, feature extraction, matching with
database records, and decision resolution.

Each mission includes heavy computation work and a single agent can hardly
finish the whole mission. Hence, each mission involves multiple agents playing
different roles and collaborating in different phases (milestones). In other words,
each mission is served by a group of agents that are distributed among the servers.
Multiple solvers (alternative solutions) exist for each phase. Certainly, image

processing can be performed at different granularity. Feature extraction can

-21-

demand different levels of precision or features. Matching can be done with
multiple classification techniques and voting schemes.

Aiming to develop a framework to support applications with features similar to the
above, a self-planning strategy is incorporated in a mission to optimize quality-time
tradeoff dynamically at runtime. Hence, a planner is invoked in the model for selecting an
appropriate solver (set of agents) to perform the next phase depending on the remaining
time and the available resources. We wish to use a generic planner rather than an
application-specific one to manage/schedule the agents. So, the self-planned multi-agent
mission model (SPMM) involves two essential components: the planner and applicant
agents and their interface relationship. Each mission involves interactions between these
two components. However, adding a generic planner into an application introduces an
overhead to the application. A large overhead of the planner will weaken the ability of the
application to meet the deadline rather than strengthen it.

So, in the development of a framework with the generic planner that uses
quality-time tradeoff as a means to manage/schedule the agents to complete each mission,
the following sub-problems remain as important focuses.

@) A generic model for mission and alternative solutions is reciuired for the planner
to work and for the application designers to use.

(ii)) The continuity of agents and mission state (consistency) in mission
reconfiguration presents an original challenge. Due to the generic planner,

additional agents and mission state switching is needed in managing the changes

-22-

of a plan. The effectiveness and efficiency with which this reconfiguration can
take place affect the success of the design and hence the application.

(iii) The planner should be as thin a layer as possible. Hence a complex solution may
not be desirable.

We explore the agent-programming model in the following sections and explain how
the model handles the above sub-problems. In Section 2.1, we present the SPMM model
and its components (application agents and planner agent). We explain the rationale
behind a set of important modeling assumptions, the model of alternative solutions, and
the quality model using a rank function. Section 2.2 presents the interface between an
application agent and a planner agent and the rationale behind it. Finally, Section 2.3

compares SPMM with similar strategies.

2.1 Application Agents and Planner Agent

This section presents the modeling of an application involving missions and agents under
the control of a generic planner agent. Upon invocation, a multi-agent mission is
launched. The completion of the mission is under the management of a generic planner
agent that aims to optimize quality-time tradeoff, involving possibly different choices of

tasks or granularity of data processing.
2.1.1 Application and Mission

Each system contains two types of agents: application agents and a planner agent. Unlike
the planner agent, application agents are application specific. Each application agent is

-23-

characterized by its capability in playing the roles that it has been assigned. Once created,

an application agent remains available to support successive launches of a mission until

the application terminates. Hence a multi-agent application system contains a pool of

application agents necessary to support the different types of missions required. Launches

of a mission can be periodic or sporadic, as described earlier. A planner agent performs

the self-planning required to optimize the quality-time tradeoff in each phase of a mission.

It can be designed once and used for many applications. The following assumptions are

made regarding a mission:

(M)

Mission deadline is known a priori; a mission consists of phases, each with an
approximate deadline that can be dynamically adjusted at runtime by the planner.

In reality, software is designed to mimic human strategies and behaviors.
Hence, in this thesis, the generic planner mimics what a humanized solution
would do in handling time. Let us consider an example in the real world. A group
of software developers have to finish a project in four months. How can the team
leader manage the progress of the project? A typical scenario is like this. At the
beginning, several important phases with idealized deadlines are defined for the
project and each developer is aésigned different roles in different phases. For
example, divide tﬁe development of the project into four phases: Architecture
design (3 weeks), Detailed design (4 weeks), Implementation (5 weeks), and
Testing (4 weeks). The time in parenthesis is the idealized time for each phase.

During the development of the project, adjust the deadline of each phase based on

-24-

(i1)

the real progress of the project. For instance, when the time taken in the detailed
design phase is longer than expected, in order to complete the project within the
deadline, what the team leader can do is to finish the rest of the phase faster than
planned and compensate for the lost time by using more efficient means to do the
implementation and testing. So, in order to mimic what a humanized solution
would do in handling time, a generic planner needs to have model-based mission
(task model) with time estimates and have a rough plan about how much time is
allowed in each phase (in ideal situations). With estimated time, the planner can
manage the actual time of a mission within the targeted idealized schedules. With
time estimates on both phases and involved tasks in each phase (performed by
each agent), the detection of phase delays and adaptation to future phases can be
performed rather easily with proper design support. This certainly facilitates one
of our design objectives: make the self-planner as thin as possible. Moreover, in
the applications such as the abovementioned security monitoring system, the time
for each phase and the involved tasks can possibly be estimated rather accurately
with a given runtime environment, at system set-up time. These estimates can be
readjusted whenever there are changes in the runtime system and/or environment.
Importance of mission deadline is quantifiable using a ranking function.

Different missions serve different purposes. Importance of mission deadlines
can be ranked based on the inherent application requirements associated with

these missions. For example, in the security monitoring system, suppose room A

-25.

(iii)

(iv)

is more important than room B. Then the importance of the fingerprint validation
mission for room A should be ranked higher than that for room B.
Concurrent missions are independent. Delay in one does not affect the other.

Two missions launched concurrently are assumed to be logically independent
and do not require direct cooperation between them, despite they may share some
logical or physical resources. If they have potential resource conflicts, the planner
may try to reduce the conflicts by choosing different solvers with different
resource requirements. Obviously, the process of choosing solvers will have some
impact on mission executions and deadlines. For example, it may decrease the
overall quality of the mission. Also, the planner may fail to find suitable solvers
and eventually the mission may fail to meet the deadline. However, our model
does not make absolute guarantees on mission deadlines. One implicit criterion is
that the system will statistically (e.g., on average) achieve the required quality
value by the required time, but no guarantee is made about any particular mission.
Multiple solvers exist for a phase, with known resource (CPU, memory and
communication) requirements.

However, the model does not assume that every phase can have multiple
solutions whose resource requirements are all known a priori. The model allows
some phase to have only one solution as long as not every phase has only one
solution. If the phase with one solution is delayed, it is possible that the planner

can tolerate the delay in the following phases by choosing simpler solutions with

-26-

smaller execution times and make the mission meet the deadline eventually. It is
not necessary that all the resource requirements of a solution are known a priori.
The more knowledge about the resource requirements the planner has, the better

the planner can pick a suitable solution based on the runtime environment.
2.1.2 Alternative Solution

We use alternative solutions with different qualities and execution times to optimize
quality-time tradeoff in each phase of a mission. The ability of our strategy to tolerate
time failure of a mission depends on how many alternative solutions the mission has and
how well these solutions are defined. In other words, the more alternative solutions a
mission has and the more diversified these solutions are, the stronger ability our strategy
has to tolerate deadline missing failure of the mission.

One obvious strategy is that alternative solutions refer to different algorithms. Based
on their own domain knowledge, developers define different solutions using alternative
algorithms for each task. For example, for a face identification task in an intelligent
security monitoring system, there can be various face recognition algorithms, such as
LDA (Linear Discriminant Analysis), Bayesian Classifier, Gabor Wavelet Algorithm and
Elastic graphs, etc. Different algorithms can be used to accomplish the task. However,
this approach may have a major drawback. Sometimes, multiple appropriate algorithms
may not be available, and even if they are available, their quality-time tradeoff may not

be apparent or deterministic. In such cases, we use a data decomposition strategy [20] as

_27-

a means to parallelize the work to meet deadline requirements. Using the same algorithm,

multiple agents can work on different parts of the data. The number of agents and the

granularity of the data provide the planner with a means to optimize system response.

Indeed, the strategy of using multiple solutions is related to functional decomposition in

traditional parallel programming. Upon functional decomposition, each function can be

solved using a set of potential solvers, with varying degrees of performance implications.

The following is the detailed description of our model of alternative solutions.

'All the solutions can be divided into two possibilities.

@) Parallelization by distribution of work to a set ;f identical agents (Category A).

This follows from the traditional strategy of data decomposition whereby the

computational workload is partitioned among a set of k agents. These agents need
little coordination during the computation. In such a case, when time is running
short, there can be two methods to save time: creating more agents; or requiring
each agent to perform less work (data granularity is increased). When the
available resource is small, creating more agents will not always perform well. So,
we emphasize on the second method. In other words, we emphasize on granularity,
not concurrency. So, each agent is given smaller data size in order to complete its
work faster. Data reduction is achieved by compressing data into a coarser
granularity.

(1) Parallelization by function (Category B).

This follows the other traditional strategy of functional decomposition

-28-

whereby the overall computation is partitioned into a corresponding set of
functions, each assigned to a distinct agent. Typically these agents interact in
order to complete the overall work. In such a case, the different algorithms may
lead to different solutions derived from functional decomposition. These solutions
may differ in resource needs, and in quality of results. Again, the choice of a

solution may be made at runtime depending on the available resources and time.
2.1.3 Quality and its Ranking

The term “quality” is defined for this thesis as the variance between the returned result
and the optimal result for a given task. This is a very task-specific definition. For example,
in a real-time information retrieval system (for example, when doing a search on Google),
an optimal result can be defined as a link having 95% or higher accuracy ratio. These
optimal results are very specific to the requests and reject universal classification. Either
the developer or system administrator must define them. With the notion of a pre-defined
“optimal result” for a task, the variance between the actual result and the optimal result
can be used as an objective metric to statistically compare the qualities of different
solutions.

Quality ranking is to assign different numbers to different solutions to indicate their
difference in the quality of results. Such a ranking can only happen within a phase and is

performed by developers or system administrators during the design time. The solutions

in different phases cannot be ranked together. The quality ranking of a returned result can

-29.

be a constant value Q or a quality ranking function Q(x) (x refers to the quality ranking of
the optimal result). For instance, in the above information search task, the optimal result
that has a 95% accuracy ratio can be assigned a value of 10 (this actual value is defined
by the developer). Then a search result that has a 75% accuracy ratio can be assigned a
value of 7.9 using the function Q(10) = ((95% —75%) /95%%*10). The total quality ranking
of a mission is represented by the sum of the quality rankings of all selected solutions that

were completed successfully in their phases.
2.1.4 Planner

The planner is responsible for selecting solutions based on its knowledge of the runtime
system and the expected needs of the mission. The former is runtime knowledge while
the latter is based on design time knowledge. The planner is generic and
mission-independent. It is an integral part of the solution provided to a mission. Under
the assumption that missions are independent, so are their associated planners. The
planner has knowledge of the multiple solvers available for each phase of the mission, the
relevant runtime parameters including the elapsed time, the deadline constraints and
available system resources, and the dependency between agents in successive phases of a
mission. Based on a generic model interface, the planner can be activated upon the
launching of a mission to guide the mission to proceed as safely as possible without
compromising quality unnecessarily.

Figure 2-1 shows the interactions between a periodic mission, its planner and the

-30-

application agents executing the phases of the mission. In the figure, ‘launch’ refers to an
invocation of the mission. Upon initialization, the system starts with a pool of application
agents and a planner agent for each type of mission. Successive launches of a specific
mission involve the associated planner and application agents. A mission migration into a
new phase is represented by the selection of the application agents by the planner. An
application agent returns to a dormant state when its assignment is completed. On the
other hand, migration to a new phase is synchronized by the successful completion of all
application agents involved in the current phase. Subject to the actual time experienced,
the solvers for the next phase will be chosen by taking quality and remaining time into
consideration.

2.2 Interface between the Application and the Planner

Through the interface, application agents and planner agent cooperate to complete a
mission. However, the planner is not application specific. Intrinsic to the planning model
is a generic interface between the planner and the application so that all relevant
knowledge about the solvers and application agents are specified for each application
design. This interface contains a generic set of parameters that are detailed in this

sub-section.
2.2.1 Design Interface
Through the following design interface, an application provides static mission

information to the planner upon mission initialization.

-31-

(1)

(i)

An application involves a set of periodic and/or sporadic missions. A mission has

three properties: deadline, period and importance ranking.

Periodic Mission

Plamer

Executing
Solution
Stop
. s
5
New Launch
Launch BEnds .&
Idle I
Stop

Start

I

Application Agent

Application

Daormant

Ends
—]

& swop

k by‘mnnervi

Stop

Tazgk Ends

Agtive

Figure 2-1 State Diagram of the Self-Planned Multi-Agent Model

A mission is composed of a sequence of phases, each involving several

application agents working cooperatively to solve a sub-problem, referred to as a

task.

-32-

(i) Each task has multiple alternative solutions; completing any of them will finish
the task. The system has a set of recognizable resources including: Host capacity;
Memory capacity,; and Communication bandwidth. Each solution belongs to one
of two categories: parallelization by distribution of work (Category A);
parallelization by function (Category B).

Parameters for a solution in Category A:
® Agent name and relevant invocation parameters, including an explicit data
Size parameter
o Recognizable resource needs
e Expected time function (if it is not constant)
o Quality ranking function (if it is not constant)
Parameters for a solution in category B:
* Agent names and relevant invocation parameters
e Recognizable resource needs
o Expected time

e Ranking of quality of results
2.2.2 Runtime Interface

The runtime interface exists during mission switching from one phase to the next. As we
mentioned before, the performance of the runtime interface directly affects the overhead

of the planner. So, the goal of this interface design is to make mission switching as fast as

-33-

possible. In addition, results derived from a phase are needed in a future phase. This
forwarding of knowledge can be based on the continued survival of the agents or passive
objects shared between phases.

Survival of agent through phases means two possible solutions: the next phase choice
simply involves selection of data to be given to that agent or the agent is an artificial
entity that can be assigned actual work (code) to be executed. The former places some
design constraints on the application, while the latter requires the agent to behave like a
kernel thread that can be loaded to execute an application thread. However, the
application agents in the former solution only have to pick up the data instead of picking
up data and code in the latter solution. So, the application agents in the former solution
may switch faster and may have residual context that is useful to a mission.

Passive objects allow agents to pick up new state information and be launched. Such
agents carry the (algorithmic) knowledge and may be available (in standby mode). When
work is available, the planner assigns it to the agent(s). This kind of solution needs some
sort of centralized control for these passive objects, such as using a repository manager.
Nevertheless, in some situations with heavy message passing during phase switching, this
solution can cause a serious performance bottleneck.

Based on the above analysis, the following assumptions are made regarding the
runtime interface between application and planner.

(1) A set of application agents will survive through two successive phases, which are

responsible to forward mission status to next phases.

-34-

(i) The surviving agents are decided by the application developers at the design time.

(iii) An application agent contains the code for all the roles that it will perform. Based
on the parameters received from planner, it simply performs the role reflected by
the parameters.

Upon completion of a phase, an application agent has to synchronize with the planner (by

reporting and waiting for further details for the next phase). Two possibilities may occur:

(1) The agent has a few possible next phase entry points, selected by the planner.
Each entry point is associated with the details of the roles that agent is going to
play. Two different entry points may differ only in terms of the system scale (such
as the number of other agents working with it). They may also differ in actual
code (role) being played.

(ii) The égent released by the planner returns to a dormant state waiting for the next
mission call.

2.3 Comparison with Other Strategies Using the Same Principle

This section compares our solution against those cited in Chapter 1 and analyzes their

similarities and differences.
2.3.1 Similarities

SPMM involves on-line planning for tasks, using alternative solutions with different
quality to trade off mission time. The planning decisions depend on the estimated task

execution times. In comparison, these features are somewhat similar to on-line QoS

-35-

negotiation, except that this is done within a mission and is self-induced. In addition,
SPMM employs on-line admission control to further enhance its performance. On the
other haﬁd, our strategy involves the uses of phases. A mission can be divided into a
sequence of phases. Finishing all the phases accomplishes the mission. Within each phase,
a choice of solutions involving either data parallelism or functional parallelism is usually
available. This is quite different from the anytime algorithm approach but bears

resemblance to the multiple approximation approach used in Al applications.

2.3.2 Differences

Although our strategy is similar to some existing approaches as mentioned in the

previous sub-section, it is also significantly different from these strategies when details

are examined. SPMM differs from the previously mentioned strategies in two aspects:

@) SPMM is an agent-based model, so it naturally inherits the advantages of
agent-based models in handling distributed applications in an open environment.
For example, the intelligence of agents allows for a greater level of
decentralization; this is a desirable characteristic in a distributed environment. In
addition, agent-based designs are well structured and the mission model is
inherent in such applications, unlike a simple process- or thread-based model.
Interactions among related agents until the mission is accomplished provide a
simple mechanism to model the decomposition involved in parallel system

design.

-36-

(i)

The task planning in SPMM focuses on the activities of a group of agents. In
other words, it focuses on planning for a group of threads. However, the strategies
from the real-time community mainly pay more attention to the control of a single
thread. Such a feature means that these strategies have difficult in handling the
soft real-time applications that normally involve highly distributed tasks with

complex structure and dependency.

Additionally, SPMM differs from the anytime algorithms in two aspects:

®

(i)

Instead of assuming the existence of iterative refinement algorithms, SPMM
assumes that a mission can be separated into a sequence of phases. By
incorporating this key assumption, we can proceed to handle problems where
anytime algorithms do not exist.

SPMM does not assume that one algorithm can work well in all situations
(another key assumption of anytime algorithms) because this is not always the
case for an application in an open environment. SPMM supports different

algorithms for different run-time environments.

In comparison, there are two main differences between SPMM and the multiple method

approach in real-time Al community:

@

SPMM does not rely on a complete task model of the system. SPMM performs
the task planning only based on estimated time, quality and resource requirements
of a solution and does not consider the detailed agent activities within this

solution. Compared with detailed and complete model of agent activities in

-37-

multiple methods, SPMM is more flexible to be used in application development.
(1) SPMM integrates the use of both functional and data decomposition to support
alternative solutions in a mission. Different algorithmic solutions represent
different functional decompositions in solving the sub-problem. Differences in
data decomposition may involve different degrees of concurrency (hence speed)
or differences in data granularity (and hence speed as well). The former involves
differences in agent codes and the latter involves only differences in data sets.

In conclusion, by integrating mainstream technologies from real-time systems,
real-time Al applications and parallel computing, SPMM presents a complete model for
developers to better develop soft real-time multi-agent systems by trading off quality with
time. An effective marriage of these techniques is aimed to overcome the shortcomings of

each individual technique.

-38-

Chapter 3

Design of Self-Planned Multi-Agent Framework

This chapter presents the Soft Real-Time Self-Planned Multi-Agent Framework (SPAF),
which is an implementation of SPMM and provides an application development
environment where the planning part is built in the platform. We choose Java as the
programming language of our platform because of its portability, ease of use, security and
popularity. Real-time applications usually need to control the system resources, such as
memory, hardware ports, software/hardware interrupts, etc. Also, real-time applications
need precise control of system time and execution of threads. However, the standard Java
Virtual Machine (JVM) has weak support for these features. With standard Java, the
programmer cannot control the memory, access the hardware ports or accept interrupts
from the operating system. Additionally, the garbage collection mechanism that is beyond
the control of programmers makes the execution time of Java program unpredictable, a
drawback that cannot be accepted by real-time application developers. Moreover, the
scheduling of a Java thread in JVM is not truly priority-based. In other words, JVM does
not guarantee that a thread with the highest priority is always run first. With these
drawbacks, the standard Java is not suitable for our development. In order to have the

advantages of Java and at the same time overcome its disadvantages, we adopt real-time

Java [21] in the implementation of our platform because it has the following features

-39.

compared with standard Java:

Feature Description

Accessing Real-Time Java allows byte level access to physical memory, mapping objects

hardware into RAM or flash memory, dealing with virtual memory, and implementing
device drivers, memory-mapped I/O, and low-level software.

Scheduling The RealtimeThread class extends the semantics of the Thread class for
real-time. An instance of the Scheduler class implements a scheduling
algorithm, providing flexibility to install an arbitrary scheduler that requires at
least 28 priorities. Base scheduling is preemptive and priority-based.

Synchronization The semantics of the synchronized keyword has been extended to avoid priority
inversion, and waiting queues are priority ordered.

Asynchronous Real-Time Java provides two classes: AsyncEvent and AsyncEventHandler to

event handling

treat events. An AsyncEvent object is like a POSIX signal or a hardware
interrupt, and can have a set of handlers associated. An AsyncEventHandler has

a SchedulingParameters object associated, which controls its execution.

Resource

management

In Real-Time Java, prior to starting a task, MemoryParameters must be assigned
to it. These parameters are used for both the scheduler (to control admission)
and the Garbage Collector (to satisfy all tasks allocation rates). The scheduler
can generate an exception to reject workloads, when a task exceeds a resource
limitation, or when a task allocates memory faster than the garbage collection

budget allows.

Dynamic memory

management

Real-Time Java supports scoped (objects have a limited lifetime), physical
(objects in faster memory) and immortal (objects are not collected) memory.
The GarbageCollector class provides methods for getting information about the
Garbage Collector behavior (e.g., getOverhead(), getReclamationRate(), and
getPreemtionLatency()).

Table 3-1 Features of Real-Time JVM

To develop our soft real-time self-planned agent framework, we need an agent

platform that can support key agent services such as agent lifecycle management and

naming service, and that provides a transparent agent communication service. So far,

however, there are no such platforms that can run on real-time JVM. So, the design of

-40 -

SPAF involves the design of the agent management platform that can work on real-time
JVM; and the design of soft real-time self-planned agent framework above the agent
management platform.

3.1 Agent Management Platform

Our agent management system for agent lifecycle management, naming services and
agent communication follows the FIPA standard [22] and is not much different from

other agent platforms such as Jade [23], except for the communication sub-system.
3.1.1 Architecture

Our agent platform implements the basic agent management model, includes the Agent
Management Service (AMS) that manages the lifecycle of agents and agent naming
service and offers a Message Transport Service (MTS) supporting transparent
communication between agents. All agent communication is performed through message
passing, where FIPA ACL is the language to represent messages. The design of the agent
management architecture is similar to that of Jade except for the communication
sub-system. Jade adopts Java RMI as the main communication approach between two
hosts. Howgver, real-time JVM only supports socket communication, so we redesign the
communication sub-system to be suitable for our objectives.

The software architecture is based on the coexistence of several JVMs and the
communication relies on Java Sockets between different VMs and event signaling within

a single VM. Each VM is a basic container of agents that provides a complete run time

- 41 -

environment for agent execution and allows several agents to concurrently execute on the
same host. The platform uses default real-time JVM. In other words, the platform does
not include any modification of the JVM. In principle, the architecture also allows several
VMs to be executed on the same host; however, this is discouraged because of the
increase in overhead and the lack of any benefit. Each agent container is a multithreaded
execution environment composed of one thread for every agent plus system threads
spawned by the Message Deliverer for message dispatching. The main container runs

management agents and represents the whole platform to the outside world.

Main Container

Message Deliverer

ki

Socket Socket
Slave Container Slave Container
Sock b+ Message Deliverer

Figure 3-1 Architecture of Agent Management Platform
A complete agent platform is then composed of several agent containers as shown in

Figure 3-1. Distribution of containers across a computer network is allowed. Each agent

-42-

container controls the life cycle of agents by creating, suspending, resuming and killing
them. Besides, it deals with all the communication aspects by dispatching incoming ACL
messages, routing them according to the destination field (receiver) and putting them into
private agent message queues. For outgoing messages, the Agent Container maintains
enough information to look up receiver agent location and choose a suitable transport to
forward the ACL message. The agent platform provides a User Interface (UI) for the
remote management, monitoring and controlling the status of agents, allowing, for
example, to stop and kill agents. The Ul itself has been implemented as an agent called
RMA (Remote Monitoring Agent). All the communication between agents and this Ul
and all the communication between this UI and the AMS is done through ACL. Figure

3-2 shows this User Interface of our platform.

Agent Management

1. Create Agent; 2. Kill Agent; 3. List Agents;

Mission Management-------
4. Register Mission; 5. Deregister Mission; 6. Init Mission; 7. Kill Mission; 8. List Missions;

9. List Containers; 10. Start Configuration; 0. Exit

Enter the Choice:

Figure 3-2 User Interface of the Agent Platform

3.1.2 Communication sub-system

The main container maintains a table of all containers along with their host names and
ports. When a new main container begins to execute, it creates a Message Deliverer (a

system thread) listening to a user specified TCP/IP port; then it starts an AMS agent and

-43 .

an RMA agent. When a new container begins to execute, it creates a socket connection
with the main container based on the main container’s host name and port. Through this
socket link, the new agent container registers itself with the main container and is added
to the Agent Container Table. This new container notifies its main container whenever an
agent is created or terminates, in order to keep the agent global descriptor table consistent.
The message dispatching between the sender agent and receiver agent are through their
own agent proxy. An agent proxy keeps a reference of the receiver agent object if the
receiver and the sender are in the same host or keeps the host name and port of the remote
container where the receiver is located if they are in different hosts. For the application,
the communication between two agents is based on their name only, in other words,
without considering on which host they are located.

As mentioned in Chapter 2, the generic planner manages the changes to the mission
future. However, additional message passing between application agents and planner
introduces a large overhead to task planning. Minimization of this overhead is important
to the real-time agent platform. Hence, the Message Deliverer in each container caches
the socket connection to other containers once a message is sent to them. The destination
container creates a system thread to handle and maintain this connection. So, unlike ‘RMI,
this mechanism avoids the creation of a socket connection every time a message must be
delivered, which is a very time-consuming operation.

When an agent sends a message, the following different cases are possible.

) If the receiver agent lives in the same agent container, the Java object

44 -

representing the ACL message is passed to the receiver using an event object,
without any message translation (for example, the message sent by Agentl to
Agent2 in Figure 3-3).

(ii) If the receiver agent lives on a different container, the ACL message is sent
using a socket by the Message Deliverer (for example, the message sent by
Agent3 to Agent2 in Figure 3-3; in this case, a cache hit is supposed to occur, so

the main container is not contacted).

Main Container

Agent Container Agent Global
Table Descriptor Table

Message Deliverer
P

\
Slave Container \ Slave Container
G
Agentl 9. __ 2 Event Event 2
. B 1:|' D'A* ~~~~~~~ | Local
> Agent
Cached

& Proxy

Message Deliverer |+

Message Deliverer

Socket (?(mnectim'|

Figure 3-3 Intra-platform Communication Sub-system

3.2 Soft Real-Time Self-Planned Multi-Agent Framework

The agent management platform provides basic agent management service and
communication service. Moreover, in order to create a complete real-time multi-agent
framework, we should design a real-time agent framework above this platform. This

framework supports mission management (mission lifecycle management, mission

-45-

admission control and mission time consistency checking) and mission execution
management (task planning and task execution monitoring).

Within the framework, each mission instance has its own task planner in order to
avoid the task-planning bottleneck and reduce task planning overhead. The manager
agent equipped with task planner and application agents of each mission instance form an
agent group. After a mission instance is started, the communication between agents only
happens within the agent group (manager and selected application agents). In other words,
no service agents are involved in mission execution because service agents shared by all
agents can easily become the performance bottleneck of task planning. The different
instances of a mission do not share the same application agents. They involve different
instances of the same application agents. This is to avoid planning conflict raised by two
task planners. Creating agents during task execution is time consuming, so we assume
that all the application agents are created and started before the mission instance is started.
The importance value of a mission is automatically mapped as the priority of the
real-time threads of its agents that are involved in this mission by the middleware.

This framework also provides a resource-monitoring service for mission admission
controlling, for task planning and for locating agents duﬁng the creation of these agents.
This service periodically collects and calculates the resource status data of each host and
updates the local resource-monitoring file on each host. In other words, each host has a
copy of the current resource status data of all the hosts in the platform. This file is

accessible to all the task planners residing in the same host. The reason for separating

- 46 -

resource data collection from task planners is that the remote resource data collection and
calculation are relatively time-consuming. If the task planner performs this work every
time when it needs resource data, its planning overhead will increase dramatically.

The design of this framework involves four aspects: real-time service agents, a set of
protocols used by service agents to perform mission management and task planning,

general task planner, and general application agent.
3.2.1 Real-Time Service Agents

All the services that the framework provides are designed as service agents. They include

the following three Agents.

(1) Mission Management Agent (MMA): The MMA has the following functions:
register/deregister mission, init/kill mission instance and mission time consistency
checking.

(i) Manager Agent Equipped with Task Planner: The Manager Agent performs
mission execution management and task planning, including mission admission
control, starting mission instance, choosing a suitable solution for a phase, starting
the selected solution and handling deadline-miss exceptions.

(i) Smumpclient Agent: Each container has an Snmpclient that periodically collects and
calculates resource status data (e.g., CPU load, memory and bandwidth) of all
hosts and updates a local resource file with these data.

All the agents are implemented as real-time threads. So, they can take advantage of

-47-

the features of a real-time JVM. The following class diagram (Figure 3-4) shows the

design of the agents (service and application agents) in this platform (agent management

platform and real-time agent framework).

Rale

Agent
ol
i
ams F———4%4 - RealtimeAgent :1;_ Realtime Thread
=1 / ';(;Fq =1
=1 /74 \
=1 / / . AN
mma (‘r \\ *
o) ' / / Manager Worker
// 8 7 E 3 .
=/ / | \
=l TaskPlanner Scheduler
SnmpClient / =l =l
q I
DefauliTaskPlanner DefauliScheduler
=1 =

Figure 3-4 Class Diagram of Agents

3.2.2 Task Planner

As an internal component of a Manager agent, the task planner performs task planning

for each phase of a mission and handles deadline-missing exceptions.

3.2.2.1 States of the Planner

The state diagram of the planner agent is shown below.

.48 -

External

(eg,

hardware

Waiting for

Event

from

event happened
timer or

interrupt)

Mission
@ canceled /
Mission @
finished

o

Plan finished or

deadline missed

Active\

Plan started

Waiting for

finishing

Figure 3-5 State Diagram of Task Planner

3.2.2.2 Input for the planner

(i) Static Input

The following mission information is provided by the developer and submitted to the

planner before the mission is started.

Object Name Attribute Description
deadline Indicate the deadline of a mission.
period Indicate the interval between two
Mission periodic events.
importance Identifies the importance of a
mission within its application
(range from 1 to 10).
phaseSequence A sequence of phase objects.
index The sequential number of a phase
within its mission.
Phase deadline The deadline of a phase.
MET Minimum execution time of a
phase.

- 49 -

solutionSet

A set of solutions.

Solution

agentNameSet

A set of agent names and relevant
invocation parameters.

expectedTime

The expected execution time of
this solution, which can be a
constant or a function of data size
parameter.

quality

The expected quality of the result,
which can be a constant or a
function of data size parameter.

resourceNeeds

A set of resource needs.

AgentName

agentName

The name of an agent.

invocationParameters

The invocation parameters for the
agent.

InvocationParameters

roleName

The name of the role that an agent
will play.

relatedRole

The related role parameters.

sizeParameterSet

data size control parameters
(optional).

others

User-defined parameters
(optional).

ResourceNeeds

hosts

The maximal value of the CPU
utilization of some hosts. The
solution will be selected only if
the real CPU utilization is under
this value.

memory

The required remaining memory
capacity of some hosts. The
solution will be selected only if
the real remaining memory is
greater than this value.

bandwidth

The required bandwidth of some
hosts. The solution will be
selected only if the real
bandwidth is greater than this
value.

Table 3-2 Static Input Parameters for Task Planner

-50-

(i) Dynamic Input

Provided by the application: the mission status at the end of a phase. After finishing its
work in one phase, each agent reports to the planner whether the task is completed or not,
and the names of the roles that it can play in the next phase.

Obtained by the planner: the elapsed time of the mission, and the current system resource

status (CPU load, memory or bandwidth)

3.2.2.3 Planning algorithm

Public Plan plan(Mission mission, Phase currentPhase, float elapsedTime, Vector systemLoad,

Vector potentialRoles)

// if the deadline of current phase is missed, choose the cheapest plan according to
// potential roles and try to finish it as soon as possible
if (currentPhase.deadline <= elapsedTime) then {
//choose the cheapest plan
Plan selectedPlan = getCheapestPlan(currentPhase.solutions, potentialRoles);
/fif the plan was already selected, return null
If{selectedPlan == null || selectedPlan == currentPlan) then
Return null;
elsef
currentPlan = selectedPlan;

return currentPlan;

/

else { //if the deadline is not missed.
/calculate the remaining time of the mission.
remaininglime = mission.deadline — elapsedTime;
//using proata reasoning, get the appropriate time for the current phase
assignedTime = getProatalime(remainingTime, currentPhase, mission)
//if the assigned time is not greater than the Minimum Execution Time of the current

//phase, choose the cheapest plan according to the potential roles.

-51-

if{ assignedTime <= currentPhase. MET) then {
Plan selectedPlan = getCheapestPlan(currentPhase.solutions, potentialRoles);
if(selectedPlan == null || selectedPlan == currentPlan) then
Return null;

elsef

currentPlan = selectedPlan;

return currentPlan;

1}
elsef

//if the assigned time is greater than the Minimum Execution Time of the current
//phase, choose the appropriate plan according to the potential roles, time, quality
//and available system resource
//choose all the solutions involving potential roles that reported by the application
//agents (Solution Set 1)
Set selectedPlanSet = getPlansinvovlingPotentialRoles(currentPhase.solutions,
potentialRoles)
//from Solution Set 1, choose the solutions whose expected execution time is not
//greater than the assigned time (Solution Set 2)
selectedPlanSet = getPlanswithLimitedTime(selectedPlanSet, assignedTime);
//from Solution Set 2, choose the solutions whose resource needs is satisfied by the
//current system resource status (Solution Set 3)
selectedPlanSet = adjustPlansAgainstResource(selectedPlanSet, systemLoad);
//from Solution Set 3, choose the solution with the highest quality
While (IselectedPlanSet.isEmpty())

Plan selectedPlan = getPlanwithHighestQuality(selectedPlanSet);

if (selectedPlan == currentPlan) then {

SelectedPlanSet.remove(selectedPlan);
else {
currentPlan = selectedPlan;

return currentPlan;

/
// No plan is selected

Return null;

I 17

Script 3-1 Planning Algorithm

-52-

3.2.2.4 Output from the planner

The output from the planner can be null, which means no solution can be selected, or it
can be a solution for the current phase including a set of agent names and the invocation
parameters (the name of role that the agent will play, role allying parameters, data size
control parameters if the solution belongs to Category A, and other user-defined

parameters) for each agent.
3.2.3 General Application Agent

A general application agent is a partially implemented application agent. It captures the
common features of all application agents in our real-time agent model. Only by
extending the general application agent, application developers can easily develop their
own application agents. Based on our real-time agent model, the following features of an
application agent can be observed.

The design of the application agents is role-based. An application agent can carry
multiple roles and at a time it can only play one role. In other words, it can play another
role only after it finished the current work. An application agent knows all the
dependencies among its roles. That is, it knows which role has to be executed first and
which one should be played later, or concurrently. Based on the parameters from the task
planner, it decides which role it performs next. An application agent is almost stateless at
the end of a mission. In other words, it does not retain the knowledge that is pertinent to a

previous mission except perhaps in statistical data relevant to a future mission. However,

-53-

within a mission, the agent can retain the knowledge of the roles that it has performed,
and this knowledge also can be shared by other roles that it will perform. An application
system is constructed with a pool of application agents. During the initialization of the
application, all its agents are created and started. Then these agents automatically enter
dormant state and wait for instructions from the task planner. Different instances of a

mission involve different agent instances.

3.2.3.1 General Application Agent Model

The agent state diagram is shown below.

Application

initialized

Application

Selected by the planner

Active J

Figure 3-6 State Diagram of General Application Agent

terminated

Released by

the planner

The main functions of the General Application Agent are:
(i) Load multiple roles at the initial time of the agent,
(i) Play one role at one time,
(iii) Know the dependencies of its roles and which roles can be played next,

(iv) Schedule and launch the role by taking parameters from the planner,

-54.

(v) Provide storage mechanism for roles to share knowledge within an agent,
(vi) Coordinate with the planner, and

(vil) Provide agent life cycle management and communication support.

3.2.3.2 Design of the General Application Agent

The architecture of the general application is shown in Figure 3-7. The general agent
takes care of the life-cycle management of an agent. That includes creating, initializing,
deactivating, activating and terminating the agent. An application agent has a role pool to
keep all the roles that it will play. In order to support message-passing-based
communication, an inbox of ACL messages is designed. It keeps all the incoming
messages. The internal scheduler is responsible for coordinating with the task planner and
scheduling the execution of roles. A list of role objects and their names are kept in an
agent. In a fingerprint verification mission, for example, an image refiner agent may play
the role slave refiner whose object is ‘Slave Refinerl’ that is an instance of the
Slave Refiner role class. The role name (‘slave refiner’) and the object of the role
(Slave Refinerl) are stored in the role list of the agent that can invoke this role by
referring to .its name in the list. Role dependency knowledge includes a set of
parent-children role pairs. Each role pair involves the name of a parent role and the
names of a set of children roles that are identifiable based on the name of their parent.
The run-time knowledge shared among the roles is retrievable based on the name of the

role that outputs the knowledge. This knowledge is a set of variable and value pairs.

-55-

Role List (name — object pair list)
Rolel, Role 2, Role 3, Role 4.....

Private Inbox Internal Life-cycle
of ACL Scheduler of management
Message roles

Figure 3-7 Architecture of Application Agent

Werker
¢ taskPlanner
knowledgeofRoles
ol & potentialftoles
« EUNNING ¢ dependencyofRoles
& FINISHED ¢ syScheduler
« ERROR & cunrentRole
playec & Wotker
& chlldbozators & registerPlanmer
& datesize & deregisterPlanner
& others & geiPlarmer
& addRols
: naree : N Scheduler
a ok g & removeRole * ;cmr
& getlams & s=ilsowledgeofRale : executeScheduling
& setRokOwnier & setlnowledgeafRole
» tRokO & setDependencyofRole
& setColldborat & giDependencyofRole
HCollshorat .
: f: it o & getKnowisdgeofRolk
ACtherP ters & getKnowledgeofRole
. e & startCumentRole DefaultScheduler
& start .
& statBelavigus & getRumingRoleStatus & DefanltScheduler
& stop & seilp & executeScheduling
a geiStates & execute & stopScheduling
& stopCurrentRole & getPotentialRoles
& eceivelvisg
& blockReceivelvisg

Figure 3-8 Class Diagram of Application Agent
The class diagram of the general application agent is shown in Figure 3-8. A default
scheduler is already implemented in this platform. Developers can implement their own

scheduler by extending the Scheduler class. This gives more flexibility to developers.

-56-

—~

getPotentialRoles(role1)

]

finished(/rfxtNams, wes; poteniia]Rnles)

o

ﬁ___..____._.._______

plarning(planning{rafssion, currentPhase, efapsedTime, systeraldad, potentialRoles)

<]

sendParameters(mleQ,' role_a]lying_paramc\;térs, data_size, others)

L]

t

t

i
—setCurrentRole(roled)

1
[| Z] i
] 1
1 1
1 1
] 1
| - i .
: setParame' ters(role_allyi 'ammeters, data_siz& éthers)
: I “1]
| 1 !
1 1 1
i |]
st | :
-~ | 1
U startCuntniRole() !
1] :-: 1
: L]
i |
1 1
1 1
1 |
| [}
| t

—
1
1

Figure 3-9 Switching from one role to the next
The most important part of the general application agent is the internal scheduler,

which is responsible for starting/terminating the execution of roles by taking parameters

-57-

from the task planner and reporting the execution result of a role to task planner. The

switch from one role to the next role is shown in Figure 3-9.

3.2.4 Protocol for Main Services

This section includes the description of the important protocols in the platform.

3.2.4.1 Process Plan Exception

1]
mtlfy(cheapest solution fa.ll}ne“)

}
t
- stopMission|

notify(“replan”)

L

o

<]

-

1
chooseChs&pestSolutiolh()

]

1

]

1

1

i

1

1

1

1

1

Figure 3-10 Planning exception processing

~58-

3.2.4.2 Initializing a Mission Instance

B acceptCommand(initial{zeMission,instanceNamel,chssName)

<]

createMjssion(instanceName, clajsName}

LI

rAcheckIvlissiontN ame(ingdtanceName)

1

1
$
{
]
i
i

returmiiiror("conflicted mission name")

C]

cmateMa?mgex(instanceName + "_%'nzmager")

1
1
1
]
1
1
1
1
]
]
1
[}
‘
i
t
¢
t
i
'
t
i
L]
]
1
1
]
1
[}
1
1
1
1

LJ 1

LcreateAgent(instanceNa'm +"_rnanager”, Mamgei’)
3

<] '

1
1
1
1
1
1
:
]
1 e 1)
1] 1 (]
) 1]]
i 1 1 1
) 1 1)
i | | 1 '
1] 1] L}
: : createMjssion(instanceName, clagsName) :
] [} U t
) 1]
: : _ cmateMission(instameN'ame,chssNum
1 1 t
: : T <] :
1 1 i 1
1] 1]
1 1) i
1 1 1] §
' . : asgignVlission{missionInstande)
] 1 1 /U
3 1 1
]] 1 [}
1 1 1 1
(] 1 | 1
1 1 1 L. 1
! : ' ! startTaskPlannex() _ |
: i : L]
| 1 | g
1 1 1 1
1 1]]
i ' notify(“missjon created”) e '
V L] I :
1] 1]
lm:nti.t'y'("rmission cmaied"): : - :
i] 1
i] 1
1 4 t 1
] §])
1 1 1] 1
i 1 1] 1

Figure 3-11 Initialization of a mission instance

-59-

3.2.4.3 Switching from One Phase to the Next One

] 1
f'mlished(agentName, ¥es, m‘lll)

1
1 l__l
: P finished(agentName, ves, potentialRoles)

L :

fuﬁshed{agentName, yes, potentiialRDles)

el

L]

:
i 1
1 [}
—:-planning(rrdssion, currentPhase, elapsedTitne, sg}stemLoad, potentialRoles)
] : I :
I] 1
] i 1
I 1 i
] 1 !
- sendPammeters(imq'ocationPammeters) - : :
| L] :
§ 1]
] 1]
| | {
- sendPdrarsters(invocationParafheters) :
] 1 LJ
1 1
I | [
1 [} []
] | i
N : sendParameters(impcatioanmters) : %
I l L L]
I | 1 t
! 1 i !
|
- start() o : .
| start() L] : ;
t t Tt 1
] statt() LI !
1 1] o |
: | o L
1 1 1 |
| 1 -4 |
[} 1 H |
T | | § f

Figure 3-12 Switching from one phase to the next

-60 -

.

1ssion

3244 KilM

—stopCurrent]

IIIIIIIIIIIIIIIIIIIIIIII - _VII _Illllllllllllllll
u)\...u
% =
5 2
g 2
g m,,
..................... ok e £ LSRR e D & SR E AL S0 S b
&- o
B g
. 24
& 5 i
m. - By 8
T e s S -7 !
: i B
m = ,m\,
8 m
R WU-:U -
1 ! n
= g
5 E
B E &
1l 8 g
- - M R e e []--------

Figure 3-12 Kill a mission
-61-

3.3 Services from the Developer’s Perspective
In this section, we summarize the services that the framework provides to developers and
the developer’s responsibility (what the developer has to implement) in the development

of an application using this framework.

SPAF supports Developer’s responsibility

1. A mission skeleton formed by a set of | 1. A concrete mission class, involving

APL mission definition, phase sequence
2. General application agent (API). definition and alternative solutions for
3. Arole skeleton (API). each phase.
4. Internal scheduler interface (API). 2. A set of application agents. Each
5. Task planer interface (API). solution includes some of them.
6. Default role scheduling algorithm. 3. If necessary, customized task planner
7. Default task planning algorithm. and internal scheduler.
8. Mission admission control and time

consistency checking.
9. Planning exception handling.
10. Resource monitoring.
11. Agent management service (AMS) and

message transport service (MTS).

Table 3-4 Services provided to developers
The services provided by our framework belong to two categories: customizable
services and fixed seﬁices. Developers can implement new services by extending
customizable services that involve mission skeleton, agent and role skeleton, task
planning and role scheduling. On the other hand, the fixed services (mission admission
control, planning exception handling, resource monitoring and AMS and MTS) are

integrated into our framework to support the execution of the application. These services

-62-

cannot be customized by developers, but they are general enough to support different
kinds of applications.

The mission skeleton (Figure 3-14) is formed by a set of classes: Mission, Phase,
Solution, ResourceNeeds and InvocationParameters. It provides support for developers to
create a concrete mission. The example of how to use this skeleton can be found in
Chapter 4. In addition, a general application agent skeleton and a role skeleton (Figure
3-8) are provided, which can be used by the developers to implement application agents.
Moreover, the implementation interfaces of the internal scheduler and task planner
(Figure 3-15) are reserved for developers in case a customized task planner or internal
scheduler is needed. Also, the default internal scheduler and task planner provides
complete support for executing the customized mission and minimizing the application
development effort.

All the fixed services are provided for the development/execution of soft real-time
multi-agent systems based on the principle of quality-time tradeoff. Mission admission
control only accepts a new mission when its resource requirement can be met by the
current resource status of the system. It minimizes the resource conflict among the
currently running missions and allows these missions to possibly meet their deadlines.
Planning exception handling makes the execution of a mission more robust. Through the
re-planning mechanism, this service gives a potentially failing mission another
opportunity to finish the phase and eventually meet the deadline. Resource monitoring is

very useful for load balancing and resource conflict resolution. It is almost transparent to

-63-

the developers and greatly simplifies the development of the application. Last but not the
least, the AMS and MTS provide agent lifecycle management service and message

delivery service, two basic services for the development of a multi-agent system.

Mission Phase
a void : setName(String._nams) & void : setName(String _name)
& String getName() & String : getName()
& void : setPeriod(int _period) & void : setIndex(int i)
& String : getStart Tire(} X} @ int +-getindex()
& void setStart Time(String : start Time) & void : setDeadline(long _deadline)
& long : getPerind() & long : getDeadline()
a void : setDeadline(int _deadline) @ void : setMET (long - time)
& long - getDeadline() & long : getMET()
& void : setTmportanceRanking(int _importance) & void : addSolution(Solution _solution)
& int ! getlmportanceRanking() a Vector : getSolutions()
& void : addPhase(Phase _phiase, int _index)
@ Phase : getPhase(int _index)

—— - ResourceNeeds
ayoid :setName(String_nare) .1 & void : addResource(Hashtable _resourceNeed)

String : getName(}
a .
& void : setAgentNameSet(String _workerName, InvocationParameters _invocationparameters) & Hashiable : getResource()

& IrvocationParameters : getAgentNameSet(String _workerName)
& void : setEET(long 1)

& long : getEET()

& void : setQuality(int t)

& int getQuality()

& void : setResourceNeeds(ResourceNeeds _resourceNeeds)

a ResourceNeeds : getResourceNeeds()

b
TnvocationParameiers

& [nvocationParameters(String - roleName, String _toleAllyingName, Float _dataSize, String _otherParameters)
& void setRoleName(String - narae)
& String : getRoleName()
& void : setRole&llying(String _name)
a String : getRole Allying()
a void : setDataSize(String _name)
& String : getDataSize()
& void : setOthers(String - name)
& String : getOthers() -

Figure 3-13 Class diagram of mission skeleton

-64 -

Scheduler

& Scheduler
& executeScheduling
=

TaskPlanner

DefauliScheduler

& DefaultScheduler
& executeScheduling
@ stopScheduling
& getPotentialRoles
=1

a TaskPlanner

@ handleAsyncEvent

& setMission

a getMission

& isFinished

@ stopWork

& planning

& getCurentTine

& getCheapestSolution

& getProataTime

& getSolutionswithLimited Time
@ getSolutionsInvovlingPotentialRoles
a getSolutionwithHighestQuality
& startTaskPlan

=1
)

DefauliTaskPlanner

=1

Figure 3-14 Class diagram of scheduler & task planner

-65 -

Chapter 4

Case Study: Intelligent Security Monitoring System

In this section, we illustrate the use of SPAF by showing how the sample application —
Intelligent Security Monitoring System (ISMS) — can fit into our model and can be
developed using the classes of SPMM mission and application agent skeleton. The ISMS
is a software tool with intelligent surveillance functions that enable effective monitoring
of a building. The objective of this case study is to show how SPAF facilitates the design
of a soft real-time application involving quality-time tradeoff and the agent programming

through the pre-defined application API involving a role-based agent model.

4.1 Intelligent Security Monitoring System (ISMS)

Generally, the ISMS resides over a set of hosts connected via a LAN. In other words, the
network delay is somewhat predictable. In the system, there are various monitoring
missions running concurrently, each of which has soft real-time constraint. For example,
there are 10 periodic missions that monitor 10 different local sites such as lobbies and
hallways, and there are sporadic fingerprint verification missions invoked at 10 entrances
and face verification missions invoked at another 5 entrances. Each mission is complex
and involves multiple steps to be completed. A fingerprint mission, for example, may

involve four phases: image sampling, image refinement, image recognition, and result

- 66 -

reporting. Different missions may have different importance measures. For example, the
fingerprint verification mission may be more important than the lobby-monitoring
mission because someone is waiting to enter. Also the importance of fingerprint
verification missions may depend on the priorities of different entrances. Some missions
do not have predictable arrival rates or patterns. Typically missions are independent and
do not interact directly among themselves. Within a phase of a mission, there may be
several alternative solutions to finish this phase. For example, in the image-refining phase
of a fingerprint mission, different data granularity can be used. The larger granularity a
solution uses, the less time it takes. Also, in fingerprint recognition phase, different
recognition algorithms can be used, which may differ in terms of quality and computing
time.
4.2 The Development of ISMS
Developing ISMS on SPAF involves the following steps:

(1) Defining each mission.

(i) Defining each solution.

(iii) Implementing the application agents.

(iv) Implementing each role.
4.2.1 Defining Each Mission

From the perspective of the whole application, the developers have to identify and define

the missions in terms of SPAF. In this security monitoring application, there are 25

- 67 -

missions. These missions vary in terms of deadlines, periods and importance rankings.
For example, the fingerprint verification mission at one entrance has an importance
ranking of 5 out of 10 and has to be finished within 10 seconds. Because the mission is
sporadic, its period is 0. The whole mission involves four phases: image sampling, image
refinement, image recognition, and result reporting. Image information on the fingerprint
is gathered from the image device by a data sampling agent and piped through a series of
filter agents for refinement. The refined image data is then passed to the image
recognition agents for fingerprint matching. Based on the matching result, the report
agents perform certain actions, such as approving, denying, alarming or recording.

Within each phase, there are several alternative solutions. For the image sampling
phase, one algorithm can have different data sampling rates. This phase should be
finished within 2 seconds. The minimum execution time of this phase for the simplest
solution is 1 second. Similarly, the image refinement phase has one refinement algorithm
and different data granularities, such as 80%, 60%, or 50% of the entire image data. Its
deadline is 3 seconds and minimum execution time is 2 seconds. Within the image
recognition phase, 3 different image recognition algorithms can be used. The deadline for
this phase is 3 seconds and the minimuni execution time for the simplest algorithm is 1.5
seconds. The last phase — result reporting — has to be finished within 2 seconds. An
action is performed based on the image matching result and a report is generated. The
level of detail in the report depends on the amount of time left. All the above detail can

be specified by inheriting a sub-class from the base class Mission, and setting its

-68 -

attributes. Similarly, the phases of a mission are specified by inheriting a sub-class from

the base classes Phase and setting their attributes, as shown below.

// Defining Fingerprint Verification Mission (FVMission)
FVMission extend Mission {

setlmportanceRanking(5); //define important ranking as 5

setDeadline(10); //define deadline as 10 seconds
setPeriod(0); // no period is defined

addPhase(SamplingPhase, 1); // add phases one by one with index
addPhase(RefiningPhase, 2);

addPhase(RecognitionPhase, 3);

addPhase(ReportingPhase, 4);

)

Script 4-1 Defining fingerprint verification mission

// Defining Refining Phase
RefiningPhase extend Phase {

setDeadline(3); //set the deadline as 3 seconds

setMET(2); //set the minimum execution time as 2 seconds

addSolution(Solution_80); //add the solution whose data granularity is 80%
addSolution(Solution_60); //add the solution whose data granularity is 60%
addSolution(Solution_50); //add the solution whose data granularity is 50%

} e
// Defining Recognition Phase

RecognitionPhase extend Phase {

setDeadline(3); ‘ //set the deadline as 3 seconds

setMET(1.5); //set the minimum execution time as 1.5 seconds

addSolution(Solution_A1); //add the solution with the recognition algorithm 1
addSolution(Solution_A2); //add the solution with the recognition algorithm 2
addSolution(Solution_A3); //add the solution with the recognition algorithm 3

Script 4-2 Defining phases

- 69 -

4.2.2 Defining Each Solution

Before defining each solution, the following work should be done: the definition of roles
and their relationship, and the definition of application agents and role assignment. As
Table 4-1 illustrates, four application agents (Worker1, Worker2, Worker3, and Worker4)
are involved in the fingerprint verification mission. Workerl works as a sampler in
Phasel, a master-refiner in Phase2 and different image-extractors in Phase3. Worker2
acts as a slave-refiner in Phase2. Worker3 works as a slave-refiner in Phase2, different
image-matchers in Phase3 and action-performer in Phase4. Workerd acts as a
slave-refiner in Phase2 and report-generator in Phase4. An arrow indicates the potential
roles that an agent can play during the switching of phases. Moreover, image-extractor
and image-matcher will work together to complete an image recognition algorithm, and

action-performer and report-generator will work together to fulfill the task in Phase4.

Agent Phasel Phase2 Phase3 (roles) Phase4 (roles)

(roles) (roles)

Workerl | Sampler ’Master-reﬁnef 1" 1) Image-extractor! of algorithm1

"W

-

\‘2) Image-extractor2 of algorithm?2
“ 3) Image-extractor3 of algorithm3

Worker2 Slave-refiner “.‘

Worker3 | Slave-refiner | 1) Image-matcherl of algorithm1 ~ ®Action-performer
2) Image-matcher2 of algorithm?2
3) Image-matcher3 of algorithm3

Workerd Slave-refiner Report-generator

Table 4-1 Application agents and roles
The definition of a solution can be done by inheriting a sub-class from the base class

Solution and setting its attributes, as shown below.

-70 -

//Defining the solution with 80% data granularity in Phase2
Solution_80 extend Solution {

//set the quality ranking as 10, the highest within the phase
setQuality(10)

//set the estimated execution time as 2.7 seconds
setEET(2.7)

// set the resource needs, cpu, memory or bandwith
setResrouceNeeds(new ResoruceNeeds());

/define worker agents and their invocation parameters in the phase
setAgentNameSet (“Workerl”, new InvocationParameters(“master-refiner”, “ slavel
= Worker2, slave2 = Worker3, slave3 = Worker4”, “0.87,”"));

setAgentNameSet (“Worker2”, new InvocationParameters(“slave-refiner”, “master =
Worker1”,”0.8",”"));

setAgentNameSet (“Worker3, new InvocationParameters(“slave-refiner”, “master
Workerl”, “0.8”,”"));

setAgentNameSet (“Worker4, new InvocationParameters(“slave-refiner”, “master
Workerl”,”0.8”, “”));

}

I

Script 4-3 Defining solution - 1

//Defining the solution with image recognition algorithml in Phase3
Solution_A1 extend Solution {

//set the quality ranking as 10, the highest within the phase
setQuality(10)

//set the estimated execution time as 2.9 seconds

setEET(2.9)

// set the resource needs, cpu, memory or bandwith
setResrouceNeeds(new ResoruceNeeds());

//define worker agents and their invocation parameters in the phase

setAgentNameSet (“Workerl”, new InvocationParameters(“Image-extractorl”,
“matcher = Worker3”, “”,”"));

s s

setAgentNameSet (“Worker3”, new InvocationParameters(“Image-matcherl”,
“extractor= Worker1”,””,” ")),
/

Script 4-4 Defining solution - 2

-71-

4.2.3 Implementing the application agents

The implementation of an application agent involves the role assignment and the
definition of role dependencies. As shown in Table 4-1, the application agent Workerl
takes the role sampler in the image sampling phase, plays the role master-refiner in the
image refinement phase and then it performs one of three mutually exclusive roles:
image-extractorl, image-extractor? and image-extractor3, which correspond to three
alternative algorithms. This is specified by adding the five roles: sampler, master-refiner,
image-extractorl, image-extractor2 and image-extractor3 using the addRole() method of

Workerl sub-class of Worker agent base class, and setting the dependencies among them

through setDepedencyRole(), as shown below.

//Implement application agent Workerl
Workerl extend Worker{

/add roles
addRole(sampler);
addRole(master-refiner);
addRole(image-extractorl);
addRole(image-extractor);
addRole(image-extractor3);

/define role dependency

setDepedencyRole(“sampler”, “master-refiner”);
setDepedencyRole(“master-refiner”, “image-extractorl,
image-extractor3”)

»

image-extractor2,

Script 4-5 Implementing application agent

Note that this dependency reflects the developer’s choice of using this agent as a

-7 -

surviving agent during the switching from Phasel to Phase2 and from Phase2 to Phase3.
The choice of the role played by this agent is decided by the planner at run time.
Meanwhile, part of the mission state is retained by this agent until the next assignment by

the planner.
4.2.4 Implement each role

The implementation of each role is based on the work partners of an agent that are
defined in its invocation parameter. For instance, in Solution_80 of the image refinement
phase, Workerl (playing the main-refiner role) works with Worker2, Worker3 and
Worker4 (playing the slave-Refiner roles) to perform data-parallel image refinement.
Also, main-refiner communicates with each slave-Refiner, but slave-refiners do not talk
to each other. The related role parameter for main-refiner is “slavel=Worker2,
slave2=Worker3, slave3=Worker4". 1t is assigned to main-refiner by the task planner at
run-time. Similarly, the related role parameter for slave-refiner is “master=Workerl”.
The sample code segment for Worker! and Worker2 is shown in Script 4-6 on the next
page.

SPAF provides a complete model for developers to better use the principle of
quality-time tradeoff in the design of soft real-time applications in open environments. Its
self-planned mission framework greatly simplifies the development of such applications.
In particular, its functional and data decomposition based solution model provides a

powerful tool to developers for designing alternative solutions. Also, the availability of

-73 -

the self-planner facilitates the dynamics of adjusting the mission quality based on
run-time resource status, which strengthens the mission’s ability to tolerate deadline
missing failure and achieve higher average mission quality compared with the mission

without planner.

//Implement Image —Extractor!
Image-Extractor] extend Role {

/fimplement this method that perform the feature extracting work
public void startBehaviors(){
FeatureData fd = featureExtract(data), // perform feature extracting
sendFeatureData(image-matcherl, fd); /send the feature data to
/image-matcherl

}
/Implement Image — Matcherl

Image - Matcherl extend Role {

/limplement this method that perform the image matching work
public void startBehaviors(){
FeatureData fd = waitingforFeatureData(image-extractorl);
matchingResult mr = ImageMatching(fd);
deposit(“image-Matcherl”, mr); //deposit matching result that will be used in
//the last phase

Script 4-6 Implementing application roles — 1

-74 -

/Implement main-refiner role
Main-Refiner extend Role{

/implement this method that perform the image refinement work
public void startBehaviors(){

Data dl,d2,d3,d4;

sendWork(slavel, 1, image); //send the first 1/4 work to slavel
sendWork(slave2,2,image); //send the second 1/4 work to slave?2
sendWork(slave3,3,image); //send the third 1/4 work to slave3

//perform image refinement on the fourth 1/4 work

d4 = performRefinement(4, image),

while (dI == null || d2 == null || d3 == null || d4 == null){
Data ¢t = getWork()
If(t.getSource() == slavel)

dl =¢
else(t.getSource() == slave2)
2=t
else(t.getSource() == slave3)
d3=¢
}
Data total = combineWork(d!l,d2,d3,d4); //combine the works
deposit(“main-refiner”, total); //deposit the combined data that

//will be used in the image recognition phase

}
/Implement Slave-Refiner

Slave-Refiner extend Role {

/fimplement this method that perform the image refinement work
public void startBehaviors(){

Image im = waitingForWork(master); //waiting for work from master refiner

//perform image refinement on the recievied work
Data d = refine(im);
sendBackWork(master, d); //send the refined data back to master refiner

Script 4-7 Implementing application role - 2

-75 -

Chapter 5

Performance Evaluation

In Chapter 4 we illustrated the use of our self-planned mission model in the design and
implementation of soft real-time multi-agent based applications. So far, a working
framework on real-time JVM has been implemented. In this chapter, a set of simulation
experiments of our developed prototype Intelligent Security Monitoring System built on
our framework is introduced and a performance study of the self-planner is conducted.
The objectives of this evaluation are to measure the overhead of the planner, and to test
the impact of the planner on both the quantified quality level of the results and the
frequency of deadline misses. The experiment was performed on a LAN with 4 hosts
each of which ran the TimeSys Linux GPL platform with Real-Time JVM implemented
by TimeSys Corporation. A single JVM was used to support an agent container on each
host.

5.1 Overhead of the Planner

Compared with an unplanned mission, the overhead of a generic planner for a planned
mission comes from the following: message passing latency; planning algorithm; agent
switching time. To evaluate this overhead, a mission involving 5 application agents (and
one planner agent) was developed. The structure of the mission shown in Figure 5-1 is

similar to the abovementioned fingerprint verification mission except that one more

-76-

worker agent is added to play the role of slave-refiner.

: ; Deadline >
Image Sampling | Image Refining I Image Recognition | Result Reporting
| e o | |

Sampling_HighQuality ~HighQuality Recognition. HighPrecision . .

Workerl- Mastet-refiner : Reporting_ManyDetails
Wortker] — Sampler Worker]- Image-¢xtractozl : .

(Worket2, Worker3, : Worker3-Action-petformer
Data size (0.9) Worker3 — Image-matcherl

Workerd, Worker5)— Workerd-Repott-generator

Quality 9
Slave-refiner

Sampling MiddleQuality Data size (0.8)
Workerl — Sampler

Quality 8
Data size (0.7)
Quality 7 Refining_Middle Quality
s e L it (Worker2, Worket3,
any owQu
pling | Quality Workerd, Workerd)—
Workerl —Sampler
Slave-refiner
Data size (0.5) .
. Data size (0.6)
Quality 5 .
Quality 6

Refining_Low Quality
(Worker2, Worker3,
Wortkerd, Worket5)—
Slave-refiner

Data size (0.5)

Quality. 5

uality 10
Quality Data size 1

Recognition_MiddlePrecision Quality 10
Worketl- Image-extractor2

Wortker3 — Image-matcher2 Reporting_LessDetails

Quality 7 Worker3-Action-performer
Recognition. LowPrecision = Worker4-Report-genetator
Worketl- Image-extractos3 Data size 0.6

Wotker3 — Image-matcher3 - Quality 6

Quality .5
Reporiing_Witho utDetails
Worker3-Action-petformer
Worket4-Report-generator
Data size 0.5
Quality 5

Figure 5-1 Structure of sample mission

These 5 application agents were manually distributed among four hosts: one host ran two

agents while each of the remaining hosts ran a single agent. In order to achieve the same

execution time during different runs, the deadline was relaxed so that the best solution

was selected in every phase leading to the result with the best quality level. The execution
time was measured for four different situations: mission without planner, mission with
planner (no planning), mission with planner (planning without checking resource), and

mission with planner (planning with resource checking).

-77-

The unplanned mission always

uses the highest mission quality. The deadline of a phase can be adjusted during the
runtime and is not used to calculate the utilization. So the utilization achieved by
unplanned mission is not worse if some phase(s) did not complete within the deadline as
long as the deadline of the mission is met. The graphs are averaged over several runs. The

result is shown in Figure 5-2.

Execution Time. (ms) of Single Mission

wi thout with plarmming planning

Dlanner planner(no without with

rlanning) checking checking
resource reésource

Figure 5-2 Execution Time of Single Mission in Different Situations
Figure 5-2 shows that the overhead of the planner is rather insignificant (less than 1% of
the mission execution time — 34 ms for a mission that takes 5086 ms without
self-planning). Such a low overhead is mainly due to the planner/application coordination
model and the efﬁcieﬁt communication layer of the platform.
5.2 Impact of the Planner on Average Quality and Deadline Missing Rate
In order to evaluate the effectiveness of the self-planner on multiple missions, 10

missions each with 4 phases were developed. The structure of these missions is the same

-78 -

as the one in Figure 5-1. Each mission involved 5 application agents and one planner
agent. So the total number of agents in the system was 60. This has provided a reasonable
system load (rather than overloading) to the actual runtime environment without
saturating the system and creating resource bottlenecks. We also chose reasonable
deadline expectations so that under a light load situation, a mission could always be

completed without violating the deadline.

Average Deadline Missing Rate

——without planner and
with the most
expensive solutions

without planner and
with the cheapest
solutions

(%)

——planning

Deadline Missing Rate

QOO0 Q0 Q9 QO 9O O O
D QOO QY O 0V 0V N
0w O 10 W W W — N ¥ D D

L - T AR T B = B To B To I T o

Deadline (ms)

6221

Figure 5-3 Average Deadline Missing Rate
The average execution time of these 10 missions without the planner is about 5331
ms. Figure 5-3 illustrates that the deadline missing rate improves when the deadline is
tight (that is, less than the average mission execution time). When the deadline is tight,
the planner likely chooses faster solutions, thereby improving the chance to complete
before the deadline of the phase, leading to lower deadline misses. Figure 5-4 indicates
that the quality of the results also improves when the deadline is tight. This is because

self-planning increases the number of successful missions (each probably with lower

-79.

quality), which leads to higher overall quality.

Average Mission Quality

40
:; 35 without planner and
-~ 30 with the most
S 25 expensive solutions
é% ~——without planner and
o 20 § with the cheapest
S 15 solutions
2 10 planning
o
= 5
0
OO O O O O o O O
oSO O O O O W 0 O
n O W w0 w W —~ N <H
~ =~ N N 1w W

~ 5580
5920
6221

Deadline (ms

Figure 5-4 Average Mission Quality

Compared with the mission without planner and with the most expensive solutions,
however, the test results also show that when the deadline is more relaxed (that is, greater
than the average mission execution time), the missions with self-planning sometimes
exhibit higher deadline missing rate and poorer result quality. So, here we discuss the
conditions under which the tradeoff strategy may work. We assume that 7,;, is the sum of
the execution times of all the fastest solutions of a mission; T, is the sum of the
execution times of all the slowest solutions of a mission; Ty is the deadline of the
mission; T}, is the average time taken for each task planning; N is the number of phases of
the mission. When Ty > T,,;,,+N*T}, our strategy may work. For Figures 5-3 and 5-4, the
execution time of an unplanned mission is T, because the planner always chooses the

slowest solutions. Moreover, the max execution time of a planned mission with all the

-80-

slowest solutions is TatN*T),. So when Tpex < Ty < TnaxtN*T,, the planned mission
has more chance to fail than the unplanned mission if there are no alternative simpler
solutions that can be chosen to compensate for the planning time N* 7, during the runtime.
From Figures 5-3 and 5-4, we can see that T}, is about 5300 ms and T;,+N*T, » 1s about
5600 ms. When 5300ms < T, < 5600ms, the planned mission has higher average deadline
miss rate and lower average mission quality. In addition, if the estimated execution times
of all the solutions within each phase are very close, the planned mission will have higher
probability to miss its deadline than the unplanned mission.

These preliminary results confirm that the self-planning model and the associated
framework are meaningful and practicable tools for soft real-time agent applications.
However, its effectiveness may depend on careful tradeoff between the planning
overhead and the tightness of deadline. In fact, it may be best to adaptively trigger

re-planning, depending on the remaining time before mission deadline.

-81-

Chapter 6

Conclusion and Future Work

We have developed a self-planned agent model that makes use of quality-time tradeoff in
different phases of a real-time mission. The model involves integration of a few novel
concepts including decomposition of mission tasks into concurrent activities using either
functional (multiple role) decomposition or data (single role) decomposition, admission
control for responsiveness to committed missions, and dynamic optimization using
alternate solvers or alternate data granularity in the selected solver. Viability and design
issues of this model are further studied by implementing a corresponding agent
framework. This framework has to address realization issues such as application interface
and continuity of transitioning from one mission phase to the next. The solution we have
adopted involves application-selected agents that survive from one phase to another and
in so doing will carry forward with them the necessary mission state. Preliminary
experimental studies revealed that the planner overhead is rather insignificant, and it can
potentially improve quality and deadline missing rate.

Future efforts should include more extensive application studies and extending the
system to become node-crash tolerant. Fault-tolerance is an important asset for most

real-time applications.

-82-

Bibliography

(1]

(2]

[3]

[4]

(3]

(6]

(7]

(8]

[9]

[10]

[11]

M. Wooldridge, An Introduction to Multi-Agent Systems, John Wiley & Sons, UK.
2002.

W. Lee, B. Sabata, “Admission Control and QoS Negotiations for Soft-Real Time
Applications”, In Proc. of Intl. Conf. on Multimedia Computing and Systems,
Centroaffari, Florence, Italy, June 1999.

Tarek F. Abdelzaher, Ella M. Atkins, Kang G. Shin, “QoS Negotiation in Real-Time
Systems and Its Application to Automated Flight Control”, IEEE Transactions on
Computers, Volume 49, Issue 11, November 2000, pp. 1170-1183.

John A. Stankovic, T. He, T. Abdelzaher, M. Marley, G, Tao, S. Son, C. Y. Lu,
“Feedback Control Scheduling in Distributed Real-Time Systems”, 22nd IEEE
Real-Time Systems Symposium, London, England, December 2001.

Ing-Ray Chen, “On Applying Imprecise Computation to Real-Time AI Systems”,
The Computer Journal, Vol. 38, No. 6, 1995.

Jai-Hoon Kim, Kihyun Song, Kyunghee Choi, Gihyun Jung, SeunHun Jung,
“Performance evaluation of on-line scheduling algorithms for imprecise
computation”, Real-Time Computing Systems and Applications, Proceedings, Fifth
International Conference, 27-29 Oct. 1998, pp. 217-222.

Wei-Kuan Shih, Che-Rung Lee, Ching-Hui Tang, “A fast algorithm for scheduling
imprecise computations with timing constraints to minimize weighted error”,
Real-Time Systems Symposium, 2000, Proceedings, The 21st IEEE, 27-30 Nov.
2000, pp. 305-310.

A. Garvey, V. Lesser, “A Survey of Research in Deliberative Real-Time Artificial
Intelligence”, University of Massachusetts Computer Science, Technical Report
93-84, November, 1993.

D.J. Musliner, J.A. Hendler, A K. Agrawala, E.H. Durfee, J.K. Strosnider, C.J. Paul,
“The challenges of real-time AI”, Computer, Volume 28, Issue 1, Jan. 1995, pp.
58-66.

M. Boddy, T. Dean, “Deliberation Scheduling for Problem Solving in
Time-Constrained Environments”, Artificial Intelligence, Volume 67, Issue 2, June
1994, pp. 245-285.

S. Zilberstein and S. J. Russell, “Constructing Utility-Driven Real-Time Systems

-83-

Using anytime Algorithms”, In Proceedings of the IEEE Workshop on Imprecise
and Approximate Computation, pp. 6-10, Phoenix, AZ, December 1992.

[12] Michael C. Horsch and David Poole, “An Anytime Algorithm for Decision Making
under Uncertainty”, In Proc. 14th Conference on Uncertainty in Artificial
Intelligence (UAI-98), Madison, Wisconsin, USA, July 1998, pp. 246-255.

[13] V. Lesser, J. Pavlin, and E. Durfee, “Approximate Processing in Real-Time Problem
Solving”, Al Magazine, 9(1) pp. 49-61, Spring 1988.

[14] Keith S. Decker, Alan J. Garvey, Marty A. Humphrey, and Victor R. Lesser, “A
real-time control architecture for an approximate processing blackboard system”,

International Journal of Pattern Recognition and Artificial Intelligence, 7(2) pp.
265-284, 1993.

[15] B. Horling, V. Lesser, R. Vincent and T. Wagner, “The Soft Real-Time Agent
Control Architecture”, Proceedings of the AAAI/KDD/UAI-2002 Joint Workshop
on Real-Time Decision Support and Diagnosis Systems, July 2002.

[16] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman, R.
Podorozhny, M. NagendraPrasad, A. Raja, R. Vincent, P. Xuan, X.Q. Zhang,
“Evolution of the GPGP/TAEMS Domain-Independent Coordination Framework”,
Autonomous Agents and Multi-Agent Systems, Vol: 9, Num: 1, pp. 87-143, July
2004.

[17] E. Hodys, “A Scheduling Algorithm For A Real-Time Multi-Agent System”,
University of Rhode Island, 2000.

[18] E.A. Kendall, “Agent software engineering with role modeling”, in: P. Ciancarini,
M. Wooldridge, (Eds.), Proc. the First International Workshop (AOSE-2000),
Springer-Verlag, Berlin, Germany, Jan. 2000, pp. 163-170.

[19] E.A. Kendall, “Role Models — Patterns of Agent System Analysis and Design”, BT
Technology Journal, Vol.17, No. 4, October 1999.

[20] N. Carriero, D. Gelemner, How to write parallel programs: A first course, MIT Press,
Cambridge, MA, USA 1990.

[21] Real-Time Java Specification 1.0, https://rtsj.dev.java.net/

[22] FIPA Agent Management Specification, Foundation for Intelhgent Physical Agents,
http://www fipa.org/specs/fipa00023/, 2000.

[23] JADE, http://sharon.cselt.it/projects/jade/

-84-

