INCORPORATING APPLICATION-TRANSPARENT
NODE-CRASH TOLERANCE TO A SOFT REAL-TIME
SELF-PLANNED AGENT FRAMEWORK

RAMPRASAD MADHAVAN

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 2005
(© RAMPRASAD MADHAVAN, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10292-6
Our file Notre référence
ISBN: 0-494-10292-6
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Incorporating Application-Transparent Node-Crash Tolerance to a Soft

Real-time Self-Planned Agent Framework

Ramprasad Madhavan

Fault tolerance is essential to any soft real-time distributed system; besides correctness
and timeliness. Traditionally system designers are required to consider both real-time and
fault-tolerance requirements while building real-time applications. This is a complex task
for a designer. In general distributed systems, fault tolerance has been researched well.
However, significantly less work has been done in the field of fault tolerance in soft real-
time systems. This thesis focuses on achieving application transparent fault-tolerance in
a soft real-time system framework and addresses the issue of redundancy management in
the presence of deadlines. Specifically, the thesis focuses on incorporating application-
transparent node-crash tolerance in a soft real-time self-planned agent framework (SPAF).
A SPAF application is decomposed into several missions and each mission is completed
by successfully completing multi-agent tasks through a sequence of phases. Each task in
a mission can have many solutions and the choice of the solution depends on the remain-
ing time and available resources. Fault tolerance is achieved by using the conventional
primary-backup approach in conjunction with the dynamic task planning feature of SPAF.
A cold backup and hot backup are used to accomplish application and system recovery
during a node crash respectively. The model and the design of the fault tolerance solution
are presented in detail. The functionality and efficiency of the fault tolerance design is
illustrated through the implementation and simulations using a custom built application re-
spectively. The test results are very encouraging and the application performance is almost

the same even after inclusion of the fault tolerance mechanisms.

111

Acknowledgments

First of all I would like to thank Dr.R.Jayakumar for his generous patience, support and
guidance throughout my work and studies at Concordia. My sincere gratitude to Dr.H.F.Li
whose guidance was priceless. His idea forms the basis of my thesis.

I owe many thanks to my friends (esp. inconcs, tamizha tamizha), roomies and col-
leagues from whom I have been able to learn and achieve much much more than I ever
thought possible. Every moment in their company was fun.

I would like to thank my parents for their continuous love and support. Their belief in
me is my motivation to strive for excellence in studies and life. Without them, I would’nt

have been here writing this.

v

Contents

List of Figures

List of Tables

List of Acronyms

1 Introduction
1.1 OVerview o o o e e e e
1.2 Faults and Fault Tolerance e e e e
1.3 Application Transparent Fault Tolerance
1.4 Contribution e e
1.5 ThesisOutline e

2 Soft Real-time Self-planned Agent Framework

2.1 ApplicationModel
211 MISSION e e
2.1.2 Phase e
22 SystemModel
221 Planner Agent.
222 Application Agents Lo
2.3 System Architecture
23.1 Multi-agentPlatform
2.3.2 Self Planned Agent Framework
2.3.3 General ApplicationAgent,
24 FailureModels
241 ApplicationFault oL

viii

xi

242 SystemFailures oo L

2.4.3 Failure Model Considered
2.5 Summary

Fault Tolerance Model

3.1 Application Container
3.1.1 Analysis
3.1.2 Requirementso e
3.1.3 Possible Solution Models

3.1.4 Choice of Fault Tolerance Solution

3.2 Main Container
3.2.1 Analysis
3.2.2 Requirements

3.2.3 Hot Backup Model
33 Summary .. o. ... e e e e e

Fault Tolerant Self Planned Agent Framework Design

4.1 Application Container Fault Tolerance
4.1.1 Fault Detection Service
4.1.2 Planner
4.1.3 Application Agents Lo

4.2 Main Container Fault Tolerance

4.2.1 Fault Detection Service

422 AMS e
423 MMS . . e
424 Manager Agent

4.2.5 Other Services
4.2.6 System Interface

4.3 Summary

Performance Analysis

5.1 Failure Recovery Tests

5.1.1 Application Container Failure Test
5.1.2 Main Container Failure Test
5.2 Overhead Measurement 0 i i i e e e e e e e e e

vi

24
24
24
26
31
33
33
33
37
40
46
46
47

5.3 Application Performance

5.4 Summary
6 Conclusion

Bibliography

Vil

List of Figures

2.1
22
3.1
4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
5.1
5.2

Soft real-time agentsystem 11

Planner ExecutionModel oo oo 13

Node crash tolerant soft real-time agentsystem 23

Fault Monitoring Service Protocol 25

Datatablesusedbyplanner 27
Planner execution model : Absence of failures 28
Planner execution model : Failure during task execution. 29
Planner execution model: Absence of failures 30
Planner execution model: Sample recovery scenario 30
Agent Architecture L 31

Agent Cloning protocol 32
AMS primary-backup commit protocol Lo 35
Failure Scenario 1: AMS recovery protocol 36
Failure Scenario 2: AMS recovery protocol 36
MMS primary-backup protocol oo 38
Failure Scenario 1: MMS recovery protocol 39
Failure Scenario 2: MMS recovery protocol 39
Failure Scenario 3: MMS recovery protocol 40
Planner primary-backup commit protocols 42
Planner recovery protocol oL Lo 43
Planner recovery protocol Lo 43
Planner recovery protocol Lo 44
Planner recovery protocol oo 45
Planner recovery protocol Lo 45
Application Container Recovery Time 49
Main Container Recovery Time 50

5.3 Overhead Measurement

5.4 Application Performance oo oL

X

List of Tables

1 Application Container Recovery Time 49
2 Main Container Recovery Time 50
3 Percentage of Completion Table 51
4 Percentage of CompletionTable 53

List of Acronyms

ACL - Agent Communication Language

AMS - Agent Management Service

FIPA - Foundation for Intelligent Physical Agents
MMS - Mission Management Service

SPAF - Soft Real-time Self Planned Agent System
TMR - Triple Modular Redundancy

x1

Chapter 1

Introduction

1.1 Overview

Computers have been used in a variety of applications starting from desktop to industrial,
medical, emergency and various others. They are being introduced in new hardware and
software environments every day. Many of these systems not only require correct functional
behavior but also require correct temporal behavior. Such systems are called real-time
systems [SR91]. Examples of real-time systems include air traffic control systems, space
stations, life support systems etc.

Real-time systems can be classified as hard and soft real-time systems. The tasks in
hard real-time have stringent timing constraints and consequences of missing a deadline
may be catastrophic. Critical systems such as aircraft control systems, space stations, radar
missile tracking etc come under this category. On the other hand, the tasks in soft real-
time systems have less stringent timing constraints, and in most cases, the quality of the
service decreases as a function of the remaining time. Examples include: multimedia,
security monitoring, stock monitoring etc. In this thesis, only the soft real-time systems are
considered.

Most real-time systems are distributed in nature. The presence of multiple distributed
processors increases the chances of a failure. Due to performance effects of violating the
timing constraints in soft real-time systems, it is important that the task is completed even
in the presence of faults.

Consider an intensive care unit system of hospitals. Such systems perform various

monitoring tasks like processing ECG signals, brain waves, heart beats etc., and give an

early warning during possible life threatening situations. A wide range of medical systems
such as Neuronet[KBS91], Intelligent alarmer [YC98] etc. with similar data acquisition,
processing and display requirements are also available. Systems like these must be able to
perform inspite of unexpected faults.

In a similar way, the systems that perform automated monitoring of stock exchanges
[SKAS] fall under this category. Faults in such system could result in loss of millions of
dollars. Similar soft real-time systems requiring fault tolerance can be found in [LKRO2]
[TG02] [Ziq03]. Therefore, it is essential that fault tolerance should be an integral part of
any soft real-time system [AOSMO5][SDO02].

1.2 Faults and Fault Tolerance

Every computer in operation today is certain to experience faults during its operation,
whether it is a normal desktop system or a real-time system. Faults can arrive into a system
from different sources like: operational environment, human users, hardware malfunction,
software design errors, etc. A fault can be defined as a defect or a flaw that occurs within a
system component.

Depending upon the type of the component, faults can be classified into two types:
hardware faults and software faults. In this thesis, a soft real-time self-planned agent
framework (SPAF) is considered. Hence, a hardware fault is said to have occurred when a
hardware computing unit or node of a system fails. A software fault is said to have occurred
when a software computing unit or a software agent fails.

Depending on the duration of failures the faults can be classified into three kinds: per-
manent, transient or intermittent faults. Permanent faults are caused by total failure of a
computing unit, transient faults are caused by temporary malfunctions or unavailability of
a computing unit and intermittent faults are caused by repeated occurrences of transient
faults.

A system is fault-tolerant if it continues to perform its specified tasks in the presence of
hardware or software faults [Joh89]. Generally, fault tolerance can be achieved by replica-
tion or redundancy by the addition of information, resource or time beyond what is needed
for normal system operation [GS97] [Joh89]. Transient and intermittent faults can be tol-
erated by time redundancy or, in other words, the system takes additional time to re-try or

re-execute a faulty task [RT93]. Permanent faults are tolerated by spatial redundancy or, in

other words, replication of data and/or computations. In the case of software faults, basic
unit of replication is the software computing unit (or agents) and for hardware faults, basic
unit of replication is both the hardware and software computing units (nodes and agents).
In this work, tolerating permanent node crashes is given prime importance.

One of the popular techniques for tolerating permanent hardware faults in multiproces-
sor real-time systems is the use of triple modular redundancy(TMR) [LV62] [Pra86]. In
TMR, the hardware is triplicated and a majority voting is performed to determine the out-
put of the system. The system gencrates a correct output even if one of the three modules is
faulty. An extension of TMR is NMR [MK86] where N modules are used instead of three.

Another important and widely used technique is the primary-backup approach [BN93],
which uses a primary and one or more backup processors. The primary processor performs
all the computation and frequently updates its backup. When a failure is encountered a

backup takes over the role of primary from the point of last update.

1.3 Application Transparent Fault Tolerance

The complexities of the general distributed systems and real-time systems are constantly
increasing. Designing fault tolerant applications has become a complex task for the system
designers. In distributed systems, research has been done in providing application transpar-
ent fault tolerance. A fault tolerance layer is generally built between the application and its
runtime environment [T.B94], [BRNB]. The encapsulated layer either implements its own
or its runtime environment’s fault handling features to provide software and hardware fault
tolerance.

In soft real-time systems numerous fault tolerance mechanisms have been proposed.
The fault tolerance requirements are specific and designed along with the application. The
result is that the fault tolerance constraints are imposed on the designer in addition to the
real-time constraints. Significantly less work has been done in providing application trans-
parent fault tolerance for soft real-time systems. The main reason being the problem of
managing the fault tolerant tasks in the presence of deadlines independent of the applica-

tion.

1.4 Contribution

The main contribution of this thesis lies in the design and implementation of an application-
transparent node-crash tolerance solution for a soft real-time self-planned agent framework
(SPAF) [Jin05]. A SPAF application is decomposed into several missions and cach mission
is completed by successfully completing multi-agent tasks through a sequence of phases.
Each task in a mission has multiple solutions and the choice of a solution depends on the
remaining time and resources. Also, SPAF provides every mission with a task planner to
perform dynamic task planning during the mission execution. Thus, dynamic task planner
inherently tolerates the timing faults. The fault tolerance solution presented here makes
use of the conventional primary backup approach in conjunction with the dynamic task
planning feature of SPAF and a simple handshake based fault detection mechanism for
tolerating permanent single node crash. A node crash results in a permanent loss of in-
formation that can affect both the application and the system services. Cold backup and
hot backup solution are used to accomplish application and system recovery during a node
crash respectively.

A SPAF application has missions with a variety of deadline requirements. Missions
with tight deadlines may not be able to afford the time consumed in the maintenance of
the backup. In that case, a simple mission reset solution is provided. The appropriate fault

tolerance solution is assigned during the mission admission process.

1.5 Thesis Outline

The major research work of this thesis lies in the design of a comprehensive fault tolerance
scheme for SPAF. The design is aimed to offer a minimum possible overhead in the absence
of failures and a quick recovery in the presence of failures, independent of the application.
Given below is a brief overview of the various chapters.

In chapter 2, the model of the soft real-time self-planned agent framework considered
is presented. Relevant architectural details are provided. The failure models are also dis-
cussed.

In chapter 3, the high level analysis and model of the fault tolerance scheme is pre-
sented.

In chapter 4, the design of various fault tolerance components and design changes to

the existing system for optimizing the overall system performance-overhead tradeoff, is

4

discussed in detail.

In chapter 5, validation of the above design, verification of the efficiency of fault toler-
ance (recovery) mechanisms and measurement of the performance impact on the applica-
tion with the inclusion of fault tolerance are performed through various tests. These tests
are conducted using a custom-built application.

In chapter 6, the thesis is concluded and the future research work that could be em-
barked on the node-crash tolerant SPAF is described.

Chapter 2

Soft Real-time Self-planned Agent

Framework

Real-time systems are growing more complex as a result of deployment in open and dis-
tributed environment such as internet. These systems require flexible, adaptive and intelli-
gent system components for successful operation. The multi-agent paradigm is a branch of
distributed systems that was introduced to simplify the design of complex systems operat-
ing in open and dynamic environment. A software agent [Woo02] is an autonomous entity
that can interact with other agents to fulfill important goals. Real-time multi-agent systems
with soft timing constraints is an emerging field of research and some systems supporting
soft real-time constraints can be found in [HLVWO05]. For our study we consider the soft
real-time self-planned agent framework (SPAF) of [Jin05].

In this chapter, the model and the architecture of SPAF is described in detail. Later, the

possible failure models associated with SPAF are classified.

2.1 Application Model

An application of SPAF is composed of several periodic and sporadic activities called Mis-
sions. The application operates in an environment where an external source may trigger
launching of missions. The missions are totally independent of each other, in other words,
there is no interaction or dependency among the missions during their execution.

A mission is accomplished by successfully completing a set of tasks. The tasks in a

mission are completed by a dedicated set of agents in a sequence of phases. The model of

the mission and a phasc of a mission are described in the following subsections.

2.1.1 Mission

An application has several soft real-time missions; that is, the missions have a soft deadline
and failing to complete a mission within the given time limit will not cause any scrious
consequence like an external system failure. Even though the missions are soft in nature,
completion of missions is very important for the application. Each mission of an applica-
tion is associated with an importance factor such that higher the importance factor more
will be the priority given to that mission in accessing the available system resources. Also,
each mission is associated with a quality factor that corresponds to the quality of the com-

putation results.

2.1.2 Phase

A phase involves exccution of a task. Since a multi-agent application is considered, every
task is completed by a set of agents working together. A task can be completed in many
ways with a solution decided at runtime based on the mission time and system resource
availability. Depending on the solution, quality of the task varies.

A phase has a soft deadline just like a mission’s deadline. In other words, failing to

complete a phase in the expected time may not necessarily cause a mission to fail.

2.2 System Model

The system provides the application with two kinds of agents for every mission namely,
the Planner agent and the Application agent. Planner agents are generic and perform task
planning for their mission. Application agents on the other hand are application specific
and are primarily for executing the tasks. The high level model of planner and application

agents will be covered in the remaining of this section.

2.2.1 Planner Agent

A planner agent is provided for cach mission to perform task planning on behalf of the ap-
plication. The application provides the planner with the knowledge of all possible solutions

in cach phasc of its mission. Thus, the main duty of the planner is to choose a solution to

7

complete the task in that particular phase. In addition to planning, the planner also acts as

a coordinator for the application agents. Thus the planner has the following knowledge:
1. All possible solutions for the current phase
2. Deadline of the mission and the remaining time
3. Current availability of the system resources

4. Dependency between the solutions of successive phases in terms of the survival of

agents between the phases
5. The set of agents available for its mission

The above knowledge to the planner is provided either by the application or is collected
at runtime by the planner itself. Described below are the two important interfaces through
which the planner receives the knowledge.

Application-Planner Design Interface

The developer provides the following application related information to the planner at the

design time:

1. Mission related information: Mission deadline, period, importance, phases.

2. Phase related information: Solution set (includes resource needs, quality, time, set of

agents).

Application-Planner Runtime Interface

There exists a subset of application agents in each phase of a mission that survive through
any two successive phases. The planner requires this information to perform task planning
of a phase. Hence, the developer chooses those agents at the design time and provides input

to the planner through the application agents at runtime.

2.2.2 Application Agents

Every application mission has a dedicated set of agents for executing its tasks. Application

agents have a special capability set in terms of roles they could play. These roles are

specified by the application developer at the design time. The agents are instructed to play
certain roles by the planner agent depending on the solution chosen for that phase.
Application agents can survive over multiple consecutive phases in a mission. Based

on the survivability of an agent, they are classified into two types:

1. Torch carriers which carry forward the mission state(data) from one phase to another

in terms of the knowledge they acquired during that phase.

2. Worker agents which are specific to a given phase and die at the end of that phase

completing the assigned work.

2.3 System Architecture

The SPAF provides the complete infrastructure to manage missions and the agents of an
application. The system comprises of a basic multi-agent platform on which agents are
deployed and their existence can be managed. A soft real-time framework manages the
missions and provides task planning within each mission.

In this section, the architecture of the system is introduced with a description of the

multi-agent platform and the soft real-time framework.

2.3.1 Multi-agent Platform

The multi-agent platform provides a distributed environment within which agents live and
operate. The platform provides all the basic services required to manage and operate the
agents.

The platform has the following logical entities:

1. Agent: An agent is the fundamental actor on the platform that combines one or
more capability sets. An agent identifier labels an agent so that it can be identified
unambiguously within the agent world. An agent may be registered to a transport

address to which it can be communicated.

2. Agent management service (AMS): The AMS exerts the supervisory control over the
Agent platform. It is responsible for the agent life cycle management and the agent

name service. Further details of the AMS are elaborated later.

The platform has the following physical entities:

1. Agent container: The agent platform is distributed over a network of nodes in the
form of multiple containers that can host agents. The system has one main container
that contains all the service agents and several application containers that contains
the agents capable of playing application specific roles. All the application containers

are registered with the main container.

2. Real-time Agent: The platform has a basic entity called realtime agent that is ex-
tended from a realtime thread. All the agents in the system are extended from the

realtime agent.

Agent Management Service

The AMS is the most important service of the multi-agent platform and is implemented as

a real-time agent. It performs the following services:

1. Agent life cycle management service: The AMS instructs the underlying platform to

perform agent life cycle operations such as Agent Create and Agent Destroy.

2. Agent name service: The AMS maintains an agent registry with the name and loca-
tion of every agent present in the platform. Whenever an agent is created or killed
then the AMS performs registration or deregistration operation on the agent registry.

The main purpose of this registry is to facilitate agent communication in the platform.

Communication System

The communication system provided by the platform allows the agents to communicate
among each other using the FIPA ACL messages [FIP0Oa]. The agents make use of the
agent registry associated with the AMS to locate and talk to the remote agents. The agent
platform makes use of sockets to transfer messages between agents residing in different

hosts.

2.3.2 Self Planned Agent Framework

The framework provides all required mission management and execution services to the

application. This section describes the two services in detail.

10

MAIN CONTAINER

©-® D =

! Communication System
/I T~
-~
3 S
-~ —
/ S~
/ -—_
7 ~
7 —
¥ S~

[Communication System J

i x { :Ommtmicaﬁon Syst;m J
OO—0 |=====-| OO0

APPLICATION CONTAINER ' APPLICATION CONTAINER

AMS - Agent Management Service
MMS - Mission Management Service
M, - Manager Agent

a — Application Agent

Figure 2.1: Soft real-time agent system

11

The mission management service (MMS) includes mission admission control. The mis-
sion admission control primarily checks for the feasibility of admitting new incoming ap-
plication missions into the system. This service is provided through a service agent present
in the main container.

The mission execution management services are services that are provided by the sys-
tem once a mission is admitted and initialized. This includes mission planning, agent co-
ordination, mission exception handling etc. The mission execution management services
are provided through a manager agent that is equipped with a task planner. Each mission
has its own manager agent.

The following sub sections discuss in detail the above mentioned components.

MMS

The MMS agent is responsible for the registration and de-registration of the missions. An
incoming mission is registered only if it passes the time consistency tests (execution time
feasibility) and the resource availability.

Once a mission is registered, a manager agent is created for the mission and upon com-
pletion, all of its agents (manager and application agents) and associated system resources
are released.

The MMS resides in the platform’s main container along with the AMS. It interacts

with the AMS to perform its own operations.

Manager Agent

Every mission is initialized along with a manager equipped with a task planner. Upon re-
ceiving a start signal or an occurrence of a timed event, the manager starts the task planning
process by invoking its task planner. The task planner is responsible for the task planning
and co-ordination of the agents of the mission from start to end.

The time-space diagram in Figure 2.2 shows a normal execution model of the mission.
Task planner upon receiving a start mission” signal from its manager starts the planning
of its first phase. Once a solution is chosen, it recruits the required worker agents by
interacting with the AMS. The planner assigns the task to the specified agents through
the invocation parameters and then waits for agent reports. Once all agents have reported
and task successfully completed, the planner preserves the torch carriers which carries the

mission state to next phase and kills the rest.

12

Phase 1 Phase 2

Start Mission

1
Planner

Recruit agents

AMS ¥ -

Figure 2.2: Planner Execution Model

2.3.3 General Application Agent

The system is based on multi-agent role based computation and provides the application
with agents that are capable of executing roles. The roles may be assigned to the agents
either at design time or at runtime. Agents may be required to carry and play many roles
during their life time. Hence, a scheduler is built within to schedule the roles one at a time.
The agents also have the knowledge of the dependency between the available roles if they
are to play multiple consecutive roles in a mission. Once a role is completed it reports
back to its manager (Task planner) with the dependency information. In order to record
and share the knowledge attained while playing a role, every agent is provided with a local

storage.

2.4 Failure Models

In this section, the possible failure models associated with SPAF are classified.

13

2.4.1 Application Fault

An application fault is said to have occurred when one or more application missions fail.
Since the missions are independent of each other during the execution, failure of one mis-

sion does not affect the other. The various faults that can cause a mission failure are:

Timing faults

A timing fault is said to have occurred when one or more agents do not complete the
assigned work within in a specified time. A timing fault may lead to a phase failure that in
turn may result in a mission failure. A timing fault is most likely caused due to a delayed
response from agent present in an excessive system load environment.

The task planner inherently tolerates the timing fault by flexible planning. During a
phase failure, the task planner automatically switches to a planning mode wherein, the

remaining mission is executed using cheaper solutions taking less time.

Application Agent Faults

When an agent is no longer accessible by the application mission then agent failure is said
to have occurred. Agents can crash during an execution as a result of a design or runtime
error. Agent crash can result in permanent loss of any mission information it carries. A
single agent crash leads to stalling of a mission and eventually a failure.

A system can also suffer from temporary agent faults such as unavailability of certain
agents for a finite amount of time. These occur primarily as a result of temporary node

failure. Such faults can also lead to timing failures.

2.4.2 System Failures

A system failure is said to have occurred when system or platform services fail. Since an
application is closely bound to the system, a failure in the system may lead to an entire
application failure. The following subsections discuss the possible system failures:

Container Failure

The multi-agent platform is distributed over a network of nodes in the form of contain-

ers. Main container contain service agents while application containers contain application

14

agents. A node can contain one or more containers. A node failure can lead to inaccessi-
bility of the main container and/or application containers residing on that particular node.

Failure of each kind of containers offers different levels of damage to the application.

1. Application container failure

An application container failure results in unavailability of all its application agents
running on it. Agent crash leads to loss of mission related information it carries
and thus failing the corresponding mission. Since an application container contains
agents that are operating in different missions, one container failure can cause multi-

ple mission failures.

2. Main container failure

When a main container fails, all system services such as AMS, MMS, planners etc
become unavailable to the application. The application no longer has control over its

application agents, ultimately leading to the failure of all its operating missions.

Failure of a container can also be temporary. When a node becomes unavailable for
a finite amount of time then all the containers running on it become inaccessible for that
period of time. This introduces an uncertain delay in the related missions. Once the node
becomes available, the application returns to a normal operating mode. The effect of the

temporary node failure on an application depends on its duration.

Service Agent Failure

The application constantly requires the services of the framework to operate and hence,
there is a possibility that the entire application fails when there is a service agent failure.

The services are implemented as agents and they fail as a result of design or runtime errors.

2.4.3 Failure Model Considered

From the above discussion, it is seen that a permanent node crash definitely offers the
maximum damage to the application. As discussed in chapter 1, node crashes are common
in distributed systems and systems with real time constraints cannot afford this failure.

In this thesis, the SPAF is made tolerant to single node crashes that result in the failure
of the main container or application container or both. The following chapters describe in

detail the fault tolerance model and the modified system architecture.

15

2.5 Summary

In this chapter, the model of a system considered for this study has been discussed. This is
followed by a description of the system architecture providing the details of the important
components at a level that concerns this study.

Later in this chapter, the possible failure models associated with the system were high-
lighted. Also, the significant failures that will be considered for fault tolerance in this study

were discussed.

16

Chapter 3

Fault Tolerance Model

Node crash can result in the failure of main container or application containers. Since
the two containers are of different nature, the failures must be dealt in a different manner.
In this chapter, the fault tolerance model for application container and main container are

presented.

3.1 Application Container

An application container contains application agents that are part of different missions of
an application. An application container failure results in failure of all the agents running
on it, which in turn, may result in failure of several application missions. This situation

severely affects the application’s performance.

3.1.1 Analysis

Node crash fault tolerance can be provided by replication of missions on two different
physical locations, such that, upon failure of one, another can be used. Replication can
either be active or passive.

In active replication, the entire mission is executed twice in parallel. During a node
failure, the results of the non-affected missions are taken. This approach provides fault
tolerance through fault masking and requires no fault detection mechanisms. Complex
voting mechanisms need to be employed in the absence of failures so that only one of the
two results is taken. Also, to employ this scheme one needs twice the system resources as

that of no fault tolerance. This cost is not affordable in soft real-time systems.

17

In passive replication or primary-backup approach, the mission is executed only once
and the important state changes during the execution are updated to the backup. Here the
cost of fault tolerance is significantly lower than the previous approach and increases with
the frequency of backup updates. The main setback of this approach is the need for failure
detection and recovery mechanisms.

The primary-backup approach coupled with flexible mission planning appears to be a

suitable fault tolerance scheme for SPAF application container failures.

3.1.2 Requirements

The fault tolerance mechanism is required to backup the important agent information in ev-
ery application container from time to time. When an application container failure occurs,
the affected missions, depending upon their condition are either terminated to a safe state

or restarted using the backup information to meet soft real-time constraints.

3.1.3 Possible Solution Models

Based on the above requirements, the following fault tolerance solutions are possible.

Cold Backup Approach

Application container fault tolerance can be achieved by having cold backups of the ac-
tive torch carrier agents in a container residing on a different node within the multi-agent
platform. Since the mission state is carried from one phase to another by the torch carrier
agents, their states are checkpointed in the form of newly created agents called clones at
the end of each phase. These clones have the same knowledge and capability like the torch
carrier agents at the beginning of the phase but as the phase progresses, the clones become
cold backup. A worker agent is specific to a given phase and does not carry forward any
mission information. Hence, its presence in the agent pool is sufficient for it having cold
backups. Upon a failure, any other other agent in the system can take over its place.

When a failure of an application container is detected, all the affected missions are
restarted from the current phase using the clones of the torch carrier agents and a new set
of worker agents. If a mission is unable to find a solution due to limited time, it terminates

its current execution and waits for the next start event.

18

The main advantage of this approach is that an affected mission is expected to recover
from the current phase quickly with the readily available cold backup agents. This sig-
nificantly increases the chances of a mission meeting its deadline even in the presence of
failures.

The clear disadvantage of this method is the overhead in creating new clones at the end
of phases of a mission. This overhead issue could lead to severe performance drawbacks
as some missions may miss deadlines as a result of extra time consumed in performing the
cloning. The overhead in creating the clones at runtime can be reduced tremendously if the
torch carrier agents of the mission are determined before hand and the clones created at the
initialization time but this is not feasible.

One possible solution for this problem is to make all the application agents in the system
equally capable and to be created during the application initialization time. This way the
time consumed to create a new clone with special capability and initial state during the
runtime is almost completely eliminated. Now creating a clone means mere assigning of

states to the agents (clones) already existing in a different node.

Checkpoint and Recovery

This model is similar to the previous model. Fault tolerance can be accomplished by back-
ing up the mission state at the end of each phase as standard checkpoints. The checkpoints
are stored in repository whose location is different from that of the mission agents, say
Main container. When a failure is encountered, the affected missions are restarted by cre-
ating a new set of agents with the state corresponding to the checkpoints and capabilities
similar to the original ones.

To store and maintain the checkpoints, one needs a repository and a repository manager
that helps storing and retrieving the checkpoints.

This approach eliminates the overhead of managing the clones at runtime but introduces
additional time in creating and initializing new set of agents with special state during the
recovery process. This delay may reduce the chances of a possible mission completion
in some cases. Additionally, the traffic through the checkpoint repository manager also
increases as the number of missions in the application increases. This can be a perfor-
mance bottleneck. Also the recovery manager must be fault free; otherwise an application

container failure can result in failure of numerous application missions.

19

Mission Reset

This is the simplest of the three mechanisms wherein affected missions are simply reset to
the initial state when a failurc is detected. The mission restarts its execution using freshly
initialized agents and attempts to meet the deadline by using the cheaper solutions in all
phases of the mission. This approach offers no runtime overhead but also offers the least

chance of mission completion during a failure.

3.1.4 Choice of Fault Tolerance Solution

Since the recovery time is the most important factor for a mission, the solution that provides
the quickest recovery must be chosen. The cold backup approach appears to be the best
choice among the three approaches.

An application can have a variety of missions based on the tightness of their deadlines.
It is possible that certain missions may not be able to afford the time taken for clone man-
agement at runtime. For such missions, alternative solutions need to be chosen. The simple
mission reset appears to be suitable for missions that have very tight deadlines.

Hence the system must assign a fault tolerance solution according to the nature of the
incoming mission. The basic condition that decides the choice of fault tolerance for a
mission at mission admission time is:

Slack time = Deadline - Minimum execution time

Overhead of cold backup = Total time taken to backup the mission state as clones

If slack time is greater than overhead of cold backup then choose cold backup approach.

If slack time is less or equal to overhead of cold backup then choose mission reset.

The Deadline is the actual deadline of a mission and the Minimum execution time is the
minimum time required to complete a mission. The time taken to backup the mission state
is calculated using the number of updates in a mission and an approximate time taken to

transmit the checkpoint.

3.2 Main Container

Main container contains all the service agents that are required to manage the application
missions and agents. A node crash can lead to a main container failure which causes failure

of all the services that the system offers. This ultimately results in a complcte application

20

failure.

3.2.1 Analysis

Node crash tolerance can be achieved by replication of all the system services. As dis-
cussed in the previous section, even though active replication provides an on-the-fly fault
tolerance, it is an expensive solution when one considers the cost of replicated process-
ing and complex voting mechanisms. Again one finds the passive replication or primary-
backup approach attractive in terms of requirements and cost. Here the primary processor
processes all the service requests and sends a simple update message to its backup. When

a fault is detected, the backup replaces primary and starts serving the future requests.

3.2.2 Requirements

The fault tolerance scheme is required to backup the state of the main container at a dif-
ferent location so that the backup information can be used to resume new services again.
The main requirement of the fault tolerant solution is to recover all the failed services and
the application missions correctly and quickly. Since one deals with a distributed system,
it has to be ensured that the state of the new service must be consistent with the operational
state of the rest of the system. Due to real time constraints, the recovery process must aim

to minimize the recovery time.

3.2.3 Hot Backup Model

Main container fault tolerance can be accomplished using a primary and a hot backup main
container. The backup container resides on a different host and with dormant clones of
all the service agents present in the primary. The primary main container processes all the
requests from the application and duly updates all the changes in its states on to the backup.
Failing to update the important changes may cause an erroneous situation during the failure
recovery. Hence an absolute consistency or a hot backup is required at all times.

The updating process is carried out using a primary-backup commit protocol which
ensures that the local operations and state changes happen atomically in both containers.
The commit protocol is described in detail in Chapter 4.

At each commit event, the primary service completes the required operation and up-

dates its backup of the changes. The update can be a mere state update or a set of actions

21

to be performed by the clone service. Events such as registration/deregistration of missions
involve actions to be performed within the backup main container. Once the backup com-
pletes the update process and responds with the acknowledgement, the primary resumes its
operation. If the protocol fails then a failure is detected.

The update process is equivalent to taking checkpoint of all the services in the primary
main container and placing it in a different location. A main container checkpoint can be
thought as a set of most recent states of the individual services after a successful update
process. When a primary main container failure is detected, the backup starts from the
recent main container checkpoint and assumes the role of the primary. In chapter 4, the
recovery protocols are elaborated in detail and exception cases are pointed out.

The application environment is completely unaware of the presence of a backup main
container. Therefore, a system interface is provided that masks the fault tolerance details

from the application and transparently makes use of the backup upon primary’s failure.

3.3 Summary

In the first section, the possible fault tolerance solutions for application container crash
are analyzed and the solutions that matched the requirements are chosen. A change to the
existing system design has been described to eliminate the execution time overhead offered
by the fault tolerance solution. In the second section, the model and analysis of the main

container fault tolerance solution has been presented.

22

PRIMARY MAIN
CONTAINER

BACKUP MAIN
CONTAINER

MMS

|
i

Communication System

Communication System

/I~
-~

Communication System

T T Primary

torch
@ @_-_ carier

—

Torch

carrier/

APPLICATION CONTAINER \'\—/l/ APPLICATION CONTAINER

AMS — Agent Management Service
MMS — Mission Management Service
My — Manager Agent

a — Application Agent

Figure 3.1: Node crash tolerant soft real-time agent system

23

Chapter 4

Fault Tolerant Self Planned Agent

Framework Design

In this chapter, the models are elaborated and details are provided through the design of
new system components and changes in the existing system design. The chapter elaborates

the application container and main container fault tolerance design.

4.1 Application Container Fault Tolerance

The two important components of the fault tolerance mechanism are fault detection and
fault recovery. In the first subsection, the fault detection mechanism is described and later,

the design of the planner and application agent are presented.

4.1.1 Fault Detection Service

Application container crashes are detected by the fault detection service in the system. This
service uses the conventional handshake mechanism to detect the node crash. Fault detec-
tion is accomplished by having a master that initiates periodic handshakes with the slave.
The master resides in the main container and slave resides in the application container re-
spectively. There are as many master slave pairs as the number of application containers in
the system.

The master agent initiates the handshake process by an ”Are you alive?” signal with a
timeout and the slave responds with an I am alive” signal immediately. The timeout value

is determined during the application initialization time and may vary from one container

24

Timeout

AMS FMA_Master Containeri EMA_Slave Container1
! i ——
) \)
: ' |
i ! Alive |
i I ~
! 1
| |
| l
' Timeout 1
| 1

1
| I am Alive '|
| ™ t
i b !
t i b
| 1 !
) | 1
l i !
: : Alive |
| L :
! i
! X
t
i
I
|
)

)
]
|
]
|
|

Get Failed Agents

Failed Agents

Alert

Figure 4.1: Fault Monitoring Service Protocol

to the other. The handshake process is successful if the slave responds within the given
time. If time expires then the master announces the failure of the application container
and alerts the managers of the affected missions. The master agent determines the affected
missions by interacting with the AMS and includes the list of failed agents along with the
alert. Figure 4.1 shows the handshake protocol between the master and the slave assigned

to monitor an application container.

25

4.1.2 Planner

Every application mission is associated with a task planner that has the complete knowledge
about its mission such as the phases of a mission, possible solutions of a phase, the name
and location of its agents, roles played by its agents etc. Hence, the application container
fault tolerance can be incorporated in the task planner of a mission manager. The task
planner has two different instances: one capable of performing cold back-up and the other
performing mission reset. During the mission admission, an appropriate planner is chosen
for a given mission.

The following subsections describe in detail the design and operation of the two solu-

tions.

4.1.2.1 Cold Backup

The design of the generic task planner is modified to perform the cold backup or clone man-
agement and the recovery management at execution time. The clone management includes
two basic operations: creation of new clones and deletion of existing outdated clones at
the end of a phase. The recovery management involves taking appropriate recovery actions
during an application container failure depending upon the condition of its mission.

The planner performs the clone management operations with the knowledge of the
name and location of the potential (next phase) torch carriers specified by the developer.
At the end of a phase, the planner interacts with the AMS to recruit an agent in a different
host to act as a clone for the potential torch carriers. Once all the clones have been created
successfully, the older clones are deleted.

The planner maintains data structures to store and manage the dynamic knowledge of
its agents that are currently serving the mission. The two important data structures are as
shown in Figure 4.2.

The RoleAgentMap data structure contains the roles to be played, the agent that will
play and the future roles playable (if any). The role name and future role is supplied by
the developer and the agent name is dynamically obtained by the planner. Once a solution
is chosen and agents are recruited, fresh information is stored in the data structure for that
phase. The AgentCloneMap data structure stores the identification of current phase’s torch
carriers and its clones. At the end of each phase, the agents in the RoleAgentMap table that
have future roles to play, will be assigned a clone.

Planner Execution Model

26

RoleAgentMap

Role Name Agent Name Future Role
Role Al Agentl Role 81

Role A2 Agent2 Role B2

Role A3 Agent3 -

Role A4 Agentd -
| AgentCloneMap
| Agent Name Clone Name

-Agentl Cionel

Agent2 ClneZ

Figure 4.2: Data tables used by planner

This subsection describes the planner execution model in the presence and absence of

failures.

e Normal Mode of Operation

Once a mission is started, the task planner performs the task planning and chooses a
solution for that phase. It interacts with the AMS to recruit the agents required for
completing the task. The planner then assigns the role and role-related parameters to
its agents and waits until the end of task. The task is completed once all the agents
report back. The planner determines the potential torch carrier agents and clones
them. Before starting the next phase, all the outdated clones of torch carriers and
other regular worker agents are deleted. Figure 4.3 shows a sample mission scenario

in the absence of failures.

Recovery Mode of Operation

A node failure can occur at any point of time during a phase and the planner must
be able to handle accordingly. There can be three cases depending upon the time of

failure:

1. Failure before the task execution

The planner receives a failure alert during the phase planning and agent recruit-

ment process (Period 1 in Figure 4.3). If the failure involves existing torch

27

Phase 1 Phase 2

Start planning
2 3 plan
Planner | oy
. \
Recruit agents Assign task \
Clone Kl
agents utd tég
agents,
AMS 11 1 <

Figure 4.3: Planner execution model : Absence of failures

carrier agents then the current process is restarted with the clones of the failed
ones. If clones are not available then the mission is restarted from the beginning

since a part of the mission information is lost permanently.

2. Failure during task execution

The planner receives a failure alert during the execution (Period 2 in Figure
4.3). The planner takes the necessary recovery actions depending upon the
agents that failed. If one or more torch carrier and/or worker agent failed then
the current task goes to an erroneous state. Hence, the phase is terminated and
restarted with the existing clones and freshly recruited agents. The recovery
involves recycling of agents that were part of the failed task. If some or none
of the clones are available then certain information are lost permanently and
mission cannot continue further. Therefore, it has to be restarted from the be-

ginning. Figure 4.4 illustrates a similar recovery scenario.

3. Failure after task execution

The planner receives failure while performing agent clone management (Period
3 of Figure 4.3). Once again the planner takes necessary recovery actions de-
pending upon the type of agents that failed. If one or more torch carrier agents
failed then knowledge regarding the completed task of the phase is permanently

lost. Therefore, the entire phase is again re-executed with the existing clones.

28

Phase 1 Phase 2 Phase 2

. (using clones)
Start mission Agent failure

Planner

Recrujt
agen

AMS

Figure 4.4: Planner execution model : Failure during task execution
If some or none of the clones are available then the entire mission is restarted.

4.1.2.2 Mission Reset

Mission that cannot afford the agent cloning use a simpler mission reset strategy. For
instance, the task planner upon receiving a failure alert resets the mission state and starts

again from the first phase with a new set of agents.

e Normal mode of operation

This planner has the same knowledge as the default SPAF planner but with an addi-
tional responsibility of restarting the mission afresh upon a failure. Figure 4.5 shows

the execution model of a planner in the absence of failures.

e Recovery mode of operation

When a planner receives a failure alert from the failure detection service, it simply
recycles all the remaining agents and restarts the mission afresh with a new set of

agents. Figure 4.6 shows a sample mission recovery scenario.

29

Phase 1 Phase 2
Start planning

Planner

Recruit agents

AMS —

Figure 4.5: Planner execution model: Absence of failures

Phase 1 Phase 2 Phase 1
Start Mission Agent Failure

Plan Plan

Planner

Assign task
Kil
Ager

Recruit
agents

AMS

Figure 4.6: Planner execution model: Sample recovery scenario

30

Application Agent

Private Message Lifecycle
Inbox Management

Shared Knowledge

Storage Role Pool

Figure 4.7: Agent Architecture

4.1.3 Application Agents

In order to make the above strategies effective, the SPAF application agent design is modi-

fied to include the following changes

1. All application agents are equally capable and can act as a torch carrier or a worker

or a clone in any mission.

2. During the agent invocation it is sufficient to provide them with the role name, data

parameters and other task related role parameters.

3. Since cloning is performed by agents, necessary infrastructure to retrieve and assign

knowledge is available.

An application initialization involves creation of a pool of equally capable application
agents in various application containers. Once the missions are initialized, the planners
recruit the required number of agents from the agent pool by requesting the AMS. The
planners performing agent cloning as part of mission requests the AMS to clone the speci-
fied agents. The AMS selects and instructs an agent residing in the different node to act as
a clone of the specified agent. The cloning protocol is shown Figure 4.8

Since all the agents are equally capable, the cloning process is a mere transfer of state
from one agent to the other. The AMS initiates this process by instructing an agent to act
as a clone. The agent requests the state of the specified torch carrier agent, receives and

assigns the state to itself. The clone agent is registered once the AMS receives its response.

31

24
(7]

Clone1:Worker Agent2:Worker

Cione Agent

Clone(Agent2)

l | getState()

1

SetState()

Cloning Complete

)

]

?

RegisterAgent(cione1)
|

|
Agent-Clone List

~—

Figure 4.8: Agent Cloning protocol

32

4.2 Main Container Fault Tolerance

To incorporate our main container fault tolerance model, the system must be initialized with
two main containers: primary and backup main container with replicated service agents.
The system now has two services available at all times. The primary performs all the
operations and updates the backup at events that change its state like agent registration and
deregistration, mission registration and deregistration, planner events etc.

There are three main service agents that reside in the main container: AMS, MMS and
manager agents. The service agent’s design can be modified to accommodate the fault
tolerance operations, such as, updating the backups, timeout and failure recovery etc. The
backup container additionally has a fault detection service that exclusively monitors the
liveliness of the primary container.

The above mentioned changes are elaborated in this section:

4.2.1 Fault Detection Service

This service is similar to that of the application container fault detection service. It detects
failure of a main container using the periodic master-slave handshake mechanism. When
a master detects the failure it takes appropriate actions depending on the type of container
it is monitoring. If the primary main container fails then the master residing in the backup
re-structures the agent platform and initializes all backup services from a stable state. 1f the
backup main container fails then the master residing in the primary alerts all the services

of the backup failure and stops further updates.

4.2.2 AMS

The AMS is primarily responsible for the agent management. All the state changes result-
ing from the AMS operations must be updated in the backup. Since a failure during an
inconsistent primary-backup state may lead to an incorrect recovery, atomic updates must
be guaranteed. ‘
This subsection lists the events when the two AMSs must be consistent, describes in

detail the primary-backup AMS commit protocol and is followed by the recovery protocols.

33

4.2.2.1 AMS Events

The list of events that affect the system state are:

1. Manager agent registration: When the AMS receives a request for creation of a new
manager agent, it creates and initializes a new manager agent in its main container
equipped with a mission planner. Upon initialization, the AMS makes a new entry to

its agent registry.

2. Manager agent deregistration: When the AMS receives a request for de registration of
an existing manager agent, it kills the manager agent and removes the corresponding

entry from its agent registry.

3. Agent registration: On receiving application agent request from a manager, the AMS
selects the required number of agent and add them to its agent registry. Now the

AMS sends the list of agents to the requesting manager agent that can serve it.

4. Clone agent: When the AMS receives a clone request, it selects an agent and in-
structs it to acquire knowledge from the specified torch carrier. Once this operation

is complete the selected agents is added to the agent registry.

5. Agent deregistration: When the AMS receives a request to de-register a set of agents/clones
then it soft reset (clear knowledge) the agents and removes it from the agent registry.

Once removed the agents wait for a next registration call.

During the events 1 and 2, the backup AMS must perform all the operations as its pri-
mary because changes involve local state. For example, manager agent registration requires
a manager agent to be created in the main container.

During events 3,4 and 5, it would be sufficient to update the state of the agent registry as
the changes involve the application containers. For example, agent de-registration involves

reset of the agent state and must be performed only once.

4.2.2.2 Commit protocol

When the above mentioned events occur, the AMS completes the necessary operations and
updates the backup AMS with an update message that contains the set of actions to be per-
formed by the backup. The backup receives the update message, updates its own state by

performing specified local operations such as, create/delete managers, add/remove entries

34

Request Response

AMS

Figure 4.9: AMS primary-backup commit protocol

from registry etc. and responds with an acknowledgement to the primary. The primary
responds to the client (MMS or Manager agents) only upon receiving the acknowledge-

ment. The primary-backup AMS commit protocol is shown in the Figure 4.9.

4.2.2.3 Recovery Protocols

Listed below are the possible failure scenarios and corresponding recovery operations:

1. The primary fails during an operation:

This scenario is shown in Figure 4.10. When the primary container crashes, the fault
detection service detects the failure and alerts the backup AMS. The backup AMS
now activates itself from the current stable state and waits for the future requests. If
the primary fails when an operation involving AMS is underway then the application

will re-send its request to the backup main container.

2. The primary fails after sending an update message:

When a service request arrives at the primary AMS, it completes operation and sends
an update to its backup. The primary responds to the client only upon receiving
an acknowledgement from the backup. There is a rare possibility that the primary

container fails while waiting for the acknowledgement from the backup, in other

35

Operation Reguest)

1
Response

AMS
Operation Request

1
Clone
AMS _O

Figure 4.10: Failure Scenario 1: AMS recovery protocol

Operation Request

1

Operatiop Request Response

AMS

Roliback

Figure 4.11: Failure Scenario 2: AMS recovery protocol

36

words, while the backup is performing an update operation. In such situation, even
though the operation is complete the client will never receive confirmation because
the client is not knowledgeable about the backup. The client will eventually re-send
the operation to be performed. In such cases, the backup AMS must rollback to its
previous checkpoint. Thus, the entire operation can be re-performed by the backup

without any system conflicts. This situation is shown in the Figure 4.11.

4.2.3 MMS

The MMS is responsible for mission admission control and management. When an exter-
nal request arrives it may have to interact with the AMS to complete the operation. This
subsection lists the events when the two MMSs must be consistent, describes in detail the

primary-backup AMS commit protocol and is followed by the recovery protocols.

4.2.3.1 MMS Events

1. Create mission: When a request to create mission arrives at the MMS, it first performs
the time consistency checks. If the test is successful then the mission is admitted into

the system and an entry into the mission registry is made.

2. Initialize mission instance: Upon a request to initialize an instance of an existing
mission, the MMS checks for a mission name consistency.If the test is successful
then MMS interacts with the AMS to create a new manager for the specified mis-
sion. Once the manager is initialized the MMS records the mission instance ID to its

registry and sends an acknowledgement to the application.

3. Delete mission instance: When a request to kill an existing mission arrives from the
application, the MMS interacts with the AMS and removes the Manager from the
system. On completion the MMS removes the entry of the mission instance from its

registry and acknowledges the application upon successful completion.

4. Delete Mission: When a request to delete a mission arrives at MMS then it checks
if any instance of the mission is currently running in the system. If no instances are

running then the application removes the mission entry from its registry.

During the events 2 and 3 the MMS must instruct its backup to perform certain actions

like create or delete manager along with the state update. The events 1 and 4 requires mere

37

1

Application request Response
2 r
MMS —

Update}
pPeae 2

1
Clone
MMS G

AMS

O - Agent State

Figure 4.12: MMS primary-backup protocol

updates of MMS registry snapshot.

4.2.3.2 Primary-backup commit protocol

The primary-backup MMS commit protocol is similar to that of the AMS. When an external
request arrives, the primary MMS processes it and updates the backup MMS with necessary
changes to be made. The backup performs the specified actions locally and responds with
an acknowledgement to the primary. The primary responds to the client only upon receiving

the acknowledgement from the backup.

4.2.3.3 Recovery Protocols

The failure scenarios and corresponding recovery strategies are described below:

1. The primary fails during an operation:

When the primary MMS is processing an external request and the main container
crashes, the fault detection service detects the failure and activates its backup MMS
for processing future requests. The backup can expect to receive the same request
as previous operation was not completed. Figure 4.13 and 4.14 shows two different

failure scenarios.

38

Application request

U
MMS

Application request

1

Response
Cione
MMS

AMS —

Clone .
AMS It

Figure 4.13: Failure Scenario 1: MMS recovery protocol

Application request

MMS ®D—
Applicg}ion request Response
1

Clone \

MMS 0

AMS

Clon

e
AMS

Figure 4.14: Failure Scenario 2: MMS recovery protocol

39

Application request

MMS 4 Appiication

equest
4

Figure 4.15: Failure Scenario 3: MMS recovery protocol

Response

Clone Q

1 !
MMS .~ g
=%~ =4 — —HAollback
AMS

Clone
AMS

2. The primary fails after sending an update:

The primary MMS fails just after sending the backup a state update as shown in
Figure 4.15. When the failure detector detects this failure, the MMS rolls back to a
previous stable state where an operation was successfully completed. This roll back
may involve undo of operations mission registration and mission creation during the
last transaction. Only upon successful rollback of all the services does the main

container begins to process regular requests.

4.2.4 Manager Agent

Task planner of the manager agent is an important component of the mission. This sub-
section lists the events when the two managers must be consistent, describes in detail the

primary-backup manager commit protocol and is followed by the recovery protocols.

4.2.4.1 Planner Events

A planner has the following significant events during its life time:

1. Mission execution start: At every mission start event the manager agent invokes its

planner.

2. Agent recruitment: The planner performs task planning and recruits a set of agents

from the AMS to execute the chosen solution. Once agents are recruited it signals

40

the agents to start the execution.

. Task completion: Upon receiving the responses from all the agents the planner de-

clares successful execution of the task.

. Agent cloning and killing outdated agents: Once the task of a phase is completed,

the planner performs agent cloning and kills the outdated agents and clones.

. Phase restart: If a planner capable of performing agent cloning encounters an appli-
cation container failure then it restarts the phase with the available clone agents. All

the remaining agents of the mission are killed.

. Mission reset : A mission restart involves killing all the agents of the mission and
restarting it in the cheap planning mode. After restarting the planner recruits a new

set of agents to execute the mission.

. Mission termination: When a mission execution completes or stops the manager

updates its backup and waits for the next start event to occur.

4.2.4.2 Commit Protocol

When the above events occur, the planner executes the operations locally and sends the

state update to its backup. The backup planner upon receiving the update locally performs

only a local state update. The update contains the recent snapshot of the data structures

RoleAgentMap and AgentCloneMap. Once a response form the backup is received the

planner proceeds forward. Figure4.16 shows a sample scenario.

4.2.4.3 Recovery Protocol

The possible failure scenarios and the corresponding recovery strategies are described be-

1. The main container failure encountered before the task execution. This can lead to

one of the following cases:

(a) The task planner crashes; all the torch carriers and associated clone agents are
alive: As shown in Figure 4.17, task planner restarts planning with the most
recent state and executes the tasks with available torch carrier agents and newly

recruited agents.

41

Planner Execution Model

Phase 1

Planner

tasks

Assign

Phase 2

AMS

Update Update
4
Clone 1
Pianner V)
Planner Execution Model
With Agent Cloning
Phase 1 Phase 2

Assign

AMS

Update

Update

Update
Clone ¢!
V)

Planner

-

Figure 4.16: Planner primary-backup commit protocols

42

Failure Scenario 1 — When the torch carrier agents are alive.

1 Phase n
plan
Planner 0_4:®
AMS ————@®
Start Phase n Phase (n+1)
Clone
Planner
Recryit .
Assign Clore
Agenis tasks A
Clone gents
AMS

Figure 4.17: Planner recovery protocol

Failure Scenario 2 — When some/all torch carrier agents are dead

1 Phase n
plan
Planner 0_4_—_®
AMS ———®
Phase n
Start (with clones) Phase (n+1)
Clone

Planner

Assign Clorte
tasks Agents
Clone g

AMS *

Figure 4.18: Planner recovery protocol

43

Failure Scenario 3 — When torch carriers & clones are dead.

1 Phase n
plan
Planner O.__{:g
AMS ——®
Phase 1 Phase 2
Clone
Planner

Clone
AMS

(b) The task planner crashes along with some torch carriers. In this case, the backup
planner can start the recovery process by killing rest of the torch carriers and

restarting the planning process with clone agents and newly recruited agents.

Assign Clorie
tasks Agents

Figure 4.19: Planner recovery protocol

This situation is shown in Figure 4.18

(c) The task planner crashes along with some torch carriers and clone agents. In
this case, the planner has permanently lost some mission information and will

not be able to continue further. Hence, it has to restart the entire mission using

freshly recruited agents as shown in Figure 4.19

2. The task planner crashes during the middle of task execution: The backup planner,

upon initialization, re-starts the phase with the

the actual agents executing the tasks are completely unknown. If the current failure

is accompanied with application agents’ failure then the recovery process depends

upon the failed agents as discussed in cases 1

torch carrier agent has failed then the mission will be restarted by default with the
available clones. If some torch carriers and their clones have failed then the entire

mission has to be restarted as the mission states are permanently lost. The normal

available clones (if any) as the states of

(b) and 1(c). If a worker agent and/or

planner crash recovery scenario is shown in Figure 4.20.

3. The task planner fails after the task execution: This situation is applicable only for

44

Failure Scenario 4 : Failure During task execution

Phase n
1 plan

Planner

Recruit Assign

Agents tasks
AMS 102!
Updal Phase n
€ Start (using clones) Phase (n-+1)
Clone d
Planner LY) i\ . v Kl
outdated ,F:e "i't Assign’ Clohe \outdated
agents gqnts tasks Ageht: agents
Clone 9 ¥ it N Y
AMS |
Figure 4.20: Planner recovery protocol
Failure Scenario 5 : Failure after task execution
Phase n
1 plan
Planne
Recruit
Agents
AMS 4
Upda
e Phasen g, Phase (n+1)
Cione (IL 3
Planner VA)
Kill
Clon outdated
Agent: agents
Clone o ¥

AMS '

Figure 4.21: Planner recovery protocol

45

the task planners performing cloning at the end of a phase. When the primary main
container fails the backup task planner can simply re-perform the cloning and agent
management process upon initialization. Again, if the planner failure is accompanied
by a torch carrier agent failure then the entire phase must be re-performed. A sample

recovery strategy is shown in Figure 4.21

All the above cases deals with the failure of primary during the operation part of the
commit protocol. Similar to other service agents, it is possible that the crash can occur
during a backup update process. This situation is handled in a slightly different manner.
The backup upon detecting a failure can proceed further with its current state as rollback is

clearly not required in this case.

4.2.5 Other Services

The main container has platform services such as container registration or de-registration.
The container connection related information is stored and maintained in a container reg-
istry. When a new container is added to the system the container table is updated with
the container name and the connection parameters. When a container is shut down the re-
lated container information is deleted from the container registry. Absolute consistency of
the container registry must be ensured at the primary and backup containers. The primary-
backup protocol involves transfer of the container registry whenever a container registration

or de-registration takes place.

4.2.6 System Interface

The application requires the services of the system to manage its missions. The system
provides an interface residing outside the agent world in the application’s operation en-
vironment, to receive and send the system service requests. This interface plays a very
important role in fault tolerance. When the primary system services fail then the interface,
with the use of a timeout mechanism, detects the failure and finds the backup service to

complete the operation.

46

4.3 Summary

In this chapter, the design of the node crash tolerance mechanisms has been presented. In
the first section, a simple periodic handshake based application container failure detection
mechanism is presented and followed by that the modifications to the generic planner and
application agent model to accomplish application container fault tolerance is described.
The primary-backup commit protocol and the mission recovery protocols are explained.
Similarly, the main container failure detection mechanism and modifications to the main
container services to accomplish the main container fault tolerance is presented in the later

section. The primary-backup commit protocol and recovery protocols pertaining to the

important services are explained.

47

Chapter 5
Performance Analysis

In the previous chapters, we discussed the model and design of our fault tolerance mech-
anisms. In this chapter, we try to the observe effects of incorporating fault tolerance on
the application through a set of experiments. At first, we try to determine the efficiency
of our fault tolerance mechanisms and later we conduct tests to measure the overhead and

performance effects on the application.

5.1 Failure Recovery Tests

In this section, we try to measure the efficiency of our fault recovery mechanisms. The

application and main container recovery times are measured by the injecting node crashes.

5.1.1 Application Container Failure Test

In order to study the efficiency of the recovery mechanisms in the presence of a failure, we
consider an application with 20 missions. To simulate a real world application, we have
a mixture of periodic and sporadic missions. All the missions are equipped with planners
capable of performing agent cloning during the mission execution. The application agents
are distributed over 5 application containers running on 4 different hosts. We inject faults
in a manner that it affects the required number of missions and we measure the recovery
time of the application. The application recovery time is the time taken to recover all the
failed missions.

As seen in Figure 5.1 the recovery time of the application differs only by a small value

(25ms) irrespective of the number of missions that failed. The difference in the recovery

48

No of Failed Missions | Recovery Time
1 75
2 79
3 77
4 85
5 81
6 86
7 79
8 89
9 94
10 87
11 80
12 93
13 95
14 92
15 91

Table 1: Application Container Recovery Time

time is mainly due to the single AMS processing more requests as the number of mis-
sions increase. The obtained result is mainly due to an efficient recovery strategy and the

corresponding system design changes.

5.1.2 Main Container Failure Test

In this section we will consider the recovery of the system and the application in the pres-

ence of a primary main container failure. In order to determine the effects of the application

Recovery Time Measurement

100
. *«% g4
80 g0 e "® e .

60
40 4

20

Recovery time

0 5 10 15 20
No. of Missions failed

Figure 5.1: Application Container Recovery Time

49

200
150
100 -

Recovery time (ms)

w
o o
I

250 -

Recovery Time Measurement

o

T — T — .

5 10 15 20 25
No. Of Missions

30

Figure 5.2: Main Container Recovery Time

on the main container recovery mechanism, we conduct this test with different application
configurations by varying the number of missions running. Main container failures are in-
jected in each of the above configuration and recovery time of the application is measured.
Here the recovery time is the sum of time required to recover the system components and all

application missions. The Table 2 shows the average recovery times recorded for different

mission configurations.

No of Failed Missions | Recovery Time
| 172
3 178
5 189
10 196
15 216
20 234
25 230

Table 2: Main Container Recovery Time

As seen in the figure 5.2, the time taken to recover the application increases very small
as the number of missions increase confirming a very low dependency between the appli-
cation and the fault-tolerance. Also the time taken to recover the main container is higher

than that of the application container failure because of the time taken to recover the system

and all the application missions.

50

10 Missions | 15 Missions | 25 Missions

No FT 9848 10227 10757
Main Container FT 10165 10846 11508
Main Container FT and 10514 11115 12195
Application Container FT

(Selected Missions)

Main Container FT and 10735 12484 13615
Application Container FT

Table 3: Percentage of Completion Table

5.2 Overhead Measurement

In this section, fault-tolerance overhead on the application is measured. This test measures
the overhead in terms of the average completion time of the missions of a customized
application run on different system configurations.

In order to measure the overhead we consider to run an application with different num-
ber of missions on systems with and without fault tolerance. The mission has a deadline
of 15 seconds and always executes one solution with an acceptable quality. The mission
requires 8 agents to complete all its tasks. Table 3 shows the average completion times of
the missions running on the 4 different system configurations.

From Figure 5.3 it is seen that, as the number of missions increase the completion
time increases slightly. The increase in the execution time is mainly due to the message
overhead as a result of increase in the number of missions. As more missions are admitted

in the system, the cost to maintain a hot backup also increases accordingly.

5.3 Application Performance

In this section, we test the effects of the fault tolerance on the application performance.
To simulate a real world application, we have missions with different levels of tightness in
deadlines (tight, medium and loose) and in equal proportion. We consider 18 missions, 6
missions in each of the above mentioned category. We run the application on 4 different
system configurations: 1. with no fault tolerance, 2. with main container fault tolerance, 3.

main container and application container fault tolerance on selected missions only and 4.

51

Average Completion Time

15000 -
14000
13000 -
12000 - ——NoFT
11000 —&— Main Container FT
10000 / —a— Main Container FT + Application
0 } Container FT(selected missions)
~-»— Main Container FT + Application
9000 Container FT
8000 -
7000
6000 -
5000 7 T 1
10 15 20
No. of Missions

Figure 5.3: Overhead Measurement

100~
_g 80
5
o
E
3
s 60
L]
g m Tight Missions
% # Medium Slack Missions
§ 40 - :E B 1 B - 0 High Stack/ Loose Mssions
o B | P
20‘, S - ’ ST *
No FT Main Main Main
Container FT Container + Container +
App. App.
Container FT Container
. (selected
System Configuration Missions) FT

Figure 5.4: Application Performance

52

Tight Medium Slack | Loose
Deadline | Deadline Deadline
Missions | Missions Missions
No FT 100 100 100
Main Container FT 91 99 100
Main Container FT and 81 95 100
Application Container FT
(Selected Missions)
Main Container FT and 89 98 100
Application Container FT

Table 4: Percentage of Completion Table

main container and application container fault tolerance. Table 4gives the system configu-
ration and the corresponding mission failure rate.

As shown in Figure 5.4, the application performance improves when only a selected
number of missions are provided with agent cloning. And it was also found that the failures

were mainly of the missions with the tight deadlines.

5.4 Summary

In this chapter, performance of the fault tolerance mechanisms are tested using a cus-
tomized SPAF application. The application container and main container failure recovery
scenarios are simulated first and results show that the failure recovery mechanisms are ef-
fective and the application recovery time is reasonable. In the next two sections, the fault
tolerance overhead and performance impact on the application is measured. The results
confirm that the fault tolerance overhead is fair and the overall performance impact on the

application upon the inclusion fault tolerance is very small.

53

Chapter 6
Conclusion

In this thesis, an application-transparent node-crash tolerance mechanism for a soft real-
time self-planned agent framework is presented. Fault tolerance is incorporated without
changing the actual functionalities of the system components. By application-transparency,
we mean that the API of SPAF remains the same even after inclusion of fault tolerance.
Hence, an application developed for SPAF would successfully run on the modified system
with minimal performance difference, even in the presence of node crashes.

Fault tolerance is achieved by conventional primary-backup approach in conjunction
with flexible task planning provided by SPAF and a periodic handshake based node crash
detection mechanism. The application fault tolerance is accomplished maintaining a cold
backup of the missions in a different location. A novel agent cloning technique is used to
significantly improve the cold backup and recovery process in a soft real-time system. The
system fault tolerance is accomplished maintaining a hot backup of all the services in a
different location. For the missions that are unable to afford the time overhead caused by
the maintenance of a cold backup, a simple mission reset strategy is used. This strategy,
unlike the cold backup, does not have any backup maintenance overhead during the mis-
sion, rather chooses to reset the mission completely upon a failure. Fault tolerance strategy
for a mission is appropriately chosen during the admission time.

The practicality of the framework is tested using a custom built SPAF application. To
simulate real world applications, tests were conducted with varying number of missions
and deadlines. The recovery time of the application is almost constant due to an efficient
failure recovery mechanism. In the absence of failures, the overhead offered is mainly due

to the primary backup update messages and increases as the number of missions increase.

54

This increase in the overhead is mainly due to the serial processing of requests by a single
agent management system. As the number of missions increases, the number of requests
increases. The performance tests show that the application performance is almost the same
even after inclusion of the fault tolerance mechanisms. This is due to the flexible choice in
the fault tolerance strategies for different kinds of missions.

Ongoing research work includes improvement of the application mission recovery using
selective rollback instead of a complete rollback during a node failure. When more than
one disjoint agent group works on a task then the agent crash need not necessarily involve
a complete rollback. Ongoing work also includes implementation and testing of the node

crash tolerant SPAF using a real-world application

55

Bibliography

[AHIL78]

[AOSMO05]

[BB03]

[BHOS]

[BN93]

[BRNB]

[FIP0Oa]

[FIPOOb]

[GBB05]

Jr. A.L. Hopkins, T.B. Smith III, and J.H. Lala. Ftmp - a highly reliable fault-
tolerant aircraft control. Proceedings of IEEE, 30(4):1221-1239, oct 1978.

R. Al-Omari, A.K. So, and G. Manimaran. An adaptive scheme for fault-
tolerant scheduling of soft real-time tasks in multiprocessor systems. 4ACM
Journal of Parallel and Distributed Computing, 65(5):595 — 608, May 2005.

P. Garbacki B. Biskupski. Transparent Fault Tolerance for Parallel Java Ap-
plications. Master’s Thesis, July 2003.

V. Botti and L. Hernndez. Control in real-time multiagent systems. In Pro-

ceedings of Second Iberoamerican workshop on DAU and MAS, pages 137—
148, 1998.

Budhiraja and Navin. The primary backup approach in Distributed systems, 2
ed. Mullender (ed.), ACM Press, 1993.

Mark A. Breland, Steven A. Rogers, Kenneth L. Nelson, and Guillaume P.

Brat. Transparent fault tolerance for distributed ada applications.

FIPA. Fipa acl message structure specification,xc000261. Available online at
http://www.fipa.org/specs/fipa00061/, 2000.

FIPA. Fipa agent management specification,xc000231. Available online at
http://’www.fipa.org/specs/fipa00023/, 2000.

P. Garbacki, B. Biskupski, and H. Bal. Transparent fault tolerance for grid
applications. In Proceedings of the European Grid Conference (EGC2005),
Amsterdam, The Netherlands, February 2005.

56

[GS97]

[HGNGO3]

[HLVWO05]

[Jad05]
[Jin05]
[Joh89]

[KBS91]

[KRKO03]

[LKRO2]

[LV62]

[LWS94]

R. Guerraoui and A. Schiper. Software-based replication for fault tolerance.
IEEE Computer, 30(4):68—74, April 1997.

Huang-Ming Huang, Christopher Gill, Bala Natarajan, and Aniruddha
Gokhale. Replication strategies for fault-tolerant real-time corba services. In
Proceedings of OMG Workshops, Needham, MA, U.S.A., 2003.

Bryan Horling, Victor Lesser, Regis Vincent, and Thomas Wagner. The Soft
Real-Time Agent Control Architecture. Autonomous Agents and Multi-Agent
Systems, 2005.

Jade. Java agent development environment. Available online at
http://jade.cselt.it/, 2005.

De Jin. 4 Soft Real-Time Self-Planned Multi-Agent Framework, Masters The-

sis. Concordia University, Montreal, 2005.

B.W. Johnson. Design and Analysis of Fault Tolerant Digital Systems. Addi-
son Wesley Pub. Co. Inc., 1989.

D. Krieger, G. Burk, and R.J. Sclabassi. Neuronet: A distributed real time
system for monitoring neurophysiologic function in the medical enviroment.
IEEE Computer, 24(3):45-55, Mar 1991.

A. Kassler, B. Reiterer, and J. Kaiser. A framework for scheduling soft real-
time multimedia applications. Internet and Multimedia Systems and Applica-
tions (IMSA) 2003, Honolulu, USA, 2003,

Kam-Yiu Lam, Alan Kwan, and Krithi Ramamritham. Rtmonitor: Real-time
data monitoring using mobile agent technologies. In Proceedings of the 28th
VLDB Conference, 2002.

R.E. Lyons and W. Vanderkulk. The use of triple-modular redundancy to im-
prove computer reliability. IBM Journal, pages 200-209, April 1962.

Jonathan Litt, Edmond Wong, and Donald L. Simon. A prototype lisp-based
soft real-time object-oriented graphical user interface for control system de-
velopment. GLTRS Technical report, E-9155, Oct 1994.

57

[MKS86]

[MSMO04]

[Pra86]

[RT93]

[SD02]

[SKAS]

[Sk176]

[SR91]

[SS99]

[SSK]

L. Mancini and M. Koutny. Formal specification of n-modular redundancy.
Proceedings of the 1986 ACM fourteenth annual conference on Computer sci-
ence, pages 199 — 204, 1986.

P.M. Melliar-Smith and L.E. Moser. Progress in real-time fault tolerance. Pro-
ceedings of the 23rd IEEE International Symposium on Reliable Distributed
Systems, Oct 2004.

D K. Pradhan. Fault Tolerant Computing: Theory and Techniques. Prentice
Hall, NJ, 1986.

S. Ramol-Thuel. Erhancing Fault Tolerance of Real-Time Systems through
Time Redundancy. Phd Thesis, Carnegie Melon University, 1993.

Riddhi Burman Mridul Sankar Barik Chandan Mazumdar Surajit Dutta,
Sudip Dutta. Design and implementation of a soft real time fault tolerant
system. Proceedings of the 4th International Workshop on Distributed Com-
puting, Mobile and Wireless Computing, 2571:319 — 328, 2002.

Seejo Sebastine, Kyoung-Don Kang, Tarek F. Abdelzaher, and Sang H. Son.
A scalable web-based real-time information distribution service for industrial
applications. In The 27th Annual Conference of the IEEE Industrial Electron-
ics Society, Denver, Colorado, USA, pages 1810-1815.

J.R. Sklaroff. Redundancy management techniques for space shuttle comput-
ers. IBM Journal of Research and Development, pages 2028, Jan 1976.

J.A. Stankovic and K. Ramamritham. The spring kernel: A new paradigm for

real-time systems. [EEE Software, 8(3):62-72, May 1991.

S. Subramanian and M. Singhal. A real-time protocol for stock market trans-
actions. In In proceedings of International Workshop on Advance Issues of

E-Commerce and Web-based Information Systems, April 1999.

Y. Weiand S. H. Son, J. A. Stankovic, and K. D. Kang. Qos management in
distributed real-time databases. In 24th IEEE Real-Time Systems Symposium
(RTSS °03), Cancun, Mexico,, pages 86-97.

58

[T.B94]

[TG02]

[TK91]

[V1a03]

[Wo002]

[YC98]

[Ziq03]

T.Becker. Application-transparent fault tolerance in distributed systems. In

Proc. of the Second International Workshop in Configurable Distributed Sys-
tems, May 1994.

Chiu-Che Tseng and Piotr J. Gmytrasiewicz. Real time decision support sys-
tems for portfolio management. In Proceedings of the 35th Hawaii Interna-
tional Conference on System Sciences, HICSS-35, 2002.

JM. Long T.J. Kriewall. Guest editor’s introdution: Computer based medical
systems. /[EEE Computer, 24(3):9—12, May 1991.

N. Vlassis. A concise introduction to multiagent systems and distributed
Al Informatics Institute, University of Amsterdam, September 2003.

http://www.science.uva.nl/"vlassis/cimasdai.

M. Wooldridge. An Introduction to Multi-Agent Systems. John Wiley and
Sons, UK, 2002.

Zhang Y and Tsien CL. A data collection and data processing system to sup-

port real-time trials of intelligent alarm algorithms. In /n proceedings of AMIA
Symposium, 1998.

Liao Ziqi. Real-time taxi dispatching using global positioning systems. Com-
munications of the ACM, 46(5):81-83, May 2003.

59

